Merge tag 'for-torvalds-20120418' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/prio_tree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
1da177e4
LT
21
22struct mempolicy;
23struct anon_vma;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
1da177e4
LT
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
27ac792c
AR
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
1da177e4
LT
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
c43692e8
CL
61extern struct kmem_cache *vm_area_cachep;
62
1da177e4 63#ifndef CONFIG_MMU
8feae131
DH
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
605d9288 71 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
72 */
73#define VM_READ 0x00000001 /* currently active flags */
74#define VM_WRITE 0x00000002
75#define VM_EXEC 0x00000004
76#define VM_SHARED 0x00000008
77
7e2cff42 78/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
79#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
80#define VM_MAYWRITE 0x00000020
81#define VM_MAYEXEC 0x00000040
82#define VM_MAYSHARE 0x00000080
83
84#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 85#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 86#define VM_GROWSUP 0x00000200
8ca3eb08
TL
87#else
88#define VM_GROWSUP 0x00000000
a664b2d8 89#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
8ca3eb08 90#endif
6aab341e 91#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
92#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
93
94#define VM_EXECUTABLE 0x00001000
95#define VM_LOCKED 0x00002000
96#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
97
98 /* Used by sys_madvise() */
99#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
100#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
101
102#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
103#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 104#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 105#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 106#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
107#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
108#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
f2d6bfe9 109#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 110#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
f2d6bfe9
JW
111#else
112#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
113#endif
895791da 114#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
accb61fe 115#define VM_NODUMP 0x04000000 /* Do not include in the core dump */
d00806b1 116
d0217ac0 117#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 118#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 119#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 120#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 121#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 122
a8bef8ff
MG
123/* Bits set in the VMA until the stack is in its final location */
124#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
125
1da177e4
LT
126#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
127#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
128#endif
129
130#ifdef CONFIG_STACK_GROWSUP
131#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
132#else
133#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
134#endif
135
136#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
137#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
138#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
139#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
140#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
141
b291f000 142/*
78f11a25
AA
143 * Special vmas that are non-mergable, non-mlock()able.
144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000
NP
145 */
146#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
147
1da177e4
LT
148/*
149 * mapping from the currently active vm_flags protection bits (the
150 * low four bits) to a page protection mask..
151 */
152extern pgprot_t protection_map[16];
153
d0217ac0
NP
154#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
155#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 156#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 157#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 158#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 159#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
d0217ac0 160
6bd9cd50 161/*
162 * This interface is used by x86 PAT code to identify a pfn mapping that is
163 * linear over entire vma. This is to optimize PAT code that deals with
164 * marking the physical region with a particular prot. This is not for generic
165 * mm use. Note also that this check will not work if the pfn mapping is
166 * linear for a vma starting at physical address 0. In which case PAT code
167 * falls back to slow path of reserving physical range page by page.
168 */
3c8bb73a 169static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
170{
ca16d140 171 return !!(vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 172}
173
174static inline int is_pfn_mapping(struct vm_area_struct *vma)
175{
ca16d140 176 return !!(vma->vm_flags & VM_PFNMAP);
3c8bb73a 177}
d0217ac0 178
54cb8821 179/*
d0217ac0 180 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
181 * ->fault function. The vma's ->fault is responsible for returning a bitmask
182 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 183 *
d0217ac0
NP
184 * pgoff should be used in favour of virtual_address, if possible. If pgoff
185 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
186 * mapping support.
54cb8821 187 */
d0217ac0
NP
188struct vm_fault {
189 unsigned int flags; /* FAULT_FLAG_xxx flags */
190 pgoff_t pgoff; /* Logical page offset based on vma */
191 void __user *virtual_address; /* Faulting virtual address */
192
193 struct page *page; /* ->fault handlers should return a
83c54070 194 * page here, unless VM_FAULT_NOPAGE
d0217ac0 195 * is set (which is also implied by
83c54070 196 * VM_FAULT_ERROR).
d0217ac0 197 */
54cb8821 198};
1da177e4
LT
199
200/*
201 * These are the virtual MM functions - opening of an area, closing and
202 * unmapping it (needed to keep files on disk up-to-date etc), pointer
203 * to the functions called when a no-page or a wp-page exception occurs.
204 */
205struct vm_operations_struct {
206 void (*open)(struct vm_area_struct * area);
207 void (*close)(struct vm_area_struct * area);
d0217ac0 208 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
209
210 /* notification that a previously read-only page is about to become
211 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 212 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
213
214 /* called by access_process_vm when get_user_pages() fails, typically
215 * for use by special VMAs that can switch between memory and hardware
216 */
217 int (*access)(struct vm_area_struct *vma, unsigned long addr,
218 void *buf, int len, int write);
1da177e4 219#ifdef CONFIG_NUMA
a6020ed7
LS
220 /*
221 * set_policy() op must add a reference to any non-NULL @new mempolicy
222 * to hold the policy upon return. Caller should pass NULL @new to
223 * remove a policy and fall back to surrounding context--i.e. do not
224 * install a MPOL_DEFAULT policy, nor the task or system default
225 * mempolicy.
226 */
1da177e4 227 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
228
229 /*
230 * get_policy() op must add reference [mpol_get()] to any policy at
231 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
232 * in mm/mempolicy.c will do this automatically.
233 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
234 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
235 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
236 * must return NULL--i.e., do not "fallback" to task or system default
237 * policy.
238 */
1da177e4
LT
239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
240 unsigned long addr);
7b2259b3
CL
241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
242 const nodemask_t *to, unsigned long flags);
1da177e4
LT
243#endif
244};
245
246struct mmu_gather;
247struct inode;
248
349aef0b
AM
249#define page_private(page) ((page)->private)
250#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 251
1da177e4
LT
252/*
253 * FIXME: take this include out, include page-flags.h in
254 * files which need it (119 of them)
255 */
256#include <linux/page-flags.h>
71e3aac0 257#include <linux/huge_mm.h>
1da177e4
LT
258
259/*
260 * Methods to modify the page usage count.
