superblock: move pin_sb_for_writeback() to fs/super.c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
e9da73d6 17#include <linux/bit_spinlock.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
4e950f6f 21struct file_ra_state;
e8edc6e0 22struct user_struct;
4e950f6f 23struct writeback_control;
1da177e4
LT
24
25#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26extern unsigned long max_mapnr;
27#endif
28
29extern unsigned long num_physpages;
4481374c 30extern unsigned long totalram_pages;
1da177e4 31extern void * high_memory;
1da177e4
LT
32extern int page_cluster;
33
34#ifdef CONFIG_SYSCTL
35extern int sysctl_legacy_va_layout;
36#else
37#define sysctl_legacy_va_layout 0
38#endif
39
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/processor.h>
1da177e4 43
1da177e4
LT
44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
27ac792c
AR
46/* to align the pointer to the (next) page boundary */
47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48
1da177e4
LT
49/*
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
56 */
57
c43692e8
CL
58extern struct kmem_cache *vm_area_cachep;
59
1da177e4 60#ifndef CONFIG_MMU
8feae131
DH
61extern struct rb_root nommu_region_tree;
62extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
63
64extern unsigned int kobjsize(const void *objp);
65#endif
66
67/*
605d9288 68 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
69 */
70#define VM_READ 0x00000001 /* currently active flags */
71#define VM_WRITE 0x00000002
72#define VM_EXEC 0x00000004
73#define VM_SHARED 0x00000008
74
7e2cff42 75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
76#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77#define VM_MAYWRITE 0x00000020
78#define VM_MAYEXEC 0x00000040
79#define VM_MAYSHARE 0x00000080
80
81#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 83#define VM_GROWSUP 0x00000200
8ca3eb08
TL
84#else
85#define VM_GROWSUP 0x00000000
a664b2d8 86#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
8ca3eb08 87#endif
6aab341e 88#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
89#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90
91#define VM_EXECUTABLE 0x00001000
92#define VM_LOCKED 0x00002000
93#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94
95 /* Used by sys_madvise() */
96#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98
99#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 101#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 103#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
104#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
f2d6bfe9 106#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 107#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
f2d6bfe9
JW
108#else
109#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
110#endif
895791da 111#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 112#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 113
d0217ac0 114#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 115#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 116#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 117#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 118#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 119
a8bef8ff
MG
120/* Bits set in the VMA until the stack is in its final location */
121#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
122
1da177e4
LT
123#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
124#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
125#endif
126
127#ifdef CONFIG_STACK_GROWSUP
128#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129#else
130#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
131#endif
132
133#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
134#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
135#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
136#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
137#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
138
b291f000 139/*
78f11a25
AA
140 * Special vmas that are non-mergable, non-mlock()able.
141 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000
NP
142 */
143#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
144
1da177e4
LT
145/*
146 * mapping from the currently active vm_flags protection bits (the
147 * low four bits) to a page protection mask..
148 */
149extern pgprot_t protection_map[16];
150
d0217ac0
NP
151#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
152#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 153#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 154#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 155#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 156#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
d0217ac0 157
6bd9cd50 158/*
159 * This interface is used by x86 PAT code to identify a pfn mapping that is
160 * linear over entire vma. This is to optimize PAT code that deals with
161 * marking the physical region with a particular prot. This is not for generic
162 * mm use. Note also that this check will not work if the pfn mapping is
163 * linear for a vma starting at physical address 0. In which case PAT code
164 * falls back to slow path of reserving physical range page by page.
165 */
3c8bb73a 166static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
167{
ca16d140 168 return !!(vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 169}
170
171static inline int is_pfn_mapping(struct vm_area_struct *vma)
172{
ca16d140 173 return !!(vma->vm_flags & VM_PFNMAP);
3c8bb73a 174}
d0217ac0 175
54cb8821 176/*
d0217ac0 177 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
178 * ->fault function. The vma's ->fault is responsible for returning a bitmask
179 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 180 *
d0217ac0
NP
181 * pgoff should be used in favour of virtual_address, if possible. If pgoff
182 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
183 * mapping support.
54cb8821 184 */
d0217ac0
NP
185struct vm_fault {
186 unsigned int flags; /* FAULT_FLAG_xxx flags */
187 pgoff_t pgoff; /* Logical page offset based on vma */
188 void __user *virtual_address; /* Faulting virtual address */
189
190 struct page *page; /* ->fault handlers should return a
83c54070 191 * page here, unless VM_FAULT_NOPAGE
d0217ac0 192 * is set (which is also implied by
83c54070 193 * VM_FAULT_ERROR).
d0217ac0 194 */
54cb8821 195};
1da177e4
LT
196
197/*
198 * These are the virtual MM functions - opening of an area, closing and
199 * unmapping it (needed to keep files on disk up-to-date etc), pointer
200 * to the functions called when a no-page or a wp-page exception occurs.
201 */
202struct vm_operations_struct {
203 void (*open)(struct vm_area_struct * area);
204 void (*close)(struct vm_area_struct * area);
d0217ac0 205 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
206
207 /* notification that a previously read-only page is about to become
208 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 209 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
210
211 /* called by access_process_vm when get_user_pages() fails, typically
212 * for use by special VMAs that can switch between memory and hardware
213 */
214 int (*access)(struct vm_area_struct *vma, unsigned long addr,
215 void *buf, int len, int write);
1da177e4 216#ifdef CONFIG_NUMA
a6020ed7
LS
217 /*
218 * set_policy() op must add a reference to any non-NULL @new mempolicy
219 * to hold the policy upon return. Caller should pass NULL @new to
220 * remove a policy and fall back to surrounding context--i.e. do not
221 * install a MPOL_DEFAULT policy, nor the task or system default
222 * mempolicy.
223 */
1da177e4 224 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
225
226 /*
227 * get_policy() op must add reference [mpol_get()] to any policy at
228 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
229 * in mm/mempolicy.c will do this automatically.
230 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
231 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
232 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
233 * must return NULL--i.e., do not "fallback" to task or system default
234 * policy.
