SHM_LOCKED pages are unevictable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
59ea7463 10#include <linux/mmdebug.h>
1da177e4
LT
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/prio_tree.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
1da177e4
LT
16
17struct mempolicy;
18struct anon_vma;
4e950f6f 19struct file_ra_state;
e8edc6e0 20struct user_struct;
4e950f6f 21struct writeback_control;
1da177e4
LT
22
23#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24extern unsigned long max_mapnr;
25#endif
26
27extern unsigned long num_physpages;
28extern void * high_memory;
1da177e4
LT
29extern int page_cluster;
30
31#ifdef CONFIG_SYSCTL
32extern int sysctl_legacy_va_layout;
33#else
34#define sysctl_legacy_va_layout 0
35#endif
36
42d7896e
JM
37extern unsigned long mmap_min_addr;
38
1da177e4
LT
39#include <asm/page.h>
40#include <asm/pgtable.h>
41#include <asm/processor.h>
1da177e4 42
1da177e4
LT
43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
27ac792c
AR
45/* to align the pointer to the (next) page boundary */
46#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
47
1da177e4
LT
48/*
49 * Linux kernel virtual memory manager primitives.
50 * The idea being to have a "virtual" mm in the same way
51 * we have a virtual fs - giving a cleaner interface to the
52 * mm details, and allowing different kinds of memory mappings
53 * (from shared memory to executable loading to arbitrary
54 * mmap() functions).
55 */
56
c43692e8
CL
57extern struct kmem_cache *vm_area_cachep;
58
1da177e4
LT
59/*
60 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
61 * disabled, then there's a single shared list of VMAs maintained by the
62 * system, and mm's subscribe to these individually
63 */
64struct vm_list_struct {
65 struct vm_list_struct *next;
66 struct vm_area_struct *vma;
67};
68
69#ifndef CONFIG_MMU
70extern struct rb_root nommu_vma_tree;
71extern struct rw_semaphore nommu_vma_sem;
72
73extern unsigned int kobjsize(const void *objp);
74#endif
75
76/*
605d9288 77 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
78 */
79#define VM_READ 0x00000001 /* currently active flags */
80#define VM_WRITE 0x00000002
81#define VM_EXEC 0x00000004
82#define VM_SHARED 0x00000008
83
7e2cff42 84/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
85#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
86#define VM_MAYWRITE 0x00000020
87#define VM_MAYEXEC 0x00000040
88#define VM_MAYSHARE 0x00000080
89
90#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
91#define VM_GROWSUP 0x00000200
6aab341e 92#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
93#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
94
95#define VM_EXECUTABLE 0x00001000
96#define VM_LOCKED 0x00002000
97#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
98
99 /* Used by sys_madvise() */
100#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
101#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
102
103#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
104#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 105#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 106#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 107#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
108#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
109#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
110#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 111#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 112#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 113
d0217ac0 114#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 115#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 116#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
1da177e4
LT
117
118#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
119#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
120#endif
121
122#ifdef CONFIG_STACK_GROWSUP
123#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
124#else
125#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
126#endif
127
128#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
129#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
130#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
131#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
132#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
133
134/*
135 * mapping from the currently active vm_flags protection bits (the
136 * low four bits) to a page protection mask..
137 */
138extern pgprot_t protection_map[16];
139
d0217ac0
NP
140#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
141#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
142
143
54cb8821 144/*
d0217ac0 145 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
146 * ->fault function. The vma's ->fault is responsible for returning a bitmask
147 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 148 *
d0217ac0
NP
149 * pgoff should be used in favour of virtual_address, if possible. If pgoff
150 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
151 * mapping support.
54cb8821 152 */
d0217ac0
NP
153struct vm_fault {
154 unsigned int flags; /* FAULT_FLAG_xxx flags */
155 pgoff_t pgoff; /* Logical page offset based on vma */
156 void __user *virtual_address; /* Faulting virtual address */
157
158 struct page *page; /* ->fault handlers should return a
83c54070 159 * page here, unless VM_FAULT_NOPAGE
d0217ac0 160 * is set (which is also implied by
83c54070 161 * VM_FAULT_ERROR).
d0217ac0 162 */
54cb8821 163};
1da177e4
LT
164
165/*
166 * These are the virtual MM functions - opening of an area, closing and
167 * unmapping it (needed to keep files on disk up-to-date etc), pointer
168 * to the functions called when a no-page or a wp-page exception occurs.
169 */
170struct vm_operations_struct {
171 void (*open)(struct vm_area_struct * area);
172 void (*close)(struct vm_area_struct * area);
d0217ac0 173 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
174
175 /* notification that a previously read-only page is about to become
176 * writable, if an error is returned it will cause a SIGBUS */
177 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
28b2ee20
RR
178
179 /* called by access_process_vm when get_user_pages() fails, typically
180 * for use by special VMAs that can switch between memory and hardware
181 */
182 int (*access)(struct vm_area_struct *vma, unsigned long addr,
183 void *buf, int len, int write);
1da177e4 184#ifdef CONFIG_NUMA
a6020ed7
LS
185 /*
186 * set_policy() op must add a reference to any non-NULL @new mempolicy
187 * to hold the policy upon return. Caller should pass NULL @new to
188 * remove a policy and fall back to surrounding context--i.e. do not
189 * install a MPOL_DEFAULT policy, nor the task or system default
190 * mempolicy.
