mm: optimize compound_head() by avoiding a shared page flag
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/sched.h>
5#include <linux/errno.h>
c59ede7b 6#include <linux/capability.h>
1da177e4
LT
7
8#ifdef __KERNEL__
9
1da177e4
LT
10#include <linux/gfp.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/prio_tree.h>
15#include <linux/fs.h>
de5097c2 16#include <linux/mutex.h>
9a11b49a 17#include <linux/debug_locks.h>
d08b3851 18#include <linux/backing-dev.h>
5b99cd0e 19#include <linux/mm_types.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
23
24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25extern unsigned long max_mapnr;
26#endif
27
28extern unsigned long num_physpages;
29extern void * high_memory;
30extern unsigned long vmalloc_earlyreserve;
31extern int page_cluster;
32
33#ifdef CONFIG_SYSCTL
34extern int sysctl_legacy_va_layout;
35#else
36#define sysctl_legacy_va_layout 0
37#endif
38
39#include <asm/page.h>
40#include <asm/pgtable.h>
41#include <asm/processor.h>
1da177e4 42
1da177e4
LT
43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
45/*
46 * Linux kernel virtual memory manager primitives.
47 * The idea being to have a "virtual" mm in the same way
48 * we have a virtual fs - giving a cleaner interface to the
49 * mm details, and allowing different kinds of memory mappings
50 * (from shared memory to executable loading to arbitrary
51 * mmap() functions).
52 */
53
54/*
55 * This struct defines a memory VMM memory area. There is one of these
56 * per VM-area/task. A VM area is any part of the process virtual memory
57 * space that has a special rule for the page-fault handlers (ie a shared
58 * library, the executable area etc).
59 */
60struct vm_area_struct {
61 struct mm_struct * vm_mm; /* The address space we belong to. */
62 unsigned long vm_start; /* Our start address within vm_mm. */
63 unsigned long vm_end; /* The first byte after our end address
64 within vm_mm. */
65
66 /* linked list of VM areas per task, sorted by address */
67 struct vm_area_struct *vm_next;
68
69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
70 unsigned long vm_flags; /* Flags, listed below. */
71
72 struct rb_node vm_rb;
73
74 /*
75 * For areas with an address space and backing store,
76 * linkage into the address_space->i_mmap prio tree, or
77 * linkage to the list of like vmas hanging off its node, or
78 * linkage of vma in the address_space->i_mmap_nonlinear list.
79 */
80 union {
81 struct {
82 struct list_head list;
83 void *parent; /* aligns with prio_tree_node parent */
84 struct vm_area_struct *head;
85 } vm_set;
86
87 struct raw_prio_tree_node prio_tree_node;
88 } shared;
89
90 /*
91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
92 * list, after a COW of one of the file pages. A MAP_SHARED vma
93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
94 * or brk vma (with NULL file) can only be in an anon_vma list.
95 */
96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
98
99 /* Function pointers to deal with this struct. */
100 struct vm_operations_struct * vm_ops;
101
102 /* Information about our backing store: */
103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
104 units, *not* PAGE_CACHE_SIZE */
105 struct file * vm_file; /* File we map to (can be NULL). */
106 void * vm_private_data; /* was vm_pte (shared mem) */
107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
108
109#ifndef CONFIG_MMU
110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
111#endif
112#ifdef CONFIG_NUMA
113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
114#endif
115};
116
c43692e8
CL
117extern struct kmem_cache *vm_area_cachep;
118
1da177e4
LT
119/*
120 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
121 * disabled, then there's a single shared list of VMAs maintained by the
122 * system, and mm's subscribe to these individually
123 */
124struct vm_list_struct {
125 struct vm_list_struct *next;
126 struct vm_area_struct *vma;
127};
128
129#ifndef CONFIG_MMU
130extern struct rb_root nommu_vma_tree;
131extern struct rw_semaphore nommu_vma_sem;
132
133extern unsigned int kobjsize(const void *objp);
134#endif
135
136/*
137 * vm_flags..
138 */
139#define VM_READ 0x00000001 /* currently active flags */
140#define VM_WRITE 0x00000002
141#define VM_EXEC 0x00000004
142#define VM_SHARED 0x00000008
143
7e2cff42 144/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
145#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
146#define VM_MAYWRITE 0x00000020
147#define VM_MAYEXEC 0x00000040
148#define VM_MAYSHARE 0x00000080
149
150#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
151#define VM_GROWSUP 0x00000200
6aab341e 152#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
153#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
154
155#define VM_EXECUTABLE 0x00001000
156#define VM_LOCKED 0x00002000
157#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
158
159 /* Used by sys_madvise() */
160#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
161#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
162
163#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
164#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 165#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
166#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
167#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
168#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
169#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 170#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 171#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
1da177e4
LT
172
173#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
174#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
175#endif
176
177#ifdef CONFIG_STACK_GROWSUP
178#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179#else
180#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
181#endif
182
183#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
184#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
185#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
186#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
187#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
188
189/*
190 * mapping from the currently active vm_flags protection bits (the
191 * low four bits) to a page protection mask..
