drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
c9b1d098 47extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 48extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 49
1da177e4
LT
50#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
27ac792c
AR
52/* to align the pointer to the (next) page boundary */
53#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
1da177e4
LT
55/*
56 * Linux kernel virtual memory manager primitives.
57 * The idea being to have a "virtual" mm in the same way
58 * we have a virtual fs - giving a cleaner interface to the
59 * mm details, and allowing different kinds of memory mappings
60 * (from shared memory to executable loading to arbitrary
61 * mmap() functions).
62 */
63
c43692e8
CL
64extern struct kmem_cache *vm_area_cachep;
65
1da177e4 66#ifndef CONFIG_MMU
8feae131
DH
67extern struct rb_root nommu_region_tree;
68extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
69
70extern unsigned int kobjsize(const void *objp);
71#endif
72
73/*
605d9288 74 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 75 */
cc2383ec
KK
76#define VM_NONE 0x00000000
77
1da177e4
LT
78#define VM_READ 0x00000001 /* currently active flags */
79#define VM_WRITE 0x00000002
80#define VM_EXEC 0x00000004
81#define VM_SHARED 0x00000008
82
7e2cff42 83/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
84#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85#define VM_MAYWRITE 0x00000020
86#define VM_MAYEXEC 0x00000040
87#define VM_MAYSHARE 0x00000080
88
89#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 90#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
91#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
92
1da177e4
LT
93#define VM_LOCKED 0x00002000
94#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
6fa3eb70 102#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 103#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 104#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
105#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
106#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 107#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 108#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 109
b379d790 110#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
111#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
112#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 113#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 114
cc2383ec
KK
115#if defined(CONFIG_X86)
116# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
117#elif defined(CONFIG_PPC)
118# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
119#elif defined(CONFIG_PARISC)
120# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
121#elif defined(CONFIG_METAG)
122# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
123#elif defined(CONFIG_IA64)
124# define VM_GROWSUP VM_ARCH_1
125#elif !defined(CONFIG_MMU)
126# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
127#endif
128
129#ifndef VM_GROWSUP
130# define VM_GROWSUP VM_NONE
131#endif
132
a8bef8ff
MG
133/* Bits set in the VMA until the stack is in its final location */
134#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
135
1da177e4
LT
136#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
137#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
138#endif
139
140#ifdef CONFIG_STACK_GROWSUP
141#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
142#else
143#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
144#endif
145
146#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
147#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
148#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
149#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
150#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
151
b291f000 152/*
78f11a25
AA
153 * Special vmas that are non-mergable, non-mlock()able.
154 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 155 */
314e51b9 156#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 157
1da177e4
LT
158/*
159 * mapping from the currently active vm_flags protection bits (the
160 * low four bits) to a page protection mask..
161 */
162extern pgprot_t protection_map[16];
163
d0217ac0
NP
164#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
165#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 166#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 167#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 168#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 169#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 170#define FAULT_FLAG_TRIED 0x40 /* second try */
e2ec2c2b 171#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 172
54cb8821 173/*
d0217ac0 174 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
175 * ->fault function. The vma's ->fault is responsible for returning a bitmask
176 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 177 *
d0217ac0 178 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 179 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 180 */
d0217ac0
NP
181struct vm_fault {
182 unsigned int flags; /* FAULT_FLAG_xxx flags */
183 pgoff_t pgoff; /* Logical page offset based on vma */
184 void __user *virtual_address; /* Faulting virtual address */
185
186 struct page *page; /* ->fault handlers should return a
83c54070 187 * page here, unless VM_FAULT_NOPAGE
d0217ac0 188 * is set (which is also implied by
83c54070 189 * VM_FAULT_ERROR).
d0217ac0 190 */
54cb8821 191};
1da177e4
LT
192
193/*
194 * These are the virtual MM functions - opening of an area, closing and
195 * unmapping it (needed to keep files on disk up-to-date etc), pointer
196 * to the functions called when a no-page or a wp-page exception occurs.
197 */
198struct vm_operations_struct {
199 void (*open)(struct vm_area_struct * area);
200 void (*close)(struct vm_area_struct * area);
d0217ac0 201 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
202
203 /* notification that a previously read-only page is about to become
204 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 205 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
206
207 /* called by access_process_vm when get_user_pages() fails, typically
208 * for use by special VMAs that can switch between memory and hardware
209 */
210 int (*access)(struct vm_area_struct *vma, unsigned long addr,
211 void *buf, int len, int write);
1da177e4 212#ifdef CONFIG_NUMA
a6020ed7
LS
213 /*
214 * set_policy() op must add a reference to any non-NULL @new mempolicy
215 * to hold the policy upon return. Caller should pass NULL @new to
216 * remove a policy and fall back to surrounding context--i.e. do not
217 * install a MPOL_DEFAULT policy, nor the task or system default
218 * mempolicy.
219 */
1da177e4 220 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
221
222 /*
223 * get_policy() op must add reference [mpol_get()] to any policy at
224 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
225 * in mm/mempolicy.c will do this automatically.
226 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
227 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
228 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
229 * must return NULL--i.e., do not "fallback" to task or system default
230 * policy.
231 */
1da177e4
LT
232 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
233 unsigned long addr);
7b2259b3
CL
234 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
235 const nodemask_t *to, unsigned long flags);
1da177e4 236#endif
0b173bc4
KK
237 /* called by sys_remap_file_pages() to populate non-linear mapping */
238 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
239 unsigned long size, pgoff_t pgoff);
1da177e4
LT
240};
241
242struct mmu_gather;
243struct inode;
244
349aef0b
AM
245#define page_private(page) ((page)->private)
246#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 247
b12c4ad1
MK
248/* It's valid only if the page is free path or free_list */
249static inline void set_freepage_migratetype(struct page *page, int migratetype)
250{
95e34412 251 page->index = migratetype;
b12c4ad1
MK
252}
253
254/* It's valid only if the page is free path or free_list */
255static inline int get_freepage_migratetype(struct page *page)
256{
95e34412 257 return page->index;
b12c4ad1
MK
258}
259
1da177e4
LT
260/*
261 * FIXME: take this include out, include page-flags.h in
262 * files which need it (119 of them)
263 */
264#include <linux/page-flags.h>
71e3aac0 265#include <linux/huge_mm.h>
1da177e4
LT
266
267/*
268 * Methods to modify the page usage count.
269 *
270 * What counts for a page usage:
271 * - cache mapping (page->mapping)
272 * - private data (page->private)
273 * - page mapped in a task's page tables, each mapping
274 * is counted separately
275 *
276 * Also, many kernel routines increase the page count before a critical
277 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
278 */
279
280/*
da6052f7 281 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 282 */
7c8ee9a8
NP
283static inline int put_page_testzero(struct page *page)
284{
725d704e 285 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 286 return atomic_dec_and_test(&page->_count);
7c8ee9a8 287}
1da177e4
LT
288
289/*
7c8ee9a8
NP
290 * Try to grab a ref unless the page has a refcount of zero, return false if
291 * that is the case.