191 */
1da177e4 192 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
193
194 /*
195 * get_policy() op must add reference [mpol_get()] to any policy at
196 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
197 * in mm/mempolicy.c will do this automatically.
198 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
199 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
200 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
201 * must return NULL--i.e., do not "fallback" to task or system default
202 * policy.
203 */
1da177e4
LT
204 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
205 unsigned long addr);
7b2259b3
CL
206 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
207 const nodemask_t *to, unsigned long flags);
1da177e4
LT
208#endif
209};
210
211struct mmu_gather;
212struct inode;
213
349aef0b
AM
214#define page_private(page) ((page)->private)
215#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 216
1da177e4
LT
217/*
218 * FIXME: take this include out, include page-flags.h in
219 * files which need it (119 of them)
220 */
221#include <linux/page-flags.h>
222
223/*
224 * Methods to modify the page usage count.
225 *
226 * What counts for a page usage:
227 * - cache mapping (page->mapping)
228 * - private data (page->private)
229 * - page mapped in a task's page tables, each mapping
230 * is counted separately
231 *
232 * Also, many kernel routines increase the page count before a critical
233 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
234 */
235
236/*
da6052f7 237 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 238 */
7c8ee9a8
NP
239static inline int put_page_testzero(struct page *page)
240{
725d704e 241 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 242 return atomic_dec_and_test(&page->_count);
7c8ee9a8 243}
1da177e4
LT
244
245/*
7c8ee9a8
NP
246 * Try to grab a ref unless the page has a refcount of zero, return false if
247 * that is the case.
1da177e4 248 */
7c8ee9a8
NP
249static inline int get_page_unless_zero(struct page *page)
250{
aec2c3ed 251 VM_BUG_ON(PageTail(page));
8dc04efb 252 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 253}
1da177e4 254
48667e7a 255/* Support for virtually mapped pages */
b3bdda02
CL
256struct page *vmalloc_to_page(const void *addr);
257unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 258
0738c4bb
PM
259/*
260 * Determine if an address is within the vmalloc range
261 *
262 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
263 * is no special casing required.
264 */
9e2779fa
CL
265static inline int is_vmalloc_addr(const void *x)
266{
0738c4bb 267#ifdef CONFIG_MMU
9e2779fa
CL
268 unsigned long addr = (unsigned long)x;
269
270 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
271#else
272 return 0;
8ca3ed87 273#endif
0738c4bb 274}
9e2779fa 275
d85f3385
CL
276static inline struct page *compound_head(struct page *page)
277{
6d777953 278 if (unlikely(PageTail(page)))
d85f3385
CL
279 return page->first_page;
280 return page;
281}
282
4c21e2f2 283static inline int page_count(struct page *page)
1da177e4 284{
d85f3385 285 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
286}
287
288static inline void get_page(struct page *page)
289{
d85f3385 290 page = compound_head(page);
725d704e 291 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
292 atomic_inc(&page->_count);
293}
294
b49af68f
CL
295static inline struct page *virt_to_head_page(const void *x)
296{
297 struct page *page = virt_to_page(x);
298 return compound_head(page);
299}
300
7835e98b
NP
301/*
302 * Setup the page count before being freed into the page allocator for
303 * the first time (boot or memory hotplug)
304 */
305static inline void init_page_count(struct page *page)
306{
307 atomic_set(&page->_count, 1);
308}
309
1da177e4 310void put_page(struct page *page);
1d7ea732 311void put_pages_list(struct list_head *pages);
1da177e4 312
8dfcc9ba 313void split_page(struct page *page, unsigned int order);
8dfcc9ba 314
33f2ef89
AW
315/*
316 * Compound pages have a destructor function. Provide a
317 * prototype for that function and accessor functions.
318 * These are _only_ valid on the head of a PG_compound page.
319 */
320typedef void compound_page_dtor(struct page *);
321
322static inline void set_compound_page_dtor(struct page *page,
323 compound_page_dtor *dtor)
324{
325 page[1].lru.next = (void *)dtor;
326}
327
328static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
329{
330 return (compound_page_dtor *)page[1].lru.next;
331}
332
d85f3385
CL
333static inline int compound_order(struct page *page)
334{
6d777953 335 if (!PageHead(page))
d85f3385
CL
336 return 0;
337 return (unsigned long)page[1].lru.prev;
338}
339
340static inline void set_compound_order(struct page *page, unsigned long order)
341{
342 page[1].lru.prev = (void *)order;
343}
344
1da177e4
LT
345/*
346 * Multiple processes may "see" the same page. E.g. for untouched
347 * mappings of /dev/null, all processes see the same page full of
348 * zeroes, and text pages of executables and shared libraries have
349 * only one copy in memory, at most, normally.
