mm: add casts to/from gfp_t in gfp_to_alloc_flags()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
1da177e4
LT
17
18struct mempolicy;
19struct anon_vma;
4e950f6f 20struct file_ra_state;
e8edc6e0 21struct user_struct;
4e950f6f 22struct writeback_control;
1da177e4
LT
23
24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25extern unsigned long max_mapnr;
26#endif
27
28extern unsigned long num_physpages;
4481374c 29extern unsigned long totalram_pages;
1da177e4 30extern void * high_memory;
1da177e4
LT
31extern int page_cluster;
32
33#ifdef CONFIG_SYSCTL
34extern int sysctl_legacy_va_layout;
35#else
36#define sysctl_legacy_va_layout 0
37#endif
38
39#include <asm/page.h>
40#include <asm/pgtable.h>
41#include <asm/processor.h>
1da177e4 42
1da177e4
LT
43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
27ac792c
AR
45/* to align the pointer to the (next) page boundary */
46#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
47
1da177e4
LT
48/*
49 * Linux kernel virtual memory manager primitives.
50 * The idea being to have a "virtual" mm in the same way
51 * we have a virtual fs - giving a cleaner interface to the
52 * mm details, and allowing different kinds of memory mappings
53 * (from shared memory to executable loading to arbitrary
54 * mmap() functions).
55 */
56
c43692e8
CL
57extern struct kmem_cache *vm_area_cachep;
58
1da177e4 59#ifndef CONFIG_MMU
8feae131
DH
60extern struct rb_root nommu_region_tree;
61extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
62
63extern unsigned int kobjsize(const void *objp);
64#endif
65
66/*
605d9288 67 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
68 */
69#define VM_READ 0x00000001 /* currently active flags */
70#define VM_WRITE 0x00000002
71#define VM_EXEC 0x00000004
72#define VM_SHARED 0x00000008
73
7e2cff42 74/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
75#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
76#define VM_MAYWRITE 0x00000020
77#define VM_MAYEXEC 0x00000040
78#define VM_MAYSHARE 0x00000080
79
80#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 81#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 82#define VM_GROWSUP 0x00000200
8ca3eb08
TL
83#else
84#define VM_GROWSUP 0x00000000
85#endif
6aab341e 86#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
87#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
88
89#define VM_EXECUTABLE 0x00001000
90#define VM_LOCKED 0x00002000
91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 99#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 100#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 101#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
102#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
103#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
104#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
895791da 105#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 106#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 107
d0217ac0 108#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 109#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 110#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 111#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 112#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 113
a8bef8ff
MG
114/* Bits set in the VMA until the stack is in its final location */
115#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
116
1da177e4
LT
117#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
118#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
119#endif
120
121#ifdef CONFIG_STACK_GROWSUP
122#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
123#else
124#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
125#endif
126
127#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
128#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
129#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
130#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
131#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
132
b291f000
NP
133/*
134 * special vmas that are non-mergable, non-mlock()able
135 */
136#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
137
1da177e4
LT
138/*
139 * mapping from the currently active vm_flags protection bits (the
140 * low four bits) to a page protection mask..
141 */
142extern pgprot_t protection_map[16];
143
d0217ac0
NP
144#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
145#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 146#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 147#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
d0217ac0 148
6bd9cd50 149/*
150 * This interface is used by x86 PAT code to identify a pfn mapping that is
151 * linear over entire vma. This is to optimize PAT code that deals with
152 * marking the physical region with a particular prot. This is not for generic
153 * mm use. Note also that this check will not work if the pfn mapping is
154 * linear for a vma starting at physical address 0. In which case PAT code
155 * falls back to slow path of reserving physical range page by page.
156 */
3c8bb73a 157static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
158{
895791da 159 return (vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 160}
161
162static inline int is_pfn_mapping(struct vm_area_struct *vma)
163{
164 return (vma->vm_flags & VM_PFNMAP);
165}
d0217ac0 166
54cb8821 167/*
d0217ac0 168 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
169 * ->fault function. The vma's ->fault is responsible for returning a bitmask
170 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 171 *
d0217ac0
NP
172 * pgoff should be used in favour of virtual_address, if possible. If pgoff
173 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
174 * mapping support.
54cb8821 175 */
d0217ac0
NP
176struct vm_fault {
177 unsigned int flags; /* FAULT_FLAG_xxx flags */
178 pgoff_t pgoff; /* Logical page offset based on vma */
179 void __user *virtual_address; /* Faulting virtual address */
180
181 struct page *page; /* ->fault handlers should return a
83c54070 182 * page here, unless VM_FAULT_NOPAGE
d0217ac0 183 * is set (which is also implied by
83c54070 184 * VM_FAULT_ERROR).
d0217ac0 185 */
54cb8821 186};
1da177e4
LT
187
188/*
189 * These are the virtual MM functions - opening of an area, closing and
190 * unmapping it (needed to keep files on disk up-to-date etc), pointer
191 * to the functions called when a no-page or a wp-page exception occurs.
192 */
193struct vm_operations_struct {
194 void (*open)(struct vm_area_struct * area);
195 void (*close)(struct vm_area_struct * area);
d0217ac0 196 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
197
198 /* notification that a previously read-only page is about to become
199 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 200 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
201
202 /* called by access_process_vm when get_user_pages() fails, typically
203 * for use by special VMAs that can switch between memory and hardware
204 */
205 int (*access)(struct vm_area_struct *vma, unsigned long addr,
206 void *buf, int len, int write);
1da177e4 207#ifdef CONFIG_NUMA
a6020ed7
LS
208 /*
209 * set_policy() op must add a reference to any non-NULL @new mempolicy
210 * to hold the policy upon return. Caller should pass NULL @new to
211 * remove a policy and fall back to surrounding context--i.e. do not
212 * install a MPOL_DEFAULT policy, nor the task or system default
213 * mempolicy.
