[PATCH] xtensa: pgtable fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/sched.h>
5#include <linux/errno.h>
c59ede7b 6#include <linux/capability.h>
1da177e4
LT
7
8#ifdef __KERNEL__
9
10#include <linux/config.h>
11#include <linux/gfp.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/prio_tree.h>
16#include <linux/fs.h>
de5097c2 17#include <linux/mutex.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
21
22#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
23extern unsigned long max_mapnr;
24#endif
25
26extern unsigned long num_physpages;
27extern void * high_memory;
28extern unsigned long vmalloc_earlyreserve;
29extern int page_cluster;
30
31#ifdef CONFIG_SYSCTL
32extern int sysctl_legacy_va_layout;
33#else
34#define sysctl_legacy_va_layout 0
35#endif
36
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/processor.h>
40#include <asm/atomic.h>
41
1da177e4
LT
42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44/*
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
51 */
52
53/*
54 * This struct defines a memory VMM memory area. There is one of these
55 * per VM-area/task. A VM area is any part of the process virtual memory
56 * space that has a special rule for the page-fault handlers (ie a shared
57 * library, the executable area etc).
58 */
59struct vm_area_struct {
60 struct mm_struct * vm_mm; /* The address space we belong to. */
61 unsigned long vm_start; /* Our start address within vm_mm. */
62 unsigned long vm_end; /* The first byte after our end address
63 within vm_mm. */
64
65 /* linked list of VM areas per task, sorted by address */
66 struct vm_area_struct *vm_next;
67
68 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
69 unsigned long vm_flags; /* Flags, listed below. */
70
71 struct rb_node vm_rb;
72
73 /*
74 * For areas with an address space and backing store,
75 * linkage into the address_space->i_mmap prio tree, or
76 * linkage to the list of like vmas hanging off its node, or
77 * linkage of vma in the address_space->i_mmap_nonlinear list.
78 */
79 union {
80 struct {
81 struct list_head list;
82 void *parent; /* aligns with prio_tree_node parent */
83 struct vm_area_struct *head;
84 } vm_set;
85
86 struct raw_prio_tree_node prio_tree_node;
87 } shared;
88
89 /*
90 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
91 * list, after a COW of one of the file pages. A MAP_SHARED vma
92 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
93 * or brk vma (with NULL file) can only be in an anon_vma list.
94 */
95 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
96 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
97
98 /* Function pointers to deal with this struct. */
99 struct vm_operations_struct * vm_ops;
100
101 /* Information about our backing store: */
102 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
103 units, *not* PAGE_CACHE_SIZE */
104 struct file * vm_file; /* File we map to (can be NULL). */
105 void * vm_private_data; /* was vm_pte (shared mem) */
106 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
107
108#ifndef CONFIG_MMU
109 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
110#endif
111#ifdef CONFIG_NUMA
112 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
113#endif
114};
115
116/*
117 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
118 * disabled, then there's a single shared list of VMAs maintained by the
119 * system, and mm's subscribe to these individually
120 */
121struct vm_list_struct {
122 struct vm_list_struct *next;
123 struct vm_area_struct *vma;
124};
125
126#ifndef CONFIG_MMU
127extern struct rb_root nommu_vma_tree;
128extern struct rw_semaphore nommu_vma_sem;
129
130extern unsigned int kobjsize(const void *objp);
131#endif
132
133/*
134 * vm_flags..
135 */
136#define VM_READ 0x00000001 /* currently active flags */
137#define VM_WRITE 0x00000002
138#define VM_EXEC 0x00000004
139#define VM_SHARED 0x00000008
140
7e2cff42 141/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
142#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
143#define VM_MAYWRITE 0x00000020
144#define VM_MAYEXEC 0x00000040
145#define VM_MAYSHARE 0x00000080
146
147#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
148#define VM_GROWSUP 0x00000200
0b14c179 149#define VM_SHM 0x00000000 /* Means nothing: delete it later */
6aab341e 150#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
151#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
152
153#define VM_EXECUTABLE 0x00001000
154#define VM_LOCKED 0x00002000
155#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
156
157 /* Used by sys_madvise() */
158#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
159#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
160
161#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
162#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 163#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
164#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
165#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
166#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
167#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 168#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
1da177e4
LT
169
170#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
171#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
172#endif
173
174#ifdef CONFIG_STACK_GROWSUP
175#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
176#else
177#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
178#endif
179
180#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
181#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
182#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
183#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
184#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
185
186/*
187 * mapping from the currently active vm_flags protection bits (the
188 * low four bits) to a page protection mask..