261 *
262 * What counts for a page usage:
263 * - cache mapping (page->mapping)
264 * - private data (page->private)
265 * - page mapped in a task's page tables, each mapping
266 * is counted separately
267 *
268 * Also, many kernel routines increase the page count before a critical
269 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
270 */
271
272/*
da6052f7 273 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 274 */
7c8ee9a8
NP
275static inline int put_page_testzero(struct page *page)
276{
725d704e 277 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 278 return atomic_dec_and_test(&page->_count);
7c8ee9a8 279}
1da177e4
LT
280
281/*
7c8ee9a8
NP
282 * Try to grab a ref unless the page has a refcount of zero, return false if
283 * that is the case.
1da177e4 284 */
7c8ee9a8
NP
285static inline int get_page_unless_zero(struct page *page)
286{
8dc04efb 287 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 288}
1da177e4 289
53df8fdc
WF
290extern int page_is_ram(unsigned long pfn);
291
48667e7a 292/* Support for virtually mapped pages */
b3bdda02
CL
293struct page *vmalloc_to_page(const void *addr);
294unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 295
0738c4bb
PM
296/*
297 * Determine if an address is within the vmalloc range
298 *
299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
300 * is no special casing required.
301 */
9e2779fa
CL
302static inline int is_vmalloc_addr(const void *x)
303{
0738c4bb 304#ifdef CONFIG_MMU
9e2779fa
CL
305 unsigned long addr = (unsigned long)x;
306
307 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
308#else
309 return 0;
8ca3ed87 310#endif
0738c4bb 311}
81ac3ad9
KH
312#ifdef CONFIG_MMU
313extern int is_vmalloc_or_module_addr(const void *x);
314#else
934831d0 315static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
316{
317 return 0;
318}
319#endif
9e2779fa 320
e9da73d6
AA
321static inline void compound_lock(struct page *page)
322{
323#ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 bit_spin_lock(PG_compound_lock, &page->flags);
325#endif
326}
327
328static inline void compound_unlock(struct page *page)
329{
330#ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 bit_spin_unlock(PG_compound_lock, &page->flags);
332#endif
333}
334
335static inline unsigned long compound_lock_irqsave(struct page *page)
336{
337 unsigned long uninitialized_var(flags);
338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 local_irq_save(flags);
340 compound_lock(page);
341#endif
342 return flags;
343}
344
345static inline void compound_unlock_irqrestore(struct page *page,
346 unsigned long flags)
347{
348#ifdef CONFIG_TRANSPARENT_HUGEPAGE
349 compound_unlock(page);
350 local_irq_restore(flags);
351#endif
352}
353
d85f3385
CL
354static inline struct page *compound_head(struct page *page)
355{
6d777953 356 if (unlikely(PageTail(page)))
d85f3385
CL
357 return page->first_page;
358 return page;
359}
360
70b50f94
AA
361/*
362 * The atomic page->_mapcount, starts from -1: so that transitions
363 * both from it and to it can be tracked, using atomic_inc_and_test
364 * and atomic_add_negative(-1).
365 */
366static inline void reset_page_mapcount(struct page *page)
367{
368 atomic_set(&(page)->_mapcount, -1);
369}
370
371static inline int page_mapcount(struct page *page)
372{
373 return atomic_read(&(page)->_mapcount) + 1;
374}
375
4c21e2f2 376static inline int page_count(struct page *page)
1da177e4 377{
d85f3385 378 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
379}
380
b35a35b5
AA
381static inline void get_huge_page_tail(struct page *page)
382{
383 /*
384 * __split_huge_page_refcount() cannot run
385 * from under us.
386 */
387 VM_BUG_ON(page_mapcount(page) < 0);
388 VM_BUG_ON(atomic_read(&page->_count) != 0);
389 atomic_inc(&page->_mapcount);
390}
391
70b50f94
AA
392extern bool __get_page_tail(struct page *page);
393
1da177e4
LT
394static inline void get_page(struct page *page)
395{
70b50f94
AA
396 if (unlikely(PageTail(page)))
397 if (likely(__get_page_tail(page)))
398 return;
91807063
AA
399 /*
400 * Getting a normal page or the head of a compound page
70b50f94 401 * requires to already have an elevated page->_count.
91807063 402 */
70b50f94 403 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
404 atomic_inc(&page->_count);
405}
406
b49af68f
CL
407static inline struct page *virt_to_head_page(const void *x)
408{
409 struct page *page = virt_to_page(x);
410 return compound_head(page);
411}
412
7835e98b
NP
413/*
414 * Setup the page count before being freed into the page allocator for
415 * the first time (boot or memory hotplug)
416 */
417static inline void init_page_count(struct page *page)
418{
419 atomic_set(&page->_count, 1);
420}
421
5f24ce5f
AA
422/*
423 * PageBuddy() indicate that the page is free and in the buddy system
424 * (see mm/page_alloc.c).
ef2b4b95
AA
425 *
426 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
427 * -2 so that an underflow of the page_mapcount() won't be mistaken
428 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
429 * efficiently by most CPU architectures.
5f24ce5f 430 */
ef2b4b95
AA
431#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
432
5f24ce5f
AA
433static inline int PageBuddy(struct page *page)
434{
ef2b4b95 435 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
436}
437
438static inline void __SetPageBuddy(struct page *page)
439{
440 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 441 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
442}
443
444static inline void __ClearPageBuddy(struct page *page)
445{
446 VM_BUG_ON(!PageBuddy(page));
447 atomic_set(&page->_mapcount, -1);
448}
449
1da177e4 450void put_page(struct page *page);
1d7ea732 451void put_pages_list(struct list_head *pages);
1da177e4 452
8dfcc9ba 453void split_page(struct page *page, unsigned int order);
748446bb 454int split_free_page(struct page *page);
8dfcc9ba 455
33f2ef89
AW
456/*
457 * Compound pages have a destructor function. Provide a
458 * prototype for that function and accessor functions.
459 * These are _only_ valid on the head of a PG_compound page.