1da177e4 292 */
7c8ee9a8
NP
293static inline int get_page_unless_zero(struct page *page)
294{
8dc04efb 295 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 296}
1da177e4 297
53df8fdc
WF
298extern int page_is_ram(unsigned long pfn);
299
48667e7a 300/* Support for virtually mapped pages */
b3bdda02
CL
301struct page *vmalloc_to_page(const void *addr);
302unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 303
0738c4bb
PM
304/*
305 * Determine if an address is within the vmalloc range
306 *
307 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
308 * is no special casing required.
309 */
9e2779fa
CL
310static inline int is_vmalloc_addr(const void *x)
311{
0738c4bb 312#ifdef CONFIG_MMU
9e2779fa
CL
313 unsigned long addr = (unsigned long)x;
314
315 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
316#else
317 return 0;
8ca3ed87 318#endif
0738c4bb 319}
81ac3ad9
KH
320#ifdef CONFIG_MMU
321extern int is_vmalloc_or_module_addr(const void *x);
322#else
934831d0 323static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
324{
325 return 0;
326}
327#endif
9e2779fa 328
6fa3eb70
S
329extern void kvfree(const void *addr);
330
e9da73d6
AA
331static inline void compound_lock(struct page *page)
332{
333#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 334 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
335 bit_spin_lock(PG_compound_lock, &page->flags);
336#endif
337}
338
339static inline void compound_unlock(struct page *page)
340{
341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 342 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
343 bit_spin_unlock(PG_compound_lock, &page->flags);
344#endif
345}
346
347static inline unsigned long compound_lock_irqsave(struct page *page)
348{
349 unsigned long uninitialized_var(flags);
350#ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 local_irq_save(flags);
352 compound_lock(page);
353#endif
354 return flags;
355}
356
357static inline void compound_unlock_irqrestore(struct page *page,
358 unsigned long flags)
359{
360#ifdef CONFIG_TRANSPARENT_HUGEPAGE
361 compound_unlock(page);
362 local_irq_restore(flags);
363#endif
364}
365
d85f3385
CL
366static inline struct page *compound_head(struct page *page)
367{
def52acc
DR
368 if (unlikely(PageTail(page))) {
369 struct page *head = page->first_page;
370
371 /*
372 * page->first_page may be a dangling pointer to an old
373 * compound page, so recheck that it is still a tail
374 * page before returning.
375 */
376 smp_rmb();
377 if (likely(PageTail(page)))
378 return head;
379 }
d85f3385
CL
380 return page;
381}
382
70b50f94
AA
383/*
384 * The atomic page->_mapcount, starts from -1: so that transitions
385 * both from it and to it can be tracked, using atomic_inc_and_test
386 * and atomic_add_negative(-1).
387 */
22b751c3 388static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
389{
390 atomic_set(&(page)->_mapcount, -1);
391}
392
393static inline int page_mapcount(struct page *page)
394{
395 return atomic_read(&(page)->_mapcount) + 1;
396}
397
4c21e2f2 398static inline int page_count(struct page *page)
1da177e4 399{
d85f3385 400 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
401}
402
b35a35b5
AA
403static inline void get_huge_page_tail(struct page *page)
404{
405 /*
406 * __split_huge_page_refcount() cannot run
407 * from under us.
408 */
409 VM_BUG_ON(page_mapcount(page) < 0);
410 VM_BUG_ON(atomic_read(&page->_count) != 0);
411 atomic_inc(&page->_mapcount);
412}
413
70b50f94
AA
414extern bool __get_page_tail(struct page *page);
415
1da177e4
LT
416static inline void get_page(struct page *page)
417{
70b50f94
AA
418 if (unlikely(PageTail(page)))
419 if (likely(__get_page_tail(page)))
420 return;
91807063
AA
421 /*
422 * Getting a normal page or the head of a compound page
70b50f94 423 * requires to already have an elevated page->_count.
91807063 424 */
70b50f94 425 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
426 atomic_inc(&page->_count);
427}
428
b49af68f
CL
429static inline struct page *virt_to_head_page(const void *x)
430{
431 struct page *page = virt_to_page(x);
432 return compound_head(page);
433}
434
7835e98b
NP
435/*
436 * Setup the page count before being freed into the page allocator for
437 * the first time (boot or memory hotplug)
438 */
439static inline void init_page_count(struct page *page)
440{
441 atomic_set(&page->_count, 1);
442}
443
5f24ce5f
AA
444/*
445 * PageBuddy() indicate that the page is free and in the buddy system
446 * (see mm/page_alloc.c).
ef2b4b95
AA
447 *
448 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
449 * -2 so that an underflow of the page_mapcount() won't be mistaken
450 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
451 * efficiently by most CPU architectures.
5f24ce5f 452 */
ef2b4b95
AA
453#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
454
5f24ce5f
AA
455static inline int PageBuddy(struct page *page)
456{
ef2b4b95 457 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
458}
459
460static inline void __SetPageBuddy(struct page *page)
461{
462 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 463 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
464}
465
466static inline void __ClearPageBuddy(struct page *page)
467{
468 VM_BUG_ON(!PageBuddy(page));
469 atomic_set(&page->_mapcount, -1);
470}
471
1da177e4 472void put_page(struct page *page);
1d7ea732 473void put_pages_list(struct list_head *pages);
1da177e4 474
8dfcc9ba 475void split_page(struct page *page, unsigned int order);
748446bb 476int split_free_page(struct page *page);
8dfcc9ba 477
33f2ef89
AW
478/*
479 * Compound pages have a destructor function. Provide a
480 * prototype for that function and accessor functions.
481 * These are _only_ valid on the head of a PG_compound page.
482 */
483typedef void compound_page_dtor(struct page *);
484
485static inline void set_compound_page_dtor(struct page *page,
486 compound_page_dtor *dtor)
487{
488 page[1].lru.next = (void *)dtor;
489}
490
491static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
492{
493 return (compound_page_dtor *)page[1].lru.next;
494}
495
d85f3385
CL
496static inline int compound_order(struct page *page)
497{
6d777953 498 if (!PageHead(page))
d85f3385
CL
499 return 0;
500 return (unsigned long)page[1].lru.prev;
501}
502
37c2ac78
AA
503static inline int compound_trans_order(struct page *page)
504{
505 int order;
506 unsigned long flags;
507
508 if (!PageHead(page))
509 return 0;
510
511 flags = compound_lock_irqsave(page);
512 order = compound_order(page);
513 compound_unlock_irqrestore(page, flags);
514 return order;
515}
516
d85f3385
CL
517static inline void set_compound_order(struct page *page, unsigned long order)
518{
519 page[1].lru.prev = (void *)order;
520}
521
3dece370 522#ifdef CONFIG_MMU
14fd403f
AA
523/*
524 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
525 * servicing faults for write access. In the normal case, do always want
526 * pte_mkwrite. But get_user_pages can cause write faults for mappings
527 * that do not have writing enabled, when used by access_process_vm.
