Linux 2.6.27-rc6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
1da177e4
LT
15
16struct mempolicy;
17struct anon_vma;
4e950f6f 18struct file_ra_state;
e8edc6e0 19struct user_struct;
4e950f6f 20struct writeback_control;
1da177e4
LT
21
22#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
23extern unsigned long max_mapnr;
24#endif
25
26extern unsigned long num_physpages;
27extern void * high_memory;
1da177e4
LT
28extern int page_cluster;
29
30#ifdef CONFIG_SYSCTL
31extern int sysctl_legacy_va_layout;
32#else
33#define sysctl_legacy_va_layout 0
34#endif
35
42d7896e
JM
36extern unsigned long mmap_min_addr;
37
1da177e4
LT
38#include <asm/page.h>
39#include <asm/pgtable.h>
40#include <asm/processor.h>
1da177e4 41
1da177e4
LT
42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
27ac792c
AR
44/* to align the pointer to the (next) page boundary */
45#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
46
1da177e4
LT
47/*
48 * Linux kernel virtual memory manager primitives.
49 * The idea being to have a "virtual" mm in the same way
50 * we have a virtual fs - giving a cleaner interface to the
51 * mm details, and allowing different kinds of memory mappings
52 * (from shared memory to executable loading to arbitrary
53 * mmap() functions).
54 */
55
c43692e8
CL
56extern struct kmem_cache *vm_area_cachep;
57
1da177e4
LT
58/*
59 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
60 * disabled, then there's a single shared list of VMAs maintained by the
61 * system, and mm's subscribe to these individually
62 */
63struct vm_list_struct {
64 struct vm_list_struct *next;
65 struct vm_area_struct *vma;
66};
67
68#ifndef CONFIG_MMU
69extern struct rb_root nommu_vma_tree;
70extern struct rw_semaphore nommu_vma_sem;
71
72extern unsigned int kobjsize(const void *objp);
73#endif
74
75/*
605d9288 76 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
77 */
78#define VM_READ 0x00000001 /* currently active flags */
79#define VM_WRITE 0x00000002
80#define VM_EXEC 0x00000004
81#define VM_SHARED 0x00000008
82
7e2cff42 83/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
84#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85#define VM_MAYWRITE 0x00000020
86#define VM_MAYEXEC 0x00000040
87#define VM_MAYSHARE 0x00000080
88
89#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
90#define VM_GROWSUP 0x00000200
6aab341e 91#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
92#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
93
94#define VM_EXECUTABLE 0x00001000
95#define VM_LOCKED 0x00002000
96#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
97
98 /* Used by sys_madvise() */
99#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
100#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
101
102#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
103#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 104#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 105#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 106#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
107#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
108#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
109#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 110#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 111#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 112
d0217ac0 113#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 114#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 115#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
1da177e4
LT
116
117#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
118#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
119#endif
120
121#ifdef CONFIG_STACK_GROWSUP
122#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
123#else
124#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
125#endif
126
127#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
128#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
129#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
130#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
131#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
132
133/*
134 * mapping from the currently active vm_flags protection bits (the
135 * low four bits) to a page protection mask..
136 */
137extern pgprot_t protection_map[16];
138
d0217ac0
NP
139#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
140#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
141
142
54cb8821 143/*
d0217ac0 144 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
145 * ->fault function. The vma's ->fault is responsible for returning a bitmask
146 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 147 *
d0217ac0
NP
148 * pgoff should be used in favour of virtual_address, if possible. If pgoff
149 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
150 * mapping support.
54cb8821 151 */
d0217ac0
NP
152struct vm_fault {
153 unsigned int flags; /* FAULT_FLAG_xxx flags */
154 pgoff_t pgoff; /* Logical page offset based on vma */
155 void __user *virtual_address; /* Faulting virtual address */
156
157 struct page *page; /* ->fault handlers should return a
83c54070 158 * page here, unless VM_FAULT_NOPAGE
d0217ac0 159 * is set (which is also implied by
83c54070 160 * VM_FAULT_ERROR).
d0217ac0 161 */
54cb8821 162};
1da177e4
LT
163
164/*
165 * These are the virtual MM functions - opening of an area, closing and
166 * unmapping it (needed to keep files on disk up-to-date etc), pointer
167 * to the functions called when a no-page or a wp-page exception occurs.
168 */
169struct vm_operations_struct {
170 void (*open)(struct vm_area_struct * area);
171 void (*close)(struct vm_area_struct * area);
d0217ac0 172 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
173
174 /* notification that a previously read-only page is about to become
175 * writable, if an error is returned it will cause a SIGBUS */
176 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
28b2ee20
RR
177
178 /* called by access_process_vm when get_user_pages() fails, typically
179 * for use by special VMAs that can switch between memory and hardware
180 */
181 int (*access)(struct vm_area_struct *vma, unsigned long addr,
182 void *buf, int len, int write);
1da177e4 183#ifdef CONFIG_NUMA
a6020ed7
LS
184 /*
185 * set_policy() op must add a reference to any non-NULL @new mempolicy
186 * to hold the policy upon return. Caller should pass NULL @new to
187 * remove a policy and fall back to surrounding context--i.e. do not
188 * install a MPOL_DEFAULT policy, nor the task or system default
189 * mempolicy.