192 */
193extern pgprot_t protection_map[16];
194
195
196/*
197 * These are the virtual MM functions - opening of an area, closing and
198 * unmapping it (needed to keep files on disk up-to-date etc), pointer
199 * to the functions called when a no-page or a wp-page exception occurs.
200 */
201struct vm_operations_struct {
202 void (*open)(struct vm_area_struct * area);
203 void (*close)(struct vm_area_struct * area);
204 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
f4b81804 205 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
1da177e4 206 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
9637a5ef
DH
207
208 /* notification that a previously read-only page is about to become
209 * writable, if an error is returned it will cause a SIGBUS */
210 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
1da177e4
LT
211#ifdef CONFIG_NUMA
212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
213 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
214 unsigned long addr);
7b2259b3
CL
215 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
216 const nodemask_t *to, unsigned long flags);
1da177e4
LT
217#endif
218};
219
220struct mmu_gather;
221struct inode;
222
349aef0b
AM
223#define page_private(page) ((page)->private)
224#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 225
1da177e4
LT
226/*
227 * FIXME: take this include out, include page-flags.h in
228 * files which need it (119 of them)
229 */
230#include <linux/page-flags.h>
231
725d704e
NP
232#ifdef CONFIG_DEBUG_VM
233#define VM_BUG_ON(cond) BUG_ON(cond)
234#else
235#define VM_BUG_ON(condition) do { } while(0)
236#endif
237
1da177e4
LT
238/*
239 * Methods to modify the page usage count.
240 *
241 * What counts for a page usage:
242 * - cache mapping (page->mapping)
243 * - private data (page->private)
244 * - page mapped in a task's page tables, each mapping
245 * is counted separately
246 *
247 * Also, many kernel routines increase the page count before a critical
248 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
249 */
250
251/*
da6052f7 252 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 253 */
7c8ee9a8
NP
254static inline int put_page_testzero(struct page *page)
255{
725d704e 256 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 257 return atomic_dec_and_test(&page->_count);
7c8ee9a8 258}
1da177e4
LT
259
260/*
7c8ee9a8
NP
261 * Try to grab a ref unless the page has a refcount of zero, return false if
262 * that is the case.
1da177e4 263 */
7c8ee9a8
NP
264static inline int get_page_unless_zero(struct page *page)
265{
725d704e 266 VM_BUG_ON(PageCompound(page));
8dc04efb 267 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 268}
1da177e4 269
d85f3385
CL
270static inline struct page *compound_head(struct page *page)
271{
6d777953 272 if (unlikely(PageTail(page)))
d85f3385
CL
273 return page->first_page;
274 return page;
275}
276
4c21e2f2 277static inline int page_count(struct page *page)
1da177e4 278{
d85f3385 279 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
280}
281
282static inline void get_page(struct page *page)
283{
d85f3385 284 page = compound_head(page);
725d704e 285 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
286 atomic_inc(&page->_count);
287}
288
7835e98b
NP
289/*
290 * Setup the page count before being freed into the page allocator for
291 * the first time (boot or memory hotplug)
292 */
293static inline void init_page_count(struct page *page)
294{
295 atomic_set(&page->_count, 1);
296}
297
1da177e4 298void put_page(struct page *page);
1d7ea732 299void put_pages_list(struct list_head *pages);
1da177e4 300
8dfcc9ba 301void split_page(struct page *page, unsigned int order);
8dfcc9ba 302
33f2ef89
AW
303/*
304 * Compound pages have a destructor function. Provide a
305 * prototype for that function and accessor functions.
306 * These are _only_ valid on the head of a PG_compound page.
307 */
308typedef void compound_page_dtor(struct page *);
309
310static inline void set_compound_page_dtor(struct page *page,
311 compound_page_dtor *dtor)
312{
313 page[1].lru.next = (void *)dtor;
314}
315
316static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
317{
318 return (compound_page_dtor *)page[1].lru.next;
319}
320
d85f3385
CL
321static inline int compound_order(struct page *page)
322{
6d777953 323 if (!PageHead(page))
d85f3385
CL
324 return 0;
325 return (unsigned long)page[1].lru.prev;
326}
327
328static inline void set_compound_order(struct page *page, unsigned long order)
329{
330 page[1].lru.prev = (void *)order;
331}
332
1da177e4
LT
333/*
334 * Multiple processes may "see" the same page. E.g. for untouched
335 * mappings of /dev/null, all processes see the same page full of
336 * zeroes, and text pages of executables and shared libraries have
337 * only one copy in memory, at most, normally.
