net: mvneta: rename MVNETA_GMAC2_PSC_ENABLE to MVNETA_GMAC2_PCS_ENABLE
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
c9b1d098 47extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 48extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 49
1da177e4
LT
50#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
27ac792c
AR
52/* to align the pointer to the (next) page boundary */
53#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
1da177e4
LT
55/*
56 * Linux kernel virtual memory manager primitives.
57 * The idea being to have a "virtual" mm in the same way
58 * we have a virtual fs - giving a cleaner interface to the
59 * mm details, and allowing different kinds of memory mappings
60 * (from shared memory to executable loading to arbitrary
61 * mmap() functions).
62 */
63
c43692e8
CL
64extern struct kmem_cache *vm_area_cachep;
65
1da177e4 66#ifndef CONFIG_MMU
8feae131
DH
67extern struct rb_root nommu_region_tree;
68extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
69
70extern unsigned int kobjsize(const void *objp);
71#endif
72
73/*
605d9288 74 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 75 */
cc2383ec
KK
76#define VM_NONE 0x00000000
77
1da177e4
LT
78#define VM_READ 0x00000001 /* currently active flags */
79#define VM_WRITE 0x00000002
80#define VM_EXEC 0x00000004
81#define VM_SHARED 0x00000008
82
7e2cff42 83/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
84#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85#define VM_MAYWRITE 0x00000020
86#define VM_MAYEXEC 0x00000040
87#define VM_MAYSHARE 0x00000080
88
89#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 90#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
91#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
92
1da177e4
LT
93#define VM_LOCKED 0x00002000
94#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 103#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
104#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 106#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 107#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 108
b379d790 109#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
110#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
111#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 112#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 113
cc2383ec
KK
114#if defined(CONFIG_X86)
115# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
116#elif defined(CONFIG_PPC)
117# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
118#elif defined(CONFIG_PARISC)
119# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
120#elif defined(CONFIG_METAG)
121# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
122#elif defined(CONFIG_IA64)
123# define VM_GROWSUP VM_ARCH_1
124#elif !defined(CONFIG_MMU)
125# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
126#endif
127
128#ifndef VM_GROWSUP
129# define VM_GROWSUP VM_NONE
130#endif
131
a8bef8ff
MG
132/* Bits set in the VMA until the stack is in its final location */
133#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
134
1da177e4
LT
135#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
136#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
137#endif
138
139#ifdef CONFIG_STACK_GROWSUP
140#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
141#else
142#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
143#endif
144
145#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
146#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
147#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
148#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
149#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
150
b291f000 151/*
78f11a25
AA
152 * Special vmas that are non-mergable, non-mlock()able.
153 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 154 */
314e51b9 155#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 156
1da177e4
LT
157/*
158 * mapping from the currently active vm_flags protection bits (the
159 * low four bits) to a page protection mask..
160 */
161extern pgprot_t protection_map[16];
162
d0217ac0
NP
163#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
164#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 165#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 166#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 167#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 168#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 169#define FAULT_FLAG_TRIED 0x40 /* second try */
d0217ac0 170
54cb8821 171/*
d0217ac0 172 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
173 * ->fault function. The vma's ->fault is responsible for returning a bitmask
174 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 175 *
d0217ac0 176 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 177 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 178 */
d0217ac0
NP
179struct vm_fault {
180 unsigned int flags; /* FAULT_FLAG_xxx flags */
181 pgoff_t pgoff; /* Logical page offset based on vma */
182 void __user *virtual_address; /* Faulting virtual address */
183
184 struct page *page; /* ->fault handlers should return a
83c54070 185 * page here, unless VM_FAULT_NOPAGE
d0217ac0 186 * is set (which is also implied by
83c54070 187 * VM_FAULT_ERROR).
d0217ac0 188 */
54cb8821 189};
1da177e4
LT
190
191/*
192 * These are the virtual MM functions - opening of an area, closing and
193 * unmapping it (needed to keep files on disk up-to-date etc), pointer
194 * to the functions called when a no-page or a wp-page exception occurs.
195 */
196struct vm_operations_struct {
197 void (*open)(struct vm_area_struct * area);
198 void (*close)(struct vm_area_struct * area);
d0217ac0 199 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
200
201 /* notification that a previously read-only page is about to become
202 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 203 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
204
205 /* called by access_process_vm when get_user_pages() fails, typically
206 * for use by special VMAs that can switch between memory and hardware
207 */
208 int (*access)(struct vm_area_struct *vma, unsigned long addr,
209 void *buf, int len, int write);
1da177e4 210#ifdef CONFIG_NUMA
a6020ed7
LS
211 /*
212 * set_policy() op must add a reference to any non-NULL @new mempolicy
213 * to hold the policy upon return. Caller should pass NULL @new to
214 * remove a policy and fall back to surrounding context--i.e. do not
215 * install a MPOL_DEFAULT policy, nor the task or system default
216 * mempolicy.
217 */
1da177e4 218 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
219
220 /*
221 * get_policy() op must add reference [mpol_get()] to any policy at
222 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
223 * in mm/mempolicy.c will do this automatically.
224 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
225 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
226 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
227 * must return NULL--i.e., do not "fallback" to task or system default
228 * policy.
229 */
1da177e4
LT
230 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
231 unsigned long addr);
7b2259b3
CL
232 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
233 const nodemask_t *to, unsigned long flags);
1da177e4 234#endif
0b173bc4
KK
235 /* called by sys_remap_file_pages() to populate non-linear mapping */
236 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
237 unsigned long size, pgoff_t pgoff);
1da177e4
LT
238};
239
240struct mmu_gather;
241struct inode;
242
349aef0b
AM
243#define page_private(page) ((page)->private)
244#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 245
b12c4ad1
MK
246/* It's valid only if the page is free path or free_list */
247static inline void set_freepage_migratetype(struct page *page, int migratetype)
248{
95e34412 249 page->index = migratetype;
b12c4ad1
MK
250}
251
252/* It's valid only if the page is free path or free_list */
253static inline int get_freepage_migratetype(struct page *page)
254{
95e34412 255 return page->index;
b12c4ad1
MK
256}
257
1da177e4
LT
258/*
259 * FIXME: take this include out, include page-flags.h in
260 * files which need it (119 of them)
261 */
262#include <linux/page-flags.h>
71e3aac0 263#include <linux/huge_mm.h>
1da177e4
LT
264
265/*
266 * Methods to modify the page usage count.