460 */
461typedef void compound_page_dtor(struct page *);
462
463static inline void set_compound_page_dtor(struct page *page,
464 compound_page_dtor *dtor)
465{
466 page[1].lru.next = (void *)dtor;
467}
468
469static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
470{
471 return (compound_page_dtor *)page[1].lru.next;
472}
473
d85f3385
CL
474static inline int compound_order(struct page *page)
475{
6d777953 476 if (!PageHead(page))
d85f3385
CL
477 return 0;
478 return (unsigned long)page[1].lru.prev;
479}
480
37c2ac78
AA
481static inline int compound_trans_order(struct page *page)
482{
483 int order;
484 unsigned long flags;
485
486 if (!PageHead(page))
487 return 0;
488
489 flags = compound_lock_irqsave(page);
490 order = compound_order(page);
491 compound_unlock_irqrestore(page, flags);
492 return order;
493}
494
d85f3385
CL
495static inline void set_compound_order(struct page *page, unsigned long order)
496{
497 page[1].lru.prev = (void *)order;
498}
499
3dece370 500#ifdef CONFIG_MMU
14fd403f
AA
501/*
502 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
503 * servicing faults for write access. In the normal case, do always want
504 * pte_mkwrite. But get_user_pages can cause write faults for mappings
505 * that do not have writing enabled, when used by access_process_vm.
506 */
507static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
508{
509 if (likely(vma->vm_flags & VM_WRITE))
510 pte = pte_mkwrite(pte);
511 return pte;
512}
3dece370 513#endif
14fd403f 514
1da177e4
LT
515/*
516 * Multiple processes may "see" the same page. E.g. for untouched
517 * mappings of /dev/null, all processes see the same page full of
518 * zeroes, and text pages of executables and shared libraries have
519 * only one copy in memory, at most, normally.
520 *
521 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
522 * page_count() == 0 means the page is free. page->lru is then used for
523 * freelist management in the buddy allocator.
da6052f7 524 * page_count() > 0 means the page has been allocated.
1da177e4 525 *
da6052f7
NP
526 * Pages are allocated by the slab allocator in order to provide memory
527 * to kmalloc and kmem_cache_alloc. In this case, the management of the
528 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
529 * unless a particular usage is carefully commented. (the responsibility of
530 * freeing the kmalloc memory is the caller's, of course).
1da177e4 531 *
da6052f7
NP
532 * A page may be used by anyone else who does a __get_free_page().
533 * In this case, page_count still tracks the references, and should only
534 * be used through the normal accessor functions. The top bits of page->flags
535 * and page->virtual store page management information, but all other fields
536 * are unused and could be used privately, carefully. The management of this
537 * page is the responsibility of the one who allocated it, and those who have
538 * subsequently been given references to it.
539 *
540 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
541 * managed by the Linux memory manager: I/O, buffers, swapping etc.
542 * The following discussion applies only to them.
543 *
da6052f7
NP
544 * A pagecache page contains an opaque `private' member, which belongs to the
545 * page's address_space. Usually, this is the address of a circular list of
546 * the page's disk buffers. PG_private must be set to tell the VM to call
547 * into the filesystem to release these pages.
1da177e4 548 *
da6052f7
NP
549 * A page may belong to an inode's memory mapping. In this case, page->mapping
550 * is the pointer to the inode, and page->index is the file offset of the page,
551 * in units of PAGE_CACHE_SIZE.
1da177e4 552 *
da6052f7
NP
553 * If pagecache pages are not associated with an inode, they are said to be
554 * anonymous pages. These may become associated with the swapcache, and in that
555 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 556 *
da6052f7
NP
557 * In either case (swapcache or inode backed), the pagecache itself holds one
558 * reference to the page. Setting PG_private should also increment the
559 * refcount. The each user mapping also has a reference to the page.
1da177e4 560 *
da6052f7
NP
561 * The pagecache pages are stored in a per-mapping radix tree, which is
562 * rooted at mapping->page_tree, and indexed by offset.
563 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
564 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 565 *
da6052f7 566 * All pagecache pages may be subject to I/O:
1da177e4
LT
567 * - inode pages may need to be read from disk,
568 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
569 * to be written back to the inode on disk,
570 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
571 * modified may need to be swapped out to swap space and (later) to be read
572 * back into memory.
1da177e4
LT
573 */
574
575/*
576 * The zone field is never updated after free_area_init_core()
577 * sets it, so none of the operations on it need to be atomic.
1da177e4 578 */
348f8b6c 579
d41dee36
AW
580
581/*
582 * page->flags layout:
583 *
584 * There are three possibilities for how page->flags get
585 * laid out. The first is for the normal case, without
586 * sparsemem. The second is for sparsemem when there is
587 * plenty of space for node and section. The last is when
588 * we have run out of space and have to fall back to an
589 * alternate (slower) way of determining the node.
590 *
308c05e3
CL
591 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
592 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
593 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 594 */
308c05e3 595#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
596#define SECTIONS_WIDTH SECTIONS_SHIFT
597#else
598#define SECTIONS_WIDTH 0
599#endif
600
601#define ZONES_WIDTH ZONES_SHIFT
602
9223b419 603#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
604#define NODES_WIDTH NODES_SHIFT
605#else
308c05e3
CL
606#ifdef CONFIG_SPARSEMEM_VMEMMAP
607#error "Vmemmap: No space for nodes field in page flags"
608#endif
d41dee36
AW
609#define NODES_WIDTH 0
610#endif
611
612/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 613#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
614#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
615#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
616
617/*
618 * We are going to use the flags for the page to node mapping if its in
619 * there. This includes the case where there is no node, so it is implicit.
620 */
89689ae7
CL
621#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
622#define NODE_NOT_IN_PAGE_FLAGS
623#endif
d41dee36 624
348f8b6c 625/*
25985edc 626 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
627 * sections we define the shift as 0; that plus a 0 mask ensures
628 * the compiler will optimise away reference to them.
