mm: trace filemap add and del
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
1da177e4
LT
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
27ac792c
AR
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
1da177e4
LT
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
c43692e8
CL
61extern struct kmem_cache *vm_area_cachep;
62
1da177e4 63#ifndef CONFIG_MMU
8feae131
DH
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
605d9288 71 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 72 */
cc2383ec
KK
73#define VM_NONE 0x00000000
74
1da177e4
LT
75#define VM_READ 0x00000001 /* currently active flags */
76#define VM_WRITE 0x00000002
77#define VM_EXEC 0x00000004
78#define VM_SHARED 0x00000008
79
7e2cff42 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82#define VM_MAYWRITE 0x00000020
83#define VM_MAYEXEC 0x00000040
84#define VM_MAYSHARE 0x00000080
85
86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
1da177e4
LT
90#define VM_LOCKED 0x00002000
91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 99#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 100#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
101#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 103#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 104#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 105
b379d790 106#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
107#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 109#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 110
cc2383ec
KK
111#if defined(CONFIG_X86)
112# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113#elif defined(CONFIG_PPC)
114# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115#elif defined(CONFIG_PARISC)
116# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
117#elif defined(CONFIG_METAG)
118# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
119#elif defined(CONFIG_IA64)
120# define VM_GROWSUP VM_ARCH_1
121#elif !defined(CONFIG_MMU)
122# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
123#endif
124
125#ifndef VM_GROWSUP
126# define VM_GROWSUP VM_NONE
127#endif
128
a8bef8ff
MG
129/* Bits set in the VMA until the stack is in its final location */
130#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
131
1da177e4
LT
132#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
133#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
134#endif
135
136#ifdef CONFIG_STACK_GROWSUP
137#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138#else
139#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
140#endif
141
142#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
143#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
144#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
145#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
146#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
147
b291f000 148/*
78f11a25
AA
149 * Special vmas that are non-mergable, non-mlock()able.
150 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 151 */
314e51b9 152#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 153
1da177e4
LT
154/*
155 * mapping from the currently active vm_flags protection bits (the
156 * low four bits) to a page protection mask..
157 */
158extern pgprot_t protection_map[16];
159
d0217ac0
NP
160#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
161#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 162#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 163#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 164#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 165#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 166#define FAULT_FLAG_TRIED 0x40 /* second try */
d0217ac0 167
54cb8821 168/*
d0217ac0 169 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
170 * ->fault function. The vma's ->fault is responsible for returning a bitmask
171 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 172 *
d0217ac0 173 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 174 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 175 */
d0217ac0
NP
176struct vm_fault {
177 unsigned int flags; /* FAULT_FLAG_xxx flags */
178 pgoff_t pgoff; /* Logical page offset based on vma */
179 void __user *virtual_address; /* Faulting virtual address */
180
181 struct page *page; /* ->fault handlers should return a
83c54070 182 * page here, unless VM_FAULT_NOPAGE
d0217ac0 183 * is set (which is also implied by
83c54070 184 * VM_FAULT_ERROR).
d0217ac0 185 */
54cb8821 186};
1da177e4
LT
187
188/*
189 * These are the virtual MM functions - opening of an area, closing and
190 * unmapping it (needed to keep files on disk up-to-date etc), pointer
191 * to the functions called when a no-page or a wp-page exception occurs.
192 */
193struct vm_operations_struct {
194 void (*open)(struct vm_area_struct * area);
195 void (*close)(struct vm_area_struct * area);
d0217ac0 196 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
197
198 /* notification that a previously read-only page is about to become
199 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 200 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
201
202 /* called by access_process_vm when get_user_pages() fails, typically
203 * for use by special VMAs that can switch between memory and hardware
204 */
205 int (*access)(struct vm_area_struct *vma, unsigned long addr,
206 void *buf, int len, int write);
1da177e4 207#ifdef CONFIG_NUMA
a6020ed7
LS
208 /*
209 * set_policy() op must add a reference to any non-NULL @new mempolicy
210 * to hold the policy upon return. Caller should pass NULL @new to
211 * remove a policy and fall back to surrounding context--i.e. do not
212 * install a MPOL_DEFAULT policy, nor the task or system default
213 * mempolicy.