235 */
1da177e4
LT
236 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
237 unsigned long addr);
7b2259b3
CL
238 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
239 const nodemask_t *to, unsigned long flags);
1da177e4
LT
240#endif
241};
242
243struct mmu_gather;
244struct inode;
245
349aef0b
AM
246#define page_private(page) ((page)->private)
247#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 248
1da177e4
LT
249/*
250 * FIXME: take this include out, include page-flags.h in
251 * files which need it (119 of them)
252 */
253#include <linux/page-flags.h>
71e3aac0 254#include <linux/huge_mm.h>
1da177e4
LT
255
256/*
257 * Methods to modify the page usage count.
258 *
259 * What counts for a page usage:
260 * - cache mapping (page->mapping)
261 * - private data (page->private)
262 * - page mapped in a task's page tables, each mapping
263 * is counted separately
264 *
265 * Also, many kernel routines increase the page count before a critical
266 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
267 */
268
269/*
da6052f7 270 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 271 */
7c8ee9a8
NP
272static inline int put_page_testzero(struct page *page)
273{
725d704e 274 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 275 return atomic_dec_and_test(&page->_count);
7c8ee9a8 276}
1da177e4
LT
277
278/*
7c8ee9a8
NP
279 * Try to grab a ref unless the page has a refcount of zero, return false if
280 * that is the case.
1da177e4 281 */
7c8ee9a8
NP
282static inline int get_page_unless_zero(struct page *page)
283{
8dc04efb 284 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 285}
1da177e4 286
53df8fdc
WF
287extern int page_is_ram(unsigned long pfn);
288
48667e7a 289/* Support for virtually mapped pages */
b3bdda02
CL
290struct page *vmalloc_to_page(const void *addr);
291unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 292
0738c4bb
PM
293/*
294 * Determine if an address is within the vmalloc range
295 *
296 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
297 * is no special casing required.
298 */
9e2779fa
CL
299static inline int is_vmalloc_addr(const void *x)
300{
0738c4bb 301#ifdef CONFIG_MMU
9e2779fa
CL
302 unsigned long addr = (unsigned long)x;
303
304 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
305#else
306 return 0;
8ca3ed87 307#endif
0738c4bb 308}
81ac3ad9
KH
309#ifdef CONFIG_MMU
310extern int is_vmalloc_or_module_addr(const void *x);
311#else
934831d0 312static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
313{
314 return 0;
315}
316#endif
9e2779fa 317
e9da73d6
AA
318static inline void compound_lock(struct page *page)
319{
320#ifdef CONFIG_TRANSPARENT_HUGEPAGE
321 bit_spin_lock(PG_compound_lock, &page->flags);
322#endif
323}
324
325static inline void compound_unlock(struct page *page)
326{
327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 bit_spin_unlock(PG_compound_lock, &page->flags);
329#endif
330}
331
332static inline unsigned long compound_lock_irqsave(struct page *page)
333{
334 unsigned long uninitialized_var(flags);
335#ifdef CONFIG_TRANSPARENT_HUGEPAGE
336 local_irq_save(flags);
337 compound_lock(page);
338#endif
339 return flags;
340}
341
342static inline void compound_unlock_irqrestore(struct page *page,
343 unsigned long flags)
344{
345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
346 compound_unlock(page);
347 local_irq_restore(flags);
348#endif
349}
350
d85f3385
CL
351static inline struct page *compound_head(struct page *page)
352{
6d777953 353 if (unlikely(PageTail(page)))
d85f3385
CL
354 return page->first_page;
355 return page;
356}
357
4c21e2f2 358static inline int page_count(struct page *page)
1da177e4 359{
d85f3385 360 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
361}
362
363static inline void get_page(struct page *page)
364{
91807063
AA
365 /*
366 * Getting a normal page or the head of a compound page
367 * requires to already have an elevated page->_count. Only if
368 * we're getting a tail page, the elevated page->_count is
369 * required only in the head page, so for tail pages the
370 * bugcheck only verifies that the page->_count isn't
371 * negative.
372 */
373 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
1da177e4 374 atomic_inc(&page->_count);
91807063
AA
375 /*
376 * Getting a tail page will elevate both the head and tail
377 * page->_count(s).
378 */
379 if (unlikely(PageTail(page))) {
380 /*
381 * This is safe only because
382 * __split_huge_page_refcount can't run under
383 * get_page().
384 */
385 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
386 atomic_inc(&page->first_page->_count);
387 }
1da177e4
LT
388}
389
b49af68f
CL
390static inline struct page *virt_to_head_page(const void *x)
391{
392 struct page *page = virt_to_page(x);
393 return compound_head(page);
394}
395
7835e98b
NP
396/*
397 * Setup the page count before being freed into the page allocator for
398 * the first time (boot or memory hotplug)
399 */
400static inline void init_page_count(struct page *page)
401{
402 atomic_set(&page->_count, 1);
403}
404
5f24ce5f
AA
405/*
406 * PageBuddy() indicate that the page is free and in the buddy system
407 * (see mm/page_alloc.c).
ef2b4b95
AA
408 *
409 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
410 * -2 so that an underflow of the page_mapcount() won't be mistaken
411 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
412 * efficiently by most CPU architectures.
5f24ce5f 413 */
ef2b4b95
AA
414#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
415
5f24ce5f
AA
416static inline int PageBuddy(struct page *page)
417{
ef2b4b95 418 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
419}
420
421static inline void __SetPageBuddy(struct page *page)
422{
423 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 424 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
425}
426
427static inline void __ClearPageBuddy(struct page *page)
428{
429 VM_BUG_ON(!PageBuddy(page));
430 atomic_set(&page->_mapcount, -1);
431}
432
1da177e4 433void put_page(struct page *page);
1d7ea732 434void put_pages_list(struct list_head *pages);
1da177e4 435
8dfcc9ba 436void split_page(struct page *page, unsigned int order);
748446bb 437int split_free_page(struct page *page);
8dfcc9ba 438
33f2ef89
AW
439/*
440 * Compound pages have a destructor function. Provide a
441 * prototype for that function and accessor functions.
442 * These are _only_ valid on the head of a PG_compound page.
