thp: bail out gup_fast on splitting pmd
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
e9da73d6 17#include <linux/bit_spinlock.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
4e950f6f 21struct file_ra_state;
e8edc6e0 22struct user_struct;
4e950f6f 23struct writeback_control;
1da177e4
LT
24
25#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26extern unsigned long max_mapnr;
27#endif
28
29extern unsigned long num_physpages;
4481374c 30extern unsigned long totalram_pages;
1da177e4 31extern void * high_memory;
1da177e4
LT
32extern int page_cluster;
33
34#ifdef CONFIG_SYSCTL
35extern int sysctl_legacy_va_layout;
36#else
37#define sysctl_legacy_va_layout 0
38#endif
39
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/processor.h>
1da177e4 43
1da177e4
LT
44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
27ac792c
AR
46/* to align the pointer to the (next) page boundary */
47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48
1da177e4
LT
49/*
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
56 */
57
c43692e8
CL
58extern struct kmem_cache *vm_area_cachep;
59
1da177e4 60#ifndef CONFIG_MMU
8feae131
DH
61extern struct rb_root nommu_region_tree;
62extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
63
64extern unsigned int kobjsize(const void *objp);
65#endif
66
67/*
605d9288 68 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
69 */
70#define VM_READ 0x00000001 /* currently active flags */
71#define VM_WRITE 0x00000002
72#define VM_EXEC 0x00000004
73#define VM_SHARED 0x00000008
74
7e2cff42 75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
76#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77#define VM_MAYWRITE 0x00000020
78#define VM_MAYEXEC 0x00000040
79#define VM_MAYSHARE 0x00000080
80
81#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 83#define VM_GROWSUP 0x00000200
8ca3eb08
TL
84#else
85#define VM_GROWSUP 0x00000000
86#endif
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90#define VM_EXECUTABLE 0x00001000
91#define VM_LOCKED 0x00002000
92#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93
94 /* Used by sys_madvise() */
95#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97
98#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 100#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 101#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 102#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
103#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
105#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
895791da 106#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 107#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 108
d0217ac0 109#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 110#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 111#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 112#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 113#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 114
a8bef8ff
MG
115/* Bits set in the VMA until the stack is in its final location */
116#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
117
1da177e4
LT
118#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
119#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
120#endif
121
122#ifdef CONFIG_STACK_GROWSUP
123#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
124#else
125#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
126#endif
127
128#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
129#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
130#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
131#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
132#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
133
b291f000
NP
134/*
135 * special vmas that are non-mergable, non-mlock()able
136 */
137#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
138
1da177e4
LT
139/*
140 * mapping from the currently active vm_flags protection bits (the
141 * low four bits) to a page protection mask..
142 */
143extern pgprot_t protection_map[16];
144
d0217ac0
NP
145#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
146#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 147#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 148#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
d0217ac0 149
6bd9cd50 150/*
151 * This interface is used by x86 PAT code to identify a pfn mapping that is
152 * linear over entire vma. This is to optimize PAT code that deals with
153 * marking the physical region with a particular prot. This is not for generic
154 * mm use. Note also that this check will not work if the pfn mapping is
155 * linear for a vma starting at physical address 0. In which case PAT code
156 * falls back to slow path of reserving physical range page by page.
157 */
3c8bb73a 158static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
159{
895791da 160 return (vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 161}
162
163static inline int is_pfn_mapping(struct vm_area_struct *vma)
164{
165 return (vma->vm_flags & VM_PFNMAP);
166}
d0217ac0 167
54cb8821 168/*
d0217ac0 169 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
170 * ->fault function. The vma's ->fault is responsible for returning a bitmask
171 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 172 *
d0217ac0
NP
173 * pgoff should be used in favour of virtual_address, if possible. If pgoff
174 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
175 * mapping support.
54cb8821 176 */
d0217ac0
NP
177struct vm_fault {
178 unsigned int flags; /* FAULT_FLAG_xxx flags */
179 pgoff_t pgoff; /* Logical page offset based on vma */
180 void __user *virtual_address; /* Faulting virtual address */
181
182 struct page *page; /* ->fault handlers should return a
83c54070 183 * page here, unless VM_FAULT_NOPAGE
d0217ac0 184 * is set (which is also implied by
83c54070 185 * VM_FAULT_ERROR).
d0217ac0 186 */
54cb8821 187};
1da177e4
LT
188
189/*
190 * These are the virtual MM functions - opening of an area, closing and
191 * unmapping it (needed to keep files on disk up-to-date etc), pointer
192 * to the functions called when a no-page or a wp-page exception occurs.
193 */
194struct vm_operations_struct {
195 void (*open)(struct vm_area_struct * area);
196 void (*close)(struct vm_area_struct * area);
d0217ac0 197 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
198
199 /* notification that a previously read-only page is about to become
200 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 201 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
202
203 /* called by access_process_vm when get_user_pages() fails, typically
204 * for use by special VMAs that can switch between memory and hardware
205 */
206 int (*access)(struct vm_area_struct *vma, unsigned long addr,
207 void *buf, int len, int write);
1da177e4 208#ifdef CONFIG_NUMA
a6020ed7
LS
209 /*
210 * set_policy() op must add a reference to any non-NULL @new mempolicy
211 * to hold the policy upon return. Caller should pass NULL @new to
212 * remove a policy and fall back to surrounding context--i.e. do not
213 * install a MPOL_DEFAULT policy, nor the task or system default
214 * mempolicy.
215 */
1da177e4 216 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
217
218 /*
219 * get_policy() op must add reference [mpol_get()] to any policy at
220 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
221 * in mm/mempolicy.c will do this automatically.
222 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
223 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
224 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
225 * must return NULL--i.e., do not "fallback" to task or system default
226 * policy.
227 */
1da177e4
LT
228 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
229 unsigned long addr);
7b2259b3
CL
230 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
231 const nodemask_t *to, unsigned long flags);
1da177e4
LT
232#endif
233};
234
235struct mmu_gather;
236struct inode;
237
349aef0b
AM
238#define page_private(page) ((page)->private)
239#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 240
1da177e4
LT
241/*
242 * FIXME: take this include out, include page-flags.h in
243 * files which need it (119 of them)
244 */
245#include <linux/page-flags.h>
246
247/*
248 * Methods to modify the page usage count.
