mm: mempolicy: Use _PAGE_NUMA to migrate pages
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
1da177e4
LT
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
27ac792c
AR
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
1da177e4
LT
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
c43692e8
CL
61extern struct kmem_cache *vm_area_cachep;
62
1da177e4 63#ifndef CONFIG_MMU
8feae131
DH
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
605d9288 71 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 72 */
cc2383ec
KK
73#define VM_NONE 0x00000000
74
1da177e4
LT
75#define VM_READ 0x00000001 /* currently active flags */
76#define VM_WRITE 0x00000002
77#define VM_EXEC 0x00000004
78#define VM_SHARED 0x00000008
79
7e2cff42 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82#define VM_MAYWRITE 0x00000020
83#define VM_MAYEXEC 0x00000040
84#define VM_MAYSHARE 0x00000080
85
86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
1da177e4
LT
90#define VM_LOCKED 0x00002000
91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 99#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 100#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
101#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 103#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 104#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 105
b379d790 106#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
107#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 109#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 110
cc2383ec
KK
111#if defined(CONFIG_X86)
112# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113#elif defined(CONFIG_PPC)
114# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115#elif defined(CONFIG_PARISC)
116# define VM_GROWSUP VM_ARCH_1
117#elif defined(CONFIG_IA64)
118# define VM_GROWSUP VM_ARCH_1
119#elif !defined(CONFIG_MMU)
120# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
121#endif
122
123#ifndef VM_GROWSUP
124# define VM_GROWSUP VM_NONE
125#endif
126
a8bef8ff
MG
127/* Bits set in the VMA until the stack is in its final location */
128#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
129
1da177e4
LT
130#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
131#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132#endif
133
134#ifdef CONFIG_STACK_GROWSUP
135#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136#else
137#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138#endif
139
140#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
141#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
142#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
143#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
144#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
145
b291f000 146/*
78f11a25
AA
147 * Special vmas that are non-mergable, non-mlock()able.
148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 149 */
314e51b9 150#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 151
1da177e4
LT
152/*
153 * mapping from the currently active vm_flags protection bits (the
154 * low four bits) to a page protection mask..
155 */
156extern pgprot_t protection_map[16];
157
d0217ac0
NP
158#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
159#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 160#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 161#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 162#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 163#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 164#define FAULT_FLAG_TRIED 0x40 /* second try */
d0217ac0 165
54cb8821 166/*
d0217ac0 167 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
168 * ->fault function. The vma's ->fault is responsible for returning a bitmask
169 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 170 *
d0217ac0 171 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 172 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 173 */
d0217ac0
NP
174struct vm_fault {
175 unsigned int flags; /* FAULT_FLAG_xxx flags */
176 pgoff_t pgoff; /* Logical page offset based on vma */
177 void __user *virtual_address; /* Faulting virtual address */
178
179 struct page *page; /* ->fault handlers should return a
83c54070 180 * page here, unless VM_FAULT_NOPAGE
d0217ac0 181 * is set (which is also implied by
83c54070 182 * VM_FAULT_ERROR).
d0217ac0 183 */
54cb8821 184};
1da177e4
LT
185
186/*
187 * These are the virtual MM functions - opening of an area, closing and
188 * unmapping it (needed to keep files on disk up-to-date etc), pointer
189 * to the functions called when a no-page or a wp-page exception occurs.
190 */
191struct vm_operations_struct {
192 void (*open)(struct vm_area_struct * area);
193 void (*close)(struct vm_area_struct * area);
d0217ac0 194 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
195
196 /* notification that a previously read-only page is about to become
197 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 198 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
199
200 /* called by access_process_vm when get_user_pages() fails, typically
201 * for use by special VMAs that can switch between memory and hardware
202 */
203 int (*access)(struct vm_area_struct *vma, unsigned long addr,
204 void *buf, int len, int write);
1da177e4 205#ifdef CONFIG_NUMA
a6020ed7
LS
206 /*
207 * set_policy() op must add a reference to any non-NULL @new mempolicy
208 * to hold the policy upon return. Caller should pass NULL @new to
209 * remove a policy and fall back to surrounding context--i.e. do not
210 * install a MPOL_DEFAULT policy, nor the task or system default
211 * mempolicy.
212 */
1da177e4 213 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
214
215 /*
216 * get_policy() op must add reference [mpol_get()] to any policy at
217 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
218 * in mm/mempolicy.c will do this automatically.
219 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
220 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
221 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
222 * must return NULL--i.e., do not "fallback" to task or system default
223 * policy.
224 */
1da177e4
LT
225 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
226 unsigned long addr);
7b2259b3
CL
227 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
228 const nodemask_t *to, unsigned long flags);
1da177e4 229#endif
0b173bc4
KK
230 /* called by sys_remap_file_pages() to populate non-linear mapping */
231 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
232 unsigned long size, pgoff_t pgoff);
1da177e4
LT
233};
234
235struct mmu_gather;
236struct inode;
237
349aef0b
AM
238#define page_private(page) ((page)->private)
239#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 240
b12c4ad1
MK
241/* It's valid only if the page is free path or free_list */
242static inline void set_freepage_migratetype(struct page *page, int migratetype)
243{
95e34412 244 page->index = migratetype;
b12c4ad1
MK
245}
246
247/* It's valid only if the page is free path or free_list */
248static inline int get_freepage_migratetype(struct page *page)
249{
95e34412 250 return page->index;
b12c4ad1
MK
251}
252
1da177e4
LT
253/*
254 * FIXME: take this include out, include page-flags.h in
255 * files which need it (119 of them)
256 */
257#include <linux/page-flags.h>
71e3aac0 258#include <linux/huge_mm.h>
1da177e4
LT
259
260/*
261 * Methods to modify the page usage count.
262 *
263 * What counts for a page usage:
264 * - cache mapping (page->mapping)
265 * - private data (page->private)
266 * - page mapped in a task's page tables, each mapping
267 * is counted separately
268 *
269 * Also, many kernel routines increase the page count before a critical
270 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
271 */
272
273/*
da6052f7 274 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 275 */
7c8ee9a8
NP
276static inline int put_page_testzero(struct page *page)
277{
725d704e 278 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 279 return atomic_dec_and_test(&page->_count);
7c8ee9a8 280}
1da177e4
LT
281
282/*
7c8ee9a8
NP
283 * Try to grab a ref unless the page has a refcount of zero, return false if
284 * that is the case.
