mm: page_alloc: use get_freepage_migratetype() instead of page_private()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
1da177e4
LT
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
27ac792c
AR
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
1da177e4
LT
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
c43692e8
CL
61extern struct kmem_cache *vm_area_cachep;
62
1da177e4 63#ifndef CONFIG_MMU
8feae131
DH
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
605d9288 71 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 72 */
cc2383ec
KK
73#define VM_NONE 0x00000000
74
1da177e4
LT
75#define VM_READ 0x00000001 /* currently active flags */
76#define VM_WRITE 0x00000002
77#define VM_EXEC 0x00000004
78#define VM_SHARED 0x00000008
79
7e2cff42 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82#define VM_MAYWRITE 0x00000020
83#define VM_MAYEXEC 0x00000040
84#define VM_MAYSHARE 0x00000080
85
86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
1da177e4
LT
90#define VM_LOCKED 0x00002000
91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 99#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 100#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
101#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 103#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 104#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 105
b379d790 106#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
107#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 109#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 110
cc2383ec
KK
111#if defined(CONFIG_X86)
112# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113#elif defined(CONFIG_PPC)
114# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115#elif defined(CONFIG_PARISC)
116# define VM_GROWSUP VM_ARCH_1
117#elif defined(CONFIG_IA64)
118# define VM_GROWSUP VM_ARCH_1
119#elif !defined(CONFIG_MMU)
120# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
121#endif
122
123#ifndef VM_GROWSUP
124# define VM_GROWSUP VM_NONE
125#endif
126
a8bef8ff
MG
127/* Bits set in the VMA until the stack is in its final location */
128#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
129
1da177e4
LT
130#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
131#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132#endif
133
134#ifdef CONFIG_STACK_GROWSUP
135#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136#else
137#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138#endif
139
140#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
141#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
142#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
143#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
144#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
145
b291f000 146/*
78f11a25
AA
147 * Special vmas that are non-mergable, non-mlock()able.
148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 149 */
314e51b9 150#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 151
1da177e4
LT
152/*
153 * mapping from the currently active vm_flags protection bits (the
154 * low four bits) to a page protection mask..
155 */
156extern pgprot_t protection_map[16];
157
d0217ac0
NP
158#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
159#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 160#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 161#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 162#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 163#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
d0217ac0 164
54cb8821 165/*
d0217ac0 166 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
167 * ->fault function. The vma's ->fault is responsible for returning a bitmask
168 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 169 *
d0217ac0 170 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 171 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 172 */
d0217ac0
NP
173struct vm_fault {
174 unsigned int flags; /* FAULT_FLAG_xxx flags */
175 pgoff_t pgoff; /* Logical page offset based on vma */
176 void __user *virtual_address; /* Faulting virtual address */
177
178 struct page *page; /* ->fault handlers should return a
83c54070 179 * page here, unless VM_FAULT_NOPAGE
d0217ac0 180 * is set (which is also implied by
83c54070 181 * VM_FAULT_ERROR).
d0217ac0 182 */
54cb8821 183};
1da177e4
LT
184
185/*
186 * These are the virtual MM functions - opening of an area, closing and
187 * unmapping it (needed to keep files on disk up-to-date etc), pointer
188 * to the functions called when a no-page or a wp-page exception occurs.
189 */
190struct vm_operations_struct {
191 void (*open)(struct vm_area_struct * area);
192 void (*close)(struct vm_area_struct * area);
d0217ac0 193 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
194
195 /* notification that a previously read-only page is about to become
196 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 197 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
198
199 /* called by access_process_vm when get_user_pages() fails, typically
200 * for use by special VMAs that can switch between memory and hardware
201 */
202 int (*access)(struct vm_area_struct *vma, unsigned long addr,
203 void *buf, int len, int write);
1da177e4 204#ifdef CONFIG_NUMA
a6020ed7
LS
205 /*
206 * set_policy() op must add a reference to any non-NULL @new mempolicy
207 * to hold the policy upon return. Caller should pass NULL @new to
208 * remove a policy and fall back to surrounding context--i.e. do not
209 * install a MPOL_DEFAULT policy, nor the task or system default
210 * mempolicy.
211 */
1da177e4 212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
213
214 /*
215 * get_policy() op must add reference [mpol_get()] to any policy at
216 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
217 * in mm/mempolicy.c will do this automatically.
218 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
219 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
220 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
221 * must return NULL--i.e., do not "fallback" to task or system default
222 * policy.
223 */
1da177e4
LT
224 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
225 unsigned long addr);
7b2259b3
CL
226 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
227 const nodemask_t *to, unsigned long flags);
1da177e4 228#endif
0b173bc4
KK
229 /* called by sys_remap_file_pages() to populate non-linear mapping */
230 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
231 unsigned long size, pgoff_t pgoff);
1da177e4
LT
232};
233
234struct mmu_gather;
235struct inode;
236
349aef0b
AM
237#define page_private(page) ((page)->private)
238#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 239
b12c4ad1
MK
240/* It's valid only if the page is free path or free_list */
241static inline void set_freepage_migratetype(struct page *page, int migratetype)
242{
243 set_page_private(page, migratetype);
244}
245
246/* It's valid only if the page is free path or free_list */
247static inline int get_freepage_migratetype(struct page *page)
248{
249 return page_private(page);
250}
251
1da177e4
LT
252/*
253 * FIXME: take this include out, include page-flags.h in
254 * files which need it (119 of them)
255 */
256#include <linux/page-flags.h>
71e3aac0 257#include <linux/huge_mm.h>
1da177e4
LT
258
259/*
260 * Methods to modify the page usage count.
261 *
262 * What counts for a page usage:
263 * - cache mapping (page->mapping)
264 * - private data (page->private)
265 * - page mapped in a task's page tables, each mapping
266 * is counted separately
267 *
268 * Also, many kernel routines increase the page count before a critical
269 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
270 */
271
272/*
da6052f7 273 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 274 */
7c8ee9a8
NP
275static inline int put_page_testzero(struct page *page)
276{
725d704e 277 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 278 return atomic_dec_and_test(&page->_count);
7c8ee9a8 279}
1da177e4
LT
280
281/*
7c8ee9a8
NP
282 * Try to grab a ref unless the page has a refcount of zero, return false if
283 * that is the case.