214 */
1da177e4 215 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
216
217 /*
218 * get_policy() op must add reference [mpol_get()] to any policy at
219 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
220 * in mm/mempolicy.c will do this automatically.
221 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
222 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
223 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
224 * must return NULL--i.e., do not "fallback" to task or system default
225 * policy.
226 */
1da177e4
LT
227 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
228 unsigned long addr);
7b2259b3
CL
229 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
230 const nodemask_t *to, unsigned long flags);
1da177e4 231#endif
0b173bc4
KK
232 /* called by sys_remap_file_pages() to populate non-linear mapping */
233 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
234 unsigned long size, pgoff_t pgoff);
1da177e4
LT
235};
236
237struct mmu_gather;
238struct inode;
239
349aef0b
AM
240#define page_private(page) ((page)->private)
241#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 242
b12c4ad1
MK
243/* It's valid only if the page is free path or free_list */
244static inline void set_freepage_migratetype(struct page *page, int migratetype)
245{
95e34412 246 page->index = migratetype;
b12c4ad1
MK
247}
248
249/* It's valid only if the page is free path or free_list */
250static inline int get_freepage_migratetype(struct page *page)
251{
95e34412 252 return page->index;
b12c4ad1
MK
253}
254
1da177e4
LT
255/*
256 * FIXME: take this include out, include page-flags.h in
257 * files which need it (119 of them)
258 */
259#include <linux/page-flags.h>
71e3aac0 260#include <linux/huge_mm.h>
1da177e4
LT
261
262/*
263 * Methods to modify the page usage count.
264 *
265 * What counts for a page usage:
266 * - cache mapping (page->mapping)
267 * - private data (page->private)
268 * - page mapped in a task's page tables, each mapping
269 * is counted separately
270 *
271 * Also, many kernel routines increase the page count before a critical
272 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
273 */
274
275/*
da6052f7 276 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 277 */
7c8ee9a8
NP
278static inline int put_page_testzero(struct page *page)
279{
725d704e 280 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 281 return atomic_dec_and_test(&page->_count);
7c8ee9a8 282}
1da177e4
LT
283
284/*
7c8ee9a8
NP
285 * Try to grab a ref unless the page has a refcount of zero, return false if
286 * that is the case.
1da177e4 287 */
7c8ee9a8
NP
288static inline int get_page_unless_zero(struct page *page)
289{
8dc04efb 290 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 291}
1da177e4 292
53df8fdc
WF
293extern int page_is_ram(unsigned long pfn);
294
48667e7a 295/* Support for virtually mapped pages */
b3bdda02
CL
296struct page *vmalloc_to_page(const void *addr);
297unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 298
0738c4bb
PM
299/*
300 * Determine if an address is within the vmalloc range
301 *
302 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
303 * is no special casing required.
304 */
9e2779fa
CL
305static inline int is_vmalloc_addr(const void *x)
306{
0738c4bb 307#ifdef CONFIG_MMU
9e2779fa
CL
308 unsigned long addr = (unsigned long)x;
309
310 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
311#else
312 return 0;
8ca3ed87 313#endif
0738c4bb 314}
81ac3ad9
KH
315#ifdef CONFIG_MMU
316extern int is_vmalloc_or_module_addr(const void *x);
317#else
934831d0 318static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
319{
320 return 0;
321}
322#endif
9e2779fa 323
e9da73d6
AA
324static inline void compound_lock(struct page *page)
325{
326#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 327 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
328 bit_spin_lock(PG_compound_lock, &page->flags);
329#endif
330}
331
332static inline void compound_unlock(struct page *page)
333{
334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 335 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
336 bit_spin_unlock(PG_compound_lock, &page->flags);
337#endif
338}
339
340static inline unsigned long compound_lock_irqsave(struct page *page)
341{
342 unsigned long uninitialized_var(flags);
343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 local_irq_save(flags);
345 compound_lock(page);
346#endif
347 return flags;
348}
349
350static inline void compound_unlock_irqrestore(struct page *page,
351 unsigned long flags)
352{
353#ifdef CONFIG_TRANSPARENT_HUGEPAGE
354 compound_unlock(page);
355 local_irq_restore(flags);
356#endif
357}
358
d85f3385
CL
359static inline struct page *compound_head(struct page *page)
360{
6d777953 361 if (unlikely(PageTail(page)))
d85f3385
CL
362 return page->first_page;
363 return page;
364}
365
70b50f94
AA
366/*
367 * The atomic page->_mapcount, starts from -1: so that transitions
368 * both from it and to it can be tracked, using atomic_inc_and_test
369 * and atomic_add_negative(-1).