350 *
351 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
352 * page_count() == 0 means the page is free. page->lru is then used for
353 * freelist management in the buddy allocator.
da6052f7 354 * page_count() > 0 means the page has been allocated.
1da177e4 355 *
da6052f7
NP
356 * Pages are allocated by the slab allocator in order to provide memory
357 * to kmalloc and kmem_cache_alloc. In this case, the management of the
358 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
359 * unless a particular usage is carefully commented. (the responsibility of
360 * freeing the kmalloc memory is the caller's, of course).
1da177e4 361 *
da6052f7
NP
362 * A page may be used by anyone else who does a __get_free_page().
363 * In this case, page_count still tracks the references, and should only
364 * be used through the normal accessor functions. The top bits of page->flags
365 * and page->virtual store page management information, but all other fields
366 * are unused and could be used privately, carefully. The management of this
367 * page is the responsibility of the one who allocated it, and those who have
368 * subsequently been given references to it.
369 *
370 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
371 * managed by the Linux memory manager: I/O, buffers, swapping etc.
372 * The following discussion applies only to them.
373 *
da6052f7
NP
374 * A pagecache page contains an opaque `private' member, which belongs to the
375 * page's address_space. Usually, this is the address of a circular list of
376 * the page's disk buffers. PG_private must be set to tell the VM to call
377 * into the filesystem to release these pages.
1da177e4 378 *
da6052f7
NP
379 * A page may belong to an inode's memory mapping. In this case, page->mapping
380 * is the pointer to the inode, and page->index is the file offset of the page,
381 * in units of PAGE_CACHE_SIZE.
1da177e4 382 *
da6052f7
NP
383 * If pagecache pages are not associated with an inode, they are said to be
384 * anonymous pages. These may become associated with the swapcache, and in that
385 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 386 *
da6052f7
NP
387 * In either case (swapcache or inode backed), the pagecache itself holds one
388 * reference to the page. Setting PG_private should also increment the
389 * refcount. The each user mapping also has a reference to the page.
1da177e4 390 *
da6052f7
NP
391 * The pagecache pages are stored in a per-mapping radix tree, which is
392 * rooted at mapping->page_tree, and indexed by offset.
393 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
394 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 395 *
da6052f7 396 * All pagecache pages may be subject to I/O:
1da177e4
LT
397 * - inode pages may need to be read from disk,
398 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
399 * to be written back to the inode on disk,
400 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
401 * modified may need to be swapped out to swap space and (later) to be read
402 * back into memory.
1da177e4
LT
403 */
404
405/*
406 * The zone field is never updated after free_area_init_core()
407 * sets it, so none of the operations on it need to be atomic.
1da177e4 408 */
348f8b6c 409
d41dee36
AW
410
411/*
412 * page->flags layout:
413 *
414 * There are three possibilities for how page->flags get
415 * laid out. The first is for the normal case, without
416 * sparsemem. The second is for sparsemem when there is
417 * plenty of space for node and section. The last is when
418 * we have run out of space and have to fall back to an
419 * alternate (slower) way of determining the node.
420 *
308c05e3
CL
421 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
422 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
423 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 424 */
308c05e3 425#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
426#define SECTIONS_WIDTH SECTIONS_SHIFT
427#else
428#define SECTIONS_WIDTH 0
429#endif
430
431#define ZONES_WIDTH ZONES_SHIFT
432
9223b419 433#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
434#define NODES_WIDTH NODES_SHIFT
435#else
308c05e3
CL
436#ifdef CONFIG_SPARSEMEM_VMEMMAP
437#error "Vmemmap: No space for nodes field in page flags"
438#endif
d41dee36
AW
439#define NODES_WIDTH 0
440#endif
441
442/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 443#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
444#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
445#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
446
447/*
448 * We are going to use the flags for the page to node mapping if its in
449 * there. This includes the case where there is no node, so it is implicit.
450 */
89689ae7
CL
451#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
452#define NODE_NOT_IN_PAGE_FLAGS
453#endif
d41dee36
AW
454
455#ifndef PFN_SECTION_SHIFT
456#define PFN_SECTION_SHIFT 0
457#endif
348f8b6c
DH
458
459/*
460 * Define the bit shifts to access each section. For non-existant
461 * sections we define the shift as 0; that plus a 0 mask ensures
462 * the compiler will optimise away reference to them.
463 */
d41dee36
AW
464#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
465#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
466#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 467
89689ae7
CL
468/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
469#ifdef NODE_NOT_IN_PAGEFLAGS
470#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
471#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
472 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 473#else
89689ae7 474#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
475#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
476 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
477#endif
478
bd8029b6 479#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 480
9223b419
CL
481#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
482#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
483#endif
484
d41dee36
AW
485#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
486#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
487#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 488#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 489
2f1b6248 490static inline enum zone_type page_zonenum(struct page *page)
1da177e4 491{
348f8b6c 492 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 493}
1da177e4 494
89689ae7
CL
495/*
496 * The identification function is only used by the buddy allocator for
497 * determining if two pages could be buddies. We are not really
498 * identifying a zone since we could be using a the section number
499 * id if we have not node id available in page flags.