1da177e4 284 */
7c8ee9a8
NP
285static inline int get_page_unless_zero(struct page *page)
286{
8dc04efb 287 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 288}
1da177e4 289
53df8fdc
WF
290extern int page_is_ram(unsigned long pfn);
291
48667e7a 292/* Support for virtually mapped pages */
b3bdda02
CL
293struct page *vmalloc_to_page(const void *addr);
294unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 295
0738c4bb
PM
296/*
297 * Determine if an address is within the vmalloc range
298 *
299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
300 * is no special casing required.
301 */
9e2779fa
CL
302static inline int is_vmalloc_addr(const void *x)
303{
0738c4bb 304#ifdef CONFIG_MMU
9e2779fa
CL
305 unsigned long addr = (unsigned long)x;
306
307 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
308#else
309 return 0;
8ca3ed87 310#endif
0738c4bb 311}
81ac3ad9
KH
312#ifdef CONFIG_MMU
313extern int is_vmalloc_or_module_addr(const void *x);
314#else
934831d0 315static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
316{
317 return 0;
318}
319#endif
9e2779fa 320
e9da73d6
AA
321static inline void compound_lock(struct page *page)
322{
323#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 324 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
325 bit_spin_lock(PG_compound_lock, &page->flags);
326#endif
327}
328
329static inline void compound_unlock(struct page *page)
330{
331#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 332 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
333 bit_spin_unlock(PG_compound_lock, &page->flags);
334#endif
335}
336
337static inline unsigned long compound_lock_irqsave(struct page *page)
338{
339 unsigned long uninitialized_var(flags);
340#ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 local_irq_save(flags);
342 compound_lock(page);
343#endif
344 return flags;
345}
346
347static inline void compound_unlock_irqrestore(struct page *page,
348 unsigned long flags)
349{
350#ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 compound_unlock(page);
352 local_irq_restore(flags);
353#endif
354}
355
d85f3385
CL
356static inline struct page *compound_head(struct page *page)
357{
6d777953 358 if (unlikely(PageTail(page)))
d85f3385
CL
359 return page->first_page;
360 return page;
361}
362
70b50f94
AA
363/*
364 * The atomic page->_mapcount, starts from -1: so that transitions
365 * both from it and to it can be tracked, using atomic_inc_and_test
366 * and atomic_add_negative(-1).
367 */
368static inline void reset_page_mapcount(struct page *page)
369{
370 atomic_set(&(page)->_mapcount, -1);
371}
372
373static inline int page_mapcount(struct page *page)
374{
375 return atomic_read(&(page)->_mapcount) + 1;
376}
377
4c21e2f2 378static inline int page_count(struct page *page)
1da177e4 379{
d85f3385 380 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
381}
382
b35a35b5
AA
383static inline void get_huge_page_tail(struct page *page)
384{
385 /*
386 * __split_huge_page_refcount() cannot run
387 * from under us.
388 */
389 VM_BUG_ON(page_mapcount(page) < 0);
390 VM_BUG_ON(atomic_read(&page->_count) != 0);
391 atomic_inc(&page->_mapcount);
392}
393
70b50f94
AA
394extern bool __get_page_tail(struct page *page);
395
1da177e4
LT
396static inline void get_page(struct page *page)
397{
70b50f94
AA
398 if (unlikely(PageTail(page)))
399 if (likely(__get_page_tail(page)))
400 return;
91807063
AA
401 /*
402 * Getting a normal page or the head of a compound page
70b50f94 403 * requires to already have an elevated page->_count.
91807063 404 */
70b50f94 405 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
406 atomic_inc(&page->_count);
407}
408
b49af68f
CL
409static inline struct page *virt_to_head_page(const void *x)
410{
411 struct page *page = virt_to_page(x);
412 return compound_head(page);
413}
414
7835e98b
NP
415/*
416 * Setup the page count before being freed into the page allocator for
417 * the first time (boot or memory hotplug)
418 */
419static inline void init_page_count(struct page *page)
420{
421 atomic_set(&page->_count, 1);
422}
423
5f24ce5f
AA
424/*
425 * PageBuddy() indicate that the page is free and in the buddy system
426 * (see mm/page_alloc.c).
ef2b4b95
AA
427 *
428 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
429 * -2 so that an underflow of the page_mapcount() won't be mistaken
430 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
431 * efficiently by most CPU architectures.
5f24ce5f 432 */
ef2b4b95
AA
433#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
434
5f24ce5f
AA
435static inline int PageBuddy(struct page *page)
436{
ef2b4b95 437 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
438}
439
440static inline void __SetPageBuddy(struct page *page)
441{
442 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 443 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
444}
445
446static inline void __ClearPageBuddy(struct page *page)
447{
448 VM_BUG_ON(!PageBuddy(page));
449 atomic_set(&page->_mapcount, -1);
450}
451
1da177e4 452void put_page(struct page *page);
1d7ea732 453void put_pages_list(struct list_head *pages);
1da177e4 454
8dfcc9ba 455void split_page(struct page *page, unsigned int order);
748446bb 456int split_free_page(struct page *page);
1fb3f8ca 457int capture_free_page(struct page *page, int alloc_order, int migratetype);
8dfcc9ba 458
33f2ef89
AW
459/*
460 * Compound pages have a destructor function. Provide a
461 * prototype for that function and accessor functions.
462 * These are _only_ valid on the head of a PG_compound page.