249 *
250 * What counts for a page usage:
251 * - cache mapping (page->mapping)
252 * - private data (page->private)
253 * - page mapped in a task's page tables, each mapping
254 * is counted separately
255 *
256 * Also, many kernel routines increase the page count before a critical
257 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
258 */
259
260/*
da6052f7 261 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 262 */
7c8ee9a8
NP
263static inline int put_page_testzero(struct page *page)
264{
725d704e 265 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 266 return atomic_dec_and_test(&page->_count);
7c8ee9a8 267}
1da177e4
LT
268
269/*
7c8ee9a8
NP
270 * Try to grab a ref unless the page has a refcount of zero, return false if
271 * that is the case.
1da177e4 272 */
7c8ee9a8
NP
273static inline int get_page_unless_zero(struct page *page)
274{
8dc04efb 275 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 276}
1da177e4 277
53df8fdc
WF
278extern int page_is_ram(unsigned long pfn);
279
48667e7a 280/* Support for virtually mapped pages */
b3bdda02
CL
281struct page *vmalloc_to_page(const void *addr);
282unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 283
0738c4bb
PM
284/*
285 * Determine if an address is within the vmalloc range
286 *
287 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
288 * is no special casing required.
289 */
9e2779fa
CL
290static inline int is_vmalloc_addr(const void *x)
291{
0738c4bb 292#ifdef CONFIG_MMU
9e2779fa
CL
293 unsigned long addr = (unsigned long)x;
294
295 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
296#else
297 return 0;
8ca3ed87 298#endif
0738c4bb 299}
81ac3ad9
KH
300#ifdef CONFIG_MMU
301extern int is_vmalloc_or_module_addr(const void *x);
302#else
934831d0 303static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
304{
305 return 0;
306}
307#endif
9e2779fa 308
e9da73d6
AA
309static inline void compound_lock(struct page *page)
310{
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 bit_spin_lock(PG_compound_lock, &page->flags);
313#endif
314}
315
316static inline void compound_unlock(struct page *page)
317{
318#ifdef CONFIG_TRANSPARENT_HUGEPAGE
319 bit_spin_unlock(PG_compound_lock, &page->flags);
320#endif
321}
322
323static inline unsigned long compound_lock_irqsave(struct page *page)
324{
325 unsigned long uninitialized_var(flags);
326#ifdef CONFIG_TRANSPARENT_HUGEPAGE
327 local_irq_save(flags);
328 compound_lock(page);
329#endif
330 return flags;
331}
332
333static inline void compound_unlock_irqrestore(struct page *page,
334 unsigned long flags)
335{
336#ifdef CONFIG_TRANSPARENT_HUGEPAGE
337 compound_unlock(page);
338 local_irq_restore(flags);
339#endif
340}
341
d85f3385
CL
342static inline struct page *compound_head(struct page *page)
343{
6d777953 344 if (unlikely(PageTail(page)))
d85f3385
CL
345 return page->first_page;
346 return page;
347}
348
4c21e2f2 349static inline int page_count(struct page *page)
1da177e4 350{
d85f3385 351 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
352}
353
354static inline void get_page(struct page *page)
355{
91807063
AA
356 /*
357 * Getting a normal page or the head of a compound page
358 * requires to already have an elevated page->_count. Only if
359 * we're getting a tail page, the elevated page->_count is
360 * required only in the head page, so for tail pages the
361 * bugcheck only verifies that the page->_count isn't
362 * negative.
363 */
364 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
1da177e4 365 atomic_inc(&page->_count);
91807063
AA
366 /*
367 * Getting a tail page will elevate both the head and tail
368 * page->_count(s).
369 */
370 if (unlikely(PageTail(page))) {
371 /*
372 * This is safe only because
373 * __split_huge_page_refcount can't run under
374 * get_page().
375 */
376 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
377 atomic_inc(&page->first_page->_count);
378 }
1da177e4
LT
379}
380
b49af68f
CL
381static inline struct page *virt_to_head_page(const void *x)
382{
383 struct page *page = virt_to_page(x);
384 return compound_head(page);
385}
386
7835e98b
NP
387/*
388 * Setup the page count before being freed into the page allocator for
389 * the first time (boot or memory hotplug)
390 */
391static inline void init_page_count(struct page *page)
392{
393 atomic_set(&page->_count, 1);
394}
395
1da177e4 396void put_page(struct page *page);
1d7ea732 397void put_pages_list(struct list_head *pages);
1da177e4 398
8dfcc9ba 399void split_page(struct page *page, unsigned int order);
748446bb 400int split_free_page(struct page *page);
8dfcc9ba 401
33f2ef89
AW
402/*
403 * Compound pages have a destructor function. Provide a
404 * prototype for that function and accessor functions.
405 * These are _only_ valid on the head of a PG_compound page.
406 */
407typedef void compound_page_dtor(struct page *);
408
409static inline void set_compound_page_dtor(struct page *page,
410 compound_page_dtor *dtor)
411{
412 page[1].lru.next = (void *)dtor;
413}
414
415static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
416{
417 return (compound_page_dtor *)page[1].lru.next;
418}
419
d85f3385
CL
420static inline int compound_order(struct page *page)
421{
6d777953 422 if (!PageHead(page))
d85f3385
CL
423 return 0;
424 return (unsigned long)page[1].lru.prev;
425}
426
427static inline void set_compound_order(struct page *page, unsigned long order)
428{
429 page[1].lru.prev = (void *)order;
430}
431
14fd403f
AA
432/*
433 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
434 * servicing faults for write access. In the normal case, do always want
435 * pte_mkwrite. But get_user_pages can cause write faults for mappings
436 * that do not have writing enabled, when used by access_process_vm.
