mm anon rmap: in mremap, set the new vma's position before anon_vma_clone()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
1da177e4
LT
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
27ac792c
AR
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
1da177e4
LT
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
c43692e8
CL
61extern struct kmem_cache *vm_area_cachep;
62
1da177e4 63#ifndef CONFIG_MMU
8feae131
DH
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
605d9288 71 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 72 */
cc2383ec
KK
73#define VM_NONE 0x00000000
74
1da177e4
LT
75#define VM_READ 0x00000001 /* currently active flags */
76#define VM_WRITE 0x00000002
77#define VM_EXEC 0x00000004
78#define VM_SHARED 0x00000008
79
7e2cff42 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82#define VM_MAYWRITE 0x00000020
83#define VM_MAYEXEC 0x00000040
84#define VM_MAYSHARE 0x00000080
85
86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
1da177e4
LT
90#define VM_LOCKED 0x00002000
91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 99#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 100#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
101#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 103#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 104#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 105
b379d790 106#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
107#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 109#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 110
cc2383ec
KK
111#if defined(CONFIG_X86)
112# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113#elif defined(CONFIG_PPC)
114# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115#elif defined(CONFIG_PARISC)
116# define VM_GROWSUP VM_ARCH_1
117#elif defined(CONFIG_IA64)
118# define VM_GROWSUP VM_ARCH_1
119#elif !defined(CONFIG_MMU)
120# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
121#endif
122
123#ifndef VM_GROWSUP
124# define VM_GROWSUP VM_NONE
125#endif
126
a8bef8ff
MG
127/* Bits set in the VMA until the stack is in its final location */
128#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
129
1da177e4
LT
130#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
131#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132#endif
133
134#ifdef CONFIG_STACK_GROWSUP
135#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136#else
137#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138#endif
139
140#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
141#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
142#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
143#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
144#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
145
b291f000 146/*
78f11a25
AA
147 * Special vmas that are non-mergable, non-mlock()able.
148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 149 */
314e51b9 150#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 151
1da177e4
LT
152/*
153 * mapping from the currently active vm_flags protection bits (the
154 * low four bits) to a page protection mask..
155 */
156extern pgprot_t protection_map[16];
157
d0217ac0
NP
158#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
159#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 160#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 161#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 162#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 163#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
d0217ac0 164
54cb8821 165/*
d0217ac0 166 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
167 * ->fault function. The vma's ->fault is responsible for returning a bitmask
168 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 169 *
d0217ac0 170 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 171 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 172 */
d0217ac0
NP
173struct vm_fault {
174 unsigned int flags; /* FAULT_FLAG_xxx flags */
175 pgoff_t pgoff; /* Logical page offset based on vma */
176 void __user *virtual_address; /* Faulting virtual address */
177
178 struct page *page; /* ->fault handlers should return a
83c54070 179 * page here, unless VM_FAULT_NOPAGE
d0217ac0 180 * is set (which is also implied by
83c54070 181 * VM_FAULT_ERROR).
d0217ac0 182 */
54cb8821 183};
1da177e4
LT
184
185/*
186 * These are the virtual MM functions - opening of an area, closing and
187 * unmapping it (needed to keep files on disk up-to-date etc), pointer
188 * to the functions called when a no-page or a wp-page exception occurs.
189 */
190struct vm_operations_struct {
191 void (*open)(struct vm_area_struct * area);
192 void (*close)(struct vm_area_struct * area);
d0217ac0 193 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
194
195 /* notification that a previously read-only page is about to become
196 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 197 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
198
199 /* called by access_process_vm when get_user_pages() fails, typically
200 * for use by special VMAs that can switch between memory and hardware
201 */
202 int (*access)(struct vm_area_struct *vma, unsigned long addr,
203 void *buf, int len, int write);
1da177e4 204#ifdef CONFIG_NUMA
a6020ed7
LS
205 /*
206 * set_policy() op must add a reference to any non-NULL @new mempolicy
207 * to hold the policy upon return. Caller should pass NULL @new to
208 * remove a policy and fall back to surrounding context--i.e. do not
209 * install a MPOL_DEFAULT policy, nor the task or system default
210 * mempolicy.
211 */
1da177e4 212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
213
214 /*
215 * get_policy() op must add reference [mpol_get()] to any policy at
216 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
217 * in mm/mempolicy.c will do this automatically.
218 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
219 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
220 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
221 * must return NULL--i.e., do not "fallback" to task or system default
222 * policy.
223 */
1da177e4
LT
224 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
225 unsigned long addr);
7b2259b3
CL
226 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
227 const nodemask_t *to, unsigned long flags);
1da177e4 228#endif
0b173bc4
KK
229 /* called by sys_remap_file_pages() to populate non-linear mapping */
230 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
231 unsigned long size, pgoff_t pgoff);
1da177e4
LT
232};
233
234struct mmu_gather;
235struct inode;
236
349aef0b
AM
237#define page_private(page) ((page)->private)
238#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 239
1da177e4
LT
240/*
241 * FIXME: take this include out, include page-flags.h in
242 * files which need it (119 of them)
243 */
244#include <linux/page-flags.h>
71e3aac0 245#include <linux/huge_mm.h>
1da177e4
LT
246
247/*
248 * Methods to modify the page usage count.
249 *
250 * What counts for a page usage:
251 * - cache mapping (page->mapping)
252 * - private data (page->private)
253 * - page mapped in a task's page tables, each mapping
254 * is counted separately
255 *
256 * Also, many kernel routines increase the page count before a critical
257 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
258 */
259
260/*
da6052f7 261 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 262 */
7c8ee9a8
NP
263static inline int put_page_testzero(struct page *page)
264{
725d704e 265 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 266 return atomic_dec_and_test(&page->_count);
7c8ee9a8 267}
1da177e4
LT
268
269/*
7c8ee9a8
NP
270 * Try to grab a ref unless the page has a refcount of zero, return false if
271 * that is the case.