463 */
464typedef void compound_page_dtor(struct page *);
465
466static inline void set_compound_page_dtor(struct page *page,
467 compound_page_dtor *dtor)
468{
469 page[1].lru.next = (void *)dtor;
470}
471
472static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
473{
474 return (compound_page_dtor *)page[1].lru.next;
475}
476
d85f3385
CL
477static inline int compound_order(struct page *page)
478{
6d777953 479 if (!PageHead(page))
d85f3385
CL
480 return 0;
481 return (unsigned long)page[1].lru.prev;
482}
483
37c2ac78
AA
484static inline int compound_trans_order(struct page *page)
485{
486 int order;
487 unsigned long flags;
488
489 if (!PageHead(page))
490 return 0;
491
492 flags = compound_lock_irqsave(page);
493 order = compound_order(page);
494 compound_unlock_irqrestore(page, flags);
495 return order;
496}
497
d85f3385
CL
498static inline void set_compound_order(struct page *page, unsigned long order)
499{
500 page[1].lru.prev = (void *)order;
501}
502
3dece370 503#ifdef CONFIG_MMU
14fd403f
AA
504/*
505 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
506 * servicing faults for write access. In the normal case, do always want
507 * pte_mkwrite. But get_user_pages can cause write faults for mappings
508 * that do not have writing enabled, when used by access_process_vm.
509 */
510static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
511{
512 if (likely(vma->vm_flags & VM_WRITE))
513 pte = pte_mkwrite(pte);
514 return pte;
515}
3dece370 516#endif
14fd403f 517
1da177e4
LT
518/*
519 * Multiple processes may "see" the same page. E.g. for untouched
520 * mappings of /dev/null, all processes see the same page full of
521 * zeroes, and text pages of executables and shared libraries have
522 * only one copy in memory, at most, normally.
523 *
524 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
525 * page_count() == 0 means the page is free. page->lru is then used for
526 * freelist management in the buddy allocator.
da6052f7 527 * page_count() > 0 means the page has been allocated.
1da177e4 528 *
da6052f7
NP
529 * Pages are allocated by the slab allocator in order to provide memory
530 * to kmalloc and kmem_cache_alloc. In this case, the management of the
531 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
532 * unless a particular usage is carefully commented. (the responsibility of
533 * freeing the kmalloc memory is the caller's, of course).
1da177e4 534 *
da6052f7
NP
535 * A page may be used by anyone else who does a __get_free_page().
536 * In this case, page_count still tracks the references, and should only
537 * be used through the normal accessor functions. The top bits of page->flags
538 * and page->virtual store page management information, but all other fields
539 * are unused and could be used privately, carefully. The management of this
540 * page is the responsibility of the one who allocated it, and those who have
541 * subsequently been given references to it.
542 *
543 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
544 * managed by the Linux memory manager: I/O, buffers, swapping etc.
545 * The following discussion applies only to them.
546 *
da6052f7
NP
547 * A pagecache page contains an opaque `private' member, which belongs to the
548 * page's address_space. Usually, this is the address of a circular list of
549 * the page's disk buffers. PG_private must be set to tell the VM to call
550 * into the filesystem to release these pages.
1da177e4 551 *
da6052f7
NP
552 * A page may belong to an inode's memory mapping. In this case, page->mapping
553 * is the pointer to the inode, and page->index is the file offset of the page,
554 * in units of PAGE_CACHE_SIZE.
1da177e4 555 *
da6052f7
NP
556 * If pagecache pages are not associated with an inode, they are said to be
557 * anonymous pages. These may become associated with the swapcache, and in that
558 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 559 *
da6052f7
NP
560 * In either case (swapcache or inode backed), the pagecache itself holds one
561 * reference to the page. Setting PG_private should also increment the
562 * refcount. The each user mapping also has a reference to the page.
1da177e4 563 *
da6052f7
NP
564 * The pagecache pages are stored in a per-mapping radix tree, which is
565 * rooted at mapping->page_tree, and indexed by offset.
566 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
567 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 568 *
da6052f7 569 * All pagecache pages may be subject to I/O:
1da177e4
LT
570 * - inode pages may need to be read from disk,
571 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
572 * to be written back to the inode on disk,
573 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
574 * modified may need to be swapped out to swap space and (later) to be read
575 * back into memory.
1da177e4
LT
576 */
577
578/*
579 * The zone field is never updated after free_area_init_core()
580 * sets it, so none of the operations on it need to be atomic.
1da177e4 581 */
348f8b6c 582
d41dee36
AW
583
584/*
585 * page->flags layout:
586 *
587 * There are three possibilities for how page->flags get
588 * laid out. The first is for the normal case, without
589 * sparsemem. The second is for sparsemem when there is
590 * plenty of space for node and section. The last is when
591 * we have run out of space and have to fall back to an
592 * alternate (slower) way of determining the node.
593 *
308c05e3
CL
594 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
595 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
596 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 597 */
308c05e3 598#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
599#define SECTIONS_WIDTH SECTIONS_SHIFT
600#else
601#define SECTIONS_WIDTH 0
602#endif
603
604#define ZONES_WIDTH ZONES_SHIFT
605
9223b419 606#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
607#define NODES_WIDTH NODES_SHIFT
608#else
308c05e3
CL
609#ifdef CONFIG_SPARSEMEM_VMEMMAP
610#error "Vmemmap: No space for nodes field in page flags"
611#endif
d41dee36
AW
612#define NODES_WIDTH 0
613#endif
614
615/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 616#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
617#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
618#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
619
620/*
621 * We are going to use the flags for the page to node mapping if its in
622 * there. This includes the case where there is no node, so it is implicit.
623 */
89689ae7
CL
624#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
625#define NODE_NOT_IN_PAGE_FLAGS
626#endif
d41dee36 627
348f8b6c 628/*
25985edc 629 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
630 * sections we define the shift as 0; that plus a 0 mask ensures
631 * the compiler will optimise away reference to them.
632 */
d41dee36
AW
633#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
634#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
635#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 636
bce54bbf
WD
637/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
638#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 639#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
640#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
641 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 642#else
89689ae7 643#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
644#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
645 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
646#endif
647
bd8029b6 648#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 649
9223b419
CL
650#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
651#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
652#endif
653
d41dee36
AW
654#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
655#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
656#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 657#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 658
33dd4e0e 659static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 660{
348f8b6c 661 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 662}
1da177e4 663
89689ae7
CL
664/*
665 * The identification function is only used by the buddy allocator for
666 * determining if two pages could be buddies. We are not really
667 * identifying a zone since we could be using a the section number
668 * id if we have not node id available in page flags.
669 * We guarantee only that it will return the same value for two
670 * combinable pages in a zone.