370 */
22b751c3 371static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
372{
373 atomic_set(&(page)->_mapcount, -1);
374}
375
376static inline int page_mapcount(struct page *page)
377{
378 return atomic_read(&(page)->_mapcount) + 1;
379}
380
4c21e2f2 381static inline int page_count(struct page *page)
1da177e4 382{
d85f3385 383 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
384}
385
b35a35b5
AA
386static inline void get_huge_page_tail(struct page *page)
387{
388 /*
389 * __split_huge_page_refcount() cannot run
390 * from under us.
391 */
392 VM_BUG_ON(page_mapcount(page) < 0);
393 VM_BUG_ON(atomic_read(&page->_count) != 0);
394 atomic_inc(&page->_mapcount);
395}
396
70b50f94
AA
397extern bool __get_page_tail(struct page *page);
398
1da177e4
LT
399static inline void get_page(struct page *page)
400{
70b50f94
AA
401 if (unlikely(PageTail(page)))
402 if (likely(__get_page_tail(page)))
403 return;
91807063
AA
404 /*
405 * Getting a normal page or the head of a compound page
70b50f94 406 * requires to already have an elevated page->_count.
91807063 407 */
70b50f94 408 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
409 atomic_inc(&page->_count);
410}
411
b49af68f
CL
412static inline struct page *virt_to_head_page(const void *x)
413{
414 struct page *page = virt_to_page(x);
415 return compound_head(page);
416}
417
7835e98b
NP
418/*
419 * Setup the page count before being freed into the page allocator for
420 * the first time (boot or memory hotplug)
421 */
422static inline void init_page_count(struct page *page)
423{
424 atomic_set(&page->_count, 1);
425}
426
5f24ce5f
AA
427/*
428 * PageBuddy() indicate that the page is free and in the buddy system
429 * (see mm/page_alloc.c).
ef2b4b95
AA
430 *
431 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
432 * -2 so that an underflow of the page_mapcount() won't be mistaken
433 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
434 * efficiently by most CPU architectures.
5f24ce5f 435 */
ef2b4b95
AA
436#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
437
5f24ce5f
AA
438static inline int PageBuddy(struct page *page)
439{
ef2b4b95 440 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
441}
442
443static inline void __SetPageBuddy(struct page *page)
444{
445 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 446 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
447}
448
449static inline void __ClearPageBuddy(struct page *page)
450{
451 VM_BUG_ON(!PageBuddy(page));
452 atomic_set(&page->_mapcount, -1);
453}
454
1da177e4 455void put_page(struct page *page);
1d7ea732 456void put_pages_list(struct list_head *pages);
1da177e4 457
8dfcc9ba 458void split_page(struct page *page, unsigned int order);
748446bb 459int split_free_page(struct page *page);
8dfcc9ba 460
33f2ef89
AW
461/*
462 * Compound pages have a destructor function. Provide a
463 * prototype for that function and accessor functions.
464 * These are _only_ valid on the head of a PG_compound page.
465 */
466typedef void compound_page_dtor(struct page *);
467
468static inline void set_compound_page_dtor(struct page *page,
469 compound_page_dtor *dtor)
470{
471 page[1].lru.next = (void *)dtor;
472}
473
474static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
475{
476 return (compound_page_dtor *)page[1].lru.next;
477}
478
d85f3385
CL
479static inline int compound_order(struct page *page)
480{
6d777953 481 if (!PageHead(page))
d85f3385
CL
482 return 0;
483 return (unsigned long)page[1].lru.prev;
484}
485
37c2ac78
AA
486static inline int compound_trans_order(struct page *page)
487{
488 int order;
489 unsigned long flags;
490
491 if (!PageHead(page))
492 return 0;
493
494 flags = compound_lock_irqsave(page);
495 order = compound_order(page);
496 compound_unlock_irqrestore(page, flags);
497 return order;
498}
499
d85f3385
CL
500static inline void set_compound_order(struct page *page, unsigned long order)
501{
502 page[1].lru.prev = (void *)order;
503}
504
3dece370 505#ifdef CONFIG_MMU
14fd403f
AA
506/*
507 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
508 * servicing faults for write access. In the normal case, do always want
509 * pte_mkwrite. But get_user_pages can cause write faults for mappings
510 * that do not have writing enabled, when used by access_process_vm.