528 */
529static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
530{
531 if (likely(vma->vm_flags & VM_WRITE))
532 pte = pte_mkwrite(pte);
533 return pte;
534}
3dece370 535#endif
14fd403f 536
1da177e4
LT
537/*
538 * Multiple processes may "see" the same page. E.g. for untouched
539 * mappings of /dev/null, all processes see the same page full of
540 * zeroes, and text pages of executables and shared libraries have
541 * only one copy in memory, at most, normally.
542 *
543 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
544 * page_count() == 0 means the page is free. page->lru is then used for
545 * freelist management in the buddy allocator.
da6052f7 546 * page_count() > 0 means the page has been allocated.
1da177e4 547 *
da6052f7
NP
548 * Pages are allocated by the slab allocator in order to provide memory
549 * to kmalloc and kmem_cache_alloc. In this case, the management of the
550 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
551 * unless a particular usage is carefully commented. (the responsibility of
552 * freeing the kmalloc memory is the caller's, of course).
1da177e4 553 *
da6052f7
NP
554 * A page may be used by anyone else who does a __get_free_page().
555 * In this case, page_count still tracks the references, and should only
556 * be used through the normal accessor functions. The top bits of page->flags
557 * and page->virtual store page management information, but all other fields
558 * are unused and could be used privately, carefully. The management of this
559 * page is the responsibility of the one who allocated it, and those who have
560 * subsequently been given references to it.
561 *
562 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
563 * managed by the Linux memory manager: I/O, buffers, swapping etc.
564 * The following discussion applies only to them.
565 *
da6052f7
NP
566 * A pagecache page contains an opaque `private' member, which belongs to the
567 * page's address_space. Usually, this is the address of a circular list of
568 * the page's disk buffers. PG_private must be set to tell the VM to call
569 * into the filesystem to release these pages.
1da177e4 570 *
da6052f7
NP
571 * A page may belong to an inode's memory mapping. In this case, page->mapping
572 * is the pointer to the inode, and page->index is the file offset of the page,
573 * in units of PAGE_CACHE_SIZE.
1da177e4 574 *
da6052f7
NP
575 * If pagecache pages are not associated with an inode, they are said to be
576 * anonymous pages. These may become associated with the swapcache, and in that
577 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 578 *
da6052f7
NP
579 * In either case (swapcache or inode backed), the pagecache itself holds one
580 * reference to the page. Setting PG_private should also increment the
581 * refcount. The each user mapping also has a reference to the page.
1da177e4 582 *
da6052f7
NP
583 * The pagecache pages are stored in a per-mapping radix tree, which is
584 * rooted at mapping->page_tree, and indexed by offset.
585 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
586 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 587 *
da6052f7 588 * All pagecache pages may be subject to I/O:
1da177e4
LT
589 * - inode pages may need to be read from disk,
590 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
591 * to be written back to the inode on disk,
592 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
593 * modified may need to be swapped out to swap space and (later) to be read
594 * back into memory.
1da177e4
LT
595 */
596
597/*
598 * The zone field is never updated after free_area_init_core()
599 * sets it, so none of the operations on it need to be atomic.
1da177e4 600 */
348f8b6c 601
75980e97 602/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
07808b74 603#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
604#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
605#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
75980e97 606#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
d41dee36 607
348f8b6c 608/*
25985edc 609 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
610 * sections we define the shift as 0; that plus a 0 mask ensures
611 * the compiler will optimise away reference to them.
612 */
d41dee36
AW
613#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
614#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
615#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
75980e97 616#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
348f8b6c 617
bce54bbf
WD
618/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
619#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 620#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
621#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
622 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 623#else
89689ae7 624#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
625#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
626 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
627#endif
628
bd8029b6 629#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 630
9223b419
CL
631#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
633#endif
634
d41dee36
AW
635#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
636#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
637#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
75980e97 638#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
89689ae7 639#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 640
33dd4e0e 641static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 642{
348f8b6c 643 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 644}
1da177e4 645
9127ab4f
CS
646#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
647#define SECTION_IN_PAGE_FLAGS
648#endif
649
89689ae7
CL
650/*
651 * The identification function is only used by the buddy allocator for
652 * determining if two pages could be buddies. We are not really
653 * identifying a zone since we could be using a the section number
654 * id if we have not node id available in page flags.
655 * We guarantee only that it will return the same value for two
656 * combinable pages in a zone.
657 */
cb2b95e1
AW
658static inline int page_zone_id(struct page *page)
659{
89689ae7 660 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
661}
662
25ba77c1 663static inline int zone_to_nid(struct zone *zone)
89fa3024 664{
d5f541ed
CL
665#ifdef CONFIG_NUMA
666 return zone->node;
667#else
668 return 0;
669#endif
89fa3024
CL
670}
671
89689ae7 672#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 673extern int page_to_nid(const struct page *page);
89689ae7 674#else
33dd4e0e 675static inline int page_to_nid(const struct page *page)
d41dee36 676{
89689ae7 677 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 678}
89689ae7
CL
679#endif
680
57e0a030 681#ifdef CONFIG_NUMA_BALANCING
75980e97 682#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
22b751c3 683static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
684{
685 return xchg(&page->_last_nid, nid);
686}
687
22b751c3 688static inline int page_nid_last(struct page *page)
57e0a030
MG
689{
690 return page->_last_nid;
691}
22b751c3 692static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
693{
694 page->_last_nid = -1;
695}
696#else
22b751c3 697static inline int page_nid_last(struct page *page)
75980e97
PZ
698{
699 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
700}
701
22b751c3 702extern int page_nid_xchg_last(struct page *page, int nid);
75980e97 703
22b751c3 704static inline void page_nid_reset_last(struct page *page)
75980e97 705{
4468b8f1
MG
706 int nid = (1 << LAST_NID_SHIFT) - 1;
707
708 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
709 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
75980e97
PZ
710}
711#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
712#else
22b751c3 713static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
714{
715 return page_to_nid(page);
716}
717
22b751c3 718static inline int page_nid_last(struct page *page)
57e0a030
MG
719{
720 return page_to_nid(page);
721}
722
22b751c3 723static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
724{
725}
726#endif
727
33dd4e0e 728static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
729{
730 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
731}
732
9127ab4f 733#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
734static inline void set_page_section(struct page *page, unsigned long section)
735{
736 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
737 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
738}
739
aa462abe 740static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
741{
742 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
743}
308c05e3 744#endif
d41dee36 745
2f1b6248 746static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
747{
748 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
749 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
750}
2f1b6248 751
348f8b6c
DH
752static inline void set_page_node(struct page *page, unsigned long node)
753{
754 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
755 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 756}
89689ae7 757
2f1b6248 758static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 759 unsigned long node, unsigned long pfn)
1da177e4 760{
348f8b6c
DH
761 set_page_zone(page, zone);
762 set_page_node(page, node);
9127ab4f 763#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 764 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 765#endif
1da177e4
LT
766}
767
f6ac2354
CL
768/*
769 * Some inline functions in vmstat.h depend on page_zone()
770 */
771#include <linux/vmstat.h>
772
33dd4e0e 773static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 774{
aa462abe 775 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
776}
777
778#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
779#define HASHED_PAGE_VIRTUAL
780#endif
781
782#if defined(WANT_PAGE_VIRTUAL)
2d363552
GU
783static inline void *page_address(const struct page *page)
784{
785 return page->virtual;
786}
787static inline void set_page_address(struct page *page, void *address)
788{
789 page->virtual = address;
790}
1da177e4
LT
791#define page_address_init() do { } while(0)
792#endif
793
794#if defined(HASHED_PAGE_VIRTUAL)
f9918794 795void *page_address(const struct page *page);
1da177e4
LT
796void set_page_address(struct page *page, void *virtual);
797void page_address_init(void);
798#endif
799
800#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
801#define page_address(page) lowmem_page_address(page)
802#define set_page_address(page, address) do { } while(0)
803#define page_address_init() do { } while(0)
804#endif
805
806/*
807 * On an anonymous page mapped into a user virtual memory area,
808 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
809 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
810 *
811 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
812 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
813 * and then page->mapping points, not to an anon_vma, but to a private
814 * structure which KSM associates with that merged page. See ksm.h.