671 */
cb2b95e1
AW
672static inline int page_zone_id(struct page *page)
673{
89689ae7 674 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
675}
676
25ba77c1 677static inline int zone_to_nid(struct zone *zone)
89fa3024 678{
d5f541ed
CL
679#ifdef CONFIG_NUMA
680 return zone->node;
681#else
682 return 0;
683#endif
89fa3024
CL
684}
685
89689ae7 686#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 687extern int page_to_nid(const struct page *page);
89689ae7 688#else
33dd4e0e 689static inline int page_to_nid(const struct page *page)
d41dee36 690{
89689ae7 691 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 692}
89689ae7
CL
693#endif
694
33dd4e0e 695static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
696{
697 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
698}
699
308c05e3 700#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
701static inline void set_page_section(struct page *page, unsigned long section)
702{
703 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
704 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
705}
706
aa462abe 707static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
708{
709 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
710}
308c05e3 711#endif
d41dee36 712
2f1b6248 713static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
714{
715 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
716 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
717}
2f1b6248 718
348f8b6c
DH
719static inline void set_page_node(struct page *page, unsigned long node)
720{
721 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
722 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 723}
89689ae7 724
2f1b6248 725static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 726 unsigned long node, unsigned long pfn)
1da177e4 727{
348f8b6c
DH
728 set_page_zone(page, zone);
729 set_page_node(page, node);
bf4e8902 730#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 731 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 732#endif
1da177e4
LT
733}
734
f6ac2354
CL
735/*
736 * Some inline functions in vmstat.h depend on page_zone()
737 */
738#include <linux/vmstat.h>
739
33dd4e0e 740static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 741{
aa462abe 742 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
743}
744
745#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
746#define HASHED_PAGE_VIRTUAL
747#endif
748
749#if defined(WANT_PAGE_VIRTUAL)
750#define page_address(page) ((page)->virtual)
751#define set_page_address(page, address) \
752 do { \
753 (page)->virtual = (address); \
754 } while(0)
755#define page_address_init() do { } while(0)
756#endif
757
758#if defined(HASHED_PAGE_VIRTUAL)
f9918794 759void *page_address(const struct page *page);
1da177e4
LT
760void set_page_address(struct page *page, void *virtual);
761void page_address_init(void);
762#endif
763
764#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
765#define page_address(page) lowmem_page_address(page)
766#define set_page_address(page, address) do { } while(0)
767#define page_address_init() do { } while(0)
768#endif
769
770/*
771 * On an anonymous page mapped into a user virtual memory area,
772 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
773 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
774 *
775 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
776 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
777 * and then page->mapping points, not to an anon_vma, but to a private
778 * structure which KSM associates with that merged page. See ksm.h.
779 *
780 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
781 *
782 * Please note that, confusingly, "page_mapping" refers to the inode
783 * address_space which maps the page from disk; whereas "page_mapped"
784 * refers to user virtual address space into which the page is mapped.
785 */
786#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
787#define PAGE_MAPPING_KSM 2
788#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
789
790extern struct address_space swapper_space;
791static inline struct address_space *page_mapping(struct page *page)
792{
793 struct address_space *mapping = page->mapping;
794
b5fab14e 795 VM_BUG_ON(PageSlab(page));
1da177e4
LT
796 if (unlikely(PageSwapCache(page)))
797 mapping = &swapper_space;
e20e8779 798 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
799 mapping = NULL;
800 return mapping;
801}
802
3ca7b3c5
HD
803/* Neutral page->mapping pointer to address_space or anon_vma or other */
804static inline void *page_rmapping(struct page *page)
805{
806 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
807}
808
f981c595
MG
809extern struct address_space *__page_file_mapping(struct page *);
810
811static inline
812struct address_space *page_file_mapping(struct page *page)
813{
814 if (unlikely(PageSwapCache(page)))
815 return __page_file_mapping(page);
816
817 return page->mapping;
818}
819
1da177e4
LT
820static inline int PageAnon(struct page *page)
821{
822 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
823}
824
825/*
826 * Return the pagecache index of the passed page. Regular pagecache pages
827 * use ->index whereas swapcache pages use ->private
828 */
829static inline pgoff_t page_index(struct page *page)
830{
831 if (unlikely(PageSwapCache(page)))
4c21e2f2 832 return page_private(page);
1da177e4
LT
833 return page->index;
834}
835
f981c595
MG
836extern pgoff_t __page_file_index(struct page *page);
837
838/*
839 * Return the file index of the page. Regular pagecache pages use ->index
840 * whereas swapcache pages use swp_offset(->private)
841 */
842static inline pgoff_t page_file_index(struct page *page)
843{
844 if (unlikely(PageSwapCache(page)))
845 return __page_file_index(page);
846
847 return page->index;
848}
849
1da177e4
LT
850/*
851 * Return true if this page is mapped into pagetables.
852 */
853static inline int page_mapped(struct page *page)
854{
855 return atomic_read(&(page)->_mapcount) >= 0;
856}
857
1da177e4
LT
858/*
859 * Different kinds of faults, as returned by handle_mm_fault().
860 * Used to decide whether a process gets delivered SIGBUS or
861 * just gets major/minor fault counters bumped up.
862 */
d0217ac0 863
83c54070 864#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 865
83c54070
NP
866#define VM_FAULT_OOM 0x0001
867#define VM_FAULT_SIGBUS 0x0002
868#define VM_FAULT_MAJOR 0x0004
869#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
870#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
871#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 872
83c54070
NP
873#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
874#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 875#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 876
aa50d3a7
AK
877#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
878
879#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
880 VM_FAULT_HWPOISON_LARGE)
881
882/* Encode hstate index for a hwpoisoned large page */
883#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
884#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 885
1c0fe6e3
NP
886/*
887 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
888 */
889extern void pagefault_out_of_memory(void);
890
1da177e4
LT
891#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
892
ddd588b5 893/*
7bf02ea2 894 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
895 * various contexts.
896 */
897#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
898
7bf02ea2
DR
899extern void show_free_areas(unsigned int flags);
900extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 901
1da177e4
LT
902int shmem_zero_setup(struct vm_area_struct *);
903
e8edc6e0 904extern int can_do_mlock(void);
1da177e4
LT
905extern int user_shm_lock(size_t, struct user_struct *);
906extern void user_shm_unlock(size_t, struct user_struct *);
907
908/*
909 * Parameter block passed down to zap_pte_range in exceptional cases.