190 */
1da177e4 191 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
192
193 /*
194 * get_policy() op must add reference [mpol_get()] to any policy at
195 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
196 * in mm/mempolicy.c will do this automatically.
197 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
198 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
199 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
200 * must return NULL--i.e., do not "fallback" to task or system default
201 * policy.
202 */
1da177e4
LT
203 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
204 unsigned long addr);
7b2259b3
CL
205 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
206 const nodemask_t *to, unsigned long flags);
1da177e4
LT
207#endif
208};
209
210struct mmu_gather;
211struct inode;
212
349aef0b
AM
213#define page_private(page) ((page)->private)
214#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 215
1da177e4
LT
216/*
217 * FIXME: take this include out, include page-flags.h in
218 * files which need it (119 of them)
219 */
220#include <linux/page-flags.h>
221
725d704e
NP
222#ifdef CONFIG_DEBUG_VM
223#define VM_BUG_ON(cond) BUG_ON(cond)
224#else
225#define VM_BUG_ON(condition) do { } while(0)
226#endif
227
1da177e4
LT
228/*
229 * Methods to modify the page usage count.
230 *
231 * What counts for a page usage:
232 * - cache mapping (page->mapping)
233 * - private data (page->private)
234 * - page mapped in a task's page tables, each mapping
235 * is counted separately
236 *
237 * Also, many kernel routines increase the page count before a critical
238 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
239 */
240
241/*
da6052f7 242 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 243 */
7c8ee9a8
NP
244static inline int put_page_testzero(struct page *page)
245{
725d704e 246 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 247 return atomic_dec_and_test(&page->_count);
7c8ee9a8 248}
1da177e4
LT
249
250/*
7c8ee9a8
NP
251 * Try to grab a ref unless the page has a refcount of zero, return false if
252 * that is the case.
1da177e4 253 */
7c8ee9a8
NP
254static inline int get_page_unless_zero(struct page *page)
255{
aec2c3ed 256 VM_BUG_ON(PageTail(page));
8dc04efb 257 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 258}
1da177e4 259
48667e7a 260/* Support for virtually mapped pages */
b3bdda02
CL
261struct page *vmalloc_to_page(const void *addr);
262unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 263
0738c4bb
PM
264/*
265 * Determine if an address is within the vmalloc range
266 *
267 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
268 * is no special casing required.
269 */
9e2779fa
CL
270static inline int is_vmalloc_addr(const void *x)
271{
0738c4bb 272#ifdef CONFIG_MMU
9e2779fa
CL
273 unsigned long addr = (unsigned long)x;
274
275 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
276#else
277 return 0;
8ca3ed87 278#endif
0738c4bb 279}
9e2779fa 280
d85f3385
CL
281static inline struct page *compound_head(struct page *page)
282{
6d777953 283 if (unlikely(PageTail(page)))
d85f3385
CL
284 return page->first_page;
285 return page;
286}
287
4c21e2f2 288static inline int page_count(struct page *page)
1da177e4 289{
d85f3385 290 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
291}
292
293static inline void get_page(struct page *page)
294{
d85f3385 295 page = compound_head(page);
725d704e 296 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
297 atomic_inc(&page->_count);
298}
299
b49af68f
CL
300static inline struct page *virt_to_head_page(const void *x)
301{
302 struct page *page = virt_to_page(x);
303 return compound_head(page);
304}
305
7835e98b
NP
306/*
307 * Setup the page count before being freed into the page allocator for
308 * the first time (boot or memory hotplug)
309 */
310static inline void init_page_count(struct page *page)
311{
312 atomic_set(&page->_count, 1);
313}
314
1da177e4 315void put_page(struct page *page);
1d7ea732 316void put_pages_list(struct list_head *pages);
1da177e4 317
8dfcc9ba 318void split_page(struct page *page, unsigned int order);
8dfcc9ba 319
33f2ef89
AW
320/*
321 * Compound pages have a destructor function. Provide a
322 * prototype for that function and accessor functions.
323 * These are _only_ valid on the head of a PG_compound page.
324 */
325typedef void compound_page_dtor(struct page *);
326
327static inline void set_compound_page_dtor(struct page *page,
328 compound_page_dtor *dtor)
329{
330 page[1].lru.next = (void *)dtor;
331}
332
333static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
334{
335 return (compound_page_dtor *)page[1].lru.next;
336}
337
d85f3385
CL
338static inline int compound_order(struct page *page)
339{
6d777953 340 if (!PageHead(page))
d85f3385
CL
341 return 0;
342 return (unsigned long)page[1].lru.prev;
343}
344
345static inline void set_compound_order(struct page *page, unsigned long order)
346{
347 page[1].lru.prev = (void *)order;
348}
349
1da177e4
LT
350/*
351 * Multiple processes may "see" the same page. E.g. for untouched
352 * mappings of /dev/null, all processes see the same page full of
353 * zeroes, and text pages of executables and shared libraries have
354 * only one copy in memory, at most, normally.