1da177e4 272 */
7c8ee9a8
NP
273static inline int get_page_unless_zero(struct page *page)
274{
8dc04efb 275 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 276}
1da177e4 277
53df8fdc
WF
278extern int page_is_ram(unsigned long pfn);
279
48667e7a 280/* Support for virtually mapped pages */
b3bdda02
CL
281struct page *vmalloc_to_page(const void *addr);
282unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 283
0738c4bb
PM
284/*
285 * Determine if an address is within the vmalloc range
286 *
287 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
288 * is no special casing required.
289 */
9e2779fa
CL
290static inline int is_vmalloc_addr(const void *x)
291{
0738c4bb 292#ifdef CONFIG_MMU
9e2779fa
CL
293 unsigned long addr = (unsigned long)x;
294
295 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
296#else
297 return 0;
8ca3ed87 298#endif
0738c4bb 299}
81ac3ad9
KH
300#ifdef CONFIG_MMU
301extern int is_vmalloc_or_module_addr(const void *x);
302#else
934831d0 303static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
304{
305 return 0;
306}
307#endif
9e2779fa 308
e9da73d6
AA
309static inline void compound_lock(struct page *page)
310{
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 312 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
313 bit_spin_lock(PG_compound_lock, &page->flags);
314#endif
315}
316
317static inline void compound_unlock(struct page *page)
318{
319#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 320 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
321 bit_spin_unlock(PG_compound_lock, &page->flags);
322#endif
323}
324
325static inline unsigned long compound_lock_irqsave(struct page *page)
326{
327 unsigned long uninitialized_var(flags);
328#ifdef CONFIG_TRANSPARENT_HUGEPAGE
329 local_irq_save(flags);
330 compound_lock(page);
331#endif
332 return flags;
333}
334
335static inline void compound_unlock_irqrestore(struct page *page,
336 unsigned long flags)
337{
338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 compound_unlock(page);
340 local_irq_restore(flags);
341#endif
342}
343
d85f3385
CL
344static inline struct page *compound_head(struct page *page)
345{
6d777953 346 if (unlikely(PageTail(page)))
d85f3385
CL
347 return page->first_page;
348 return page;
349}
350
70b50f94
AA
351/*
352 * The atomic page->_mapcount, starts from -1: so that transitions
353 * both from it and to it can be tracked, using atomic_inc_and_test
354 * and atomic_add_negative(-1).
355 */
356static inline void reset_page_mapcount(struct page *page)
357{
358 atomic_set(&(page)->_mapcount, -1);
359}
360
361static inline int page_mapcount(struct page *page)
362{
363 return atomic_read(&(page)->_mapcount) + 1;
364}
365
4c21e2f2 366static inline int page_count(struct page *page)
1da177e4 367{
d85f3385 368 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
369}
370
b35a35b5
AA
371static inline void get_huge_page_tail(struct page *page)
372{
373 /*
374 * __split_huge_page_refcount() cannot run
375 * from under us.
376 */
377 VM_BUG_ON(page_mapcount(page) < 0);
378 VM_BUG_ON(atomic_read(&page->_count) != 0);
379 atomic_inc(&page->_mapcount);
380}
381
70b50f94
AA
382extern bool __get_page_tail(struct page *page);
383
1da177e4
LT
384static inline void get_page(struct page *page)
385{
70b50f94
AA
386 if (unlikely(PageTail(page)))
387 if (likely(__get_page_tail(page)))
388 return;
91807063
AA
389 /*
390 * Getting a normal page or the head of a compound page
70b50f94 391 * requires to already have an elevated page->_count.
91807063 392 */
70b50f94 393 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
394 atomic_inc(&page->_count);
395}
396
b49af68f
CL
397static inline struct page *virt_to_head_page(const void *x)
398{
399 struct page *page = virt_to_page(x);
400 return compound_head(page);
401}
402
7835e98b
NP
403/*
404 * Setup the page count before being freed into the page allocator for
405 * the first time (boot or memory hotplug)
406 */
407static inline void init_page_count(struct page *page)
408{
409 atomic_set(&page->_count, 1);
410}
411
5f24ce5f
AA
412/*
413 * PageBuddy() indicate that the page is free and in the buddy system
414 * (see mm/page_alloc.c).
ef2b4b95
AA
415 *
416 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
417 * -2 so that an underflow of the page_mapcount() won't be mistaken
418 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
419 * efficiently by most CPU architectures.
5f24ce5f 420 */
ef2b4b95
AA
421#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
422
5f24ce5f
AA
423static inline int PageBuddy(struct page *page)
424{
ef2b4b95 425 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
426}
427
428static inline void __SetPageBuddy(struct page *page)
429{
430 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 431 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
432}
433
434static inline void __ClearPageBuddy(struct page *page)
435{
436 VM_BUG_ON(!PageBuddy(page));
437 atomic_set(&page->_mapcount, -1);
438}
439
1da177e4 440void put_page(struct page *page);
1d7ea732 441void put_pages_list(struct list_head *pages);
1da177e4 442
8dfcc9ba 443void split_page(struct page *page, unsigned int order);
748446bb 444int split_free_page(struct page *page);
1fb3f8ca 445int capture_free_page(struct page *page, int alloc_order, int migratetype);
8dfcc9ba 446
33f2ef89
AW
447/*
448 * Compound pages have a destructor function. Provide a
449 * prototype for that function and accessor functions.
450 * These are _only_ valid on the head of a PG_compound page.
451 */
452typedef void compound_page_dtor(struct page *);
453
454static inline void set_compound_page_dtor(struct page *page,
455 compound_page_dtor *dtor)
456{
457 page[1].lru.next = (void *)dtor;
458}
459
460static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
461{
462 return (compound_page_dtor *)page[1].lru.next;
463}
464
d85f3385
CL
465static inline int compound_order(struct page *page)
466{
6d777953 467 if (!PageHead(page))
d85f3385
CL
468 return 0;
469 return (unsigned long)page[1].lru.prev;
470}
471
37c2ac78
AA
472static inline int compound_trans_order(struct page *page)
473{
474 int order;
475 unsigned long flags;
476
477 if (!PageHead(page))
478 return 0;
479
480 flags = compound_lock_irqsave(page);
481 order = compound_order(page);
482 compound_unlock_irqrestore(page, flags);
483 return order;
484}
485
d85f3385
CL
486static inline void set_compound_order(struct page *page, unsigned long order)
487{
488 page[1].lru.prev = (void *)order;
489}
490
3dece370 491#ifdef CONFIG_MMU
14fd403f
AA
492/*
493 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
494 * servicing faults for write access. In the normal case, do always want
495 * pte_mkwrite. But get_user_pages can cause write faults for mappings
496 * that do not have writing enabled, when used by access_process_vm.