910 */
911struct zap_details {
912 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
913 struct address_space *check_mapping; /* Check page->mapping if set */
914 pgoff_t first_index; /* Lowest page->index to unmap */
915 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
916};
917
7e675137
NP
918struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
919 pte_t pte);
920
c627f9cc
JS
921int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
922 unsigned long size);
14f5ff5d 923void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 924 unsigned long size, struct zap_details *);
4f74d2c8
LT
925void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
926 unsigned long start, unsigned long end);
e6473092
MM
927
928/**
929 * mm_walk - callbacks for walk_page_range
930 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
931 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
932 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
933 * this handler is required to be able to handle
934 * pmd_trans_huge() pmds. They may simply choose to
935 * split_huge_page() instead of handling it explicitly.
e6473092
MM
936 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
937 * @pte_hole: if set, called for each hole at all levels
5dc37642 938 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
939 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
940 * is used.
e6473092
MM
941 *
942 * (see walk_page_range for more details)
943 */
944struct mm_walk {
2165009b
DH
945 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
946 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
947 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
948 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
949 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
950 int (*hugetlb_entry)(pte_t *, unsigned long,
951 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
952 struct mm_struct *mm;
953 void *private;
e6473092
MM
954};
955
2165009b
DH
956int walk_page_range(unsigned long addr, unsigned long end,
957 struct mm_walk *walk);
42b77728 958void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 959 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
960int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
961 struct vm_area_struct *vma);
1da177e4
LT
962void unmap_mapping_range(struct address_space *mapping,
963 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
964int follow_pfn(struct vm_area_struct *vma, unsigned long address,
965 unsigned long *pfn);
d87fe660 966int follow_phys(struct vm_area_struct *vma, unsigned long address,
967 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
968int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
969 void *buf, int len, int write);
1da177e4
LT
970
971static inline void unmap_shared_mapping_range(struct address_space *mapping,
972 loff_t const holebegin, loff_t const holelen)
973{
974 unmap_mapping_range(mapping, holebegin, holelen, 0);
975}
976
25d9e2d1 977extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 978extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 979extern int vmtruncate(struct inode *inode, loff_t offset);
623e3db9 980void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 981int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 982int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
983int invalidate_inode_page(struct page *page);
984
7ee1dd3f 985#ifdef CONFIG_MMU
83c54070 986extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 987 unsigned long address, unsigned int flags);
5c723ba5
PZ
988extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
989 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
990#else
991static inline int handle_mm_fault(struct mm_struct *mm,
992 struct vm_area_struct *vma, unsigned long address,
d06063cc 993 unsigned int flags)
7ee1dd3f
DH
994{
995 /* should never happen if there's no MMU */
996 BUG();
997 return VM_FAULT_SIGBUS;
998}
5c723ba5
PZ
999static inline int fixup_user_fault(struct task_struct *tsk,
1000 struct mm_struct *mm, unsigned long address,
1001 unsigned int fault_flags)
1002{
1003 /* should never happen if there's no MMU */
1004 BUG();
1005 return -EFAULT;
1006}
7ee1dd3f 1007#endif
f33ea7f4 1008
1da177e4
LT
1009extern int make_pages_present(unsigned long addr, unsigned long end);
1010extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1011extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1012 void *buf, int len, int write);
1da177e4 1013
0014bd99
HY
1014int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1015 unsigned long start, int len, unsigned int foll_flags,
1016 struct page **pages, struct vm_area_struct **vmas,
1017 int *nonblocking);
d2bf6be8 1018int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1019 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
1020 struct page **pages, struct vm_area_struct **vmas);
1021int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1022 struct page **pages);
18022c5d
MG
1023struct kvec;
1024int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1025 struct page **pages);
1026int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1027struct page *get_dump_page(unsigned long addr);
1da177e4 1028
cf9a2ae8
DH
1029extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1030extern void do_invalidatepage(struct page *page, unsigned long offset);
1031
1da177e4 1032int __set_page_dirty_nobuffers(struct page *page);
76719325 1033int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1034int redirty_page_for_writepage(struct writeback_control *wbc,
1035 struct page *page);
e3a7cca1 1036void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1037void account_page_writeback(struct page *page);
b3c97528 1038int set_page_dirty(struct page *page);
1da177e4
LT
1039int set_page_dirty_lock(struct page *page);
1040int clear_page_dirty_for_io(struct page *page);
1041
39aa3cb3 1042/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1043static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1044{
1045 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1046}
1047
a09a79f6
MP
1048static inline int stack_guard_page_start(struct vm_area_struct *vma,
1049 unsigned long addr)
1050{
1051 return (vma->vm_flags & VM_GROWSDOWN) &&
1052 (vma->vm_start == addr) &&
1053 !vma_growsdown(vma->vm_prev, addr);
1054}
1055
1056/* Is the vma a continuation of the stack vma below it? */
1057static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1058{
1059 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1060}
1061
1062static inline int stack_guard_page_end(struct vm_area_struct *vma,
1063 unsigned long addr)
1064{
1065 return (vma->vm_flags & VM_GROWSUP) &&
1066 (vma->vm_end == addr) &&
1067 !vma_growsup(vma->vm_next, addr);
1068}
1069
b7643757
SP
1070extern pid_t
1071vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1072
b6a2fea3
OW
1073extern unsigned long move_page_tables(struct vm_area_struct *vma,
1074 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1075 unsigned long new_addr, unsigned long len,
1076 bool need_rmap_locks);
1da177e4
LT
1077extern unsigned long do_mremap(unsigned long addr,
1078 unsigned long old_len, unsigned long new_len,
1079 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1080extern int mprotect_fixup(struct vm_area_struct *vma,
1081 struct vm_area_struct **pprev, unsigned long start,
1082 unsigned long end, unsigned long newflags);
1da177e4 1083
465a454f
PZ
1084/*
1085 * doesn't attempt to fault and will return short.
