Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/sched.h>
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/config.h>
10#include <linux/gfp.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/prio_tree.h>
15#include <linux/fs.h>
16
17struct mempolicy;
18struct anon_vma;
19
20#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
21extern unsigned long max_mapnr;
22#endif
23
24extern unsigned long num_physpages;
25extern void * high_memory;
26extern unsigned long vmalloc_earlyreserve;
27extern int page_cluster;
28
29#ifdef CONFIG_SYSCTL
30extern int sysctl_legacy_va_layout;
31#else
32#define sysctl_legacy_va_layout 0
33#endif
34
35#include <asm/page.h>
36#include <asm/pgtable.h>
37#include <asm/processor.h>
38#include <asm/atomic.h>
39
40#ifndef MM_VM_SIZE
41#define MM_VM_SIZE(mm) ((TASK_SIZE + PGDIR_SIZE - 1) & PGDIR_MASK)
42#endif
43
44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
46/*
47 * Linux kernel virtual memory manager primitives.
48 * The idea being to have a "virtual" mm in the same way
49 * we have a virtual fs - giving a cleaner interface to the
50 * mm details, and allowing different kinds of memory mappings
51 * (from shared memory to executable loading to arbitrary
52 * mmap() functions).
53 */
54
55/*
56 * This struct defines a memory VMM memory area. There is one of these
57 * per VM-area/task. A VM area is any part of the process virtual memory
58 * space that has a special rule for the page-fault handlers (ie a shared
59 * library, the executable area etc).
60 */
61struct vm_area_struct {
62 struct mm_struct * vm_mm; /* The address space we belong to. */
63 unsigned long vm_start; /* Our start address within vm_mm. */
64 unsigned long vm_end; /* The first byte after our end address
65 within vm_mm. */
66
67 /* linked list of VM areas per task, sorted by address */
68 struct vm_area_struct *vm_next;
69
70 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
71 unsigned long vm_flags; /* Flags, listed below. */
72
73 struct rb_node vm_rb;
74
75 /*
76 * For areas with an address space and backing store,
77 * linkage into the address_space->i_mmap prio tree, or
78 * linkage to the list of like vmas hanging off its node, or
79 * linkage of vma in the address_space->i_mmap_nonlinear list.
80 */
81 union {
82 struct {
83 struct list_head list;
84 void *parent; /* aligns with prio_tree_node parent */
85 struct vm_area_struct *head;
86 } vm_set;
87
88 struct raw_prio_tree_node prio_tree_node;
89 } shared;
90
91 /*
92 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
93 * list, after a COW of one of the file pages. A MAP_SHARED vma
94 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
95 * or brk vma (with NULL file) can only be in an anon_vma list.
96 */
97 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
98 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
99
100 /* Function pointers to deal with this struct. */
101 struct vm_operations_struct * vm_ops;
102
103 /* Information about our backing store: */
104 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
105 units, *not* PAGE_CACHE_SIZE */
106 struct file * vm_file; /* File we map to (can be NULL). */
107 void * vm_private_data; /* was vm_pte (shared mem) */
108 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
109
110#ifndef CONFIG_MMU
111 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
112#endif
113#ifdef CONFIG_NUMA
114 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
115#endif
116};
117
118/*
119 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
120 * disabled, then there's a single shared list of VMAs maintained by the
121 * system, and mm's subscribe to these individually
122 */
123struct vm_list_struct {
124 struct vm_list_struct *next;
125 struct vm_area_struct *vma;
126};
127
128#ifndef CONFIG_MMU
129extern struct rb_root nommu_vma_tree;
130extern struct rw_semaphore nommu_vma_sem;
131
132extern unsigned int kobjsize(const void *objp);
133#endif
134
135/*
136 * vm_flags..
