[PATCH] Move sighand_cachep to include/signal.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/sched.h>
5#include <linux/errno.h>
c59ede7b 6#include <linux/capability.h>
1da177e4
LT
7
8#ifdef __KERNEL__
9
1da177e4
LT
10#include <linux/gfp.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/prio_tree.h>
15#include <linux/fs.h>
de5097c2 16#include <linux/mutex.h>
9a11b49a 17#include <linux/debug_locks.h>
d08b3851 18#include <linux/backing-dev.h>
5b99cd0e 19#include <linux/mm_types.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
23
24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25extern unsigned long max_mapnr;
26#endif
27
28extern unsigned long num_physpages;
29extern void * high_memory;
30extern unsigned long vmalloc_earlyreserve;
31extern int page_cluster;
32
33#ifdef CONFIG_SYSCTL
34extern int sysctl_legacy_va_layout;
35#else
36#define sysctl_legacy_va_layout 0
37#endif
38
39#include <asm/page.h>
40#include <asm/pgtable.h>
41#include <asm/processor.h>
1da177e4 42
1da177e4
LT
43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
45/*
46 * Linux kernel virtual memory manager primitives.
47 * The idea being to have a "virtual" mm in the same way
48 * we have a virtual fs - giving a cleaner interface to the
49 * mm details, and allowing different kinds of memory mappings
50 * (from shared memory to executable loading to arbitrary
51 * mmap() functions).
52 */
53
54/*
55 * This struct defines a memory VMM memory area. There is one of these
56 * per VM-area/task. A VM area is any part of the process virtual memory
57 * space that has a special rule for the page-fault handlers (ie a shared
58 * library, the executable area etc).
59 */
60struct vm_area_struct {
61 struct mm_struct * vm_mm; /* The address space we belong to. */
62 unsigned long vm_start; /* Our start address within vm_mm. */
63 unsigned long vm_end; /* The first byte after our end address
64 within vm_mm. */
65
66 /* linked list of VM areas per task, sorted by address */
67 struct vm_area_struct *vm_next;
68
69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
70 unsigned long vm_flags; /* Flags, listed below. */
71
72 struct rb_node vm_rb;
73
74 /*
75 * For areas with an address space and backing store,
76 * linkage into the address_space->i_mmap prio tree, or
77 * linkage to the list of like vmas hanging off its node, or
78 * linkage of vma in the address_space->i_mmap_nonlinear list.
79 */
80 union {
81 struct {
82 struct list_head list;
83 void *parent; /* aligns with prio_tree_node parent */
84 struct vm_area_struct *head;
85 } vm_set;
86
87 struct raw_prio_tree_node prio_tree_node;
88 } shared;
89
90 /*
91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
92 * list, after a COW of one of the file pages. A MAP_SHARED vma
93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
94 * or brk vma (with NULL file) can only be in an anon_vma list.
95 */
96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
98
99 /* Function pointers to deal with this struct. */
100 struct vm_operations_struct * vm_ops;
101
102 /* Information about our backing store: */
103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
104 units, *not* PAGE_CACHE_SIZE */
105 struct file * vm_file; /* File we map to (can be NULL). */
106 void * vm_private_data; /* was vm_pte (shared mem) */
107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
108
109#ifndef CONFIG_MMU
110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
111#endif
112#ifdef CONFIG_NUMA
113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
114#endif
115};
116
117/*
118 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
119 * disabled, then there's a single shared list of VMAs maintained by the
120 * system, and mm's subscribe to these individually
121 */
122struct vm_list_struct {
123 struct vm_list_struct *next;
124 struct vm_area_struct *vma;
125};
126
127#ifndef CONFIG_MMU
128extern struct rb_root nommu_vma_tree;
129extern struct rw_semaphore nommu_vma_sem;
130
131extern unsigned int kobjsize(const void *objp);
132#endif
133
134/*
135 * vm_flags..
136 */
137#define VM_READ 0x00000001 /* currently active flags */
138#define VM_WRITE 0x00000002
139#define VM_EXEC 0x00000004
140#define VM_SHARED 0x00000008
141
7e2cff42 142/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
143#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
144#define VM_MAYWRITE 0x00000020
145#define VM_MAYEXEC 0x00000040
146#define VM_MAYSHARE 0x00000080
147
148#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
149#define VM_GROWSUP 0x00000200
6aab341e 150#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
151#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
152
153#define VM_EXECUTABLE 0x00001000
154#define VM_LOCKED 0x00002000
155#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
156
157 /* Used by sys_madvise() */
158#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
159#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
160
161#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
162#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 163#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
164#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
165#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
166#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
167#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 168#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
1da177e4
LT
169
170#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
171#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
172#endif
173
174#ifdef CONFIG_STACK_GROWSUP
175#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
176#else
177#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
178#endif
179
180#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
181#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
182#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
183#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
184#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
185
186/*
187 * mapping from the currently active vm_flags protection bits (the
188 * low four bits) to a page protection mask..