1086 */
1087int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1088 struct page **pages);
d559db08
KH
1089/*
1090 * per-process(per-mm_struct) statistics.
1091 */
d559db08
KH
1092static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1093{
69c97823
KK
1094 long val = atomic_long_read(&mm->rss_stat.count[member]);
1095
1096#ifdef SPLIT_RSS_COUNTING
1097 /*
1098 * counter is updated in asynchronous manner and may go to minus.
1099 * But it's never be expected number for users.
1100 */
1101 if (val < 0)
1102 val = 0;
172703b0 1103#endif
69c97823
KK
1104 return (unsigned long)val;
1105}
d559db08
KH
1106
1107static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1108{
172703b0 1109 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1110}
1111
1112static inline void inc_mm_counter(struct mm_struct *mm, int member)
1113{
172703b0 1114 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1115}
1116
1117static inline void dec_mm_counter(struct mm_struct *mm, int member)
1118{
172703b0 1119 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1120}
1121
d559db08
KH
1122static inline unsigned long get_mm_rss(struct mm_struct *mm)
1123{
1124 return get_mm_counter(mm, MM_FILEPAGES) +
1125 get_mm_counter(mm, MM_ANONPAGES);
1126}
1127
1128static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1129{
1130 return max(mm->hiwater_rss, get_mm_rss(mm));
1131}
1132
1133static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1134{
1135 return max(mm->hiwater_vm, mm->total_vm);
1136}
1137
1138static inline void update_hiwater_rss(struct mm_struct *mm)
1139{
1140 unsigned long _rss = get_mm_rss(mm);
1141
1142 if ((mm)->hiwater_rss < _rss)
1143 (mm)->hiwater_rss = _rss;
1144}
1145
1146static inline void update_hiwater_vm(struct mm_struct *mm)
1147{
1148 if (mm->hiwater_vm < mm->total_vm)
1149 mm->hiwater_vm = mm->total_vm;
1150}
1151
1152static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1153 struct mm_struct *mm)
1154{
1155 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1156
1157 if (*maxrss < hiwater_rss)
1158 *maxrss = hiwater_rss;
1159}
1160
53bddb4e 1161#if defined(SPLIT_RSS_COUNTING)
05af2e10 1162void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1163#else
05af2e10 1164static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1165{
1166}
1167#endif
465a454f 1168
4e950f6f 1169int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1170
25ca1d6c
NK
1171extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1172 spinlock_t **ptl);
1173static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1174 spinlock_t **ptl)
1175{
1176 pte_t *ptep;
1177 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1178 return ptep;
1179}
c9cfcddf 1180
5f22df00
NP
1181#ifdef __PAGETABLE_PUD_FOLDED
1182static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1183 unsigned long address)
1184{
1185 return 0;
1186}
1187#else
1bb3630e 1188int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1189#endif
1190
1191#ifdef __PAGETABLE_PMD_FOLDED
1192static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1193 unsigned long address)
1194{
1195 return 0;
1196}
1197#else
1bb3630e 1198int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1199#endif
1200
8ac1f832
AA
1201int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1202 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1203int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1204
1da177e4
LT
1205/*
1206 * The following ifdef needed to get the 4level-fixup.h header to work.
1207 * Remove it when 4level-fixup.h has been removed.
1208 */
1bb3630e 1209#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1210static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1211{
1bb3630e
HD
1212 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1213 NULL: pud_offset(pgd, address);
1da177e4
LT
1214}
1215
1216static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1217{
1bb3630e
HD
1218 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1219 NULL: pmd_offset(pud, address);
1da177e4 1220}
1bb3630e
HD
1221#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1222
f7d0b926 1223#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1224/*
1225 * We tuck a spinlock to guard each pagetable page into its struct page,
1226 * at page->private, with BUILD_BUG_ON to make sure that this will not
1227 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1228 * When freeing, reset page->mapping so free_pages_check won't complain.
1229 */
349aef0b 1230#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1231#define pte_lock_init(_page) do { \
1232 spin_lock_init(__pte_lockptr(_page)); \
1233} while (0)
1234#define pte_lock_deinit(page) ((page)->mapping = NULL)
1235#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1236#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1237/*
1238 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1239 */
1240#define pte_lock_init(page) do {} while (0)
1241#define pte_lock_deinit(page) do {} while (0)
1242#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1243#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1244
2f569afd
MS
1245static inline void pgtable_page_ctor(struct page *page)
1246{
1247 pte_lock_init(page);
1248 inc_zone_page_state(page, NR_PAGETABLE);
1249}
1250
1251static inline void pgtable_page_dtor(struct page *page)
1252{
1253 pte_lock_deinit(page);
1254 dec_zone_page_state(page, NR_PAGETABLE);
1255}
1256
c74df32c
HD
1257#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1258({ \
4c21e2f2 1259 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1260 pte_t *__pte = pte_offset_map(pmd, address); \
1261 *(ptlp) = __ptl; \
1262 spin_lock(__ptl); \
1263 __pte; \
1264})
1265
1266#define pte_unmap_unlock(pte, ptl) do { \
1267 spin_unlock(ptl); \
1268 pte_unmap(pte); \
1269} while (0)
1270
8ac1f832
AA
1271#define pte_alloc_map(mm, vma, pmd, address) \
1272 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1273 pmd, address))? \
1274 NULL: pte_offset_map(pmd, address))
1bb3630e 1275
c74df32c 1276#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1277 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1278 pmd, address))? \
c74df32c
HD
1279 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1280
1bb3630e 1281#define pte_alloc_kernel(pmd, address) \
8ac1f832 1282 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1283 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1284
1285extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1286extern void free_area_init_node(int nid, unsigned long * zones_size,
1287 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1288extern void free_initmem(void);
1289
0ee332c1 1290#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1291/*
0ee332c1 1292 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1293 * zones, allocate the backing mem_map and account for memory holes in a more
1294 * architecture independent manner. This is a substitute for creating the
1295 * zone_sizes[] and zholes_size[] arrays and passing them to
1296 * free_area_init_node()
1297 *
1298 * An architecture is expected to register range of page frames backed by
0ee332c1 1299 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1300 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1301 * usage, an architecture is expected to do something like
1302 *
1303 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1304 * max_highmem_pfn};
1305 * for_each_valid_physical_page_range()
0ee332c1 1306 * memblock_add_node(base, size, nid)
c713216d
MG
1307 * free_area_init_nodes(max_zone_pfns);
1308 *
0ee332c1
TH
1309 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1310 * registered physical page range. Similarly
1311 * sparse_memory_present_with_active_regions() calls memory_present() for
1312 * each range when SPARSEMEM is enabled.