137 */
138#define VM_READ 0x00000001 /* currently active flags */
139#define VM_WRITE 0x00000002
140#define VM_EXEC 0x00000004
141#define VM_SHARED 0x00000008
142
143#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
144#define VM_MAYWRITE 0x00000020
145#define VM_MAYEXEC 0x00000040
146#define VM_MAYSHARE 0x00000080
147
148#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
149#define VM_GROWSUP 0x00000200
150#define VM_SHM 0x00000400 /* shared memory area, don't swap out */
151#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
152
153#define VM_EXECUTABLE 0x00001000
154#define VM_LOCKED 0x00002000
155#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
156
157 /* Used by sys_madvise() */
158#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
159#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
160
161#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
162#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
163#define VM_RESERVED 0x00080000 /* Don't unmap it from swap_out */
164#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
165#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
166#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
167#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
168
169#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
170#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
171#endif
172
173#ifdef CONFIG_STACK_GROWSUP
174#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
175#else
176#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
177#endif
178
179#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
180#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
181#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
182#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
183#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
184
185/*
186 * mapping from the currently active vm_flags protection bits (the
187 * low four bits) to a page protection mask..
188 */
189extern pgprot_t protection_map[16];
190
191
192/*
193 * These are the virtual MM functions - opening of an area, closing and
194 * unmapping it (needed to keep files on disk up-to-date etc), pointer
195 * to the functions called when a no-page or a wp-page exception occurs.
196 */
197struct vm_operations_struct {
198 void (*open)(struct vm_area_struct * area);
199 void (*close)(struct vm_area_struct * area);
200 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
201 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
202#ifdef CONFIG_NUMA
203 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
204 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
205 unsigned long addr);
206#endif
207};
208
209struct mmu_gather;
210struct inode;
211
212#ifdef ARCH_HAS_ATOMIC_UNSIGNED
213typedef unsigned page_flags_t;
214#else
215typedef unsigned long page_flags_t;
216#endif
217
218/*
219 * Each physical page in the system has a struct page associated with
220 * it to keep track of whatever it is we are using the page for at the
221 * moment. Note that we have no way to track which tasks are using
222 * a page.
223 */
224struct page {
225 page_flags_t flags; /* Atomic flags, some possibly
226 * updated asynchronously */
227 atomic_t _count; /* Usage count, see below. */
228 atomic_t _mapcount; /* Count of ptes mapped in mms,
229 * to show when page is mapped
230 * & limit reverse map searches.
231 */
232 unsigned long private; /* Mapping-private opaque data:
233 * usually used for buffer_heads
234 * if PagePrivate set; used for
235 * swp_entry_t if PageSwapCache
236 * When page is free, this indicates
237 * order in the buddy system.
238 */
239 struct address_space *mapping; /* If low bit clear, points to
240 * inode address_space, or NULL.
241 * If page mapped as anonymous
242 * memory, low bit is set, and
243 * it points to anon_vma object:
244 * see PAGE_MAPPING_ANON below.
245 */
246 pgoff_t index; /* Our offset within mapping. */
247 struct list_head lru; /* Pageout list, eg. active_list
248 * protected by zone->lru_lock !
249 */
250 /*
251 * On machines where all RAM is mapped into kernel address space,
252 * we can simply calculate the virtual address. On machines with
253 * highmem some memory is mapped into kernel virtual memory
254 * dynamically, so we need a place to store that address.
255 * Note that this field could be 16 bits on x86 ... ;)
256 *
257 * Architectures with slow multiplication can define
258 * WANT_PAGE_VIRTUAL in asm/page.h
259 */
260#if defined(WANT_PAGE_VIRTUAL)
261 void *virtual; /* Kernel virtual address (NULL if
262 not kmapped, ie. highmem) */
263#endif /* WANT_PAGE_VIRTUAL */
264};
265
266/*
267 * FIXME: take this include out, include page-flags.h in
268 * files which need it (119 of them)
269 */
270#include <linux/page-flags.h>
271
272/*
273 * Methods to modify the page usage count.