1da177e4 285 */
7c8ee9a8
NP
286static inline int get_page_unless_zero(struct page *page)
287{
8dc04efb 288 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 289}
1da177e4 290
53df8fdc
WF
291extern int page_is_ram(unsigned long pfn);
292
48667e7a 293/* Support for virtually mapped pages */
b3bdda02
CL
294struct page *vmalloc_to_page(const void *addr);
295unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 296
0738c4bb
PM
297/*
298 * Determine if an address is within the vmalloc range
299 *
300 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
301 * is no special casing required.
302 */
9e2779fa
CL
303static inline int is_vmalloc_addr(const void *x)
304{
0738c4bb 305#ifdef CONFIG_MMU
9e2779fa
CL
306 unsigned long addr = (unsigned long)x;
307
308 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
309#else
310 return 0;
8ca3ed87 311#endif
0738c4bb 312}
81ac3ad9
KH
313#ifdef CONFIG_MMU
314extern int is_vmalloc_or_module_addr(const void *x);
315#else
934831d0 316static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
317{
318 return 0;
319}
320#endif
9e2779fa 321
e9da73d6
AA
322static inline void compound_lock(struct page *page)
323{
324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 325 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
326 bit_spin_lock(PG_compound_lock, &page->flags);
327#endif
328}
329
330static inline void compound_unlock(struct page *page)
331{
332#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 333 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
334 bit_spin_unlock(PG_compound_lock, &page->flags);
335#endif
336}
337
338static inline unsigned long compound_lock_irqsave(struct page *page)
339{
340 unsigned long uninitialized_var(flags);
341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 local_irq_save(flags);
343 compound_lock(page);
344#endif
345 return flags;
346}
347
348static inline void compound_unlock_irqrestore(struct page *page,
349 unsigned long flags)
350{
351#ifdef CONFIG_TRANSPARENT_HUGEPAGE
352 compound_unlock(page);
353 local_irq_restore(flags);
354#endif
355}
356
d85f3385
CL
357static inline struct page *compound_head(struct page *page)
358{
6d777953 359 if (unlikely(PageTail(page)))
d85f3385
CL
360 return page->first_page;
361 return page;
362}
363
70b50f94
AA
364/*
365 * The atomic page->_mapcount, starts from -1: so that transitions
366 * both from it and to it can be tracked, using atomic_inc_and_test
367 * and atomic_add_negative(-1).
368 */
369static inline void reset_page_mapcount(struct page *page)
370{
371 atomic_set(&(page)->_mapcount, -1);
372}
373
374static inline int page_mapcount(struct page *page)
375{
376 return atomic_read(&(page)->_mapcount) + 1;
377}
378
4c21e2f2 379static inline int page_count(struct page *page)
1da177e4 380{
d85f3385 381 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
382}
383
b35a35b5
AA
384static inline void get_huge_page_tail(struct page *page)
385{
386 /*
387 * __split_huge_page_refcount() cannot run
388 * from under us.
389 */
390 VM_BUG_ON(page_mapcount(page) < 0);
391 VM_BUG_ON(atomic_read(&page->_count) != 0);
392 atomic_inc(&page->_mapcount);
393}
394
70b50f94
AA
395extern bool __get_page_tail(struct page *page);
396
1da177e4
LT
397static inline void get_page(struct page *page)
398{
70b50f94
AA
399 if (unlikely(PageTail(page)))
400 if (likely(__get_page_tail(page)))
401 return;
91807063
AA
402 /*
403 * Getting a normal page or the head of a compound page
70b50f94 404 * requires to already have an elevated page->_count.
91807063 405 */
70b50f94 406 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
407 atomic_inc(&page->_count);
408}
409
b49af68f
CL
410static inline struct page *virt_to_head_page(const void *x)
411{
412 struct page *page = virt_to_page(x);
413 return compound_head(page);
414}
415
7835e98b
NP
416/*
417 * Setup the page count before being freed into the page allocator for
418 * the first time (boot or memory hotplug)
419 */
420static inline void init_page_count(struct page *page)
421{
422 atomic_set(&page->_count, 1);
423}
424
5f24ce5f
AA
425/*
426 * PageBuddy() indicate that the page is free and in the buddy system
427 * (see mm/page_alloc.c).
ef2b4b95
AA
428 *
429 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
430 * -2 so that an underflow of the page_mapcount() won't be mistaken
431 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
432 * efficiently by most CPU architectures.
5f24ce5f 433 */
ef2b4b95
AA
434#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
435
5f24ce5f
AA
436static inline int PageBuddy(struct page *page)
437{
ef2b4b95 438 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
439}
440
441static inline void __SetPageBuddy(struct page *page)
442{
443 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 444 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
445}
446
447static inline void __ClearPageBuddy(struct page *page)
448{
449 VM_BUG_ON(!PageBuddy(page));
450 atomic_set(&page->_mapcount, -1);
451}
452
1da177e4 453void put_page(struct page *page);
1d7ea732 454void put_pages_list(struct list_head *pages);
1da177e4 455
8dfcc9ba 456void split_page(struct page *page, unsigned int order);
748446bb 457int split_free_page(struct page *page);
1fb3f8ca 458int capture_free_page(struct page *page, int alloc_order, int migratetype);
8dfcc9ba 459
33f2ef89
AW
460/*
461 * Compound pages have a destructor function. Provide a
462 * prototype for that function and accessor functions.
463 * These are _only_ valid on the head of a PG_compound page.