267 *
268 * What counts for a page usage:
269 * - cache mapping (page->mapping)
270 * - private data (page->private)
271 * - page mapped in a task's page tables, each mapping
272 * is counted separately
273 *
274 * Also, many kernel routines increase the page count before a critical
275 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
276 */
277
278/*
da6052f7 279 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 280 */
7c8ee9a8
NP
281static inline int put_page_testzero(struct page *page)
282{
725d704e 283 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 284 return atomic_dec_and_test(&page->_count);
7c8ee9a8 285}
1da177e4
LT
286
287/*
7c8ee9a8
NP
288 * Try to grab a ref unless the page has a refcount of zero, return false if
289 * that is the case.
1da177e4 290 */
7c8ee9a8
NP
291static inline int get_page_unless_zero(struct page *page)
292{
8dc04efb 293 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 294}
1da177e4 295
53df8fdc
WF
296extern int page_is_ram(unsigned long pfn);
297
48667e7a 298/* Support for virtually mapped pages */
b3bdda02
CL
299struct page *vmalloc_to_page(const void *addr);
300unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 301
0738c4bb
PM
302/*
303 * Determine if an address is within the vmalloc range
304 *
305 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
306 * is no special casing required.
307 */
9e2779fa
CL
308static inline int is_vmalloc_addr(const void *x)
309{
0738c4bb 310#ifdef CONFIG_MMU
9e2779fa
CL
311 unsigned long addr = (unsigned long)x;
312
313 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
314#else
315 return 0;
8ca3ed87 316#endif
0738c4bb 317}
81ac3ad9
KH
318#ifdef CONFIG_MMU
319extern int is_vmalloc_or_module_addr(const void *x);
320#else
934831d0 321static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
322{
323 return 0;
324}
325#endif
9e2779fa 326
e9da73d6
AA
327static inline void compound_lock(struct page *page)
328{
329#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 330 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
331 bit_spin_lock(PG_compound_lock, &page->flags);
332#endif
333}
334
335static inline void compound_unlock(struct page *page)
336{
337#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 338 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
339 bit_spin_unlock(PG_compound_lock, &page->flags);
340#endif
341}
342
343static inline unsigned long compound_lock_irqsave(struct page *page)
344{
345 unsigned long uninitialized_var(flags);
346#ifdef CONFIG_TRANSPARENT_HUGEPAGE
347 local_irq_save(flags);
348 compound_lock(page);
349#endif
350 return flags;
351}
352
353static inline void compound_unlock_irqrestore(struct page *page,
354 unsigned long flags)
355{
356#ifdef CONFIG_TRANSPARENT_HUGEPAGE
357 compound_unlock(page);
358 local_irq_restore(flags);
359#endif
360}
361
d85f3385
CL
362static inline struct page *compound_head(struct page *page)
363{
6d777953 364 if (unlikely(PageTail(page)))
d85f3385
CL
365 return page->first_page;
366 return page;
367}
368
70b50f94
AA
369/*
370 * The atomic page->_mapcount, starts from -1: so that transitions
371 * both from it and to it can be tracked, using atomic_inc_and_test
372 * and atomic_add_negative(-1).
373 */
22b751c3 374static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
375{
376 atomic_set(&(page)->_mapcount, -1);
377}
378
379static inline int page_mapcount(struct page *page)
380{
381 return atomic_read(&(page)->_mapcount) + 1;
382}
383
4c21e2f2 384static inline int page_count(struct page *page)
1da177e4 385{
d85f3385 386 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
387}
388
b35a35b5
AA
389static inline void get_huge_page_tail(struct page *page)
390{
391 /*
392 * __split_huge_page_refcount() cannot run
393 * from under us.
394 */
395 VM_BUG_ON(page_mapcount(page) < 0);
396 VM_BUG_ON(atomic_read(&page->_count) != 0);
397 atomic_inc(&page->_mapcount);
398}
399
70b50f94
AA
400extern bool __get_page_tail(struct page *page);
401
1da177e4
LT
402static inline void get_page(struct page *page)
403{
70b50f94
AA
404 if (unlikely(PageTail(page)))
405 if (likely(__get_page_tail(page)))
406 return;
91807063
AA
407 /*
408 * Getting a normal page or the head of a compound page
70b50f94 409 * requires to already have an elevated page->_count.
91807063 410 */
70b50f94 411 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
412 atomic_inc(&page->_count);
413}
414
b49af68f
CL
415static inline struct page *virt_to_head_page(const void *x)
416{
417 struct page *page = virt_to_page(x);
418 return compound_head(page);
419}
420
7835e98b
NP
421/*
422 * Setup the page count before being freed into the page allocator for
423 * the first time (boot or memory hotplug)
424 */
425static inline void init_page_count(struct page *page)
426{
427 atomic_set(&page->_count, 1);
428}
429
5f24ce5f
AA
430/*
431 * PageBuddy() indicate that the page is free and in the buddy system
432 * (see mm/page_alloc.c).
ef2b4b95
AA
433 *
434 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
435 * -2 so that an underflow of the page_mapcount() won't be mistaken
436 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
437 * efficiently by most CPU architectures.
5f24ce5f 438 */
ef2b4b95
AA
439#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
440
5f24ce5f
AA
441static inline int PageBuddy(struct page *page)
442{
ef2b4b95 443 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
444}
445
446static inline void __SetPageBuddy(struct page *page)
447{
448 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 449 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
450}
451
452static inline void __ClearPageBuddy(struct page *page)
453{
454 VM_BUG_ON(!PageBuddy(page));
455 atomic_set(&page->_mapcount, -1);
456}
457
1da177e4 458void put_page(struct page *page);
1d7ea732 459void put_pages_list(struct list_head *pages);
1da177e4 460
8dfcc9ba 461void split_page(struct page *page, unsigned int order);
748446bb 462int split_free_page(struct page *page);
8dfcc9ba 463
33f2ef89
AW
464/*
465 * Compound pages have a destructor function. Provide a
466 * prototype for that function and accessor functions.
467 * These are _only_ valid on the head of a PG_compound page.
468 */
469typedef void compound_page_dtor(struct page *);
470
471static inline void set_compound_page_dtor(struct page *page,
472 compound_page_dtor *dtor)
473{
474 page[1].lru.next = (void *)dtor;
475}
476
477static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
478{
479 return (compound_page_dtor *)page[1].lru.next;
480}
481
d85f3385
CL
482static inline int compound_order(struct page *page)
483{
6d777953 484 if (!PageHead(page))
d85f3385
CL
485 return 0;
486 return (unsigned long)page[1].lru.prev;
487}
488
37c2ac78
AA
489static inline int compound_trans_order(struct page *page)
490{
491 int order;
492 unsigned long flags;
493
494 if (!PageHead(page))
495 return 0;
496
497 flags = compound_lock_irqsave(page);
498 order = compound_order(page);
499 compound_unlock_irqrestore(page, flags);
500 return order;
501}
502
d85f3385
CL
503static inline void set_compound_order(struct page *page, unsigned long order)
504{
505 page[1].lru.prev = (void *)order;
506}
507
3dece370 508#ifdef CONFIG_MMU
14fd403f
AA
509/*
510 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
511 * servicing faults for write access. In the normal case, do always want
512 * pte_mkwrite. But get_user_pages can cause write faults for mappings
513 * that do not have writing enabled, when used by access_process_vm.