c713216d
MG
1313 *
1314 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1315 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1316 */
1317extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1318unsigned long node_map_pfn_alignment(void);
32996250
YL
1319unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1320 unsigned long end_pfn);
c713216d
MG
1321extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1322 unsigned long end_pfn);
1323extern void get_pfn_range_for_nid(unsigned int nid,
1324 unsigned long *start_pfn, unsigned long *end_pfn);
1325extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1326extern void free_bootmem_with_active_regions(int nid,
1327 unsigned long max_low_pfn);
1328extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1329
0ee332c1 1330#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1331
0ee332c1 1332#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1333 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1334static inline int __early_pfn_to_nid(unsigned long pfn)
1335{
1336 return 0;
1337}
1338#else
1339/* please see mm/page_alloc.c */
1340extern int __meminit early_pfn_to_nid(unsigned long pfn);
1341#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1342/* there is a per-arch backend function. */
1343extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1344#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1345#endif
1346
0e0b864e 1347extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1348extern void memmap_init_zone(unsigned long, int, unsigned long,
1349 unsigned long, enum memmap_context);
bc75d33f 1350extern void setup_per_zone_wmarks(void);
1b79acc9 1351extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1352extern void mem_init(void);
8feae131 1353extern void __init mmap_init(void);
b2b755b5 1354extern void show_mem(unsigned int flags);
1da177e4
LT
1355extern void si_meminfo(struct sysinfo * val);
1356extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1357extern int after_bootmem;
1da177e4 1358
3ee9a4f0
JP
1359extern __printf(3, 4)
1360void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1361
e7c8d5c9 1362extern void setup_per_cpu_pageset(void);
e7c8d5c9 1363
112067f0 1364extern void zone_pcp_update(struct zone *zone);
340175b7 1365extern void zone_pcp_reset(struct zone *zone);
112067f0 1366
8feae131 1367/* nommu.c */
33e5d769 1368extern atomic_long_t mmap_pages_allocated;
7e660872 1369extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1370
6b2dbba8 1371/* interval_tree.c */
6b2dbba8
ML
1372void vma_interval_tree_insert(struct vm_area_struct *node,
1373 struct rb_root *root);
9826a516
ML
1374void vma_interval_tree_insert_after(struct vm_area_struct *node,
1375 struct vm_area_struct *prev,
1376 struct rb_root *root);
6b2dbba8
ML
1377void vma_interval_tree_remove(struct vm_area_struct *node,
1378 struct rb_root *root);
1379struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1380 unsigned long start, unsigned long last);
1381struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1382 unsigned long start, unsigned long last);
1383
1384#define vma_interval_tree_foreach(vma, root, start, last) \
1385 for (vma = vma_interval_tree_iter_first(root, start, last); \
1386 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1387
1388static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1389 struct list_head *list)
1390{
6b2dbba8 1391 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1392}
1393
bf181b9f
ML
1394void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1395 struct rb_root *root);
1396void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1397 struct rb_root *root);
1398struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1399 struct rb_root *root, unsigned long start, unsigned long last);
1400struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1401 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1402#ifdef CONFIG_DEBUG_VM_RB
1403void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1404#endif
bf181b9f
ML
1405
1406#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1407 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1408 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1409
1da177e4 1410/* mmap.c */
34b4e4aa 1411extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1412extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1413 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1414extern struct vm_area_struct *vma_merge(struct mm_struct *,
1415 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1416 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1417 struct mempolicy *);
1418extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1419extern int split_vma(struct mm_struct *,
1420 struct vm_area_struct *, unsigned long addr, int new_below);
1421extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1422extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1423 struct rb_node **, struct rb_node *);
a8fb5618 1424extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1425extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1426 unsigned long addr, unsigned long len, pgoff_t pgoff,
1427 bool *need_rmap_locks);
1da177e4 1428extern void exit_mmap(struct mm_struct *);
925d1c40 1429
7906d00c
AA
1430extern int mm_take_all_locks(struct mm_struct *mm);
1431extern void mm_drop_all_locks(struct mm_struct *mm);
1432
38646013
JS
1433extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1434extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1435
119f657c 1436extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1437extern int install_special_mapping(struct mm_struct *mm,
1438 unsigned long addr, unsigned long len,
1439 unsigned long flags, struct page **pages);
1da177e4
LT
1440
1441extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1442
0165ab44
MS
1443extern unsigned long mmap_region(struct file *file, unsigned long addr,
1444 unsigned long len, unsigned long flags,
ca16d140 1445 vm_flags_t vm_flags, unsigned long pgoff);
e3fc629d 1446extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
6be5ceb0
LT
1447 unsigned long, unsigned long,
1448 unsigned long, unsigned long);
1da177e4
LT
1449extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1450
e4eb1ff6
LT
1451/* These take the mm semaphore themselves */
1452extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1453extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1454extern unsigned long vm_mmap(struct file *, unsigned long,
1455 unsigned long, unsigned long,
1456 unsigned long, unsigned long);
1da177e4 1457
85821aab 1458/* truncate.c */
1da177e4 1459extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1460extern void truncate_inode_pages_range(struct address_space *,
1461 loff_t lstart, loff_t lend);
1da177e4
LT
1462
1463/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1464extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1465extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1466
1467/* mm/page-writeback.c */
1468int write_one_page(struct page *page, int wait);
1cf6e7d8 1469void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1470
1471/* readahead.c */
1472#define VM_MAX_READAHEAD 128 /* kbytes */
1473#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1474
1da177e4 1475int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1476 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1477
1478void page_cache_sync_readahead(struct address_space *mapping,
1479 struct file_ra_state *ra,
1480 struct file *filp,
1481 pgoff_t offset,
1482 unsigned long size);
1483
1484void page_cache_async_readahead(struct address_space *mapping,
1485 struct file_ra_state *ra,
1486 struct file *filp,
1487 struct page *pg,
1488 pgoff_t offset,
1489 unsigned long size);
1490