338 *
339 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
340 * page_count() == 0 means the page is free. page->lru is then used for
341 * freelist management in the buddy allocator.
da6052f7 342 * page_count() > 0 means the page has been allocated.
1da177e4 343 *
da6052f7
NP
344 * Pages are allocated by the slab allocator in order to provide memory
345 * to kmalloc and kmem_cache_alloc. In this case, the management of the
346 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
347 * unless a particular usage is carefully commented. (the responsibility of
348 * freeing the kmalloc memory is the caller's, of course).
1da177e4 349 *
da6052f7
NP
350 * A page may be used by anyone else who does a __get_free_page().
351 * In this case, page_count still tracks the references, and should only
352 * be used through the normal accessor functions. The top bits of page->flags
353 * and page->virtual store page management information, but all other fields
354 * are unused and could be used privately, carefully. The management of this
355 * page is the responsibility of the one who allocated it, and those who have
356 * subsequently been given references to it.
357 *
358 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
359 * managed by the Linux memory manager: I/O, buffers, swapping etc.
360 * The following discussion applies only to them.
361 *
da6052f7
NP
362 * A pagecache page contains an opaque `private' member, which belongs to the
363 * page's address_space. Usually, this is the address of a circular list of
364 * the page's disk buffers. PG_private must be set to tell the VM to call
365 * into the filesystem to release these pages.
1da177e4 366 *
da6052f7
NP
367 * A page may belong to an inode's memory mapping. In this case, page->mapping
368 * is the pointer to the inode, and page->index is the file offset of the page,
369 * in units of PAGE_CACHE_SIZE.
1da177e4 370 *
da6052f7
NP
371 * If pagecache pages are not associated with an inode, they are said to be
372 * anonymous pages. These may become associated with the swapcache, and in that
373 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 374 *
da6052f7
NP
375 * In either case (swapcache or inode backed), the pagecache itself holds one
376 * reference to the page. Setting PG_private should also increment the
377 * refcount. The each user mapping also has a reference to the page.
1da177e4 378 *
da6052f7
NP
379 * The pagecache pages are stored in a per-mapping radix tree, which is
380 * rooted at mapping->page_tree, and indexed by offset.
381 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
382 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 383 *
da6052f7 384 * All pagecache pages may be subject to I/O:
1da177e4
LT
385 * - inode pages may need to be read from disk,
386 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
387 * to be written back to the inode on disk,
388 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
389 * modified may need to be swapped out to swap space and (later) to be read
390 * back into memory.
1da177e4
LT
391 */
392
393/*
394 * The zone field is never updated after free_area_init_core()
395 * sets it, so none of the operations on it need to be atomic.
1da177e4 396 */
348f8b6c 397
d41dee36
AW
398
399/*
400 * page->flags layout:
401 *
402 * There are three possibilities for how page->flags get
403 * laid out. The first is for the normal case, without
404 * sparsemem. The second is for sparsemem when there is
405 * plenty of space for node and section. The last is when
406 * we have run out of space and have to fall back to an
407 * alternate (slower) way of determining the node.
408 *
409 * No sparsemem: | NODE | ZONE | ... | FLAGS |
410 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
411 * no space for node: | SECTION | ZONE | ... | FLAGS |
412 */
413#ifdef CONFIG_SPARSEMEM
414#define SECTIONS_WIDTH SECTIONS_SHIFT
415#else
416#define SECTIONS_WIDTH 0
417#endif
418
419#define ZONES_WIDTH ZONES_SHIFT
420
421#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
422#define NODES_WIDTH NODES_SHIFT
423#else
424#define NODES_WIDTH 0
425#endif
426
427/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 428#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
429#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
430#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
431
432/*
433 * We are going to use the flags for the page to node mapping if its in
434 * there. This includes the case where there is no node, so it is implicit.
435 */
89689ae7
CL
436#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
437#define NODE_NOT_IN_PAGE_FLAGS
438#endif
d41dee36
AW
439
440#ifndef PFN_SECTION_SHIFT
441#define PFN_SECTION_SHIFT 0
442#endif
348f8b6c
DH
443
444/*
445 * Define the bit shifts to access each section. For non-existant
446 * sections we define the shift as 0; that plus a 0 mask ensures
447 * the compiler will optimise away reference to them.
448 */
d41dee36
AW
449#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
450#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
451#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 452
89689ae7
CL
453/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
454#ifdef NODE_NOT_IN_PAGEFLAGS
455#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
456#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
457 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 458#else
89689ae7 459#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
460#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
461 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
462#endif
463
bd8029b6 464#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 465
d41dee36
AW
466#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
467#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
468#endif
469
d41dee36
AW
470#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
471#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
472#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 473#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 474
2f1b6248 475static inline enum zone_type page_zonenum(struct page *page)
1da177e4 476{
348f8b6c 477 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 478}
1da177e4 479
89689ae7
CL
480/*
481 * The identification function is only used by the buddy allocator for
482 * determining if two pages could be buddies. We are not really
483 * identifying a zone since we could be using a the section number
484 * id if we have not node id available in page flags.