437 */
438static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
439{
440 if (likely(vma->vm_flags & VM_WRITE))
441 pte = pte_mkwrite(pte);
442 return pte;
443}
444
1da177e4
LT
445/*
446 * Multiple processes may "see" the same page. E.g. for untouched
447 * mappings of /dev/null, all processes see the same page full of
448 * zeroes, and text pages of executables and shared libraries have
449 * only one copy in memory, at most, normally.
450 *
451 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
452 * page_count() == 0 means the page is free. page->lru is then used for
453 * freelist management in the buddy allocator.
da6052f7 454 * page_count() > 0 means the page has been allocated.
1da177e4 455 *
da6052f7
NP
456 * Pages are allocated by the slab allocator in order to provide memory
457 * to kmalloc and kmem_cache_alloc. In this case, the management of the
458 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
459 * unless a particular usage is carefully commented. (the responsibility of
460 * freeing the kmalloc memory is the caller's, of course).
1da177e4 461 *
da6052f7
NP
462 * A page may be used by anyone else who does a __get_free_page().
463 * In this case, page_count still tracks the references, and should only
464 * be used through the normal accessor functions. The top bits of page->flags
465 * and page->virtual store page management information, but all other fields
466 * are unused and could be used privately, carefully. The management of this
467 * page is the responsibility of the one who allocated it, and those who have
468 * subsequently been given references to it.
469 *
470 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
471 * managed by the Linux memory manager: I/O, buffers, swapping etc.
472 * The following discussion applies only to them.
473 *
da6052f7
NP
474 * A pagecache page contains an opaque `private' member, which belongs to the
475 * page's address_space. Usually, this is the address of a circular list of
476 * the page's disk buffers. PG_private must be set to tell the VM to call
477 * into the filesystem to release these pages.
1da177e4 478 *
da6052f7
NP
479 * A page may belong to an inode's memory mapping. In this case, page->mapping
480 * is the pointer to the inode, and page->index is the file offset of the page,
481 * in units of PAGE_CACHE_SIZE.
1da177e4 482 *
da6052f7
NP
483 * If pagecache pages are not associated with an inode, they are said to be
484 * anonymous pages. These may become associated with the swapcache, and in that
485 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 486 *
da6052f7
NP
487 * In either case (swapcache or inode backed), the pagecache itself holds one
488 * reference to the page. Setting PG_private should also increment the
489 * refcount. The each user mapping also has a reference to the page.
1da177e4 490 *
da6052f7
NP
491 * The pagecache pages are stored in a per-mapping radix tree, which is
492 * rooted at mapping->page_tree, and indexed by offset.
493 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
494 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 495 *
da6052f7 496 * All pagecache pages may be subject to I/O:
1da177e4
LT
497 * - inode pages may need to be read from disk,
498 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
499 * to be written back to the inode on disk,
500 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
501 * modified may need to be swapped out to swap space and (later) to be read
502 * back into memory.
1da177e4
LT
503 */
504
505/*
506 * The zone field is never updated after free_area_init_core()
507 * sets it, so none of the operations on it need to be atomic.
1da177e4 508 */
348f8b6c 509
d41dee36
AW
510
511/*
512 * page->flags layout:
513 *
514 * There are three possibilities for how page->flags get
515 * laid out. The first is for the normal case, without
516 * sparsemem. The second is for sparsemem when there is
517 * plenty of space for node and section. The last is when
518 * we have run out of space and have to fall back to an
519 * alternate (slower) way of determining the node.
520 *
308c05e3
CL
521 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
522 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
523 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 524 */
308c05e3 525#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
526#define SECTIONS_WIDTH SECTIONS_SHIFT
527#else
528#define SECTIONS_WIDTH 0
529#endif
530
531#define ZONES_WIDTH ZONES_SHIFT
532
9223b419 533#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
534#define NODES_WIDTH NODES_SHIFT
535#else
308c05e3
CL
536#ifdef CONFIG_SPARSEMEM_VMEMMAP
537#error "Vmemmap: No space for nodes field in page flags"
538#endif
d41dee36
AW
539#define NODES_WIDTH 0
540#endif
541
542/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 543#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
544#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
545#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
546
547/*
548 * We are going to use the flags for the page to node mapping if its in
549 * there. This includes the case where there is no node, so it is implicit.
550 */
89689ae7
CL
551#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
552#define NODE_NOT_IN_PAGE_FLAGS
553#endif
d41dee36
AW
554
555#ifndef PFN_SECTION_SHIFT
556#define PFN_SECTION_SHIFT 0
557#endif
348f8b6c
DH
558
559/*
560 * Define the bit shifts to access each section. For non-existant
561 * sections we define the shift as 0; that plus a 0 mask ensures
562 * the compiler will optimise away reference to them.
563 */
d41dee36
AW
564#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
565#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
566#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 567
bce54bbf
WD
568/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
569#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 570#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
571#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
572 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 573#else
89689ae7 574#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
575#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
576 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
577#endif
578
bd8029b6 579#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 580
9223b419
CL
581#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
582#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
583#endif
584
d41dee36
AW
585#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
586#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
587#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 588#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 589
2f1b6248 590static inline enum zone_type page_zonenum(struct page *page)
1da177e4 591{
348f8b6c 592 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 593}
1da177e4 594
89689ae7
CL
595/*
596 * The identification function is only used by the buddy allocator for
597 * determining if two pages could be buddies. We are not really
598 * identifying a zone since we could be using a the section number
599 * id if we have not node id available in page flags.
600 * We guarantee only that it will return the same value for two
601 * combinable pages in a zone.