514 */
515static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
516{
517 if (likely(vma->vm_flags & VM_WRITE))
518 pte = pte_mkwrite(pte);
519 return pte;
520}
3dece370 521#endif
14fd403f 522
1da177e4
LT
523/*
524 * Multiple processes may "see" the same page. E.g. for untouched
525 * mappings of /dev/null, all processes see the same page full of
526 * zeroes, and text pages of executables and shared libraries have
527 * only one copy in memory, at most, normally.
528 *
529 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
530 * page_count() == 0 means the page is free. page->lru is then used for
531 * freelist management in the buddy allocator.
da6052f7 532 * page_count() > 0 means the page has been allocated.
1da177e4 533 *
da6052f7
NP
534 * Pages are allocated by the slab allocator in order to provide memory
535 * to kmalloc and kmem_cache_alloc. In this case, the management of the
536 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
537 * unless a particular usage is carefully commented. (the responsibility of
538 * freeing the kmalloc memory is the caller's, of course).
1da177e4 539 *
da6052f7
NP
540 * A page may be used by anyone else who does a __get_free_page().
541 * In this case, page_count still tracks the references, and should only
542 * be used through the normal accessor functions. The top bits of page->flags
543 * and page->virtual store page management information, but all other fields
544 * are unused and could be used privately, carefully. The management of this
545 * page is the responsibility of the one who allocated it, and those who have
546 * subsequently been given references to it.
547 *
548 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
549 * managed by the Linux memory manager: I/O, buffers, swapping etc.
550 * The following discussion applies only to them.
551 *
da6052f7
NP
552 * A pagecache page contains an opaque `private' member, which belongs to the
553 * page's address_space. Usually, this is the address of a circular list of
554 * the page's disk buffers. PG_private must be set to tell the VM to call
555 * into the filesystem to release these pages.
1da177e4 556 *
da6052f7
NP
557 * A page may belong to an inode's memory mapping. In this case, page->mapping
558 * is the pointer to the inode, and page->index is the file offset of the page,
559 * in units of PAGE_CACHE_SIZE.
1da177e4 560 *
da6052f7
NP
561 * If pagecache pages are not associated with an inode, they are said to be
562 * anonymous pages. These may become associated with the swapcache, and in that
563 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 564 *
da6052f7
NP
565 * In either case (swapcache or inode backed), the pagecache itself holds one
566 * reference to the page. Setting PG_private should also increment the
567 * refcount. The each user mapping also has a reference to the page.
1da177e4 568 *
da6052f7
NP
569 * The pagecache pages are stored in a per-mapping radix tree, which is
570 * rooted at mapping->page_tree, and indexed by offset.
571 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
572 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 573 *
da6052f7 574 * All pagecache pages may be subject to I/O:
1da177e4
LT
575 * - inode pages may need to be read from disk,
576 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
577 * to be written back to the inode on disk,
578 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
579 * modified may need to be swapped out to swap space and (later) to be read
580 * back into memory.
1da177e4
LT
581 */
582
583/*
584 * The zone field is never updated after free_area_init_core()
585 * sets it, so none of the operations on it need to be atomic.
1da177e4 586 */
348f8b6c 587
75980e97 588/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
07808b74 589#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
590#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
591#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
75980e97 592#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
d41dee36 593
348f8b6c 594/*
25985edc 595 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
596 * sections we define the shift as 0; that plus a 0 mask ensures
597 * the compiler will optimise away reference to them.
598 */
d41dee36
AW
599#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
600#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
601#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
75980e97 602#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
348f8b6c 603
bce54bbf
WD
604/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
605#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 606#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
607#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
608 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 609#else
89689ae7 610#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
611#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
612 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
613#endif
614
bd8029b6 615#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 616
9223b419
CL
617#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
618#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
619#endif
620
d41dee36
AW
621#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
622#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
623#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
75980e97 624#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
89689ae7 625#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 626
33dd4e0e 627static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 628{
348f8b6c 629 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 630}
1da177e4 631
9127ab4f
CS
632#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
633#define SECTION_IN_PAGE_FLAGS
634#endif
635
89689ae7
CL
636/*
637 * The identification function is only used by the buddy allocator for
638 * determining if two pages could be buddies. We are not really
639 * identifying a zone since we could be using a the section number
640 * id if we have not node id available in page flags.
641 * We guarantee only that it will return the same value for two
642 * combinable pages in a zone.
643 */
cb2b95e1
AW
644static inline int page_zone_id(struct page *page)
645{
89689ae7 646 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
647}
648
25ba77c1 649static inline int zone_to_nid(struct zone *zone)
89fa3024 650{
d5f541ed
CL
651#ifdef CONFIG_NUMA
652 return zone->node;
653#else
654 return 0;
655#endif
89fa3024
CL
656}
657
89689ae7 658#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 659extern int page_to_nid(const struct page *page);
89689ae7 660#else
33dd4e0e 661static inline int page_to_nid(const struct page *page)
d41dee36 662{
89689ae7 663 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 664}
89689ae7
CL
665#endif
666
57e0a030 667#ifdef CONFIG_NUMA_BALANCING
75980e97 668#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
22b751c3 669static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
670{
671 return xchg(&page->_last_nid, nid);
672}
673
22b751c3 674static inline int page_nid_last(struct page *page)
57e0a030
MG
675{
676 return page->_last_nid;
677}
22b751c3 678static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
679{
680 page->_last_nid = -1;
681}
682#else
22b751c3 683static inline int page_nid_last(struct page *page)
75980e97
PZ
684{
685 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
686}
687
22b751c3 688extern int page_nid_xchg_last(struct page *page, int nid);
75980e97 689
22b751c3 690static inline void page_nid_reset_last(struct page *page)
75980e97 691{
4468b8f1
MG
692 int nid = (1 << LAST_NID_SHIFT) - 1;
693
694 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
695 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
75980e97
PZ
696}
697#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
698#else
22b751c3 699static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
700{
701 return page_to_nid(page);
702}
703
22b751c3 704static inline int page_nid_last(struct page *page)
57e0a030
MG
705{
706 return page_to_nid(page);
707}
708
22b751c3 709static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
710{
711}
712#endif
713
33dd4e0e 714static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
715{
716 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
717}
718
9127ab4f 719#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
720static inline void set_page_section(struct page *page, unsigned long section)
721{
722 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
723 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
724}
725
aa462abe 726static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
727{
728 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
729}
308c05e3 730#endif
d41dee36 731
2f1b6248 732static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
733{
734 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
735 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
736}
2f1b6248 737
348f8b6c
DH
738static inline void set_page_node(struct page *page, unsigned long node)
739{
740 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
741 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 742}
89689ae7 743
2f1b6248 744static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 745 unsigned long node, unsigned long pfn)
1da177e4 746{
348f8b6c
DH
747 set_page_zone(page, zone);
748 set_page_node(page, node);
9127ab4f 749#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 750 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 751#endif
1da177e4
LT
752}
753
f6ac2354
CL
754/*
755 * Some inline functions in vmstat.h depend on page_zone()
756 */
757#include <linux/vmstat.h>
758
33dd4e0e 759static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 760{
aa462abe 761 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
762}
763
764#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
765#define HASHED_PAGE_VIRTUAL
766#endif
767
768#if defined(WANT_PAGE_VIRTUAL)
2d363552
GU
769static inline void *page_address(const struct page *page)
770{
771 return page->virtual;
772}
773static inline void set_page_address(struct page *page, void *address)
774{
775 page->virtual = address;
776}
1da177e4
LT
777#define page_address_init() do { } while(0)
778#endif
779
780#if defined(HASHED_PAGE_VIRTUAL)
f9918794 781void *page_address(const struct page *page);
1da177e4
LT
782void set_page_address(struct page *page, void *virtual);
783void page_address_init(void);
784#endif
785
786#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
787#define page_address(page) lowmem_page_address(page)
788#define set_page_address(page, address) do { } while(0)
789#define page_address_init() do { } while(0)
790#endif
791
792/*
793 * On an anonymous page mapped into a user virtual memory area,
794 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
795 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
796 *
797 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
798 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
799 * and then page->mapping points, not to an anon_vma, but to a private
800 * structure which KSM associates with that merged page. See ksm.h.