189 */
190extern pgprot_t protection_map[16];
191
192
193/*
194 * These are the virtual MM functions - opening of an area, closing and
195 * unmapping it (needed to keep files on disk up-to-date etc), pointer
196 * to the functions called when a no-page or a wp-page exception occurs.
197 */
198struct vm_operations_struct {
199 void (*open)(struct vm_area_struct * area);
200 void (*close)(struct vm_area_struct * area);
201 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
202 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
203#ifdef CONFIG_NUMA
204 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
205 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
206 unsigned long addr);
207#endif
208};
209
210struct mmu_gather;
211struct inode;
212
1da177e4
LT
213/*
214 * Each physical page in the system has a struct page associated with
215 * it to keep track of whatever it is we are using the page for at the
216 * moment. Note that we have no way to track which tasks are using
217 * a page.
218 */
219struct page {
07808b74 220 unsigned long flags; /* Atomic flags, some possibly
1da177e4
LT
221 * updated asynchronously */
222 atomic_t _count; /* Usage count, see below. */
223 atomic_t _mapcount; /* Count of ptes mapped in mms,
224 * to show when page is mapped
225 * & limit reverse map searches.
226 */
4c21e2f2 227 union {
349aef0b
AM
228 struct {
229 unsigned long private; /* Mapping-private opaque data:
230 * usually used for buffer_heads
231 * if PagePrivate set; used for
232 * swp_entry_t if PageSwapCache.
233 * When page is free, this
234 * indicates order in the buddy
235 * system.
236 */
237 struct address_space *mapping; /* If low bit clear, points to
238 * inode address_space, or NULL.
239 * If page mapped as anonymous
240 * memory, low bit is set, and
241 * it points to anon_vma object:
242 * see PAGE_MAPPING_ANON below.
243 */
244 };
4c21e2f2 245#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
349aef0b 246 spinlock_t ptl;
4c21e2f2 247#endif
349aef0b 248 };
1da177e4
LT
249 pgoff_t index; /* Our offset within mapping. */
250 struct list_head lru; /* Pageout list, eg. active_list
251 * protected by zone->lru_lock !
252 */
253 /*
254 * On machines where all RAM is mapped into kernel address space,
255 * we can simply calculate the virtual address. On machines with
256 * highmem some memory is mapped into kernel virtual memory
257 * dynamically, so we need a place to store that address.
258 * Note that this field could be 16 bits on x86 ... ;)
259 *
260 * Architectures with slow multiplication can define
261 * WANT_PAGE_VIRTUAL in asm/page.h
262 */
263#if defined(WANT_PAGE_VIRTUAL)
264 void *virtual; /* Kernel virtual address (NULL if
265 not kmapped, ie. highmem) */
266#endif /* WANT_PAGE_VIRTUAL */
267};
268
349aef0b
AM
269#define page_private(page) ((page)->private)
270#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 271
1da177e4
LT
272/*
273 * FIXME: take this include out, include page-flags.h in
274 * files which need it (119 of them)
275 */
276#include <linux/page-flags.h>
277
278/*
279 * Methods to modify the page usage count.
280 *
281 * What counts for a page usage:
282 * - cache mapping (page->mapping)
283 * - private data (page->private)
284 * - page mapped in a task's page tables, each mapping
285 * is counted separately
286 *
287 * Also, many kernel routines increase the page count before a critical
288 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
289 */
290
291/*
292 * Drop a ref, return true if the logical refcount fell to zero (the page has
293 * no users)
294 */
7c8ee9a8
NP
295static inline int put_page_testzero(struct page *page)
296{
8dc04efb
NP
297 BUG_ON(atomic_read(&page->_count) == 0);
298 return atomic_dec_and_test(&page->_count);
7c8ee9a8 299}
1da177e4
LT
300
301/*
7c8ee9a8
NP
302 * Try to grab a ref unless the page has a refcount of zero, return false if
303 * that is the case.