355 *
356 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
357 * page_count() == 0 means the page is free. page->lru is then used for
358 * freelist management in the buddy allocator.
da6052f7 359 * page_count() > 0 means the page has been allocated.
1da177e4 360 *
da6052f7
NP
361 * Pages are allocated by the slab allocator in order to provide memory
362 * to kmalloc and kmem_cache_alloc. In this case, the management of the
363 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
364 * unless a particular usage is carefully commented. (the responsibility of
365 * freeing the kmalloc memory is the caller's, of course).
1da177e4 366 *
da6052f7
NP
367 * A page may be used by anyone else who does a __get_free_page().
368 * In this case, page_count still tracks the references, and should only
369 * be used through the normal accessor functions. The top bits of page->flags
370 * and page->virtual store page management information, but all other fields
371 * are unused and could be used privately, carefully. The management of this
372 * page is the responsibility of the one who allocated it, and those who have
373 * subsequently been given references to it.
374 *
375 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
376 * managed by the Linux memory manager: I/O, buffers, swapping etc.
377 * The following discussion applies only to them.
378 *
da6052f7
NP
379 * A pagecache page contains an opaque `private' member, which belongs to the
380 * page's address_space. Usually, this is the address of a circular list of
381 * the page's disk buffers. PG_private must be set to tell the VM to call
382 * into the filesystem to release these pages.
1da177e4 383 *
da6052f7
NP
384 * A page may belong to an inode's memory mapping. In this case, page->mapping
385 * is the pointer to the inode, and page->index is the file offset of the page,
386 * in units of PAGE_CACHE_SIZE.
1da177e4 387 *
da6052f7
NP
388 * If pagecache pages are not associated with an inode, they are said to be
389 * anonymous pages. These may become associated with the swapcache, and in that
390 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 391 *
da6052f7
NP
392 * In either case (swapcache or inode backed), the pagecache itself holds one
393 * reference to the page. Setting PG_private should also increment the
394 * refcount. The each user mapping also has a reference to the page.
1da177e4 395 *
da6052f7
NP
396 * The pagecache pages are stored in a per-mapping radix tree, which is
397 * rooted at mapping->page_tree, and indexed by offset.
398 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
399 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 400 *
da6052f7 401 * All pagecache pages may be subject to I/O:
1da177e4
LT
402 * - inode pages may need to be read from disk,
403 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
404 * to be written back to the inode on disk,
405 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
406 * modified may need to be swapped out to swap space and (later) to be read
407 * back into memory.
1da177e4
LT
408 */
409
410/*
411 * The zone field is never updated after free_area_init_core()
412 * sets it, so none of the operations on it need to be atomic.
1da177e4 413 */
348f8b6c 414
d41dee36
AW
415
416/*
417 * page->flags layout:
418 *
419 * There are three possibilities for how page->flags get
420 * laid out. The first is for the normal case, without
421 * sparsemem. The second is for sparsemem when there is
422 * plenty of space for node and section. The last is when
423 * we have run out of space and have to fall back to an
424 * alternate (slower) way of determining the node.
425 *
308c05e3
CL
426 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
427 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
428 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 429 */
308c05e3 430#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
431#define SECTIONS_WIDTH SECTIONS_SHIFT
432#else
433#define SECTIONS_WIDTH 0
434#endif
435
436#define ZONES_WIDTH ZONES_SHIFT
437
9223b419 438#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
439#define NODES_WIDTH NODES_SHIFT
440#else
308c05e3
CL
441#ifdef CONFIG_SPARSEMEM_VMEMMAP
442#error "Vmemmap: No space for nodes field in page flags"
443#endif
d41dee36
AW
444#define NODES_WIDTH 0
445#endif
446
447/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 448#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
449#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
450#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
451
452/*
453 * We are going to use the flags for the page to node mapping if its in
454 * there. This includes the case where there is no node, so it is implicit.
455 */
89689ae7
CL
456#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
457#define NODE_NOT_IN_PAGE_FLAGS
458#endif
d41dee36
AW
459
460#ifndef PFN_SECTION_SHIFT
461#define PFN_SECTION_SHIFT 0
462#endif
348f8b6c
DH
463
464/*
465 * Define the bit shifts to access each section. For non-existant
466 * sections we define the shift as 0; that plus a 0 mask ensures
467 * the compiler will optimise away reference to them.
468 */
d41dee36
AW
469#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
470#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
471#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 472
89689ae7
CL
473/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
474#ifdef NODE_NOT_IN_PAGEFLAGS
475#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
476#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
477 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 478#else
89689ae7 479#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
480#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
481 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
482#endif
483
bd8029b6 484#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 485
9223b419
CL
486#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
487#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
488#endif
489
d41dee36
AW
490#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
491#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
492#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 493#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 494
2f1b6248 495static inline enum zone_type page_zonenum(struct page *page)
1da177e4 496{
348f8b6c 497 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 498}
1da177e4 499
89689ae7
CL
500/*
501 * The identification function is only used by the buddy allocator for
502 * determining if two pages could be buddies. We are not really
503 * identifying a zone since we could be using a the section number
504 * id if we have not node id available in page flags.