629 */
d41dee36
AW
630#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
631#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
632#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 633
bce54bbf
WD
634/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
635#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 636#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
637#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
638 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 639#else
89689ae7 640#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
641#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
642 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
643#endif
644
bd8029b6 645#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 646
9223b419
CL
647#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
648#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
649#endif
650
d41dee36
AW
651#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
652#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
653#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 654#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 655
33dd4e0e 656static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 657{
348f8b6c 658 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 659}
1da177e4 660
89689ae7
CL
661/*
662 * The identification function is only used by the buddy allocator for
663 * determining if two pages could be buddies. We are not really
664 * identifying a zone since we could be using a the section number
665 * id if we have not node id available in page flags.
666 * We guarantee only that it will return the same value for two
667 * combinable pages in a zone.
668 */
cb2b95e1
AW
669static inline int page_zone_id(struct page *page)
670{
89689ae7 671 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
672}
673
25ba77c1 674static inline int zone_to_nid(struct zone *zone)
89fa3024 675{
d5f541ed
CL
676#ifdef CONFIG_NUMA
677 return zone->node;
678#else
679 return 0;
680#endif
89fa3024
CL
681}
682
89689ae7 683#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 684extern int page_to_nid(const struct page *page);
89689ae7 685#else
33dd4e0e 686static inline int page_to_nid(const struct page *page)
d41dee36 687{
89689ae7 688 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 689}
89689ae7
CL
690#endif
691
33dd4e0e 692static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
693{
694 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
695}
696
308c05e3 697#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
698static inline void set_page_section(struct page *page, unsigned long section)
699{
700 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
701 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
702}
703
aa462abe 704static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
705{
706 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
707}
308c05e3 708#endif
d41dee36 709
2f1b6248 710static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
711{
712 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
713 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
714}
2f1b6248 715
348f8b6c
DH
716static inline void set_page_node(struct page *page, unsigned long node)
717{
718 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
719 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 720}
89689ae7 721
2f1b6248 722static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 723 unsigned long node, unsigned long pfn)
1da177e4 724{
348f8b6c
DH
725 set_page_zone(page, zone);
726 set_page_node(page, node);
bf4e8902 727#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 728 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 729#endif
1da177e4
LT
730}
731
f6ac2354
CL
732/*
733 * Some inline functions in vmstat.h depend on page_zone()
734 */
735#include <linux/vmstat.h>
736
33dd4e0e 737static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 738{
aa462abe 739 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
740}
741
742#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
743#define HASHED_PAGE_VIRTUAL
744#endif
745
746#if defined(WANT_PAGE_VIRTUAL)
747#define page_address(page) ((page)->virtual)
748#define set_page_address(page, address) \
749 do { \
750 (page)->virtual = (address); \
751 } while(0)
752#define page_address_init() do { } while(0)
753#endif
754
755#if defined(HASHED_PAGE_VIRTUAL)
f9918794 756void *page_address(const struct page *page);
1da177e4
LT
757void set_page_address(struct page *page, void *virtual);
758void page_address_init(void);
759#endif
760
761#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
762#define page_address(page) lowmem_page_address(page)
763#define set_page_address(page, address) do { } while(0)
764#define page_address_init() do { } while(0)
765#endif
766
767/*
768 * On an anonymous page mapped into a user virtual memory area,
769 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
770 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
771 *
772 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
773 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
774 * and then page->mapping points, not to an anon_vma, but to a private
775 * structure which KSM associates with that merged page. See ksm.h.
776 *
777 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
778 *
779 * Please note that, confusingly, "page_mapping" refers to the inode
780 * address_space which maps the page from disk; whereas "page_mapped"
781 * refers to user virtual address space into which the page is mapped.
782 */
783#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
784#define PAGE_MAPPING_KSM 2
785#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
786
787extern struct address_space swapper_space;
788static inline struct address_space *page_mapping(struct page *page)
789{
790 struct address_space *mapping = page->mapping;
791
b5fab14e 792 VM_BUG_ON(PageSlab(page));
1da177e4
LT
793 if (unlikely(PageSwapCache(page)))
794 mapping = &swapper_space;
e20e8779 795 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
796 mapping = NULL;
797 return mapping;
798}
799
3ca7b3c5
HD
800/* Neutral page->mapping pointer to address_space or anon_vma or other */
801static inline void *page_rmapping(struct page *page)
802{
803 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
804}
805
1da177e4
LT
806static inline int PageAnon(struct page *page)
807{
808 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
809}
810
811/*
812 * Return the pagecache index of the passed page. Regular pagecache pages
813 * use ->index whereas swapcache pages use ->private
814 */
815static inline pgoff_t page_index(struct page *page)
816{
817 if (unlikely(PageSwapCache(page)))
4c21e2f2 818 return page_private(page);
1da177e4
LT
819 return page->index;
820}
821
1da177e4
LT
822/*
823 * Return true if this page is mapped into pagetables.
824 */
825static inline int page_mapped(struct page *page)
826{
827 return atomic_read(&(page)->_mapcount) >= 0;
828}
829
1da177e4
LT
830/*
831 * Different kinds of faults, as returned by handle_mm_fault().
832 * Used to decide whether a process gets delivered SIGBUS or
833 * just gets major/minor fault counters bumped up.
834 */
d0217ac0 835
83c54070 836#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 837
83c54070
NP
838#define VM_FAULT_OOM 0x0001
839#define VM_FAULT_SIGBUS 0x0002
840#define VM_FAULT_MAJOR 0x0004
841#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
842#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
843#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 844
83c54070
NP
845#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
846#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 847#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 848
aa50d3a7
AK
849#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
850
851#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
852 VM_FAULT_HWPOISON_LARGE)
853
854/* Encode hstate index for a hwpoisoned large page */
855#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
856#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 857
1c0fe6e3
NP
858/*
859 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
860 */
861extern void pagefault_out_of_memory(void);
862
1da177e4
LT
863#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
864
ddd588b5 865/*
7bf02ea2 866 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
867 * various contexts.