801 *
802 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
803 *
804 * Please note that, confusingly, "page_mapping" refers to the inode
805 * address_space which maps the page from disk; whereas "page_mapped"
806 * refers to user virtual address space into which the page is mapped.
807 */
808#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
809#define PAGE_MAPPING_KSM 2
810#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 811
9800339b 812extern struct address_space *page_mapping(struct page *page);
1da177e4 813
3ca7b3c5
HD
814/* Neutral page->mapping pointer to address_space or anon_vma or other */
815static inline void *page_rmapping(struct page *page)
816{
817 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
818}
819
f981c595
MG
820extern struct address_space *__page_file_mapping(struct page *);
821
822static inline
823struct address_space *page_file_mapping(struct page *page)
824{
825 if (unlikely(PageSwapCache(page)))
826 return __page_file_mapping(page);
827
828 return page->mapping;
829}
830
1da177e4
LT
831static inline int PageAnon(struct page *page)
832{
833 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
834}
835
836/*
837 * Return the pagecache index of the passed page. Regular pagecache pages
838 * use ->index whereas swapcache pages use ->private
839 */
840static inline pgoff_t page_index(struct page *page)
841{
842 if (unlikely(PageSwapCache(page)))
4c21e2f2 843 return page_private(page);
1da177e4
LT
844 return page->index;
845}
846
f981c595
MG
847extern pgoff_t __page_file_index(struct page *page);
848
849/*
850 * Return the file index of the page. Regular pagecache pages use ->index
851 * whereas swapcache pages use swp_offset(->private)
852 */
853static inline pgoff_t page_file_index(struct page *page)
854{
855 if (unlikely(PageSwapCache(page)))
856 return __page_file_index(page);
857
858 return page->index;
859}
860
1da177e4
LT
861/*
862 * Return true if this page is mapped into pagetables.
863 */
864static inline int page_mapped(struct page *page)
865{
866 return atomic_read(&(page)->_mapcount) >= 0;
867}
868
1da177e4
LT
869/*
870 * Different kinds of faults, as returned by handle_mm_fault().
871 * Used to decide whether a process gets delivered SIGBUS or
872 * just gets major/minor fault counters bumped up.
873 */
d0217ac0 874
83c54070 875#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 876
83c54070
NP
877#define VM_FAULT_OOM 0x0001
878#define VM_FAULT_SIGBUS 0x0002
879#define VM_FAULT_MAJOR 0x0004
880#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
881#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
882#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 883
83c54070
NP
884#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
885#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 886#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 887
aa50d3a7
AK
888#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
889
890#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
891 VM_FAULT_HWPOISON_LARGE)
892
893/* Encode hstate index for a hwpoisoned large page */
894#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
895#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 896
1c0fe6e3
NP
897/*
898 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
899 */
900extern void pagefault_out_of_memory(void);
901
1da177e4
LT
902#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
903
ddd588b5 904/*
7bf02ea2 905 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
906 * various contexts.
907 */
4b59e6c4
DR
908#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
909#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
ddd588b5 910
7bf02ea2
DR
911extern void show_free_areas(unsigned int flags);
912extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 913
1da177e4
LT
914int shmem_zero_setup(struct vm_area_struct *);
915
e8edc6e0 916extern int can_do_mlock(void);
1da177e4
LT
917extern int user_shm_lock(size_t, struct user_struct *);
918extern void user_shm_unlock(size_t, struct user_struct *);
919
920/*
921 * Parameter block passed down to zap_pte_range in exceptional cases.
922 */
923struct zap_details {
924 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
925 struct address_space *check_mapping; /* Check page->mapping if set */
926 pgoff_t first_index; /* Lowest page->index to unmap */
927 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
928};
929
7e675137
NP
930struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
931 pte_t pte);
932
c627f9cc
JS
933int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
934 unsigned long size);
14f5ff5d 935void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 936 unsigned long size, struct zap_details *);
4f74d2c8
LT
937void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
938 unsigned long start, unsigned long end);
e6473092
MM
939
940/**
941 * mm_walk - callbacks for walk_page_range
942 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
943 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
944 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
945 * this handler is required to be able to handle
946 * pmd_trans_huge() pmds. They may simply choose to
947 * split_huge_page() instead of handling it explicitly.
e6473092
MM
948 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
949 * @pte_hole: if set, called for each hole at all levels
5dc37642 950 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
951 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
952 * is used.