189 */
190extern pgprot_t protection_map[16];
191
192
193/*
194 * These are the virtual MM functions - opening of an area, closing and
195 * unmapping it (needed to keep files on disk up-to-date etc), pointer
196 * to the functions called when a no-page or a wp-page exception occurs.
197 */
198struct vm_operations_struct {
199 void (*open)(struct vm_area_struct * area);
200 void (*close)(struct vm_area_struct * area);
201 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
f4b81804 202 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
1da177e4 203 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
9637a5ef
DH
204
205 /* notification that a previously read-only page is about to become
206 * writable, if an error is returned it will cause a SIGBUS */
207 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
1da177e4
LT
208#ifdef CONFIG_NUMA
209 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
210 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
211 unsigned long addr);
7b2259b3
CL
212 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
213 const nodemask_t *to, unsigned long flags);
1da177e4
LT
214#endif
215};
216
217struct mmu_gather;
218struct inode;
219
349aef0b
AM
220#define page_private(page) ((page)->private)
221#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 222
1da177e4
LT
223/*
224 * FIXME: take this include out, include page-flags.h in
225 * files which need it (119 of them)
226 */
227#include <linux/page-flags.h>
228
725d704e
NP
229#ifdef CONFIG_DEBUG_VM
230#define VM_BUG_ON(cond) BUG_ON(cond)
231#else
232#define VM_BUG_ON(condition) do { } while(0)
233#endif
234
1da177e4
LT
235/*
236 * Methods to modify the page usage count.
237 *
238 * What counts for a page usage:
239 * - cache mapping (page->mapping)
240 * - private data (page->private)
241 * - page mapped in a task's page tables, each mapping
242 * is counted separately
243 *
244 * Also, many kernel routines increase the page count before a critical
245 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
246 */
247
248/*
da6052f7 249 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 250 */
7c8ee9a8
NP
251static inline int put_page_testzero(struct page *page)
252{
725d704e 253 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 254 return atomic_dec_and_test(&page->_count);
7c8ee9a8 255}
1da177e4
LT
256
257/*
7c8ee9a8
NP
258 * Try to grab a ref unless the page has a refcount of zero, return false if
259 * that is the case.
1da177e4 260 */
7c8ee9a8
NP
261static inline int get_page_unless_zero(struct page *page)
262{
725d704e 263 VM_BUG_ON(PageCompound(page));
8dc04efb 264 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 265}
1da177e4 266
4c21e2f2 267static inline int page_count(struct page *page)
1da177e4 268{
617d2214 269 if (unlikely(PageCompound(page)))
4c21e2f2 270 page = (struct page *)page_private(page);
8dc04efb 271 return atomic_read(&page->_count);
1da177e4
LT
272}
273
274static inline void get_page(struct page *page)
275{
276 if (unlikely(PageCompound(page)))
4c21e2f2 277 page = (struct page *)page_private(page);
725d704e 278 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
279 atomic_inc(&page->_count);
280}
281
7835e98b
NP
282/*
283 * Setup the page count before being freed into the page allocator for
284 * the first time (boot or memory hotplug)
285 */
286static inline void init_page_count(struct page *page)
287{
288 atomic_set(&page->_count, 1);
289}
290
1da177e4 291void put_page(struct page *page);
1d7ea732 292void put_pages_list(struct list_head *pages);
1da177e4 293
8dfcc9ba 294void split_page(struct page *page, unsigned int order);
8dfcc9ba 295
1da177e4
LT
296/*
297 * Multiple processes may "see" the same page. E.g. for untouched
298 * mappings of /dev/null, all processes see the same page full of
299 * zeroes, and text pages of executables and shared libraries have
300 * only one copy in memory, at most, normally.
301 *
302 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
303 * page_count() == 0 means the page is free. page->lru is then used for
304 * freelist management in the buddy allocator.
da6052f7 305 * page_count() > 0 means the page has been allocated.
1da177e4 306 *
da6052f7
NP
307 * Pages are allocated by the slab allocator in order to provide memory
308 * to kmalloc and kmem_cache_alloc. In this case, the management of the
309 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
310 * unless a particular usage is carefully commented. (the responsibility of
311 * freeing the kmalloc memory is the caller's, of course).