602 */
cb2b95e1
AW
603static inline int page_zone_id(struct page *page)
604{
89689ae7 605 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
606}
607
25ba77c1 608static inline int zone_to_nid(struct zone *zone)
89fa3024 609{
d5f541ed
CL
610#ifdef CONFIG_NUMA
611 return zone->node;
612#else
613 return 0;
614#endif
89fa3024
CL
615}
616
89689ae7 617#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 618extern int page_to_nid(struct page *page);
89689ae7 619#else
25ba77c1 620static inline int page_to_nid(struct page *page)
d41dee36 621{
89689ae7 622 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 623}
89689ae7
CL
624#endif
625
626static inline struct zone *page_zone(struct page *page)
627{
628 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
629}
630
308c05e3 631#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
632static inline unsigned long page_to_section(struct page *page)
633{
634 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
635}
308c05e3 636#endif
d41dee36 637
2f1b6248 638static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
639{
640 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
641 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
642}
2f1b6248 643
348f8b6c
DH
644static inline void set_page_node(struct page *page, unsigned long node)
645{
646 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
647 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 648}
89689ae7 649
d41dee36
AW
650static inline void set_page_section(struct page *page, unsigned long section)
651{
652 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
653 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
654}
1da177e4 655
2f1b6248 656static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 657 unsigned long node, unsigned long pfn)
1da177e4 658{
348f8b6c
DH
659 set_page_zone(page, zone);
660 set_page_node(page, node);
d41dee36 661 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
662}
663
f6ac2354
CL
664/*
665 * Some inline functions in vmstat.h depend on page_zone()
666 */
667#include <linux/vmstat.h>
668
652050ae 669static __always_inline void *lowmem_page_address(struct page *page)
1da177e4 670{
c6f6b596 671 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
672}
673
674#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
675#define HASHED_PAGE_VIRTUAL
676#endif
677
678#if defined(WANT_PAGE_VIRTUAL)
679#define page_address(page) ((page)->virtual)
680#define set_page_address(page, address) \
681 do { \
682 (page)->virtual = (address); \
683 } while(0)
684#define page_address_init() do { } while(0)
685#endif
686
687#if defined(HASHED_PAGE_VIRTUAL)
688void *page_address(struct page *page);
689void set_page_address(struct page *page, void *virtual);
690void page_address_init(void);
691#endif
692
693#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
694#define page_address(page) lowmem_page_address(page)
695#define set_page_address(page, address) do { } while(0)
696#define page_address_init() do { } while(0)
697#endif
698
699/*
700 * On an anonymous page mapped into a user virtual memory area,
701 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
702 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
703 *
704 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
705 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
706 * and then page->mapping points, not to an anon_vma, but to a private
707 * structure which KSM associates with that merged page. See ksm.h.
708 *
709 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
710 *
711 * Please note that, confusingly, "page_mapping" refers to the inode
712 * address_space which maps the page from disk; whereas "page_mapped"
713 * refers to user virtual address space into which the page is mapped.
714 */
715#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
716#define PAGE_MAPPING_KSM 2
717#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
718
719extern struct address_space swapper_space;
720static inline struct address_space *page_mapping(struct page *page)
721{
722 struct address_space *mapping = page->mapping;
723
b5fab14e 724 VM_BUG_ON(PageSlab(page));
1da177e4
LT
725 if (unlikely(PageSwapCache(page)))
726 mapping = &swapper_space;
e20e8779 727 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
728 mapping = NULL;
729 return mapping;
730}
731
3ca7b3c5
HD
732/* Neutral page->mapping pointer to address_space or anon_vma or other */
733static inline void *page_rmapping(struct page *page)
734{
735 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
736}
737
1da177e4
LT
738static inline int PageAnon(struct page *page)
739{
740 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
741}
742
743/*
744 * Return the pagecache index of the passed page. Regular pagecache pages
745 * use ->index whereas swapcache pages use ->private
746 */
747static inline pgoff_t page_index(struct page *page)
748{
749 if (unlikely(PageSwapCache(page)))
4c21e2f2 750 return page_private(page);
1da177e4
LT
751 return page->index;
752}
753
754/*
755 * The atomic page->_mapcount, like _count, starts from -1:
756 * so that transitions both from it and to it can be tracked,
757 * using atomic_inc_and_test and atomic_add_negative(-1).
758 */
759static inline void reset_page_mapcount(struct page *page)
760{
761 atomic_set(&(page)->_mapcount, -1);
762}
763
764static inline int page_mapcount(struct page *page)
765{
766 return atomic_read(&(page)->_mapcount) + 1;
767}
768
769/*
770 * Return true if this page is mapped into pagetables.
771 */
772static inline int page_mapped(struct page *page)
773{
774 return atomic_read(&(page)->_mapcount) >= 0;
775}
776
1da177e4
LT
777/*
778 * Different kinds of faults, as returned by handle_mm_fault().
779 * Used to decide whether a process gets delivered SIGBUS or
780 * just gets major/minor fault counters bumped up.
781 */
d0217ac0 782
83c54070 783#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 784
83c54070
NP
785#define VM_FAULT_OOM 0x0001
786#define VM_FAULT_SIGBUS 0x0002
787#define VM_FAULT_MAJOR 0x0004
788#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
789#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
790#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 791
83c54070
NP
792#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
793#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 794#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 795
aa50d3a7
AK
796#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
797
798#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
799 VM_FAULT_HWPOISON_LARGE)
800
801/* Encode hstate index for a hwpoisoned large page */
802#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
803#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 804
1c0fe6e3
NP
805/*
806 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
807 */
808extern void pagefault_out_of_memory(void);
809
1da177e4
LT
810#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
811
812extern void show_free_areas(void);
813
3f96b79a 814int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 815struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
816int shmem_zero_setup(struct vm_area_struct *);
817
b0e15190
DH
818#ifndef CONFIG_MMU
819extern unsigned long shmem_get_unmapped_area(struct file *file,
820 unsigned long addr,
821 unsigned long len,
822 unsigned long pgoff,
823 unsigned long flags);
824#endif
825
e8edc6e0 826extern int can_do_mlock(void);
1da177e4
LT
827extern int user_shm_lock(size_t, struct user_struct *);
828extern void user_shm_unlock(size_t, struct user_struct *);
829
830/*
831 * Parameter block passed down to zap_pte_range in exceptional cases.