511 */
512static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
513{
514 if (likely(vma->vm_flags & VM_WRITE))
515 pte = pte_mkwrite(pte);
516 return pte;
517}
3dece370 518#endif
14fd403f 519
1da177e4
LT
520/*
521 * Multiple processes may "see" the same page. E.g. for untouched
522 * mappings of /dev/null, all processes see the same page full of
523 * zeroes, and text pages of executables and shared libraries have
524 * only one copy in memory, at most, normally.
525 *
526 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
527 * page_count() == 0 means the page is free. page->lru is then used for
528 * freelist management in the buddy allocator.
da6052f7 529 * page_count() > 0 means the page has been allocated.
1da177e4 530 *
da6052f7
NP
531 * Pages are allocated by the slab allocator in order to provide memory
532 * to kmalloc and kmem_cache_alloc. In this case, the management of the
533 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
534 * unless a particular usage is carefully commented. (the responsibility of
535 * freeing the kmalloc memory is the caller's, of course).
1da177e4 536 *
da6052f7
NP
537 * A page may be used by anyone else who does a __get_free_page().
538 * In this case, page_count still tracks the references, and should only
539 * be used through the normal accessor functions. The top bits of page->flags
540 * and page->virtual store page management information, but all other fields
541 * are unused and could be used privately, carefully. The management of this
542 * page is the responsibility of the one who allocated it, and those who have
543 * subsequently been given references to it.
544 *
545 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
546 * managed by the Linux memory manager: I/O, buffers, swapping etc.
547 * The following discussion applies only to them.
548 *
da6052f7
NP
549 * A pagecache page contains an opaque `private' member, which belongs to the
550 * page's address_space. Usually, this is the address of a circular list of
551 * the page's disk buffers. PG_private must be set to tell the VM to call
552 * into the filesystem to release these pages.
1da177e4 553 *
da6052f7
NP
554 * A page may belong to an inode's memory mapping. In this case, page->mapping
555 * is the pointer to the inode, and page->index is the file offset of the page,
556 * in units of PAGE_CACHE_SIZE.
1da177e4 557 *
da6052f7
NP
558 * If pagecache pages are not associated with an inode, they are said to be
559 * anonymous pages. These may become associated with the swapcache, and in that
560 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 561 *
da6052f7
NP
562 * In either case (swapcache or inode backed), the pagecache itself holds one
563 * reference to the page. Setting PG_private should also increment the
564 * refcount. The each user mapping also has a reference to the page.
1da177e4 565 *
da6052f7
NP
566 * The pagecache pages are stored in a per-mapping radix tree, which is
567 * rooted at mapping->page_tree, and indexed by offset.
568 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
569 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 570 *
da6052f7 571 * All pagecache pages may be subject to I/O:
1da177e4
LT
572 * - inode pages may need to be read from disk,
573 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
574 * to be written back to the inode on disk,
575 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
576 * modified may need to be swapped out to swap space and (later) to be read
577 * back into memory.
1da177e4
LT
578 */
579
580/*
581 * The zone field is never updated after free_area_init_core()
582 * sets it, so none of the operations on it need to be atomic.
1da177e4 583 */
348f8b6c 584
75980e97 585/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
07808b74 586#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
587#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
588#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
75980e97 589#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
d41dee36 590
348f8b6c 591/*
25985edc 592 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
593 * sections we define the shift as 0; that plus a 0 mask ensures
594 * the compiler will optimise away reference to them.