1da177e4 312 *
da6052f7
NP
313 * A page may be used by anyone else who does a __get_free_page().
314 * In this case, page_count still tracks the references, and should only
315 * be used through the normal accessor functions. The top bits of page->flags
316 * and page->virtual store page management information, but all other fields
317 * are unused and could be used privately, carefully. The management of this
318 * page is the responsibility of the one who allocated it, and those who have
319 * subsequently been given references to it.
320 *
321 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
322 * managed by the Linux memory manager: I/O, buffers, swapping etc.
323 * The following discussion applies only to them.
324 *
da6052f7
NP
325 * A pagecache page contains an opaque `private' member, which belongs to the
326 * page's address_space. Usually, this is the address of a circular list of
327 * the page's disk buffers. PG_private must be set to tell the VM to call
328 * into the filesystem to release these pages.
1da177e4 329 *
da6052f7
NP
330 * A page may belong to an inode's memory mapping. In this case, page->mapping
331 * is the pointer to the inode, and page->index is the file offset of the page,
332 * in units of PAGE_CACHE_SIZE.
1da177e4 333 *
da6052f7
NP
334 * If pagecache pages are not associated with an inode, they are said to be
335 * anonymous pages. These may become associated with the swapcache, and in that
336 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 337 *
da6052f7
NP
338 * In either case (swapcache or inode backed), the pagecache itself holds one
339 * reference to the page. Setting PG_private should also increment the
340 * refcount. The each user mapping also has a reference to the page.
1da177e4 341 *
da6052f7
NP
342 * The pagecache pages are stored in a per-mapping radix tree, which is
343 * rooted at mapping->page_tree, and indexed by offset.
344 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
345 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 346 *
da6052f7 347 * All pagecache pages may be subject to I/O:
1da177e4
LT
348 * - inode pages may need to be read from disk,
349 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
350 * to be written back to the inode on disk,
351 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
352 * modified may need to be swapped out to swap space and (later) to be read
353 * back into memory.
1da177e4
LT
354 */
355
356/*
357 * The zone field is never updated after free_area_init_core()
358 * sets it, so none of the operations on it need to be atomic.
1da177e4 359 */
348f8b6c 360
d41dee36
AW
361
362/*
363 * page->flags layout:
364 *
365 * There are three possibilities for how page->flags get
366 * laid out. The first is for the normal case, without
367 * sparsemem. The second is for sparsemem when there is
368 * plenty of space for node and section. The last is when
369 * we have run out of space and have to fall back to an
370 * alternate (slower) way of determining the node.
371 *
372 * No sparsemem: | NODE | ZONE | ... | FLAGS |
373 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
374 * no space for node: | SECTION | ZONE | ... | FLAGS |
375 */
376#ifdef CONFIG_SPARSEMEM
377#define SECTIONS_WIDTH SECTIONS_SHIFT
378#else
379#define SECTIONS_WIDTH 0
380#endif
381
382#define ZONES_WIDTH ZONES_SHIFT
383
384#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
385#define NODES_WIDTH NODES_SHIFT
386#else
387#define NODES_WIDTH 0
388#endif
389
390/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 391#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
392#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
393#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
394
395/*
396 * We are going to use the flags for the page to node mapping if its in
397 * there. This includes the case where there is no node, so it is implicit.
398 */
89689ae7
CL
399#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
400#define NODE_NOT_IN_PAGE_FLAGS
401#endif
d41dee36
AW
402
403#ifndef PFN_SECTION_SHIFT
404#define PFN_SECTION_SHIFT 0
405#endif
348f8b6c
DH
406
407/*
408 * Define the bit shifts to access each section. For non-existant
409 * sections we define the shift as 0; that plus a 0 mask ensures
410 * the compiler will optimise away reference to them.
411 */
d41dee36
AW
412#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
413#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
414#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 415
89689ae7
CL
416/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
417#ifdef NODE_NOT_IN_PAGEFLAGS
418#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
d41dee36 419#else
89689ae7
CL
420#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
421#endif
422
423#if ZONES_WIDTH > 0
424#define ZONEID_PGSHIFT ZONES_PGSHIFT
425#else
426#define ZONEID_PGSHIFT NODES_PGOFF
d41dee36 427#endif
348f8b6c 428
d41dee36
AW
429#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
430#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
431#endif
432
d41dee36
AW
433#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
434#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
435#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 436#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 437
2f1b6248 438static inline enum zone_type page_zonenum(struct page *page)
1da177e4 439{
348f8b6c 440 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 441}
1da177e4 442
89689ae7
CL
443/*
444 * The identification function is only used by the buddy allocator for
445 * determining if two pages could be buddies. We are not really
446 * identifying a zone since we could be using a the section number
447 * id if we have not node id available in page flags.