497 */
498static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
499{
500 if (likely(vma->vm_flags & VM_WRITE))
501 pte = pte_mkwrite(pte);
502 return pte;
503}
3dece370 504#endif
14fd403f 505
1da177e4
LT
506/*
507 * Multiple processes may "see" the same page. E.g. for untouched
508 * mappings of /dev/null, all processes see the same page full of
509 * zeroes, and text pages of executables and shared libraries have
510 * only one copy in memory, at most, normally.
511 *
512 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
513 * page_count() == 0 means the page is free. page->lru is then used for
514 * freelist management in the buddy allocator.
da6052f7 515 * page_count() > 0 means the page has been allocated.
1da177e4 516 *
da6052f7
NP
517 * Pages are allocated by the slab allocator in order to provide memory
518 * to kmalloc and kmem_cache_alloc. In this case, the management of the
519 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
520 * unless a particular usage is carefully commented. (the responsibility of
521 * freeing the kmalloc memory is the caller's, of course).
1da177e4 522 *
da6052f7
NP
523 * A page may be used by anyone else who does a __get_free_page().
524 * In this case, page_count still tracks the references, and should only
525 * be used through the normal accessor functions. The top bits of page->flags
526 * and page->virtual store page management information, but all other fields
527 * are unused and could be used privately, carefully. The management of this
528 * page is the responsibility of the one who allocated it, and those who have
529 * subsequently been given references to it.
530 *
531 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
532 * managed by the Linux memory manager: I/O, buffers, swapping etc.
533 * The following discussion applies only to them.
534 *
da6052f7
NP
535 * A pagecache page contains an opaque `private' member, which belongs to the
536 * page's address_space. Usually, this is the address of a circular list of
537 * the page's disk buffers. PG_private must be set to tell the VM to call
538 * into the filesystem to release these pages.
1da177e4 539 *
da6052f7
NP
540 * A page may belong to an inode's memory mapping. In this case, page->mapping
541 * is the pointer to the inode, and page->index is the file offset of the page,
542 * in units of PAGE_CACHE_SIZE.
1da177e4 543 *
da6052f7
NP
544 * If pagecache pages are not associated with an inode, they are said to be
545 * anonymous pages. These may become associated with the swapcache, and in that
546 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 547 *
da6052f7
NP
548 * In either case (swapcache or inode backed), the pagecache itself holds one
549 * reference to the page. Setting PG_private should also increment the
550 * refcount. The each user mapping also has a reference to the page.
1da177e4 551 *
da6052f7
NP
552 * The pagecache pages are stored in a per-mapping radix tree, which is
553 * rooted at mapping->page_tree, and indexed by offset.
554 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
555 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 556 *
da6052f7 557 * All pagecache pages may be subject to I/O:
1da177e4
LT
558 * - inode pages may need to be read from disk,
559 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
560 * to be written back to the inode on disk,
561 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
562 * modified may need to be swapped out to swap space and (later) to be read
563 * back into memory.
1da177e4
LT
564 */
565
566/*
567 * The zone field is never updated after free_area_init_core()
568 * sets it, so none of the operations on it need to be atomic.
1da177e4 569 */
348f8b6c 570
d41dee36
AW
571
572/*
573 * page->flags layout:
574 *
575 * There are three possibilities for how page->flags get
576 * laid out. The first is for the normal case, without
577 * sparsemem. The second is for sparsemem when there is
578 * plenty of space for node and section. The last is when
579 * we have run out of space and have to fall back to an
580 * alternate (slower) way of determining the node.
581 *
308c05e3
CL
582 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
583 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
584 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 585 */
308c05e3 586#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
587#define SECTIONS_WIDTH SECTIONS_SHIFT
588#else
589#define SECTIONS_WIDTH 0
590#endif
591
592#define ZONES_WIDTH ZONES_SHIFT
593
9223b419 594#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
595#define NODES_WIDTH NODES_SHIFT
596#else
308c05e3
CL
597#ifdef CONFIG_SPARSEMEM_VMEMMAP
598#error "Vmemmap: No space for nodes field in page flags"
599#endif
d41dee36
AW
600#define NODES_WIDTH 0
601#endif
602
603/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 604#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
605#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
606#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
607
608/*
609 * We are going to use the flags for the page to node mapping if its in
610 * there. This includes the case where there is no node, so it is implicit.
611 */
89689ae7
CL
612#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
613#define NODE_NOT_IN_PAGE_FLAGS
614#endif
d41dee36 615
348f8b6c 616/*
25985edc 617 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
618 * sections we define the shift as 0; that plus a 0 mask ensures
619 * the compiler will optimise away reference to them.
620 */
d41dee36
AW
621#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
622#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
623#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 624
bce54bbf
WD
625/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
626#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 627#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
628#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
629 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 630#else
89689ae7 631#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
632#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
633 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
634#endif
635
bd8029b6 636#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 637
9223b419
CL
638#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
639#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
640#endif
641
d41dee36
AW
642#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
643#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
644#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 645#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 646
33dd4e0e 647static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 648{
348f8b6c 649 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 650}
1da177e4 651
89689ae7
CL
652/*
653 * The identification function is only used by the buddy allocator for
654 * determining if two pages could be buddies. We are not really
655 * identifying a zone since we could be using a the section number
656 * id if we have not node id available in page flags.
657 * We guarantee only that it will return the same value for two
658 * combinable pages in a zone.