815 *
816 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
817 *
818 * Please note that, confusingly, "page_mapping" refers to the inode
819 * address_space which maps the page from disk; whereas "page_mapped"
820 * refers to user virtual address space into which the page is mapped.
821 */
822#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
823#define PAGE_MAPPING_KSM 2
824#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 825
9800339b 826extern struct address_space *page_mapping(struct page *page);
1da177e4 827
3ca7b3c5
HD
828/* Neutral page->mapping pointer to address_space or anon_vma or other */
829static inline void *page_rmapping(struct page *page)
830{
831 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
832}
833
f981c595
MG
834extern struct address_space *__page_file_mapping(struct page *);
835
836static inline
837struct address_space *page_file_mapping(struct page *page)
838{
839 if (unlikely(PageSwapCache(page)))
840 return __page_file_mapping(page);
841
842 return page->mapping;
843}
844
1da177e4
LT
845static inline int PageAnon(struct page *page)
846{
847 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
848}
849
850/*
851 * Return the pagecache index of the passed page. Regular pagecache pages
852 * use ->index whereas swapcache pages use ->private
853 */
854static inline pgoff_t page_index(struct page *page)
855{
856 if (unlikely(PageSwapCache(page)))
4c21e2f2 857 return page_private(page);
1da177e4
LT
858 return page->index;
859}
860
f981c595
MG
861extern pgoff_t __page_file_index(struct page *page);
862
863/*
864 * Return the file index of the page. Regular pagecache pages use ->index
865 * whereas swapcache pages use swp_offset(->private)
866 */
867static inline pgoff_t page_file_index(struct page *page)
868{
869 if (unlikely(PageSwapCache(page)))
870 return __page_file_index(page);
871
872 return page->index;
873}
874
1da177e4
LT
875/*
876 * Return true if this page is mapped into pagetables.
877 */
878static inline int page_mapped(struct page *page)
879{
880 return atomic_read(&(page)->_mapcount) >= 0;
881}
882
1da177e4
LT
883/*
884 * Different kinds of faults, as returned by handle_mm_fault().
885 * Used to decide whether a process gets delivered SIGBUS or
886 * just gets major/minor fault counters bumped up.
887 */
d0217ac0 888
83c54070 889#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 890
83c54070
NP
891#define VM_FAULT_OOM 0x0001
892#define VM_FAULT_SIGBUS 0x0002
893#define VM_FAULT_MAJOR 0x0004
894#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
895#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
896#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
0c42d1fb 897#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 898
83c54070
NP
899#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
900#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 901#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 902
aa50d3a7
AK
903#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
904
0c42d1fb
LT
905#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
906 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
907
908/* Encode hstate index for a hwpoisoned large page */
909#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
910#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 911
1c0fe6e3
NP
912/*
913 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
914 */
915extern void pagefault_out_of_memory(void);
916
1da177e4
LT
917#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
918
ddd588b5 919/*
7bf02ea2 920 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
921 * various contexts.
922 */
4b59e6c4
DR
923#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
924#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
ddd588b5 925
7bf02ea2
DR
926extern void show_free_areas(unsigned int flags);
927extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 928
6fa3eb70 929void shmem_set_file(struct vm_area_struct *vma, struct file *file);
1da177e4
LT
930int shmem_zero_setup(struct vm_area_struct *);
931
e8edc6e0 932extern int can_do_mlock(void);
1da177e4
LT
933extern int user_shm_lock(size_t, struct user_struct *);
934extern void user_shm_unlock(size_t, struct user_struct *);
935
936/*
937 * Parameter block passed down to zap_pte_range in exceptional cases.
938 */
939struct zap_details {
940 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
941 struct address_space *check_mapping; /* Check page->mapping if set */
942 pgoff_t first_index; /* Lowest page->index to unmap */
943 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
944};
945
7e675137
NP
946struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
947 pte_t pte);
948
c627f9cc
JS
949int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
950 unsigned long size);
14f5ff5d 951void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 952 unsigned long size, struct zap_details *);
4f74d2c8
LT
953void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
954 unsigned long start, unsigned long end);
e6473092
MM
955
956/**
957 * mm_walk - callbacks for walk_page_range
958 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
959 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
960 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
961 * this handler is required to be able to handle
962 * pmd_trans_huge() pmds. They may simply choose to
963 * split_huge_page() instead of handling it explicitly.
e6473092
MM
964 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
965 * @pte_hole: if set, called for each hole at all levels
5dc37642 966 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
967 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
968 * is used.