595 */
d41dee36
AW
596#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
597#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
598#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
75980e97 599#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
348f8b6c 600
bce54bbf
WD
601/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
602#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 603#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
604#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
605 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 606#else
89689ae7 607#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
608#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
609 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
610#endif
611
bd8029b6 612#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 613
9223b419
CL
614#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
615#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
616#endif
617
d41dee36
AW
618#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
619#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
620#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
75980e97 621#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
89689ae7 622#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 623
33dd4e0e 624static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 625{
348f8b6c 626 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 627}
1da177e4 628
9127ab4f
CS
629#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
630#define SECTION_IN_PAGE_FLAGS
631#endif
632
89689ae7
CL
633/*
634 * The identification function is only used by the buddy allocator for
635 * determining if two pages could be buddies. We are not really
636 * identifying a zone since we could be using a the section number
637 * id if we have not node id available in page flags.
638 * We guarantee only that it will return the same value for two
639 * combinable pages in a zone.
640 */
cb2b95e1
AW
641static inline int page_zone_id(struct page *page)
642{
89689ae7 643 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
644}
645
25ba77c1 646static inline int zone_to_nid(struct zone *zone)
89fa3024 647{
d5f541ed
CL
648#ifdef CONFIG_NUMA
649 return zone->node;
650#else
651 return 0;
652#endif
89fa3024
CL
653}
654
89689ae7 655#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 656extern int page_to_nid(const struct page *page);
89689ae7 657#else
33dd4e0e 658static inline int page_to_nid(const struct page *page)
d41dee36 659{
89689ae7 660 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 661}
89689ae7
CL
662#endif
663
57e0a030 664#ifdef CONFIG_NUMA_BALANCING
75980e97 665#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
22b751c3 666static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
667{
668 return xchg(&page->_last_nid, nid);
669}
670
22b751c3 671static inline int page_nid_last(struct page *page)
57e0a030
MG
672{
673 return page->_last_nid;
674}
22b751c3 675static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
676{
677 page->_last_nid = -1;
678}
679#else
22b751c3 680static inline int page_nid_last(struct page *page)
75980e97
PZ
681{
682 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
683}
684
22b751c3 685extern int page_nid_xchg_last(struct page *page, int nid);
75980e97 686
22b751c3 687static inline void page_nid_reset_last(struct page *page)
75980e97 688{
4468b8f1
MG
689 int nid = (1 << LAST_NID_SHIFT) - 1;
690
691 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
692 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
75980e97
PZ
693}
694#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
695#else
22b751c3 696static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
697{
698 return page_to_nid(page);
699}
700
22b751c3 701static inline int page_nid_last(struct page *page)
57e0a030
MG
702{
703 return page_to_nid(page);
704}
705
22b751c3 706static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
707{
708}
709#endif
710
33dd4e0e 711static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
712{
713 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
714}
715
9127ab4f 716#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
717static inline void set_page_section(struct page *page, unsigned long section)
718{
719 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
720 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
721}
722
aa462abe 723static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
724{
725 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
726}
308c05e3 727#endif
d41dee36 728
2f1b6248 729static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
730{
731 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
732 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
733}
2f1b6248 734
348f8b6c
DH
735static inline void set_page_node(struct page *page, unsigned long node)
736{
737 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
738 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 739}
89689ae7 740
2f1b6248 741static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 742 unsigned long node, unsigned long pfn)
1da177e4 743{
348f8b6c
DH
744 set_page_zone(page, zone);
745 set_page_node(page, node);
9127ab4f 746#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 747 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 748#endif
1da177e4
LT
749}
750
f6ac2354
CL
751/*
752 * Some inline functions in vmstat.h depend on page_zone()
753 */
754#include <linux/vmstat.h>
755
33dd4e0e 756static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 757{
aa462abe 758 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
759}
760
761#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
762#define HASHED_PAGE_VIRTUAL
763#endif
764
765#if defined(WANT_PAGE_VIRTUAL)
766#define page_address(page) ((page)->virtual)
767#define set_page_address(page, address) \
768 do { \
769 (page)->virtual = (address); \
770 } while(0)
771#define page_address_init() do { } while(0)
772#endif
773
774#if defined(HASHED_PAGE_VIRTUAL)
f9918794 775void *page_address(const struct page *page);
1da177e4
LT
776void set_page_address(struct page *page, void *virtual);
777void page_address_init(void);
778#endif
779
780#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
781#define page_address(page) lowmem_page_address(page)
782#define set_page_address(page, address) do { } while(0)
783#define page_address_init() do { } while(0)
784#endif
785
786/*
787 * On an anonymous page mapped into a user virtual memory area,
788 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
789 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
790 *
791 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
792 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
793 * and then page->mapping points, not to an anon_vma, but to a private
794 * structure which KSM associates with that merged page. See ksm.h.