485 * We guarantee only that it will return the same value for two
486 * combinable pages in a zone.
487 */
cb2b95e1
AW
488static inline int page_zone_id(struct page *page)
489{
89689ae7 490 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
491}
492
25ba77c1 493static inline int zone_to_nid(struct zone *zone)
89fa3024 494{
d5f541ed
CL
495#ifdef CONFIG_NUMA
496 return zone->node;
497#else
498 return 0;
499#endif
89fa3024
CL
500}
501
89689ae7 502#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 503extern int page_to_nid(struct page *page);
89689ae7 504#else
25ba77c1 505static inline int page_to_nid(struct page *page)
d41dee36 506{
89689ae7 507 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 508}
89689ae7
CL
509#endif
510
511static inline struct zone *page_zone(struct page *page)
512{
513 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
514}
515
d41dee36
AW
516static inline unsigned long page_to_section(struct page *page)
517{
518 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
519}
520
2f1b6248 521static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
522{
523 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
524 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
525}
2f1b6248 526
348f8b6c
DH
527static inline void set_page_node(struct page *page, unsigned long node)
528{
529 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
530 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 531}
89689ae7 532
d41dee36
AW
533static inline void set_page_section(struct page *page, unsigned long section)
534{
535 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
536 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
537}
1da177e4 538
2f1b6248 539static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 540 unsigned long node, unsigned long pfn)
1da177e4 541{
348f8b6c
DH
542 set_page_zone(page, zone);
543 set_page_node(page, node);
d41dee36 544 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
545}
546
f6ac2354
CL
547/*
548 * Some inline functions in vmstat.h depend on page_zone()
549 */
550#include <linux/vmstat.h>
551
652050ae 552static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
553{
554 return __va(page_to_pfn(page) << PAGE_SHIFT);
555}
556
557#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
558#define HASHED_PAGE_VIRTUAL
559#endif
560
561#if defined(WANT_PAGE_VIRTUAL)
562#define page_address(page) ((page)->virtual)
563#define set_page_address(page, address) \
564 do { \
565 (page)->virtual = (address); \
566 } while(0)
567#define page_address_init() do { } while(0)
568#endif
569
570#if defined(HASHED_PAGE_VIRTUAL)
571void *page_address(struct page *page);
572void set_page_address(struct page *page, void *virtual);
573void page_address_init(void);
574#endif
575
576#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
577#define page_address(page) lowmem_page_address(page)
578#define set_page_address(page, address) do { } while(0)
579#define page_address_init() do { } while(0)
580#endif
581
582/*
583 * On an anonymous page mapped into a user virtual memory area,
584 * page->mapping points to its anon_vma, not to a struct address_space;
585 * with the PAGE_MAPPING_ANON bit set to distinguish it.
586 *
587 * Please note that, confusingly, "page_mapping" refers to the inode
588 * address_space which maps the page from disk; whereas "page_mapped"
589 * refers to user virtual address space into which the page is mapped.
590 */
591#define PAGE_MAPPING_ANON 1
592
593extern struct address_space swapper_space;
594static inline struct address_space *page_mapping(struct page *page)
595{
596 struct address_space *mapping = page->mapping;
597
598 if (unlikely(PageSwapCache(page)))
599 mapping = &swapper_space;
600 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
601 mapping = NULL;
602 return mapping;
603}
604
605static inline int PageAnon(struct page *page)
606{
607 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
608}
609
610/*
611 * Return the pagecache index of the passed page. Regular pagecache pages
612 * use ->index whereas swapcache pages use ->private
613 */
614static inline pgoff_t page_index(struct page *page)
615{
616 if (unlikely(PageSwapCache(page)))
4c21e2f2 617 return page_private(page);
1da177e4
LT
618 return page->index;
619}
620
621/*
622 * The atomic page->_mapcount, like _count, starts from -1:
623 * so that transitions both from it and to it can be tracked,
624 * using atomic_inc_and_test and atomic_add_negative(-1).
625 */
626static inline void reset_page_mapcount(struct page *page)
627{
628 atomic_set(&(page)->_mapcount, -1);
629}
630
631static inline int page_mapcount(struct page *page)
632{
633 return atomic_read(&(page)->_mapcount) + 1;
634}
635
636/*
637 * Return true if this page is mapped into pagetables.