274 *
275 * What counts for a page usage:
276 * - cache mapping (page->mapping)
277 * - private data (page->private)
278 * - page mapped in a task's page tables, each mapping
279 * is counted separately
280 *
281 * Also, many kernel routines increase the page count before a critical
282 * routine so they can be sure the page doesn't go away from under them.
283 *
284 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we
285 * can use atomic_add_negative(-1, page->_count) to detect when the page
286 * becomes free and so that we can also use atomic_inc_and_test to atomically
287 * detect when we just tried to grab a ref on a page which some other CPU has
288 * already deemed to be freeable.
289 *
290 * NO code should make assumptions about this internal detail! Use the provided
291 * macros which retain the old rules: page_count(page) == 0 is a free page.
292 */
293
294/*
295 * Drop a ref, return true if the logical refcount fell to zero (the page has
296 * no users)
297 */
298#define put_page_testzero(p) \
299 ({ \
300 BUG_ON(page_count(p) == 0); \
301 atomic_add_negative(-1, &(p)->_count); \
302 })
303
304/*
305 * Grab a ref, return true if the page previously had a logical refcount of
306 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page
307 */
308#define get_page_testone(p) atomic_inc_and_test(&(p)->_count)
309
310#define set_page_count(p,v) atomic_set(&(p)->_count, v - 1)
311#define __put_page(p) atomic_dec(&(p)->_count)
312
313extern void FASTCALL(__page_cache_release(struct page *));
314
315#ifdef CONFIG_HUGETLB_PAGE
316
317static inline int page_count(struct page *p)
318{
319 if (PageCompound(p))
320 p = (struct page *)p->private;
321 return atomic_read(&(p)->_count) + 1;
322}
323
324static inline void get_page(struct page *page)
325{
326 if (unlikely(PageCompound(page)))
327 page = (struct page *)page->private;
328 atomic_inc(&page->_count);
329}
330
331void put_page(struct page *page);
332
333#else /* CONFIG_HUGETLB_PAGE */
334
335#define page_count(p) (atomic_read(&(p)->_count) + 1)
336
337static inline void get_page(struct page *page)
338{
339 atomic_inc(&page->_count);
340}
341
342static inline void put_page(struct page *page)
343{
344 if (!PageReserved(page) && put_page_testzero(page))
345 __page_cache_release(page);
346}
347
348#endif /* CONFIG_HUGETLB_PAGE */
349
350/*
351 * Multiple processes may "see" the same page. E.g. for untouched
352 * mappings of /dev/null, all processes see the same page full of
353 * zeroes, and text pages of executables and shared libraries have
354 * only one copy in memory, at most, normally.
355 *
356 * For the non-reserved pages, page_count(page) denotes a reference count.
357 * page_count() == 0 means the page is free.
358 * page_count() == 1 means the page is used for exactly one purpose
359 * (e.g. a private data page of one process).
360 *
361 * A page may be used for kmalloc() or anyone else who does a
362 * __get_free_page(). In this case the page_count() is at least 1, and
363 * all other fields are unused but should be 0 or NULL. The
364 * management of this page is the responsibility of the one who uses
365 * it.
366 *
367 * The other pages (we may call them "process pages") are completely
368 * managed by the Linux memory manager: I/O, buffers, swapping etc.
369 * The following discussion applies only to them.
370 *
371 * A page may belong to an inode's memory mapping. In this case,
372 * page->mapping is the pointer to the inode, and page->index is the
373 * file offset of the page, in units of PAGE_CACHE_SIZE.
374 *
375 * A page contains an opaque `private' member, which belongs to the
376 * page's address_space. Usually, this is the address of a circular
377 * list of the page's disk buffers.
378 *
379 * For pages belonging to inodes, the page_count() is the number of
380 * attaches, plus 1 if `private' contains something, plus one for
381 * the page cache itself.
382 *
383 * All pages belonging to an inode are in these doubly linked lists:
384 * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages;
385 * using the page->list list_head. These fields are also used for
386 * freelist managemet (when page_count()==0).