448 * We guarantee only that it will return the same value for two
449 * combinable pages in a zone.
450 */
cb2b95e1
AW
451static inline int page_zone_id(struct page *page)
452{
89689ae7
CL
453 BUILD_BUG_ON(ZONEID_PGSHIFT == 0 && ZONEID_MASK);
454 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
455}
456
89fa3024
CL
457static inline unsigned long zone_to_nid(struct zone *zone)
458{
d5f541ed
CL
459#ifdef CONFIG_NUMA
460 return zone->node;
461#else
462 return 0;
463#endif
89fa3024
CL
464}
465
89689ae7
CL
466#ifdef NODE_NOT_IN_PAGE_FLAGS
467extern unsigned long page_to_nid(struct page *page);
468#else
d41dee36
AW
469static inline unsigned long page_to_nid(struct page *page)
470{
89689ae7 471 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 472}
89689ae7
CL
473#endif
474
475static inline struct zone *page_zone(struct page *page)
476{
477 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
478}
479
d41dee36
AW
480static inline unsigned long page_to_section(struct page *page)
481{
482 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
483}
484
2f1b6248 485static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
486{
487 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
488 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
489}
2f1b6248 490
348f8b6c
DH
491static inline void set_page_node(struct page *page, unsigned long node)
492{
493 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
494 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 495}
89689ae7 496
d41dee36
AW
497static inline void set_page_section(struct page *page, unsigned long section)
498{
499 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
500 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
501}
1da177e4 502
2f1b6248 503static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 504 unsigned long node, unsigned long pfn)
1da177e4 505{
348f8b6c
DH
506 set_page_zone(page, zone);
507 set_page_node(page, node);
d41dee36 508 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
509}
510
f6ac2354
CL
511/*
512 * Some inline functions in vmstat.h depend on page_zone()
513 */
514#include <linux/vmstat.h>
515
652050ae 516static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
517{
518 return __va(page_to_pfn(page) << PAGE_SHIFT);
519}
520
521#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
522#define HASHED_PAGE_VIRTUAL
523#endif
524
525#if defined(WANT_PAGE_VIRTUAL)
526#define page_address(page) ((page)->virtual)
527#define set_page_address(page, address) \
528 do { \
529 (page)->virtual = (address); \
530 } while(0)
531#define page_address_init() do { } while(0)
532#endif
533
534#if defined(HASHED_PAGE_VIRTUAL)
535void *page_address(struct page *page);
536void set_page_address(struct page *page, void *virtual);
537void page_address_init(void);
538#endif
539
540#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
541#define page_address(page) lowmem_page_address(page)
542#define set_page_address(page, address) do { } while(0)
543#define page_address_init() do { } while(0)
544#endif
545
546/*
547 * On an anonymous page mapped into a user virtual memory area,
548 * page->mapping points to its anon_vma, not to a struct address_space;
549 * with the PAGE_MAPPING_ANON bit set to distinguish it.
550 *
551 * Please note that, confusingly, "page_mapping" refers to the inode
552 * address_space which maps the page from disk; whereas "page_mapped"
553 * refers to user virtual address space into which the page is mapped.
554 */
555#define PAGE_MAPPING_ANON 1
556
557extern struct address_space swapper_space;
558static inline struct address_space *page_mapping(struct page *page)
559{
560 struct address_space *mapping = page->mapping;
561
562 if (unlikely(PageSwapCache(page)))
563 mapping = &swapper_space;
564 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
565 mapping = NULL;
566 return mapping;
567}
568
569static inline int PageAnon(struct page *page)
570{
571 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
572}
573
574/*
575 * Return the pagecache index of the passed page. Regular pagecache pages
576 * use ->index whereas swapcache pages use ->private
577 */
578static inline pgoff_t page_index(struct page *page)
579{
580 if (unlikely(PageSwapCache(page)))
4c21e2f2 581 return page_private(page);
1da177e4
LT
582 return page->index;
583}
584
585/*
586 * The atomic page->_mapcount, like _count, starts from -1:
587 * so that transitions both from it and to it can be tracked,
588 * using atomic_inc_and_test and atomic_add_negative(-1).
589 */
590static inline void reset_page_mapcount(struct page *page)
591{
592 atomic_set(&(page)->_mapcount, -1);
593}
594
595static inline int page_mapcount(struct page *page)
596{
597 return atomic_read(&(page)->_mapcount) + 1;
598}
599
600/*
601 * Return true if this page is mapped into pagetables.