1da177e4 1491unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1492unsigned long ra_submit(struct file_ra_state *ra,
1493 struct address_space *mapping,
1494 struct file *filp);
1da177e4 1495
d05f3169 1496/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1497extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1498
1499/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1500extern int expand_downwards(struct vm_area_struct *vma,
1501 unsigned long address);
8ca3eb08 1502#if VM_GROWSUP
46dea3d0 1503extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1504#else
1505 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1506#endif
1da177e4
LT
1507
1508/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1509extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1510extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1511 struct vm_area_struct **pprev);
1512
1513/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1514 NULL if none. Assume start_addr < end_addr. */
1515static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1516{
1517 struct vm_area_struct * vma = find_vma(mm,start_addr);
1518
1519 if (vma && end_addr <= vma->vm_start)
1520 vma = NULL;
1521 return vma;
1522}
1523
1524static inline unsigned long vma_pages(struct vm_area_struct *vma)
1525{
1526 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1527}
1528
640708a2
PE
1529/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1530static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1531 unsigned long vm_start, unsigned long vm_end)
1532{
1533 struct vm_area_struct *vma = find_vma(mm, vm_start);
1534
1535 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1536 vma = NULL;
1537
1538 return vma;
1539}
1540
bad849b3 1541#ifdef CONFIG_MMU
804af2cf 1542pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1543#else
1544static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1545{
1546 return __pgprot(0);
1547}
1548#endif
1549
deceb6cd 1550struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1551int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1552 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1553int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1554int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1555 unsigned long pfn);
423bad60
NP
1556int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1557 unsigned long pfn);
deceb6cd 1558
6aab341e 1559struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1560 unsigned int foll_flags);
1561#define FOLL_WRITE 0x01 /* check pte is writable */
1562#define FOLL_TOUCH 0x02 /* mark page accessed */
1563#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1564#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1565#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1566#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1567 * and return without waiting upon it */
110d74a9 1568#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1569#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1570#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1571
2f569afd 1572typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1573 void *data);
1574extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1575 unsigned long size, pte_fn_t fn, void *data);
1576
1da177e4 1577#ifdef CONFIG_PROC_FS
ab50b8ed 1578void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1579#else
ab50b8ed 1580static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1581 unsigned long flags, struct file *file, long pages)
1582{
44de9d0c 1583 mm->total_vm += pages;
1da177e4
LT
1584}
1585#endif /* CONFIG_PROC_FS */
1586
12d6f21e 1587#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1588extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1589#ifdef CONFIG_HIBERNATION
1590extern bool kernel_page_present(struct page *page);
1591#endif /* CONFIG_HIBERNATION */
12d6f21e 1592#else
1da177e4 1593static inline void
9858db50 1594kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1595#ifdef CONFIG_HIBERNATION
1596static inline bool kernel_page_present(struct page *page) { return true; }
1597#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1598#endif
1599
31db58b3 1600extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1601#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1602int in_gate_area_no_mm(unsigned long addr);
83b964bb 1603int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1604#else
cae5d390
SW
1605int in_gate_area_no_mm(unsigned long addr);
1606#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1607#endif /* __HAVE_ARCH_GATE_AREA */
1608
8d65af78 1609int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1610 void __user *, size_t *, loff_t *);
a09ed5e0 1611unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1612 unsigned long nr_pages_scanned,
1613 unsigned long lru_pages);
9d0243bc 1614
7a9166e3
LY
1615#ifndef CONFIG_MMU
1616#define randomize_va_space 0
1617#else
a62eaf15 1618extern int randomize_va_space;
7a9166e3 1619#endif
a62eaf15 1620
045e72ac 1621const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1622void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1623
9bdac914
YL
1624void sparse_mem_maps_populate_node(struct page **map_map,
1625 unsigned long pnum_begin,
1626 unsigned long pnum_end,
1627 unsigned long map_count,
1628 int nodeid);
1629
98f3cfc1 1630struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1631pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1632pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1633pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1634pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1635void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1636void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1637void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1638int vmemmap_populate_basepages(struct page *start_page,
1639 unsigned long pages, int node);
1640int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1641void vmemmap_populate_print_last(void);
8f6aac41 1642
6a46079c 1643
82ba011b
AK
1644enum mf_flags {
1645 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1646 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1647 MF_MUST_KILL = 1 << 2,
82ba011b 1648};
cd42f4a3 1649extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1650extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1651extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1652extern int sysctl_memory_failure_early_kill;
1653extern int sysctl_memory_failure_recovery;
facb6011 1654extern void shake_page(struct page *p, int access);
6a46079c 1655extern atomic_long_t mce_bad_pages;
facb6011 1656extern int soft_offline_page(struct page *page, int flags);
6a46079c 1657
718a3821
WF
1658extern void dump_page(struct page *page);
1659
47ad8475
AA
1660#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1661extern void clear_huge_page(struct page *page,
1662 unsigned long addr,
1663 unsigned int pages_per_huge_page);
1664extern void copy_user_huge_page(struct page *dst, struct page *src,
1665 unsigned long addr, struct vm_area_struct *vma,
1666 unsigned int pages_per_huge_page);
1667#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1668
c0a32fc5
SG
1669#ifdef CONFIG_DEBUG_PAGEALLOC
1670extern unsigned int _debug_guardpage_minorder;
1671
1672static inline unsigned int debug_guardpage_minorder(void)
1673{
1674 return _debug_guardpage_minorder;
1675}
1676
1677static inline bool page_is_guard(struct page *page)
1678{
1679 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1680}
1681#else
1682static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1683static inline bool page_is_guard(struct page *page) { return false; }
1684#endif /* CONFIG_DEBUG_PAGEALLOC */
1685
1da177e4
LT
1686#endif /* __KERNEL__ */
1687#endif /* _LINUX_MM_H */