387 *
388 * There is also a per-mapping radix tree mapping index to the page
389 * in memory if present. The tree is rooted at mapping->root.
390 *
391 * All process pages can do I/O:
392 * - inode pages may need to be read from disk,
393 * - inode pages which have been modified and are MAP_SHARED may need
394 * to be written to disk,
395 * - private pages which have been modified may need to be swapped out
396 * to swap space and (later) to be read back into memory.
397 */
398
399/*
400 * The zone field is never updated after free_area_init_core()
401 * sets it, so none of the operations on it need to be atomic.
402 * We'll have up to (MAX_NUMNODES * MAX_NR_ZONES) zones total,
403 * so we use (MAX_NODES_SHIFT + MAX_ZONES_SHIFT) here to get enough bits.
404 */
405#define NODEZONE_SHIFT (sizeof(page_flags_t)*8 - MAX_NODES_SHIFT - MAX_ZONES_SHIFT)
406#define NODEZONE(node, zone) ((node << ZONES_SHIFT) | zone)
407
408static inline unsigned long page_zonenum(struct page *page)
409{
410 return (page->flags >> NODEZONE_SHIFT) & (~(~0UL << ZONES_SHIFT));
411}
412static inline unsigned long page_to_nid(struct page *page)
413{
414 return (page->flags >> (NODEZONE_SHIFT + ZONES_SHIFT));
415}
416
417struct zone;
418extern struct zone *zone_table[];
419
420static inline struct zone *page_zone(struct page *page)
421{
422 return zone_table[page->flags >> NODEZONE_SHIFT];
423}
424
425static inline void set_page_zone(struct page *page, unsigned long nodezone_num)
426{
427 page->flags &= ~(~0UL << NODEZONE_SHIFT);
428 page->flags |= nodezone_num << NODEZONE_SHIFT;
429}
430
431#ifndef CONFIG_DISCONTIGMEM
432/* The array of struct pages - for discontigmem use pgdat->lmem_map */
433extern struct page *mem_map;
434#endif
435
436static inline void *lowmem_page_address(struct page *page)
437{
438 return __va(page_to_pfn(page) << PAGE_SHIFT);
439}
440
441#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
442#define HASHED_PAGE_VIRTUAL
443#endif
444
445#if defined(WANT_PAGE_VIRTUAL)
446#define page_address(page) ((page)->virtual)
447#define set_page_address(page, address) \
448 do { \
449 (page)->virtual = (address); \
450 } while(0)
451#define page_address_init() do { } while(0)
452#endif
453
454#if defined(HASHED_PAGE_VIRTUAL)
455void *page_address(struct page *page);
456void set_page_address(struct page *page, void *virtual);
457void page_address_init(void);
458#endif
459
460#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
461#define page_address(page) lowmem_page_address(page)
462#define set_page_address(page, address) do { } while(0)
463#define page_address_init() do { } while(0)
464#endif
465
466/*
467 * On an anonymous page mapped into a user virtual memory area,
468 * page->mapping points to its anon_vma, not to a struct address_space;
469 * with the PAGE_MAPPING_ANON bit set to distinguish it.
470 *
471 * Please note that, confusingly, "page_mapping" refers to the inode
472 * address_space which maps the page from disk; whereas "page_mapped"
473 * refers to user virtual address space into which the page is mapped.
474 */
475#define PAGE_MAPPING_ANON 1
476
477extern struct address_space swapper_space;
478static inline struct address_space *page_mapping(struct page *page)
479{
480 struct address_space *mapping = page->mapping;
481
482 if (unlikely(PageSwapCache(page)))
483 mapping = &swapper_space;
484 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
485 mapping = NULL;
486 return mapping;
487}
488
489static inline int PageAnon(struct page *page)
490{
491 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
492}
493
494/*
495 * Return the pagecache index of the passed page. Regular pagecache pages
496 * use ->index whereas swapcache pages use ->private
497 */
498static inline pgoff_t page_index(struct page *page)
499{
500 if (unlikely(PageSwapCache(page)))
501 return page->private;
502 return page->index;
503}
504
505/*
506 * The atomic page->_mapcount, like _count, starts from -1:
507 * so that transitions both from it and to it can be tracked,
508 * using atomic_inc_and_test and atomic_add_negative(-1).