214 */
1da177e4 215 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
216
217 /*
218 * get_policy() op must add reference [mpol_get()] to any policy at
219 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
220 * in mm/mempolicy.c will do this automatically.
221 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
222 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
223 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
224 * must return NULL--i.e., do not "fallback" to task or system default
225 * policy.
226 */
1da177e4
LT
227 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
228 unsigned long addr);
7b2259b3
CL
229 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
230 const nodemask_t *to, unsigned long flags);
1da177e4
LT
231#endif
232};
233
234struct mmu_gather;
235struct inode;
236
349aef0b
AM
237#define page_private(page) ((page)->private)
238#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 239
1da177e4
LT
240/*
241 * FIXME: take this include out, include page-flags.h in
242 * files which need it (119 of them)
243 */
244#include <linux/page-flags.h>
245
246/*
247 * Methods to modify the page usage count.
248 *
249 * What counts for a page usage:
250 * - cache mapping (page->mapping)
251 * - private data (page->private)
252 * - page mapped in a task's page tables, each mapping
253 * is counted separately
254 *
255 * Also, many kernel routines increase the page count before a critical
256 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
257 */
258
259/*
da6052f7 260 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 261 */
7c8ee9a8
NP
262static inline int put_page_testzero(struct page *page)
263{
725d704e 264 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 265 return atomic_dec_and_test(&page->_count);
7c8ee9a8 266}
1da177e4
LT
267
268/*
7c8ee9a8
NP
269 * Try to grab a ref unless the page has a refcount of zero, return false if
270 * that is the case.
1da177e4 271 */
7c8ee9a8
NP
272static inline int get_page_unless_zero(struct page *page)
273{
8dc04efb 274 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 275}
1da177e4 276
53df8fdc
WF
277extern int page_is_ram(unsigned long pfn);
278
48667e7a 279/* Support for virtually mapped pages */
b3bdda02
CL
280struct page *vmalloc_to_page(const void *addr);
281unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 282
0738c4bb
PM
283/*
284 * Determine if an address is within the vmalloc range
285 *
286 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
287 * is no special casing required.
288 */
9e2779fa
CL
289static inline int is_vmalloc_addr(const void *x)
290{
0738c4bb 291#ifdef CONFIG_MMU
9e2779fa
CL
292 unsigned long addr = (unsigned long)x;
293
294 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
295#else
296 return 0;
8ca3ed87 297#endif
0738c4bb 298}
81ac3ad9
KH
299#ifdef CONFIG_MMU
300extern int is_vmalloc_or_module_addr(const void *x);
301#else
934831d0 302static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
303{
304 return 0;
305}
306#endif
9e2779fa 307
d85f3385
CL
308static inline struct page *compound_head(struct page *page)
309{
6d777953 310 if (unlikely(PageTail(page)))
d85f3385
CL
311 return page->first_page;
312 return page;
313}
314
4c21e2f2 315static inline int page_count(struct page *page)
1da177e4 316{
d85f3385 317 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
318}
319
320static inline void get_page(struct page *page)
321{
d85f3385 322 page = compound_head(page);
725d704e 323 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
324 atomic_inc(&page->_count);
325}
326
b49af68f
CL
327static inline struct page *virt_to_head_page(const void *x)
328{
329 struct page *page = virt_to_page(x);
330 return compound_head(page);
331}
332
7835e98b
NP
333/*
334 * Setup the page count before being freed into the page allocator for
335 * the first time (boot or memory hotplug)
336 */
337static inline void init_page_count(struct page *page)
338{
339 atomic_set(&page->_count, 1);
340}
341
1da177e4 342void put_page(struct page *page);
1d7ea732 343void put_pages_list(struct list_head *pages);
1da177e4 344
8dfcc9ba 345void split_page(struct page *page, unsigned int order);
748446bb 346int split_free_page(struct page *page);
8dfcc9ba 347
33f2ef89
AW
348/*
349 * Compound pages have a destructor function. Provide a
350 * prototype for that function and accessor functions.
351 * These are _only_ valid on the head of a PG_compound page.
352 */
353typedef void compound_page_dtor(struct page *);
354
355static inline void set_compound_page_dtor(struct page *page,
356 compound_page_dtor *dtor)
357{
358 page[1].lru.next = (void *)dtor;
359}
360
361static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
362{
363 return (compound_page_dtor *)page[1].lru.next;
364}
365
d85f3385
CL
366static inline int compound_order(struct page *page)
367{
6d777953 368 if (!PageHead(page))
d85f3385
CL
369 return 0;
370 return (unsigned long)page[1].lru.prev;
371}
372
373static inline void set_compound_order(struct page *page, unsigned long order)
374{
375 page[1].lru.prev = (void *)order;
376}
377
1da177e4
LT
378/*
379 * Multiple processes may "see" the same page. E.g. for untouched
380 * mappings of /dev/null, all processes see the same page full of
381 * zeroes, and text pages of executables and shared libraries have
382 * only one copy in memory, at most, normally.
383 *
384 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
385 * page_count() == 0 means the page is free. page->lru is then used for
386 * freelist management in the buddy allocator.
da6052f7 387 * page_count() > 0 means the page has been allocated.
1da177e4 388 *
da6052f7
NP
389 * Pages are allocated by the slab allocator in order to provide memory
390 * to kmalloc and kmem_cache_alloc. In this case, the management of the
391 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
392 * unless a particular usage is carefully commented. (the responsibility of
393 * freeing the kmalloc memory is the caller's, of course).
1da177e4 394 *
da6052f7
NP
395 * A page may be used by anyone else who does a __get_free_page().