832 */
833struct zap_details {
834 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
835 struct address_space *check_mapping; /* Check page->mapping if set */
836 pgoff_t first_index; /* Lowest page->index to unmap */
837 pgoff_t last_index; /* Highest page->index to unmap */
838 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
839 unsigned long truncate_count; /* Compare vm_truncate_count */
840};
841
7e675137
NP
842struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
843 pte_t pte);
844
c627f9cc
JS
845int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
846 unsigned long size);
ee39b37b 847unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 848 unsigned long size, struct zap_details *);
508034a3 849unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
850 struct vm_area_struct *start_vma, unsigned long start_addr,
851 unsigned long end_addr, unsigned long *nr_accounted,
852 struct zap_details *);
e6473092
MM
853
854/**
855 * mm_walk - callbacks for walk_page_range
856 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
857 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
858 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
859 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
860 * @pte_hole: if set, called for each hole at all levels
5dc37642 861 * @hugetlb_entry: if set, called for each hugetlb entry
e6473092
MM
862 *
863 * (see walk_page_range for more details)
864 */
865struct mm_walk {
2165009b
DH
866 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
867 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
868 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
869 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
870 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
871 int (*hugetlb_entry)(pte_t *, unsigned long,
872 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
873 struct mm_struct *mm;
874 void *private;
e6473092
MM
875};
876
2165009b
DH
877int walk_page_range(unsigned long addr, unsigned long end,
878 struct mm_walk *walk);
42b77728 879void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 880 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
881int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
882 struct vm_area_struct *vma);
1da177e4
LT
883void unmap_mapping_range(struct address_space *mapping,
884 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
885int follow_pfn(struct vm_area_struct *vma, unsigned long address,
886 unsigned long *pfn);
d87fe660 887int follow_phys(struct vm_area_struct *vma, unsigned long address,
888 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
889int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
890 void *buf, int len, int write);
1da177e4
LT
891
892static inline void unmap_shared_mapping_range(struct address_space *mapping,
893 loff_t const holebegin, loff_t const holelen)
894{
895 unmap_mapping_range(mapping, holebegin, holelen, 0);
896}
897
25d9e2d1 898extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 899extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 900extern int vmtruncate(struct inode *inode, loff_t offset);
901extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 902
750b4987 903int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 904int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 905
83f78668
WF
906int invalidate_inode_page(struct page *page);
907
7ee1dd3f 908#ifdef CONFIG_MMU
83c54070 909extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 910 unsigned long address, unsigned int flags);
7ee1dd3f
DH
911#else
912static inline int handle_mm_fault(struct mm_struct *mm,
913 struct vm_area_struct *vma, unsigned long address,
d06063cc 914 unsigned int flags)
7ee1dd3f
DH
915{
916 /* should never happen if there's no MMU */
917 BUG();
918 return VM_FAULT_SIGBUS;
919}
920#endif
f33ea7f4 921
1da177e4
LT
922extern int make_pages_present(unsigned long addr, unsigned long end);
923extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1da177e4 924
d2bf6be8 925int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 926 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
927 struct page **pages, struct vm_area_struct **vmas);
928int get_user_pages_fast(unsigned long start, int nr_pages, int write,
929 struct page **pages);
f3e8fccd 930struct page *get_dump_page(unsigned long addr);
1da177e4 931
cf9a2ae8
DH
932extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
933extern void do_invalidatepage(struct page *page, unsigned long offset);
934
1da177e4 935int __set_page_dirty_nobuffers(struct page *page);
76719325 936int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
937int redirty_page_for_writepage(struct writeback_control *wbc,
938 struct page *page);
e3a7cca1 939void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 940void account_page_writeback(struct page *page);
b3c97528 941int set_page_dirty(struct page *page);
1da177e4
LT
942int set_page_dirty_lock(struct page *page);
943int clear_page_dirty_for_io(struct page *page);
944
39aa3cb3
SB
945/* Is the vma a continuation of the stack vma above it? */
946static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
947{
948 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
949}
950
b6a2fea3
OW
951extern unsigned long move_page_tables(struct vm_area_struct *vma,
952 unsigned long old_addr, struct vm_area_struct *new_vma,
953 unsigned long new_addr, unsigned long len);
1da177e4
LT
954extern unsigned long do_mremap(unsigned long addr,
955 unsigned long old_len, unsigned long new_len,
956 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
957extern int mprotect_fixup(struct vm_area_struct *vma,
958 struct vm_area_struct **pprev, unsigned long start,
959 unsigned long end, unsigned long newflags);
1da177e4 960
465a454f
PZ
961/*
962 * doesn't attempt to fault and will return short.
963 */
964int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
965 struct page **pages);
d559db08
KH
966/*
967 * per-process(per-mm_struct) statistics.
968 */
34e55232 969#if defined(SPLIT_RSS_COUNTING)
d559db08
KH
970/*
971 * The mm counters are not protected by its page_table_lock,
972 * so must be incremented atomically.
973 */
974static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
975{
976 atomic_long_set(&mm->rss_stat.count[member], value);
977}
978
34e55232 979unsigned long get_mm_counter(struct mm_struct *mm, int member);
d559db08
KH
980
981static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
982{
983 atomic_long_add(value, &mm->rss_stat.count[member]);
984}
985
986static inline void inc_mm_counter(struct mm_struct *mm, int member)
987{
988 atomic_long_inc(&mm->rss_stat.count[member]);
989}
990
991static inline void dec_mm_counter(struct mm_struct *mm, int member)
992{
993 atomic_long_dec(&mm->rss_stat.count[member]);
994}
995
996#else /* !USE_SPLIT_PTLOCKS */
997/*
998 * The mm counters are protected by its page_table_lock,
999 * so can be incremented directly.