500 * We guarantee only that it will return the same value for two
501 * combinable pages in a zone.
502 */
cb2b95e1
AW
503static inline int page_zone_id(struct page *page)
504{
89689ae7 505 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
506}
507
25ba77c1 508static inline int zone_to_nid(struct zone *zone)
89fa3024 509{
d5f541ed
CL
510#ifdef CONFIG_NUMA
511 return zone->node;
512#else
513 return 0;
514#endif
89fa3024
CL
515}
516
89689ae7 517#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 518extern int page_to_nid(struct page *page);
89689ae7 519#else
25ba77c1 520static inline int page_to_nid(struct page *page)
d41dee36 521{
89689ae7 522 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 523}
89689ae7
CL
524#endif
525
526static inline struct zone *page_zone(struct page *page)
527{
528 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
529}
530
308c05e3 531#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
532static inline unsigned long page_to_section(struct page *page)
533{
534 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
535}
308c05e3 536#endif
d41dee36 537
2f1b6248 538static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
539{
540 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
541 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
542}
2f1b6248 543
348f8b6c
DH
544static inline void set_page_node(struct page *page, unsigned long node)
545{
546 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
547 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 548}
89689ae7 549
d41dee36
AW
550static inline void set_page_section(struct page *page, unsigned long section)
551{
552 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
553 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
554}
1da177e4 555
2f1b6248 556static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 557 unsigned long node, unsigned long pfn)
1da177e4 558{
348f8b6c
DH
559 set_page_zone(page, zone);
560 set_page_node(page, node);
d41dee36 561 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
562}
563
7cd94146
EP
564/*
565 * If a hint addr is less than mmap_min_addr change hint to be as
566 * low as possible but still greater than mmap_min_addr
567 */
568static inline unsigned long round_hint_to_min(unsigned long hint)
569{
570#ifdef CONFIG_SECURITY
571 hint &= PAGE_MASK;
572 if (((void *)hint != NULL) &&
573 (hint < mmap_min_addr))
574 return PAGE_ALIGN(mmap_min_addr);
575#endif
576 return hint;
577}
578
f6ac2354
CL
579/*
580 * Some inline functions in vmstat.h depend on page_zone()
581 */
582#include <linux/vmstat.h>
583
652050ae 584static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
585{
586 return __va(page_to_pfn(page) << PAGE_SHIFT);
587}
588
589#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
590#define HASHED_PAGE_VIRTUAL
591#endif
592
593#if defined(WANT_PAGE_VIRTUAL)
594#define page_address(page) ((page)->virtual)
595#define set_page_address(page, address) \
596 do { \
597 (page)->virtual = (address); \
598 } while(0)
599#define page_address_init() do { } while(0)
600#endif
601
602#if defined(HASHED_PAGE_VIRTUAL)
603void *page_address(struct page *page);
604void set_page_address(struct page *page, void *virtual);
605void page_address_init(void);
606#endif
607
608#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
609#define page_address(page) lowmem_page_address(page)
610#define set_page_address(page, address) do { } while(0)
611#define page_address_init() do { } while(0)
612#endif
613
614/*
615 * On an anonymous page mapped into a user virtual memory area,
616 * page->mapping points to its anon_vma, not to a struct address_space;
617 * with the PAGE_MAPPING_ANON bit set to distinguish it.
618 *
619 * Please note that, confusingly, "page_mapping" refers to the inode
620 * address_space which maps the page from disk; whereas "page_mapped"
621 * refers to user virtual address space into which the page is mapped.
622 */
623#define PAGE_MAPPING_ANON 1
624
625extern struct address_space swapper_space;
626static inline struct address_space *page_mapping(struct page *page)
627{
628 struct address_space *mapping = page->mapping;
629
b5fab14e 630 VM_BUG_ON(PageSlab(page));
726b8012 631#ifdef CONFIG_SWAP
1da177e4
LT
632 if (unlikely(PageSwapCache(page)))
633 mapping = &swapper_space;
726b8012
AM
634 else
635#endif
636 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
1da177e4
LT
637 mapping = NULL;
638 return mapping;
639}
640
641static inline int PageAnon(struct page *page)
642{
643 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
644}
645
646/*
647 * Return the pagecache index of the passed page. Regular pagecache pages
648 * use ->index whereas swapcache pages use ->private
649 */
650static inline pgoff_t page_index(struct page *page)
651{
652 if (unlikely(PageSwapCache(page)))
4c21e2f2 653 return page_private(page);
1da177e4
LT
654 return page->index;
655}
656
657/*
658 * The atomic page->_mapcount, like _count, starts from -1:
659 * so that transitions both from it and to it can be tracked,
660 * using atomic_inc_and_test and atomic_add_negative(-1).
661 */
662static inline void reset_page_mapcount(struct page *page)
663{
664 atomic_set(&(page)->_mapcount, -1);
665}
666
667static inline int page_mapcount(struct page *page)
668{
669 return atomic_read(&(page)->_mapcount) + 1;
670}
671
672/*
673 * Return true if this page is mapped into pagetables.