443 */
444typedef void compound_page_dtor(struct page *);
445
446static inline void set_compound_page_dtor(struct page *page,
447 compound_page_dtor *dtor)
448{
449 page[1].lru.next = (void *)dtor;
450}
451
452static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
453{
454 return (compound_page_dtor *)page[1].lru.next;
455}
456
d85f3385
CL
457static inline int compound_order(struct page *page)
458{
6d777953 459 if (!PageHead(page))
d85f3385
CL
460 return 0;
461 return (unsigned long)page[1].lru.prev;
462}
463
37c2ac78
AA
464static inline int compound_trans_order(struct page *page)
465{
466 int order;
467 unsigned long flags;
468
469 if (!PageHead(page))
470 return 0;
471
472 flags = compound_lock_irqsave(page);
473 order = compound_order(page);
474 compound_unlock_irqrestore(page, flags);
475 return order;
476}
477
d85f3385
CL
478static inline void set_compound_order(struct page *page, unsigned long order)
479{
480 page[1].lru.prev = (void *)order;
481}
482
3dece370 483#ifdef CONFIG_MMU
14fd403f
AA
484/*
485 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
486 * servicing faults for write access. In the normal case, do always want
487 * pte_mkwrite. But get_user_pages can cause write faults for mappings
488 * that do not have writing enabled, when used by access_process_vm.
489 */
490static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
491{
492 if (likely(vma->vm_flags & VM_WRITE))
493 pte = pte_mkwrite(pte);
494 return pte;
495}
3dece370 496#endif
14fd403f 497
1da177e4
LT
498/*
499 * Multiple processes may "see" the same page. E.g. for untouched
500 * mappings of /dev/null, all processes see the same page full of
501 * zeroes, and text pages of executables and shared libraries have
502 * only one copy in memory, at most, normally.
503 *
504 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
505 * page_count() == 0 means the page is free. page->lru is then used for
506 * freelist management in the buddy allocator.
da6052f7 507 * page_count() > 0 means the page has been allocated.
1da177e4 508 *
da6052f7
NP
509 * Pages are allocated by the slab allocator in order to provide memory
510 * to kmalloc and kmem_cache_alloc. In this case, the management of the
511 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
512 * unless a particular usage is carefully commented. (the responsibility of
513 * freeing the kmalloc memory is the caller's, of course).
1da177e4 514 *
da6052f7
NP
515 * A page may be used by anyone else who does a __get_free_page().
516 * In this case, page_count still tracks the references, and should only
517 * be used through the normal accessor functions. The top bits of page->flags
518 * and page->virtual store page management information, but all other fields
519 * are unused and could be used privately, carefully. The management of this
520 * page is the responsibility of the one who allocated it, and those who have
521 * subsequently been given references to it.
522 *
523 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
524 * managed by the Linux memory manager: I/O, buffers, swapping etc.
525 * The following discussion applies only to them.
526 *
da6052f7
NP
527 * A pagecache page contains an opaque `private' member, which belongs to the
528 * page's address_space. Usually, this is the address of a circular list of
529 * the page's disk buffers. PG_private must be set to tell the VM to call
530 * into the filesystem to release these pages.
1da177e4 531 *
da6052f7
NP
532 * A page may belong to an inode's memory mapping. In this case, page->mapping
533 * is the pointer to the inode, and page->index is the file offset of the page,
534 * in units of PAGE_CACHE_SIZE.
1da177e4 535 *
da6052f7
NP
536 * If pagecache pages are not associated with an inode, they are said to be
537 * anonymous pages. These may become associated with the swapcache, and in that
538 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 539 *
da6052f7
NP
540 * In either case (swapcache or inode backed), the pagecache itself holds one
541 * reference to the page. Setting PG_private should also increment the
542 * refcount. The each user mapping also has a reference to the page.
1da177e4 543 *
da6052f7
NP
544 * The pagecache pages are stored in a per-mapping radix tree, which is
545 * rooted at mapping->page_tree, and indexed by offset.
546 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
547 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 548 *
da6052f7 549 * All pagecache pages may be subject to I/O:
1da177e4
LT
550 * - inode pages may need to be read from disk,
551 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
552 * to be written back to the inode on disk,
553 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
554 * modified may need to be swapped out to swap space and (later) to be read
555 * back into memory.
1da177e4
LT
556 */
557
558/*
559 * The zone field is never updated after free_area_init_core()
560 * sets it, so none of the operations on it need to be atomic.
1da177e4 561 */
348f8b6c 562
d41dee36
AW
563
564/*
565 * page->flags layout:
566 *
567 * There are three possibilities for how page->flags get
568 * laid out. The first is for the normal case, without
569 * sparsemem. The second is for sparsemem when there is
570 * plenty of space for node and section. The last is when
571 * we have run out of space and have to fall back to an
572 * alternate (slower) way of determining the node.
573 *
308c05e3
CL
574 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
575 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
576 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 577 */
308c05e3 578#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
579#define SECTIONS_WIDTH SECTIONS_SHIFT
580#else
581#define SECTIONS_WIDTH 0
582#endif
583
584#define ZONES_WIDTH ZONES_SHIFT
585
9223b419 586#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
587#define NODES_WIDTH NODES_SHIFT
588#else
308c05e3
CL
589#ifdef CONFIG_SPARSEMEM_VMEMMAP
590#error "Vmemmap: No space for nodes field in page flags"
591#endif
d41dee36
AW
592#define NODES_WIDTH 0
593#endif
594
595/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 596#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
597#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
598#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
599
600/*
601 * We are going to use the flags for the page to node mapping if its in
602 * there. This includes the case where there is no node, so it is implicit.
603 */
89689ae7
CL
604#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
605#define NODE_NOT_IN_PAGE_FLAGS
606#endif
d41dee36 607
348f8b6c 608/*
25985edc 609 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
610 * sections we define the shift as 0; that plus a 0 mask ensures
611 * the compiler will optimise away reference to them.
612 */
d41dee36
AW
613#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
614#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
615#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 616
bce54bbf
WD
617/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
618#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 619#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
620#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
621 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 622#else
89689ae7 623#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
624#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
625 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
626#endif
627
bd8029b6 628#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 629
9223b419
CL
630#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
631#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
632#endif
633
d41dee36
AW
634#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
635#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
636#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 637#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 638
2f1b6248 639static inline enum zone_type page_zonenum(struct page *page)
1da177e4 640{
348f8b6c 641 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 642}
1da177e4 643
89689ae7
CL
644/*
645 * The identification function is only used by the buddy allocator for
646 * determining if two pages could be buddies. We are not really
647 * identifying a zone since we could be using a the section number
648 * id if we have not node id available in page flags.
649 * We guarantee only that it will return the same value for two
650 * combinable pages in a zone.