868 */
869#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
870
7bf02ea2
DR
871extern void show_free_areas(unsigned int flags);
872extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 873
3f96b79a 874int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 875struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
876int shmem_zero_setup(struct vm_area_struct *);
877
e8edc6e0 878extern int can_do_mlock(void);
1da177e4
LT
879extern int user_shm_lock(size_t, struct user_struct *);
880extern void user_shm_unlock(size_t, struct user_struct *);
881
882/*
883 * Parameter block passed down to zap_pte_range in exceptional cases.
884 */
885struct zap_details {
886 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
887 struct address_space *check_mapping; /* Check page->mapping if set */
888 pgoff_t first_index; /* Lowest page->index to unmap */
889 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
890};
891
7e675137
NP
892struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
893 pte_t pte);
894
c627f9cc
JS
895int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
896 unsigned long size);
14f5ff5d 897void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 898 unsigned long size, struct zap_details *);
6e8bb019 899void unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
900 struct vm_area_struct *start_vma, unsigned long start_addr,
901 unsigned long end_addr, unsigned long *nr_accounted,
902 struct zap_details *);
e6473092
MM
903
904/**
905 * mm_walk - callbacks for walk_page_range
906 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
907 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
908 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
909 * this handler is required to be able to handle
910 * pmd_trans_huge() pmds. They may simply choose to
911 * split_huge_page() instead of handling it explicitly.
e6473092
MM
912 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
913 * @pte_hole: if set, called for each hole at all levels
5dc37642 914 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
915 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
916 * is used.
e6473092
MM
917 *
918 * (see walk_page_range for more details)
919 */
920struct mm_walk {
2165009b
DH
921 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
922 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
923 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
924 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
925 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
926 int (*hugetlb_entry)(pte_t *, unsigned long,
927 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
928 struct mm_struct *mm;
929 void *private;
e6473092
MM
930};
931
2165009b
DH
932int walk_page_range(unsigned long addr, unsigned long end,
933 struct mm_walk *walk);
42b77728 934void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 935 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
936int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
937 struct vm_area_struct *vma);
1da177e4
LT
938void unmap_mapping_range(struct address_space *mapping,
939 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
940int follow_pfn(struct vm_area_struct *vma, unsigned long address,
941 unsigned long *pfn);
d87fe660 942int follow_phys(struct vm_area_struct *vma, unsigned long address,
943 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
944int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
945 void *buf, int len, int write);
1da177e4
LT
946
947static inline void unmap_shared_mapping_range(struct address_space *mapping,
948 loff_t const holebegin, loff_t const holelen)
949{
950 unmap_mapping_range(mapping, holebegin, holelen, 0);
951}
952
25d9e2d1 953extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 954extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 955extern int vmtruncate(struct inode *inode, loff_t offset);
956extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
623e3db9 957void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 958int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 959int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 960
83f78668
WF
961int invalidate_inode_page(struct page *page);
962
7ee1dd3f 963#ifdef CONFIG_MMU
83c54070 964extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 965 unsigned long address, unsigned int flags);
5c723ba5
PZ
966extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
967 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
968#else
969static inline int handle_mm_fault(struct mm_struct *mm,
970 struct vm_area_struct *vma, unsigned long address,
d06063cc 971 unsigned int flags)
7ee1dd3f
DH
972{
973 /* should never happen if there's no MMU */
974 BUG();
975 return VM_FAULT_SIGBUS;
976}
5c723ba5
PZ
977static inline int fixup_user_fault(struct task_struct *tsk,
978 struct mm_struct *mm, unsigned long address,
979 unsigned int fault_flags)
980{
981 /* should never happen if there's no MMU */
982 BUG();
983 return -EFAULT;
984}
7ee1dd3f 985#endif
f33ea7f4 986
1da177e4
LT
987extern int make_pages_present(unsigned long addr, unsigned long end);
988extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
989extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
990 void *buf, int len, int write);
1da177e4 991
0014bd99
HY
992int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
993 unsigned long start, int len, unsigned int foll_flags,
994 struct page **pages, struct vm_area_struct **vmas,
995 int *nonblocking);
d2bf6be8 996int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 997 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
998 struct page **pages, struct vm_area_struct **vmas);
999int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1000 struct page **pages);
f3e8fccd 1001struct page *get_dump_page(unsigned long addr);
1da177e4 1002
cf9a2ae8
DH
1003extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1004extern void do_invalidatepage(struct page *page, unsigned long offset);
1005
1da177e4 1006int __set_page_dirty_nobuffers(struct page *page);
76719325 1007int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1008int redirty_page_for_writepage(struct writeback_control *wbc,
1009 struct page *page);
e3a7cca1 1010void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1011void account_page_writeback(struct page *page);
b3c97528 1012int set_page_dirty(struct page *page);
1da177e4
LT
1013int set_page_dirty_lock(struct page *page);
1014int clear_page_dirty_for_io(struct page *page);
1015
39aa3cb3 1016/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1017static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1018{
1019 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1020}
1021
a09a79f6
MP
1022static inline int stack_guard_page_start(struct vm_area_struct *vma,
1023 unsigned long addr)
1024{
1025 return (vma->vm_flags & VM_GROWSDOWN) &&
1026 (vma->vm_start == addr) &&
1027 !vma_growsdown(vma->vm_prev, addr);
1028}
1029
1030/* Is the vma a continuation of the stack vma below it? */
1031static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1032{
1033 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1034}
1035
1036static inline int stack_guard_page_end(struct vm_area_struct *vma,
1037 unsigned long addr)
1038{
1039 return (vma->vm_flags & VM_GROWSUP) &&
1040 (vma->vm_end == addr) &&
1041 !vma_growsup(vma->vm_next, addr);
1042}
1043
b7643757
SP
1044extern pid_t
1045vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1046
b6a2fea3
OW
1047extern unsigned long move_page_tables(struct vm_area_struct *vma,
1048 unsigned long old_addr, struct vm_area_struct *new_vma,
1049 unsigned long new_addr, unsigned long len);
1da177e4
LT
1050extern unsigned long do_mremap(unsigned long addr,
1051 unsigned long old_len, unsigned long new_len,
1052 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1053extern int mprotect_fixup(struct vm_area_struct *vma,
1054 struct vm_area_struct **pprev, unsigned long start,
1055 unsigned long end, unsigned long newflags);
1da177e4 1056
465a454f
PZ
1057/*
1058 * doesn't attempt to fault and will return short.