396 * In this case, page_count still tracks the references, and should only
397 * be used through the normal accessor functions. The top bits of page->flags
398 * and page->virtual store page management information, but all other fields
399 * are unused and could be used privately, carefully. The management of this
400 * page is the responsibility of the one who allocated it, and those who have
401 * subsequently been given references to it.
402 *
403 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
404 * managed by the Linux memory manager: I/O, buffers, swapping etc.
405 * The following discussion applies only to them.
406 *
da6052f7
NP
407 * A pagecache page contains an opaque `private' member, which belongs to the
408 * page's address_space. Usually, this is the address of a circular list of
409 * the page's disk buffers. PG_private must be set to tell the VM to call
410 * into the filesystem to release these pages.
1da177e4 411 *
da6052f7
NP
412 * A page may belong to an inode's memory mapping. In this case, page->mapping
413 * is the pointer to the inode, and page->index is the file offset of the page,
414 * in units of PAGE_CACHE_SIZE.
1da177e4 415 *
da6052f7
NP
416 * If pagecache pages are not associated with an inode, they are said to be
417 * anonymous pages. These may become associated with the swapcache, and in that
418 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 419 *
da6052f7
NP
420 * In either case (swapcache or inode backed), the pagecache itself holds one
421 * reference to the page. Setting PG_private should also increment the
422 * refcount. The each user mapping also has a reference to the page.
1da177e4 423 *
da6052f7
NP
424 * The pagecache pages are stored in a per-mapping radix tree, which is
425 * rooted at mapping->page_tree, and indexed by offset.
426 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
427 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 428 *
da6052f7 429 * All pagecache pages may be subject to I/O:
1da177e4
LT
430 * - inode pages may need to be read from disk,
431 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
432 * to be written back to the inode on disk,
433 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
434 * modified may need to be swapped out to swap space and (later) to be read
435 * back into memory.
1da177e4
LT
436 */
437
438/*
439 * The zone field is never updated after free_area_init_core()
440 * sets it, so none of the operations on it need to be atomic.
1da177e4 441 */
348f8b6c 442
d41dee36
AW
443
444/*
445 * page->flags layout:
446 *
447 * There are three possibilities for how page->flags get
448 * laid out. The first is for the normal case, without
449 * sparsemem. The second is for sparsemem when there is
450 * plenty of space for node and section. The last is when
451 * we have run out of space and have to fall back to an
452 * alternate (slower) way of determining the node.
453 *
308c05e3
CL
454 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
455 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
456 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 457 */
308c05e3 458#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
459#define SECTIONS_WIDTH SECTIONS_SHIFT
460#else
461#define SECTIONS_WIDTH 0
462#endif
463
464#define ZONES_WIDTH ZONES_SHIFT
465
9223b419 466#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
467#define NODES_WIDTH NODES_SHIFT
468#else
308c05e3
CL
469#ifdef CONFIG_SPARSEMEM_VMEMMAP
470#error "Vmemmap: No space for nodes field in page flags"
471#endif
d41dee36
AW
472#define NODES_WIDTH 0
473#endif
474
475/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 476#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
477#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
478#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
479
480/*
481 * We are going to use the flags for the page to node mapping if its in
482 * there. This includes the case where there is no node, so it is implicit.
483 */
89689ae7
CL
484#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
485#define NODE_NOT_IN_PAGE_FLAGS
486#endif
d41dee36
AW
487
488#ifndef PFN_SECTION_SHIFT
489#define PFN_SECTION_SHIFT 0
490#endif
348f8b6c
DH
491
492/*
493 * Define the bit shifts to access each section. For non-existant
494 * sections we define the shift as 0; that plus a 0 mask ensures
495 * the compiler will optimise away reference to them.
496 */
d41dee36
AW
497#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
498#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
499#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 500
bce54bbf
WD
501/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
502#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 503#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
504#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
505 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 506#else
89689ae7 507#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
508#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
509 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
510#endif
511
bd8029b6 512#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 513
9223b419
CL
514#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
515#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
516#endif
517
d41dee36
AW
518#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
519#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
520#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 521#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 522
2f1b6248 523static inline enum zone_type page_zonenum(struct page *page)
1da177e4 524{
348f8b6c 525 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 526}
1da177e4 527
89689ae7
CL
528/*
529 * The identification function is only used by the buddy allocator for
530 * determining if two pages could be buddies. We are not really
531 * identifying a zone since we could be using a the section number
532 * id if we have not node id available in page flags.
533 * We guarantee only that it will return the same value for two
534 * combinable pages in a zone.
535 */
cb2b95e1
AW
536static inline int page_zone_id(struct page *page)
537{
89689ae7 538 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
539}
540
25ba77c1 541static inline int zone_to_nid(struct zone *zone)
89fa3024 542{
d5f541ed
CL
543#ifdef CONFIG_NUMA
544 return zone->node;
545#else
546 return 0;
547#endif
89fa3024
CL
548}
549
89689ae7 550#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 551extern int page_to_nid(struct page *page);
89689ae7 552#else
25ba77c1 553static inline int page_to_nid(struct page *page)
d41dee36 554{
89689ae7 555 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 556}
89689ae7
CL
557#endif
558
559static inline struct zone *page_zone(struct page *page)
560{
561 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
562}
563
308c05e3 564#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
565static inline unsigned long page_to_section(struct page *page)
566{
567 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
568}
308c05e3 569#endif
d41dee36 570
2f1b6248 571static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
572{
573 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
574 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
575}
2f1b6248 576
348f8b6c
DH
577static inline void set_page_node(struct page *page, unsigned long node)
578{
579 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
580 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 581}
89689ae7 582
d41dee36
AW
583static inline void set_page_section(struct page *page, unsigned long section)
584{
585 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
586 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
587}
1da177e4 588
2f1b6248 589static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 590 unsigned long node, unsigned long pfn)
1da177e4 591{
348f8b6c
DH
592 set_page_zone(page, zone);
593 set_page_node(page, node);
d41dee36 594 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
595}
596
f6ac2354
CL
597/*
598 * Some inline functions in vmstat.h depend on page_zone()
599 */
600#include <linux/vmstat.h>
601
652050ae 602static __always_inline void *lowmem_page_address(struct page *page)
1da177e4 603{
c6f6b596 604 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
605}
606
607#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
608#define HASHED_PAGE_VIRTUAL
609#endif
610
611#if defined(WANT_PAGE_VIRTUAL)
612#define page_address(page) ((page)->virtual)
613#define set_page_address(page, address) \
614 do { \
615 (page)->virtual = (address); \
616 } while(0)
617#define page_address_init() do { } while(0)
618#endif
619
620#if defined(HASHED_PAGE_VIRTUAL)
621void *page_address(struct page *page);
622void set_page_address(struct page *page, void *virtual);
623void page_address_init(void);
624#endif
625
626#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
627#define page_address(page) lowmem_page_address(page)
628#define set_page_address(page, address) do { } while(0)
629#define page_address_init() do { } while(0)
630#endif
631
632/*
633 * On an anonymous page mapped into a user virtual memory area,
634 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
635 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
636 *
637 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
638 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
639 * and then page->mapping points, not to an anon_vma, but to a private
640 * structure which KSM associates with that merged page. See ksm.h.