e6473092
MM
969 *
970 * (see walk_page_range for more details)
971 */
972struct mm_walk {
0f157a5b
AM
973 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
974 unsigned long next, struct mm_walk *walk);
975 int (*pud_entry)(pud_t *pud, unsigned long addr,
976 unsigned long next, struct mm_walk *walk);
977 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
978 unsigned long next, struct mm_walk *walk);
979 int (*pte_entry)(pte_t *pte, unsigned long addr,
980 unsigned long next, struct mm_walk *walk);
981 int (*pte_hole)(unsigned long addr, unsigned long next,
982 struct mm_walk *walk);
983 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
984 unsigned long addr, unsigned long next,
985 struct mm_walk *walk);
2165009b
DH
986 struct mm_struct *mm;
987 void *private;
e6473092
MM
988};
989
2165009b
DH
990int walk_page_range(unsigned long addr, unsigned long end,
991 struct mm_walk *walk);
42b77728 992void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 993 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
994int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
995 struct vm_area_struct *vma);
1da177e4
LT
996void unmap_mapping_range(struct address_space *mapping,
997 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
998int follow_pfn(struct vm_area_struct *vma, unsigned long address,
999 unsigned long *pfn);
d87fe660 1000int follow_phys(struct vm_area_struct *vma, unsigned long address,
1001 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1002int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1003 void *buf, int len, int write);
1da177e4
LT
1004
1005static inline void unmap_shared_mapping_range(struct address_space *mapping,
1006 loff_t const holebegin, loff_t const holelen)
1007{
1008 unmap_mapping_range(mapping, holebegin, holelen, 0);
1009}
1010
25d9e2d1 1011extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 1012extern void truncate_setsize(struct inode *inode, loff_t newsize);
6cbdf115 1013void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1014void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1015int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1016int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1017int invalidate_inode_page(struct page *page);
1018
7ee1dd3f 1019#ifdef CONFIG_MMU
83c54070 1020extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1021 unsigned long address, unsigned int flags);
5c723ba5
PZ
1022extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1023 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1024#else
1025static inline int handle_mm_fault(struct mm_struct *mm,
1026 struct vm_area_struct *vma, unsigned long address,
d06063cc 1027 unsigned int flags)
7ee1dd3f
DH
1028{
1029 /* should never happen if there's no MMU */
1030 BUG();
1031 return VM_FAULT_SIGBUS;
1032}
5c723ba5
PZ
1033static inline int fixup_user_fault(struct task_struct *tsk,
1034 struct mm_struct *mm, unsigned long address,
1035 unsigned int fault_flags)
1036{
1037 /* should never happen if there's no MMU */
1038 BUG();
1039 return -EFAULT;
1040}
7ee1dd3f 1041#endif
f33ea7f4 1042
1da177e4 1043extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1044extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1045 void *buf, int len, int write);
1da177e4 1046
28a35716
ML
1047long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1048 unsigned long start, unsigned long nr_pages,
1049 unsigned int foll_flags, struct page **pages,
1050 struct vm_area_struct **vmas, int *nonblocking);
1051long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1052 unsigned long start, unsigned long nr_pages,
1053 int write, int force, struct page **pages,
1054 struct vm_area_struct **vmas);
d2bf6be8
NP
1055int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1056 struct page **pages);
18022c5d
MG
1057struct kvec;
1058int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1059 struct page **pages);
1060int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1061struct page *get_dump_page(unsigned long addr);
1da177e4 1062
cf9a2ae8
DH
1063extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1064extern void do_invalidatepage(struct page *page, unsigned long offset);
1065
1da177e4 1066int __set_page_dirty_nobuffers(struct page *page);
76719325 1067int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1068int redirty_page_for_writepage(struct writeback_control *wbc,
1069 struct page *page);
e3a7cca1 1070void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1071void account_page_writeback(struct page *page);
b3c97528 1072int set_page_dirty(struct page *page);
1da177e4
LT
1073int set_page_dirty_lock(struct page *page);
1074int clear_page_dirty_for_io(struct page *page);
1075
b7643757
SP
1076extern pid_t
1077vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1078
b6a2fea3
OW
1079extern unsigned long move_page_tables(struct vm_area_struct *vma,
1080 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1081 unsigned long new_addr, unsigned long len,
1082 bool need_rmap_locks);
7da4d641
PZ
1083extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1084 unsigned long end, pgprot_t newprot,
4b10e7d5 1085 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1086extern int mprotect_fixup(struct vm_area_struct *vma,
1087 struct vm_area_struct **pprev, unsigned long start,
1088 unsigned long end, unsigned long newflags);
1da177e4 1089
465a454f
PZ
1090/*
1091 * doesn't attempt to fault and will return short.
1092 */
1093int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1094 struct page **pages);
d559db08
KH
1095/*
1096 * per-process(per-mm_struct) statistics.
1097 */
d559db08
KH
1098static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1099{
69c97823
KK
1100 long val = atomic_long_read(&mm->rss_stat.count[member]);
1101
1102#ifdef SPLIT_RSS_COUNTING
1103 /*
1104 * counter is updated in asynchronous manner and may go to minus.
1105 * But it's never be expected number for users.
1106 */
1107 if (val < 0)
1108 val = 0;
172703b0 1109#endif
69c97823
KK
1110 return (unsigned long)val;
1111}
d559db08
KH
1112
1113static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1114{
172703b0 1115 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1116}
1117
1118static inline void inc_mm_counter(struct mm_struct *mm, int member)
1119{
172703b0 1120 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1121}
1122
1123static inline void dec_mm_counter(struct mm_struct *mm, int member)
1124{
172703b0 1125 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1126}
1127
d559db08
KH
1128static inline unsigned long get_mm_rss(struct mm_struct *mm)
1129{
1130 return get_mm_counter(mm, MM_FILEPAGES) +
1131 get_mm_counter(mm, MM_ANONPAGES);
1132}
1133
1134static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1135{
1136 return max(mm->hiwater_rss, get_mm_rss(mm));
1137}
1138
1139static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1140{
1141 return max(mm->hiwater_vm, mm->total_vm);
1142}
1143
1144static inline void update_hiwater_rss(struct mm_struct *mm)
1145{
1146 unsigned long _rss = get_mm_rss(mm);
1147
1148 if ((mm)->hiwater_rss < _rss)
1149 (mm)->hiwater_rss = _rss;
1150}
1151
1152static inline void update_hiwater_vm(struct mm_struct *mm)
1153{
1154 if (mm->hiwater_vm < mm->total_vm)
1155 mm->hiwater_vm = mm->total_vm;
1156}
1157
1158static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1159 struct mm_struct *mm)
1160{
1161 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1162
1163 if (*maxrss < hiwater_rss)
1164 *maxrss = hiwater_rss;
1165}
1166
53bddb4e 1167#if defined(SPLIT_RSS_COUNTING)
05af2e10 1168void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1169#else
05af2e10 1170static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1171{
1172}
1173#endif
465a454f 1174
4e950f6f 1175int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1176
25ca1d6c
NK
1177extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1178 spinlock_t **ptl);
1179static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1180 spinlock_t **ptl)
1181{
1182 pte_t *ptep;
1183 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1184 return ptep;
1185}
c9cfcddf 1186
5f22df00
NP
1187#ifdef __PAGETABLE_PUD_FOLDED
1188static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1189 unsigned long address)
1190{
1191 return 0;
1192}
1193#else
1bb3630e 1194int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1195#endif
1196
1197#ifdef __PAGETABLE_PMD_FOLDED
1198static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1199 unsigned long address)
1200{
1201 return 0;
1202}
1203#else
1bb3630e 1204int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1205#endif
1206
8ac1f832
AA
1207int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1208 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1209int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1210
1da177e4
LT
1211/*
1212 * The following ifdef needed to get the 4level-fixup.h header to work.