602 */
603static inline int page_mapped(struct page *page)
604{
605 return atomic_read(&(page)->_mapcount) >= 0;
606}
607
608/*
609 * Error return values for the *_nopage functions
610 */
611#define NOPAGE_SIGBUS (NULL)
612#define NOPAGE_OOM ((struct page *) (-1))
7f7bbbe5 613#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
1da177e4 614
f4b81804
JS
615/*
616 * Error return values for the *_nopfn functions
617 */
618#define NOPFN_SIGBUS ((unsigned long) -1)
619#define NOPFN_OOM ((unsigned long) -2)
620
1da177e4
LT
621/*
622 * Different kinds of faults, as returned by handle_mm_fault().
623 * Used to decide whether a process gets delivered SIGBUS or
624 * just gets major/minor fault counters bumped up.
625 */
f33ea7f4
NP
626#define VM_FAULT_OOM 0x00
627#define VM_FAULT_SIGBUS 0x01
628#define VM_FAULT_MINOR 0x02
629#define VM_FAULT_MAJOR 0x03
630
631/*
632 * Special case for get_user_pages.
633 * Must be in a distinct bit from the above VM_FAULT_ flags.
634 */
635#define VM_FAULT_WRITE 0x10
1da177e4
LT
636
637#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
638
639extern void show_free_areas(void);
640
641#ifdef CONFIG_SHMEM
642struct page *shmem_nopage(struct vm_area_struct *vma,
643 unsigned long address, int *type);
644int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
645struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
646 unsigned long addr);
647int shmem_lock(struct file *file, int lock, struct user_struct *user);
648#else
649#define shmem_nopage filemap_nopage
03b00ebc
RK
650
651static inline int shmem_lock(struct file *file, int lock,
652 struct user_struct *user)
653{
654 return 0;
655}
656
657static inline int shmem_set_policy(struct vm_area_struct *vma,
658 struct mempolicy *new)
659{
660 return 0;
661}
662
663static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
664 unsigned long addr)
665{
666 return NULL;
667}
1da177e4
LT
668#endif
669struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
b0e15190 670extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
1da177e4
LT
671
672int shmem_zero_setup(struct vm_area_struct *);
673
b0e15190
DH
674#ifndef CONFIG_MMU
675extern unsigned long shmem_get_unmapped_area(struct file *file,
676 unsigned long addr,
677 unsigned long len,
678 unsigned long pgoff,
679 unsigned long flags);
680#endif
681
1da177e4
LT
682static inline int can_do_mlock(void)
683{
684 if (capable(CAP_IPC_LOCK))
685 return 1;
686 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
687 return 1;
688 return 0;
689}
690extern int user_shm_lock(size_t, struct user_struct *);
691extern void user_shm_unlock(size_t, struct user_struct *);
692
693/*
694 * Parameter block passed down to zap_pte_range in exceptional cases.
695 */
696struct zap_details {
697 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
698 struct address_space *check_mapping; /* Check page->mapping if set */
699 pgoff_t first_index; /* Lowest page->index to unmap */
700 pgoff_t last_index; /* Highest page->index to unmap */
701 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
702 unsigned long truncate_count; /* Compare vm_truncate_count */
703};
704
6aab341e 705struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 706unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 707 unsigned long size, struct zap_details *);
508034a3 708unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
709 struct vm_area_struct *start_vma, unsigned long start_addr,
710 unsigned long end_addr, unsigned long *nr_accounted,
711 struct zap_details *);
3bf5ee95
HD
712void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
713 unsigned long end, unsigned long floor, unsigned long ceiling);
714void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 715 unsigned long floor, unsigned long ceiling);
1da177e4
LT
716int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
717 struct vm_area_struct *vma);
718int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
719 unsigned long size, pgprot_t prot);
720void unmap_mapping_range(struct address_space *mapping,
721 loff_t const holebegin, loff_t const holelen, int even_cows);
722
723static inline void unmap_shared_mapping_range(struct address_space *mapping,
724 loff_t const holebegin, loff_t const holelen)
725{
726 unmap_mapping_range(mapping, holebegin, holelen, 0);
727}
728
729extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 730extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
1da177e4
LT
731extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
732extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
f33ea7f4 733
7ee1dd3f
DH
734#ifdef CONFIG_MMU
735extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
736 unsigned long address, int write_access);
737
738static inline int handle_mm_fault(struct mm_struct *mm,
739 struct vm_area_struct *vma, unsigned long address,
740 int write_access)
f33ea7f4 741{
7ee1dd3f
DH
742 return __handle_mm_fault(mm, vma, address, write_access) &
743 (~VM_FAULT_WRITE);
f33ea7f4 744}
7ee1dd3f
DH
745#else
746static inline int handle_mm_fault(struct mm_struct *mm,
747 struct vm_area_struct *vma, unsigned long address,
748 int write_access)
749{
750 /* should never happen if there's no MMU */
751 BUG();
752 return VM_FAULT_SIGBUS;
753}
754#endif
f33ea7f4 755
1da177e4
LT
756extern int make_pages_present(unsigned long addr, unsigned long end);
757extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
758void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
759
760int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
761 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 762void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4 763
cf9a2ae8
DH
764extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
765extern void do_invalidatepage(struct page *page, unsigned long offset);
766
1da177e4
LT
767int __set_page_dirty_nobuffers(struct page *page);
768int redirty_page_for_writepage(struct writeback_control *wbc,
769 struct page *page);
770int FASTCALL(set_page_dirty(struct page *page));
771int set_page_dirty_lock(struct page *page);
772int clear_page_dirty_for_io(struct page *page);
773
774extern unsigned long do_mremap(unsigned long addr,
775 unsigned long old_len, unsigned long new_len,
776 unsigned long flags, unsigned long new_addr);
777
778/*
779 * Prototype to add a shrinker callback for ageable caches.