505 * We guarantee only that it will return the same value for two
506 * combinable pages in a zone.
507 */
cb2b95e1
AW
508static inline int page_zone_id(struct page *page)
509{
89689ae7 510 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
511}
512
25ba77c1 513static inline int zone_to_nid(struct zone *zone)
89fa3024 514{
d5f541ed
CL
515#ifdef CONFIG_NUMA
516 return zone->node;
517#else
518 return 0;
519#endif
89fa3024
CL
520}
521
89689ae7 522#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 523extern int page_to_nid(struct page *page);
89689ae7 524#else
25ba77c1 525static inline int page_to_nid(struct page *page)
d41dee36 526{
89689ae7 527 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 528}
89689ae7
CL
529#endif
530
531static inline struct zone *page_zone(struct page *page)
532{
533 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
534}
535
308c05e3 536#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
537static inline unsigned long page_to_section(struct page *page)
538{
539 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
540}
308c05e3 541#endif
d41dee36 542
2f1b6248 543static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
544{
545 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
546 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
547}
2f1b6248 548
348f8b6c
DH
549static inline void set_page_node(struct page *page, unsigned long node)
550{
551 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
552 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 553}
89689ae7 554
d41dee36
AW
555static inline void set_page_section(struct page *page, unsigned long section)
556{
557 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
558 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
559}
1da177e4 560
2f1b6248 561static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 562 unsigned long node, unsigned long pfn)
1da177e4 563{
348f8b6c
DH
564 set_page_zone(page, zone);
565 set_page_node(page, node);
d41dee36 566 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
567}
568
7cd94146
EP
569/*
570 * If a hint addr is less than mmap_min_addr change hint to be as
571 * low as possible but still greater than mmap_min_addr
572 */
573static inline unsigned long round_hint_to_min(unsigned long hint)
574{
575#ifdef CONFIG_SECURITY
576 hint &= PAGE_MASK;
577 if (((void *)hint != NULL) &&
578 (hint < mmap_min_addr))
579 return PAGE_ALIGN(mmap_min_addr);
580#endif
581 return hint;
582}
583
f6ac2354
CL
584/*
585 * Some inline functions in vmstat.h depend on page_zone()
586 */
587#include <linux/vmstat.h>
588
652050ae 589static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
590{
591 return __va(page_to_pfn(page) << PAGE_SHIFT);
592}
593
594#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
595#define HASHED_PAGE_VIRTUAL
596#endif
597
598#if defined(WANT_PAGE_VIRTUAL)
599#define page_address(page) ((page)->virtual)
600#define set_page_address(page, address) \
601 do { \
602 (page)->virtual = (address); \
603 } while(0)
604#define page_address_init() do { } while(0)
605#endif
606
607#if defined(HASHED_PAGE_VIRTUAL)
608void *page_address(struct page *page);
609void set_page_address(struct page *page, void *virtual);
610void page_address_init(void);
611#endif
612
613#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
614#define page_address(page) lowmem_page_address(page)
615#define set_page_address(page, address) do { } while(0)
616#define page_address_init() do { } while(0)
617#endif
618
619/*
620 * On an anonymous page mapped into a user virtual memory area,
621 * page->mapping points to its anon_vma, not to a struct address_space;
622 * with the PAGE_MAPPING_ANON bit set to distinguish it.
623 *
624 * Please note that, confusingly, "page_mapping" refers to the inode
625 * address_space which maps the page from disk; whereas "page_mapped"
626 * refers to user virtual address space into which the page is mapped.
627 */
628#define PAGE_MAPPING_ANON 1
629
630extern struct address_space swapper_space;
631static inline struct address_space *page_mapping(struct page *page)
632{
633 struct address_space *mapping = page->mapping;
634
b5fab14e 635 VM_BUG_ON(PageSlab(page));
726b8012 636#ifdef CONFIG_SWAP
1da177e4
LT
637 if (unlikely(PageSwapCache(page)))
638 mapping = &swapper_space;
726b8012
AM
639 else
640#endif
641 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
1da177e4
LT
642 mapping = NULL;
643 return mapping;
644}
645
646static inline int PageAnon(struct page *page)
647{
648 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
649}
650
651/*
652 * Return the pagecache index of the passed page. Regular pagecache pages
653 * use ->index whereas swapcache pages use ->private
654 */
655static inline pgoff_t page_index(struct page *page)
656{
657 if (unlikely(PageSwapCache(page)))
4c21e2f2 658 return page_private(page);
1da177e4
LT
659 return page->index;
660}
661
662/*
663 * The atomic page->_mapcount, like _count, starts from -1:
664 * so that transitions both from it and to it can be tracked,
665 * using atomic_inc_and_test and atomic_add_negative(-1).
666 */
667static inline void reset_page_mapcount(struct page *page)
668{
669 atomic_set(&(page)->_mapcount, -1);
670}
671
672static inline int page_mapcount(struct page *page)
673{
674 return atomic_read(&(page)->_mapcount) + 1;
675}
676
677/*
678 * Return true if this page is mapped into pagetables.