1da177e4 304 */
7c8ee9a8
NP
305static inline int get_page_unless_zero(struct page *page)
306{
8dc04efb 307 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 308}
1da177e4 309
8dc04efb 310#define set_page_count(p,v) atomic_set(&(p)->_count, (v))
1da177e4
LT
311#define __put_page(p) atomic_dec(&(p)->_count)
312
313extern void FASTCALL(__page_cache_release(struct page *));
314
4c21e2f2 315static inline int page_count(struct page *page)
1da177e4 316{
4c21e2f2
HD
317 if (PageCompound(page))
318 page = (struct page *)page_private(page);
8dc04efb 319 return atomic_read(&page->_count);
1da177e4
LT
320}
321
322static inline void get_page(struct page *page)
323{
324 if (unlikely(PageCompound(page)))
4c21e2f2 325 page = (struct page *)page_private(page);
1da177e4
LT
326 atomic_inc(&page->_count);
327}
328
329void put_page(struct page *page);
330
1da177e4
LT
331/*
332 * Multiple processes may "see" the same page. E.g. for untouched
333 * mappings of /dev/null, all processes see the same page full of
334 * zeroes, and text pages of executables and shared libraries have
335 * only one copy in memory, at most, normally.
336 *
337 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
338 * page_count() == 0 means the page is free. page->lru is then used for
339 * freelist management in the buddy allocator.
1da177e4
LT
340 * page_count() == 1 means the page is used for exactly one purpose
341 * (e.g. a private data page of one process).
342 *
343 * A page may be used for kmalloc() or anyone else who does a
344 * __get_free_page(). In this case the page_count() is at least 1, and
345 * all other fields are unused but should be 0 or NULL. The
346 * management of this page is the responsibility of the one who uses
347 * it.
348 *
349 * The other pages (we may call them "process pages") are completely
350 * managed by the Linux memory manager: I/O, buffers, swapping etc.
351 * The following discussion applies only to them.
352 *
353 * A page may belong to an inode's memory mapping. In this case,
354 * page->mapping is the pointer to the inode, and page->index is the
355 * file offset of the page, in units of PAGE_CACHE_SIZE.
356 *
357 * A page contains an opaque `private' member, which belongs to the
358 * page's address_space. Usually, this is the address of a circular
359 * list of the page's disk buffers.
360 *
361 * For pages belonging to inodes, the page_count() is the number of
362 * attaches, plus 1 if `private' contains something, plus one for
363 * the page cache itself.
364 *
7e871b6c
PBG
365 * Instead of keeping dirty/clean pages in per address-space lists, we instead
366 * now tag pages as dirty/under writeback in the radix tree.
1da177e4
LT
367 *
368 * There is also a per-mapping radix tree mapping index to the page
369 * in memory if present. The tree is rooted at mapping->root.
370 *
371 * All process pages can do I/O:
372 * - inode pages may need to be read from disk,
373 * - inode pages which have been modified and are MAP_SHARED may need
374 * to be written to disk,
375 * - private pages which have been modified may need to be swapped out
376 * to swap space and (later) to be read back into memory.
377 */
378
379/*
380 * The zone field is never updated after free_area_init_core()
381 * sets it, so none of the operations on it need to be atomic.
1da177e4 382 */
348f8b6c 383
d41dee36
AW
384
385/*
386 * page->flags layout:
387 *
388 * There are three possibilities for how page->flags get
389 * laid out. The first is for the normal case, without
390 * sparsemem. The second is for sparsemem when there is
391 * plenty of space for node and section. The last is when
392 * we have run out of space and have to fall back to an
393 * alternate (slower) way of determining the node.