641 *
642 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
643 *
644 * Please note that, confusingly, "page_mapping" refers to the inode
645 * address_space which maps the page from disk; whereas "page_mapped"
646 * refers to user virtual address space into which the page is mapped.
647 */
648#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
649#define PAGE_MAPPING_KSM 2
650#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
651
652extern struct address_space swapper_space;
653static inline struct address_space *page_mapping(struct page *page)
654{
655 struct address_space *mapping = page->mapping;
656
b5fab14e 657 VM_BUG_ON(PageSlab(page));
1da177e4
LT
658 if (unlikely(PageSwapCache(page)))
659 mapping = &swapper_space;
f096e59e 660 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
1da177e4
LT
661 mapping = NULL;
662 return mapping;
663}
664
3ca7b3c5
HD
665/* Neutral page->mapping pointer to address_space or anon_vma or other */
666static inline void *page_rmapping(struct page *page)
667{
668 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
669}
670
1da177e4
LT
671static inline int PageAnon(struct page *page)
672{
673 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
674}
675
676/*
677 * Return the pagecache index of the passed page. Regular pagecache pages
678 * use ->index whereas swapcache pages use ->private
679 */
680static inline pgoff_t page_index(struct page *page)
681{
682 if (unlikely(PageSwapCache(page)))
4c21e2f2 683 return page_private(page);
1da177e4
LT
684 return page->index;
685}
686
687/*
688 * The atomic page->_mapcount, like _count, starts from -1:
689 * so that transitions both from it and to it can be tracked,
690 * using atomic_inc_and_test and atomic_add_negative(-1).
691 */
692static inline void reset_page_mapcount(struct page *page)
693{
694 atomic_set(&(page)->_mapcount, -1);
695}
696
697static inline int page_mapcount(struct page *page)
698{
699 return atomic_read(&(page)->_mapcount) + 1;
700}
701
702/*
703 * Return true if this page is mapped into pagetables.
704 */
705static inline int page_mapped(struct page *page)
706{
707 return atomic_read(&(page)->_mapcount) >= 0;
708}
709
1da177e4
LT
710/*
711 * Different kinds of faults, as returned by handle_mm_fault().
712 * Used to decide whether a process gets delivered SIGBUS or
713 * just gets major/minor fault counters bumped up.
714 */
d0217ac0 715
83c54070 716#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 717
83c54070
NP
718#define VM_FAULT_OOM 0x0001
719#define VM_FAULT_SIGBUS 0x0002
720#define VM_FAULT_MAJOR 0x0004
721#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
722#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
723#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 724
83c54070
NP
725#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
726#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 727#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 728
aa50d3a7
AK
729#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
730
731#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
732 VM_FAULT_HWPOISON_LARGE)
733
734/* Encode hstate index for a hwpoisoned large page */
735#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
736#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 737
1c0fe6e3
NP
738/*
739 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
740 */
741extern void pagefault_out_of_memory(void);
742
1da177e4
LT
743#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
744
745extern void show_free_areas(void);
746
3f96b79a 747int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 748struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
749int shmem_zero_setup(struct vm_area_struct *);
750
b0e15190
DH
751#ifndef CONFIG_MMU
752extern unsigned long shmem_get_unmapped_area(struct file *file,
753 unsigned long addr,
754 unsigned long len,
755 unsigned long pgoff,
756 unsigned long flags);
757#endif
758
e8edc6e0 759extern int can_do_mlock(void);
1da177e4
LT
760extern int user_shm_lock(size_t, struct user_struct *);
761extern void user_shm_unlock(size_t, struct user_struct *);
762
763/*
764 * Parameter block passed down to zap_pte_range in exceptional cases.