1000 */
1001static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1002{
1003 mm->rss_stat.count[member] = value;
1004}
1005
1006static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1007{
1008 return mm->rss_stat.count[member];
1009}
1010
1011static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1012{
1013 mm->rss_stat.count[member] += value;
1014}
1015
1016static inline void inc_mm_counter(struct mm_struct *mm, int member)
1017{
1018 mm->rss_stat.count[member]++;
1019}
1020
1021static inline void dec_mm_counter(struct mm_struct *mm, int member)
1022{
1023 mm->rss_stat.count[member]--;
1024}
1025
1026#endif /* !USE_SPLIT_PTLOCKS */
1027
1028static inline unsigned long get_mm_rss(struct mm_struct *mm)
1029{
1030 return get_mm_counter(mm, MM_FILEPAGES) +
1031 get_mm_counter(mm, MM_ANONPAGES);
1032}
1033
1034static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1035{
1036 return max(mm->hiwater_rss, get_mm_rss(mm));
1037}
1038
1039static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1040{
1041 return max(mm->hiwater_vm, mm->total_vm);
1042}
1043
1044static inline void update_hiwater_rss(struct mm_struct *mm)
1045{
1046 unsigned long _rss = get_mm_rss(mm);
1047
1048 if ((mm)->hiwater_rss < _rss)
1049 (mm)->hiwater_rss = _rss;
1050}
1051
1052static inline void update_hiwater_vm(struct mm_struct *mm)
1053{
1054 if (mm->hiwater_vm < mm->total_vm)
1055 mm->hiwater_vm = mm->total_vm;
1056}
1057
1058static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1059 struct mm_struct *mm)
1060{
1061 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1062
1063 if (*maxrss < hiwater_rss)
1064 *maxrss = hiwater_rss;
1065}
1066
53bddb4e 1067#if defined(SPLIT_RSS_COUNTING)
34e55232 1068void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1069#else
1070static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1071{
1072}
1073#endif
465a454f 1074
1da177e4 1075/*
8e1f936b 1076 * A callback you can register to apply pressure to ageable caches.
1da177e4 1077 *
8e1f936b
RR
1078 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1079 * look through the least-recently-used 'nr_to_scan' entries and
1080 * attempt to free them up. It should return the number of objects
1081 * which remain in the cache. If it returns -1, it means it cannot do
1082 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 1083 *
8e1f936b
RR
1084 * The 'gfpmask' refers to the allocation we are currently trying to
1085 * fulfil.
1086 *
1087 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1088 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 1089 */
8e1f936b 1090struct shrinker {
7f8275d0 1091 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
8e1f936b 1092 int seeks; /* seeks to recreate an obj */
1da177e4 1093
8e1f936b
RR
1094 /* These are for internal use */
1095 struct list_head list;
1096 long nr; /* objs pending delete */
1097};
1098#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1099extern void register_shrinker(struct shrinker *);
1100extern void unregister_shrinker(struct shrinker *);
1da177e4 1101
4e950f6f 1102int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1103
25ca1d6c
NK
1104extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1105 spinlock_t **ptl);
1106static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1107 spinlock_t **ptl)
1108{
1109 pte_t *ptep;
1110 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1111 return ptep;
1112}
c9cfcddf 1113
5f22df00
NP
1114#ifdef __PAGETABLE_PUD_FOLDED
1115static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1116 unsigned long address)
1117{
1118 return 0;
1119}
1120#else
1bb3630e 1121int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1122#endif
1123
1124#ifdef __PAGETABLE_PMD_FOLDED
1125static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1126 unsigned long address)
1127{
1128 return 0;
1129}
1130#else
1bb3630e 1131int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1132#endif
1133
1bb3630e
HD
1134int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1135int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1136
1da177e4
LT
1137/*
1138 * The following ifdef needed to get the 4level-fixup.h header to work.
1139 * Remove it when 4level-fixup.h has been removed.
1140 */
1bb3630e 1141#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1142static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1143{
1bb3630e
HD
1144 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1145 NULL: pud_offset(pgd, address);
1da177e4
LT
1146}
1147
1148static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1149{
1bb3630e
HD
1150 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1151 NULL: pmd_offset(pud, address);
1da177e4 1152}
1bb3630e
HD
1153#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1154
f7d0b926 1155#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1156/*
1157 * We tuck a spinlock to guard each pagetable page into its struct page,
1158 * at page->private, with BUILD_BUG_ON to make sure that this will not
1159 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1160 * When freeing, reset page->mapping so free_pages_check won't complain.
1161 */
349aef0b 1162#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1163#define pte_lock_init(_page) do { \
1164 spin_lock_init(__pte_lockptr(_page)); \
1165} while (0)
1166#define pte_lock_deinit(page) ((page)->mapping = NULL)
1167#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1168#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1169/*
1170 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1171 */
1172#define pte_lock_init(page) do {} while (0)
1173#define pte_lock_deinit(page) do {} while (0)
1174#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1175#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1176
2f569afd
MS
1177static inline void pgtable_page_ctor(struct page *page)
1178{
1179 pte_lock_init(page);
1180 inc_zone_page_state(page, NR_PAGETABLE);
1181}
1182
1183static inline void pgtable_page_dtor(struct page *page)
1184{
1185 pte_lock_deinit(page);
1186 dec_zone_page_state(page, NR_PAGETABLE);
1187}
1188
c74df32c
HD
1189#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1190({ \
4c21e2f2 1191 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1192 pte_t *__pte = pte_offset_map(pmd, address); \
1193 *(ptlp) = __ptl; \
1194 spin_lock(__ptl); \
1195 __pte; \
1196})
1197
1198#define pte_unmap_unlock(pte, ptl) do { \
1199 spin_unlock(ptl); \
1200 pte_unmap(pte); \
1201} while (0)
1202
1bb3630e
HD
1203#define pte_alloc_map(mm, pmd, address) \
1204 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1205 NULL: pte_offset_map(pmd, address))
1206
c74df32c
HD
1207#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1208 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1209 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1210
1bb3630e
HD
1211#define pte_alloc_kernel(pmd, address) \
1212 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1213 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1214
1215extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1216extern void free_area_init_node(int nid, unsigned long * zones_size,
1217 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1218#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1219/*
1220 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1221 * zones, allocate the backing mem_map and account for memory holes in a more
1222 * architecture independent manner. This is a substitute for creating the
1223 * zone_sizes[] and zholes_size[] arrays and passing them to
1224 * free_area_init_node()
1225 *
1226 * An architecture is expected to register range of page frames backed by
1227 * physical memory with add_active_range() before calling
1228 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1229 * usage, an architecture is expected to do something like
1230 *
1231 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1232 * max_highmem_pfn};
1233 * for_each_valid_physical_page_range()
1234 * add_active_range(node_id, start_pfn, end_pfn)
1235 * free_area_init_nodes(max_zone_pfns);
1236 *
1237 * If the architecture guarantees that there are no holes in the ranges
1238 * registered with add_active_range(), free_bootmem_active_regions()
1239 * will call free_bootmem_node() for each registered physical page range.