509 */
510static inline void reset_page_mapcount(struct page *page)
511{
512 atomic_set(&(page)->_mapcount, -1);
513}
514
515static inline int page_mapcount(struct page *page)
516{
517 return atomic_read(&(page)->_mapcount) + 1;
518}
519
520/*
521 * Return true if this page is mapped into pagetables.
522 */
523static inline int page_mapped(struct page *page)
524{
525 return atomic_read(&(page)->_mapcount) >= 0;
526}
527
528/*
529 * Error return values for the *_nopage functions
530 */
531#define NOPAGE_SIGBUS (NULL)
532#define NOPAGE_OOM ((struct page *) (-1))
533
534/*
535 * Different kinds of faults, as returned by handle_mm_fault().
536 * Used to decide whether a process gets delivered SIGBUS or
537 * just gets major/minor fault counters bumped up.
538 */
539#define VM_FAULT_OOM (-1)
540#define VM_FAULT_SIGBUS 0
541#define VM_FAULT_MINOR 1
542#define VM_FAULT_MAJOR 2
543
544#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
545
546extern void show_free_areas(void);
547
548#ifdef CONFIG_SHMEM
549struct page *shmem_nopage(struct vm_area_struct *vma,
550 unsigned long address, int *type);
551int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
552struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
553 unsigned long addr);
554int shmem_lock(struct file *file, int lock, struct user_struct *user);
555#else
556#define shmem_nopage filemap_nopage
557#define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */
558#define shmem_set_policy(a, b) (0)
559#define shmem_get_policy(a, b) (NULL)
560#endif
561struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
562
563int shmem_zero_setup(struct vm_area_struct *);
564
565static inline int can_do_mlock(void)
566{
567 if (capable(CAP_IPC_LOCK))
568 return 1;
569 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
570 return 1;
571 return 0;
572}
573extern int user_shm_lock(size_t, struct user_struct *);
574extern void user_shm_unlock(size_t, struct user_struct *);
575
576/*
577 * Parameter block passed down to zap_pte_range in exceptional cases.
578 */
579struct zap_details {
580 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
581 struct address_space *check_mapping; /* Check page->mapping if set */
582 pgoff_t first_index; /* Lowest page->index to unmap */
583 pgoff_t last_index; /* Highest page->index to unmap */
584 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
585 unsigned long break_addr; /* Where unmap_vmas stopped */
586 unsigned long truncate_count; /* Compare vm_truncate_count */
587};
588
589void zap_page_range(struct vm_area_struct *vma, unsigned long address,
590 unsigned long size, struct zap_details *);
591int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
592 struct vm_area_struct *start_vma, unsigned long start_addr,
593 unsigned long end_addr, unsigned long *nr_accounted,
594 struct zap_details *);
595void clear_page_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end);
596int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
597 struct vm_area_struct *vma);
598int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
599 unsigned long size, pgprot_t prot);
600void unmap_mapping_range(struct address_space *mapping,
601 loff_t const holebegin, loff_t const holelen, int even_cows);
602
603static inline void unmap_shared_mapping_range(struct address_space *mapping,
604 loff_t const holebegin, loff_t const holelen)
605{
606 unmap_mapping_range(mapping, holebegin, holelen, 0);
607}
608
609extern int vmtruncate(struct inode * inode, loff_t offset);
610extern pud_t *FASTCALL(__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address));
611extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address));
612extern pte_t *FASTCALL(pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
613extern pte_t *FASTCALL(pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
614extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
615extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
616extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
617extern int make_pages_present(unsigned long addr, unsigned long end);
618extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
619void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
620
621int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
622 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
623
624int __set_page_dirty_buffers(struct page *page);
625int __set_page_dirty_nobuffers(struct page *page);
626int redirty_page_for_writepage(struct writeback_control *wbc,
627 struct page *page);
628int FASTCALL(set_page_dirty(struct page *page));
629int set_page_dirty_lock(struct page *page);
630int clear_page_dirty_for_io(struct page *page);
631
632extern unsigned long do_mremap(unsigned long addr,
633 unsigned long old_len, unsigned long new_len,
634 unsigned long flags, unsigned long new_addr);
635
636/*
637 * Prototype to add a shrinker callback for ageable caches.