1213 * Remove it when 4level-fixup.h has been removed.
1214 */
1bb3630e 1215#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1216static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1217{
1bb3630e
HD
1218 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1219 NULL: pud_offset(pgd, address);
1da177e4
LT
1220}
1221
1222static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1223{
1bb3630e
HD
1224 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1225 NULL: pmd_offset(pud, address);
1da177e4 1226}
1bb3630e
HD
1227#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1228
f7d0b926 1229#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1230/*
1231 * We tuck a spinlock to guard each pagetable page into its struct page,
1232 * at page->private, with BUILD_BUG_ON to make sure that this will not
1233 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1234 * When freeing, reset page->mapping so free_pages_check won't complain.
1235 */
349aef0b 1236#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1237#define pte_lock_init(_page) do { \
1238 spin_lock_init(__pte_lockptr(_page)); \
1239} while (0)
1240#define pte_lock_deinit(page) ((page)->mapping = NULL)
1241#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1242#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1243/*
1244 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1245 */
1246#define pte_lock_init(page) do {} while (0)
1247#define pte_lock_deinit(page) do {} while (0)
1248#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1249#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1250
2f569afd
MS
1251static inline void pgtable_page_ctor(struct page *page)
1252{
1253 pte_lock_init(page);
1254 inc_zone_page_state(page, NR_PAGETABLE);
1255}
1256
1257static inline void pgtable_page_dtor(struct page *page)
1258{
1259 pte_lock_deinit(page);
1260 dec_zone_page_state(page, NR_PAGETABLE);
1261}
1262
c74df32c
HD
1263#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1264({ \
4c21e2f2 1265 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1266 pte_t *__pte = pte_offset_map(pmd, address); \
1267 *(ptlp) = __ptl; \
1268 spin_lock(__ptl); \
1269 __pte; \
1270})
1271
1272#define pte_unmap_unlock(pte, ptl) do { \
1273 spin_unlock(ptl); \
1274 pte_unmap(pte); \
1275} while (0)
1276
8ac1f832
AA
1277#define pte_alloc_map(mm, vma, pmd, address) \
1278 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1279 pmd, address))? \
1280 NULL: pte_offset_map(pmd, address))
1bb3630e 1281
c74df32c 1282#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1283 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1284 pmd, address))? \
c74df32c
HD
1285 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1286
1bb3630e 1287#define pte_alloc_kernel(pmd, address) \
8ac1f832 1288 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1289 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1290
1291extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1292extern void free_area_init_node(int nid, unsigned long * zones_size,
1293 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1294extern void free_initmem(void);
1295
69afade7
JL
1296/*
1297 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1298 * into the buddy system. The freed pages will be poisoned with pattern
1299 * "poison" if it's non-zero.
1300 * Return pages freed into the buddy system.
1301 */
1302extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1303 int poison, char *s);
cfa11e08
JL
1304#ifdef CONFIG_HIGHMEM
1305/*
1306 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1307 * and totalram_pages.
1308 */
1309extern void free_highmem_page(struct page *page);
1310#endif
69afade7
JL
1311
1312static inline void adjust_managed_page_count(struct page *page, long count)
1313{
1314 totalram_pages += count;
1315}
1316
1317/* Free the reserved page into the buddy system, so it gets managed. */
1318static inline void __free_reserved_page(struct page *page)
1319{
1320 ClearPageReserved(page);
1321 init_page_count(page);
1322 __free_page(page);
1323}
1324
1325static inline void free_reserved_page(struct page *page)
1326{
1327 __free_reserved_page(page);
1328 adjust_managed_page_count(page, 1);
1329}
1330
1331static inline void mark_page_reserved(struct page *page)
1332{
1333 SetPageReserved(page);
1334 adjust_managed_page_count(page, -1);
1335}
1336
1337/*
1338 * Default method to free all the __init memory into the buddy system.
1339 * The freed pages will be poisoned with pattern "poison" if it is
1340 * non-zero. Return pages freed into the buddy system.
1341 */
1342static inline unsigned long free_initmem_default(int poison)
1343{
1344 extern char __init_begin[], __init_end[];
1345
1346 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1347 ((unsigned long)&__init_end) & PAGE_MASK,
1348 poison, "unused kernel");
1349}
1350
0ee332c1 1351#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1352/*
0ee332c1 1353 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1354 * zones, allocate the backing mem_map and account for memory holes in a more
1355 * architecture independent manner. This is a substitute for creating the
1356 * zone_sizes[] and zholes_size[] arrays and passing them to
1357 * free_area_init_node()
1358 *
1359 * An architecture is expected to register range of page frames backed by
0ee332c1 1360 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1361 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1362 * usage, an architecture is expected to do something like
1363 *
1364 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1365 * max_highmem_pfn};
1366 * for_each_valid_physical_page_range()
0ee332c1 1367 * memblock_add_node(base, size, nid)
c713216d
MG
1368 * free_area_init_nodes(max_zone_pfns);
1369 *
0ee332c1
TH
1370 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1371 * registered physical page range. Similarly
1372 * sparse_memory_present_with_active_regions() calls memory_present() for
1373 * each range when SPARSEMEM is enabled.