394 *
395 * No sparsemem: | NODE | ZONE | ... | FLAGS |
396 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
397 * no space for node: | SECTION | ZONE | ... | FLAGS |
398 */
399#ifdef CONFIG_SPARSEMEM
400#define SECTIONS_WIDTH SECTIONS_SHIFT
401#else
402#define SECTIONS_WIDTH 0
403#endif
404
405#define ZONES_WIDTH ZONES_SHIFT
406
407#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
408#define NODES_WIDTH NODES_SHIFT
409#else
410#define NODES_WIDTH 0
411#endif
412
413/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 414#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
415#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
416#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
417
418/*
419 * We are going to use the flags for the page to node mapping if its in
420 * there. This includes the case where there is no node, so it is implicit.
421 */
422#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
423
424#ifndef PFN_SECTION_SHIFT
425#define PFN_SECTION_SHIFT 0
426#endif
348f8b6c
DH
427
428/*
429 * Define the bit shifts to access each section. For non-existant
430 * sections we define the shift as 0; that plus a 0 mask ensures
431 * the compiler will optimise away reference to them.
432 */
d41dee36
AW
433#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
434#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
435#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 436
d41dee36
AW
437/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
438#if FLAGS_HAS_NODE
348f8b6c 439#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
d41dee36
AW
440#else
441#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
442#endif
348f8b6c
DH
443#define ZONETABLE_PGSHIFT ZONES_PGSHIFT
444
d41dee36
AW
445#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
446#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
447#endif
448
d41dee36
AW
449#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
450#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
451#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
348f8b6c
DH
452#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
453
1da177e4
LT
454static inline unsigned long page_zonenum(struct page *page)
455{
348f8b6c 456 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 457}
1da177e4
LT
458
459struct zone;
460extern struct zone *zone_table[];
461
462static inline struct zone *page_zone(struct page *page)
463{
348f8b6c
DH
464 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) &
465 ZONETABLE_MASK];
466}
467
d41dee36
AW
468static inline unsigned long page_to_nid(struct page *page)
469{
470 if (FLAGS_HAS_NODE)
471 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
472 else
473 return page_zone(page)->zone_pgdat->node_id;
474}
475static inline unsigned long page_to_section(struct page *page)
476{
477 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
478}
479
348f8b6c
DH
480static inline void set_page_zone(struct page *page, unsigned long zone)
481{
482 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
483 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
484}
485static inline void set_page_node(struct page *page, unsigned long node)
486{
487 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
488 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 489}
d41dee36
AW
490static inline void set_page_section(struct page *page, unsigned long section)
491{
492 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
493 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
494}
1da177e4 495
348f8b6c 496static inline void set_page_links(struct page *page, unsigned long zone,
d41dee36 497 unsigned long node, unsigned long pfn)
1da177e4 498{
348f8b6c
DH
499 set_page_zone(page, zone);
500 set_page_node(page, node);
d41dee36 501 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
502}
503
504#ifndef CONFIG_DISCONTIGMEM
505/* The array of struct pages - for discontigmem use pgdat->lmem_map */
506extern struct page *mem_map;
507#endif
508
652050ae 509static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
510{
511 return __va(page_to_pfn(page) << PAGE_SHIFT);
512}
513
514#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
515#define HASHED_PAGE_VIRTUAL
516#endif
517
518#if defined(WANT_PAGE_VIRTUAL)
519#define page_address(page) ((page)->virtual)
520#define set_page_address(page, address) \
521 do { \
522 (page)->virtual = (address); \
523 } while(0)
524#define page_address_init() do { } while(0)
525#endif
526
527#if defined(HASHED_PAGE_VIRTUAL)
528void *page_address(struct page *page);
529void set_page_address(struct page *page, void *virtual);
530void page_address_init(void);
531#endif
532
533#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
534#define page_address(page) lowmem_page_address(page)
535#define set_page_address(page, address) do { } while(0)
536#define page_address_init() do { } while(0)
537#endif
538
539/*
540 * On an anonymous page mapped into a user virtual memory area,
541 * page->mapping points to its anon_vma, not to a struct address_space;
542 * with the PAGE_MAPPING_ANON bit set to distinguish it.
543 *
544 * Please note that, confusingly, "page_mapping" refers to the inode
545 * address_space which maps the page from disk; whereas "page_mapped"
546 * refers to user virtual address space into which the page is mapped.