659 */
cb2b95e1
AW
660static inline int page_zone_id(struct page *page)
661{
89689ae7 662 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
663}
664
25ba77c1 665static inline int zone_to_nid(struct zone *zone)
89fa3024 666{
d5f541ed
CL
667#ifdef CONFIG_NUMA
668 return zone->node;
669#else
670 return 0;
671#endif
89fa3024
CL
672}
673
89689ae7 674#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 675extern int page_to_nid(const struct page *page);
89689ae7 676#else
33dd4e0e 677static inline int page_to_nid(const struct page *page)
d41dee36 678{
89689ae7 679 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 680}
89689ae7
CL
681#endif
682
33dd4e0e 683static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
684{
685 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
686}
687
308c05e3 688#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
689static inline void set_page_section(struct page *page, unsigned long section)
690{
691 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
692 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
693}
694
aa462abe 695static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
696{
697 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
698}
308c05e3 699#endif
d41dee36 700
2f1b6248 701static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
702{
703 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
704 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
705}
2f1b6248 706
348f8b6c
DH
707static inline void set_page_node(struct page *page, unsigned long node)
708{
709 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
710 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 711}
89689ae7 712
2f1b6248 713static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 714 unsigned long node, unsigned long pfn)
1da177e4 715{
348f8b6c
DH
716 set_page_zone(page, zone);
717 set_page_node(page, node);
bf4e8902 718#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 719 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 720#endif
1da177e4
LT
721}
722
f6ac2354
CL
723/*
724 * Some inline functions in vmstat.h depend on page_zone()
725 */
726#include <linux/vmstat.h>
727
33dd4e0e 728static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 729{
aa462abe 730 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
731}
732
733#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
734#define HASHED_PAGE_VIRTUAL
735#endif
736
737#if defined(WANT_PAGE_VIRTUAL)
738#define page_address(page) ((page)->virtual)
739#define set_page_address(page, address) \
740 do { \
741 (page)->virtual = (address); \
742 } while(0)
743#define page_address_init() do { } while(0)
744#endif
745
746#if defined(HASHED_PAGE_VIRTUAL)
f9918794 747void *page_address(const struct page *page);
1da177e4
LT
748void set_page_address(struct page *page, void *virtual);
749void page_address_init(void);
750#endif
751
752#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
753#define page_address(page) lowmem_page_address(page)
754#define set_page_address(page, address) do { } while(0)
755#define page_address_init() do { } while(0)
756#endif
757
758/*
759 * On an anonymous page mapped into a user virtual memory area,
760 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
761 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
762 *
763 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
764 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
765 * and then page->mapping points, not to an anon_vma, but to a private
766 * structure which KSM associates with that merged page. See ksm.h.
767 *
768 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
769 *
770 * Please note that, confusingly, "page_mapping" refers to the inode
771 * address_space which maps the page from disk; whereas "page_mapped"
772 * refers to user virtual address space into which the page is mapped.
773 */
774#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
775#define PAGE_MAPPING_KSM 2
776#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
777
778extern struct address_space swapper_space;
779static inline struct address_space *page_mapping(struct page *page)
780{
781 struct address_space *mapping = page->mapping;
782
b5fab14e 783 VM_BUG_ON(PageSlab(page));
1da177e4
LT
784 if (unlikely(PageSwapCache(page)))
785 mapping = &swapper_space;
e20e8779 786 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
787 mapping = NULL;
788 return mapping;
789}
790
3ca7b3c5
HD
791/* Neutral page->mapping pointer to address_space or anon_vma or other */
792static inline void *page_rmapping(struct page *page)
793{
794 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
795}
796
f981c595
MG
797extern struct address_space *__page_file_mapping(struct page *);
798
799static inline
800struct address_space *page_file_mapping(struct page *page)
801{
802 if (unlikely(PageSwapCache(page)))
803 return __page_file_mapping(page);
804
805 return page->mapping;
806}
807
1da177e4
LT
808static inline int PageAnon(struct page *page)
809{
810 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
811}
812
813/*
814 * Return the pagecache index of the passed page. Regular pagecache pages
815 * use ->index whereas swapcache pages use ->private
816 */
817static inline pgoff_t page_index(struct page *page)
818{
819 if (unlikely(PageSwapCache(page)))
4c21e2f2 820 return page_private(page);
1da177e4
LT
821 return page->index;
822}
823
f981c595
MG
824extern pgoff_t __page_file_index(struct page *page);
825
826/*
827 * Return the file index of the page. Regular pagecache pages use ->index
828 * whereas swapcache pages use swp_offset(->private)
829 */
830static inline pgoff_t page_file_index(struct page *page)
831{
832 if (unlikely(PageSwapCache(page)))
833 return __page_file_index(page);
834
835 return page->index;
836}
837
1da177e4
LT
838/*
839 * Return true if this page is mapped into pagetables.
840 */
841static inline int page_mapped(struct page *page)
842{
843 return atomic_read(&(page)->_mapcount) >= 0;
844}
845
1da177e4
LT
846/*
847 * Different kinds of faults, as returned by handle_mm_fault().
848 * Used to decide whether a process gets delivered SIGBUS or
849 * just gets major/minor fault counters bumped up.
850 */
d0217ac0 851
83c54070 852#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 853
83c54070
NP
854#define VM_FAULT_OOM 0x0001
855#define VM_FAULT_SIGBUS 0x0002
856#define VM_FAULT_MAJOR 0x0004
857#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
858#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
859#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 860
83c54070
NP
861#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
862#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 863#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 864
aa50d3a7
AK
865#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
866
867#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
868 VM_FAULT_HWPOISON_LARGE)
869
870/* Encode hstate index for a hwpoisoned large page */
871#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
872#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 873
1c0fe6e3
NP
874/*
875 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
876 */
877extern void pagefault_out_of_memory(void);
878
1da177e4
LT
879#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
880
ddd588b5 881/*
7bf02ea2 882 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
883 * various contexts.
884 */
885#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
886
7bf02ea2
DR
887extern void show_free_areas(unsigned int flags);
888extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 889
1da177e4
LT
890int shmem_zero_setup(struct vm_area_struct *);
891
e8edc6e0 892extern int can_do_mlock(void);
1da177e4
LT
893extern int user_shm_lock(size_t, struct user_struct *);
894extern void user_shm_unlock(size_t, struct user_struct *);
895
896/*
897 * Parameter block passed down to zap_pte_range in exceptional cases.