638 */
639static inline int page_mapped(struct page *page)
640{
641 return atomic_read(&(page)->_mapcount) >= 0;
642}
643
644/*
645 * Error return values for the *_nopage functions
646 */
647#define NOPAGE_SIGBUS (NULL)
648#define NOPAGE_OOM ((struct page *) (-1))
7f7bbbe5 649#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
1da177e4 650
f4b81804
JS
651/*
652 * Error return values for the *_nopfn functions
653 */
654#define NOPFN_SIGBUS ((unsigned long) -1)
655#define NOPFN_OOM ((unsigned long) -2)
22cd25ed 656#define NOPFN_REFAULT ((unsigned long) -3)
f4b81804 657
1da177e4
LT
658/*
659 * Different kinds of faults, as returned by handle_mm_fault().
660 * Used to decide whether a process gets delivered SIGBUS or
661 * just gets major/minor fault counters bumped up.
662 */
f33ea7f4
NP
663#define VM_FAULT_OOM 0x00
664#define VM_FAULT_SIGBUS 0x01
665#define VM_FAULT_MINOR 0x02
666#define VM_FAULT_MAJOR 0x03
667
668/*
669 * Special case for get_user_pages.
670 * Must be in a distinct bit from the above VM_FAULT_ flags.
671 */
672#define VM_FAULT_WRITE 0x10
1da177e4
LT
673
674#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
675
676extern void show_free_areas(void);
677
678#ifdef CONFIG_SHMEM
1da177e4
LT
679int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
680struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
681 unsigned long addr);
682int shmem_lock(struct file *file, int lock, struct user_struct *user);
683#else
03b00ebc
RK
684static inline int shmem_lock(struct file *file, int lock,
685 struct user_struct *user)
686{
687 return 0;
688}
689
690static inline int shmem_set_policy(struct vm_area_struct *vma,
691 struct mempolicy *new)
692{
693 return 0;
694}
695
696static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
697 unsigned long addr)
698{
699 return NULL;
700}
1da177e4
LT
701#endif
702struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
703
704int shmem_zero_setup(struct vm_area_struct *);
705
b0e15190
DH
706#ifndef CONFIG_MMU
707extern unsigned long shmem_get_unmapped_area(struct file *file,
708 unsigned long addr,
709 unsigned long len,
710 unsigned long pgoff,
711 unsigned long flags);
712#endif
713
1da177e4
LT
714static inline int can_do_mlock(void)
715{
716 if (capable(CAP_IPC_LOCK))
717 return 1;
718 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
719 return 1;
720 return 0;
721}
722extern int user_shm_lock(size_t, struct user_struct *);
723extern void user_shm_unlock(size_t, struct user_struct *);
724
725/*
726 * Parameter block passed down to zap_pte_range in exceptional cases.
727 */
728struct zap_details {
729 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
730 struct address_space *check_mapping; /* Check page->mapping if set */
731 pgoff_t first_index; /* Lowest page->index to unmap */
732 pgoff_t last_index; /* Highest page->index to unmap */
733 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
734 unsigned long truncate_count; /* Compare vm_truncate_count */
735};
736
6aab341e 737struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 738unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 739 unsigned long size, struct zap_details *);
508034a3 740unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
741 struct vm_area_struct *start_vma, unsigned long start_addr,
742 unsigned long end_addr, unsigned long *nr_accounted,
743 struct zap_details *);
3bf5ee95
HD
744void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
745 unsigned long end, unsigned long floor, unsigned long ceiling);
746void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 747 unsigned long floor, unsigned long ceiling);
1da177e4
LT
748int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
749 struct vm_area_struct *vma);
750int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
751 unsigned long size, pgprot_t prot);
752void unmap_mapping_range(struct address_space *mapping,
753 loff_t const holebegin, loff_t const holelen, int even_cows);
754
755static inline void unmap_shared_mapping_range(struct address_space *mapping,
756 loff_t const holebegin, loff_t const holelen)
757{
758 unmap_mapping_range(mapping, holebegin, holelen, 0);
759}
760
761extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 762extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
1da177e4
LT
763extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
764extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
f33ea7f4 765
7ee1dd3f
DH
766#ifdef CONFIG_MMU
767extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
768 unsigned long address, int write_access);
769
770static inline int handle_mm_fault(struct mm_struct *mm,
771 struct vm_area_struct *vma, unsigned long address,
772 int write_access)
f33ea7f4 773{
7ee1dd3f
DH
774 return __handle_mm_fault(mm, vma, address, write_access) &
775 (~VM_FAULT_WRITE);
f33ea7f4 776}
7ee1dd3f
DH
777#else
778static inline int handle_mm_fault(struct mm_struct *mm,
779 struct vm_area_struct *vma, unsigned long address,
780 int write_access)
781{
782 /* should never happen if there's no MMU */
783 BUG();
784 return VM_FAULT_SIGBUS;
785}
786#endif
f33ea7f4 787
1da177e4
LT
788extern int make_pages_present(unsigned long addr, unsigned long end);
789extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
790void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
791
792int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
793 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 794void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4 795
cf9a2ae8
DH
796extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
797extern void do_invalidatepage(struct page *page, unsigned long offset);
798
1da177e4 799int __set_page_dirty_nobuffers(struct page *page);
76719325 800int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
801int redirty_page_for_writepage(struct writeback_control *wbc,
802 struct page *page);
803int FASTCALL(set_page_dirty(struct page *page));
804int set_page_dirty_lock(struct page *page);
805int clear_page_dirty_for_io(struct page *page);
806
807extern unsigned long do_mremap(unsigned long addr,
808 unsigned long old_len, unsigned long new_len,
809 unsigned long flags, unsigned long new_addr);
810
811/*
812 * Prototype to add a shrinker callback for ageable caches.