638 *
639 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
640 * scan `nr_to_scan' objects, attempting to free them.
641 *
642 * The callback must the number of objects which remain in the cache.
643 *
644 * The callback will be passes nr_to_scan == 0 when the VM is querying the
645 * cache size, so a fastpath for that case is appropriate.
646 */
647typedef int (*shrinker_t)(int nr_to_scan, unsigned int gfp_mask);
648
649/*
650 * Add an aging callback. The int is the number of 'seeks' it takes
651 * to recreate one of the objects that these functions age.
652 */
653
654#define DEFAULT_SEEKS 2
655struct shrinker;
656extern struct shrinker *set_shrinker(int, shrinker_t);
657extern void remove_shrinker(struct shrinker *shrinker);
658
659/*
660 * On a two-level or three-level page table, this ends up being trivial. Thus
661 * the inlining and the symmetry break with pte_alloc_map() that does all
662 * of this out-of-line.
663 */
664/*
665 * The following ifdef needed to get the 4level-fixup.h header to work.
666 * Remove it when 4level-fixup.h has been removed.
667 */
668#ifdef CONFIG_MMU
669#ifndef __ARCH_HAS_4LEVEL_HACK
670static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
671{
672 if (pgd_none(*pgd))
673 return __pud_alloc(mm, pgd, address);
674 return pud_offset(pgd, address);
675}
676
677static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
678{
679 if (pud_none(*pud))
680 return __pmd_alloc(mm, pud, address);
681 return pmd_offset(pud, address);
682}
683#endif
684#endif /* CONFIG_MMU */
685
686extern void free_area_init(unsigned long * zones_size);
687extern void free_area_init_node(int nid, pg_data_t *pgdat,
688 unsigned long * zones_size, unsigned long zone_start_pfn,
689 unsigned long *zholes_size);
690extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
691extern void mem_init(void);
692extern void show_mem(void);
693extern void si_meminfo(struct sysinfo * val);
694extern void si_meminfo_node(struct sysinfo *val, int nid);
695
696/* prio_tree.c */
697void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
698void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
699void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
700struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
701 struct prio_tree_iter *iter);
702
703#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
704 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
705 (vma = vma_prio_tree_next(vma, iter)); )
706
707static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
708 struct list_head *list)
709{
710 vma->shared.vm_set.parent = NULL;
711 list_add_tail(&vma->shared.vm_set.list, list);
712}
713
714/* mmap.c */
715extern int __vm_enough_memory(long pages, int cap_sys_admin);
716extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
717 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
718extern struct vm_area_struct *vma_merge(struct mm_struct *,
719 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
720 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
721 struct mempolicy *);
722extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
723extern int split_vma(struct mm_struct *,
724 struct vm_area_struct *, unsigned long addr, int new_below);
725extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
726extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
727 struct rb_node **, struct rb_node *);
728extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
729 unsigned long addr, unsigned long len, pgoff_t pgoff);
730extern void exit_mmap(struct mm_struct *);
731
732extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
733
734extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
735 unsigned long len, unsigned long prot,
736 unsigned long flag, unsigned long pgoff);
737
738static inline unsigned long do_mmap(struct file *file, unsigned long addr,
739 unsigned long len, unsigned long prot,
740 unsigned long flag, unsigned long offset)
741{
742 unsigned long ret = -EINVAL;
743 if ((offset + PAGE_ALIGN(len)) < offset)
744 goto out;