464 */
465typedef void compound_page_dtor(struct page *);
466
467static inline void set_compound_page_dtor(struct page *page,
468 compound_page_dtor *dtor)
469{
470 page[1].lru.next = (void *)dtor;
471}
472
473static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
474{
475 return (compound_page_dtor *)page[1].lru.next;
476}
477
d85f3385
CL
478static inline int compound_order(struct page *page)
479{
6d777953 480 if (!PageHead(page))
d85f3385
CL
481 return 0;
482 return (unsigned long)page[1].lru.prev;
483}
484
37c2ac78
AA
485static inline int compound_trans_order(struct page *page)
486{
487 int order;
488 unsigned long flags;
489
490 if (!PageHead(page))
491 return 0;
492
493 flags = compound_lock_irqsave(page);
494 order = compound_order(page);
495 compound_unlock_irqrestore(page, flags);
496 return order;
497}
498
d85f3385
CL
499static inline void set_compound_order(struct page *page, unsigned long order)
500{
501 page[1].lru.prev = (void *)order;
502}
503
3dece370 504#ifdef CONFIG_MMU
14fd403f
AA
505/*
506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
507 * servicing faults for write access. In the normal case, do always want
508 * pte_mkwrite. But get_user_pages can cause write faults for mappings
509 * that do not have writing enabled, when used by access_process_vm.
510 */
511static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512{
513 if (likely(vma->vm_flags & VM_WRITE))
514 pte = pte_mkwrite(pte);
515 return pte;
516}
3dece370 517#endif
14fd403f 518
1da177e4
LT
519/*
520 * Multiple processes may "see" the same page. E.g. for untouched
521 * mappings of /dev/null, all processes see the same page full of
522 * zeroes, and text pages of executables and shared libraries have
523 * only one copy in memory, at most, normally.
524 *
525 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
526 * page_count() == 0 means the page is free. page->lru is then used for
527 * freelist management in the buddy allocator.
da6052f7 528 * page_count() > 0 means the page has been allocated.
1da177e4 529 *
da6052f7
NP
530 * Pages are allocated by the slab allocator in order to provide memory
531 * to kmalloc and kmem_cache_alloc. In this case, the management of the
532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533 * unless a particular usage is carefully commented. (the responsibility of
534 * freeing the kmalloc memory is the caller's, of course).
1da177e4 535 *
da6052f7
NP
536 * A page may be used by anyone else who does a __get_free_page().
537 * In this case, page_count still tracks the references, and should only
538 * be used through the normal accessor functions. The top bits of page->flags
539 * and page->virtual store page management information, but all other fields
540 * are unused and could be used privately, carefully. The management of this
541 * page is the responsibility of the one who allocated it, and those who have
542 * subsequently been given references to it.
543 *
544 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
545 * managed by the Linux memory manager: I/O, buffers, swapping etc.
546 * The following discussion applies only to them.
547 *
da6052f7
NP
548 * A pagecache page contains an opaque `private' member, which belongs to the
549 * page's address_space. Usually, this is the address of a circular list of
550 * the page's disk buffers. PG_private must be set to tell the VM to call
551 * into the filesystem to release these pages.
1da177e4 552 *
da6052f7
NP
553 * A page may belong to an inode's memory mapping. In this case, page->mapping
554 * is the pointer to the inode, and page->index is the file offset of the page,
555 * in units of PAGE_CACHE_SIZE.
1da177e4 556 *
da6052f7
NP
557 * If pagecache pages are not associated with an inode, they are said to be
558 * anonymous pages. These may become associated with the swapcache, and in that
559 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 560 *
da6052f7
NP
561 * In either case (swapcache or inode backed), the pagecache itself holds one
562 * reference to the page. Setting PG_private should also increment the
563 * refcount. The each user mapping also has a reference to the page.
1da177e4 564 *
da6052f7
NP
565 * The pagecache pages are stored in a per-mapping radix tree, which is
566 * rooted at mapping->page_tree, and indexed by offset.
567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 569 *
da6052f7 570 * All pagecache pages may be subject to I/O:
1da177e4
LT
571 * - inode pages may need to be read from disk,
572 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
573 * to be written back to the inode on disk,
574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575 * modified may need to be swapped out to swap space and (later) to be read
576 * back into memory.
1da177e4
LT
577 */
578
579/*
580 * The zone field is never updated after free_area_init_core()
581 * sets it, so none of the operations on it need to be atomic.
1da177e4 582 */
348f8b6c 583
d41dee36
AW
584
585/*
586 * page->flags layout:
587 *
588 * There are three possibilities for how page->flags get
589 * laid out. The first is for the normal case, without
590 * sparsemem. The second is for sparsemem when there is
591 * plenty of space for node and section. The last is when
592 * we have run out of space and have to fall back to an
593 * alternate (slower) way of determining the node.
594 *
308c05e3
CL
595 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
596 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
597 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 598 */
308c05e3 599#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
600#define SECTIONS_WIDTH SECTIONS_SHIFT
601#else
602#define SECTIONS_WIDTH 0
603#endif
604
605#define ZONES_WIDTH ZONES_SHIFT
606
9223b419 607#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
608#define NODES_WIDTH NODES_SHIFT
609#else
308c05e3
CL
610#ifdef CONFIG_SPARSEMEM_VMEMMAP
611#error "Vmemmap: No space for nodes field in page flags"
612#endif
d41dee36
AW
613#define NODES_WIDTH 0
614#endif
615
616/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 617#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
618#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
619#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
620
621/*
622 * We are going to use the flags for the page to node mapping if its in
623 * there. This includes the case where there is no node, so it is implicit.
624 */
89689ae7
CL
625#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
626#define NODE_NOT_IN_PAGE_FLAGS
627#endif
d41dee36 628
348f8b6c 629/*
25985edc 630 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
631 * sections we define the shift as 0; that plus a 0 mask ensures
632 * the compiler will optimise away reference to them.
633 */
d41dee36
AW
634#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
636#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 637
bce54bbf
WD
638/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
639#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 640#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
641#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
642 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 643#else
89689ae7 644#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
645#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
646 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
647#endif
648
bd8029b6 649#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 650
9223b419
CL
651#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
652#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
653#endif
654
d41dee36
AW
655#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
656#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
657#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 658#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 659
33dd4e0e 660static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 661{
348f8b6c 662 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 663}
1da177e4 664
89689ae7
CL
665/*
666 * The identification function is only used by the buddy allocator for
667 * determining if two pages could be buddies. We are not really
668 * identifying a zone since we could be using a the section number
669 * id if we have not node id available in page flags.
670 * We guarantee only that it will return the same value for two
671 * combinable pages in a zone.