765 */
766struct zap_details {
767 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
768 struct address_space *check_mapping; /* Check page->mapping if set */
769 pgoff_t first_index; /* Lowest page->index to unmap */
770 pgoff_t last_index; /* Highest page->index to unmap */
771 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
772 unsigned long truncate_count; /* Compare vm_truncate_count */
773};
774
7e675137
NP
775struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
776 pte_t pte);
777
c627f9cc
JS
778int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
779 unsigned long size);
ee39b37b 780unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 781 unsigned long size, struct zap_details *);
508034a3 782unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
783 struct vm_area_struct *start_vma, unsigned long start_addr,
784 unsigned long end_addr, unsigned long *nr_accounted,
785 struct zap_details *);
e6473092
MM
786
787/**
788 * mm_walk - callbacks for walk_page_range
789 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
790 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
791 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
792 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
793 * @pte_hole: if set, called for each hole at all levels
5dc37642 794 * @hugetlb_entry: if set, called for each hugetlb entry
e6473092
MM
795 *
796 * (see walk_page_range for more details)
797 */
798struct mm_walk {
2165009b
DH
799 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
800 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
801 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
802 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
803 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
804 int (*hugetlb_entry)(pte_t *, unsigned long,
805 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
806 struct mm_struct *mm;
807 void *private;
e6473092
MM
808};
809
2165009b
DH
810int walk_page_range(unsigned long addr, unsigned long end,
811 struct mm_walk *walk);
42b77728 812void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 813 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
814int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
815 struct vm_area_struct *vma);
1da177e4
LT
816void unmap_mapping_range(struct address_space *mapping,
817 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
818int follow_pfn(struct vm_area_struct *vma, unsigned long address,
819 unsigned long *pfn);
d87fe660 820int follow_phys(struct vm_area_struct *vma, unsigned long address,
821 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
822int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
823 void *buf, int len, int write);
1da177e4
LT
824
825static inline void unmap_shared_mapping_range(struct address_space *mapping,
826 loff_t const holebegin, loff_t const holelen)
827{
828 unmap_mapping_range(mapping, holebegin, holelen, 0);
829}
830
25d9e2d1 831extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 832extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 833extern int vmtruncate(struct inode *inode, loff_t offset);
834extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 835
750b4987 836int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 837int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 838
83f78668
WF
839int invalidate_inode_page(struct page *page);
840
7ee1dd3f 841#ifdef CONFIG_MMU
83c54070 842extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 843 unsigned long address, unsigned int flags);
7ee1dd3f
DH
844#else
845static inline int handle_mm_fault(struct mm_struct *mm,
846 struct vm_area_struct *vma, unsigned long address,
d06063cc 847 unsigned int flags)
7ee1dd3f
DH
848{
849 /* should never happen if there's no MMU */
850 BUG();
851 return VM_FAULT_SIGBUS;
852}
853#endif
f33ea7f4 854
1da177e4
LT
855extern int make_pages_present(unsigned long addr, unsigned long end);
856extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1da177e4 857
d2bf6be8 858int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 859 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
860 struct page **pages, struct vm_area_struct **vmas);
861int get_user_pages_fast(unsigned long start, int nr_pages, int write,
862 struct page **pages);
f3e8fccd 863struct page *get_dump_page(unsigned long addr);
1da177e4 864
cf9a2ae8
DH
865extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
866extern void do_invalidatepage(struct page *page, unsigned long offset);
867
1da177e4 868int __set_page_dirty_nobuffers(struct page *page);
76719325 869int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
870int redirty_page_for_writepage(struct writeback_control *wbc,
871 struct page *page);
e3a7cca1 872void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 873void account_page_writeback(struct page *page);
b3c97528 874int set_page_dirty(struct page *page);
1da177e4
LT
875int set_page_dirty_lock(struct page *page);
876int clear_page_dirty_for_io(struct page *page);
877
39aa3cb3
SB
878/* Is the vma a continuation of the stack vma above it? */
879static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
880{
881 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
882}
883
b6a2fea3
OW
884extern unsigned long move_page_tables(struct vm_area_struct *vma,
885 unsigned long old_addr, struct vm_area_struct *new_vma,
886 unsigned long new_addr, unsigned long len);
1da177e4
LT
887extern unsigned long do_mremap(unsigned long addr,
888 unsigned long old_len, unsigned long new_len,
889 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
890extern int mprotect_fixup(struct vm_area_struct *vma,
891 struct vm_area_struct **pprev, unsigned long start,
892 unsigned long end, unsigned long newflags);
1da177e4 893
465a454f
PZ
894/*
895 * doesn't attempt to fault and will return short.
896 */
897int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
898 struct page **pages);
d559db08
KH
899/*
900 * per-process(per-mm_struct) statistics.
901 */
34e55232 902#if defined(SPLIT_RSS_COUNTING)
d559db08
KH
903/*
904 * The mm counters are not protected by its page_table_lock,
905 * so must be incremented atomically.
906 */
907static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
908{
909 atomic_long_set(&mm->rss_stat.count[member], value);
910}
911
34e55232 912unsigned long get_mm_counter(struct mm_struct *mm, int member);
d559db08
KH
913
914static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
915{
916 atomic_long_add(value, &mm->rss_stat.count[member]);
917}
918
919static inline void inc_mm_counter(struct mm_struct *mm, int member)
920{
921 atomic_long_inc(&mm->rss_stat.count[member]);
922}
923
924static inline void dec_mm_counter(struct mm_struct *mm, int member)
925{
926 atomic_long_dec(&mm->rss_stat.count[member]);
927}
928
929#else /* !USE_SPLIT_PTLOCKS */
930/*
931 * The mm counters are protected by its page_table_lock,
932 * so can be incremented directly.
