mm: numa: cleanup flow of transhuge page migration
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
1da177e4
LT
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
27ac792c
AR
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
1da177e4
LT
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
c43692e8
CL
61extern struct kmem_cache *vm_area_cachep;
62
1da177e4 63#ifndef CONFIG_MMU
8feae131
DH
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
605d9288 71 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 72 */
cc2383ec
KK
73#define VM_NONE 0x00000000
74
1da177e4
LT
75#define VM_READ 0x00000001 /* currently active flags */
76#define VM_WRITE 0x00000002
77#define VM_EXEC 0x00000004
78#define VM_SHARED 0x00000008
79
7e2cff42 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82#define VM_MAYWRITE 0x00000020
83#define VM_MAYEXEC 0x00000040
84#define VM_MAYSHARE 0x00000080
85
86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
18693050 90#define VM_POPULATE 0x00001000
1da177e4
LT
91#define VM_LOCKED 0x00002000
92#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93
94 /* Used by sys_madvise() */
95#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97
98#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 100#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 101#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
102#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
103#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 104#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 105#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 106
b379d790 107#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
108#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
109#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 110#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 111
cc2383ec
KK
112#if defined(CONFIG_X86)
113# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
114#elif defined(CONFIG_PPC)
115# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
116#elif defined(CONFIG_PARISC)
117# define VM_GROWSUP VM_ARCH_1
118#elif defined(CONFIG_IA64)
119# define VM_GROWSUP VM_ARCH_1
120#elif !defined(CONFIG_MMU)
121# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
122#endif
123
124#ifndef VM_GROWSUP
125# define VM_GROWSUP VM_NONE
126#endif
127
a8bef8ff
MG
128/* Bits set in the VMA until the stack is in its final location */
129#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
130
1da177e4
LT
131#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
132#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
133#endif
134
135#ifdef CONFIG_STACK_GROWSUP
136#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
137#else
138#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
139#endif
140
141#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
142#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
143#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
144#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
145#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
146
b291f000 147/*
78f11a25
AA
148 * Special vmas that are non-mergable, non-mlock()able.
149 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 150 */
314e51b9 151#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 152
1da177e4
LT
153/*
154 * mapping from the currently active vm_flags protection bits (the
155 * low four bits) to a page protection mask..
156 */
157extern pgprot_t protection_map[16];
158
d0217ac0
NP
159#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
160#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 161#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 162#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 163#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 164#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 165#define FAULT_FLAG_TRIED 0x40 /* second try */
d0217ac0 166
54cb8821 167/*
d0217ac0 168 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
169 * ->fault function. The vma's ->fault is responsible for returning a bitmask
170 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 171 *
d0217ac0 172 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 173 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 174 */
d0217ac0
NP
175struct vm_fault {
176 unsigned int flags; /* FAULT_FLAG_xxx flags */
177 pgoff_t pgoff; /* Logical page offset based on vma */
178 void __user *virtual_address; /* Faulting virtual address */
179
180 struct page *page; /* ->fault handlers should return a
83c54070 181 * page here, unless VM_FAULT_NOPAGE
d0217ac0 182 * is set (which is also implied by
83c54070 183 * VM_FAULT_ERROR).
d0217ac0 184 */
54cb8821 185};
1da177e4
LT
186
187/*
188 * These are the virtual MM functions - opening of an area, closing and
189 * unmapping it (needed to keep files on disk up-to-date etc), pointer
190 * to the functions called when a no-page or a wp-page exception occurs.
191 */
192struct vm_operations_struct {
193 void (*open)(struct vm_area_struct * area);
194 void (*close)(struct vm_area_struct * area);
d0217ac0 195 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
196
197 /* notification that a previously read-only page is about to become
198 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 199 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
200
201 /* called by access_process_vm when get_user_pages() fails, typically
202 * for use by special VMAs that can switch between memory and hardware
203 */
204 int (*access)(struct vm_area_struct *vma, unsigned long addr,
205 void *buf, int len, int write);
1da177e4 206#ifdef CONFIG_NUMA
a6020ed7
LS
207 /*
208 * set_policy() op must add a reference to any non-NULL @new mempolicy
209 * to hold the policy upon return. Caller should pass NULL @new to
210 * remove a policy and fall back to surrounding context--i.e. do not
211 * install a MPOL_DEFAULT policy, nor the task or system default
212 * mempolicy.
213 */
1da177e4 214 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
215
216 /*
217 * get_policy() op must add reference [mpol_get()] to any policy at
218 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
219 * in mm/mempolicy.c will do this automatically.
220 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
221 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
222 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
223 * must return NULL--i.e., do not "fallback" to task or system default
224 * policy.
225 */
1da177e4
LT
226 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
227 unsigned long addr);
7b2259b3
CL
228 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
229 const nodemask_t *to, unsigned long flags);
1da177e4 230#endif
0b173bc4
KK
231 /* called by sys_remap_file_pages() to populate non-linear mapping */
232 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
233 unsigned long size, pgoff_t pgoff);
1da177e4
LT
234};
235
236struct mmu_gather;
237struct inode;
238
349aef0b
AM
239#define page_private(page) ((page)->private)
240#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 241
b12c4ad1
MK
242/* It's valid only if the page is free path or free_list */
243static inline void set_freepage_migratetype(struct page *page, int migratetype)
244{
95e34412 245 page->index = migratetype;
b12c4ad1
MK
246}
247
248/* It's valid only if the page is free path or free_list */
249static inline int get_freepage_migratetype(struct page *page)
250{
95e34412 251 return page->index;
b12c4ad1
MK
252}
253
1da177e4
LT
254/*
255 * FIXME: take this include out, include page-flags.h in
256 * files which need it (119 of them)
257 */
258#include <linux/page-flags.h>
71e3aac0 259#include <linux/huge_mm.h>
1da177e4
LT
260
261/*
262 * Methods to modify the page usage count.
263 *
264 * What counts for a page usage:
265 * - cache mapping (page->mapping)
266 * - private data (page->private)
267 * - page mapped in a task's page tables, each mapping
268 * is counted separately
269 *
270 * Also, many kernel routines increase the page count before a critical
271 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
272 */
273
274/*
da6052f7 275 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 276 */
7c8ee9a8
NP
277static inline int put_page_testzero(struct page *page)
278{
725d704e 279 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 280 return atomic_dec_and_test(&page->_count);
7c8ee9a8 281}
1da177e4
LT
282
283/*
7c8ee9a8
NP
284 * Try to grab a ref unless the page has a refcount of zero, return false if
285 * that is the case.