651 */
cb2b95e1
AW
652static inline int page_zone_id(struct page *page)
653{
89689ae7 654 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
655}
656
25ba77c1 657static inline int zone_to_nid(struct zone *zone)
89fa3024 658{
d5f541ed
CL
659#ifdef CONFIG_NUMA
660 return zone->node;
661#else
662 return 0;
663#endif
89fa3024
CL
664}
665
89689ae7 666#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 667extern int page_to_nid(struct page *page);
89689ae7 668#else
25ba77c1 669static inline int page_to_nid(struct page *page)
d41dee36 670{
89689ae7 671 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 672}
89689ae7
CL
673#endif
674
675static inline struct zone *page_zone(struct page *page)
676{
677 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
678}
679
308c05e3 680#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
681static inline void set_page_section(struct page *page, unsigned long section)
682{
683 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
684 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
685}
686
d41dee36
AW
687static inline unsigned long page_to_section(struct page *page)
688{
689 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
690}
308c05e3 691#endif
d41dee36 692
2f1b6248 693static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
694{
695 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
696 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
697}
2f1b6248 698
348f8b6c
DH
699static inline void set_page_node(struct page *page, unsigned long node)
700{
701 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
702 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 703}
89689ae7 704
2f1b6248 705static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 706 unsigned long node, unsigned long pfn)
1da177e4 707{
348f8b6c
DH
708 set_page_zone(page, zone);
709 set_page_node(page, node);
bf4e8902 710#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 711 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 712#endif
1da177e4
LT
713}
714
f6ac2354
CL
715/*
716 * Some inline functions in vmstat.h depend on page_zone()
717 */
718#include <linux/vmstat.h>
719
652050ae 720static __always_inline void *lowmem_page_address(struct page *page)
1da177e4 721{
c6f6b596 722 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
723}
724
725#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
726#define HASHED_PAGE_VIRTUAL
727#endif
728
729#if defined(WANT_PAGE_VIRTUAL)
730#define page_address(page) ((page)->virtual)
731#define set_page_address(page, address) \
732 do { \
733 (page)->virtual = (address); \
734 } while(0)
735#define page_address_init() do { } while(0)
736#endif
737
738#if defined(HASHED_PAGE_VIRTUAL)
739void *page_address(struct page *page);
740void set_page_address(struct page *page, void *virtual);
741void page_address_init(void);
742#endif
743
744#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
745#define page_address(page) lowmem_page_address(page)
746#define set_page_address(page, address) do { } while(0)
747#define page_address_init() do { } while(0)
748#endif
749
750/*
751 * On an anonymous page mapped into a user virtual memory area,
752 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
753 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
754 *
755 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
756 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
757 * and then page->mapping points, not to an anon_vma, but to a private
758 * structure which KSM associates with that merged page. See ksm.h.
759 *
760 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
761 *
762 * Please note that, confusingly, "page_mapping" refers to the inode
763 * address_space which maps the page from disk; whereas "page_mapped"
764 * refers to user virtual address space into which the page is mapped.
765 */
766#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
767#define PAGE_MAPPING_KSM 2
768#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
769
770extern struct address_space swapper_space;
771static inline struct address_space *page_mapping(struct page *page)
772{
773 struct address_space *mapping = page->mapping;
774
b5fab14e 775 VM_BUG_ON(PageSlab(page));
1da177e4
LT
776 if (unlikely(PageSwapCache(page)))
777 mapping = &swapper_space;
e20e8779 778 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
779 mapping = NULL;
780 return mapping;
781}
782
3ca7b3c5
HD
783/* Neutral page->mapping pointer to address_space or anon_vma or other */
784static inline void *page_rmapping(struct page *page)
785{
786 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
787}
788
1da177e4
LT
789static inline int PageAnon(struct page *page)
790{
791 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
792}
793
794/*
795 * Return the pagecache index of the passed page. Regular pagecache pages
796 * use ->index whereas swapcache pages use ->private
797 */
798static inline pgoff_t page_index(struct page *page)
799{
800 if (unlikely(PageSwapCache(page)))
4c21e2f2 801 return page_private(page);
1da177e4
LT
802 return page->index;
803}
804
805/*
806 * The atomic page->_mapcount, like _count, starts from -1:
807 * so that transitions both from it and to it can be tracked,
808 * using atomic_inc_and_test and atomic_add_negative(-1).
809 */
810static inline void reset_page_mapcount(struct page *page)
811{
812 atomic_set(&(page)->_mapcount, -1);
813}
814
815static inline int page_mapcount(struct page *page)
816{
817 return atomic_read(&(page)->_mapcount) + 1;
818}
819
820/*
821 * Return true if this page is mapped into pagetables.
822 */
823static inline int page_mapped(struct page *page)
824{
825 return atomic_read(&(page)->_mapcount) >= 0;
826}
827
1da177e4
LT
828/*
829 * Different kinds of faults, as returned by handle_mm_fault().
830 * Used to decide whether a process gets delivered SIGBUS or
831 * just gets major/minor fault counters bumped up.
832 */
d0217ac0 833
83c54070 834#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 835
83c54070
NP
836#define VM_FAULT_OOM 0x0001
837#define VM_FAULT_SIGBUS 0x0002
838#define VM_FAULT_MAJOR 0x0004
839#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
840#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
841#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 842
83c54070
NP
843#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
844#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 845#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 846
aa50d3a7
AK
847#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
848
849#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
850 VM_FAULT_HWPOISON_LARGE)
851
852/* Encode hstate index for a hwpoisoned large page */
853#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
854#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 855
1c0fe6e3
NP
856/*
857 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
858 */
859extern void pagefault_out_of_memory(void);
860
1da177e4
LT
861#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
862
ddd588b5 863/*
7bf02ea2 864 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
865 * various contexts.
866 */
867#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
868
7bf02ea2
DR
869extern void show_free_areas(unsigned int flags);
870extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 871
3f96b79a 872int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 873struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
874int shmem_zero_setup(struct vm_area_struct *);
875
e8edc6e0 876extern int can_do_mlock(void);
1da177e4
LT
877extern int user_shm_lock(size_t, struct user_struct *);
878extern void user_shm_unlock(size_t, struct user_struct *);
879
880/*
881 * Parameter block passed down to zap_pte_range in exceptional cases.