679 */
680static inline int page_mapped(struct page *page)
681{
682 return atomic_read(&(page)->_mapcount) >= 0;
683}
684
1da177e4
LT
685/*
686 * Different kinds of faults, as returned by handle_mm_fault().
687 * Used to decide whether a process gets delivered SIGBUS or
688 * just gets major/minor fault counters bumped up.
689 */
d0217ac0 690
83c54070 691#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 692
83c54070
NP
693#define VM_FAULT_OOM 0x0001
694#define VM_FAULT_SIGBUS 0x0002
695#define VM_FAULT_MAJOR 0x0004
696#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
f33ea7f4 697
83c54070
NP
698#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
699#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1da177e4 700
83c54070 701#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
d0217ac0 702
1da177e4
LT
703#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
704
705extern void show_free_areas(void);
706
707#ifdef CONFIG_SHMEM
1da177e4
LT
708int shmem_lock(struct file *file, int lock, struct user_struct *user);
709#else
03b00ebc
RK
710static inline int shmem_lock(struct file *file, int lock,
711 struct user_struct *user)
712{
713 return 0;
714}
1da177e4
LT
715#endif
716struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
717
718int shmem_zero_setup(struct vm_area_struct *);
719
b0e15190
DH
720#ifndef CONFIG_MMU
721extern unsigned long shmem_get_unmapped_area(struct file *file,
722 unsigned long addr,
723 unsigned long len,
724 unsigned long pgoff,
725 unsigned long flags);
726#endif
727
e8edc6e0 728extern int can_do_mlock(void);
1da177e4
LT
729extern int user_shm_lock(size_t, struct user_struct *);
730extern void user_shm_unlock(size_t, struct user_struct *);
731
732/*
733 * Parameter block passed down to zap_pte_range in exceptional cases.
734 */
735struct zap_details {
736 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
737 struct address_space *check_mapping; /* Check page->mapping if set */
738 pgoff_t first_index; /* Lowest page->index to unmap */
739 pgoff_t last_index; /* Highest page->index to unmap */
740 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
741 unsigned long truncate_count; /* Compare vm_truncate_count */
742};
743
7e675137
NP
744struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745 pte_t pte);
746
c627f9cc
JS
747int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
748 unsigned long size);
ee39b37b 749unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 750 unsigned long size, struct zap_details *);
508034a3 751unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
752 struct vm_area_struct *start_vma, unsigned long start_addr,
753 unsigned long end_addr, unsigned long *nr_accounted,
754 struct zap_details *);
e6473092
MM
755
756/**
757 * mm_walk - callbacks for walk_page_range
758 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
759 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
760 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
761 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
762 * @pte_hole: if set, called for each hole at all levels
763 *
764 * (see walk_page_range for more details)
765 */
766struct mm_walk {
2165009b
DH
767 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
768 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
769 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
770 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
771 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
772 struct mm_struct *mm;
773 void *private;
e6473092
MM
774};
775
2165009b
DH
776int walk_page_range(unsigned long addr, unsigned long end,
777 struct mm_walk *walk);
42b77728 778void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 779 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
780int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
781 struct vm_area_struct *vma);
1da177e4
LT
782void unmap_mapping_range(struct address_space *mapping,
783 loff_t const holebegin, loff_t const holelen, int even_cows);
28b2ee20
RR
784int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
785 void *buf, int len, int write);
1da177e4
LT
786
787static inline void unmap_shared_mapping_range(struct address_space *mapping,
788 loff_t const holebegin, loff_t const holelen)
789{
790 unmap_mapping_range(mapping, holebegin, holelen, 0);
791}
792
793extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 794extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
f33ea7f4 795
7ee1dd3f 796#ifdef CONFIG_MMU
83c54070 797extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
7ee1dd3f 798 unsigned long address, int write_access);
7ee1dd3f
DH
799#else
800static inline int handle_mm_fault(struct mm_struct *mm,
801 struct vm_area_struct *vma, unsigned long address,
802 int write_access)
803{
804 /* should never happen if there's no MMU */
805 BUG();
806 return VM_FAULT_SIGBUS;
807}
808#endif
f33ea7f4 809
1da177e4
LT
810extern int make_pages_present(unsigned long addr, unsigned long end);
811extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1da177e4
LT
812
813int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
814 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
815
cf9a2ae8
DH
816extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
817extern void do_invalidatepage(struct page *page, unsigned long offset);
818
1da177e4 819int __set_page_dirty_nobuffers(struct page *page);
76719325 820int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
821int redirty_page_for_writepage(struct writeback_control *wbc,
822 struct page *page);
b3c97528 823int set_page_dirty(struct page *page);
1da177e4
LT
824int set_page_dirty_lock(struct page *page);
825int clear_page_dirty_for_io(struct page *page);
826
b6a2fea3
OW
827extern unsigned long move_page_tables(struct vm_area_struct *vma,
828 unsigned long old_addr, struct vm_area_struct *new_vma,
829 unsigned long new_addr, unsigned long len);
1da177e4
LT
830extern unsigned long do_mremap(unsigned long addr,
831 unsigned long old_len, unsigned long new_len,
832 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
833extern int mprotect_fixup(struct vm_area_struct *vma,
834 struct vm_area_struct **pprev, unsigned long start,
835 unsigned long end, unsigned long newflags);
1da177e4 836
21cc199b
NP
837/*
838 * get_user_pages_fast provides equivalent functionality to get_user_pages,
839 * operating on current and current->mm (force=0 and doesn't return any vmas).