813 *
814 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
815 * scan `nr_to_scan' objects, attempting to free them.
816 *
845d3431 817 * The callback must return the number of objects which remain in the cache.
1da177e4 818 *
845d3431 819 * The callback will be passed nr_to_scan == 0 when the VM is querying the
1da177e4
LT
820 * cache size, so a fastpath for that case is appropriate.
821 */
6daa0e28 822typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
1da177e4
LT
823
824/*
825 * Add an aging callback. The int is the number of 'seeks' it takes
826 * to recreate one of the objects that these functions age.
827 */
828
829#define DEFAULT_SEEKS 2
830struct shrinker;
831extern struct shrinker *set_shrinker(int, shrinker_t);
832extern void remove_shrinker(struct shrinker *shrinker);
833
d08b3851
PZ
834/*
835 * Some shared mappigns will want the pages marked read-only
836 * to track write events. If so, we'll downgrade vm_page_prot
837 * to the private version (using protection_map[] without the
838 * VM_SHARED bit).
839 */
840static inline int vma_wants_writenotify(struct vm_area_struct *vma)
841{
842 unsigned int vm_flags = vma->vm_flags;
843
844 /* If it was private or non-writable, the write bit is already clear */
845 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
846 return 0;
847
848 /* The backer wishes to know when pages are first written to? */
849 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
850 return 1;
851
852 /* The open routine did something to the protections already? */
853 if (pgprot_val(vma->vm_page_prot) !=
854 pgprot_val(protection_map[vm_flags &
855 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
856 return 0;
857
858 /* Specialty mapping? */
859 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
860 return 0;
861
862 /* Can the mapping track the dirty pages? */
863 return vma->vm_file && vma->vm_file->f_mapping &&
864 mapping_cap_account_dirty(vma->vm_file->f_mapping);
865}
866
c9cfcddf
LT
867extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
868
5f22df00
NP
869#ifdef __PAGETABLE_PUD_FOLDED
870static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
871 unsigned long address)
872{
873 return 0;
874}
875#else
1bb3630e 876int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
877#endif
878
879#ifdef __PAGETABLE_PMD_FOLDED
880static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
881 unsigned long address)
882{
883 return 0;
884}
885#else
1bb3630e 886int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
887#endif
888
1bb3630e
HD
889int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
890int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
891
1da177e4
LT
892/*
893 * The following ifdef needed to get the 4level-fixup.h header to work.
894 * Remove it when 4level-fixup.h has been removed.
895 */
1bb3630e 896#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
897static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
898{
1bb3630e
HD
899 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
900 NULL: pud_offset(pgd, address);
1da177e4
LT
901}
902
903static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
904{
1bb3630e
HD
905 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
906 NULL: pmd_offset(pud, address);
1da177e4 907}
1bb3630e
HD
908#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
909
4c21e2f2
HD
910#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
911/*
912 * We tuck a spinlock to guard each pagetable page into its struct page,
913 * at page->private, with BUILD_BUG_ON to make sure that this will not
914 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
915 * When freeing, reset page->mapping so free_pages_check won't complain.
916 */
349aef0b 917#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
918#define pte_lock_init(_page) do { \
919 spin_lock_init(__pte_lockptr(_page)); \
920} while (0)
921#define pte_lock_deinit(page) ((page)->mapping = NULL)
922#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
923#else
924/*
925 * We use mm->page_table_lock to guard all pagetable pages of the mm.