c713216d
MG
1374 *
1375 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1376 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1377 */
1378extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1379unsigned long node_map_pfn_alignment(void);
32996250
YL
1380unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1381 unsigned long end_pfn);
c713216d
MG
1382extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1383 unsigned long end_pfn);
1384extern void get_pfn_range_for_nid(unsigned int nid,
1385 unsigned long *start_pfn, unsigned long *end_pfn);
1386extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1387extern void free_bootmem_with_active_regions(int nid,
1388 unsigned long max_low_pfn);
1389extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1390
0ee332c1 1391#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1392
0ee332c1 1393#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1394 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1395static inline int __early_pfn_to_nid(unsigned long pfn)
1396{
1397 return 0;
1398}
1399#else
1400/* please see mm/page_alloc.c */
1401extern int __meminit early_pfn_to_nid(unsigned long pfn);
1402#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1403/* there is a per-arch backend function. */
1404extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1405#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1406#endif
1407
0e0b864e 1408extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1409extern void memmap_init_zone(unsigned long, int, unsigned long,
1410 unsigned long, enum memmap_context);
bc75d33f 1411extern void setup_per_zone_wmarks(void);
1b79acc9 1412extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1413extern void mem_init(void);
8feae131 1414extern void __init mmap_init(void);
b2b755b5 1415extern void show_mem(unsigned int flags);
1da177e4
LT
1416extern void si_meminfo(struct sysinfo * val);
1417extern void si_meminfo_node(struct sysinfo *val, int nid);
1418
3ee9a4f0
JP
1419extern __printf(3, 4)
1420void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1421
e7c8d5c9 1422extern void setup_per_cpu_pageset(void);
e7c8d5c9 1423
112067f0 1424extern void zone_pcp_update(struct zone *zone);
340175b7 1425extern void zone_pcp_reset(struct zone *zone);
112067f0 1426
75f7ad8e
PS
1427/* page_alloc.c */
1428extern int min_free_kbytes;
1429
8feae131 1430/* nommu.c */
33e5d769 1431extern atomic_long_t mmap_pages_allocated;
7e660872 1432extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1433
6b2dbba8 1434/* interval_tree.c */
6b2dbba8
ML
1435void vma_interval_tree_insert(struct vm_area_struct *node,
1436 struct rb_root *root);
9826a516
ML
1437void vma_interval_tree_insert_after(struct vm_area_struct *node,
1438 struct vm_area_struct *prev,
1439 struct rb_root *root);
6b2dbba8
ML
1440void vma_interval_tree_remove(struct vm_area_struct *node,
1441 struct rb_root *root);
1442struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1443 unsigned long start, unsigned long last);
1444struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1445 unsigned long start, unsigned long last);
1446
1447#define vma_interval_tree_foreach(vma, root, start, last) \
1448 for (vma = vma_interval_tree_iter_first(root, start, last); \
1449 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1450
1451static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1452 struct list_head *list)
1453{
6b2dbba8 1454 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1455}
1456
bf181b9f
ML
1457void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1458 struct rb_root *root);
1459void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1460 struct rb_root *root);
1461struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1462 struct rb_root *root, unsigned long start, unsigned long last);
1463struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1464 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1465#ifdef CONFIG_DEBUG_VM_RB
1466void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1467#endif
bf181b9f
ML
1468
1469#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1470 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1471 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1472
1da177e4 1473/* mmap.c */
34b4e4aa 1474extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1475extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1476 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1477extern struct vm_area_struct *vma_merge(struct mm_struct *,
1478 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1479 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
6fa3eb70 1480 struct mempolicy *, const char __user *);
1da177e4
LT
1481extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1482extern int split_vma(struct mm_struct *,
1483 struct vm_area_struct *, unsigned long addr, int new_below);
1484extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1485extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1486 struct rb_node **, struct rb_node *);
a8fb5618 1487extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1488extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1489 unsigned long addr, unsigned long len, pgoff_t pgoff,
1490 bool *need_rmap_locks);
1da177e4 1491extern void exit_mmap(struct mm_struct *);
925d1c40 1492
7906d00c
AA
1493extern int mm_take_all_locks(struct mm_struct *mm);
1494extern void mm_drop_all_locks(struct mm_struct *mm);
1495
38646013
JS
1496extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1497extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1498
119f657c 1499extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1500extern int install_special_mapping(struct mm_struct *mm,
1501 unsigned long addr, unsigned long len,
1502 unsigned long flags, struct page **pages);
1da177e4
LT
1503
1504extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1505
0165ab44 1506extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1507 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1508extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1509 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1510 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1511extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1512
bebeb3d6
ML
1513#ifdef CONFIG_MMU
1514extern int __mm_populate(unsigned long addr, unsigned long len,
1515 int ignore_errors);
1516static inline void mm_populate(unsigned long addr, unsigned long len)
1517{
1518 /* Ignore errors */
1519 (void) __mm_populate(addr, len, 1);
1520}
1521#else
1522static inline void mm_populate(unsigned long addr, unsigned long len) {}
1523#endif
1524
e4eb1ff6
LT
1525/* These take the mm semaphore themselves */
1526extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1527extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1528extern unsigned long vm_mmap(struct file *, unsigned long,
1529 unsigned long, unsigned long,
1530 unsigned long, unsigned long);
1da177e4 1531
db4fbfb9
ML
1532struct vm_unmapped_area_info {
1533#define VM_UNMAPPED_AREA_TOPDOWN 1
1534 unsigned long flags;
1535 unsigned long length;
1536 unsigned long low_limit;
1537 unsigned long high_limit;
1538 unsigned long align_mask;
1539 unsigned long align_offset;
1540};
1541
1542extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1543extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1544
1545/*
1546 * Search for an unmapped address range.
1547 *
1548 * We are looking for a range that:
1549 * - does not intersect with any VMA;
1550 * - is contained within the [low_limit, high_limit) interval;
1551 * - is at least the desired size.
1552 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1553 */
1554static inline unsigned long
1555vm_unmapped_area(struct vm_unmapped_area_info *info)
1556{
1557 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1558 return unmapped_area(info);
1559 else
1560 return unmapped_area_topdown(info);
1561}
1562
85821aab 1563/* truncate.c */
1da177e4 1564extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1565extern void truncate_inode_pages_range(struct address_space *,
1566 loff_t lstart, loff_t lend);
1da177e4
LT
1567
1568/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1569extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1570extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1571
1572/* mm/page-writeback.c */
1573int write_one_page(struct page *page, int wait);
1cf6e7d8 1574void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1575
1576/* readahead.c */
1577#define VM_MAX_READAHEAD 128 /* kbytes */
1578#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1579
1da177e4 1580int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1581 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1582
1583void page_cache_sync_readahead(struct address_space *mapping,
1584 struct file_ra_state *ra,
1585 struct file *filp,
1586 pgoff_t offset,
1587 unsigned long size);
1588
1589void page_cache_async_readahead(struct address_space *mapping,
1590 struct file_ra_state *ra,
1591 struct file *filp,
1592 struct page *pg,
1593 pgoff_t offset,
1594 unsigned long size);
1595
1da177e4 1596unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1597unsigned long ra_submit(struct file_ra_state *ra,
1598 struct address_space *mapping,
1599 struct file *filp);
1da177e4 1600
1ad9a25d 1601extern unsigned long stack_guard_gap;