840 *
841 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions
842 * can be made about locking. get_user_pages_fast is to be implemented in a
843 * way that is advantageous (vs get_user_pages()) when the user memory area is
844 * already faulted in and present in ptes. However if the pages have to be
845 * faulted in, it may turn out to be slightly slower).
846 */
847int get_user_pages_fast(unsigned long start, int nr_pages, int write,
848 struct page **pages);
849
1da177e4 850/*
8e1f936b 851 * A callback you can register to apply pressure to ageable caches.
1da177e4 852 *
8e1f936b
RR
853 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
854 * look through the least-recently-used 'nr_to_scan' entries and
855 * attempt to free them up. It should return the number of objects
856 * which remain in the cache. If it returns -1, it means it cannot do
857 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 858 *
8e1f936b
RR
859 * The 'gfpmask' refers to the allocation we are currently trying to
860 * fulfil.
861 *
862 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
863 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 864 */
8e1f936b
RR
865struct shrinker {
866 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
867 int seeks; /* seeks to recreate an obj */
1da177e4 868
8e1f936b
RR
869 /* These are for internal use */
870 struct list_head list;
871 long nr; /* objs pending delete */
872};
873#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
874extern void register_shrinker(struct shrinker *);
875extern void unregister_shrinker(struct shrinker *);
1da177e4 876
4e950f6f 877int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 878
b3c97528 879extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
c9cfcddf 880
5f22df00
NP
881#ifdef __PAGETABLE_PUD_FOLDED
882static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
883 unsigned long address)
884{
885 return 0;
886}
887#else
1bb3630e 888int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
889#endif
890
891#ifdef __PAGETABLE_PMD_FOLDED
892static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
893 unsigned long address)
894{
895 return 0;
896}
897#else
1bb3630e 898int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
899#endif
900
1bb3630e
HD
901int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
902int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
903
1da177e4
LT
904/*
905 * The following ifdef needed to get the 4level-fixup.h header to work.
906 * Remove it when 4level-fixup.h has been removed.
907 */
1bb3630e 908#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
909static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
910{
1bb3630e
HD
911 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
912 NULL: pud_offset(pgd, address);
1da177e4
LT
913}
914
915static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
916{
1bb3630e
HD
917 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
918 NULL: pmd_offset(pud, address);
1da177e4 919}
1bb3630e
HD
920#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
921
4c21e2f2
HD
922#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
923/*
924 * We tuck a spinlock to guard each pagetable page into its struct page,
925 * at page->private, with BUILD_BUG_ON to make sure that this will not
926 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
927 * When freeing, reset page->mapping so free_pages_check won't complain.
928 */
349aef0b 929#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
930#define pte_lock_init(_page) do { \
931 spin_lock_init(__pte_lockptr(_page)); \
932} while (0)
933#define pte_lock_deinit(page) ((page)->mapping = NULL)
934#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
935#else
936/*
937 * We use mm->page_table_lock to guard all pagetable pages of the mm.
938 */
939#define pte_lock_init(page) do {} while (0)
940#define pte_lock_deinit(page) do {} while (0)
941#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
942#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
943
2f569afd
MS
944static inline void pgtable_page_ctor(struct page *page)
945{
946 pte_lock_init(page);
947 inc_zone_page_state(page, NR_PAGETABLE);
948}
949
950static inline void pgtable_page_dtor(struct page *page)
951{
952 pte_lock_deinit(page);
953 dec_zone_page_state(page, NR_PAGETABLE);
954}
955
c74df32c
HD
956#define pte_offset_map_lock(mm, pmd, address, ptlp) \
957({ \
4c21e2f2 958 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
959 pte_t *__pte = pte_offset_map(pmd, address); \
960 *(ptlp) = __ptl; \
961 spin_lock(__ptl); \
962 __pte; \
963})
964
965#define pte_unmap_unlock(pte, ptl) do { \
966 spin_unlock(ptl); \
967 pte_unmap(pte); \
968} while (0)
969
1bb3630e
HD
970#define pte_alloc_map(mm, pmd, address) \
971 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
972 NULL: pte_offset_map(pmd, address))
973
c74df32c
HD
974#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
975 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
976 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
977
1bb3630e
HD
978#define pte_alloc_kernel(pmd, address) \
979 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
980 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
981
982extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
983extern void free_area_init_node(int nid, unsigned long * zones_size,
984 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
985#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
986/*
987 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
988 * zones, allocate the backing mem_map and account for memory holes in a more
989 * architecture independent manner. This is a substitute for creating the
990 * zone_sizes[] and zholes_size[] arrays and passing them to
991 * free_area_init_node()
992 *
993 * An architecture is expected to register range of page frames backed by
994 * physical memory with add_active_range() before calling
995 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
996 * usage, an architecture is expected to do something like
997 *
998 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
999 * max_highmem_pfn};
1000 * for_each_valid_physical_page_range()
1001 * add_active_range(node_id, start_pfn, end_pfn)
1002 * free_area_init_nodes(max_zone_pfns);
1003 *
1004 * If the architecture guarantees that there are no holes in the ranges
1005 * registered with add_active_range(), free_bootmem_active_regions()
1006 * will call free_bootmem_node() for each registered physical page range.