1059 */
1060int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1061 struct page **pages);
d559db08
KH
1062/*
1063 * per-process(per-mm_struct) statistics.
1064 */
d559db08
KH
1065static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1066{
69c97823
KK
1067 long val = atomic_long_read(&mm->rss_stat.count[member]);
1068
1069#ifdef SPLIT_RSS_COUNTING
1070 /*
1071 * counter is updated in asynchronous manner and may go to minus.
1072 * But it's never be expected number for users.
1073 */
1074 if (val < 0)
1075 val = 0;
172703b0 1076#endif
69c97823
KK
1077 return (unsigned long)val;
1078}
d559db08
KH
1079
1080static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1081{
172703b0 1082 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1083}
1084
1085static inline void inc_mm_counter(struct mm_struct *mm, int member)
1086{
172703b0 1087 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1088}
1089
1090static inline void dec_mm_counter(struct mm_struct *mm, int member)
1091{
172703b0 1092 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1093}
1094
d559db08
KH
1095static inline unsigned long get_mm_rss(struct mm_struct *mm)
1096{
1097 return get_mm_counter(mm, MM_FILEPAGES) +
1098 get_mm_counter(mm, MM_ANONPAGES);
1099}
1100
1101static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1102{
1103 return max(mm->hiwater_rss, get_mm_rss(mm));
1104}
1105
1106static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1107{
1108 return max(mm->hiwater_vm, mm->total_vm);
1109}
1110
1111static inline void update_hiwater_rss(struct mm_struct *mm)
1112{
1113 unsigned long _rss = get_mm_rss(mm);
1114
1115 if ((mm)->hiwater_rss < _rss)
1116 (mm)->hiwater_rss = _rss;
1117}
1118
1119static inline void update_hiwater_vm(struct mm_struct *mm)
1120{
1121 if (mm->hiwater_vm < mm->total_vm)
1122 mm->hiwater_vm = mm->total_vm;
1123}
1124
1125static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1126 struct mm_struct *mm)
1127{
1128 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1129
1130 if (*maxrss < hiwater_rss)
1131 *maxrss = hiwater_rss;
1132}
1133
53bddb4e 1134#if defined(SPLIT_RSS_COUNTING)
05af2e10 1135void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1136#else
05af2e10 1137static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1138{
1139}
1140#endif
465a454f 1141
4e950f6f 1142int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1143
25ca1d6c
NK
1144extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1145 spinlock_t **ptl);
1146static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1147 spinlock_t **ptl)
1148{
1149 pte_t *ptep;
1150 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1151 return ptep;
1152}
c9cfcddf 1153
5f22df00
NP
1154#ifdef __PAGETABLE_PUD_FOLDED
1155static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1156 unsigned long address)
1157{
1158 return 0;
1159}
1160#else
1bb3630e 1161int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1162#endif
1163
1164#ifdef __PAGETABLE_PMD_FOLDED
1165static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1166 unsigned long address)
1167{
1168 return 0;
1169}
1170#else
1bb3630e 1171int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1172#endif
1173
8ac1f832
AA
1174int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1175 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1176int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1177
1da177e4
LT
1178/*
1179 * The following ifdef needed to get the 4level-fixup.h header to work.
1180 * Remove it when 4level-fixup.h has been removed.
1181 */
1bb3630e 1182#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1183static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1184{
1bb3630e
HD
1185 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1186 NULL: pud_offset(pgd, address);
1da177e4
LT
1187}
1188
1189static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1190{
1bb3630e
HD
1191 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1192 NULL: pmd_offset(pud, address);
1da177e4 1193}
1bb3630e
HD
1194#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1195
f7d0b926 1196#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1197/*
1198 * We tuck a spinlock to guard each pagetable page into its struct page,
1199 * at page->private, with BUILD_BUG_ON to make sure that this will not
1200 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1201 * When freeing, reset page->mapping so free_pages_check won't complain.
1202 */
349aef0b 1203#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1204#define pte_lock_init(_page) do { \
1205 spin_lock_init(__pte_lockptr(_page)); \
1206} while (0)
1207#define pte_lock_deinit(page) ((page)->mapping = NULL)
1208#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1209#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1210/*
1211 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1212 */
1213#define pte_lock_init(page) do {} while (0)
1214#define pte_lock_deinit(page) do {} while (0)
1215#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1216#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1217
2f569afd
MS
1218static inline void pgtable_page_ctor(struct page *page)
1219{
1220 pte_lock_init(page);
1221 inc_zone_page_state(page, NR_PAGETABLE);
1222}
1223
1224static inline void pgtable_page_dtor(struct page *page)
1225{
1226 pte_lock_deinit(page);
1227 dec_zone_page_state(page, NR_PAGETABLE);
1228}
1229
c74df32c
HD
1230#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1231({ \
4c21e2f2 1232 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1233 pte_t *__pte = pte_offset_map(pmd, address); \
1234 *(ptlp) = __ptl; \
1235 spin_lock(__ptl); \
1236 __pte; \
1237})
1238
1239#define pte_unmap_unlock(pte, ptl) do { \
1240 spin_unlock(ptl); \
1241 pte_unmap(pte); \
1242} while (0)
1243
8ac1f832
AA
1244#define pte_alloc_map(mm, vma, pmd, address) \
1245 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1246 pmd, address))? \
1247 NULL: pte_offset_map(pmd, address))
1bb3630e 1248
c74df32c 1249#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1250 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1251 pmd, address))? \
c74df32c
HD
1252 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1253
1bb3630e 1254#define pte_alloc_kernel(pmd, address) \
8ac1f832 1255 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1256 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1257
1258extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1259extern void free_area_init_node(int nid, unsigned long * zones_size,
1260 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1261extern void free_initmem(void);
1262
0ee332c1 1263#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1264/*
0ee332c1 1265 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1266 * zones, allocate the backing mem_map and account for memory holes in a more
1267 * architecture independent manner. This is a substitute for creating the
1268 * zone_sizes[] and zholes_size[] arrays and passing them to
1269 * free_area_init_node()
1270 *
1271 * An architecture is expected to register range of page frames backed by
0ee332c1 1272 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1273 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1274 * usage, an architecture is expected to do something like
1275 *
1276 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1277 * max_highmem_pfn};
1278 * for_each_valid_physical_page_range()
0ee332c1 1279 * memblock_add_node(base, size, nid)
c713216d
MG
1280 * free_area_init_nodes(max_zone_pfns);
1281 *
0ee332c1
TH
1282 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1283 * registered physical page range. Similarly
1284 * sparse_memory_present_with_active_regions() calls memory_present() for
1285 * each range when SPARSEMEM is enabled.