674 */
675static inline int page_mapped(struct page *page)
676{
677 return atomic_read(&(page)->_mapcount) >= 0;
678}
679
1da177e4
LT
680/*
681 * Different kinds of faults, as returned by handle_mm_fault().
682 * Used to decide whether a process gets delivered SIGBUS or
683 * just gets major/minor fault counters bumped up.
684 */
d0217ac0 685
83c54070 686#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 687
83c54070
NP
688#define VM_FAULT_OOM 0x0001
689#define VM_FAULT_SIGBUS 0x0002
690#define VM_FAULT_MAJOR 0x0004
691#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
f33ea7f4 692
83c54070
NP
693#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
694#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1da177e4 695
83c54070 696#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
d0217ac0 697
1da177e4
LT
698#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
699
700extern void show_free_areas(void);
701
702#ifdef CONFIG_SHMEM
89e004ea 703extern int shmem_lock(struct file *file, int lock, struct user_struct *user);
1da177e4 704#else
03b00ebc 705static inline int shmem_lock(struct file *file, int lock,
89e004ea 706 struct user_struct *user)
03b00ebc
RK
707{
708 return 0;
709}
1da177e4
LT
710#endif
711struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
712
713int shmem_zero_setup(struct vm_area_struct *);
714
b0e15190
DH
715#ifndef CONFIG_MMU
716extern unsigned long shmem_get_unmapped_area(struct file *file,
717 unsigned long addr,
718 unsigned long len,
719 unsigned long pgoff,
720 unsigned long flags);
721#endif
722
e8edc6e0 723extern int can_do_mlock(void);
1da177e4
LT
724extern int user_shm_lock(size_t, struct user_struct *);
725extern void user_shm_unlock(size_t, struct user_struct *);
726
727/*
728 * Parameter block passed down to zap_pte_range in exceptional cases.
729 */
730struct zap_details {
731 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
732 struct address_space *check_mapping; /* Check page->mapping if set */
733 pgoff_t first_index; /* Lowest page->index to unmap */
734 pgoff_t last_index; /* Highest page->index to unmap */
735 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
736 unsigned long truncate_count; /* Compare vm_truncate_count */
737};
738
7e675137
NP
739struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
740 pte_t pte);
741
c627f9cc
JS
742int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
743 unsigned long size);
ee39b37b 744unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 745 unsigned long size, struct zap_details *);
508034a3 746unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
747 struct vm_area_struct *start_vma, unsigned long start_addr,
748 unsigned long end_addr, unsigned long *nr_accounted,
749 struct zap_details *);
e6473092
MM
750
751/**
752 * mm_walk - callbacks for walk_page_range
753 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
754 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
755 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
756 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
757 * @pte_hole: if set, called for each hole at all levels
758 *
759 * (see walk_page_range for more details)
760 */
761struct mm_walk {
2165009b
DH
762 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
763 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
764 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
765 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
766 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
767 struct mm_struct *mm;
768 void *private;
e6473092
MM
769};
770
2165009b
DH
771int walk_page_range(unsigned long addr, unsigned long end,
772 struct mm_walk *walk);
42b77728 773void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 774 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
775int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
776 struct vm_area_struct *vma);
1da177e4
LT
777void unmap_mapping_range(struct address_space *mapping,
778 loff_t const holebegin, loff_t const holelen, int even_cows);
28b2ee20
RR
779int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
780 void *buf, int len, int write);
1da177e4
LT
781
782static inline void unmap_shared_mapping_range(struct address_space *mapping,
783 loff_t const holebegin, loff_t const holelen)
784{
785 unmap_mapping_range(mapping, holebegin, holelen, 0);
786}
787
788extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 789extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
f33ea7f4 790
7ee1dd3f 791#ifdef CONFIG_MMU
83c54070 792extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
7ee1dd3f 793 unsigned long address, int write_access);
7ee1dd3f
DH
794#else
795static inline int handle_mm_fault(struct mm_struct *mm,
796 struct vm_area_struct *vma, unsigned long address,
797 int write_access)
798{
799 /* should never happen if there's no MMU */
800 BUG();
801 return VM_FAULT_SIGBUS;
802}
803#endif
f33ea7f4 804
1da177e4
LT
805extern int make_pages_present(unsigned long addr, unsigned long end);
806extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1da177e4
LT
807
808int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
809 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
810
cf9a2ae8
DH
811extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
812extern void do_invalidatepage(struct page *page, unsigned long offset);
813
1da177e4 814int __set_page_dirty_nobuffers(struct page *page);
76719325 815int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
816int redirty_page_for_writepage(struct writeback_control *wbc,
817 struct page *page);
b3c97528 818int set_page_dirty(struct page *page);
1da177e4
LT
819int set_page_dirty_lock(struct page *page);
820int clear_page_dirty_for_io(struct page *page);
821
b6a2fea3
OW
822extern unsigned long move_page_tables(struct vm_area_struct *vma,
823 unsigned long old_addr, struct vm_area_struct *new_vma,
824 unsigned long new_addr, unsigned long len);
1da177e4
LT
825extern unsigned long do_mremap(unsigned long addr,
826 unsigned long old_len, unsigned long new_len,
827 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
828extern int mprotect_fixup(struct vm_area_struct *vma,
829 struct vm_area_struct **pprev, unsigned long start,
830 unsigned long end, unsigned long newflags);
1da177e4 831
21cc199b
NP
832/*
833 * get_user_pages_fast provides equivalent functionality to get_user_pages,
834 * operating on current and current->mm (force=0 and doesn't return any vmas).