898 */
899struct zap_details {
900 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
901 struct address_space *check_mapping; /* Check page->mapping if set */
902 pgoff_t first_index; /* Lowest page->index to unmap */
903 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
904};
905
7e675137
NP
906struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
907 pte_t pte);
908
c627f9cc
JS
909int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
910 unsigned long size);
14f5ff5d 911void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 912 unsigned long size, struct zap_details *);
4f74d2c8
LT
913void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
914 unsigned long start, unsigned long end);
e6473092
MM
915
916/**
917 * mm_walk - callbacks for walk_page_range
918 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
919 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
920 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
921 * this handler is required to be able to handle
922 * pmd_trans_huge() pmds. They may simply choose to
923 * split_huge_page() instead of handling it explicitly.
e6473092
MM
924 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
925 * @pte_hole: if set, called for each hole at all levels
5dc37642 926 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
927 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
928 * is used.
e6473092
MM
929 *
930 * (see walk_page_range for more details)
931 */
932struct mm_walk {
2165009b
DH
933 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
934 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
935 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
936 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
937 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
938 int (*hugetlb_entry)(pte_t *, unsigned long,
939 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
940 struct mm_struct *mm;
941 void *private;
e6473092
MM
942};
943
2165009b
DH
944int walk_page_range(unsigned long addr, unsigned long end,
945 struct mm_walk *walk);
42b77728 946void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 947 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
948int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
949 struct vm_area_struct *vma);
1da177e4
LT
950void unmap_mapping_range(struct address_space *mapping,
951 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
952int follow_pfn(struct vm_area_struct *vma, unsigned long address,
953 unsigned long *pfn);
d87fe660 954int follow_phys(struct vm_area_struct *vma, unsigned long address,
955 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
956int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
957 void *buf, int len, int write);
1da177e4
LT
958
959static inline void unmap_shared_mapping_range(struct address_space *mapping,
960 loff_t const holebegin, loff_t const holelen)
961{
962 unmap_mapping_range(mapping, holebegin, holelen, 0);
963}
964
25d9e2d1 965extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 966extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 967extern int vmtruncate(struct inode *inode, loff_t offset);
623e3db9 968void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 969int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 970int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
971int invalidate_inode_page(struct page *page);
972
7ee1dd3f 973#ifdef CONFIG_MMU
83c54070 974extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 975 unsigned long address, unsigned int flags);
5c723ba5
PZ
976extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
977 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
978#else
979static inline int handle_mm_fault(struct mm_struct *mm,
980 struct vm_area_struct *vma, unsigned long address,
d06063cc 981 unsigned int flags)
7ee1dd3f
DH
982{
983 /* should never happen if there's no MMU */
984 BUG();
985 return VM_FAULT_SIGBUS;
986}
5c723ba5
PZ
987static inline int fixup_user_fault(struct task_struct *tsk,
988 struct mm_struct *mm, unsigned long address,
989 unsigned int fault_flags)
990{
991 /* should never happen if there's no MMU */
992 BUG();
993 return -EFAULT;
994}
7ee1dd3f 995#endif
f33ea7f4 996
1da177e4
LT
997extern int make_pages_present(unsigned long addr, unsigned long end);
998extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
999extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1000 void *buf, int len, int write);
1da177e4 1001
0014bd99
HY
1002int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1003 unsigned long start, int len, unsigned int foll_flags,
1004 struct page **pages, struct vm_area_struct **vmas,
1005 int *nonblocking);
d2bf6be8 1006int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1007 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
1008 struct page **pages, struct vm_area_struct **vmas);
1009int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1010 struct page **pages);
18022c5d
MG
1011struct kvec;
1012int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1013 struct page **pages);
1014int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1015struct page *get_dump_page(unsigned long addr);
1da177e4 1016
cf9a2ae8
DH
1017extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1018extern void do_invalidatepage(struct page *page, unsigned long offset);
1019
1da177e4 1020int __set_page_dirty_nobuffers(struct page *page);
76719325 1021int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1022int redirty_page_for_writepage(struct writeback_control *wbc,
1023 struct page *page);
e3a7cca1 1024void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1025void account_page_writeback(struct page *page);
b3c97528 1026int set_page_dirty(struct page *page);
1da177e4
LT
1027int set_page_dirty_lock(struct page *page);
1028int clear_page_dirty_for_io(struct page *page);
1029
39aa3cb3 1030/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1031static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1032{
1033 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1034}
1035
a09a79f6
MP
1036static inline int stack_guard_page_start(struct vm_area_struct *vma,
1037 unsigned long addr)
1038{
1039 return (vma->vm_flags & VM_GROWSDOWN) &&
1040 (vma->vm_start == addr) &&
1041 !vma_growsdown(vma->vm_prev, addr);
1042}
1043
1044/* Is the vma a continuation of the stack vma below it? */
1045static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1046{
1047 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1048}
1049
1050static inline int stack_guard_page_end(struct vm_area_struct *vma,
1051 unsigned long addr)
1052{
1053 return (vma->vm_flags & VM_GROWSUP) &&
1054 (vma->vm_end == addr) &&
1055 !vma_growsup(vma->vm_next, addr);
1056}
1057
b7643757
SP
1058extern pid_t
1059vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1060
b6a2fea3
OW
1061extern unsigned long move_page_tables(struct vm_area_struct *vma,
1062 unsigned long old_addr, struct vm_area_struct *new_vma,
1063 unsigned long new_addr, unsigned long len);
1da177e4
LT
1064extern unsigned long do_mremap(unsigned long addr,
1065 unsigned long old_len, unsigned long new_len,
1066 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1067extern int mprotect_fixup(struct vm_area_struct *vma,
1068 struct vm_area_struct **pprev, unsigned long start,
1069 unsigned long end, unsigned long newflags);
1da177e4 1070
465a454f
PZ
1071/*
1072 * doesn't attempt to fault and will return short.
1073 */
1074int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1075 struct page **pages);
d559db08
KH
1076/*
1077 * per-process(per-mm_struct) statistics.