e6473092
MM
953 *
954 * (see walk_page_range for more details)
955 */
956struct mm_walk {
0f157a5b
AM
957 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
958 unsigned long next, struct mm_walk *walk);
959 int (*pud_entry)(pud_t *pud, unsigned long addr,
960 unsigned long next, struct mm_walk *walk);
961 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
962 unsigned long next, struct mm_walk *walk);
963 int (*pte_entry)(pte_t *pte, unsigned long addr,
964 unsigned long next, struct mm_walk *walk);
965 int (*pte_hole)(unsigned long addr, unsigned long next,
966 struct mm_walk *walk);
967 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
968 unsigned long addr, unsigned long next,
969 struct mm_walk *walk);
2165009b
DH
970 struct mm_struct *mm;
971 void *private;
e6473092
MM
972};
973
2165009b
DH
974int walk_page_range(unsigned long addr, unsigned long end,
975 struct mm_walk *walk);
42b77728 976void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 977 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
978int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
979 struct vm_area_struct *vma);
1da177e4
LT
980void unmap_mapping_range(struct address_space *mapping,
981 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
982int follow_pfn(struct vm_area_struct *vma, unsigned long address,
983 unsigned long *pfn);
d87fe660 984int follow_phys(struct vm_area_struct *vma, unsigned long address,
985 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
986int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
987 void *buf, int len, int write);
1da177e4
LT
988
989static inline void unmap_shared_mapping_range(struct address_space *mapping,
990 loff_t const holebegin, loff_t const holelen)
991{
992 unmap_mapping_range(mapping, holebegin, holelen, 0);
993}
994
25d9e2d1 995extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 996extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 997void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 998int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 999int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1000int invalidate_inode_page(struct page *page);
1001
7ee1dd3f 1002#ifdef CONFIG_MMU
83c54070 1003extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1004 unsigned long address, unsigned int flags);
5c723ba5
PZ
1005extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1006 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1007#else
1008static inline int handle_mm_fault(struct mm_struct *mm,
1009 struct vm_area_struct *vma, unsigned long address,
d06063cc 1010 unsigned int flags)
7ee1dd3f
DH
1011{
1012 /* should never happen if there's no MMU */
1013 BUG();
1014 return VM_FAULT_SIGBUS;
1015}
5c723ba5
PZ
1016static inline int fixup_user_fault(struct task_struct *tsk,
1017 struct mm_struct *mm, unsigned long address,
1018 unsigned int fault_flags)
1019{
1020 /* should never happen if there's no MMU */
1021 BUG();
1022 return -EFAULT;
1023}
7ee1dd3f 1024#endif
f33ea7f4 1025
1da177e4 1026extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1027extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1028 void *buf, int len, int write);
1da177e4 1029
28a35716
ML
1030long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1031 unsigned long start, unsigned long nr_pages,
1032 unsigned int foll_flags, struct page **pages,
1033 struct vm_area_struct **vmas, int *nonblocking);
1034long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1035 unsigned long start, unsigned long nr_pages,
1036 int write, int force, struct page **pages,
1037 struct vm_area_struct **vmas);
d2bf6be8
NP
1038int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1039 struct page **pages);
18022c5d
MG
1040struct kvec;
1041int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1042 struct page **pages);
1043int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1044struct page *get_dump_page(unsigned long addr);
1da177e4 1045
cf9a2ae8
DH
1046extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1047extern void do_invalidatepage(struct page *page, unsigned long offset);
1048
1da177e4 1049int __set_page_dirty_nobuffers(struct page *page);
76719325 1050int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1051int redirty_page_for_writepage(struct writeback_control *wbc,
1052 struct page *page);
e3a7cca1 1053void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1054void account_page_writeback(struct page *page);
b3c97528 1055int set_page_dirty(struct page *page);
1da177e4
LT
1056int set_page_dirty_lock(struct page *page);
1057int clear_page_dirty_for_io(struct page *page);
1058
39aa3cb3 1059/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1060static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1061{
1062 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1063}
1064
a09a79f6
MP
1065static inline int stack_guard_page_start(struct vm_area_struct *vma,
1066 unsigned long addr)
1067{
1068 return (vma->vm_flags & VM_GROWSDOWN) &&
1069 (vma->vm_start == addr) &&
1070 !vma_growsdown(vma->vm_prev, addr);
1071}
1072
1073/* Is the vma a continuation of the stack vma below it? */
1074static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1075{
1076 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1077}
1078
1079static inline int stack_guard_page_end(struct vm_area_struct *vma,
1080 unsigned long addr)
1081{
1082 return (vma->vm_flags & VM_GROWSUP) &&
1083 (vma->vm_end == addr) &&
1084 !vma_growsup(vma->vm_next, addr);
1085}
1086
b7643757
SP
1087extern pid_t
1088vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1089
b6a2fea3
OW
1090extern unsigned long move_page_tables(struct vm_area_struct *vma,
1091 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1092 unsigned long new_addr, unsigned long len,
1093 bool need_rmap_locks);
7da4d641
PZ
1094extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1095 unsigned long end, pgprot_t newprot,
4b10e7d5 1096 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1097extern int mprotect_fixup(struct vm_area_struct *vma,
1098 struct vm_area_struct **pprev, unsigned long start,
1099 unsigned long end, unsigned long newflags);
1da177e4 1100
465a454f
PZ
1101/*
1102 * doesn't attempt to fault and will return short.
1103 */
1104int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1105 struct page **pages);
d559db08
KH
1106/*
1107 * per-process(per-mm_struct) statistics.
1108 */
d559db08
KH
1109static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1110{
69c97823
KK
1111 long val = atomic_long_read(&mm->rss_stat.count[member]);
1112
1113#ifdef SPLIT_RSS_COUNTING
1114 /*
1115 * counter is updated in asynchronous manner and may go to minus.
1116 * But it's never be expected number for users.
1117 */
1118 if (val < 0)
1119 val = 0;
172703b0 1120#endif
69c97823
KK
1121 return (unsigned long)val;
1122}
d559db08
KH
1123
1124static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1125{
172703b0 1126 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1127}
1128
1129static inline void inc_mm_counter(struct mm_struct *mm, int member)
1130{
172703b0 1131 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1132}
1133
1134static inline void dec_mm_counter(struct mm_struct *mm, int member)
1135{
172703b0 1136 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1137}
1138
d559db08
KH
1139static inline unsigned long get_mm_rss(struct mm_struct *mm)
1140{
1141 return get_mm_counter(mm, MM_FILEPAGES) +
1142 get_mm_counter(mm, MM_ANONPAGES);
1143}
1144
1145static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1146{
1147 return max(mm->hiwater_rss, get_mm_rss(mm));
1148}
1149
1150static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1151{
1152 return max(mm->hiwater_vm, mm->total_vm);
1153}
1154
1155static inline void update_hiwater_rss(struct mm_struct *mm)
1156{
1157 unsigned long _rss = get_mm_rss(mm);
1158
1159 if ((mm)->hiwater_rss < _rss)
1160 (mm)->hiwater_rss = _rss;
1161}
1162
1163static inline void update_hiwater_vm(struct mm_struct *mm)
1164{
1165 if (mm->hiwater_vm < mm->total_vm)
1166 mm->hiwater_vm = mm->total_vm;
1167}
1168
1169static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1170 struct mm_struct *mm)
1171{
1172 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1173
1174 if (*maxrss < hiwater_rss)
1175 *maxrss = hiwater_rss;
1176}
1177
53bddb4e 1178#if defined(SPLIT_RSS_COUNTING)
05af2e10 1179void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1180#else
05af2e10 1181static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1182{
1183}
1184#endif
465a454f 1185
4e950f6f 1186int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1187
25ca1d6c
NK
1188extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1189 spinlock_t **ptl);
1190static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1191 spinlock_t **ptl)
1192{
1193 pte_t *ptep;
1194 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1195 return ptep;
1196}
c9cfcddf 1197
5f22df00
NP
1198#ifdef __PAGETABLE_PUD_FOLDED
1199static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1200 unsigned long address)
1201{
1202 return 0;
1203}
1204#else
1bb3630e 1205int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1206#endif
1207
1208#ifdef __PAGETABLE_PMD_FOLDED
1209static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1210 unsigned long address)
1211{
1212 return 0;
1213}
1214#else
1bb3630e 1215int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1216#endif
1217
8ac1f832
AA
1218int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1219 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1220int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1221
1da177e4
LT
1222/*
1223 * The following ifdef needed to get the 4level-fixup.h header to work.