672 */
cb2b95e1
AW
673static inline int page_zone_id(struct page *page)
674{
89689ae7 675 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
676}
677
25ba77c1 678static inline int zone_to_nid(struct zone *zone)
89fa3024 679{
d5f541ed
CL
680#ifdef CONFIG_NUMA
681 return zone->node;
682#else
683 return 0;
684#endif
89fa3024
CL
685}
686
89689ae7 687#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 688extern int page_to_nid(const struct page *page);
89689ae7 689#else
33dd4e0e 690static inline int page_to_nid(const struct page *page)
d41dee36 691{
89689ae7 692 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 693}
89689ae7
CL
694#endif
695
33dd4e0e 696static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
697{
698 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
699}
700
308c05e3 701#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
702static inline void set_page_section(struct page *page, unsigned long section)
703{
704 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
705 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
706}
707
aa462abe 708static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
709{
710 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
711}
308c05e3 712#endif
d41dee36 713
2f1b6248 714static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
715{
716 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
717 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
718}
2f1b6248 719
348f8b6c
DH
720static inline void set_page_node(struct page *page, unsigned long node)
721{
722 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
723 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 724}
89689ae7 725
2f1b6248 726static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 727 unsigned long node, unsigned long pfn)
1da177e4 728{
348f8b6c
DH
729 set_page_zone(page, zone);
730 set_page_node(page, node);
bf4e8902 731#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 732 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 733#endif
1da177e4
LT
734}
735
f6ac2354
CL
736/*
737 * Some inline functions in vmstat.h depend on page_zone()
738 */
739#include <linux/vmstat.h>
740
33dd4e0e 741static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 742{
aa462abe 743 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
744}
745
746#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
747#define HASHED_PAGE_VIRTUAL
748#endif
749
750#if defined(WANT_PAGE_VIRTUAL)
751#define page_address(page) ((page)->virtual)
752#define set_page_address(page, address) \
753 do { \
754 (page)->virtual = (address); \
755 } while(0)
756#define page_address_init() do { } while(0)
757#endif
758
759#if defined(HASHED_PAGE_VIRTUAL)
f9918794 760void *page_address(const struct page *page);
1da177e4
LT
761void set_page_address(struct page *page, void *virtual);
762void page_address_init(void);
763#endif
764
765#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
766#define page_address(page) lowmem_page_address(page)
767#define set_page_address(page, address) do { } while(0)
768#define page_address_init() do { } while(0)
769#endif
770
771/*
772 * On an anonymous page mapped into a user virtual memory area,
773 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
774 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
775 *
776 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
777 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
778 * and then page->mapping points, not to an anon_vma, but to a private
779 * structure which KSM associates with that merged page. See ksm.h.
780 *
781 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
782 *
783 * Please note that, confusingly, "page_mapping" refers to the inode
784 * address_space which maps the page from disk; whereas "page_mapped"
785 * refers to user virtual address space into which the page is mapped.
786 */
787#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
788#define PAGE_MAPPING_KSM 2
789#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
790
791extern struct address_space swapper_space;
792static inline struct address_space *page_mapping(struct page *page)
793{
794 struct address_space *mapping = page->mapping;
795
b5fab14e 796 VM_BUG_ON(PageSlab(page));
1da177e4
LT
797 if (unlikely(PageSwapCache(page)))
798 mapping = &swapper_space;
e20e8779 799 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
800 mapping = NULL;
801 return mapping;
802}
803
3ca7b3c5
HD
804/* Neutral page->mapping pointer to address_space or anon_vma or other */
805static inline void *page_rmapping(struct page *page)
806{
807 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
808}
809
f981c595
MG
810extern struct address_space *__page_file_mapping(struct page *);
811
812static inline
813struct address_space *page_file_mapping(struct page *page)
814{
815 if (unlikely(PageSwapCache(page)))
816 return __page_file_mapping(page);
817
818 return page->mapping;
819}
820
1da177e4
LT
821static inline int PageAnon(struct page *page)
822{
823 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
824}
825
826/*
827 * Return the pagecache index of the passed page. Regular pagecache pages
828 * use ->index whereas swapcache pages use ->private
829 */
830static inline pgoff_t page_index(struct page *page)
831{
832 if (unlikely(PageSwapCache(page)))
4c21e2f2 833 return page_private(page);
1da177e4
LT
834 return page->index;
835}
836
f981c595
MG
837extern pgoff_t __page_file_index(struct page *page);
838
839/*
840 * Return the file index of the page. Regular pagecache pages use ->index
841 * whereas swapcache pages use swp_offset(->private)
842 */
843static inline pgoff_t page_file_index(struct page *page)
844{
845 if (unlikely(PageSwapCache(page)))
846 return __page_file_index(page);
847
848 return page->index;
849}
850
1da177e4
LT
851/*
852 * Return true if this page is mapped into pagetables.
853 */
854static inline int page_mapped(struct page *page)
855{
856 return atomic_read(&(page)->_mapcount) >= 0;
857}
858
1da177e4
LT
859/*
860 * Different kinds of faults, as returned by handle_mm_fault().
861 * Used to decide whether a process gets delivered SIGBUS or
862 * just gets major/minor fault counters bumped up.
863 */
d0217ac0 864
83c54070 865#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 866
83c54070
NP
867#define VM_FAULT_OOM 0x0001
868#define VM_FAULT_SIGBUS 0x0002
869#define VM_FAULT_MAJOR 0x0004
870#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
871#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
872#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 873
83c54070
NP
874#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
875#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 876#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 877
aa50d3a7
AK
878#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
879
880#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
881 VM_FAULT_HWPOISON_LARGE)
882
883/* Encode hstate index for a hwpoisoned large page */
884#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
885#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 886
1c0fe6e3
NP
887/*
888 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
889 */
890extern void pagefault_out_of_memory(void);
891
1da177e4
LT
892#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
893
ddd588b5 894/*
7bf02ea2 895 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
896 * various contexts.
897 */
898#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
899
7bf02ea2
DR
900extern void show_free_areas(unsigned int flags);
901extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 902
1da177e4
LT
903int shmem_zero_setup(struct vm_area_struct *);
904
e8edc6e0 905extern int can_do_mlock(void);
1da177e4
LT
906extern int user_shm_lock(size_t, struct user_struct *);
907extern void user_shm_unlock(size_t, struct user_struct *);
908
909/*
910 * Parameter block passed down to zap_pte_range in exceptional cases.