933 */
934static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
935{
936 mm->rss_stat.count[member] = value;
937}
938
939static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
940{
941 return mm->rss_stat.count[member];
942}
943
944static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
945{
946 mm->rss_stat.count[member] += value;
947}
948
949static inline void inc_mm_counter(struct mm_struct *mm, int member)
950{
951 mm->rss_stat.count[member]++;
952}
953
954static inline void dec_mm_counter(struct mm_struct *mm, int member)
955{
956 mm->rss_stat.count[member]--;
957}
958
959#endif /* !USE_SPLIT_PTLOCKS */
960
961static inline unsigned long get_mm_rss(struct mm_struct *mm)
962{
963 return get_mm_counter(mm, MM_FILEPAGES) +
964 get_mm_counter(mm, MM_ANONPAGES);
965}
966
967static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
968{
969 return max(mm->hiwater_rss, get_mm_rss(mm));
970}
971
972static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
973{
974 return max(mm->hiwater_vm, mm->total_vm);
975}
976
977static inline void update_hiwater_rss(struct mm_struct *mm)
978{
979 unsigned long _rss = get_mm_rss(mm);
980
981 if ((mm)->hiwater_rss < _rss)
982 (mm)->hiwater_rss = _rss;
983}
984
985static inline void update_hiwater_vm(struct mm_struct *mm)
986{
987 if (mm->hiwater_vm < mm->total_vm)
988 mm->hiwater_vm = mm->total_vm;
989}
990
991static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
992 struct mm_struct *mm)
993{
994 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
995
996 if (*maxrss < hiwater_rss)
997 *maxrss = hiwater_rss;
998}
999
53bddb4e 1000#if defined(SPLIT_RSS_COUNTING)
34e55232 1001void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1002#else
1003static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1004{
1005}
1006#endif
465a454f 1007
1da177e4 1008/*
8e1f936b 1009 * A callback you can register to apply pressure to ageable caches.
1da177e4 1010 *
8e1f936b
RR
1011 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1012 * look through the least-recently-used 'nr_to_scan' entries and
1013 * attempt to free them up. It should return the number of objects
1014 * which remain in the cache. If it returns -1, it means it cannot do
1015 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 1016 *
8e1f936b
RR
1017 * The 'gfpmask' refers to the allocation we are currently trying to
1018 * fulfil.
1019 *
1020 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1021 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 1022 */
8e1f936b 1023struct shrinker {
7f8275d0 1024 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
8e1f936b 1025 int seeks; /* seeks to recreate an obj */
1da177e4 1026
8e1f936b
RR
1027 /* These are for internal use */
1028 struct list_head list;
1029 long nr; /* objs pending delete */
1030};
1031#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1032extern void register_shrinker(struct shrinker *);
1033extern void unregister_shrinker(struct shrinker *);
1da177e4 1034
4e950f6f 1035int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1036
b3c97528 1037extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
c9cfcddf 1038
5f22df00
NP
1039#ifdef __PAGETABLE_PUD_FOLDED
1040static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1041 unsigned long address)
1042{
1043 return 0;
1044}
1045#else
1bb3630e 1046int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1047#endif
1048
1049#ifdef __PAGETABLE_PMD_FOLDED
1050static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1051 unsigned long address)
1052{
1053 return 0;
1054}
1055#else
1bb3630e 1056int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1057#endif
1058
1bb3630e
HD
1059int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1060int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1061
1da177e4
LT
1062/*
1063 * The following ifdef needed to get the 4level-fixup.h header to work.
1064 * Remove it when 4level-fixup.h has been removed.
1065 */
1bb3630e 1066#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1067static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1068{
1bb3630e
HD
1069 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1070 NULL: pud_offset(pgd, address);
1da177e4
LT
1071}
1072
1073static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1074{
1bb3630e
HD
1075 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1076 NULL: pmd_offset(pud, address);
1da177e4 1077}
1bb3630e
HD
1078#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1079
f7d0b926 1080#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1081/*
1082 * We tuck a spinlock to guard each pagetable page into its struct page,
1083 * at page->private, with BUILD_BUG_ON to make sure that this will not
1084 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1085 * When freeing, reset page->mapping so free_pages_check won't complain.
1086 */
349aef0b 1087#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1088#define pte_lock_init(_page) do { \
1089 spin_lock_init(__pte_lockptr(_page)); \
1090} while (0)
1091#define pte_lock_deinit(page) ((page)->mapping = NULL)
1092#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1093#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1094/*
1095 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1096 */
1097#define pte_lock_init(page) do {} while (0)
1098#define pte_lock_deinit(page) do {} while (0)
1099#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1100#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1101
2f569afd
MS
1102static inline void pgtable_page_ctor(struct page *page)
1103{
1104 pte_lock_init(page);
1105 inc_zone_page_state(page, NR_PAGETABLE);
1106}
1107
1108static inline void pgtable_page_dtor(struct page *page)
1109{
1110 pte_lock_deinit(page);
1111 dec_zone_page_state(page, NR_PAGETABLE);
1112}
1113
c74df32c
HD
1114#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1115({ \
4c21e2f2 1116 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1117 pte_t *__pte = pte_offset_map(pmd, address); \
1118 *(ptlp) = __ptl; \
1119 spin_lock(__ptl); \
1120 __pte; \
1121})
1122
1123#define pte_unmap_unlock(pte, ptl) do { \
1124 spin_unlock(ptl); \
1125 pte_unmap(pte); \
1126} while (0)
1127
1bb3630e
HD
1128#define pte_alloc_map(mm, pmd, address) \
1129 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1130 NULL: pte_offset_map(pmd, address))
1131
c74df32c
HD
1132#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1133 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1134 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1135
1bb3630e
HD
1136#define pte_alloc_kernel(pmd, address) \
1137 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1138 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1139
1140extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1141extern void free_area_init_node(int nid, unsigned long * zones_size,
1142 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1143#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1144/*
1145 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1146 * zones, allocate the backing mem_map and account for memory holes in a more
1147 * architecture independent manner. This is a substitute for creating the
1148 * zone_sizes[] and zholes_size[] arrays and passing them to
1149 * free_area_init_node()
1150 *
1151 * An architecture is expected to register range of page frames backed by
1152 * physical memory with add_active_range() before calling
1153 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1154 * usage, an architecture is expected to do something like
1155 *
1156 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1157 * max_highmem_pfn};
1158 * for_each_valid_physical_page_range()
1159 * add_active_range(node_id, start_pfn, end_pfn)
1160 * free_area_init_nodes(max_zone_pfns);
1161 *
1162 * If the architecture guarantees that there are no holes in the ranges
1163 * registered with add_active_range(), free_bootmem_active_regions()
1164 * will call free_bootmem_node() for each registered physical page range.