547 */
548#define PAGE_MAPPING_ANON 1
549
550extern struct address_space swapper_space;
551static inline struct address_space *page_mapping(struct page *page)
552{
553 struct address_space *mapping = page->mapping;
554
555 if (unlikely(PageSwapCache(page)))
556 mapping = &swapper_space;
557 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
558 mapping = NULL;
559 return mapping;
560}
561
562static inline int PageAnon(struct page *page)
563{
564 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
565}
566
567/*
568 * Return the pagecache index of the passed page. Regular pagecache pages
569 * use ->index whereas swapcache pages use ->private
570 */
571static inline pgoff_t page_index(struct page *page)
572{
573 if (unlikely(PageSwapCache(page)))
4c21e2f2 574 return page_private(page);
1da177e4
LT
575 return page->index;
576}
577
578/*
579 * The atomic page->_mapcount, like _count, starts from -1:
580 * so that transitions both from it and to it can be tracked,
581 * using atomic_inc_and_test and atomic_add_negative(-1).
582 */
583static inline void reset_page_mapcount(struct page *page)
584{
585 atomic_set(&(page)->_mapcount, -1);
586}
587
588static inline int page_mapcount(struct page *page)
589{
590 return atomic_read(&(page)->_mapcount) + 1;
591}
592
593/*
594 * Return true if this page is mapped into pagetables.
595 */
596static inline int page_mapped(struct page *page)
597{
598 return atomic_read(&(page)->_mapcount) >= 0;
599}
600
601/*
602 * Error return values for the *_nopage functions
603 */
604#define NOPAGE_SIGBUS (NULL)
605#define NOPAGE_OOM ((struct page *) (-1))
606
607/*
608 * Different kinds of faults, as returned by handle_mm_fault().
609 * Used to decide whether a process gets delivered SIGBUS or
610 * just gets major/minor fault counters bumped up.
611 */
f33ea7f4
NP
612#define VM_FAULT_OOM 0x00
613#define VM_FAULT_SIGBUS 0x01
614#define VM_FAULT_MINOR 0x02
615#define VM_FAULT_MAJOR 0x03
616
617/*
618 * Special case for get_user_pages.
619 * Must be in a distinct bit from the above VM_FAULT_ flags.
620 */
621#define VM_FAULT_WRITE 0x10
1da177e4
LT
622
623#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
624
625extern void show_free_areas(void);
626
627#ifdef CONFIG_SHMEM
628struct page *shmem_nopage(struct vm_area_struct *vma,
629 unsigned long address, int *type);
630int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
631struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
632 unsigned long addr);
633int shmem_lock(struct file *file, int lock, struct user_struct *user);
634#else
635#define shmem_nopage filemap_nopage
03b00ebc
RK
636
637static inline int shmem_lock(struct file *file, int lock,
638 struct user_struct *user)
639{
640 return 0;
641}
642
643static inline int shmem_set_policy(struct vm_area_struct *vma,
644 struct mempolicy *new)
645{
646 return 0;
647}
648
649static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
650 unsigned long addr)
651{
652 return NULL;
653}
1da177e4
LT
654#endif
655struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
b0e15190 656extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
1da177e4
LT
657
658int shmem_zero_setup(struct vm_area_struct *);
659
b0e15190
DH
660#ifndef CONFIG_MMU
661extern unsigned long shmem_get_unmapped_area(struct file *file,
662 unsigned long addr,
663 unsigned long len,
664 unsigned long pgoff,
665 unsigned long flags);
666#endif
667
1da177e4
LT
668static inline int can_do_mlock(void)
669{
670 if (capable(CAP_IPC_LOCK))
671 return 1;
672 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
673 return 1;
674 return 0;
675}
676extern int user_shm_lock(size_t, struct user_struct *);
677extern void user_shm_unlock(size_t, struct user_struct *);
678
679/*
680 * Parameter block passed down to zap_pte_range in exceptional cases.