1078 */
d559db08
KH
1079static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1080{
69c97823
KK
1081 long val = atomic_long_read(&mm->rss_stat.count[member]);
1082
1083#ifdef SPLIT_RSS_COUNTING
1084 /*
1085 * counter is updated in asynchronous manner and may go to minus.
1086 * But it's never be expected number for users.
1087 */
1088 if (val < 0)
1089 val = 0;
172703b0 1090#endif
69c97823
KK
1091 return (unsigned long)val;
1092}
d559db08
KH
1093
1094static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1095{
172703b0 1096 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1097}
1098
1099static inline void inc_mm_counter(struct mm_struct *mm, int member)
1100{
172703b0 1101 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1102}
1103
1104static inline void dec_mm_counter(struct mm_struct *mm, int member)
1105{
172703b0 1106 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1107}
1108
d559db08
KH
1109static inline unsigned long get_mm_rss(struct mm_struct *mm)
1110{
1111 return get_mm_counter(mm, MM_FILEPAGES) +
1112 get_mm_counter(mm, MM_ANONPAGES);
1113}
1114
1115static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1116{
1117 return max(mm->hiwater_rss, get_mm_rss(mm));
1118}
1119
1120static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1121{
1122 return max(mm->hiwater_vm, mm->total_vm);
1123}
1124
1125static inline void update_hiwater_rss(struct mm_struct *mm)
1126{
1127 unsigned long _rss = get_mm_rss(mm);
1128
1129 if ((mm)->hiwater_rss < _rss)
1130 (mm)->hiwater_rss = _rss;
1131}
1132
1133static inline void update_hiwater_vm(struct mm_struct *mm)
1134{
1135 if (mm->hiwater_vm < mm->total_vm)
1136 mm->hiwater_vm = mm->total_vm;
1137}
1138
1139static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1140 struct mm_struct *mm)
1141{
1142 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1143
1144 if (*maxrss < hiwater_rss)
1145 *maxrss = hiwater_rss;
1146}
1147
53bddb4e 1148#if defined(SPLIT_RSS_COUNTING)
05af2e10 1149void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1150#else
05af2e10 1151static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1152{
1153}
1154#endif
465a454f 1155
4e950f6f 1156int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1157
25ca1d6c
NK
1158extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1159 spinlock_t **ptl);
1160static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1161 spinlock_t **ptl)
1162{
1163 pte_t *ptep;
1164 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1165 return ptep;
1166}
c9cfcddf 1167
5f22df00
NP
1168#ifdef __PAGETABLE_PUD_FOLDED
1169static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1170 unsigned long address)
1171{
1172 return 0;
1173}
1174#else
1bb3630e 1175int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1176#endif
1177
1178#ifdef __PAGETABLE_PMD_FOLDED
1179static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1180 unsigned long address)
1181{
1182 return 0;
1183}
1184#else
1bb3630e 1185int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1186#endif
1187
8ac1f832
AA
1188int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1189 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1190int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1191
1da177e4
LT
1192/*
1193 * The following ifdef needed to get the 4level-fixup.h header to work.
1194 * Remove it when 4level-fixup.h has been removed.
1195 */
1bb3630e 1196#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1197static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1198{
1bb3630e
HD
1199 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1200 NULL: pud_offset(pgd, address);
1da177e4
LT
1201}
1202
1203static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1204{
1bb3630e
HD
1205 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1206 NULL: pmd_offset(pud, address);
1da177e4 1207}
1bb3630e
HD
1208#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1209
f7d0b926 1210#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1211/*
1212 * We tuck a spinlock to guard each pagetable page into its struct page,
1213 * at page->private, with BUILD_BUG_ON to make sure that this will not
1214 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1215 * When freeing, reset page->mapping so free_pages_check won't complain.
1216 */
349aef0b 1217#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1218#define pte_lock_init(_page) do { \
1219 spin_lock_init(__pte_lockptr(_page)); \
1220} while (0)
1221#define pte_lock_deinit(page) ((page)->mapping = NULL)
1222#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1223#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1224/*
1225 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1226 */
1227#define pte_lock_init(page) do {} while (0)
1228#define pte_lock_deinit(page) do {} while (0)
1229#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1230#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1231
2f569afd
MS
1232static inline void pgtable_page_ctor(struct page *page)
1233{
1234 pte_lock_init(page);
1235 inc_zone_page_state(page, NR_PAGETABLE);
1236}
1237
1238static inline void pgtable_page_dtor(struct page *page)
1239{
1240 pte_lock_deinit(page);
1241 dec_zone_page_state(page, NR_PAGETABLE);
1242}
1243
c74df32c
HD
1244#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1245({ \
4c21e2f2 1246 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1247 pte_t *__pte = pte_offset_map(pmd, address); \
1248 *(ptlp) = __ptl; \
1249 spin_lock(__ptl); \
1250 __pte; \
1251})
1252
1253#define pte_unmap_unlock(pte, ptl) do { \
1254 spin_unlock(ptl); \
1255 pte_unmap(pte); \
1256} while (0)
1257
8ac1f832
AA
1258#define pte_alloc_map(mm, vma, pmd, address) \
1259 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1260 pmd, address))? \
1261 NULL: pte_offset_map(pmd, address))
1bb3630e 1262
c74df32c 1263#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1264 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1265 pmd, address))? \
c74df32c
HD
1266 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1267
1bb3630e 1268#define pte_alloc_kernel(pmd, address) \
8ac1f832 1269 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1270 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1271
1272extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1273extern void free_area_init_node(int nid, unsigned long * zones_size,
1274 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1275extern void free_initmem(void);
1276
0ee332c1 1277#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1278/*
0ee332c1 1279 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1280 * zones, allocate the backing mem_map and account for memory holes in a more
1281 * architecture independent manner. This is a substitute for creating the
1282 * zone_sizes[] and zholes_size[] arrays and passing them to
1283 * free_area_init_node()
1284 *
1285 * An architecture is expected to register range of page frames backed by
0ee332c1 1286 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1287 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1288 * usage, an architecture is expected to do something like
1289 *
1290 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1291 * max_highmem_pfn};
1292 * for_each_valid_physical_page_range()
0ee332c1 1293 * memblock_add_node(base, size, nid)
c713216d
MG
1294 * free_area_init_nodes(max_zone_pfns);
1295 *
0ee332c1
TH
1296 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1297 * registered physical page range. Similarly
1298 * sparse_memory_present_with_active_regions() calls memory_present() for
1299 * each range when SPARSEMEM is enabled.