1165 * Similarly sparse_memory_present_with_active_regions() calls
1166 * memory_present() for each range when SPARSEMEM is enabled.
1167 *
1168 * See mm/page_alloc.c for more information on each function exposed by
1169 * CONFIG_ARCH_POPULATES_NODE_MAP
1170 */
1171extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1172extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1173 unsigned long end_pfn);
cc1050ba
YL
1174extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1175 unsigned long end_pfn);
c713216d 1176extern void remove_all_active_ranges(void);
32996250
YL
1177void sort_node_map(void);
1178unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1179 unsigned long end_pfn);
c713216d
MG
1180extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1181 unsigned long end_pfn);
1182extern void get_pfn_range_for_nid(unsigned int nid,
1183 unsigned long *start_pfn, unsigned long *end_pfn);
1184extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1185extern void free_bootmem_with_active_regions(int nid,
1186 unsigned long max_low_pfn);
08677214
YL
1187int add_from_early_node_map(struct range *range, int az,
1188 int nr_range, int nid);
edbe7d23
YL
1189u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1190 u64 goal, u64 limit);
08677214
YL
1191void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1192 u64 goal, u64 limit);
d52d53b8 1193typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1194extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d 1195extern void sparse_memory_present_with_active_regions(int nid);
c713216d 1196#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1197
1198#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1199 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1200static inline int __early_pfn_to_nid(unsigned long pfn)
1201{
1202 return 0;
1203}
1204#else
1205/* please see mm/page_alloc.c */
1206extern int __meminit early_pfn_to_nid(unsigned long pfn);
1207#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1208/* there is a per-arch backend function. */
1209extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1210#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1211#endif
1212
0e0b864e 1213extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1214extern void memmap_init_zone(unsigned long, int, unsigned long,
1215 unsigned long, enum memmap_context);
bc75d33f 1216extern void setup_per_zone_wmarks(void);
96cb4df5 1217extern void calculate_zone_inactive_ratio(struct zone *zone);
1da177e4 1218extern void mem_init(void);
8feae131 1219extern void __init mmap_init(void);
1da177e4
LT
1220extern void show_mem(void);
1221extern void si_meminfo(struct sysinfo * val);
1222extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1223extern int after_bootmem;
1da177e4 1224
e7c8d5c9 1225extern void setup_per_cpu_pageset(void);
e7c8d5c9 1226
112067f0
SL
1227extern void zone_pcp_update(struct zone *zone);
1228
8feae131 1229/* nommu.c */
33e5d769 1230extern atomic_long_t mmap_pages_allocated;
7e660872 1231extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1232
1da177e4
LT
1233/* prio_tree.c */
1234void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1235void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1236void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1237struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1238 struct prio_tree_iter *iter);
1239
1240#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1241 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1242 (vma = vma_prio_tree_next(vma, iter)); )
1243
1244static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1245 struct list_head *list)
1246{
1247 vma->shared.vm_set.parent = NULL;
1248 list_add_tail(&vma->shared.vm_set.list, list);
1249}
1250
1251/* mmap.c */
34b4e4aa 1252extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1253extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1254 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1255extern struct vm_area_struct *vma_merge(struct mm_struct *,
1256 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1257 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1258 struct mempolicy *);
1259extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1260extern int split_vma(struct mm_struct *,
1261 struct vm_area_struct *, unsigned long addr, int new_below);
1262extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1263extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1264 struct rb_node **, struct rb_node *);
a8fb5618 1265extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1266extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1267 unsigned long addr, unsigned long len, pgoff_t pgoff);
1268extern void exit_mmap(struct mm_struct *);
925d1c40 1269
7906d00c
AA
1270extern int mm_take_all_locks(struct mm_struct *mm);
1271extern void mm_drop_all_locks(struct mm_struct *mm);
1272
925d1c40
MH
1273#ifdef CONFIG_PROC_FS
1274/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1275extern void added_exe_file_vma(struct mm_struct *mm);
1276extern void removed_exe_file_vma(struct mm_struct *mm);
1277#else
1278static inline void added_exe_file_vma(struct mm_struct *mm)
1279{}
1280
1281static inline void removed_exe_file_vma(struct mm_struct *mm)
1282{}
1283#endif /* CONFIG_PROC_FS */
1284
119f657c 1285extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1286extern int install_special_mapping(struct mm_struct *mm,
1287 unsigned long addr, unsigned long len,
1288 unsigned long flags, struct page **pages);
1da177e4
LT
1289
1290extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1291
1292extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1293 unsigned long len, unsigned long prot,
1294 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1295extern unsigned long mmap_region(struct file *file, unsigned long addr,
1296 unsigned long len, unsigned long flags,
5a6fe125 1297 unsigned int vm_flags, unsigned long pgoff);
1da177e4
LT
1298
1299static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1300 unsigned long len, unsigned long prot,
1301 unsigned long flag, unsigned long offset)
1302{
1303 unsigned long ret = -EINVAL;
1304 if ((offset + PAGE_ALIGN(len)) < offset)
1305 goto out;
1306 if (!(offset & ~PAGE_MASK))
1307 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1308out:
1309 return ret;
1310}
1311
1312extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1313
1314extern unsigned long do_brk(unsigned long, unsigned long);
1315
1316/* filemap.c */
1317extern unsigned long page_unuse(struct page *);
1318extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1319extern void truncate_inode_pages_range(struct address_space *,
1320 loff_t lstart, loff_t lend);
1da177e4
LT
1321
1322/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1323extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1324
1325/* mm/page-writeback.c */
1326int write_one_page(struct page *page, int wait);
1cf6e7d8 1327void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1328