681 */
682struct zap_details {
683 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
684 struct address_space *check_mapping; /* Check page->mapping if set */
685 pgoff_t first_index; /* Lowest page->index to unmap */
686 pgoff_t last_index; /* Highest page->index to unmap */
687 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
688 unsigned long truncate_count; /* Compare vm_truncate_count */
689};
690
6aab341e 691struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 692unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 693 unsigned long size, struct zap_details *);
508034a3 694unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
695 struct vm_area_struct *start_vma, unsigned long start_addr,
696 unsigned long end_addr, unsigned long *nr_accounted,
697 struct zap_details *);
3bf5ee95
HD
698void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
699 unsigned long end, unsigned long floor, unsigned long ceiling);
700void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 701 unsigned long floor, unsigned long ceiling);
1da177e4
LT
702int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
703 struct vm_area_struct *vma);
704int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
705 unsigned long size, pgprot_t prot);
706void unmap_mapping_range(struct address_space *mapping,
707 loff_t const holebegin, loff_t const holelen, int even_cows);
708
709static inline void unmap_shared_mapping_range(struct address_space *mapping,
710 loff_t const holebegin, loff_t const holelen)
711{
712 unmap_mapping_range(mapping, holebegin, holelen, 0);
713}
714
715extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 716extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
1da177e4
LT
717extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
718extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
f33ea7f4 719
7ee1dd3f
DH
720#ifdef CONFIG_MMU
721extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
722 unsigned long address, int write_access);
723
724static inline int handle_mm_fault(struct mm_struct *mm,
725 struct vm_area_struct *vma, unsigned long address,
726 int write_access)
f33ea7f4 727{
7ee1dd3f
DH
728 return __handle_mm_fault(mm, vma, address, write_access) &
729 (~VM_FAULT_WRITE);
f33ea7f4 730}
7ee1dd3f
DH
731#else
732static inline int handle_mm_fault(struct mm_struct *mm,
733 struct vm_area_struct *vma, unsigned long address,
734 int write_access)
735{
736 /* should never happen if there's no MMU */
737 BUG();
738 return VM_FAULT_SIGBUS;
739}
740#endif
f33ea7f4 741
1da177e4
LT
742extern int make_pages_present(unsigned long addr, unsigned long end);
743extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
744void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
745
746int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
747 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 748void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4
LT
749
750int __set_page_dirty_buffers(struct page *page);
751int __set_page_dirty_nobuffers(struct page *page);
752int redirty_page_for_writepage(struct writeback_control *wbc,
753 struct page *page);
754int FASTCALL(set_page_dirty(struct page *page));
755int set_page_dirty_lock(struct page *page);
756int clear_page_dirty_for_io(struct page *page);
757
758extern unsigned long do_mremap(unsigned long addr,
759 unsigned long old_len, unsigned long new_len,
760 unsigned long flags, unsigned long new_addr);
761
762/*
763 * Prototype to add a shrinker callback for ageable caches.
764 *
765 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
766 * scan `nr_to_scan' objects, attempting to free them.
767 *
845d3431 768 * The callback must return the number of objects which remain in the cache.
1da177e4 769 *
845d3431 770 * The callback will be passed nr_to_scan == 0 when the VM is querying the
1da177e4
LT
771 * cache size, so a fastpath for that case is appropriate.
772 */
6daa0e28 773typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
1da177e4
LT
774
775/*
776 * Add an aging callback. The int is the number of 'seeks' it takes
777 * to recreate one of the objects that these functions age.
778 */
779
780#define DEFAULT_SEEKS 2
781struct shrinker;
782extern struct shrinker *set_shrinker(int, shrinker_t);
783extern void remove_shrinker(struct shrinker *shrinker);
784
c9cfcddf
LT
785extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
786
1bb3630e
HD
787int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
788int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
789int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
790int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
791
1da177e4
LT
792/*
793 * The following ifdef needed to get the 4level-fixup.h header to work.
794 * Remove it when 4level-fixup.h has been removed.