795 *
796 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
797 *
798 * Please note that, confusingly, "page_mapping" refers to the inode
799 * address_space which maps the page from disk; whereas "page_mapped"
800 * refers to user virtual address space into which the page is mapped.
801 */
802#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
803#define PAGE_MAPPING_KSM 2
804#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 805
9800339b 806extern struct address_space *page_mapping(struct page *page);
1da177e4 807
3ca7b3c5
HD
808/* Neutral page->mapping pointer to address_space or anon_vma or other */
809static inline void *page_rmapping(struct page *page)
810{
811 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
812}
813
f981c595
MG
814extern struct address_space *__page_file_mapping(struct page *);
815
816static inline
817struct address_space *page_file_mapping(struct page *page)
818{
819 if (unlikely(PageSwapCache(page)))
820 return __page_file_mapping(page);
821
822 return page->mapping;
823}
824
1da177e4
LT
825static inline int PageAnon(struct page *page)
826{
827 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
828}
829
830/*
831 * Return the pagecache index of the passed page. Regular pagecache pages
832 * use ->index whereas swapcache pages use ->private
833 */
834static inline pgoff_t page_index(struct page *page)
835{
836 if (unlikely(PageSwapCache(page)))
4c21e2f2 837 return page_private(page);
1da177e4
LT
838 return page->index;
839}
840
f981c595
MG
841extern pgoff_t __page_file_index(struct page *page);
842
843/*
844 * Return the file index of the page. Regular pagecache pages use ->index
845 * whereas swapcache pages use swp_offset(->private)
846 */
847static inline pgoff_t page_file_index(struct page *page)
848{
849 if (unlikely(PageSwapCache(page)))
850 return __page_file_index(page);
851
852 return page->index;
853}
854
1da177e4
LT
855/*
856 * Return true if this page is mapped into pagetables.
857 */
858static inline int page_mapped(struct page *page)
859{
860 return atomic_read(&(page)->_mapcount) >= 0;
861}
862
1da177e4
LT
863/*
864 * Different kinds of faults, as returned by handle_mm_fault().
865 * Used to decide whether a process gets delivered SIGBUS or
866 * just gets major/minor fault counters bumped up.
867 */
d0217ac0 868
83c54070 869#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 870
83c54070
NP
871#define VM_FAULT_OOM 0x0001
872#define VM_FAULT_SIGBUS 0x0002
873#define VM_FAULT_MAJOR 0x0004
874#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
875#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
876#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 877
83c54070
NP
878#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
879#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 880#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 881
aa50d3a7
AK
882#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
883
884#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
885 VM_FAULT_HWPOISON_LARGE)
886
887/* Encode hstate index for a hwpoisoned large page */
888#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
889#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 890
1c0fe6e3
NP
891/*
892 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
893 */
894extern void pagefault_out_of_memory(void);
895
1da177e4
LT
896#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
897
ddd588b5 898/*
7bf02ea2 899 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
900 * various contexts.
901 */
902#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
903
7bf02ea2
DR
904extern void show_free_areas(unsigned int flags);
905extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 906
1da177e4
LT
907int shmem_zero_setup(struct vm_area_struct *);
908
e8edc6e0 909extern int can_do_mlock(void);
1da177e4
LT
910extern int user_shm_lock(size_t, struct user_struct *);
911extern void user_shm_unlock(size_t, struct user_struct *);
912
913/*
914 * Parameter block passed down to zap_pte_range in exceptional cases.