835 *
836 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions
837 * can be made about locking. get_user_pages_fast is to be implemented in a
838 * way that is advantageous (vs get_user_pages()) when the user memory area is
839 * already faulted in and present in ptes. However if the pages have to be
840 * faulted in, it may turn out to be slightly slower).
841 */
842int get_user_pages_fast(unsigned long start, int nr_pages, int write,
843 struct page **pages);
844
1da177e4 845/*
8e1f936b 846 * A callback you can register to apply pressure to ageable caches.
1da177e4 847 *
8e1f936b
RR
848 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
849 * look through the least-recently-used 'nr_to_scan' entries and
850 * attempt to free them up. It should return the number of objects
851 * which remain in the cache. If it returns -1, it means it cannot do
852 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 853 *
8e1f936b
RR
854 * The 'gfpmask' refers to the allocation we are currently trying to
855 * fulfil.
856 *
857 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
858 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 859 */
8e1f936b
RR
860struct shrinker {
861 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
862 int seeks; /* seeks to recreate an obj */
1da177e4 863
8e1f936b
RR
864 /* These are for internal use */
865 struct list_head list;
866 long nr; /* objs pending delete */
867};
868#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
869extern void register_shrinker(struct shrinker *);
870extern void unregister_shrinker(struct shrinker *);
1da177e4 871
4e950f6f 872int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 873
b3c97528 874extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
c9cfcddf 875
5f22df00
NP
876#ifdef __PAGETABLE_PUD_FOLDED
877static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
878 unsigned long address)
879{
880 return 0;
881}
882#else
1bb3630e 883int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
884#endif
885
886#ifdef __PAGETABLE_PMD_FOLDED
887static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
888 unsigned long address)
889{
890 return 0;
891}
892#else
1bb3630e 893int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
894#endif
895
1bb3630e
HD
896int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
897int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
898
1da177e4
LT
899/*
900 * The following ifdef needed to get the 4level-fixup.h header to work.
901 * Remove it when 4level-fixup.h has been removed.
902 */
1bb3630e 903#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
904static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
905{
1bb3630e
HD
906 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
907 NULL: pud_offset(pgd, address);
1da177e4
LT
908}
909
910static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
911{
1bb3630e
HD
912 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
913 NULL: pmd_offset(pud, address);
1da177e4 914}
1bb3630e
HD
915#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
916
f7d0b926 917#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
918/*
919 * We tuck a spinlock to guard each pagetable page into its struct page,
920 * at page->private, with BUILD_BUG_ON to make sure that this will not
921 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
922 * When freeing, reset page->mapping so free_pages_check won't complain.
923 */
349aef0b 924#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
925#define pte_lock_init(_page) do { \
926 spin_lock_init(__pte_lockptr(_page)); \
927} while (0)
928#define pte_lock_deinit(page) ((page)->mapping = NULL)
929#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 930#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
931/*
932 * We use mm->page_table_lock to guard all pagetable pages of the mm.
933 */
934#define pte_lock_init(page) do {} while (0)
935#define pte_lock_deinit(page) do {} while (0)
936#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 937#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 938
2f569afd
MS
939static inline void pgtable_page_ctor(struct page *page)
940{
941 pte_lock_init(page);
942 inc_zone_page_state(page, NR_PAGETABLE);
943}
944
945static inline void pgtable_page_dtor(struct page *page)
946{
947 pte_lock_deinit(page);
948 dec_zone_page_state(page, NR_PAGETABLE);
949}
950
c74df32c
HD
951#define pte_offset_map_lock(mm, pmd, address, ptlp) \
952({ \
4c21e2f2 953 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
954 pte_t *__pte = pte_offset_map(pmd, address); \
955 *(ptlp) = __ptl; \
956 spin_lock(__ptl); \
957 __pte; \
958})
959
960#define pte_unmap_unlock(pte, ptl) do { \
961 spin_unlock(ptl); \
962 pte_unmap(pte); \
963} while (0)
964
1bb3630e
HD
965#define pte_alloc_map(mm, pmd, address) \
966 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
967 NULL: pte_offset_map(pmd, address))
968
c74df32c
HD
969#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
970 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
971 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
972
1bb3630e
HD
973#define pte_alloc_kernel(pmd, address) \
974 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
975 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
976
977extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
978extern void free_area_init_node(int nid, unsigned long * zones_size,
979 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
980#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
981/*
982 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
983 * zones, allocate the backing mem_map and account for memory holes in a more
984 * architecture independent manner. This is a substitute for creating the
985 * zone_sizes[] and zholes_size[] arrays and passing them to
986 * free_area_init_node()
987 *
988 * An architecture is expected to register range of page frames backed by
989 * physical memory with add_active_range() before calling
990 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
991 * usage, an architecture is expected to do something like
992 *
993 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
994 * max_highmem_pfn};
995 * for_each_valid_physical_page_range()
996 * add_active_range(node_id, start_pfn, end_pfn)
997 * free_area_init_nodes(max_zone_pfns);
998 *
999 * If the architecture guarantees that there are no holes in the ranges
1000 * registered with add_active_range(), free_bootmem_active_regions()
1001 * will call free_bootmem_node() for each registered physical page range.