c713216d
MG
1300 *
1301 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1302 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1303 */
1304extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1305unsigned long node_map_pfn_alignment(void);
32996250
YL
1306unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1307 unsigned long end_pfn);
c713216d
MG
1308extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1309 unsigned long end_pfn);
1310extern void get_pfn_range_for_nid(unsigned int nid,
1311 unsigned long *start_pfn, unsigned long *end_pfn);
1312extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1313extern void free_bootmem_with_active_regions(int nid,
1314 unsigned long max_low_pfn);
1315extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1316
0ee332c1 1317#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1318
0ee332c1 1319#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1320 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1321static inline int __early_pfn_to_nid(unsigned long pfn)
1322{
1323 return 0;
1324}
1325#else
1326/* please see mm/page_alloc.c */
1327extern int __meminit early_pfn_to_nid(unsigned long pfn);
1328#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1329/* there is a per-arch backend function. */
1330extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1331#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1332#endif
1333
0e0b864e 1334extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1335extern void memmap_init_zone(unsigned long, int, unsigned long,
1336 unsigned long, enum memmap_context);
bc75d33f 1337extern void setup_per_zone_wmarks(void);
1b79acc9 1338extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1339extern void mem_init(void);
8feae131 1340extern void __init mmap_init(void);
b2b755b5 1341extern void show_mem(unsigned int flags);
1da177e4
LT
1342extern void si_meminfo(struct sysinfo * val);
1343extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1344extern int after_bootmem;
1da177e4 1345
3ee9a4f0
JP
1346extern __printf(3, 4)
1347void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1348
e7c8d5c9 1349extern void setup_per_cpu_pageset(void);
e7c8d5c9 1350
112067f0 1351extern void zone_pcp_update(struct zone *zone);
340175b7 1352extern void zone_pcp_reset(struct zone *zone);
112067f0 1353
8feae131 1354/* nommu.c */
33e5d769 1355extern atomic_long_t mmap_pages_allocated;
7e660872 1356extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1357
6b2dbba8 1358/* interval_tree.c */
6b2dbba8
ML
1359void vma_interval_tree_insert(struct vm_area_struct *node,
1360 struct rb_root *root);
9826a516
ML
1361void vma_interval_tree_insert_after(struct vm_area_struct *node,
1362 struct vm_area_struct *prev,
1363 struct rb_root *root);
6b2dbba8
ML
1364void vma_interval_tree_remove(struct vm_area_struct *node,
1365 struct rb_root *root);
1366struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1367 unsigned long start, unsigned long last);
1368struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1369 unsigned long start, unsigned long last);
1370
1371#define vma_interval_tree_foreach(vma, root, start, last) \
1372 for (vma = vma_interval_tree_iter_first(root, start, last); \
1373 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1374
1375static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1376 struct list_head *list)
1377{
6b2dbba8 1378 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1379}
1380
bf181b9f
ML
1381void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1382 struct rb_root *root);
1383void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1384 struct rb_root *root);
1385struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1386 struct rb_root *root, unsigned long start, unsigned long last);
1387struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1388 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1389#ifdef CONFIG_DEBUG_VM_RB
1390void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1391#endif
bf181b9f
ML
1392
1393#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1394 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1395 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1396
1da177e4 1397/* mmap.c */
34b4e4aa 1398extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1399extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1400 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1401extern struct vm_area_struct *vma_merge(struct mm_struct *,
1402 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1403 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1404 struct mempolicy *);
1405extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1406extern int split_vma(struct mm_struct *,
1407 struct vm_area_struct *, unsigned long addr, int new_below);
1408extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1409extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1410 struct rb_node **, struct rb_node *);
a8fb5618 1411extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1412extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1413 unsigned long addr, unsigned long len, pgoff_t pgoff);
1414extern void exit_mmap(struct mm_struct *);
925d1c40 1415
7906d00c
AA
1416extern int mm_take_all_locks(struct mm_struct *mm);
1417extern void mm_drop_all_locks(struct mm_struct *mm);
1418
38646013
JS
1419extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1420extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1421
119f657c 1422extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1423extern int install_special_mapping(struct mm_struct *mm,
1424 unsigned long addr, unsigned long len,
1425 unsigned long flags, struct page **pages);
1da177e4
LT
1426
1427extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1428
0165ab44
MS
1429extern unsigned long mmap_region(struct file *file, unsigned long addr,
1430 unsigned long len, unsigned long flags,
ca16d140 1431 vm_flags_t vm_flags, unsigned long pgoff);
e3fc629d 1432extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
6be5ceb0
LT
1433 unsigned long, unsigned long,
1434 unsigned long, unsigned long);
1da177e4
LT
1435extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1436
e4eb1ff6
LT
1437/* These take the mm semaphore themselves */
1438extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1439extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1440extern unsigned long vm_mmap(struct file *, unsigned long,
1441 unsigned long, unsigned long,
1442 unsigned long, unsigned long);
1da177e4 1443
85821aab 1444/* truncate.c */
1da177e4 1445extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1446extern void truncate_inode_pages_range(struct address_space *,
1447 loff_t lstart, loff_t lend);
1da177e4
LT
1448
1449/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1450extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1451extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1452
1453/* mm/page-writeback.c */
1454int write_one_page(struct page *page, int wait);
1cf6e7d8 1455void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1456
1457/* readahead.c */
1458#define VM_MAX_READAHEAD 128 /* kbytes */
1459#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1460
1da177e4 1461int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1462 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1463
1464void page_cache_sync_readahead(struct address_space *mapping,
1465 struct file_ra_state *ra,
1466 struct file *filp,
1467 pgoff_t offset,
1468 unsigned long size);
1469
1470void page_cache_async_readahead(struct address_space *mapping,
1471 struct file_ra_state *ra,
1472 struct file *filp,
1473 struct page *pg,
1474 pgoff_t offset,
1475 unsigned long size);
1476