1007 * Similarly sparse_memory_present_with_active_regions() calls
1008 * memory_present() for each range when SPARSEMEM is enabled.
1009 *
1010 * See mm/page_alloc.c for more information on each function exposed by
1011 * CONFIG_ARCH_POPULATES_NODE_MAP
1012 */
1013extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1014extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1015 unsigned long end_pfn);
cc1050ba
YL
1016extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1017 unsigned long end_pfn);
fb01439c
MG
1018extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1019 unsigned long end_pfn);
c713216d
MG
1020extern void remove_all_active_ranges(void);
1021extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1022 unsigned long end_pfn);
1023extern void get_pfn_range_for_nid(unsigned int nid,
1024 unsigned long *start_pfn, unsigned long *end_pfn);
1025extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1026extern void free_bootmem_with_active_regions(int nid,
1027 unsigned long max_low_pfn);
d52d53b8 1028typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1029extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d
MG
1030extern void sparse_memory_present_with_active_regions(int nid);
1031#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1032extern int early_pfn_to_nid(unsigned long pfn);
1033#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1034#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 1035extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1036extern void memmap_init_zone(unsigned long, int, unsigned long,
1037 unsigned long, enum memmap_context);
3947be19 1038extern void setup_per_zone_pages_min(void);
1da177e4
LT
1039extern void mem_init(void);
1040extern void show_mem(void);
1041extern void si_meminfo(struct sysinfo * val);
1042extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1043extern int after_bootmem;
1da177e4 1044
e7c8d5c9
CL
1045#ifdef CONFIG_NUMA
1046extern void setup_per_cpu_pageset(void);
1047#else
1048static inline void setup_per_cpu_pageset(void) {}
1049#endif
1050
1da177e4
LT
1051/* prio_tree.c */
1052void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1053void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1054void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1055struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1056 struct prio_tree_iter *iter);
1057
1058#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1059 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1060 (vma = vma_prio_tree_next(vma, iter)); )
1061
1062static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1063 struct list_head *list)
1064{
1065 vma->shared.vm_set.parent = NULL;
1066 list_add_tail(&vma->shared.vm_set.list, list);
1067}
1068
1069/* mmap.c */
34b4e4aa 1070extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1da177e4
LT
1071extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1072 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1073extern struct vm_area_struct *vma_merge(struct mm_struct *,
1074 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1075 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1076 struct mempolicy *);
1077extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1078extern int split_vma(struct mm_struct *,
1079 struct vm_area_struct *, unsigned long addr, int new_below);
1080extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1081extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1082 struct rb_node **, struct rb_node *);
a8fb5618 1083extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1084extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1085 unsigned long addr, unsigned long len, pgoff_t pgoff);
1086extern void exit_mmap(struct mm_struct *);
925d1c40 1087
7906d00c
AA
1088extern int mm_take_all_locks(struct mm_struct *mm);
1089extern void mm_drop_all_locks(struct mm_struct *mm);
1090
925d1c40
MH
1091#ifdef CONFIG_PROC_FS
1092/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1093extern void added_exe_file_vma(struct mm_struct *mm);
1094extern void removed_exe_file_vma(struct mm_struct *mm);
1095#else
1096static inline void added_exe_file_vma(struct mm_struct *mm)
1097{}
1098
1099static inline void removed_exe_file_vma(struct mm_struct *mm)
1100{}
1101#endif /* CONFIG_PROC_FS */
1102
119f657c 1103extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1104extern int install_special_mapping(struct mm_struct *mm,
1105 unsigned long addr, unsigned long len,
1106 unsigned long flags, struct page **pages);
1da177e4
LT
1107
1108extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1109
1110extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1111 unsigned long len, unsigned long prot,
1112 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1113extern unsigned long mmap_region(struct file *file, unsigned long addr,
1114 unsigned long len, unsigned long flags,
1115 unsigned int vm_flags, unsigned long pgoff,
1116 int accountable);
1da177e4
LT
1117
1118static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1119 unsigned long len, unsigned long prot,
1120 unsigned long flag, unsigned long offset)
1121{
1122 unsigned long ret = -EINVAL;
1123 if ((offset + PAGE_ALIGN(len)) < offset)
1124 goto out;
1125 if (!(offset & ~PAGE_MASK))
1126 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1127out:
1128 return ret;
1129}
1130
1131extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1132
1133extern unsigned long do_brk(unsigned long, unsigned long);
1134
1135/* filemap.c */
1136extern unsigned long page_unuse(struct page *);
1137extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1138extern void truncate_inode_pages_range(struct address_space *,
1139 loff_t lstart, loff_t lend);
1da177e4
LT
1140