c713216d
MG
1286 *
1287 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1288 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1289 */
1290extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1291unsigned long node_map_pfn_alignment(void);
32996250
YL
1292unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1293 unsigned long end_pfn);
c713216d
MG
1294extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1295 unsigned long end_pfn);
1296extern void get_pfn_range_for_nid(unsigned int nid,
1297 unsigned long *start_pfn, unsigned long *end_pfn);
1298extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1299extern void free_bootmem_with_active_regions(int nid,
1300 unsigned long max_low_pfn);
1301extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1302
0ee332c1 1303#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1304
0ee332c1 1305#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1306 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1307static inline int __early_pfn_to_nid(unsigned long pfn)
1308{
1309 return 0;
1310}
1311#else
1312/* please see mm/page_alloc.c */
1313extern int __meminit early_pfn_to_nid(unsigned long pfn);
1314#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1315/* there is a per-arch backend function. */
1316extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1317#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1318#endif
1319
0e0b864e 1320extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1321extern void memmap_init_zone(unsigned long, int, unsigned long,
1322 unsigned long, enum memmap_context);
bc75d33f 1323extern void setup_per_zone_wmarks(void);
1b79acc9 1324extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1325extern void mem_init(void);
8feae131 1326extern void __init mmap_init(void);
b2b755b5 1327extern void show_mem(unsigned int flags);
1da177e4
LT
1328extern void si_meminfo(struct sysinfo * val);
1329extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1330extern int after_bootmem;
1da177e4 1331
3ee9a4f0
JP
1332extern __printf(3, 4)
1333void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1334
e7c8d5c9 1335extern void setup_per_cpu_pageset(void);
e7c8d5c9 1336
112067f0
SL
1337extern void zone_pcp_update(struct zone *zone);
1338
8feae131 1339/* nommu.c */
33e5d769 1340extern atomic_long_t mmap_pages_allocated;
7e660872 1341extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1342
1da177e4
LT
1343/* prio_tree.c */
1344void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1345void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1346void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1347struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1348 struct prio_tree_iter *iter);
1349
1350#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1351 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1352 (vma = vma_prio_tree_next(vma, iter)); )
1353
1354static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1355 struct list_head *list)
1356{
1357 vma->shared.vm_set.parent = NULL;
1358 list_add_tail(&vma->shared.vm_set.list, list);
1359}
1360
1361/* mmap.c */
34b4e4aa 1362extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1363extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1364 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1365extern struct vm_area_struct *vma_merge(struct mm_struct *,
1366 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1367 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1368 struct mempolicy *);
1369extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1370extern int split_vma(struct mm_struct *,
1371 struct vm_area_struct *, unsigned long addr, int new_below);
1372extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1373extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1374 struct rb_node **, struct rb_node *);
a8fb5618 1375extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1376extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1377 unsigned long addr, unsigned long len, pgoff_t pgoff);
1378extern void exit_mmap(struct mm_struct *);
925d1c40 1379
7906d00c
AA
1380extern int mm_take_all_locks(struct mm_struct *mm);
1381extern void mm_drop_all_locks(struct mm_struct *mm);
1382
925d1c40
MH
1383/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1384extern void added_exe_file_vma(struct mm_struct *mm);
1385extern void removed_exe_file_vma(struct mm_struct *mm);
38646013
JS
1386extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1387extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1388
119f657c 1389extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1390extern int install_special_mapping(struct mm_struct *mm,
1391 unsigned long addr, unsigned long len,
1392 unsigned long flags, struct page **pages);
1da177e4
LT
1393
1394extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1395
1396extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1397 unsigned long len, unsigned long prot,
1398 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1399extern unsigned long mmap_region(struct file *file, unsigned long addr,
1400 unsigned long len, unsigned long flags,
ca16d140 1401 vm_flags_t vm_flags, unsigned long pgoff);
1da177e4
LT
1402
1403static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1404 unsigned long len, unsigned long prot,
1405 unsigned long flag, unsigned long offset)
1406{
1407 unsigned long ret = -EINVAL;
1408 if ((offset + PAGE_ALIGN(len)) < offset)
1409 goto out;
1410 if (!(offset & ~PAGE_MASK))
1411 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1412out:
1413 return ret;
1414}
1415
1416extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1417
1418extern unsigned long do_brk(unsigned long, unsigned long);
1419
85821aab 1420/* truncate.c */
1da177e4 1421extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1422extern void truncate_inode_pages_range(struct address_space *,
1423 loff_t lstart, loff_t lend);
1da177e4
LT
1424
1425/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1426extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1427
1428/* mm/page-writeback.c */
1429int write_one_page(struct page *page, int wait);
1cf6e7d8 1430void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1431
1432/* readahead.c */
1433#define VM_MAX_READAHEAD 128 /* kbytes */
1434#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1435
1da177e4 1436int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1437 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1438
1439void page_cache_sync_readahead(struct address_space *mapping,
1440 struct file_ra_state *ra,
1441 struct file *filp,
1442 pgoff_t offset,
1443 unsigned long size);
1444
1445void page_cache_async_readahead(struct address_space *mapping,
1446 struct file_ra_state *ra,
1447 struct file *filp,
1448 struct page *pg,
1449 pgoff_t offset,
1450 unsigned long size);
1451
1da177e4 1452unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1453unsigned long ra_submit(struct file_ra_state *ra,
1454 struct address_space *mapping,
1455 struct file *filp);
1da177e4 1456
d05f3169 1457/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1458extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1459
1460/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1461extern int expand_downwards(struct vm_area_struct *vma,