1da177e4 286 */
7c8ee9a8
NP
287static inline int get_page_unless_zero(struct page *page)
288{
8dc04efb 289 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 290}
1da177e4 291
53df8fdc
WF
292extern int page_is_ram(unsigned long pfn);
293
48667e7a 294/* Support for virtually mapped pages */
b3bdda02
CL
295struct page *vmalloc_to_page(const void *addr);
296unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 297
0738c4bb
PM
298/*
299 * Determine if an address is within the vmalloc range
300 *
301 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
302 * is no special casing required.
303 */
9e2779fa
CL
304static inline int is_vmalloc_addr(const void *x)
305{
0738c4bb 306#ifdef CONFIG_MMU
9e2779fa
CL
307 unsigned long addr = (unsigned long)x;
308
309 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
310#else
311 return 0;
8ca3ed87 312#endif
0738c4bb 313}
81ac3ad9
KH
314#ifdef CONFIG_MMU
315extern int is_vmalloc_or_module_addr(const void *x);
316#else
934831d0 317static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
318{
319 return 0;
320}
321#endif
9e2779fa 322
e9da73d6
AA
323static inline void compound_lock(struct page *page)
324{
325#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 326 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
327 bit_spin_lock(PG_compound_lock, &page->flags);
328#endif
329}
330
331static inline void compound_unlock(struct page *page)
332{
333#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 334 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
335 bit_spin_unlock(PG_compound_lock, &page->flags);
336#endif
337}
338
339static inline unsigned long compound_lock_irqsave(struct page *page)
340{
341 unsigned long uninitialized_var(flags);
342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
343 local_irq_save(flags);
344 compound_lock(page);
345#endif
346 return flags;
347}
348
349static inline void compound_unlock_irqrestore(struct page *page,
350 unsigned long flags)
351{
352#ifdef CONFIG_TRANSPARENT_HUGEPAGE
353 compound_unlock(page);
354 local_irq_restore(flags);
355#endif
356}
357
d85f3385
CL
358static inline struct page *compound_head(struct page *page)
359{
6d777953 360 if (unlikely(PageTail(page)))
d85f3385
CL
361 return page->first_page;
362 return page;
363}
364
70b50f94
AA
365/*
366 * The atomic page->_mapcount, starts from -1: so that transitions
367 * both from it and to it can be tracked, using atomic_inc_and_test
368 * and atomic_add_negative(-1).
369 */
370static inline void reset_page_mapcount(struct page *page)
371{
372 atomic_set(&(page)->_mapcount, -1);
373}
374
375static inline int page_mapcount(struct page *page)
376{
377 return atomic_read(&(page)->_mapcount) + 1;
378}
379
4c21e2f2 380static inline int page_count(struct page *page)
1da177e4 381{
d85f3385 382 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
383}
384
b35a35b5
AA
385static inline void get_huge_page_tail(struct page *page)
386{
387 /*
388 * __split_huge_page_refcount() cannot run
389 * from under us.
390 */
391 VM_BUG_ON(page_mapcount(page) < 0);
392 VM_BUG_ON(atomic_read(&page->_count) != 0);
393 atomic_inc(&page->_mapcount);
394}
395
70b50f94
AA
396extern bool __get_page_tail(struct page *page);
397
1da177e4
LT
398static inline void get_page(struct page *page)
399{
70b50f94
AA
400 if (unlikely(PageTail(page)))
401 if (likely(__get_page_tail(page)))
402 return;
91807063
AA
403 /*
404 * Getting a normal page or the head of a compound page
70b50f94 405 * requires to already have an elevated page->_count.
91807063 406 */
70b50f94 407 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
408 atomic_inc(&page->_count);
409}
410
b49af68f
CL
411static inline struct page *virt_to_head_page(const void *x)
412{
413 struct page *page = virt_to_page(x);
414 return compound_head(page);
415}
416
7835e98b
NP
417/*
418 * Setup the page count before being freed into the page allocator for
419 * the first time (boot or memory hotplug)
420 */
421static inline void init_page_count(struct page *page)
422{
423 atomic_set(&page->_count, 1);
424}
425
5f24ce5f
AA
426/*
427 * PageBuddy() indicate that the page is free and in the buddy system
428 * (see mm/page_alloc.c).
ef2b4b95
AA
429 *
430 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
431 * -2 so that an underflow of the page_mapcount() won't be mistaken
432 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
433 * efficiently by most CPU architectures.
5f24ce5f 434 */
ef2b4b95
AA
435#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
436
5f24ce5f
AA
437static inline int PageBuddy(struct page *page)
438{
ef2b4b95 439 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
440}
441
442static inline void __SetPageBuddy(struct page *page)
443{
444 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 445 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
446}
447
448static inline void __ClearPageBuddy(struct page *page)
449{
450 VM_BUG_ON(!PageBuddy(page));
451 atomic_set(&page->_mapcount, -1);
452}
453
1da177e4 454void put_page(struct page *page);
1d7ea732 455void put_pages_list(struct list_head *pages);
1da177e4 456
8dfcc9ba 457void split_page(struct page *page, unsigned int order);
748446bb 458int split_free_page(struct page *page);
8dfcc9ba 459
33f2ef89
AW
460/*
461 * Compound pages have a destructor function. Provide a
462 * prototype for that function and accessor functions.
463 * These are _only_ valid on the head of a PG_compound page.
464 */
465typedef void compound_page_dtor(struct page *);
466
467static inline void set_compound_page_dtor(struct page *page,
468 compound_page_dtor *dtor)
469{
470 page[1].lru.next = (void *)dtor;
471}
472
473static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
474{
475 return (compound_page_dtor *)page[1].lru.next;
476}
477
d85f3385
CL
478static inline int compound_order(struct page *page)
479{
6d777953 480 if (!PageHead(page))
d85f3385
CL
481 return 0;
482 return (unsigned long)page[1].lru.prev;
483}
484
37c2ac78
AA
485static inline int compound_trans_order(struct page *page)
486{
487 int order;
488 unsigned long flags;
489
490 if (!PageHead(page))
491 return 0;
492
493 flags = compound_lock_irqsave(page);
494 order = compound_order(page);
495 compound_unlock_irqrestore(page, flags);
496 return order;
497}
498
d85f3385
CL
499static inline void set_compound_order(struct page *page, unsigned long order)
500{
501 page[1].lru.prev = (void *)order;
502}
503
3dece370 504#ifdef CONFIG_MMU
14fd403f
AA
505/*
506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
507 * servicing faults for write access. In the normal case, do always want
508 * pte_mkwrite. But get_user_pages can cause write faults for mappings
509 * that do not have writing enabled, when used by access_process_vm.