1002 * Similarly sparse_memory_present_with_active_regions() calls
1003 * memory_present() for each range when SPARSEMEM is enabled.
1004 *
1005 * See mm/page_alloc.c for more information on each function exposed by
1006 * CONFIG_ARCH_POPULATES_NODE_MAP
1007 */
1008extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1009extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1010 unsigned long end_pfn);
cc1050ba
YL
1011extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1012 unsigned long end_pfn);
fb01439c
MG
1013extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1014 unsigned long end_pfn);
c713216d
MG
1015extern void remove_all_active_ranges(void);
1016extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1017 unsigned long end_pfn);
1018extern void get_pfn_range_for_nid(unsigned int nid,
1019 unsigned long *start_pfn, unsigned long *end_pfn);
1020extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1021extern void free_bootmem_with_active_regions(int nid,
1022 unsigned long max_low_pfn);
d52d53b8 1023typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1024extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d
MG
1025extern void sparse_memory_present_with_active_regions(int nid);
1026#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1027extern int early_pfn_to_nid(unsigned long pfn);
1028#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1029#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 1030extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1031extern void memmap_init_zone(unsigned long, int, unsigned long,
1032 unsigned long, enum memmap_context);
3947be19 1033extern void setup_per_zone_pages_min(void);
1da177e4
LT
1034extern void mem_init(void);
1035extern void show_mem(void);
1036extern void si_meminfo(struct sysinfo * val);
1037extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1038extern int after_bootmem;
1da177e4 1039
e7c8d5c9
CL
1040#ifdef CONFIG_NUMA
1041extern void setup_per_cpu_pageset(void);
1042#else
1043static inline void setup_per_cpu_pageset(void) {}
1044#endif
1045
1da177e4
LT
1046/* prio_tree.c */
1047void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1048void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1049void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1050struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1051 struct prio_tree_iter *iter);
1052
1053#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1054 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1055 (vma = vma_prio_tree_next(vma, iter)); )
1056
1057static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1058 struct list_head *list)
1059{
1060 vma->shared.vm_set.parent = NULL;
1061 list_add_tail(&vma->shared.vm_set.list, list);
1062}
1063
1064/* mmap.c */
34b4e4aa 1065extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1da177e4
LT
1066extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1067 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1068extern struct vm_area_struct *vma_merge(struct mm_struct *,
1069 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1070 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1071 struct mempolicy *);
1072extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1073extern int split_vma(struct mm_struct *,
1074 struct vm_area_struct *, unsigned long addr, int new_below);
1075extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1076extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1077 struct rb_node **, struct rb_node *);
a8fb5618 1078extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1079extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1080 unsigned long addr, unsigned long len, pgoff_t pgoff);
1081extern void exit_mmap(struct mm_struct *);
925d1c40 1082
7906d00c
AA
1083extern int mm_take_all_locks(struct mm_struct *mm);
1084extern void mm_drop_all_locks(struct mm_struct *mm);
1085
925d1c40
MH
1086#ifdef CONFIG_PROC_FS
1087/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1088extern void added_exe_file_vma(struct mm_struct *mm);
1089extern void removed_exe_file_vma(struct mm_struct *mm);
1090#else
1091static inline void added_exe_file_vma(struct mm_struct *mm)
1092{}
1093
1094static inline void removed_exe_file_vma(struct mm_struct *mm)
1095{}
1096#endif /* CONFIG_PROC_FS */
1097
119f657c 1098extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1099extern int install_special_mapping(struct mm_struct *mm,
1100 unsigned long addr, unsigned long len,
1101 unsigned long flags, struct page **pages);
1da177e4
LT
1102
1103extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1104
1105extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1106 unsigned long len, unsigned long prot,
1107 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1108extern unsigned long mmap_region(struct file *file, unsigned long addr,
1109 unsigned long len, unsigned long flags,
1110 unsigned int vm_flags, unsigned long pgoff,
1111 int accountable);
1da177e4
LT
1112
1113static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1114 unsigned long len, unsigned long prot,
1115 unsigned long flag, unsigned long offset)
1116{
1117 unsigned long ret = -EINVAL;
1118 if ((offset + PAGE_ALIGN(len)) < offset)
1119 goto out;
1120 if (!(offset & ~PAGE_MASK))
1121 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1122out:
1123 return ret;
1124}
1125
1126extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1127
1128extern unsigned long do_brk(unsigned long, unsigned long);
1129
1130/* filemap.c */
1131extern unsigned long page_unuse(struct page *);
1132extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1133extern void truncate_inode_pages_range(struct address_space *,
1134 loff_t lstart, loff_t lend);
1da177e4
LT
1135