795 */
1bb3630e 796#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
797static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
798{
1bb3630e
HD
799 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
800 NULL: pud_offset(pgd, address);
1da177e4
LT
801}
802
803static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
804{
1bb3630e
HD
805 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
806 NULL: pmd_offset(pud, address);
1da177e4 807}
1bb3630e
HD
808#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
809
4c21e2f2
HD
810#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
811/*
812 * We tuck a spinlock to guard each pagetable page into its struct page,
813 * at page->private, with BUILD_BUG_ON to make sure that this will not
814 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
815 * When freeing, reset page->mapping so free_pages_check won't complain.
816 */
349aef0b 817#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
818#define pte_lock_init(_page) do { \
819 spin_lock_init(__pte_lockptr(_page)); \
820} while (0)
821#define pte_lock_deinit(page) ((page)->mapping = NULL)
822#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
823#else
824/*
825 * We use mm->page_table_lock to guard all pagetable pages of the mm.
826 */
827#define pte_lock_init(page) do {} while (0)
828#define pte_lock_deinit(page) do {} while (0)
829#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
830#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
831
c74df32c
HD
832#define pte_offset_map_lock(mm, pmd, address, ptlp) \
833({ \
4c21e2f2 834 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
835 pte_t *__pte = pte_offset_map(pmd, address); \
836 *(ptlp) = __ptl; \
837 spin_lock(__ptl); \
838 __pte; \
839})
840
841#define pte_unmap_unlock(pte, ptl) do { \
842 spin_unlock(ptl); \
843 pte_unmap(pte); \
844} while (0)
845
1bb3630e
HD
846#define pte_alloc_map(mm, pmd, address) \
847 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
848 NULL: pte_offset_map(pmd, address))
849
c74df32c
HD
850#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
851 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
852 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
853
1bb3630e
HD
854#define pte_alloc_kernel(pmd, address) \
855 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
856 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
857
858extern void free_area_init(unsigned long * zones_size);
859extern void free_area_init_node(int nid, pg_data_t *pgdat,
860 unsigned long * zones_size, unsigned long zone_start_pfn,
861 unsigned long *zholes_size);
862extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
3947be19 863extern void setup_per_zone_pages_min(void);
1da177e4
LT
864extern void mem_init(void);
865extern void show_mem(void);
866extern void si_meminfo(struct sysinfo * val);
867extern void si_meminfo_node(struct sysinfo *val, int nid);
868
e7c8d5c9
CL
869#ifdef CONFIG_NUMA
870extern void setup_per_cpu_pageset(void);
871#else
872static inline void setup_per_cpu_pageset(void) {}
873#endif
874
1da177e4
LT
875/* prio_tree.c */
876void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
877void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
878void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
879struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
880 struct prio_tree_iter *iter);
881
882#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
883 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
884 (vma = vma_prio_tree_next(vma, iter)); )
885
886static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
887 struct list_head *list)
888{
889 vma->shared.vm_set.parent = NULL;
890 list_add_tail(&vma->shared.vm_set.list, list);
891}
892
893/* mmap.c */
894extern int __vm_enough_memory(long pages, int cap_sys_admin);
895extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
896 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
897extern struct vm_area_struct *vma_merge(struct mm_struct *,
898 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
899 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
900 struct mempolicy *);
901extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
902extern int split_vma(struct mm_struct *,
903 struct vm_area_struct *, unsigned long addr, int new_below);
904extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
905extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
906 struct rb_node **, struct rb_node *);
a8fb5618 907extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
908extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
909 unsigned long addr, unsigned long len, pgoff_t pgoff);
910extern void exit_mmap(struct mm_struct *);
119f657c 911extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1da177e4
LT
912
913extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
914
915extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
916 unsigned long len, unsigned long prot,
917 unsigned long flag, unsigned long pgoff);
918