510 */
511static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512{
513 if (likely(vma->vm_flags & VM_WRITE))
514 pte = pte_mkwrite(pte);
515 return pte;
516}
3dece370 517#endif
14fd403f 518
1da177e4
LT
519/*
520 * Multiple processes may "see" the same page. E.g. for untouched
521 * mappings of /dev/null, all processes see the same page full of
522 * zeroes, and text pages of executables and shared libraries have
523 * only one copy in memory, at most, normally.
524 *
525 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
526 * page_count() == 0 means the page is free. page->lru is then used for
527 * freelist management in the buddy allocator.
da6052f7 528 * page_count() > 0 means the page has been allocated.
1da177e4 529 *
da6052f7
NP
530 * Pages are allocated by the slab allocator in order to provide memory
531 * to kmalloc and kmem_cache_alloc. In this case, the management of the
532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533 * unless a particular usage is carefully commented. (the responsibility of
534 * freeing the kmalloc memory is the caller's, of course).
1da177e4 535 *
da6052f7
NP
536 * A page may be used by anyone else who does a __get_free_page().
537 * In this case, page_count still tracks the references, and should only
538 * be used through the normal accessor functions. The top bits of page->flags
539 * and page->virtual store page management information, but all other fields
540 * are unused and could be used privately, carefully. The management of this
541 * page is the responsibility of the one who allocated it, and those who have
542 * subsequently been given references to it.
543 *
544 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
545 * managed by the Linux memory manager: I/O, buffers, swapping etc.
546 * The following discussion applies only to them.
547 *
da6052f7
NP
548 * A pagecache page contains an opaque `private' member, which belongs to the
549 * page's address_space. Usually, this is the address of a circular list of
550 * the page's disk buffers. PG_private must be set to tell the VM to call
551 * into the filesystem to release these pages.
1da177e4 552 *
da6052f7
NP
553 * A page may belong to an inode's memory mapping. In this case, page->mapping
554 * is the pointer to the inode, and page->index is the file offset of the page,
555 * in units of PAGE_CACHE_SIZE.
1da177e4 556 *
da6052f7
NP
557 * If pagecache pages are not associated with an inode, they are said to be
558 * anonymous pages. These may become associated with the swapcache, and in that
559 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 560 *
da6052f7
NP
561 * In either case (swapcache or inode backed), the pagecache itself holds one
562 * reference to the page. Setting PG_private should also increment the
563 * refcount. The each user mapping also has a reference to the page.
1da177e4 564 *
da6052f7
NP
565 * The pagecache pages are stored in a per-mapping radix tree, which is
566 * rooted at mapping->page_tree, and indexed by offset.
567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 569 *
da6052f7 570 * All pagecache pages may be subject to I/O:
1da177e4
LT
571 * - inode pages may need to be read from disk,
572 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
573 * to be written back to the inode on disk,
574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575 * modified may need to be swapped out to swap space and (later) to be read
576 * back into memory.
1da177e4
LT
577 */
578
579/*
580 * The zone field is never updated after free_area_init_core()
581 * sets it, so none of the operations on it need to be atomic.
1da177e4 582 */
348f8b6c 583
75980e97 584/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
07808b74 585#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
586#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
587#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
75980e97 588#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
d41dee36 589
348f8b6c 590/*
25985edc 591 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
592 * sections we define the shift as 0; that plus a 0 mask ensures
593 * the compiler will optimise away reference to them.
594 */
d41dee36
AW
595#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
596#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
597#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
75980e97 598#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
348f8b6c 599
bce54bbf
WD
600/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
601#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 602#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
603#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
604 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 605#else
89689ae7 606#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
607#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
608 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
609#endif
610
bd8029b6 611#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 612
9223b419
CL
613#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
614#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
615#endif
616
d41dee36
AW
617#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
618#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
619#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
75980e97 620#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
89689ae7 621#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 622
33dd4e0e 623static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 624{
348f8b6c 625 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 626}
1da177e4 627
89689ae7
CL
628/*
629 * The identification function is only used by the buddy allocator for
630 * determining if two pages could be buddies. We are not really
631 * identifying a zone since we could be using a the section number
632 * id if we have not node id available in page flags.
633 * We guarantee only that it will return the same value for two
634 * combinable pages in a zone.
635 */
cb2b95e1
AW
636static inline int page_zone_id(struct page *page)
637{
89689ae7 638 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
639}
640
25ba77c1 641static inline int zone_to_nid(struct zone *zone)
89fa3024 642{
d5f541ed
CL
643#ifdef CONFIG_NUMA
644 return zone->node;
645#else
646 return 0;
647#endif
89fa3024
CL
648}
649
89689ae7 650#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 651extern int page_to_nid(const struct page *page);
89689ae7 652#else
33dd4e0e 653static inline int page_to_nid(const struct page *page)
d41dee36 654{
89689ae7 655 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 656}
89689ae7
CL
657#endif
658
57e0a030 659#ifdef CONFIG_NUMA_BALANCING
75980e97 660#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
57e0a030
MG
661static inline int page_xchg_last_nid(struct page *page, int nid)
662{
663 return xchg(&page->_last_nid, nid);
664}
665
666static inline int page_last_nid(struct page *page)
667{
668 return page->_last_nid;
669}
670static inline void reset_page_last_nid(struct page *page)
671{
672 page->_last_nid = -1;
673}
674#else
75980e97
PZ
675static inline int page_last_nid(struct page *page)
676{
677 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
678}
679
680static inline int page_xchg_last_nid(struct page *page, int nid)
681{
682 unsigned long old_flags, flags;
683 int last_nid;
684
685 do {
686 old_flags = flags = page->flags;
687 last_nid = page_last_nid(page);
688
689 flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
690 flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
691 } while (unlikely(cmpxchg(&page->flags, old_flags, flags) != old_flags));
692
693 return last_nid;
694}
695