1224 * Remove it when 4level-fixup.h has been removed.
1225 */
1bb3630e 1226#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1227static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1228{
1bb3630e
HD
1229 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1230 NULL: pud_offset(pgd, address);
1da177e4
LT
1231}
1232
1233static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1234{
1bb3630e
HD
1235 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1236 NULL: pmd_offset(pud, address);
1da177e4 1237}
1bb3630e
HD
1238#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1239
f7d0b926 1240#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1241/*
1242 * We tuck a spinlock to guard each pagetable page into its struct page,
1243 * at page->private, with BUILD_BUG_ON to make sure that this will not
1244 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1245 * When freeing, reset page->mapping so free_pages_check won't complain.
1246 */
349aef0b 1247#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1248#define pte_lock_init(_page) do { \
1249 spin_lock_init(__pte_lockptr(_page)); \
1250} while (0)
1251#define pte_lock_deinit(page) ((page)->mapping = NULL)
1252#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1253#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1254/*
1255 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1256 */
1257#define pte_lock_init(page) do {} while (0)
1258#define pte_lock_deinit(page) do {} while (0)
1259#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1260#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1261
2f569afd
MS
1262static inline void pgtable_page_ctor(struct page *page)
1263{
1264 pte_lock_init(page);
1265 inc_zone_page_state(page, NR_PAGETABLE);
1266}
1267
1268static inline void pgtable_page_dtor(struct page *page)
1269{
1270 pte_lock_deinit(page);
1271 dec_zone_page_state(page, NR_PAGETABLE);
1272}
1273
c74df32c
HD
1274#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1275({ \
4c21e2f2 1276 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1277 pte_t *__pte = pte_offset_map(pmd, address); \
1278 *(ptlp) = __ptl; \
1279 spin_lock(__ptl); \
1280 __pte; \
1281})
1282
1283#define pte_unmap_unlock(pte, ptl) do { \
1284 spin_unlock(ptl); \
1285 pte_unmap(pte); \
1286} while (0)
1287
8ac1f832
AA
1288#define pte_alloc_map(mm, vma, pmd, address) \
1289 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1290 pmd, address))? \
1291 NULL: pte_offset_map(pmd, address))
1bb3630e 1292
c74df32c 1293#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1294 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1295 pmd, address))? \
c74df32c
HD
1296 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1297
1bb3630e 1298#define pte_alloc_kernel(pmd, address) \
8ac1f832 1299 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1300 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1301
1302extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1303extern void free_area_init_node(int nid, unsigned long * zones_size,
1304 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1305extern void free_initmem(void);
1306
69afade7
JL
1307/*
1308 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1309 * into the buddy system. The freed pages will be poisoned with pattern
1310 * "poison" if it's non-zero.
1311 * Return pages freed into the buddy system.
1312 */
1313extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1314 int poison, char *s);
cfa11e08
JL
1315#ifdef CONFIG_HIGHMEM
1316/*
1317 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1318 * and totalram_pages.
1319 */
1320extern void free_highmem_page(struct page *page);
1321#endif
69afade7
JL
1322
1323static inline void adjust_managed_page_count(struct page *page, long count)
1324{
1325 totalram_pages += count;
1326}
1327
1328/* Free the reserved page into the buddy system, so it gets managed. */
1329static inline void __free_reserved_page(struct page *page)
1330{
1331 ClearPageReserved(page);
1332 init_page_count(page);
1333 __free_page(page);
1334}
1335
1336static inline void free_reserved_page(struct page *page)
1337{
1338 __free_reserved_page(page);
1339 adjust_managed_page_count(page, 1);
1340}
1341
1342static inline void mark_page_reserved(struct page *page)
1343{
1344 SetPageReserved(page);
1345 adjust_managed_page_count(page, -1);
1346}
1347
1348/*
1349 * Default method to free all the __init memory into the buddy system.
1350 * The freed pages will be poisoned with pattern "poison" if it is
1351 * non-zero. Return pages freed into the buddy system.
1352 */
1353static inline unsigned long free_initmem_default(int poison)
1354{
1355 extern char __init_begin[], __init_end[];
1356
1357 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1358 ((unsigned long)&__init_end) & PAGE_MASK,
1359 poison, "unused kernel");
1360}
1361
0ee332c1 1362#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1363/*
0ee332c1 1364 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1365 * zones, allocate the backing mem_map and account for memory holes in a more
1366 * architecture independent manner. This is a substitute for creating the
1367 * zone_sizes[] and zholes_size[] arrays and passing them to
1368 * free_area_init_node()
1369 *
1370 * An architecture is expected to register range of page frames backed by
0ee332c1 1371 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1372 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1373 * usage, an architecture is expected to do something like
1374 *
1375 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1376 * max_highmem_pfn};
1377 * for_each_valid_physical_page_range()
0ee332c1 1378 * memblock_add_node(base, size, nid)
c713216d
MG
1379 * free_area_init_nodes(max_zone_pfns);
1380 *
0ee332c1
TH
1381 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1382 * registered physical page range. Similarly
1383 * sparse_memory_present_with_active_regions() calls memory_present() for
1384 * each range when SPARSEMEM is enabled.