1136/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1137extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1138
1139/* mm/page-writeback.c */
1140int write_one_page(struct page *page, int wait);
1141
1142/* readahead.c */
1143#define VM_MAX_READAHEAD 128 /* kbytes */
1144#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4
LT
1145
1146int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1147 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1148int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1149 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1150
1151void page_cache_sync_readahead(struct address_space *mapping,
1152 struct file_ra_state *ra,
1153 struct file *filp,
1154 pgoff_t offset,
1155 unsigned long size);
1156
1157void page_cache_async_readahead(struct address_space *mapping,
1158 struct file_ra_state *ra,
1159 struct file *filp,
1160 struct page *pg,
1161 pgoff_t offset,
1162 unsigned long size);
1163
1da177e4
LT
1164unsigned long max_sane_readahead(unsigned long nr);
1165
1166/* Do stack extension */
46dea3d0 1167extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1168#ifdef CONFIG_IA64
46dea3d0 1169extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1170#endif
b6a2fea3
OW
1171extern int expand_stack_downwards(struct vm_area_struct *vma,
1172 unsigned long address);
1da177e4
LT
1173
1174/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1175extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1176extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1177 struct vm_area_struct **pprev);
1178
1179/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1180 NULL if none. Assume start_addr < end_addr. */
1181static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1182{
1183 struct vm_area_struct * vma = find_vma(mm,start_addr);
1184
1185 if (vma && end_addr <= vma->vm_start)
1186 vma = NULL;
1187 return vma;
1188}
1189
1190static inline unsigned long vma_pages(struct vm_area_struct *vma)
1191{
1192 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1193}
1194
804af2cf 1195pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd 1196struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1197int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1198 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1199int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1200int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1201 unsigned long pfn);
423bad60
NP
1202int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1203 unsigned long pfn);
deceb6cd 1204
6aab341e 1205struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1206 unsigned int foll_flags);
1207#define FOLL_WRITE 0x01 /* check pte is writable */
1208#define FOLL_TOUCH 0x02 /* mark page accessed */
1209#define FOLL_GET 0x04 /* do get_page on page */
1210#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4 1211
2f569afd 1212typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1213 void *data);
1214extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1215 unsigned long size, pte_fn_t fn, void *data);
1216
1da177e4 1217#ifdef CONFIG_PROC_FS
ab50b8ed 1218void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1219#else
ab50b8ed 1220static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1221 unsigned long flags, struct file *file, long pages)
1222{
1223}
1224#endif /* CONFIG_PROC_FS */
1225
12d6f21e
IM
1226#ifdef CONFIG_DEBUG_PAGEALLOC
1227extern int debug_pagealloc_enabled;
1228
1229extern void kernel_map_pages(struct page *page, int numpages, int enable);
1230
1231static inline void enable_debug_pagealloc(void)
1232{
1233 debug_pagealloc_enabled = 1;
1234}
8a235efa
RW
1235#ifdef CONFIG_HIBERNATION
1236extern bool kernel_page_present(struct page *page);
1237#endif /* CONFIG_HIBERNATION */
12d6f21e 1238#else
1da177e4 1239static inline void
9858db50 1240kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1241static inline void enable_debug_pagealloc(void)
1242{
1243}
8a235efa
RW
1244#ifdef CONFIG_HIBERNATION
1245static inline bool kernel_page_present(struct page *page) { return true; }
1246#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1247#endif
1248
1249extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1250#ifdef __HAVE_ARCH_GATE_AREA
1251int in_gate_area_no_task(unsigned long addr);
1252int in_gate_area(struct task_struct *task, unsigned long addr);
1253#else
1254int in_gate_area_no_task(unsigned long addr);
1255#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1256#endif /* __HAVE_ARCH_GATE_AREA */
1257
9d0243bc
AM
1258int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1259 void __user *, size_t *, loff_t *);
69e05944 1260unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc 1261 unsigned long lru_pages);
9d0243bc 1262
7a9166e3
LY
1263#ifndef CONFIG_MMU
1264#define randomize_va_space 0
1265#else
a62eaf15 1266extern int randomize_va_space;
7a9166e3 1267#endif
a62eaf15 1268
045e72ac 1269const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1270void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1271
98f3cfc1 1272struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1273pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1274pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1275pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1276pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41
CL
1277void *vmemmap_alloc_block(unsigned long size, int node);
1278void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1279int vmemmap_populate_basepages(struct page *start_page,
1280 unsigned long pages, int node);
1281int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1282void vmemmap_populate_print_last(void);
8f6aac41 1283
1da177e4
LT
1284#endif /* __KERNEL__ */
1285#endif /* _LINUX_MM_H */