911 */
912struct zap_details {
913 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
914 struct address_space *check_mapping; /* Check page->mapping if set */
915 pgoff_t first_index; /* Lowest page->index to unmap */
916 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
917};
918
7e675137
NP
919struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
920 pte_t pte);
921
c627f9cc
JS
922int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
923 unsigned long size);
14f5ff5d 924void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 925 unsigned long size, struct zap_details *);
4f74d2c8
LT
926void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
927 unsigned long start, unsigned long end);
e6473092
MM
928
929/**
930 * mm_walk - callbacks for walk_page_range
931 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
932 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
933 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
934 * this handler is required to be able to handle
935 * pmd_trans_huge() pmds. They may simply choose to
936 * split_huge_page() instead of handling it explicitly.
e6473092
MM
937 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
938 * @pte_hole: if set, called for each hole at all levels
5dc37642 939 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
940 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
941 * is used.
e6473092
MM
942 *
943 * (see walk_page_range for more details)
944 */
945struct mm_walk {
2165009b
DH
946 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
947 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
948 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
949 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
950 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
951 int (*hugetlb_entry)(pte_t *, unsigned long,
952 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
953 struct mm_struct *mm;
954 void *private;
e6473092
MM
955};
956
2165009b
DH
957int walk_page_range(unsigned long addr, unsigned long end,
958 struct mm_walk *walk);
42b77728 959void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 960 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
961int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
962 struct vm_area_struct *vma);
1da177e4
LT
963void unmap_mapping_range(struct address_space *mapping,
964 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
965int follow_pfn(struct vm_area_struct *vma, unsigned long address,
966 unsigned long *pfn);
d87fe660 967int follow_phys(struct vm_area_struct *vma, unsigned long address,
968 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
969int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
970 void *buf, int len, int write);
1da177e4
LT
971
972static inline void unmap_shared_mapping_range(struct address_space *mapping,
973 loff_t const holebegin, loff_t const holelen)
974{
975 unmap_mapping_range(mapping, holebegin, holelen, 0);
976}
977
25d9e2d1 978extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 979extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 980extern int vmtruncate(struct inode *inode, loff_t offset);
623e3db9 981void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 982int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 983int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
984int invalidate_inode_page(struct page *page);
985
7ee1dd3f 986#ifdef CONFIG_MMU
83c54070 987extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 988 unsigned long address, unsigned int flags);
5c723ba5
PZ
989extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
990 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
991#else
992static inline int handle_mm_fault(struct mm_struct *mm,
993 struct vm_area_struct *vma, unsigned long address,
d06063cc 994 unsigned int flags)
7ee1dd3f
DH
995{
996 /* should never happen if there's no MMU */
997 BUG();
998 return VM_FAULT_SIGBUS;
999}
5c723ba5
PZ
1000static inline int fixup_user_fault(struct task_struct *tsk,
1001 struct mm_struct *mm, unsigned long address,
1002 unsigned int fault_flags)
1003{
1004 /* should never happen if there's no MMU */
1005 BUG();
1006 return -EFAULT;
1007}
7ee1dd3f 1008#endif
f33ea7f4 1009
1da177e4
LT
1010extern int make_pages_present(unsigned long addr, unsigned long end);
1011extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1012extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1013 void *buf, int len, int write);
1da177e4 1014
0014bd99
HY
1015int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1016 unsigned long start, int len, unsigned int foll_flags,
1017 struct page **pages, struct vm_area_struct **vmas,
1018 int *nonblocking);
d2bf6be8 1019int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1020 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
1021 struct page **pages, struct vm_area_struct **vmas);
1022int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1023 struct page **pages);
18022c5d
MG
1024struct kvec;
1025int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1026 struct page **pages);
1027int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1028struct page *get_dump_page(unsigned long addr);
1da177e4 1029
cf9a2ae8
DH
1030extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1031extern void do_invalidatepage(struct page *page, unsigned long offset);
1032
1da177e4 1033int __set_page_dirty_nobuffers(struct page *page);
76719325 1034int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1035int redirty_page_for_writepage(struct writeback_control *wbc,
1036 struct page *page);
e3a7cca1 1037void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1038void account_page_writeback(struct page *page);
b3c97528 1039int set_page_dirty(struct page *page);
1da177e4
LT
1040int set_page_dirty_lock(struct page *page);
1041int clear_page_dirty_for_io(struct page *page);
1042
39aa3cb3 1043/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1044static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1045{
1046 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1047}
1048
a09a79f6
MP
1049static inline int stack_guard_page_start(struct vm_area_struct *vma,
1050 unsigned long addr)
1051{
1052 return (vma->vm_flags & VM_GROWSDOWN) &&
1053 (vma->vm_start == addr) &&
1054 !vma_growsdown(vma->vm_prev, addr);
1055}
1056
1057/* Is the vma a continuation of the stack vma below it? */
1058static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1059{
1060 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1061}
1062
1063static inline int stack_guard_page_end(struct vm_area_struct *vma,
1064 unsigned long addr)
1065{
1066 return (vma->vm_flags & VM_GROWSUP) &&
1067 (vma->vm_end == addr) &&
1068 !vma_growsup(vma->vm_next, addr);
1069}
1070
b7643757
SP
1071extern pid_t
1072vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1073
b6a2fea3
OW
1074extern unsigned long move_page_tables(struct vm_area_struct *vma,
1075 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1076 unsigned long new_addr, unsigned long len,
1077 bool need_rmap_locks);
1da177e4
LT
1078extern unsigned long do_mremap(unsigned long addr,
1079 unsigned long old_len, unsigned long new_len,
1080 unsigned long flags, unsigned long new_addr);
7da4d641
PZ
1081extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1082 unsigned long end, pgprot_t newprot,
1083 int dirty_accountable);
b6a2fea3
OW
1084extern int mprotect_fixup(struct vm_area_struct *vma,
1085 struct vm_area_struct **pprev, unsigned long start,
1086 unsigned long end, unsigned long newflags);
1da177e4 1087
465a454f
PZ
1088/*
1089 * doesn't attempt to fault and will return short.