c713216d
MG
1385 *
1386 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1387 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1388 */
1389extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1390unsigned long node_map_pfn_alignment(void);
32996250
YL
1391unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1392 unsigned long end_pfn);
c713216d
MG
1393extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1394 unsigned long end_pfn);
1395extern void get_pfn_range_for_nid(unsigned int nid,
1396 unsigned long *start_pfn, unsigned long *end_pfn);
1397extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1398extern void free_bootmem_with_active_regions(int nid,
1399 unsigned long max_low_pfn);
1400extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1401
0ee332c1 1402#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1403
0ee332c1 1404#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1405 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1406static inline int __early_pfn_to_nid(unsigned long pfn)
1407{
1408 return 0;
1409}
1410#else
1411/* please see mm/page_alloc.c */
1412extern int __meminit early_pfn_to_nid(unsigned long pfn);
1413#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1414/* there is a per-arch backend function. */
1415extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1416#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1417#endif
1418
0e0b864e 1419extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1420extern void memmap_init_zone(unsigned long, int, unsigned long,
1421 unsigned long, enum memmap_context);
bc75d33f 1422extern void setup_per_zone_wmarks(void);
1b79acc9 1423extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1424extern void mem_init(void);
8feae131 1425extern void __init mmap_init(void);
b2b755b5 1426extern void show_mem(unsigned int flags);
1da177e4
LT
1427extern void si_meminfo(struct sysinfo * val);
1428extern void si_meminfo_node(struct sysinfo *val, int nid);
1429
3ee9a4f0
JP
1430extern __printf(3, 4)
1431void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1432
e7c8d5c9 1433extern void setup_per_cpu_pageset(void);
e7c8d5c9 1434
112067f0 1435extern void zone_pcp_update(struct zone *zone);
340175b7 1436extern void zone_pcp_reset(struct zone *zone);
112067f0 1437
75f7ad8e
PS
1438/* page_alloc.c */
1439extern int min_free_kbytes;
1440
8feae131 1441/* nommu.c */
33e5d769 1442extern atomic_long_t mmap_pages_allocated;
7e660872 1443extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1444
6b2dbba8 1445/* interval_tree.c */
6b2dbba8
ML
1446void vma_interval_tree_insert(struct vm_area_struct *node,
1447 struct rb_root *root);
9826a516
ML
1448void vma_interval_tree_insert_after(struct vm_area_struct *node,
1449 struct vm_area_struct *prev,
1450 struct rb_root *root);
6b2dbba8
ML
1451void vma_interval_tree_remove(struct vm_area_struct *node,
1452 struct rb_root *root);
1453struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1454 unsigned long start, unsigned long last);
1455struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1456 unsigned long start, unsigned long last);
1457
1458#define vma_interval_tree_foreach(vma, root, start, last) \
1459 for (vma = vma_interval_tree_iter_first(root, start, last); \
1460 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1461
1462static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1463 struct list_head *list)
1464{
6b2dbba8 1465 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1466}
1467
bf181b9f
ML
1468void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1469 struct rb_root *root);
1470void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1471 struct rb_root *root);
1472struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1473 struct rb_root *root, unsigned long start, unsigned long last);
1474struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1475 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1476#ifdef CONFIG_DEBUG_VM_RB
1477void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1478#endif
bf181b9f
ML
1479
1480#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1481 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1482 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1483
1da177e4 1484/* mmap.c */
34b4e4aa 1485extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1486extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1487 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1488extern struct vm_area_struct *vma_merge(struct mm_struct *,
1489 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1490 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1491 struct mempolicy *);
1492extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1493extern int split_vma(struct mm_struct *,
1494 struct vm_area_struct *, unsigned long addr, int new_below);
1495extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1496extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1497 struct rb_node **, struct rb_node *);
a8fb5618 1498extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1499extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1500 unsigned long addr, unsigned long len, pgoff_t pgoff,
1501 bool *need_rmap_locks);
1da177e4 1502extern void exit_mmap(struct mm_struct *);
925d1c40 1503
7906d00c
AA
1504extern int mm_take_all_locks(struct mm_struct *mm);
1505extern void mm_drop_all_locks(struct mm_struct *mm);
1506
38646013
JS
1507extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1508extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1509
119f657c 1510extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1511extern int install_special_mapping(struct mm_struct *mm,
1512 unsigned long addr, unsigned long len,
1513 unsigned long flags, struct page **pages);
1da177e4
LT
1514
1515extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1516
0165ab44 1517extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1518 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1519extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1520 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1521 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1522extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1523
bebeb3d6
ML
1524#ifdef CONFIG_MMU
1525extern int __mm_populate(unsigned long addr, unsigned long len,
1526 int ignore_errors);
1527static inline void mm_populate(unsigned long addr, unsigned long len)
1528{
1529 /* Ignore errors */
1530 (void) __mm_populate(addr, len, 1);
1531}
1532#else
1533static inline void mm_populate(unsigned long addr, unsigned long len) {}
1534#endif
1535
e4eb1ff6
LT
1536/* These take the mm semaphore themselves */
1537extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1538extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1539extern unsigned long vm_mmap(struct file *, unsigned long,
1540 unsigned long, unsigned long,
1541 unsigned long, unsigned long);
1da177e4 1542
db4fbfb9
ML
1543struct vm_unmapped_area_info {
1544#define VM_UNMAPPED_AREA_TOPDOWN 1
1545 unsigned long flags;
1546 unsigned long length;
1547 unsigned long low_limit;
1548 unsigned long high_limit;
1549 unsigned long align_mask;
1550 unsigned long align_offset;
1551};
1552
1553extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1554extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1555
1556/*
1557 * Search for an unmapped address range.
1558 *
1559 * We are looking for a range that:
1560 * - does not intersect with any VMA;
1561 * - is contained within the [low_limit, high_limit) interval;
1562 * - is at least the desired size.