780 *
781 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
782 * scan `nr_to_scan' objects, attempting to free them.
783 *
845d3431 784 * The callback must return the number of objects which remain in the cache.
1da177e4 785 *
845d3431 786 * The callback will be passed nr_to_scan == 0 when the VM is querying the
1da177e4
LT
787 * cache size, so a fastpath for that case is appropriate.
788 */
6daa0e28 789typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
1da177e4
LT
790
791/*
792 * Add an aging callback. The int is the number of 'seeks' it takes
793 * to recreate one of the objects that these functions age.
794 */
795
796#define DEFAULT_SEEKS 2
797struct shrinker;
798extern struct shrinker *set_shrinker(int, shrinker_t);
799extern void remove_shrinker(struct shrinker *shrinker);
800
d08b3851
PZ
801/*
802 * Some shared mappigns will want the pages marked read-only
803 * to track write events. If so, we'll downgrade vm_page_prot
804 * to the private version (using protection_map[] without the
805 * VM_SHARED bit).
806 */
807static inline int vma_wants_writenotify(struct vm_area_struct *vma)
808{
809 unsigned int vm_flags = vma->vm_flags;
810
811 /* If it was private or non-writable, the write bit is already clear */
812 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
813 return 0;
814
815 /* The backer wishes to know when pages are first written to? */
816 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
817 return 1;
818
819 /* The open routine did something to the protections already? */
820 if (pgprot_val(vma->vm_page_prot) !=
821 pgprot_val(protection_map[vm_flags &
822 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
823 return 0;
824
825 /* Specialty mapping? */
826 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
827 return 0;
828
829 /* Can the mapping track the dirty pages? */
830 return vma->vm_file && vma->vm_file->f_mapping &&
831 mapping_cap_account_dirty(vma->vm_file->f_mapping);
832}
833
c9cfcddf
LT
834extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
835
1bb3630e
HD
836int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
837int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
838int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
839int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
840
1da177e4
LT
841/*
842 * The following ifdef needed to get the 4level-fixup.h header to work.
843 * Remove it when 4level-fixup.h has been removed.
844 */
1bb3630e 845#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
846static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
847{
1bb3630e
HD
848 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
849 NULL: pud_offset(pgd, address);
1da177e4
LT
850}
851
852static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
853{
1bb3630e
HD
854 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
855 NULL: pmd_offset(pud, address);
1da177e4 856}
1bb3630e
HD
857#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
858
4c21e2f2
HD
859#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
860/*
861 * We tuck a spinlock to guard each pagetable page into its struct page,
862 * at page->private, with BUILD_BUG_ON to make sure that this will not
863 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
864 * When freeing, reset page->mapping so free_pages_check won't complain.
865 */
349aef0b 866#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
867#define pte_lock_init(_page) do { \
868 spin_lock_init(__pte_lockptr(_page)); \
869} while (0)
870#define pte_lock_deinit(page) ((page)->mapping = NULL)
871#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
872#else
873/*
874 * We use mm->page_table_lock to guard all pagetable pages of the mm.