1090 */
1091int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1092 struct page **pages);
d559db08
KH
1093/*
1094 * per-process(per-mm_struct) statistics.
1095 */
d559db08
KH
1096static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1097{
69c97823
KK
1098 long val = atomic_long_read(&mm->rss_stat.count[member]);
1099
1100#ifdef SPLIT_RSS_COUNTING
1101 /*
1102 * counter is updated in asynchronous manner and may go to minus.
1103 * But it's never be expected number for users.
1104 */
1105 if (val < 0)
1106 val = 0;
172703b0 1107#endif
69c97823
KK
1108 return (unsigned long)val;
1109}
d559db08
KH
1110
1111static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1112{
172703b0 1113 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1114}
1115
1116static inline void inc_mm_counter(struct mm_struct *mm, int member)
1117{
172703b0 1118 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1119}
1120
1121static inline void dec_mm_counter(struct mm_struct *mm, int member)
1122{
172703b0 1123 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1124}
1125
d559db08
KH
1126static inline unsigned long get_mm_rss(struct mm_struct *mm)
1127{
1128 return get_mm_counter(mm, MM_FILEPAGES) +
1129 get_mm_counter(mm, MM_ANONPAGES);
1130}
1131
1132static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1133{
1134 return max(mm->hiwater_rss, get_mm_rss(mm));
1135}
1136
1137static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1138{
1139 return max(mm->hiwater_vm, mm->total_vm);
1140}
1141
1142static inline void update_hiwater_rss(struct mm_struct *mm)
1143{
1144 unsigned long _rss = get_mm_rss(mm);
1145
1146 if ((mm)->hiwater_rss < _rss)
1147 (mm)->hiwater_rss = _rss;
1148}
1149
1150static inline void update_hiwater_vm(struct mm_struct *mm)
1151{
1152 if (mm->hiwater_vm < mm->total_vm)
1153 mm->hiwater_vm = mm->total_vm;
1154}
1155
1156static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1157 struct mm_struct *mm)
1158{
1159 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1160
1161 if (*maxrss < hiwater_rss)
1162 *maxrss = hiwater_rss;
1163}
1164
53bddb4e 1165#if defined(SPLIT_RSS_COUNTING)
05af2e10 1166void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1167#else
05af2e10 1168static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1169{
1170}
1171#endif
465a454f 1172
4e950f6f 1173int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1174
25ca1d6c
NK
1175extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1176 spinlock_t **ptl);
1177static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1178 spinlock_t **ptl)
1179{
1180 pte_t *ptep;
1181 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1182 return ptep;
1183}
c9cfcddf 1184
5f22df00
NP
1185#ifdef __PAGETABLE_PUD_FOLDED
1186static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1187 unsigned long address)
1188{
1189 return 0;
1190}
1191#else
1bb3630e 1192int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1193#endif
1194
1195#ifdef __PAGETABLE_PMD_FOLDED
1196static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1197 unsigned long address)
1198{
1199 return 0;
1200}
1201#else
1bb3630e 1202int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1203#endif
1204
8ac1f832
AA
1205int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1206 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1207int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1208
1da177e4
LT
1209/*
1210 * The following ifdef needed to get the 4level-fixup.h header to work.
1211 * Remove it when 4level-fixup.h has been removed.
1212 */
1bb3630e 1213#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1214static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1215{
1bb3630e
HD
1216 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1217 NULL: pud_offset(pgd, address);
1da177e4
LT
1218}
1219
1220static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1221{
1bb3630e
HD
1222 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1223 NULL: pmd_offset(pud, address);
1da177e4 1224}
1bb3630e
HD
1225#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1226
f7d0b926 1227#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1228/*
1229 * We tuck a spinlock to guard each pagetable page into its struct page,
1230 * at page->private, with BUILD_BUG_ON to make sure that this will not
1231 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1232 * When freeing, reset page->mapping so free_pages_check won't complain.
1233 */
349aef0b 1234#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1235#define pte_lock_init(_page) do { \
1236 spin_lock_init(__pte_lockptr(_page)); \
1237} while (0)
1238#define pte_lock_deinit(page) ((page)->mapping = NULL)
1239#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1240#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1241/*
1242 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1243 */
1244#define pte_lock_init(page) do {} while (0)
1245#define pte_lock_deinit(page) do {} while (0)
1246#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1247#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1248
2f569afd
MS
1249static inline void pgtable_page_ctor(struct page *page)
1250{
1251 pte_lock_init(page);
1252 inc_zone_page_state(page, NR_PAGETABLE);
1253}
1254
1255static inline void pgtable_page_dtor(struct page *page)
1256{
1257 pte_lock_deinit(page);
1258 dec_zone_page_state(page, NR_PAGETABLE);
1259}
1260
c74df32c
HD
1261#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1262({ \
4c21e2f2 1263 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1264 pte_t *__pte = pte_offset_map(pmd, address); \
1265 *(ptlp) = __ptl; \
1266 spin_lock(__ptl); \
1267 __pte; \
1268})
1269
1270#define pte_unmap_unlock(pte, ptl) do { \
1271 spin_unlock(ptl); \
1272 pte_unmap(pte); \
1273} while (0)
1274
8ac1f832
AA
1275#define pte_alloc_map(mm, vma, pmd, address) \
1276 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1277 pmd, address))? \
1278 NULL: pte_offset_map(pmd, address))
1bb3630e 1279
c74df32c 1280#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1281 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1282 pmd, address))? \
c74df32c
HD
1283 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1284
1bb3630e 1285#define pte_alloc_kernel(pmd, address) \
8ac1f832 1286 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1287 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1288
1289extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1290extern void free_area_init_node(int nid, unsigned long * zones_size,
1291 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1292extern void free_initmem(void);
1293
0ee332c1 1294#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1295/*
0ee332c1 1296 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1297 * zones, allocate the backing mem_map and account for memory holes in a more
1298 * architecture independent manner. This is a substitute for creating the
1299 * zone_sizes[] and zholes_size[] arrays and passing them to
1300 * free_area_init_node()
1301 *
1302 * An architecture is expected to register range of page frames backed by
0ee332c1 1303 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1304 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1305 * usage, an architecture is expected to do something like
1306 *
1307 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1308 * max_highmem_pfn};
1309 * for_each_valid_physical_page_range()
0ee332c1 1310 * memblock_add_node(base, size, nid)
c713216d
MG
1311 * free_area_init_nodes(max_zone_pfns);
1312 *
0ee332c1
TH
1313 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1314 * registered physical page range. Similarly
1315 * sparse_memory_present_with_active_regions() calls memory_present() for
1316 * each range when SPARSEMEM is enabled.