1563 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1564 */
1565static inline unsigned long
1566vm_unmapped_area(struct vm_unmapped_area_info *info)
1567{
1568 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1569 return unmapped_area(info);
1570 else
1571 return unmapped_area_topdown(info);
1572}
1573
85821aab 1574/* truncate.c */
1da177e4 1575extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1576extern void truncate_inode_pages_range(struct address_space *,
1577 loff_t lstart, loff_t lend);
1da177e4
LT
1578
1579/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1580extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1581extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1582
1583/* mm/page-writeback.c */
1584int write_one_page(struct page *page, int wait);
1cf6e7d8 1585void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1586
1587/* readahead.c */
1588#define VM_MAX_READAHEAD 128 /* kbytes */
1589#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1590
1da177e4 1591int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1592 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1593
1594void page_cache_sync_readahead(struct address_space *mapping,
1595 struct file_ra_state *ra,
1596 struct file *filp,
1597 pgoff_t offset,
1598 unsigned long size);
1599
1600void page_cache_async_readahead(struct address_space *mapping,
1601 struct file_ra_state *ra,
1602 struct file *filp,
1603 struct page *pg,
1604 pgoff_t offset,
1605 unsigned long size);
1606
1da177e4 1607unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1608unsigned long ra_submit(struct file_ra_state *ra,
1609 struct address_space *mapping,
1610 struct file *filp);
1da177e4 1611
d05f3169 1612/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1613extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1614
1615/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1616extern int expand_downwards(struct vm_area_struct *vma,
1617 unsigned long address);
8ca3eb08 1618#if VM_GROWSUP
46dea3d0 1619extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1620#else
1621 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1622#endif
1da177e4
LT
1623
1624/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1625extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1626extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1627 struct vm_area_struct **pprev);
1628
1629/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1630 NULL if none. Assume start_addr < end_addr. */
1631static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1632{
1633 struct vm_area_struct * vma = find_vma(mm,start_addr);
1634
1635 if (vma && end_addr <= vma->vm_start)
1636 vma = NULL;
1637 return vma;
1638}
1639
1640static inline unsigned long vma_pages(struct vm_area_struct *vma)
1641{
1642 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1643}
1644
640708a2
PE
1645/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1646static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1647 unsigned long vm_start, unsigned long vm_end)
1648{
1649 struct vm_area_struct *vma = find_vma(mm, vm_start);
1650
1651 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1652 vma = NULL;
1653
1654 return vma;
1655}
1656
bad849b3 1657#ifdef CONFIG_MMU
804af2cf 1658pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1659#else
1660static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1661{
1662 return __pgprot(0);
1663}
1664#endif
1665
b24f53a0 1666#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1667unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1668 unsigned long start, unsigned long end);
1669#endif
1670
deceb6cd 1671struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1672int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1673 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1674int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1675int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1676 unsigned long pfn);
423bad60
NP
1677int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1678 unsigned long pfn);
b4cbb197
LT
1679int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1680
deceb6cd 1681
240aadee
ML
1682struct page *follow_page_mask(struct vm_area_struct *vma,
1683 unsigned long address, unsigned int foll_flags,
1684 unsigned int *page_mask);
1685
1686static inline struct page *follow_page(struct vm_area_struct *vma,
1687 unsigned long address, unsigned int foll_flags)
1688{
1689 unsigned int unused_page_mask;
1690 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1691}
1692
deceb6cd
HD
1693#define FOLL_WRITE 0x01 /* check pte is writable */
1694#define FOLL_TOUCH 0x02 /* mark page accessed */
1695#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1696#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1697#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1698#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1699 * and return without waiting upon it */
110d74a9 1700#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1701#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1702#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1703#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1704#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1705
2f569afd 1706typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1707 void *data);
1708extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1709 unsigned long size, pte_fn_t fn, void *data);
1710
1da177e4 1711#ifdef CONFIG_PROC_FS
ab50b8ed 1712void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1713#else
ab50b8ed 1714static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1715 unsigned long flags, struct file *file, long pages)
1716{
44de9d0c 1717 mm->total_vm += pages;
1da177e4
LT
1718}
1719#endif /* CONFIG_PROC_FS */
1720
12d6f21e 1721#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1722extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1723#ifdef CONFIG_HIBERNATION
1724extern bool kernel_page_present(struct page *page);
1725#endif /* CONFIG_HIBERNATION */
12d6f21e 1726#else
1da177e4 1727static inline void
9858db50 1728kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1729#ifdef CONFIG_HIBERNATION
1730static inline bool kernel_page_present(struct page *page) { return true; }
1731#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1732#endif
1733
31db58b3 1734extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1735#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1736int in_gate_area_no_mm(unsigned long addr);
83b964bb 1737int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1738#else
cae5d390
SW
1739int in_gate_area_no_mm(unsigned long addr);
1740#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1741#endif /* __HAVE_ARCH_GATE_AREA */
1742
146732ce
JT
1743#ifdef CONFIG_SYSCTL
1744extern int sysctl_drop_caches;
8d65af78 1745int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1746 void __user *, size_t *, loff_t *);
146732ce
JT
1747#endif
1748
a09ed5e0 1749unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1750 unsigned long nr_pages_scanned,
1751 unsigned long lru_pages);
9d0243bc 1752
7a9166e3
LY
1753#ifndef CONFIG_MMU
1754#define randomize_va_space 0
1755#else
a62eaf15 1756extern int randomize_va_space;
7a9166e3 1757#endif
a62eaf15 1758
045e72ac 1759const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1760void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1761
9bdac914
YL
1762void sparse_mem_maps_populate_node(struct page **map_map,
1763 unsigned long pnum_begin,
1764 unsigned long pnum_end,
1765 unsigned long map_count,
1766 int nodeid);
1767
98f3cfc1 1768struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1769pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1770pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1771pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1772pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1773void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1774void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1775void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
1776int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1777 int node);
1778int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 1779void vmemmap_populate_print_last(void);
0197518c 1780#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 1781void vmemmap_free(unsigned long start, unsigned long end);
0197518c 1782#endif
46723bfa
YI
1783void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1784 unsigned long size);
6a46079c 1785
82ba011b
AK
1786enum mf_flags {
1787 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1788 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1789 MF_MUST_KILL = 1 << 2,
82ba011b 1790};
cd42f4a3 1791extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1792extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1793extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1794extern int sysctl_memory_failure_early_kill;
1795extern int sysctl_memory_failure_recovery;
facb6011 1796extern void shake_page(struct page *p, int access);
293c07e3 1797extern atomic_long_t num_poisoned_pages;
facb6011 1798extern int soft_offline_page(struct page *page, int flags);
6a46079c 1799
718a3821
WF
1800extern void dump_page(struct page *page);
1801
47ad8475
AA
1802#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1803extern void clear_huge_page(struct page *page,
1804 unsigned long addr,
1805 unsigned int pages_per_huge_page);
1806extern void copy_user_huge_page(struct page *dst, struct page *src,
1807 unsigned long addr, struct vm_area_struct *vma,
1808 unsigned int pages_per_huge_page);
1809#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1810
c0a32fc5
SG
1811#ifdef CONFIG_DEBUG_PAGEALLOC
1812extern unsigned int _debug_guardpage_minorder;
1813
1814static inline unsigned int debug_guardpage_minorder(void)
1815{
1816 return _debug_guardpage_minorder;
1817}
1818
1819static inline bool page_is_guard(struct page *page)
1820{
1821 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1822}
1823#else
1824static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1825static inline bool page_is_guard(struct page *page) { return false; }
1826#endif /* CONFIG_DEBUG_PAGEALLOC */
1827
f9872caf
CS
1828#if MAX_NUMNODES > 1
1829void __init setup_nr_node_ids(void);
1830#else
1831static inline void setup_nr_node_ids(void) {}
1832#endif
1833
1da177e4
LT
1834#endif /* __KERNEL__ */
1835#endif /* _LINUX_MM_H */