1329/* readahead.c */
1330#define VM_MAX_READAHEAD 128 /* kbytes */
1331#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1332
1da177e4 1333int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1334 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1335
1336void page_cache_sync_readahead(struct address_space *mapping,
1337 struct file_ra_state *ra,
1338 struct file *filp,
1339 pgoff_t offset,
1340 unsigned long size);
1341
1342void page_cache_async_readahead(struct address_space *mapping,
1343 struct file_ra_state *ra,
1344 struct file *filp,
1345 struct page *pg,
1346 pgoff_t offset,
1347 unsigned long size);
1348
1da177e4 1349unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1350unsigned long ra_submit(struct file_ra_state *ra,
1351 struct address_space *mapping,
1352 struct file *filp);
1da177e4
LT
1353
1354/* Do stack extension */
46dea3d0 1355extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1356#if VM_GROWSUP
46dea3d0 1357extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1358#else
1359 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1360#endif
b6a2fea3
OW
1361extern int expand_stack_downwards(struct vm_area_struct *vma,
1362 unsigned long address);
1da177e4
LT
1363
1364/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1365extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1366extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1367 struct vm_area_struct **pprev);
1368
1369/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1370 NULL if none. Assume start_addr < end_addr. */
1371static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1372{
1373 struct vm_area_struct * vma = find_vma(mm,start_addr);
1374
1375 if (vma && end_addr <= vma->vm_start)
1376 vma = NULL;
1377 return vma;
1378}
1379
1380static inline unsigned long vma_pages(struct vm_area_struct *vma)
1381{
1382 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1383}
1384
bad849b3 1385#ifdef CONFIG_MMU
804af2cf 1386pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1387#else
1388static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1389{
1390 return __pgprot(0);
1391}
1392#endif
1393
deceb6cd 1394struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1395int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1396 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1397int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1398int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1399 unsigned long pfn);
423bad60
NP
1400int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1401 unsigned long pfn);
deceb6cd 1402
6aab341e 1403struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1404 unsigned int foll_flags);
1405#define FOLL_WRITE 0x01 /* check pte is writable */
1406#define FOLL_TOUCH 0x02 /* mark page accessed */
1407#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1408#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1409#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1da177e4 1410
2f569afd 1411typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1412 void *data);
1413extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1414 unsigned long size, pte_fn_t fn, void *data);
1415
1da177e4 1416#ifdef CONFIG_PROC_FS
ab50b8ed 1417void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1418#else
ab50b8ed 1419static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1420 unsigned long flags, struct file *file, long pages)
1421{
1422}
1423#endif /* CONFIG_PROC_FS */
1424
12d6f21e
IM
1425#ifdef CONFIG_DEBUG_PAGEALLOC
1426extern int debug_pagealloc_enabled;
1427
1428extern void kernel_map_pages(struct page *page, int numpages, int enable);
1429
1430static inline void enable_debug_pagealloc(void)
1431{
1432 debug_pagealloc_enabled = 1;
1433}
8a235efa
RW
1434#ifdef CONFIG_HIBERNATION
1435extern bool kernel_page_present(struct page *page);
1436#endif /* CONFIG_HIBERNATION */
12d6f21e 1437#else
1da177e4 1438static inline void
9858db50 1439kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1440static inline void enable_debug_pagealloc(void)
1441{
1442}
8a235efa
RW
1443#ifdef CONFIG_HIBERNATION
1444static inline bool kernel_page_present(struct page *page) { return true; }
1445#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1446#endif
1447
1448extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1449#ifdef __HAVE_ARCH_GATE_AREA
1450int in_gate_area_no_task(unsigned long addr);
1451int in_gate_area(struct task_struct *task, unsigned long addr);
1452#else
1453int in_gate_area_no_task(unsigned long addr);
1454#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1455#endif /* __HAVE_ARCH_GATE_AREA */
1456
8d65af78 1457int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1458 void __user *, size_t *, loff_t *);
69e05944 1459unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc 1460 unsigned long lru_pages);
9d0243bc 1461
7a9166e3
LY
1462#ifndef CONFIG_MMU
1463#define randomize_va_space 0
1464#else
a62eaf15 1465extern int randomize_va_space;
7a9166e3 1466#endif
a62eaf15 1467
045e72ac 1468const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1469void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1470
9bdac914
YL
1471void sparse_mem_maps_populate_node(struct page **map_map,
1472 unsigned long pnum_begin,
1473 unsigned long pnum_end,
1474 unsigned long map_count,
1475 int nodeid);
1476
98f3cfc1 1477struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1478pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1479pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1480pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1481pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1482void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1483void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1484void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1485int vmemmap_populate_basepages(struct page *start_page,
1486 unsigned long pages, int node);
1487int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1488void vmemmap_populate_print_last(void);
8f6aac41 1489
6a46079c 1490
82ba011b
AK
1491enum mf_flags {
1492 MF_COUNT_INCREASED = 1 << 0,
1493};
6a46079c 1494extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1495extern int __memory_failure(unsigned long pfn, int trapno, int flags);
847ce401 1496extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1497extern int sysctl_memory_failure_early_kill;
1498extern int sysctl_memory_failure_recovery;
facb6011 1499extern void shake_page(struct page *p, int access);
6a46079c 1500extern atomic_long_t mce_bad_pages;
facb6011 1501extern int soft_offline_page(struct page *page, int flags);
bf998156
HY
1502#ifdef CONFIG_MEMORY_FAILURE
1503int is_hwpoison_address(unsigned long addr);
1504#else
1505static inline int is_hwpoison_address(unsigned long addr)
1506{
1507 return 0;
1508}
1509#endif
6a46079c 1510
718a3821
WF
1511extern void dump_page(struct page *page);
1512
1da177e4
LT
1513#endif /* __KERNEL__ */
1514#endif /* _LINUX_MM_H */