882 */
883struct zap_details {
884 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
885 struct address_space *check_mapping; /* Check page->mapping if set */
886 pgoff_t first_index; /* Lowest page->index to unmap */
887 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
888};
889
7e675137
NP
890struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
891 pte_t pte);
892
c627f9cc
JS
893int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
894 unsigned long size);
ee39b37b 895unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 896 unsigned long size, struct zap_details *);
d16dfc55 897unsigned long unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
898 struct vm_area_struct *start_vma, unsigned long start_addr,
899 unsigned long end_addr, unsigned long *nr_accounted,
900 struct zap_details *);
e6473092
MM
901
902/**
903 * mm_walk - callbacks for walk_page_range
904 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
905 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
906 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
907 * this handler is required to be able to handle
908 * pmd_trans_huge() pmds. They may simply choose to
909 * split_huge_page() instead of handling it explicitly.
e6473092
MM
910 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
911 * @pte_hole: if set, called for each hole at all levels
5dc37642 912 * @hugetlb_entry: if set, called for each hugetlb entry
e6473092
MM
913 *
914 * (see walk_page_range for more details)
915 */
916struct mm_walk {
2165009b
DH
917 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
918 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
919 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
920 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
921 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
922 int (*hugetlb_entry)(pte_t *, unsigned long,
923 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
924 struct mm_struct *mm;
925 void *private;
e6473092
MM
926};
927
2165009b
DH
928int walk_page_range(unsigned long addr, unsigned long end,
929 struct mm_walk *walk);
42b77728 930void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 931 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
932int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
933 struct vm_area_struct *vma);
1da177e4
LT
934void unmap_mapping_range(struct address_space *mapping,
935 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
936int follow_pfn(struct vm_area_struct *vma, unsigned long address,
937 unsigned long *pfn);
d87fe660 938int follow_phys(struct vm_area_struct *vma, unsigned long address,
939 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
940int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
941 void *buf, int len, int write);
1da177e4
LT
942
943static inline void unmap_shared_mapping_range(struct address_space *mapping,
944 loff_t const holebegin, loff_t const holelen)
945{
946 unmap_mapping_range(mapping, holebegin, holelen, 0);
947}
948
25d9e2d1 949extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 950extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 951extern int vmtruncate(struct inode *inode, loff_t offset);
952extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 953
750b4987 954int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 955int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 956
83f78668
WF
957int invalidate_inode_page(struct page *page);
958
7ee1dd3f 959#ifdef CONFIG_MMU
83c54070 960extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 961 unsigned long address, unsigned int flags);
7ee1dd3f
DH
962#else
963static inline int handle_mm_fault(struct mm_struct *mm,
964 struct vm_area_struct *vma, unsigned long address,
d06063cc 965 unsigned int flags)
7ee1dd3f
DH
966{
967 /* should never happen if there's no MMU */
968 BUG();
969 return VM_FAULT_SIGBUS;
970}
971#endif
f33ea7f4 972
1da177e4
LT
973extern int make_pages_present(unsigned long addr, unsigned long end);
974extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
975extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
976 void *buf, int len, int write);
1da177e4 977
0014bd99
HY
978int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
979 unsigned long start, int len, unsigned int foll_flags,
980 struct page **pages, struct vm_area_struct **vmas,
981 int *nonblocking);
d2bf6be8 982int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 983 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
984 struct page **pages, struct vm_area_struct **vmas);
985int get_user_pages_fast(unsigned long start, int nr_pages, int write,
986 struct page **pages);
f3e8fccd 987struct page *get_dump_page(unsigned long addr);
1da177e4 988
cf9a2ae8
DH
989extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
990extern void do_invalidatepage(struct page *page, unsigned long offset);
991
1da177e4 992int __set_page_dirty_nobuffers(struct page *page);
76719325 993int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
994int redirty_page_for_writepage(struct writeback_control *wbc,
995 struct page *page);
e3a7cca1 996void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 997void account_page_writeback(struct page *page);
b3c97528 998int set_page_dirty(struct page *page);
1da177e4
LT
999int set_page_dirty_lock(struct page *page);
1000int clear_page_dirty_for_io(struct page *page);
1001
39aa3cb3 1002/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1003static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1004{
1005 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1006}
1007
a09a79f6
MP
1008static inline int stack_guard_page_start(struct vm_area_struct *vma,
1009 unsigned long addr)
1010{
1011 return (vma->vm_flags & VM_GROWSDOWN) &&
1012 (vma->vm_start == addr) &&
1013 !vma_growsdown(vma->vm_prev, addr);
1014}
1015
1016/* Is the vma a continuation of the stack vma below it? */
1017static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1018{
1019 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1020}
1021
1022static inline int stack_guard_page_end(struct vm_area_struct *vma,
1023 unsigned long addr)
1024{
1025 return (vma->vm_flags & VM_GROWSUP) &&
1026 (vma->vm_end == addr) &&
1027 !vma_growsup(vma->vm_next, addr);
1028}
1029
b6a2fea3
OW
1030extern unsigned long move_page_tables(struct vm_area_struct *vma,
1031 unsigned long old_addr, struct vm_area_struct *new_vma,
1032 unsigned long new_addr, unsigned long len);
1da177e4
LT
1033extern unsigned long do_mremap(unsigned long addr,
1034 unsigned long old_len, unsigned long new_len,
1035 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1036extern int mprotect_fixup(struct vm_area_struct *vma,
1037 struct vm_area_struct **pprev, unsigned long start,
1038 unsigned long end, unsigned long newflags);
1da177e4 1039
465a454f
PZ
1040/*
1041 * doesn't attempt to fault and will return short.
1042 */
1043int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1044 struct page **pages);
d559db08
KH
1045/*
1046 * per-process(per-mm_struct) statistics.