696static inline void reset_page_last_nid(struct page *page)
697{
698 page_xchg_last_nid(page, (1 << LAST_NID_SHIFT) - 1);
699}
700#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
701#else
57e0a030
MG
702static inline int page_xchg_last_nid(struct page *page, int nid)
703{
704 return page_to_nid(page);
705}
706
707static inline int page_last_nid(struct page *page)
708{
709 return page_to_nid(page);
710}
711
712static inline void reset_page_last_nid(struct page *page)
713{
714}
715#endif
716
33dd4e0e 717static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
718{
719 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
720}
721
308c05e3 722#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
723static inline void set_page_section(struct page *page, unsigned long section)
724{
725 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
726 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
727}
728
aa462abe 729static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
730{
731 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
732}
308c05e3 733#endif
d41dee36 734
2f1b6248 735static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
736{
737 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
738 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
739}
2f1b6248 740
348f8b6c
DH
741static inline void set_page_node(struct page *page, unsigned long node)
742{
743 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
744 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 745}
89689ae7 746
2f1b6248 747static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 748 unsigned long node, unsigned long pfn)
1da177e4 749{
348f8b6c
DH
750 set_page_zone(page, zone);
751 set_page_node(page, node);
bf4e8902 752#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 753 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 754#endif
1da177e4
LT
755}
756
f6ac2354
CL
757/*
758 * Some inline functions in vmstat.h depend on page_zone()
759 */
760#include <linux/vmstat.h>
761
33dd4e0e 762static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 763{
aa462abe 764 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
765}
766
767#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
768#define HASHED_PAGE_VIRTUAL
769#endif
770
771#if defined(WANT_PAGE_VIRTUAL)
772#define page_address(page) ((page)->virtual)
773#define set_page_address(page, address) \
774 do { \
775 (page)->virtual = (address); \
776 } while(0)
777#define page_address_init() do { } while(0)
778#endif
779
780#if defined(HASHED_PAGE_VIRTUAL)
f9918794 781void *page_address(const struct page *page);
1da177e4
LT
782void set_page_address(struct page *page, void *virtual);
783void page_address_init(void);
784#endif
785
786#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
787#define page_address(page) lowmem_page_address(page)
788#define set_page_address(page, address) do { } while(0)
789#define page_address_init() do { } while(0)
790#endif
791
792/*
793 * On an anonymous page mapped into a user virtual memory area,
794 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
795 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
796 *
797 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
798 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
799 * and then page->mapping points, not to an anon_vma, but to a private
800 * structure which KSM associates with that merged page. See ksm.h.
801 *
802 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
803 *
804 * Please note that, confusingly, "page_mapping" refers to the inode
805 * address_space which maps the page from disk; whereas "page_mapped"
806 * refers to user virtual address space into which the page is mapped.
807 */
808#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
809#define PAGE_MAPPING_KSM 2
810#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
811
812extern struct address_space swapper_space;
813static inline struct address_space *page_mapping(struct page *page)
814{
815 struct address_space *mapping = page->mapping;
816
b5fab14e 817 VM_BUG_ON(PageSlab(page));
1da177e4
LT
818 if (unlikely(PageSwapCache(page)))
819 mapping = &swapper_space;
e20e8779 820 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
821 mapping = NULL;
822 return mapping;
823}
824
3ca7b3c5
HD
825/* Neutral page->mapping pointer to address_space or anon_vma or other */
826static inline void *page_rmapping(struct page *page)
827{
828 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
829}
830
f981c595
MG
831extern struct address_space *__page_file_mapping(struct page *);
832
833static inline
834struct address_space *page_file_mapping(struct page *page)
835{
836 if (unlikely(PageSwapCache(page)))
837 return __page_file_mapping(page);
838
839 return page->mapping;
840}
841
1da177e4
LT
842static inline int PageAnon(struct page *page)
843{
844 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
845}
846
847/*
848 * Return the pagecache index of the passed page. Regular pagecache pages
849 * use ->index whereas swapcache pages use ->private
850 */
851static inline pgoff_t page_index(struct page *page)
852{
853 if (unlikely(PageSwapCache(page)))
4c21e2f2 854 return page_private(page);
1da177e4
LT
855 return page->index;
856}
857
f981c595
MG
858extern pgoff_t __page_file_index(struct page *page);
859
860/*
861 * Return the file index of the page. Regular pagecache pages use ->index
862 * whereas swapcache pages use swp_offset(->private)
863 */
864static inline pgoff_t page_file_index(struct page *page)
865{
866 if (unlikely(PageSwapCache(page)))
867 return __page_file_index(page);
868
869 return page->index;
870}
871
1da177e4
LT
872/*
873 * Return true if this page is mapped into pagetables.
874 */
875static inline int page_mapped(struct page *page)
876{
877 return atomic_read(&(page)->_mapcount) >= 0;
878}
879
1da177e4
LT
880/*
881 * Different kinds of faults, as returned by handle_mm_fault().
882 * Used to decide whether a process gets delivered SIGBUS or
883 * just gets major/minor fault counters bumped up.
884 */
d0217ac0 885
83c54070 886#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 887
83c54070
NP
888#define VM_FAULT_OOM 0x0001
889#define VM_FAULT_SIGBUS 0x0002
890#define VM_FAULT_MAJOR 0x0004
891#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
892#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
893#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 894
83c54070
NP
895#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
896#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 897#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 898
aa50d3a7
AK
899#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
900
901#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
902 VM_FAULT_HWPOISON_LARGE)
903
904/* Encode hstate index for a hwpoisoned large page */
905#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
906#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 907
1c0fe6e3
NP
908/*
909 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
910 */
911extern void pagefault_out_of_memory(void);
912
1da177e4
LT
913#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
914
ddd588b5 915/*
7bf02ea2 916 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
917 * various contexts.
918 */
919#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
920
7bf02ea2
DR
921extern void show_free_areas(unsigned int flags);
922extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 923
1da177e4
LT
924int shmem_zero_setup(struct vm_area_struct *);
925
e8edc6e0 926extern int can_do_mlock(void);
1da177e4
LT
927extern int user_shm_lock(size_t, struct user_struct *);
928extern void user_shm_unlock(size_t, struct user_struct *);
929
930/*
931 * Parameter block passed down to zap_pte_range in exceptional cases.