1da177e4 1477unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1478unsigned long ra_submit(struct file_ra_state *ra,
1479 struct address_space *mapping,
1480 struct file *filp);
1da177e4 1481
d05f3169 1482/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1483extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1484
1485/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1486extern int expand_downwards(struct vm_area_struct *vma,
1487 unsigned long address);
8ca3eb08 1488#if VM_GROWSUP
46dea3d0 1489extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1490#else
1491 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1492#endif
1da177e4
LT
1493
1494/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1495extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1496extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1497 struct vm_area_struct **pprev);
1498
1499/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1500 NULL if none. Assume start_addr < end_addr. */
1501static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1502{
1503 struct vm_area_struct * vma = find_vma(mm,start_addr);
1504
1505 if (vma && end_addr <= vma->vm_start)
1506 vma = NULL;
1507 return vma;
1508}
1509
1510static inline unsigned long vma_pages(struct vm_area_struct *vma)
1511{
1512 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1513}
1514
640708a2
PE
1515/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1516static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1517 unsigned long vm_start, unsigned long vm_end)
1518{
1519 struct vm_area_struct *vma = find_vma(mm, vm_start);
1520
1521 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1522 vma = NULL;
1523
1524 return vma;
1525}
1526
bad849b3 1527#ifdef CONFIG_MMU
804af2cf 1528pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1529#else
1530static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1531{
1532 return __pgprot(0);
1533}
1534#endif
1535
deceb6cd 1536struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1537int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1538 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1539int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1540int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1541 unsigned long pfn);
423bad60
NP
1542int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1543 unsigned long pfn);
deceb6cd 1544
6aab341e 1545struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1546 unsigned int foll_flags);
1547#define FOLL_WRITE 0x01 /* check pte is writable */
1548#define FOLL_TOUCH 0x02 /* mark page accessed */
1549#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1550#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1551#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1552#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1553 * and return without waiting upon it */
110d74a9 1554#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1555#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1556#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1557
2f569afd 1558typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1559 void *data);
1560extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1561 unsigned long size, pte_fn_t fn, void *data);
1562
1da177e4 1563#ifdef CONFIG_PROC_FS
ab50b8ed 1564void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1565#else
ab50b8ed 1566static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1567 unsigned long flags, struct file *file, long pages)
1568{
44de9d0c 1569 mm->total_vm += pages;
1da177e4
LT
1570}
1571#endif /* CONFIG_PROC_FS */
1572
12d6f21e 1573#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1574extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1575#ifdef CONFIG_HIBERNATION
1576extern bool kernel_page_present(struct page *page);
1577#endif /* CONFIG_HIBERNATION */
12d6f21e 1578#else
1da177e4 1579static inline void
9858db50 1580kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1581#ifdef CONFIG_HIBERNATION
1582static inline bool kernel_page_present(struct page *page) { return true; }
1583#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1584#endif
1585
31db58b3 1586extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1587#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1588int in_gate_area_no_mm(unsigned long addr);
83b964bb 1589int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1590#else
cae5d390
SW
1591int in_gate_area_no_mm(unsigned long addr);
1592#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1593#endif /* __HAVE_ARCH_GATE_AREA */
1594
8d65af78 1595int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1596 void __user *, size_t *, loff_t *);
a09ed5e0 1597unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1598 unsigned long nr_pages_scanned,
1599 unsigned long lru_pages);
9d0243bc 1600
7a9166e3
LY
1601#ifndef CONFIG_MMU
1602#define randomize_va_space 0
1603#else
a62eaf15 1604extern int randomize_va_space;
7a9166e3 1605#endif
a62eaf15 1606
045e72ac 1607const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1608void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1609
9bdac914
YL
1610void sparse_mem_maps_populate_node(struct page **map_map,
1611 unsigned long pnum_begin,
1612 unsigned long pnum_end,
1613 unsigned long map_count,
1614 int nodeid);
1615
98f3cfc1 1616struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1617pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1618pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1619pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1620pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1621void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1622void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1623void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1624int vmemmap_populate_basepages(struct page *start_page,
1625 unsigned long pages, int node);
1626int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1627void vmemmap_populate_print_last(void);
8f6aac41 1628
6a46079c 1629
82ba011b
AK
1630enum mf_flags {
1631 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1632 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1633 MF_MUST_KILL = 1 << 2,
82ba011b 1634};
cd42f4a3 1635extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1636extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1637extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1638extern int sysctl_memory_failure_early_kill;
1639extern int sysctl_memory_failure_recovery;
facb6011 1640extern void shake_page(struct page *p, int access);
6a46079c 1641extern atomic_long_t mce_bad_pages;
facb6011 1642extern int soft_offline_page(struct page *page, int flags);
6a46079c 1643
718a3821
WF
1644extern void dump_page(struct page *page);
1645
47ad8475
AA
1646#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1647extern void clear_huge_page(struct page *page,
1648 unsigned long addr,
1649 unsigned int pages_per_huge_page);
1650extern void copy_user_huge_page(struct page *dst, struct page *src,
1651 unsigned long addr, struct vm_area_struct *vma,
1652 unsigned int pages_per_huge_page);
1653#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1654
c0a32fc5
SG
1655#ifdef CONFIG_DEBUG_PAGEALLOC
1656extern unsigned int _debug_guardpage_minorder;
1657
1658static inline unsigned int debug_guardpage_minorder(void)
1659{
1660 return _debug_guardpage_minorder;
1661}
1662
1663static inline bool page_is_guard(struct page *page)
1664{
1665 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1666}
1667#else
1668static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1669static inline bool page_is_guard(struct page *page) { return false; }
1670#endif /* CONFIG_DEBUG_PAGEALLOC */
1671
1da177e4
LT
1672#endif /* __KERNEL__ */
1673#endif /* _LINUX_MM_H */