1047 */
d559db08
KH
1048static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1049{
1050 atomic_long_set(&mm->rss_stat.count[member], value);
1051}
1052
172703b0 1053#if defined(SPLIT_RSS_COUNTING)
34e55232 1054unsigned long get_mm_counter(struct mm_struct *mm, int member);
172703b0 1055#else
d559db08
KH
1056static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1057{
172703b0 1058 return atomic_long_read(&mm->rss_stat.count[member]);
d559db08 1059}
172703b0 1060#endif
d559db08
KH
1061
1062static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1063{
172703b0 1064 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1065}
1066
1067static inline void inc_mm_counter(struct mm_struct *mm, int member)
1068{
172703b0 1069 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1070}
1071
1072static inline void dec_mm_counter(struct mm_struct *mm, int member)
1073{
172703b0 1074 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1075}
1076
d559db08
KH
1077static inline unsigned long get_mm_rss(struct mm_struct *mm)
1078{
1079 return get_mm_counter(mm, MM_FILEPAGES) +
1080 get_mm_counter(mm, MM_ANONPAGES);
1081}
1082
1083static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1084{
1085 return max(mm->hiwater_rss, get_mm_rss(mm));
1086}
1087
1088static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1089{
1090 return max(mm->hiwater_vm, mm->total_vm);
1091}
1092
1093static inline void update_hiwater_rss(struct mm_struct *mm)
1094{
1095 unsigned long _rss = get_mm_rss(mm);
1096
1097 if ((mm)->hiwater_rss < _rss)
1098 (mm)->hiwater_rss = _rss;
1099}
1100
1101static inline void update_hiwater_vm(struct mm_struct *mm)
1102{
1103 if (mm->hiwater_vm < mm->total_vm)
1104 mm->hiwater_vm = mm->total_vm;
1105}
1106
1107static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1108 struct mm_struct *mm)
1109{
1110 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1111
1112 if (*maxrss < hiwater_rss)
1113 *maxrss = hiwater_rss;
1114}
1115
53bddb4e 1116#if defined(SPLIT_RSS_COUNTING)
34e55232 1117void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1118#else
1119static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1120{
1121}
1122#endif
465a454f 1123
a09ed5e0
YH
1124/*
1125 * This struct is used to pass information from page reclaim to the shrinkers.
1126 * We consolidate the values for easier extention later.
1127 */
1128struct shrink_control {
a09ed5e0 1129 gfp_t gfp_mask;
1495f230
YH
1130
1131 /* How many slab objects shrinker() should scan and try to reclaim */
1132 unsigned long nr_to_scan;
a09ed5e0
YH
1133};
1134
1da177e4 1135/*
8e1f936b 1136 * A callback you can register to apply pressure to ageable caches.
1da177e4 1137 *
1495f230
YH
1138 * 'sc' is passed shrink_control which includes a count 'nr_to_scan'
1139 * and a 'gfpmask'. It should look through the least-recently-used
1140 * 'nr_to_scan' entries and attempt to free them up. It should return
1141 * the number of objects which remain in the cache. If it returns -1, it means
1142 * it cannot do any scanning at this time (eg. there is a risk of deadlock).
1da177e4 1143 *
8e1f936b
RR
1144 * The 'gfpmask' refers to the allocation we are currently trying to
1145 * fulfil.
1146 *
1147 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1148 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 1149 */
8e1f936b 1150struct shrinker {
1495f230 1151 int (*shrink)(struct shrinker *, struct shrink_control *sc);
8e1f936b 1152 int seeks; /* seeks to recreate an obj */
e9299f50 1153 long batch; /* reclaim batch size, 0 = default */
1da177e4 1154
8e1f936b
RR
1155 /* These are for internal use */
1156 struct list_head list;
1157 long nr; /* objs pending delete */
1158};
1159#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1160extern void register_shrinker(struct shrinker *);
1161extern void unregister_shrinker(struct shrinker *);
1da177e4 1162
4e950f6f 1163int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1164
25ca1d6c
NK
1165extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1166 spinlock_t **ptl);
1167static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1168 spinlock_t **ptl)
1169{
1170 pte_t *ptep;
1171 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1172 return ptep;
1173}
c9cfcddf 1174
5f22df00
NP
1175#ifdef __PAGETABLE_PUD_FOLDED
1176static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1177 unsigned long address)
1178{
1179 return 0;
1180}
1181#else
1bb3630e 1182int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1183#endif
1184
1185#ifdef __PAGETABLE_PMD_FOLDED
1186static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1187 unsigned long address)
1188{
1189 return 0;
1190}
1191#else
1bb3630e 1192int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1193#endif
1194
8ac1f832
AA
1195int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1196 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1197int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1198
1da177e4
LT
1199/*
1200 * The following ifdef needed to get the 4level-fixup.h header to work.
1201 * Remove it when 4level-fixup.h has been removed.
1202 */
1bb3630e 1203#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1204static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1205{
1bb3630e
HD
1206 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1207 NULL: pud_offset(pgd, address);
1da177e4
LT
1208}
1209
1210static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1211{
1bb3630e
HD
1212 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1213 NULL: pmd_offset(pud, address);
1da177e4 1214}
1bb3630e
HD
1215#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1216
f7d0b926 1217#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1218/*
1219 * We tuck a spinlock to guard each pagetable page into its struct page,
1220 * at page->private, with BUILD_BUG_ON to make sure that this will not
1221 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1222 * When freeing, reset page->mapping so free_pages_check won't complain.
1223 */
349aef0b 1224#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1225#define pte_lock_init(_page) do { \
1226 spin_lock_init(__pte_lockptr(_page)); \
1227} while (0)
1228#define pte_lock_deinit(page) ((page)->mapping = NULL)
1229#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1230#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1231/*
1232 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1233 */
1234#define pte_lock_init(page) do {} while (0)
1235#define pte_lock_deinit(page) do {} while (0)
1236#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1237#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1238
2f569afd
MS
1239static inline void pgtable_page_ctor(struct page *page)
1240{
1241 pte_lock_init(page);
1242 inc_zone_page_state(page, NR_PAGETABLE);
1243}
1244
1245static inline void pgtable_page_dtor(struct page *page)
1246{
1247 pte_lock_deinit(page);
1248 dec_zone_page_state(page, NR_PAGETABLE);
1249}
1250
c74df32c
HD
1251#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1252({ \
4c21e2f2 1253 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1254 pte_t *__pte = pte_offset_map(pmd, address); \
1255 *(ptlp) = __ptl; \
1256 spin_lock(__ptl); \
1257 __pte; \
1258})
1259
1260#define pte_unmap_unlock(pte, ptl) do { \
1261 spin_unlock(ptl); \
1262 pte_unmap(pte); \
1263} while (0)
1264
8ac1f832
AA
1265#define pte_alloc_map(mm, vma, pmd, address) \
1266 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1267 pmd, address))? \
1268 NULL: pte_offset_map(pmd, address))
1bb3630e 1269
c74df32c 1270#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1271 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1272 pmd, address))? \
c74df32c
HD
1273 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1274
1bb3630e 1275#define pte_alloc_kernel(pmd, address) \
8ac1f832 1276 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1277 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1278
1279extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1280extern void free_area_init_node(int nid, unsigned long * zones_size,
1281 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1282#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1283/*
1284 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1285 * zones, allocate the backing mem_map and account for memory holes in a more
1286 * architecture independent manner. This is a substitute for creating the
1287 * zone_sizes[] and zholes_size[] arrays and passing them to
1288 * free_area_init_node()
1289 *
1290 * An architecture is expected to register range of page frames backed by
1291 * physical memory with add_active_range() before calling
1292 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1293 * usage, an architecture is expected to do something like
1294 *
1295 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1296 * max_highmem_pfn};
1297 * for_each_valid_physical_page_range()
1298 * add_active_range(node_id, start_pfn, end_pfn)
1299 * free_area_init_nodes(max_zone_pfns);
1300 *
1301 * If the architecture guarantees that there are no holes in the ranges
1302 * registered with add_active_range(), free_bootmem_active_regions()
1303 * will call free_bootmem_node() for each registered physical page range.