932 */
933struct zap_details {
934 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
935 struct address_space *check_mapping; /* Check page->mapping if set */
936 pgoff_t first_index; /* Lowest page->index to unmap */
937 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
938};
939
7e675137
NP
940struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
941 pte_t pte);
942
c627f9cc
JS
943int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
944 unsigned long size);
14f5ff5d 945void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 946 unsigned long size, struct zap_details *);
4f74d2c8
LT
947void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
948 unsigned long start, unsigned long end);
e6473092
MM
949
950/**
951 * mm_walk - callbacks for walk_page_range
952 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
953 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
954 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
955 * this handler is required to be able to handle
956 * pmd_trans_huge() pmds. They may simply choose to
957 * split_huge_page() instead of handling it explicitly.
e6473092
MM
958 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
959 * @pte_hole: if set, called for each hole at all levels
5dc37642 960 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
961 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
962 * is used.
e6473092
MM
963 *
964 * (see walk_page_range for more details)
965 */
966struct mm_walk {
2165009b
DH
967 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
968 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
969 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
970 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
971 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
972 int (*hugetlb_entry)(pte_t *, unsigned long,
973 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
974 struct mm_struct *mm;
975 void *private;
e6473092
MM
976};
977
2165009b
DH
978int walk_page_range(unsigned long addr, unsigned long end,
979 struct mm_walk *walk);
42b77728 980void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 981 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
982int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
983 struct vm_area_struct *vma);
1da177e4
LT
984void unmap_mapping_range(struct address_space *mapping,
985 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
986int follow_pfn(struct vm_area_struct *vma, unsigned long address,
987 unsigned long *pfn);
d87fe660 988int follow_phys(struct vm_area_struct *vma, unsigned long address,
989 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
990int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
991 void *buf, int len, int write);
1da177e4
LT
992
993static inline void unmap_shared_mapping_range(struct address_space *mapping,
994 loff_t const holebegin, loff_t const holelen)
995{
996 unmap_mapping_range(mapping, holebegin, holelen, 0);
997}
998
25d9e2d1 999extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 1000extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1001void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1002int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1003int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1004int invalidate_inode_page(struct page *page);
1005
7ee1dd3f 1006#ifdef CONFIG_MMU
83c54070 1007extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1008 unsigned long address, unsigned int flags);
5c723ba5
PZ
1009extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1010 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1011#else
1012static inline int handle_mm_fault(struct mm_struct *mm,
1013 struct vm_area_struct *vma, unsigned long address,
d06063cc 1014 unsigned int flags)
7ee1dd3f
DH
1015{
1016 /* should never happen if there's no MMU */
1017 BUG();
1018 return VM_FAULT_SIGBUS;
1019}
5c723ba5
PZ
1020static inline int fixup_user_fault(struct task_struct *tsk,
1021 struct mm_struct *mm, unsigned long address,
1022 unsigned int fault_flags)
1023{
1024 /* should never happen if there's no MMU */
1025 BUG();
1026 return -EFAULT;
1027}
7ee1dd3f 1028#endif
f33ea7f4 1029
1da177e4 1030extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1031extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1032 void *buf, int len, int write);
1da177e4 1033
0014bd99
HY
1034int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1035 unsigned long start, int len, unsigned int foll_flags,
1036 struct page **pages, struct vm_area_struct **vmas,
1037 int *nonblocking);
d2bf6be8 1038int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1039 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
1040 struct page **pages, struct vm_area_struct **vmas);
1041int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1042 struct page **pages);
18022c5d
MG
1043struct kvec;
1044int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1045 struct page **pages);
1046int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1047struct page *get_dump_page(unsigned long addr);
1da177e4 1048
cf9a2ae8
DH
1049extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1050extern void do_invalidatepage(struct page *page, unsigned long offset);
1051
1da177e4 1052int __set_page_dirty_nobuffers(struct page *page);
76719325 1053int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1054int redirty_page_for_writepage(struct writeback_control *wbc,
1055 struct page *page);
e3a7cca1 1056void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1057void account_page_writeback(struct page *page);
b3c97528 1058int set_page_dirty(struct page *page);
1da177e4
LT
1059int set_page_dirty_lock(struct page *page);
1060int clear_page_dirty_for_io(struct page *page);
1061
39aa3cb3 1062/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1063static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1064{
1065 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1066}
1067
a09a79f6
MP
1068static inline int stack_guard_page_start(struct vm_area_struct *vma,
1069 unsigned long addr)
1070{
1071 return (vma->vm_flags & VM_GROWSDOWN) &&
1072 (vma->vm_start == addr) &&
1073 !vma_growsdown(vma->vm_prev, addr);
1074}
1075
1076/* Is the vma a continuation of the stack vma below it? */
1077static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1078{
1079 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1080}
1081
1082static inline int stack_guard_page_end(struct vm_area_struct *vma,
1083 unsigned long addr)
1084{
1085 return (vma->vm_flags & VM_GROWSUP) &&
1086 (vma->vm_end == addr) &&
1087 !vma_growsup(vma->vm_next, addr);
1088}
1089
b7643757
SP
1090extern pid_t
1091vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1092
b6a2fea3
OW
1093extern unsigned long move_page_tables(struct vm_area_struct *vma,
1094 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1095 unsigned long new_addr, unsigned long len,
1096 bool need_rmap_locks);
1da177e4
LT
1097extern unsigned long do_mremap(unsigned long addr,
1098 unsigned long old_len, unsigned long new_len,
1099 unsigned long flags, unsigned long new_addr);
7da4d641
PZ
1100extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1101 unsigned long end, pgprot_t newprot,
4b10e7d5 1102 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1103extern int mprotect_fixup(struct vm_area_struct *vma,
1104 struct vm_area_struct **pprev, unsigned long start,
1105 unsigned long end, unsigned long newflags);
1da177e4 1106
465a454f
PZ
1107/*
1108 * doesn't attempt to fault and will return short.
1109 */
1110int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1111 struct page **pages);
d559db08
KH
1112/*
1113 * per-process(per-mm_struct) statistics.
1114 */
d559db08
KH
1115static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1116{
69c97823
KK
1117 long val = atomic_long_read(&mm->rss_stat.count[member]);
1118
1119#ifdef SPLIT_RSS_COUNTING
1120 /*
1121 * counter is updated in asynchronous manner and may go to minus.
1122 * But it's never be expected number for users.