926 */
927#define pte_lock_init(page) do {} while (0)
928#define pte_lock_deinit(page) do {} while (0)
929#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
930#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
931
c74df32c
HD
932#define pte_offset_map_lock(mm, pmd, address, ptlp) \
933({ \
4c21e2f2 934 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
935 pte_t *__pte = pte_offset_map(pmd, address); \
936 *(ptlp) = __ptl; \
937 spin_lock(__ptl); \
938 __pte; \
939})
940
941#define pte_unmap_unlock(pte, ptl) do { \
942 spin_unlock(ptl); \
943 pte_unmap(pte); \
944} while (0)
945
1bb3630e
HD
946#define pte_alloc_map(mm, pmd, address) \
947 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
948 NULL: pte_offset_map(pmd, address))
949
c74df32c
HD
950#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
951 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
952 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
953
1bb3630e
HD
954#define pte_alloc_kernel(pmd, address) \
955 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
956 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
957
958extern void free_area_init(unsigned long * zones_size);
959extern void free_area_init_node(int nid, pg_data_t *pgdat,
960 unsigned long * zones_size, unsigned long zone_start_pfn,
961 unsigned long *zholes_size);
c713216d
MG
962#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
963/*
964 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
965 * zones, allocate the backing mem_map and account for memory holes in a more
966 * architecture independent manner. This is a substitute for creating the
967 * zone_sizes[] and zholes_size[] arrays and passing them to
968 * free_area_init_node()
969 *
970 * An architecture is expected to register range of page frames backed by
971 * physical memory with add_active_range() before calling
972 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
973 * usage, an architecture is expected to do something like
974 *
975 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
976 * max_highmem_pfn};
977 * for_each_valid_physical_page_range()
978 * add_active_range(node_id, start_pfn, end_pfn)
979 * free_area_init_nodes(max_zone_pfns);
980 *
981 * If the architecture guarantees that there are no holes in the ranges
982 * registered with add_active_range(), free_bootmem_active_regions()
983 * will call free_bootmem_node() for each registered physical page range.
984 * Similarly sparse_memory_present_with_active_regions() calls
985 * memory_present() for each range when SPARSEMEM is enabled.
986 *
987 * See mm/page_alloc.c for more information on each function exposed by
988 * CONFIG_ARCH_POPULATES_NODE_MAP
989 */
990extern void free_area_init_nodes(unsigned long *max_zone_pfn);
991extern void add_active_range(unsigned int nid, unsigned long start_pfn,
992 unsigned long end_pfn);
993extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
994 unsigned long new_end_pfn);
fb01439c
MG
995extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
996 unsigned long end_pfn);
c713216d
MG
997extern void remove_all_active_ranges(void);
998extern unsigned long absent_pages_in_range(unsigned long start_pfn,
999 unsigned long end_pfn);
1000extern void get_pfn_range_for_nid(unsigned int nid,
1001 unsigned long *start_pfn, unsigned long *end_pfn);
1002extern unsigned long find_min_pfn_with_active_regions(void);
1003extern unsigned long find_max_pfn_with_active_regions(void);
1004extern void free_bootmem_with_active_regions(int nid,
1005 unsigned long max_low_pfn);
1006extern void sparse_memory_present_with_active_regions(int nid);
1007#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1008extern int early_pfn_to_nid(unsigned long pfn);
1009#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1010#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 1011extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1012extern void memmap_init_zone(unsigned long, int, unsigned long,
1013 unsigned long, enum memmap_context);
3947be19 1014extern void setup_per_zone_pages_min(void);
1da177e4
LT
1015extern void mem_init(void);
1016extern void show_mem(void);
1017extern void si_meminfo(struct sysinfo * val);
1018extern void si_meminfo_node(struct sysinfo *val, int nid);
1019
e7c8d5c9
CL
1020#ifdef CONFIG_NUMA
1021extern void setup_per_cpu_pageset(void);
1022#else
1023static inline void setup_per_cpu_pageset(void) {}
1024#endif
1025
1da177e4
LT
1026/* prio_tree.c */
1027void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1028void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1029void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1030struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1031 struct prio_tree_iter *iter);
1032
1033#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1034 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1035 (vma = vma_prio_tree_next(vma, iter)); )
1036
1037static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1038 struct list_head *list)
1039{
1040 vma->shared.vm_set.parent = NULL;
1041 list_add_tail(&vma->shared.vm_set.list, list);
1042}
1043
1044/* mmap.c */
1045extern int __vm_enough_memory(long pages, int cap_sys_admin);
1046extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1047 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1048extern struct vm_area_struct *vma_merge(struct mm_struct *,
1049 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1050 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1051 struct mempolicy *);
1052extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1053extern int split_vma(struct mm_struct *,
1054 struct vm_area_struct *, unsigned long addr, int new_below);
1055extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1056extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1057 struct rb_node **, struct rb_node *);