1304 * Similarly sparse_memory_present_with_active_regions() calls
1305 * memory_present() for each range when SPARSEMEM is enabled.
1306 *
1307 * See mm/page_alloc.c for more information on each function exposed by
1308 * CONFIG_ARCH_POPULATES_NODE_MAP
1309 */
1310extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1311extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1312 unsigned long end_pfn);
cc1050ba
YL
1313extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1314 unsigned long end_pfn);
c713216d 1315extern void remove_all_active_ranges(void);
32996250
YL
1316void sort_node_map(void);
1317unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1318 unsigned long end_pfn);
c713216d
MG
1319extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1320 unsigned long end_pfn);
1321extern void get_pfn_range_for_nid(unsigned int nid,
1322 unsigned long *start_pfn, unsigned long *end_pfn);
1323extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1324extern void free_bootmem_with_active_regions(int nid,
1325 unsigned long max_low_pfn);
08677214
YL
1326int add_from_early_node_map(struct range *range, int az,
1327 int nr_range, int nid);
edbe7d23
YL
1328u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1329 u64 goal, u64 limit);
d52d53b8 1330typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1331extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d 1332extern void sparse_memory_present_with_active_regions(int nid);
c713216d 1333#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1334
1335#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1336 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1337static inline int __early_pfn_to_nid(unsigned long pfn)
1338{
1339 return 0;
1340}
1341#else
1342/* please see mm/page_alloc.c */
1343extern int __meminit early_pfn_to_nid(unsigned long pfn);
1344#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1345/* there is a per-arch backend function. */
1346extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1347#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1348#endif
1349
0e0b864e 1350extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1351extern void memmap_init_zone(unsigned long, int, unsigned long,
1352 unsigned long, enum memmap_context);
bc75d33f 1353extern void setup_per_zone_wmarks(void);
1b79acc9 1354extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1355extern void mem_init(void);
8feae131 1356extern void __init mmap_init(void);
b2b755b5 1357extern void show_mem(unsigned int flags);
1da177e4
LT
1358extern void si_meminfo(struct sysinfo * val);
1359extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1360extern int after_bootmem;
1da177e4 1361
a238ab5b
DH
1362extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1363
e7c8d5c9 1364extern void setup_per_cpu_pageset(void);
e7c8d5c9 1365
112067f0
SL
1366extern void zone_pcp_update(struct zone *zone);
1367
8feae131 1368/* nommu.c */
33e5d769 1369extern atomic_long_t mmap_pages_allocated;
7e660872 1370extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1371
1da177e4
LT
1372/* prio_tree.c */
1373void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1374void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1375void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1376struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1377 struct prio_tree_iter *iter);
1378
1379#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1380 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1381 (vma = vma_prio_tree_next(vma, iter)); )
1382
1383static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1384 struct list_head *list)
1385{
1386 vma->shared.vm_set.parent = NULL;
1387 list_add_tail(&vma->shared.vm_set.list, list);
1388}
1389
1390/* mmap.c */
34b4e4aa 1391extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1392extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1393 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1394extern struct vm_area_struct *vma_merge(struct mm_struct *,
1395 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1396 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1397 struct mempolicy *);
1398extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1399extern int split_vma(struct mm_struct *,
1400 struct vm_area_struct *, unsigned long addr, int new_below);
1401extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1402extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1403 struct rb_node **, struct rb_node *);
a8fb5618 1404extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1405extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1406 unsigned long addr, unsigned long len, pgoff_t pgoff);
1407extern void exit_mmap(struct mm_struct *);
925d1c40 1408
7906d00c
AA
1409extern int mm_take_all_locks(struct mm_struct *mm);
1410extern void mm_drop_all_locks(struct mm_struct *mm);
1411
925d1c40
MH
1412/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1413extern void added_exe_file_vma(struct mm_struct *mm);
1414extern void removed_exe_file_vma(struct mm_struct *mm);
38646013
JS
1415extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1416extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1417
119f657c 1418extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1419extern int install_special_mapping(struct mm_struct *mm,
1420 unsigned long addr, unsigned long len,
1421 unsigned long flags, struct page **pages);
1da177e4
LT
1422
1423extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1424
1425extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1426 unsigned long len, unsigned long prot,
1427 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1428extern unsigned long mmap_region(struct file *file, unsigned long addr,
1429 unsigned long len, unsigned long flags,
ca16d140 1430 vm_flags_t vm_flags, unsigned long pgoff);
1da177e4
LT
1431
1432static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1433 unsigned long len, unsigned long prot,
1434 unsigned long flag, unsigned long offset)
1435{
1436 unsigned long ret = -EINVAL;
1437 if ((offset + PAGE_ALIGN(len)) < offset)
1438 goto out;
1439 if (!(offset & ~PAGE_MASK))
1440 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1441out:
1442 return ret;
1443}
1444
1445extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1446
1447extern unsigned long do_brk(unsigned long, unsigned long);
1448
1449/* filemap.c */
1450extern unsigned long page_unuse(struct page *);
1451extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1452extern void truncate_inode_pages_range(struct address_space *,
1453 loff_t lstart, loff_t lend);
1da177e4
LT
1454
1455/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1456extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1457
1458/* mm/page-writeback.c */
1459int write_one_page(struct page *page, int wait);
1cf6e7d8 1460void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1461
1462/* readahead.c */
1463#define VM_MAX_READAHEAD 128 /* kbytes */
1464#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1465
1da177e4 1466int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1467 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1468
1469void page_cache_sync_readahead(struct address_space *mapping,
1470 struct file_ra_state *ra,