c713216d
MG
1317 *
1318 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1319 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1320 */
1321extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1322unsigned long node_map_pfn_alignment(void);
32996250
YL
1323unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1324 unsigned long end_pfn);
c713216d
MG
1325extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1326 unsigned long end_pfn);
1327extern void get_pfn_range_for_nid(unsigned int nid,
1328 unsigned long *start_pfn, unsigned long *end_pfn);
1329extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1330extern void free_bootmem_with_active_regions(int nid,
1331 unsigned long max_low_pfn);
1332extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1333
0ee332c1 1334#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1335
0ee332c1 1336#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1337 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1338static inline int __early_pfn_to_nid(unsigned long pfn)
1339{
1340 return 0;
1341}
1342#else
1343/* please see mm/page_alloc.c */
1344extern int __meminit early_pfn_to_nid(unsigned long pfn);
1345#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1346/* there is a per-arch backend function. */
1347extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1348#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1349#endif
1350
0e0b864e 1351extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1352extern void memmap_init_zone(unsigned long, int, unsigned long,
1353 unsigned long, enum memmap_context);
bc75d33f 1354extern void setup_per_zone_wmarks(void);
1b79acc9 1355extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1356extern void mem_init(void);
8feae131 1357extern void __init mmap_init(void);
b2b755b5 1358extern void show_mem(unsigned int flags);
1da177e4
LT
1359extern void si_meminfo(struct sysinfo * val);
1360extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1361extern int after_bootmem;
1da177e4 1362
3ee9a4f0
JP
1363extern __printf(3, 4)
1364void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1365
e7c8d5c9 1366extern void setup_per_cpu_pageset(void);
e7c8d5c9 1367
112067f0 1368extern void zone_pcp_update(struct zone *zone);
340175b7 1369extern void zone_pcp_reset(struct zone *zone);
112067f0 1370
8feae131 1371/* nommu.c */
33e5d769 1372extern atomic_long_t mmap_pages_allocated;
7e660872 1373extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1374
6b2dbba8 1375/* interval_tree.c */
6b2dbba8
ML
1376void vma_interval_tree_insert(struct vm_area_struct *node,
1377 struct rb_root *root);
9826a516
ML
1378void vma_interval_tree_insert_after(struct vm_area_struct *node,
1379 struct vm_area_struct *prev,
1380 struct rb_root *root);
6b2dbba8
ML
1381void vma_interval_tree_remove(struct vm_area_struct *node,
1382 struct rb_root *root);
1383struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1384 unsigned long start, unsigned long last);
1385struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1386 unsigned long start, unsigned long last);
1387
1388#define vma_interval_tree_foreach(vma, root, start, last) \
1389 for (vma = vma_interval_tree_iter_first(root, start, last); \
1390 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1391
1392static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1393 struct list_head *list)
1394{
6b2dbba8 1395 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1396}
1397
bf181b9f
ML
1398void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1399 struct rb_root *root);
1400void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1401 struct rb_root *root);
1402struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1403 struct rb_root *root, unsigned long start, unsigned long last);
1404struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1405 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1406#ifdef CONFIG_DEBUG_VM_RB
1407void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1408#endif
bf181b9f
ML
1409
1410#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1411 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1412 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1413
1da177e4 1414/* mmap.c */
34b4e4aa 1415extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1416extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1417 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1418extern struct vm_area_struct *vma_merge(struct mm_struct *,
1419 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1420 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1421 struct mempolicy *);
1422extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1423extern int split_vma(struct mm_struct *,
1424 struct vm_area_struct *, unsigned long addr, int new_below);
1425extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1426extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1427 struct rb_node **, struct rb_node *);
a8fb5618 1428extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1429extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1430 unsigned long addr, unsigned long len, pgoff_t pgoff,
1431 bool *need_rmap_locks);
1da177e4 1432extern void exit_mmap(struct mm_struct *);
925d1c40 1433
7906d00c
AA
1434extern int mm_take_all_locks(struct mm_struct *mm);
1435extern void mm_drop_all_locks(struct mm_struct *mm);
1436
38646013
JS
1437extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1438extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1439
119f657c 1440extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1441extern int install_special_mapping(struct mm_struct *mm,
1442 unsigned long addr, unsigned long len,
1443 unsigned long flags, struct page **pages);
1da177e4
LT
1444
1445extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1446
0165ab44
MS
1447extern unsigned long mmap_region(struct file *file, unsigned long addr,
1448 unsigned long len, unsigned long flags,
ca16d140 1449 vm_flags_t vm_flags, unsigned long pgoff);
e3fc629d 1450extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
6be5ceb0
LT
1451 unsigned long, unsigned long,
1452 unsigned long, unsigned long);
1da177e4
LT
1453extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1454
e4eb1ff6
LT
1455/* These take the mm semaphore themselves */
1456extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1457extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1458extern unsigned long vm_mmap(struct file *, unsigned long,
1459 unsigned long, unsigned long,
1460 unsigned long, unsigned long);
1da177e4 1461
85821aab 1462/* truncate.c */
1da177e4 1463extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1464extern void truncate_inode_pages_range(struct address_space *,
1465 loff_t lstart, loff_t lend);
1da177e4
LT
1466
1467/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1468extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1469extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1470
1471/* mm/page-writeback.c */
1472int write_one_page(struct page *page, int wait);
1cf6e7d8 1473void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1474
1475/* readahead.c */
1476#define VM_MAX_READAHEAD 128 /* kbytes */
1477#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1478
1da177e4 1479int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1480 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1481
1482void page_cache_sync_readahead(struct address_space *mapping,
1483 struct file_ra_state *ra,
1484 struct file *filp,
1485 pgoff_t offset,
1486 unsigned long size);
1487
1488void page_cache_async_readahead(struct address_space *mapping,
1489 struct file_ra_state *ra,
1490 struct file *filp,
1491 struct page *pg,
1492 pgoff_t offset,
1493 unsigned long size);
1494