745 if (!(offset & ~PAGE_MASK))
746 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
747out:
748 return ret;
749}
750
751extern int do_munmap(struct mm_struct *, unsigned long, size_t);
752
753extern unsigned long do_brk(unsigned long, unsigned long);
754
755/* filemap.c */
756extern unsigned long page_unuse(struct page *);
757extern void truncate_inode_pages(struct address_space *, loff_t);
758
759/* generic vm_area_ops exported for stackable file systems */
760extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
761extern int filemap_populate(struct vm_area_struct *, unsigned long,
762 unsigned long, pgprot_t, unsigned long, int);
763
764/* mm/page-writeback.c */
765int write_one_page(struct page *page, int wait);
766
767/* readahead.c */
768#define VM_MAX_READAHEAD 128 /* kbytes */
769#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
770#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
771 * turning readahead off */
772
773int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
774 unsigned long offset, unsigned long nr_to_read);
775int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
776 unsigned long offset, unsigned long nr_to_read);
777unsigned long page_cache_readahead(struct address_space *mapping,
778 struct file_ra_state *ra,
779 struct file *filp,
780 unsigned long offset,
781 unsigned long size);
782void handle_ra_miss(struct address_space *mapping,
783 struct file_ra_state *ra, pgoff_t offset);
784unsigned long max_sane_readahead(unsigned long nr);
785
786/* Do stack extension */
787extern int expand_stack(struct vm_area_struct * vma, unsigned long address);
788
789/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
790extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
791extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
792 struct vm_area_struct **pprev);
793
794/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
795 NULL if none. Assume start_addr < end_addr. */
796static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
797{
798 struct vm_area_struct * vma = find_vma(mm,start_addr);
799
800 if (vma && end_addr <= vma->vm_start)
801 vma = NULL;
802 return vma;
803}
804
805static inline unsigned long vma_pages(struct vm_area_struct *vma)
806{
807 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
808}
809
810extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr);
811
812extern struct page * vmalloc_to_page(void *addr);
813extern unsigned long vmalloc_to_pfn(void *addr);
814extern struct page * follow_page(struct mm_struct *mm, unsigned long address,
815 int write);
816extern int check_user_page_readable(struct mm_struct *mm, unsigned long address);
817int remap_pfn_range(struct vm_area_struct *, unsigned long,
818 unsigned long, unsigned long, pgprot_t);
819
820#ifdef CONFIG_PROC_FS
821void __vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
822#else
823static inline void __vm_stat_account(struct mm_struct *mm,
824 unsigned long flags, struct file *file, long pages)
825{
826}
827#endif /* CONFIG_PROC_FS */
828
829static inline void vm_stat_account(struct vm_area_struct *vma)
830{
831 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
832 vma_pages(vma));
833}
834
835static inline void vm_stat_unaccount(struct vm_area_struct *vma)
836{
837 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
838 -vma_pages(vma));
839}
840
841/* update per process rss and vm hiwater data */
842extern void update_mem_hiwater(struct task_struct *tsk);
843
844#ifndef CONFIG_DEBUG_PAGEALLOC
845static inline void
846kernel_map_pages(struct page *page, int numpages, int enable)
847{
848}
849#endif
850
851extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
852#ifdef __HAVE_ARCH_GATE_AREA
853int in_gate_area_no_task(unsigned long addr);
854int in_gate_area(struct task_struct *task, unsigned long addr);
855#else
856int in_gate_area_no_task(unsigned long addr);
857#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
858#endif /* __HAVE_ARCH_GATE_AREA */
859
860#endif /* __KERNEL__ */
861#endif /* _LINUX_MM_H */