875 */
876#define pte_lock_init(page) do {} while (0)
877#define pte_lock_deinit(page) do {} while (0)
878#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
879#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
880
c74df32c
HD
881#define pte_offset_map_lock(mm, pmd, address, ptlp) \
882({ \
4c21e2f2 883 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
884 pte_t *__pte = pte_offset_map(pmd, address); \
885 *(ptlp) = __ptl; \
886 spin_lock(__ptl); \
887 __pte; \
888})
889
890#define pte_unmap_unlock(pte, ptl) do { \
891 spin_unlock(ptl); \
892 pte_unmap(pte); \
893} while (0)
894
1bb3630e
HD
895#define pte_alloc_map(mm, pmd, address) \
896 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
897 NULL: pte_offset_map(pmd, address))
898
c74df32c
HD
899#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
900 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
901 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
902
1bb3630e
HD
903#define pte_alloc_kernel(pmd, address) \
904 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
905 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
906
907extern void free_area_init(unsigned long * zones_size);
908extern void free_area_init_node(int nid, pg_data_t *pgdat,
909 unsigned long * zones_size, unsigned long zone_start_pfn,
910 unsigned long *zholes_size);
c713216d
MG
911#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
912/*
913 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
914 * zones, allocate the backing mem_map and account for memory holes in a more
915 * architecture independent manner. This is a substitute for creating the
916 * zone_sizes[] and zholes_size[] arrays and passing them to
917 * free_area_init_node()
918 *
919 * An architecture is expected to register range of page frames backed by
920 * physical memory with add_active_range() before calling
921 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
922 * usage, an architecture is expected to do something like
923 *
924 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
925 * max_highmem_pfn};
926 * for_each_valid_physical_page_range()
927 * add_active_range(node_id, start_pfn, end_pfn)
928 * free_area_init_nodes(max_zone_pfns);
929 *
930 * If the architecture guarantees that there are no holes in the ranges
931 * registered with add_active_range(), free_bootmem_active_regions()
932 * will call free_bootmem_node() for each registered physical page range.
933 * Similarly sparse_memory_present_with_active_regions() calls
934 * memory_present() for each range when SPARSEMEM is enabled.
935 *
936 * See mm/page_alloc.c for more information on each function exposed by
937 * CONFIG_ARCH_POPULATES_NODE_MAP
938 */
939extern void free_area_init_nodes(unsigned long *max_zone_pfn);
940extern void add_active_range(unsigned int nid, unsigned long start_pfn,
941 unsigned long end_pfn);
942extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
943 unsigned long new_end_pfn);
fb01439c
MG
944extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
945 unsigned long end_pfn);
c713216d
MG
946extern void remove_all_active_ranges(void);
947extern unsigned long absent_pages_in_range(unsigned long start_pfn,
948 unsigned long end_pfn);
949extern void get_pfn_range_for_nid(unsigned int nid,
950 unsigned long *start_pfn, unsigned long *end_pfn);
951extern unsigned long find_min_pfn_with_active_regions(void);
952extern unsigned long find_max_pfn_with_active_regions(void);
953extern void free_bootmem_with_active_regions(int nid,
954 unsigned long max_low_pfn);
955extern void sparse_memory_present_with_active_regions(int nid);
956#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
957extern int early_pfn_to_nid(unsigned long pfn);
958#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
959#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 960extern void set_dma_reserve(unsigned long new_dma_reserve);
1da177e4 961extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
3947be19 962extern void setup_per_zone_pages_min(void);
1da177e4
LT
963extern void mem_init(void);
964extern void show_mem(void);
965extern void si_meminfo(struct sysinfo * val);
966extern void si_meminfo_node(struct sysinfo *val, int nid);
967
e7c8d5c9
CL
968#ifdef CONFIG_NUMA
969extern void setup_per_cpu_pageset(void);
970#else
971static inline void setup_per_cpu_pageset(void) {}
972#endif
973
1da177e4
LT
974/* prio_tree.c */
975void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
976void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
977void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
978struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
979 struct prio_tree_iter *iter);
980
981#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
982 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
983 (vma = vma_prio_tree_next(vma, iter)); )
984
985static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
986 struct list_head *list)
987{
988 vma->shared.vm_set.parent = NULL;
989 list_add_tail(&vma->shared.vm_set.list, list);
990}
991
992/* mmap.c */
993extern int __vm_enough_memory(long pages, int cap_sys_admin);
994extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
995 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
996extern struct vm_area_struct *vma_merge(struct mm_struct *,
997 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
998 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
999 struct mempolicy *);
1000extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1001extern int split_vma(struct mm_struct *,
1002 struct vm_area_struct *, unsigned long addr, int new_below);