1240 * Similarly sparse_memory_present_with_active_regions() calls
1241 * memory_present() for each range when SPARSEMEM is enabled.
1242 *
1243 * See mm/page_alloc.c for more information on each function exposed by
1244 * CONFIG_ARCH_POPULATES_NODE_MAP
1245 */
1246extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1247extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1248 unsigned long end_pfn);
cc1050ba
YL
1249extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1250 unsigned long end_pfn);
c713216d 1251extern void remove_all_active_ranges(void);
32996250
YL
1252void sort_node_map(void);
1253unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1254 unsigned long end_pfn);
c713216d
MG
1255extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1256 unsigned long end_pfn);
1257extern void get_pfn_range_for_nid(unsigned int nid,
1258 unsigned long *start_pfn, unsigned long *end_pfn);
1259extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1260extern void free_bootmem_with_active_regions(int nid,
1261 unsigned long max_low_pfn);
08677214
YL
1262int add_from_early_node_map(struct range *range, int az,
1263 int nr_range, int nid);
edbe7d23
YL
1264u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1265 u64 goal, u64 limit);
08677214
YL
1266void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1267 u64 goal, u64 limit);
d52d53b8 1268typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1269extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d 1270extern void sparse_memory_present_with_active_regions(int nid);
c713216d 1271#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1272
1273#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1274 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1275static inline int __early_pfn_to_nid(unsigned long pfn)
1276{
1277 return 0;
1278}
1279#else
1280/* please see mm/page_alloc.c */
1281extern int __meminit early_pfn_to_nid(unsigned long pfn);
1282#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1283/* there is a per-arch backend function. */
1284extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1285#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1286#endif
1287
0e0b864e 1288extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1289extern void memmap_init_zone(unsigned long, int, unsigned long,
1290 unsigned long, enum memmap_context);
bc75d33f 1291extern void setup_per_zone_wmarks(void);
96cb4df5 1292extern void calculate_zone_inactive_ratio(struct zone *zone);
1da177e4 1293extern void mem_init(void);
8feae131 1294extern void __init mmap_init(void);
1da177e4
LT
1295extern void show_mem(void);
1296extern void si_meminfo(struct sysinfo * val);
1297extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1298extern int after_bootmem;
1da177e4 1299
e7c8d5c9 1300extern void setup_per_cpu_pageset(void);
e7c8d5c9 1301
112067f0
SL
1302extern void zone_pcp_update(struct zone *zone);
1303
8feae131 1304/* nommu.c */
33e5d769 1305extern atomic_long_t mmap_pages_allocated;
7e660872 1306extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1307
1da177e4
LT
1308/* prio_tree.c */
1309void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1310void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1311void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1312struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1313 struct prio_tree_iter *iter);
1314
1315#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1316 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1317 (vma = vma_prio_tree_next(vma, iter)); )
1318
1319static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1320 struct list_head *list)
1321{
1322 vma->shared.vm_set.parent = NULL;
1323 list_add_tail(&vma->shared.vm_set.list, list);
1324}
1325
1326/* mmap.c */
34b4e4aa 1327extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1328extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1329 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1330extern struct vm_area_struct *vma_merge(struct mm_struct *,
1331 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1332 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1333 struct mempolicy *);
1334extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1335extern int split_vma(struct mm_struct *,
1336 struct vm_area_struct *, unsigned long addr, int new_below);
1337extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1338extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1339 struct rb_node **, struct rb_node *);
a8fb5618 1340extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1341extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1342 unsigned long addr, unsigned long len, pgoff_t pgoff);
1343extern void exit_mmap(struct mm_struct *);
925d1c40 1344
7906d00c
AA
1345extern int mm_take_all_locks(struct mm_struct *mm);
1346extern void mm_drop_all_locks(struct mm_struct *mm);
1347
925d1c40
MH
1348#ifdef CONFIG_PROC_FS
1349/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1350extern void added_exe_file_vma(struct mm_struct *mm);
1351extern void removed_exe_file_vma(struct mm_struct *mm);
1352#else
1353static inline void added_exe_file_vma(struct mm_struct *mm)
1354{}
1355
1356static inline void removed_exe_file_vma(struct mm_struct *mm)
1357{}
1358#endif /* CONFIG_PROC_FS */
1359
119f657c 1360extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1361extern int install_special_mapping(struct mm_struct *mm,
1362 unsigned long addr, unsigned long len,
1363 unsigned long flags, struct page **pages);
1da177e4
LT
1364
1365extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1366
1367extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1368 unsigned long len, unsigned long prot,
1369 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1370extern unsigned long mmap_region(struct file *file, unsigned long addr,
1371 unsigned long len, unsigned long flags,
5a6fe125 1372 unsigned int vm_flags, unsigned long pgoff);
1da177e4
LT
1373
1374static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1375 unsigned long len, unsigned long prot,
1376 unsigned long flag, unsigned long offset)
1377{
1378 unsigned long ret = -EINVAL;
1379 if ((offset + PAGE_ALIGN(len)) < offset)
1380 goto out;
1381 if (!(offset & ~PAGE_MASK))
1382 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1383out:
1384 return ret;
1385}
1386
1387extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1388
1389extern unsigned long do_brk(unsigned long, unsigned long);
1390
1391/* filemap.c */
1392extern unsigned long page_unuse(struct page *);
1393extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1394extern void truncate_inode_pages_range(struct address_space *,
1395 loff_t lstart, loff_t lend);
1da177e4
LT
1396
1397/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1398extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1399
1400/* mm/page-writeback.c */
1401int write_one_page(struct page *page, int wait);
1cf6e7d8 1402void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1403
1404/* readahead.c */