1462 unsigned long address);
8ca3eb08 1463#if VM_GROWSUP
46dea3d0 1464extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1465#else
1466 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1467#endif
1da177e4
LT
1468
1469/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1470extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1471extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1472 struct vm_area_struct **pprev);
1473
1474/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1475 NULL if none. Assume start_addr < end_addr. */
1476static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1477{
1478 struct vm_area_struct * vma = find_vma(mm,start_addr);
1479
1480 if (vma && end_addr <= vma->vm_start)
1481 vma = NULL;
1482 return vma;
1483}
1484
1485static inline unsigned long vma_pages(struct vm_area_struct *vma)
1486{
1487 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1488}
1489
640708a2
PE
1490/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1491static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1492 unsigned long vm_start, unsigned long vm_end)
1493{
1494 struct vm_area_struct *vma = find_vma(mm, vm_start);
1495
1496 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1497 vma = NULL;
1498
1499 return vma;
1500}
1501
bad849b3 1502#ifdef CONFIG_MMU
804af2cf 1503pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1504#else
1505static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1506{
1507 return __pgprot(0);
1508}
1509#endif
1510
deceb6cd 1511struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1512int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1513 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1514int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1515int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1516 unsigned long pfn);
423bad60
NP
1517int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1518 unsigned long pfn);
deceb6cd 1519
6aab341e 1520struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1521 unsigned int foll_flags);
1522#define FOLL_WRITE 0x01 /* check pte is writable */
1523#define FOLL_TOUCH 0x02 /* mark page accessed */
1524#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1525#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1526#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1527#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1528 * and return without waiting upon it */
110d74a9 1529#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1530#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1531#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1532
2f569afd 1533typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1534 void *data);
1535extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1536 unsigned long size, pte_fn_t fn, void *data);
1537
1da177e4 1538#ifdef CONFIG_PROC_FS
ab50b8ed 1539void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1540#else
ab50b8ed 1541static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1542 unsigned long flags, struct file *file, long pages)
1543{
1544}
1545#endif /* CONFIG_PROC_FS */
1546
12d6f21e 1547#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1548extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1549#ifdef CONFIG_HIBERNATION
1550extern bool kernel_page_present(struct page *page);
1551#endif /* CONFIG_HIBERNATION */
12d6f21e 1552#else
1da177e4 1553static inline void
9858db50 1554kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1555#ifdef CONFIG_HIBERNATION
1556static inline bool kernel_page_present(struct page *page) { return true; }
1557#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1558#endif
1559
31db58b3 1560extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1561#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1562int in_gate_area_no_mm(unsigned long addr);
83b964bb 1563int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1564#else
cae5d390
SW
1565int in_gate_area_no_mm(unsigned long addr);
1566#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1567#endif /* __HAVE_ARCH_GATE_AREA */
1568
8d65af78 1569int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1570 void __user *, size_t *, loff_t *);
a09ed5e0 1571unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1572 unsigned long nr_pages_scanned,
1573 unsigned long lru_pages);
9d0243bc 1574
7a9166e3
LY
1575#ifndef CONFIG_MMU
1576#define randomize_va_space 0
1577#else
a62eaf15 1578extern int randomize_va_space;
7a9166e3 1579#endif
a62eaf15 1580
045e72ac 1581const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1582void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1583
9bdac914
YL
1584void sparse_mem_maps_populate_node(struct page **map_map,
1585 unsigned long pnum_begin,
1586 unsigned long pnum_end,
1587 unsigned long map_count,
1588 int nodeid);
1589
98f3cfc1 1590struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1591pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1592pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1593pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1594pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1595void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1596void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1597void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1598int vmemmap_populate_basepages(struct page *start_page,
1599 unsigned long pages, int node);
1600int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1601void vmemmap_populate_print_last(void);
8f6aac41 1602
6a46079c 1603
82ba011b
AK
1604enum mf_flags {
1605 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1606 MF_ACTION_REQUIRED = 1 << 1,
82ba011b 1607};
cd42f4a3 1608extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1609extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1610extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1611extern int sysctl_memory_failure_early_kill;
1612extern int sysctl_memory_failure_recovery;
facb6011 1613extern void shake_page(struct page *p, int access);
6a46079c 1614extern atomic_long_t mce_bad_pages;
facb6011 1615extern int soft_offline_page(struct page *page, int flags);
6a46079c 1616
718a3821
WF
1617extern void dump_page(struct page *page);
1618
47ad8475
AA
1619#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1620extern void clear_huge_page(struct page *page,
1621 unsigned long addr,
1622 unsigned int pages_per_huge_page);
1623extern void copy_user_huge_page(struct page *dst, struct page *src,
1624 unsigned long addr, struct vm_area_struct *vma,
1625 unsigned int pages_per_huge_page);
1626#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1627
c0a32fc5
SG
1628#ifdef CONFIG_DEBUG_PAGEALLOC
1629extern unsigned int _debug_guardpage_minorder;
1630
1631static inline unsigned int debug_guardpage_minorder(void)
1632{
1633 return _debug_guardpage_minorder;
1634}
1635
1636static inline bool page_is_guard(struct page *page)
1637{
1638 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1639}
1640#else
1641static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1642static inline bool page_is_guard(struct page *page) { return false; }
1643#endif /* CONFIG_DEBUG_PAGEALLOC */
1644
1da177e4
LT
1645#endif /* __KERNEL__ */
1646#endif /* _LINUX_MM_H */