1003extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1004extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1005 struct rb_node **, struct rb_node *);
a8fb5618 1006extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1007extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1008 unsigned long addr, unsigned long len, pgoff_t pgoff);
1009extern void exit_mmap(struct mm_struct *);
119f657c 1010extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1da177e4
LT
1011
1012extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1013
1014extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1015 unsigned long len, unsigned long prot,
1016 unsigned long flag, unsigned long pgoff);
1017
1018static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1019 unsigned long len, unsigned long prot,
1020 unsigned long flag, unsigned long offset)
1021{
1022 unsigned long ret = -EINVAL;
1023 if ((offset + PAGE_ALIGN(len)) < offset)
1024 goto out;
1025 if (!(offset & ~PAGE_MASK))
1026 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1027out:
1028 return ret;
1029}
1030
1031extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1032
1033extern unsigned long do_brk(unsigned long, unsigned long);
1034
1035/* filemap.c */
1036extern unsigned long page_unuse(struct page *);
1037extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1038extern void truncate_inode_pages_range(struct address_space *,
1039 loff_t lstart, loff_t lend);
1da177e4
LT
1040
1041/* generic vm_area_ops exported for stackable file systems */
1042extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1043extern int filemap_populate(struct vm_area_struct *, unsigned long,
1044 unsigned long, pgprot_t, unsigned long, int);
1045
1046/* mm/page-writeback.c */
1047int write_one_page(struct page *page, int wait);
1048
1049/* readahead.c */
1050#define VM_MAX_READAHEAD 128 /* kbytes */
1051#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1052#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1053 * turning readahead off */
1054
1055int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1056 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1057int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8
AM
1058 pgoff_t offset, unsigned long nr_to_read);
1059unsigned long page_cache_readahead(struct address_space *mapping,
1da177e4
LT
1060 struct file_ra_state *ra,
1061 struct file *filp,
7361f4d8 1062 pgoff_t offset,
1da177e4
LT
1063 unsigned long size);
1064void handle_ra_miss(struct address_space *mapping,
1065 struct file_ra_state *ra, pgoff_t offset);
1066unsigned long max_sane_readahead(unsigned long nr);
1067
1068/* Do stack extension */
46dea3d0 1069extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1070#ifdef CONFIG_IA64
46dea3d0 1071extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1072#endif
1da177e4
LT
1073
1074/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1075extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1076extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1077 struct vm_area_struct **pprev);
1078
1079/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1080 NULL if none. Assume start_addr < end_addr. */
1081static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1082{
1083 struct vm_area_struct * vma = find_vma(mm,start_addr);
1084
1085 if (vma && end_addr <= vma->vm_start)
1086 vma = NULL;
1087 return vma;
1088}
1089
1090static inline unsigned long vma_pages(struct vm_area_struct *vma)
1091{
1092 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1093}
1094
804af2cf 1095pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd
HD
1096struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1097struct page *vmalloc_to_page(void *addr);
1098unsigned long vmalloc_to_pfn(void *addr);
1099int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1100 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1101int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
deceb6cd 1102
6aab341e 1103struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1104 unsigned int foll_flags);
1105#define FOLL_WRITE 0x01 /* check pte is writable */
1106#define FOLL_TOUCH 0x02 /* mark page accessed */
1107#define FOLL_GET 0x04 /* do get_page on page */
1108#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4
LT
1109
1110#ifdef CONFIG_PROC_FS
ab50b8ed 1111void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1112#else
ab50b8ed 1113static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1114 unsigned long flags, struct file *file, long pages)
1115{
1116}
1117#endif /* CONFIG_PROC_FS */
1118
1da177e4
LT
1119#ifndef CONFIG_DEBUG_PAGEALLOC
1120static inline void
9858db50 1121kernel_map_pages(struct page *page, int numpages, int enable) {}
1da177e4
LT
1122#endif
1123
1124extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1125#ifdef __HAVE_ARCH_GATE_AREA
1126int in_gate_area_no_task(unsigned long addr);
1127int in_gate_area(struct task_struct *task, unsigned long addr);
1128#else
1129int in_gate_area_no_task(unsigned long addr);
1130#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1131#endif /* __HAVE_ARCH_GATE_AREA */
1132
9d0243bc
AM
1133int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1134 void __user *, size_t *, loff_t *);
69e05944 1135unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc
AM
1136 unsigned long lru_pages);
1137void drop_pagecache(void);
1138void drop_slab(void);
1139
7a9166e3
LY
1140#ifndef CONFIG_MMU
1141#define randomize_va_space 0
1142#else
a62eaf15 1143extern int randomize_va_space;
7a9166e3 1144#endif
a62eaf15 1145
f269fdd1 1146__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
e6e5494c 1147
1da177e4
LT
1148#endif /* __KERNEL__ */
1149#endif /* _LINUX_MM_H */