1123 */
1124 if (val < 0)
1125 val = 0;
172703b0 1126#endif
69c97823
KK
1127 return (unsigned long)val;
1128}
d559db08
KH
1129
1130static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1131{
172703b0 1132 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1133}
1134
1135static inline void inc_mm_counter(struct mm_struct *mm, int member)
1136{
172703b0 1137 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1138}
1139
1140static inline void dec_mm_counter(struct mm_struct *mm, int member)
1141{
172703b0 1142 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1143}
1144
d559db08
KH
1145static inline unsigned long get_mm_rss(struct mm_struct *mm)
1146{
1147 return get_mm_counter(mm, MM_FILEPAGES) +
1148 get_mm_counter(mm, MM_ANONPAGES);
1149}
1150
1151static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1152{
1153 return max(mm->hiwater_rss, get_mm_rss(mm));
1154}
1155
1156static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1157{
1158 return max(mm->hiwater_vm, mm->total_vm);
1159}
1160
1161static inline void update_hiwater_rss(struct mm_struct *mm)
1162{
1163 unsigned long _rss = get_mm_rss(mm);
1164
1165 if ((mm)->hiwater_rss < _rss)
1166 (mm)->hiwater_rss = _rss;
1167}
1168
1169static inline void update_hiwater_vm(struct mm_struct *mm)
1170{
1171 if (mm->hiwater_vm < mm->total_vm)
1172 mm->hiwater_vm = mm->total_vm;
1173}
1174
1175static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1176 struct mm_struct *mm)
1177{
1178 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1179
1180 if (*maxrss < hiwater_rss)
1181 *maxrss = hiwater_rss;
1182}
1183
53bddb4e 1184#if defined(SPLIT_RSS_COUNTING)
05af2e10 1185void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1186#else
05af2e10 1187static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1188{
1189}
1190#endif
465a454f 1191
4e950f6f 1192int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1193
25ca1d6c
NK
1194extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1195 spinlock_t **ptl);
1196static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1197 spinlock_t **ptl)
1198{
1199 pte_t *ptep;
1200 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1201 return ptep;
1202}
c9cfcddf 1203
5f22df00
NP
1204#ifdef __PAGETABLE_PUD_FOLDED
1205static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1206 unsigned long address)
1207{
1208 return 0;
1209}
1210#else
1bb3630e 1211int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1212#endif
1213
1214#ifdef __PAGETABLE_PMD_FOLDED
1215static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1216 unsigned long address)
1217{
1218 return 0;
1219}
1220#else
1bb3630e 1221int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1222#endif
1223
8ac1f832
AA
1224int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1225 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1226int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1227
1da177e4
LT
1228/*
1229 * The following ifdef needed to get the 4level-fixup.h header to work.
1230 * Remove it when 4level-fixup.h has been removed.
1231 */
1bb3630e 1232#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1233static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1234{
1bb3630e
HD
1235 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1236 NULL: pud_offset(pgd, address);
1da177e4
LT
1237}
1238
1239static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1240{
1bb3630e
HD
1241 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1242 NULL: pmd_offset(pud, address);
1da177e4 1243}
1bb3630e
HD
1244#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1245
f7d0b926 1246#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1247/*
1248 * We tuck a spinlock to guard each pagetable page into its struct page,
1249 * at page->private, with BUILD_BUG_ON to make sure that this will not
1250 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1251 * When freeing, reset page->mapping so free_pages_check won't complain.
1252 */
349aef0b 1253#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1254#define pte_lock_init(_page) do { \
1255 spin_lock_init(__pte_lockptr(_page)); \
1256} while (0)
1257#define pte_lock_deinit(page) ((page)->mapping = NULL)
1258#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1259#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1260/*
1261 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1262 */
1263#define pte_lock_init(page) do {} while (0)
1264#define pte_lock_deinit(page) do {} while (0)
1265#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1266#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1267
2f569afd
MS
1268static inline void pgtable_page_ctor(struct page *page)
1269{
1270 pte_lock_init(page);
1271 inc_zone_page_state(page, NR_PAGETABLE);
1272}
1273
1274static inline void pgtable_page_dtor(struct page *page)
1275{
1276 pte_lock_deinit(page);
1277 dec_zone_page_state(page, NR_PAGETABLE);
1278}
1279
c74df32c
HD
1280#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1281({ \
4c21e2f2 1282 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1283 pte_t *__pte = pte_offset_map(pmd, address); \
1284 *(ptlp) = __ptl; \
1285 spin_lock(__ptl); \
1286 __pte; \
1287})
1288
1289#define pte_unmap_unlock(pte, ptl) do { \
1290 spin_unlock(ptl); \
1291 pte_unmap(pte); \
1292} while (0)
1293
8ac1f832
AA
1294#define pte_alloc_map(mm, vma, pmd, address) \
1295 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1296 pmd, address))? \
1297 NULL: pte_offset_map(pmd, address))
1bb3630e 1298
c74df32c 1299#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1300 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1301 pmd, address))? \
c74df32c
HD
1302 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1303
1bb3630e 1304#define pte_alloc_kernel(pmd, address) \
8ac1f832 1305 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1306 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1307
1308extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1309extern void free_area_init_node(int nid, unsigned long * zones_size,
1310 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1311extern void free_initmem(void);
1312
0ee332c1 1313#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1314/*
0ee332c1 1315 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1316 * zones, allocate the backing mem_map and account for memory holes in a more
1317 * architecture independent manner. This is a substitute for creating the
1318 * zone_sizes[] and zholes_size[] arrays and passing them to
1319 * free_area_init_node()
1320 *
1321 * An architecture is expected to register range of page frames backed by
0ee332c1 1322 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1323 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1324 * usage, an architecture is expected to do something like
1325 *
1326 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1327 * max_highmem_pfn};
1328 * for_each_valid_physical_page_range()
0ee332c1 1329 * memblock_add_node(base, size, nid)
c713216d
MG
1330 * free_area_init_nodes(max_zone_pfns);
1331 *
0ee332c1
TH
1332 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1333 * registered physical page range. Similarly
1334 * sparse_memory_present_with_active_regions() calls memory_present() for
1335 * each range when SPARSEMEM is enabled.