919static inline unsigned long do_mmap(struct file *file, unsigned long addr,
920 unsigned long len, unsigned long prot,
921 unsigned long flag, unsigned long offset)
922{
923 unsigned long ret = -EINVAL;
924 if ((offset + PAGE_ALIGN(len)) < offset)
925 goto out;
926 if (!(offset & ~PAGE_MASK))
927 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
928out:
929 return ret;
930}
931
932extern int do_munmap(struct mm_struct *, unsigned long, size_t);
933
934extern unsigned long do_brk(unsigned long, unsigned long);
935
936/* filemap.c */
937extern unsigned long page_unuse(struct page *);
938extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
939extern void truncate_inode_pages_range(struct address_space *,
940 loff_t lstart, loff_t lend);
1da177e4
LT
941
942/* generic vm_area_ops exported for stackable file systems */
943extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
944extern int filemap_populate(struct vm_area_struct *, unsigned long,
945 unsigned long, pgprot_t, unsigned long, int);
946
947/* mm/page-writeback.c */
948int write_one_page(struct page *page, int wait);
949
950/* readahead.c */
951#define VM_MAX_READAHEAD 128 /* kbytes */
952#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
953#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
954 * turning readahead off */
955
956int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 957 pgoff_t offset, unsigned long nr_to_read);
1da177e4 958int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8
AM
959 pgoff_t offset, unsigned long nr_to_read);
960unsigned long page_cache_readahead(struct address_space *mapping,
1da177e4
LT
961 struct file_ra_state *ra,
962 struct file *filp,
7361f4d8 963 pgoff_t offset,
1da177e4
LT
964 unsigned long size);
965void handle_ra_miss(struct address_space *mapping,
966 struct file_ra_state *ra, pgoff_t offset);
967unsigned long max_sane_readahead(unsigned long nr);
968
969/* Do stack extension */
46dea3d0 970extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 971#ifdef CONFIG_IA64
46dea3d0 972extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 973#endif
1da177e4
LT
974
975/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
976extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
977extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
978 struct vm_area_struct **pprev);
979
980/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
981 NULL if none. Assume start_addr < end_addr. */
982static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
983{
984 struct vm_area_struct * vma = find_vma(mm,start_addr);
985
986 if (vma && end_addr <= vma->vm_start)
987 vma = NULL;
988 return vma;
989}
990
991static inline unsigned long vma_pages(struct vm_area_struct *vma)
992{
993 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
994}
995
deceb6cd
HD
996struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
997struct page *vmalloc_to_page(void *addr);
998unsigned long vmalloc_to_pfn(void *addr);
999int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1000 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1001int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
deceb6cd 1002
6aab341e 1003struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1004 unsigned int foll_flags);
1005#define FOLL_WRITE 0x01 /* check pte is writable */
1006#define FOLL_TOUCH 0x02 /* mark page accessed */
1007#define FOLL_GET 0x04 /* do get_page on page */
1008#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4
LT
1009
1010#ifdef CONFIG_PROC_FS
ab50b8ed 1011void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1012#else
ab50b8ed 1013static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1014 unsigned long flags, struct file *file, long pages)
1015{
1016}
1017#endif /* CONFIG_PROC_FS */
1018
1da177e4
LT
1019#ifndef CONFIG_DEBUG_PAGEALLOC
1020static inline void
1021kernel_map_pages(struct page *page, int numpages, int enable)
1022{
de5097c2
IM
1023 if (!PageHighMem(page) && !enable)
1024 mutex_debug_check_no_locks_freed(page_address(page),
a4fc7ab1 1025 numpages * PAGE_SIZE);
1da177e4
LT
1026}
1027#endif
1028
1029extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1030#ifdef __HAVE_ARCH_GATE_AREA
1031int in_gate_area_no_task(unsigned long addr);
1032int in_gate_area(struct task_struct *task, unsigned long addr);
1033#else
1034int in_gate_area_no_task(unsigned long addr);
1035#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1036#endif /* __HAVE_ARCH_GATE_AREA */
1037
79befd0c
AA
1038/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
1039#define OOM_DISABLE -17
1040
9d0243bc
AM
1041int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1042 void __user *, size_t *, loff_t *);
1043int shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1044 unsigned long lru_pages);
1045void drop_pagecache(void);
1046void drop_slab(void);
1047
7a9166e3
LY
1048#ifndef CONFIG_MMU
1049#define randomize_va_space 0
1050#else
a62eaf15 1051extern int randomize_va_space;
7a9166e3 1052#endif
a62eaf15 1053
1da177e4
LT
1054#endif /* __KERNEL__ */
1055#endif /* _LINUX_MM_H */