1141/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1142extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1143
1144/* mm/page-writeback.c */
1145int write_one_page(struct page *page, int wait);
1146
1147/* readahead.c */
1148#define VM_MAX_READAHEAD 128 /* kbytes */
1149#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4
LT
1150
1151int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1152 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1153int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1154 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1155
1156void page_cache_sync_readahead(struct address_space *mapping,
1157 struct file_ra_state *ra,
1158 struct file *filp,
1159 pgoff_t offset,
1160 unsigned long size);
1161
1162void page_cache_async_readahead(struct address_space *mapping,
1163 struct file_ra_state *ra,
1164 struct file *filp,
1165 struct page *pg,
1166 pgoff_t offset,
1167 unsigned long size);
1168
1da177e4
LT
1169unsigned long max_sane_readahead(unsigned long nr);
1170
1171/* Do stack extension */
46dea3d0 1172extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1173#ifdef CONFIG_IA64
46dea3d0 1174extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1175#endif
b6a2fea3
OW
1176extern int expand_stack_downwards(struct vm_area_struct *vma,
1177 unsigned long address);
1da177e4
LT
1178
1179/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1180extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1181extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1182 struct vm_area_struct **pprev);
1183
1184/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1185 NULL if none. Assume start_addr < end_addr. */
1186static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1187{
1188 struct vm_area_struct * vma = find_vma(mm,start_addr);
1189
1190 if (vma && end_addr <= vma->vm_start)
1191 vma = NULL;
1192 return vma;
1193}
1194
1195static inline unsigned long vma_pages(struct vm_area_struct *vma)
1196{
1197 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1198}
1199
804af2cf 1200pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd 1201struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1202int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1203 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1204int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1205int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1206 unsigned long pfn);
423bad60
NP
1207int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1208 unsigned long pfn);
deceb6cd 1209
6aab341e 1210struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1211 unsigned int foll_flags);
1212#define FOLL_WRITE 0x01 /* check pte is writable */
1213#define FOLL_TOUCH 0x02 /* mark page accessed */
1214#define FOLL_GET 0x04 /* do get_page on page */
1215#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4 1216
2f569afd 1217typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1218 void *data);
1219extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1220 unsigned long size, pte_fn_t fn, void *data);
1221
1da177e4 1222#ifdef CONFIG_PROC_FS
ab50b8ed 1223void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1224#else
ab50b8ed 1225static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1226 unsigned long flags, struct file *file, long pages)
1227{
1228}
1229#endif /* CONFIG_PROC_FS */
1230
12d6f21e
IM
1231#ifdef CONFIG_DEBUG_PAGEALLOC
1232extern int debug_pagealloc_enabled;
1233
1234extern void kernel_map_pages(struct page *page, int numpages, int enable);
1235
1236static inline void enable_debug_pagealloc(void)
1237{
1238 debug_pagealloc_enabled = 1;
1239}
8a235efa
RW
1240#ifdef CONFIG_HIBERNATION
1241extern bool kernel_page_present(struct page *page);
1242#endif /* CONFIG_HIBERNATION */
12d6f21e 1243#else
1da177e4 1244static inline void
9858db50 1245kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1246static inline void enable_debug_pagealloc(void)
1247{
1248}
8a235efa
RW
1249#ifdef CONFIG_HIBERNATION
1250static inline bool kernel_page_present(struct page *page) { return true; }
1251#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1252#endif
1253
1254extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1255#ifdef __HAVE_ARCH_GATE_AREA
1256int in_gate_area_no_task(unsigned long addr);
1257int in_gate_area(struct task_struct *task, unsigned long addr);
1258#else
1259int in_gate_area_no_task(unsigned long addr);
1260#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1261#endif /* __HAVE_ARCH_GATE_AREA */
1262
9d0243bc
AM
1263int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1264 void __user *, size_t *, loff_t *);
69e05944 1265unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc 1266 unsigned long lru_pages);
9d0243bc 1267
7a9166e3
LY
1268#ifndef CONFIG_MMU
1269#define randomize_va_space 0
1270#else
a62eaf15 1271extern int randomize_va_space;
7a9166e3 1272#endif
a62eaf15 1273
045e72ac 1274const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1275void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1276
98f3cfc1 1277struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1278pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1279pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1280pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1281pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41
CL
1282void *vmemmap_alloc_block(unsigned long size, int node);
1283void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1284int vmemmap_populate_basepages(struct page *start_page,
1285 unsigned long pages, int node);
1286int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1287void vmemmap_populate_print_last(void);
8f6aac41 1288
1da177e4
LT
1289#endif /* __KERNEL__ */
1290#endif /* _LINUX_MM_H */