c713216d
MG
1336 *
1337 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1338 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1339 */
1340extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1341unsigned long node_map_pfn_alignment(void);
32996250
YL
1342unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1343 unsigned long end_pfn);
c713216d
MG
1344extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1345 unsigned long end_pfn);
1346extern void get_pfn_range_for_nid(unsigned int nid,
1347 unsigned long *start_pfn, unsigned long *end_pfn);
1348extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1349extern void free_bootmem_with_active_regions(int nid,
1350 unsigned long max_low_pfn);
1351extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1352
34b71f1e
TC
1353#define MOVABLEMEM_MAP_MAX MAX_NUMNODES
1354struct movablemem_entry {
1355 unsigned long start_pfn; /* start pfn of memory segment */
1356 unsigned long end_pfn; /* end pfn of memory segment (exclusive) */
1357};
1358
1359struct movablemem_map {
01a178a9 1360 bool acpi; /* true if using SRAT info */
34b71f1e
TC
1361 int nr_map;
1362 struct movablemem_entry map[MOVABLEMEM_MAP_MAX];
27168d38 1363 nodemask_t numa_nodes_hotplug; /* on which nodes we specify memory */
01a178a9 1364 nodemask_t numa_nodes_kernel; /* on which nodes kernel resides in */
34b71f1e
TC
1365};
1366
27168d38
TC
1367extern void __init insert_movablemem_map(unsigned long start_pfn,
1368 unsigned long end_pfn);
1369extern int __init movablemem_map_overlap(unsigned long start_pfn,
1370 unsigned long end_pfn);
0ee332c1 1371#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1372
0ee332c1 1373#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1374 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1375static inline int __early_pfn_to_nid(unsigned long pfn)
1376{
1377 return 0;
1378}
1379#else
1380/* please see mm/page_alloc.c */
1381extern int __meminit early_pfn_to_nid(unsigned long pfn);
1382#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1383/* there is a per-arch backend function. */
1384extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1385#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1386#endif
1387
0e0b864e 1388extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1389extern void memmap_init_zone(unsigned long, int, unsigned long,
1390 unsigned long, enum memmap_context);
bc75d33f 1391extern void setup_per_zone_wmarks(void);
1b79acc9 1392extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1393extern void mem_init(void);
8feae131 1394extern void __init mmap_init(void);
b2b755b5 1395extern void show_mem(unsigned int flags);
1da177e4
LT
1396extern void si_meminfo(struct sysinfo * val);
1397extern void si_meminfo_node(struct sysinfo *val, int nid);
1398
3ee9a4f0
JP
1399extern __printf(3, 4)
1400void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1401
e7c8d5c9 1402extern void setup_per_cpu_pageset(void);
e7c8d5c9 1403
112067f0 1404extern void zone_pcp_update(struct zone *zone);
340175b7 1405extern void zone_pcp_reset(struct zone *zone);
112067f0 1406
8feae131 1407/* nommu.c */
33e5d769 1408extern atomic_long_t mmap_pages_allocated;
7e660872 1409extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1410
6b2dbba8 1411/* interval_tree.c */
6b2dbba8
ML
1412void vma_interval_tree_insert(struct vm_area_struct *node,
1413 struct rb_root *root);
9826a516
ML
1414void vma_interval_tree_insert_after(struct vm_area_struct *node,
1415 struct vm_area_struct *prev,
1416 struct rb_root *root);
6b2dbba8
ML
1417void vma_interval_tree_remove(struct vm_area_struct *node,
1418 struct rb_root *root);
1419struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1420 unsigned long start, unsigned long last);
1421struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1422 unsigned long start, unsigned long last);
1423
1424#define vma_interval_tree_foreach(vma, root, start, last) \
1425 for (vma = vma_interval_tree_iter_first(root, start, last); \
1426 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1427
1428static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1429 struct list_head *list)
1430{
6b2dbba8 1431 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1432}
1433
bf181b9f
ML
1434void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1435 struct rb_root *root);
1436void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1437 struct rb_root *root);
1438struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1439 struct rb_root *root, unsigned long start, unsigned long last);
1440struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1441 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1442#ifdef CONFIG_DEBUG_VM_RB
1443void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1444#endif
bf181b9f
ML
1445
1446#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1447 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1448 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1449
1da177e4 1450/* mmap.c */
34b4e4aa 1451extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1452extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1453 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1454extern struct vm_area_struct *vma_merge(struct mm_struct *,
1455 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1456 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1457 struct mempolicy *);
1458extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1459extern int split_vma(struct mm_struct *,
1460 struct vm_area_struct *, unsigned long addr, int new_below);
1461extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1462extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1463 struct rb_node **, struct rb_node *);
a8fb5618 1464extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1465extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1466 unsigned long addr, unsigned long len, pgoff_t pgoff,
1467 bool *need_rmap_locks);
1da177e4 1468extern void exit_mmap(struct mm_struct *);
925d1c40 1469
7906d00c
AA
1470extern int mm_take_all_locks(struct mm_struct *mm);
1471extern void mm_drop_all_locks(struct mm_struct *mm);
1472
38646013
JS
1473extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1474extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1475
119f657c 1476extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1477extern int install_special_mapping(struct mm_struct *mm,
1478 unsigned long addr, unsigned long len,
1479 unsigned long flags, struct page **pages);
1da177e4
LT
1480
1481extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1482
0165ab44 1483extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1484 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1485extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1486 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1487 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1488extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1489
bebeb3d6
ML
1490#ifdef CONFIG_MMU
1491extern int __mm_populate(unsigned long addr, unsigned long len,
1492 int ignore_errors);
1493static inline void mm_populate(unsigned long addr, unsigned long len)
1494{
1495 /* Ignore errors */
1496 (void) __mm_populate(addr, len, 1);
1497}
1498#else
1499static inline void mm_populate(unsigned long addr, unsigned long len) {}
1500#endif
1501
e4eb1ff6
LT
1502/* These take the mm semaphore themselves */
1503extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1504extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1505extern unsigned long vm_mmap(struct file *, unsigned long,
1506 unsigned long, unsigned long,
1507 unsigned long, unsigned long);
1da177e4 1508
db4fbfb9
ML
1509struct vm_unmapped_area_info {
1510#define VM_UNMAPPED_AREA_TOPDOWN 1
1511 unsigned long flags;
1512 unsigned long length;
1513 unsigned long low_limit;
1514 unsigned long high_limit;
1515 unsigned long align_mask;
1516 unsigned long align_offset;
1517};
1518
1519extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1520extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1521
1522/*
1523 * Search for an unmapped address range.
1524 *
1525 * We are looking for a range that:
1526 * - does not intersect with any VMA;
1527 * - is contained within the [low_limit, high_limit) interval;
1528 * - is at least the desired size.