d05f3169 1602/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1603extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1604
1605/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1606extern int expand_downwards(struct vm_area_struct *vma,
1607 unsigned long address);
8ca3eb08 1608#if VM_GROWSUP
46dea3d0 1609extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1610#else
88b5d12c 1611 #define expand_upwards(vma, address) (0)
9ab88515 1612#endif
1da177e4
LT
1613
1614/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1615extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1616extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1617 struct vm_area_struct **pprev);
1618
1619/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1620 NULL if none. Assume start_addr < end_addr. */
1621static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1622{
1623 struct vm_area_struct * vma = find_vma(mm,start_addr);
1624
1625 if (vma && end_addr <= vma->vm_start)
1626 vma = NULL;
1627 return vma;
1628}
1629
1ad9a25d
HD
1630static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
1631{
1632 unsigned long vm_start = vma->vm_start;
1633
1634 if (vma->vm_flags & VM_GROWSDOWN) {
1635 vm_start -= stack_guard_gap;
1636 if (vm_start > vma->vm_start)
1637 vm_start = 0;
1638 }
1639 return vm_start;
1640}
1641
1642static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
1643{
1644 unsigned long vm_end = vma->vm_end;
1645
1646 if (vma->vm_flags & VM_GROWSUP) {
1647 vm_end += stack_guard_gap;
1648 if (vm_end < vma->vm_end)
1649 vm_end = -PAGE_SIZE;
1650 }
1651 return vm_end;
1652}
1653
1da177e4
LT
1654static inline unsigned long vma_pages(struct vm_area_struct *vma)
1655{
1656 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1657}
1658
640708a2
PE
1659/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1660static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1661 unsigned long vm_start, unsigned long vm_end)
1662{
1663 struct vm_area_struct *vma = find_vma(mm, vm_start);
1664
1665 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1666 vma = NULL;
1667
1668 return vma;
1669}
1670
bad849b3 1671#ifdef CONFIG_MMU
804af2cf 1672pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1673#else
1674static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1675{
1676 return __pgprot(0);
1677}
1678#endif
1679
b24f53a0 1680#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1681unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1682 unsigned long start, unsigned long end);
1683#endif
1684
deceb6cd 1685struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1686int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1687 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1688int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1689int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1690 unsigned long pfn);
423bad60
NP
1691int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1692 unsigned long pfn);
b4cbb197
LT
1693int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1694
deceb6cd 1695
240aadee
ML
1696struct page *follow_page_mask(struct vm_area_struct *vma,
1697 unsigned long address, unsigned int foll_flags,
1698 unsigned int *page_mask);
1699
1700static inline struct page *follow_page(struct vm_area_struct *vma,
1701 unsigned long address, unsigned int foll_flags)
1702{
1703 unsigned int unused_page_mask;
1704 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1705}
1706
deceb6cd
HD
1707#define FOLL_WRITE 0x01 /* check pte is writable */
1708#define FOLL_TOUCH 0x02 /* mark page accessed */
1709#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1710#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1711#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1712#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1713 * and return without waiting upon it */
110d74a9 1714#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1715#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1716#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1717#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1718#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
4b9e9796 1719#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 1720
2f569afd 1721typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1722 void *data);
1723extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1724 unsigned long size, pte_fn_t fn, void *data);
1725
1da177e4 1726#ifdef CONFIG_PROC_FS
ab50b8ed 1727void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1728#else
ab50b8ed 1729static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1730 unsigned long flags, struct file *file, long pages)
1731{
44de9d0c 1732 mm->total_vm += pages;
1da177e4
LT
1733}
1734#endif /* CONFIG_PROC_FS */
1735
12d6f21e 1736#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1737extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1738#ifdef CONFIG_HIBERNATION
1739extern bool kernel_page_present(struct page *page);
1740#endif /* CONFIG_HIBERNATION */
12d6f21e 1741#else
1da177e4 1742static inline void
9858db50 1743kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1744#ifdef CONFIG_HIBERNATION
1745static inline bool kernel_page_present(struct page *page) { return true; }
1746#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1747#endif
1748
31db58b3 1749extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1750#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1751int in_gate_area_no_mm(unsigned long addr);
83b964bb 1752int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1753#else
cae5d390
SW
1754int in_gate_area_no_mm(unsigned long addr);
1755#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1756#endif /* __HAVE_ARCH_GATE_AREA */
1757
146732ce
JT
1758#ifdef CONFIG_SYSCTL
1759extern int sysctl_drop_caches;
8d65af78 1760int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1761 void __user *, size_t *, loff_t *);
146732ce
JT
1762#endif
1763
a09ed5e0 1764unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1765 unsigned long nr_pages_scanned,
1766 unsigned long lru_pages);
6fa3eb70 1767void drop_pagecache(void);
9d0243bc 1768
7a9166e3
LY
1769#ifndef CONFIG_MMU
1770#define randomize_va_space 0
1771#else
a62eaf15 1772extern int randomize_va_space;
7a9166e3 1773#endif
a62eaf15 1774
045e72ac 1775const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1776void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1777
9bdac914
YL
1778void sparse_mem_maps_populate_node(struct page **map_map,
1779 unsigned long pnum_begin,
1780 unsigned long pnum_end,
1781 unsigned long map_count,
1782 int nodeid);
1783
98f3cfc1 1784struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1785pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1786pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1787pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1788pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1789void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1790void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1791void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
1792int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1793 int node);
1794int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 1795void vmemmap_populate_print_last(void);
0197518c 1796#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 1797void vmemmap_free(unsigned long start, unsigned long end);
0197518c 1798#endif
46723bfa
YI
1799void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1800 unsigned long size);
6a46079c 1801
82ba011b
AK
1802enum mf_flags {
1803 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1804 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1805 MF_MUST_KILL = 1 << 2,
82ba011b 1806};
cd42f4a3 1807extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1808extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1809extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1810extern int sysctl_memory_failure_early_kill;
1811extern int sysctl_memory_failure_recovery;
facb6011 1812extern void shake_page(struct page *p, int access);
293c07e3 1813extern atomic_long_t num_poisoned_pages;
facb6011 1814extern int soft_offline_page(struct page *page, int flags);
6a46079c 1815
718a3821
WF
1816extern void dump_page(struct page *page);
1817
47ad8475
AA
1818#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1819extern void clear_huge_page(struct page *page,
1820 unsigned long addr,
1821 unsigned int pages_per_huge_page);
1822extern void copy_user_huge_page(struct page *dst, struct page *src,
1823 unsigned long addr, struct vm_area_struct *vma,
1824 unsigned int pages_per_huge_page);
1825#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1826
c0a32fc5
SG
1827#ifdef CONFIG_DEBUG_PAGEALLOC
1828extern unsigned int _debug_guardpage_minorder;
1829
1830static inline unsigned int debug_guardpage_minorder(void)
1831{
1832 return _debug_guardpage_minorder;
1833}
1834
1835static inline bool page_is_guard(struct page *page)
1836{
1837 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1838}
1839#else
1840static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1841static inline bool page_is_guard(struct page *page) { return false; }
1842#endif /* CONFIG_DEBUG_PAGEALLOC */
1843
f9872caf
CS
1844#if MAX_NUMNODES > 1
1845void __init setup_nr_node_ids(void);
1846#else
1847static inline void setup_nr_node_ids(void) {}
1848#endif
1849
1da177e4
LT
1850#endif /* __KERNEL__ */
1851#endif /* _LINUX_MM_H */