1471 struct file *filp,
1472 pgoff_t offset,
1473 unsigned long size);
1474
1475void page_cache_async_readahead(struct address_space *mapping,
1476 struct file_ra_state *ra,
1477 struct file *filp,
1478 struct page *pg,
1479 pgoff_t offset,
1480 unsigned long size);
1481
1da177e4 1482unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1483unsigned long ra_submit(struct file_ra_state *ra,
1484 struct address_space *mapping,
1485 struct file *filp);
1da177e4 1486
d05f3169 1487/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1488extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1489
1490/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1491extern int expand_downwards(struct vm_area_struct *vma,
1492 unsigned long address);
8ca3eb08 1493#if VM_GROWSUP
46dea3d0 1494extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1495#else
1496 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1497#endif
1da177e4
LT
1498
1499/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1500extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1501extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1502 struct vm_area_struct **pprev);
1503
1504/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1505 NULL if none. Assume start_addr < end_addr. */
1506static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1507{
1508 struct vm_area_struct * vma = find_vma(mm,start_addr);
1509
1510 if (vma && end_addr <= vma->vm_start)
1511 vma = NULL;
1512 return vma;
1513}
1514
1515static inline unsigned long vma_pages(struct vm_area_struct *vma)
1516{
1517 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1518}
1519
bad849b3 1520#ifdef CONFIG_MMU
804af2cf 1521pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1522#else
1523static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1524{
1525 return __pgprot(0);
1526}
1527#endif
1528
deceb6cd 1529struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1530int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1531 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1532int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1533int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1534 unsigned long pfn);
423bad60
NP
1535int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1536 unsigned long pfn);
deceb6cd 1537
6aab341e 1538struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1539 unsigned int foll_flags);
1540#define FOLL_WRITE 0x01 /* check pte is writable */
1541#define FOLL_TOUCH 0x02 /* mark page accessed */
1542#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1543#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1544#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1545#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1546 * and return without waiting upon it */
110d74a9 1547#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1548#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1549#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1550
2f569afd 1551typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1552 void *data);
1553extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1554 unsigned long size, pte_fn_t fn, void *data);
1555
1da177e4 1556#ifdef CONFIG_PROC_FS
ab50b8ed 1557void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1558#else
ab50b8ed 1559static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1560 unsigned long flags, struct file *file, long pages)
1561{
1562}
1563#endif /* CONFIG_PROC_FS */
1564
12d6f21e
IM
1565#ifdef CONFIG_DEBUG_PAGEALLOC
1566extern int debug_pagealloc_enabled;
1567
1568extern void kernel_map_pages(struct page *page, int numpages, int enable);
1569
1570static inline void enable_debug_pagealloc(void)
1571{
1572 debug_pagealloc_enabled = 1;
1573}
8a235efa
RW
1574#ifdef CONFIG_HIBERNATION
1575extern bool kernel_page_present(struct page *page);
1576#endif /* CONFIG_HIBERNATION */
12d6f21e 1577#else
1da177e4 1578static inline void
9858db50 1579kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1580static inline void enable_debug_pagealloc(void)
1581{
1582}
8a235efa
RW
1583#ifdef CONFIG_HIBERNATION
1584static inline bool kernel_page_present(struct page *page) { return true; }
1585#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1586#endif
1587
31db58b3 1588extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1589#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1590int in_gate_area_no_mm(unsigned long addr);
83b964bb 1591int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1592#else
cae5d390
SW
1593int in_gate_area_no_mm(unsigned long addr);
1594#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1595#endif /* __HAVE_ARCH_GATE_AREA */
1596
8d65af78 1597int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1598 void __user *, size_t *, loff_t *);
a09ed5e0 1599unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1600 unsigned long nr_pages_scanned,
1601 unsigned long lru_pages);
9d0243bc 1602
7a9166e3
LY
1603#ifndef CONFIG_MMU
1604#define randomize_va_space 0
1605#else
a62eaf15 1606extern int randomize_va_space;
7a9166e3 1607#endif
a62eaf15 1608
045e72ac 1609const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1610void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1611
9bdac914
YL
1612void sparse_mem_maps_populate_node(struct page **map_map,
1613 unsigned long pnum_begin,
1614 unsigned long pnum_end,
1615 unsigned long map_count,
1616 int nodeid);
1617
98f3cfc1 1618struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1619pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1620pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1621pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1622pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1623void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1624void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1625void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1626int vmemmap_populate_basepages(struct page *start_page,
1627 unsigned long pages, int node);
1628int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1629void vmemmap_populate_print_last(void);
8f6aac41 1630
6a46079c 1631
82ba011b
AK
1632enum mf_flags {
1633 MF_COUNT_INCREASED = 1 << 0,
1634};
6a46079c 1635extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1636extern int __memory_failure(unsigned long pfn, int trapno, int flags);
847ce401 1637extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1638extern int sysctl_memory_failure_early_kill;
1639extern int sysctl_memory_failure_recovery;
facb6011 1640extern void shake_page(struct page *p, int access);
6a46079c 1641extern atomic_long_t mce_bad_pages;
facb6011 1642extern int soft_offline_page(struct page *page, int flags);
6a46079c 1643
718a3821
WF
1644extern void dump_page(struct page *page);
1645
47ad8475
AA
1646#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1647extern void clear_huge_page(struct page *page,
1648 unsigned long addr,
1649 unsigned int pages_per_huge_page);
1650extern void copy_user_huge_page(struct page *dst, struct page *src,
1651 unsigned long addr, struct vm_area_struct *vma,
1652 unsigned int pages_per_huge_page);
1653#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1654
1da177e4
LT
1655#endif /* __KERNEL__ */
1656#endif /* _LINUX_MM_H */