1da177e4 1495unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1496unsigned long ra_submit(struct file_ra_state *ra,
1497 struct address_space *mapping,
1498 struct file *filp);
1da177e4 1499
d05f3169 1500/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1501extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1502
1503/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1504extern int expand_downwards(struct vm_area_struct *vma,
1505 unsigned long address);
8ca3eb08 1506#if VM_GROWSUP
46dea3d0 1507extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1508#else
1509 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1510#endif
1da177e4
LT
1511
1512/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1513extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1514extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1515 struct vm_area_struct **pprev);
1516
1517/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1518 NULL if none. Assume start_addr < end_addr. */
1519static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1520{
1521 struct vm_area_struct * vma = find_vma(mm,start_addr);
1522
1523 if (vma && end_addr <= vma->vm_start)
1524 vma = NULL;
1525 return vma;
1526}
1527
1528static inline unsigned long vma_pages(struct vm_area_struct *vma)
1529{
1530 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1531}
1532
640708a2
PE
1533/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1534static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1535 unsigned long vm_start, unsigned long vm_end)
1536{
1537 struct vm_area_struct *vma = find_vma(mm, vm_start);
1538
1539 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1540 vma = NULL;
1541
1542 return vma;
1543}
1544
bad849b3 1545#ifdef CONFIG_MMU
804af2cf 1546pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1547#else
1548static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1549{
1550 return __pgprot(0);
1551}
1552#endif
1553
deceb6cd 1554struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1555int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1556 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1557int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1558int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1559 unsigned long pfn);
423bad60
NP
1560int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1561 unsigned long pfn);
deceb6cd 1562
6aab341e 1563struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1564 unsigned int foll_flags);
1565#define FOLL_WRITE 0x01 /* check pte is writable */
1566#define FOLL_TOUCH 0x02 /* mark page accessed */
1567#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1568#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1569#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1570#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1571 * and return without waiting upon it */
110d74a9 1572#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1573#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1574#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1575#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1da177e4 1576
2f569afd 1577typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1578 void *data);
1579extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1580 unsigned long size, pte_fn_t fn, void *data);
1581
1da177e4 1582#ifdef CONFIG_PROC_FS
ab50b8ed 1583void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1584#else
ab50b8ed 1585static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1586 unsigned long flags, struct file *file, long pages)
1587{
44de9d0c 1588 mm->total_vm += pages;
1da177e4
LT
1589}
1590#endif /* CONFIG_PROC_FS */
1591
12d6f21e 1592#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1593extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1594#ifdef CONFIG_HIBERNATION
1595extern bool kernel_page_present(struct page *page);
1596#endif /* CONFIG_HIBERNATION */
12d6f21e 1597#else
1da177e4 1598static inline void
9858db50 1599kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1600#ifdef CONFIG_HIBERNATION
1601static inline bool kernel_page_present(struct page *page) { return true; }
1602#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1603#endif
1604
31db58b3 1605extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1606#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1607int in_gate_area_no_mm(unsigned long addr);
83b964bb 1608int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1609#else
cae5d390
SW
1610int in_gate_area_no_mm(unsigned long addr);
1611#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1612#endif /* __HAVE_ARCH_GATE_AREA */
1613
8d65af78 1614int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1615 void __user *, size_t *, loff_t *);
a09ed5e0 1616unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1617 unsigned long nr_pages_scanned,
1618 unsigned long lru_pages);
9d0243bc 1619
7a9166e3
LY
1620#ifndef CONFIG_MMU
1621#define randomize_va_space 0
1622#else
a62eaf15 1623extern int randomize_va_space;
7a9166e3 1624#endif
a62eaf15 1625
045e72ac 1626const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1627void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1628
9bdac914
YL
1629void sparse_mem_maps_populate_node(struct page **map_map,
1630 unsigned long pnum_begin,
1631 unsigned long pnum_end,
1632 unsigned long map_count,
1633 int nodeid);
1634
98f3cfc1 1635struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1636pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1637pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1638pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1639pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1640void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1641void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1642void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1643int vmemmap_populate_basepages(struct page *start_page,
1644 unsigned long pages, int node);
1645int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1646void vmemmap_populate_print_last(void);
8f6aac41 1647
6a46079c 1648
82ba011b
AK
1649enum mf_flags {
1650 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1651 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1652 MF_MUST_KILL = 1 << 2,
82ba011b 1653};
cd42f4a3 1654extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1655extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1656extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1657extern int sysctl_memory_failure_early_kill;
1658extern int sysctl_memory_failure_recovery;
facb6011 1659extern void shake_page(struct page *p, int access);
6a46079c 1660extern atomic_long_t mce_bad_pages;
facb6011 1661extern int soft_offline_page(struct page *page, int flags);
6a46079c 1662
718a3821
WF
1663extern void dump_page(struct page *page);
1664
47ad8475
AA
1665#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1666extern void clear_huge_page(struct page *page,
1667 unsigned long addr,
1668 unsigned int pages_per_huge_page);
1669extern void copy_user_huge_page(struct page *dst, struct page *src,
1670 unsigned long addr, struct vm_area_struct *vma,
1671 unsigned int pages_per_huge_page);
1672#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1673
c0a32fc5
SG
1674#ifdef CONFIG_DEBUG_PAGEALLOC
1675extern unsigned int _debug_guardpage_minorder;
1676
1677static inline unsigned int debug_guardpage_minorder(void)
1678{
1679 return _debug_guardpage_minorder;
1680}
1681
1682static inline bool page_is_guard(struct page *page)
1683{
1684 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1685}
1686#else
1687static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1688static inline bool page_is_guard(struct page *page) { return false; }
1689#endif /* CONFIG_DEBUG_PAGEALLOC */
1690
1da177e4
LT
1691#endif /* __KERNEL__ */
1692#endif /* _LINUX_MM_H */