1405#define VM_MAX_READAHEAD 128 /* kbytes */
1406#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1407
1da177e4 1408int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1409 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1410
1411void page_cache_sync_readahead(struct address_space *mapping,
1412 struct file_ra_state *ra,
1413 struct file *filp,
1414 pgoff_t offset,
1415 unsigned long size);
1416
1417void page_cache_async_readahead(struct address_space *mapping,
1418 struct file_ra_state *ra,
1419 struct file *filp,
1420 struct page *pg,
1421 pgoff_t offset,
1422 unsigned long size);
1423
1da177e4 1424unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1425unsigned long ra_submit(struct file_ra_state *ra,
1426 struct address_space *mapping,
1427 struct file *filp);
1da177e4
LT
1428
1429/* Do stack extension */
46dea3d0 1430extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1431#if VM_GROWSUP
46dea3d0 1432extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1433#else
1434 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1435#endif
b6a2fea3
OW
1436extern int expand_stack_downwards(struct vm_area_struct *vma,
1437 unsigned long address);
1da177e4
LT
1438
1439/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1440extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1441extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1442 struct vm_area_struct **pprev);
1443
1444/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1445 NULL if none. Assume start_addr < end_addr. */
1446static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1447{
1448 struct vm_area_struct * vma = find_vma(mm,start_addr);
1449
1450 if (vma && end_addr <= vma->vm_start)
1451 vma = NULL;
1452 return vma;
1453}
1454
1455static inline unsigned long vma_pages(struct vm_area_struct *vma)
1456{
1457 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1458}
1459
bad849b3 1460#ifdef CONFIG_MMU
804af2cf 1461pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1462#else
1463static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1464{
1465 return __pgprot(0);
1466}
1467#endif
1468
deceb6cd 1469struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1470int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1471 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1472int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1473int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1474 unsigned long pfn);
423bad60
NP
1475int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1476 unsigned long pfn);
deceb6cd 1477
6aab341e 1478struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1479 unsigned int foll_flags);
1480#define FOLL_WRITE 0x01 /* check pte is writable */
1481#define FOLL_TOUCH 0x02 /* mark page accessed */
1482#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1483#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1484#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
110d74a9 1485#define FOLL_MLOCK 0x40 /* mark page as mlocked */
1da177e4 1486
2f569afd 1487typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1488 void *data);
1489extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1490 unsigned long size, pte_fn_t fn, void *data);
1491
1da177e4 1492#ifdef CONFIG_PROC_FS
ab50b8ed 1493void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1494#else
ab50b8ed 1495static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1496 unsigned long flags, struct file *file, long pages)
1497{
1498}
1499#endif /* CONFIG_PROC_FS */
1500
12d6f21e
IM
1501#ifdef CONFIG_DEBUG_PAGEALLOC
1502extern int debug_pagealloc_enabled;
1503
1504extern void kernel_map_pages(struct page *page, int numpages, int enable);
1505
1506static inline void enable_debug_pagealloc(void)
1507{
1508 debug_pagealloc_enabled = 1;
1509}
8a235efa
RW
1510#ifdef CONFIG_HIBERNATION
1511extern bool kernel_page_present(struct page *page);
1512#endif /* CONFIG_HIBERNATION */
12d6f21e 1513#else
1da177e4 1514static inline void
9858db50 1515kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1516static inline void enable_debug_pagealloc(void)
1517{
1518}
8a235efa
RW
1519#ifdef CONFIG_HIBERNATION
1520static inline bool kernel_page_present(struct page *page) { return true; }
1521#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1522#endif
1523
1524extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1525#ifdef __HAVE_ARCH_GATE_AREA
1526int in_gate_area_no_task(unsigned long addr);
1527int in_gate_area(struct task_struct *task, unsigned long addr);
1528#else
1529int in_gate_area_no_task(unsigned long addr);
1530#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1531#endif /* __HAVE_ARCH_GATE_AREA */
1532
8d65af78 1533int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1534 void __user *, size_t *, loff_t *);
69e05944 1535unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc 1536 unsigned long lru_pages);
9d0243bc 1537
7a9166e3
LY
1538#ifndef CONFIG_MMU
1539#define randomize_va_space 0
1540#else
a62eaf15 1541extern int randomize_va_space;
7a9166e3 1542#endif
a62eaf15 1543
045e72ac 1544const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1545void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1546
9bdac914
YL
1547void sparse_mem_maps_populate_node(struct page **map_map,
1548 unsigned long pnum_begin,
1549 unsigned long pnum_end,
1550 unsigned long map_count,
1551 int nodeid);
1552
98f3cfc1 1553struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1554pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1555pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1556pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1557pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1558void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1559void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1560void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1561int vmemmap_populate_basepages(struct page *start_page,
1562 unsigned long pages, int node);
1563int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1564void vmemmap_populate_print_last(void);
8f6aac41 1565
6a46079c 1566
82ba011b
AK
1567enum mf_flags {
1568 MF_COUNT_INCREASED = 1 << 0,
1569};
6a46079c 1570extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1571extern int __memory_failure(unsigned long pfn, int trapno, int flags);
847ce401 1572extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1573extern int sysctl_memory_failure_early_kill;
1574extern int sysctl_memory_failure_recovery;
facb6011 1575extern void shake_page(struct page *p, int access);
6a46079c 1576extern atomic_long_t mce_bad_pages;
facb6011 1577extern int soft_offline_page(struct page *page, int flags);
bf998156
HY
1578#ifdef CONFIG_MEMORY_FAILURE
1579int is_hwpoison_address(unsigned long addr);
1580#else
1581static inline int is_hwpoison_address(unsigned long addr)
1582{
1583 return 0;
1584}
1585#endif
6a46079c 1586
718a3821
WF
1587extern void dump_page(struct page *page);
1588
1da177e4
LT
1589#endif /* __KERNEL__ */
1590#endif /* _LINUX_MM_H */