1529 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1530 */
1531static inline unsigned long
1532vm_unmapped_area(struct vm_unmapped_area_info *info)
1533{
1534 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1535 return unmapped_area(info);
1536 else
1537 return unmapped_area_topdown(info);
1538}
1539
85821aab 1540/* truncate.c */
1da177e4 1541extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1542extern void truncate_inode_pages_range(struct address_space *,
1543 loff_t lstart, loff_t lend);
1da177e4
LT
1544
1545/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1546extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1547extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1548
1549/* mm/page-writeback.c */
1550int write_one_page(struct page *page, int wait);
1cf6e7d8 1551void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1552
1553/* readahead.c */
1554#define VM_MAX_READAHEAD 128 /* kbytes */
1555#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1556
1da177e4 1557int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1558 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1559
1560void page_cache_sync_readahead(struct address_space *mapping,
1561 struct file_ra_state *ra,
1562 struct file *filp,
1563 pgoff_t offset,
1564 unsigned long size);
1565
1566void page_cache_async_readahead(struct address_space *mapping,
1567 struct file_ra_state *ra,
1568 struct file *filp,
1569 struct page *pg,
1570 pgoff_t offset,
1571 unsigned long size);
1572
1da177e4 1573unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1574unsigned long ra_submit(struct file_ra_state *ra,
1575 struct address_space *mapping,
1576 struct file *filp);
1da177e4 1577
d05f3169 1578/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1579extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1580
1581/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1582extern int expand_downwards(struct vm_area_struct *vma,
1583 unsigned long address);
8ca3eb08 1584#if VM_GROWSUP
46dea3d0 1585extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1586#else
1587 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1588#endif
1da177e4
LT
1589
1590/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1591extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1592extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1593 struct vm_area_struct **pprev);
1594
1595/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1596 NULL if none. Assume start_addr < end_addr. */
1597static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1598{
1599 struct vm_area_struct * vma = find_vma(mm,start_addr);
1600
1601 if (vma && end_addr <= vma->vm_start)
1602 vma = NULL;
1603 return vma;
1604}
1605
1606static inline unsigned long vma_pages(struct vm_area_struct *vma)
1607{
1608 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1609}
1610
640708a2
PE
1611/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1612static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1613 unsigned long vm_start, unsigned long vm_end)
1614{
1615 struct vm_area_struct *vma = find_vma(mm, vm_start);
1616
1617 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1618 vma = NULL;
1619
1620 return vma;
1621}
1622
bad849b3 1623#ifdef CONFIG_MMU
804af2cf 1624pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1625#else
1626static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1627{
1628 return __pgprot(0);
1629}
1630#endif
1631
b24f53a0 1632#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1633unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1634 unsigned long start, unsigned long end);
1635#endif
1636
deceb6cd 1637struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1638int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1639 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1640int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1641int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1642 unsigned long pfn);
423bad60
NP
1643int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1644 unsigned long pfn);
deceb6cd 1645
6aab341e 1646struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1647 unsigned int foll_flags);
1648#define FOLL_WRITE 0x01 /* check pte is writable */
1649#define FOLL_TOUCH 0x02 /* mark page accessed */
1650#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1651#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1652#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1653#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1654 * and return without waiting upon it */
110d74a9 1655#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1656#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1657#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1658#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1da177e4 1659
2f569afd 1660typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1661 void *data);
1662extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1663 unsigned long size, pte_fn_t fn, void *data);
1664
1da177e4 1665#ifdef CONFIG_PROC_FS
ab50b8ed 1666void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1667#else
ab50b8ed 1668static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1669 unsigned long flags, struct file *file, long pages)
1670{
44de9d0c 1671 mm->total_vm += pages;
1da177e4
LT
1672}
1673#endif /* CONFIG_PROC_FS */
1674
12d6f21e 1675#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1676extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1677#ifdef CONFIG_HIBERNATION
1678extern bool kernel_page_present(struct page *page);
1679#endif /* CONFIG_HIBERNATION */
12d6f21e 1680#else
1da177e4 1681static inline void
9858db50 1682kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1683#ifdef CONFIG_HIBERNATION
1684static inline bool kernel_page_present(struct page *page) { return true; }
1685#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1686#endif
1687
31db58b3 1688extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1689#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1690int in_gate_area_no_mm(unsigned long addr);
83b964bb 1691int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1692#else
cae5d390
SW
1693int in_gate_area_no_mm(unsigned long addr);
1694#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1695#endif /* __HAVE_ARCH_GATE_AREA */
1696
8d65af78 1697int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1698 void __user *, size_t *, loff_t *);
a09ed5e0 1699unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1700 unsigned long nr_pages_scanned,
1701 unsigned long lru_pages);
9d0243bc 1702
7a9166e3
LY
1703#ifndef CONFIG_MMU
1704#define randomize_va_space 0
1705#else
a62eaf15 1706extern int randomize_va_space;
7a9166e3 1707#endif
a62eaf15 1708
045e72ac 1709const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1710void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1711
9bdac914
YL
1712void sparse_mem_maps_populate_node(struct page **map_map,
1713 unsigned long pnum_begin,
1714 unsigned long pnum_end,
1715 unsigned long map_count,
1716 int nodeid);
1717
98f3cfc1 1718struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1719pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1720pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1721pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1722pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1723void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1724void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1725void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1726int vmemmap_populate_basepages(struct page *start_page,
1727 unsigned long pages, int node);
1728int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1729void vmemmap_populate_print_last(void);
0197518c
TC
1730#ifdef CONFIG_MEMORY_HOTPLUG
1731void vmemmap_free(struct page *memmap, unsigned long nr_pages);
1732#endif
46723bfa
YI
1733void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1734 unsigned long size);
6a46079c 1735
82ba011b
AK
1736enum mf_flags {
1737 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1738 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1739 MF_MUST_KILL = 1 << 2,
82ba011b 1740};
cd42f4a3 1741extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1742extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1743extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1744extern int sysctl_memory_failure_early_kill;
1745extern int sysctl_memory_failure_recovery;
facb6011 1746extern void shake_page(struct page *p, int access);
293c07e3 1747extern atomic_long_t num_poisoned_pages;
facb6011 1748extern int soft_offline_page(struct page *page, int flags);
6a46079c 1749
718a3821
WF
1750extern void dump_page(struct page *page);
1751
47ad8475
AA
1752#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1753extern void clear_huge_page(struct page *page,
1754 unsigned long addr,
1755 unsigned int pages_per_huge_page);
1756extern void copy_user_huge_page(struct page *dst, struct page *src,
1757 unsigned long addr, struct vm_area_struct *vma,
1758 unsigned int pages_per_huge_page);
1759#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1760
c0a32fc5
SG
1761#ifdef CONFIG_DEBUG_PAGEALLOC
1762extern unsigned int _debug_guardpage_minorder;
1763
1764static inline unsigned int debug_guardpage_minorder(void)
1765{
1766 return _debug_guardpage_minorder;
1767}
1768
1769static inline bool page_is_guard(struct page *page)
1770{
1771 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1772}
1773#else
1774static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1775static inline bool page_is_guard(struct page *page) { return false; }
1776#endif /* CONFIG_DEBUG_PAGEALLOC */
1777
1da177e4
LT
1778#endif /* __KERNEL__ */
1779#endif /* _LINUX_MM_H */