a8fb5618 1058extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1059extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1060 unsigned long addr, unsigned long len, pgoff_t pgoff);
1061extern void exit_mmap(struct mm_struct *);
119f657c 1062extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1063extern int install_special_mapping(struct mm_struct *mm,
1064 unsigned long addr, unsigned long len,
1065 unsigned long flags, struct page **pages);
1da177e4
LT
1066
1067extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1068
1069extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1070 unsigned long len, unsigned long prot,
1071 unsigned long flag, unsigned long pgoff);
1072
1073static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1074 unsigned long len, unsigned long prot,
1075 unsigned long flag, unsigned long offset)
1076{
1077 unsigned long ret = -EINVAL;
1078 if ((offset + PAGE_ALIGN(len)) < offset)
1079 goto out;
1080 if (!(offset & ~PAGE_MASK))
1081 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1082out:
1083 return ret;
1084}
1085
1086extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1087
1088extern unsigned long do_brk(unsigned long, unsigned long);
1089
1090/* filemap.c */
1091extern unsigned long page_unuse(struct page *);
1092extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1093extern void truncate_inode_pages_range(struct address_space *,
1094 loff_t lstart, loff_t lend);
1da177e4
LT
1095
1096/* generic vm_area_ops exported for stackable file systems */
1097extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1098extern int filemap_populate(struct vm_area_struct *, unsigned long,
1099 unsigned long, pgprot_t, unsigned long, int);
1100
1101/* mm/page-writeback.c */
1102int write_one_page(struct page *page, int wait);
1103
1104/* readahead.c */
1105#define VM_MAX_READAHEAD 128 /* kbytes */
1106#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1107#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1108 * turning readahead off */
1109
1110int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1111 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1112int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8
AM
1113 pgoff_t offset, unsigned long nr_to_read);
1114unsigned long page_cache_readahead(struct address_space *mapping,
1da177e4
LT
1115 struct file_ra_state *ra,
1116 struct file *filp,
7361f4d8 1117 pgoff_t offset,
1da177e4
LT
1118 unsigned long size);
1119void handle_ra_miss(struct address_space *mapping,
1120 struct file_ra_state *ra, pgoff_t offset);
1121unsigned long max_sane_readahead(unsigned long nr);
1122
1123/* Do stack extension */
46dea3d0 1124extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1125#ifdef CONFIG_IA64
46dea3d0 1126extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1127#endif
1da177e4
LT
1128
1129/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1130extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1131extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1132 struct vm_area_struct **pprev);
1133
1134/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1135 NULL if none. Assume start_addr < end_addr. */
1136static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1137{
1138 struct vm_area_struct * vma = find_vma(mm,start_addr);
1139
1140 if (vma && end_addr <= vma->vm_start)
1141 vma = NULL;
1142 return vma;
1143}
1144
1145static inline unsigned long vma_pages(struct vm_area_struct *vma)
1146{
1147 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1148}
1149
804af2cf 1150pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd
HD
1151struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1152struct page *vmalloc_to_page(void *addr);
1153unsigned long vmalloc_to_pfn(void *addr);
1154int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1155 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1156int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1157int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1158 unsigned long pfn);
deceb6cd 1159
6aab341e 1160struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1161 unsigned int foll_flags);
1162#define FOLL_WRITE 0x01 /* check pte is writable */
1163#define FOLL_TOUCH 0x02 /* mark page accessed */
1164#define FOLL_GET 0x04 /* do get_page on page */
1165#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4 1166
aee16b3c
JF
1167typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1168 void *data);
1169extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1170 unsigned long size, pte_fn_t fn, void *data);
1171
1da177e4 1172#ifdef CONFIG_PROC_FS
ab50b8ed 1173void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1174#else
ab50b8ed 1175static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1176 unsigned long flags, struct file *file, long pages)
1177{
1178}
1179#endif /* CONFIG_PROC_FS */
1180
1da177e4
LT
1181#ifndef CONFIG_DEBUG_PAGEALLOC
1182static inline void
9858db50 1183kernel_map_pages(struct page *page, int numpages, int enable) {}
1da177e4
LT
1184#endif
1185
1186extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1187#ifdef __HAVE_ARCH_GATE_AREA
1188int in_gate_area_no_task(unsigned long addr);
1189int in_gate_area(struct task_struct *task, unsigned long addr);
1190#else
1191int in_gate_area_no_task(unsigned long addr);
1192#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1193#endif /* __HAVE_ARCH_GATE_AREA */
1194
9d0243bc
AM
1195int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1196 void __user *, size_t *, loff_t *);
69e05944 1197unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc
AM
1198 unsigned long lru_pages);
1199void drop_pagecache(void);
1200void drop_slab(void);
1201
7a9166e3
LY
1202#ifndef CONFIG_MMU
1203#define randomize_va_space 0
1204#else
a62eaf15 1205extern int randomize_va_space;
7a9166e3 1206#endif
a62eaf15 1207
f269fdd1 1208__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
e6e5494c 1209
1da177e4
LT
1210#endif /* __KERNEL__ */
1211#endif /* _LINUX_MM_H */