915 */
916struct zap_details {
917 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
918 struct address_space *check_mapping; /* Check page->mapping if set */
919 pgoff_t first_index; /* Lowest page->index to unmap */
920 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
921};
922
7e675137
NP
923struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
924 pte_t pte);
925
c627f9cc
JS
926int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
927 unsigned long size);
14f5ff5d 928void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 929 unsigned long size, struct zap_details *);
4f74d2c8
LT
930void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
931 unsigned long start, unsigned long end);
e6473092
MM
932
933/**
934 * mm_walk - callbacks for walk_page_range
935 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
936 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
937 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
938 * this handler is required to be able to handle
939 * pmd_trans_huge() pmds. They may simply choose to
940 * split_huge_page() instead of handling it explicitly.
e6473092
MM
941 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
942 * @pte_hole: if set, called for each hole at all levels
5dc37642 943 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
944 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
945 * is used.
e6473092
MM
946 *
947 * (see walk_page_range for more details)
948 */
949struct mm_walk {
2165009b
DH
950 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
951 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
952 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
953 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
954 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
955 int (*hugetlb_entry)(pte_t *, unsigned long,
956 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
957 struct mm_struct *mm;
958 void *private;
e6473092
MM
959};
960
2165009b
DH
961int walk_page_range(unsigned long addr, unsigned long end,
962 struct mm_walk *walk);
42b77728 963void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 964 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
965int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
966 struct vm_area_struct *vma);
1da177e4
LT
967void unmap_mapping_range(struct address_space *mapping,
968 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
969int follow_pfn(struct vm_area_struct *vma, unsigned long address,
970 unsigned long *pfn);
d87fe660 971int follow_phys(struct vm_area_struct *vma, unsigned long address,
972 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
973int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
974 void *buf, int len, int write);
1da177e4
LT
975
976static inline void unmap_shared_mapping_range(struct address_space *mapping,
977 loff_t const holebegin, loff_t const holelen)
978{
979 unmap_mapping_range(mapping, holebegin, holelen, 0);
980}
981
25d9e2d1 982extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 983extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 984void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 985int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 986int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
987int invalidate_inode_page(struct page *page);
988
7ee1dd3f 989#ifdef CONFIG_MMU
83c54070 990extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 991 unsigned long address, unsigned int flags);
5c723ba5
PZ
992extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
993 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
994#else
995static inline int handle_mm_fault(struct mm_struct *mm,
996 struct vm_area_struct *vma, unsigned long address,
d06063cc 997 unsigned int flags)
7ee1dd3f
DH
998{
999 /* should never happen if there's no MMU */
1000 BUG();
1001 return VM_FAULT_SIGBUS;
1002}
5c723ba5
PZ
1003static inline int fixup_user_fault(struct task_struct *tsk,
1004 struct mm_struct *mm, unsigned long address,
1005 unsigned int fault_flags)
1006{
1007 /* should never happen if there's no MMU */
1008 BUG();
1009 return -EFAULT;
1010}
7ee1dd3f 1011#endif
f33ea7f4 1012
1da177e4 1013extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1014extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1015 void *buf, int len, int write);
1da177e4 1016
28a35716
ML
1017long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1018 unsigned long start, unsigned long nr_pages,
1019 unsigned int foll_flags, struct page **pages,
1020 struct vm_area_struct **vmas, int *nonblocking);
1021long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1022 unsigned long start, unsigned long nr_pages,
1023 int write, int force, struct page **pages,
1024 struct vm_area_struct **vmas);
d2bf6be8
NP
1025int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1026 struct page **pages);
18022c5d
MG
1027struct kvec;
1028int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1029 struct page **pages);
1030int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1031struct page *get_dump_page(unsigned long addr);
1da177e4 1032
cf9a2ae8
DH
1033extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1034extern void do_invalidatepage(struct page *page, unsigned long offset);
1035
1da177e4 1036int __set_page_dirty_nobuffers(struct page *page);
76719325 1037int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1038int redirty_page_for_writepage(struct writeback_control *wbc,
1039 struct page *page);
e3a7cca1 1040void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1041void account_page_writeback(struct page *page);
b3c97528 1042int set_page_dirty(struct page *page);
1da177e4
LT
1043int set_page_dirty_lock(struct page *page);
1044int clear_page_dirty_for_io(struct page *page);
1045
39aa3cb3 1046/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1047static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1048{
1049 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1050}
1051
a09a79f6
MP
1052static inline int stack_guard_page_start(struct vm_area_struct *vma,
1053 unsigned long addr)
1054{
1055 return (vma->vm_flags & VM_GROWSDOWN) &&
1056 (vma->vm_start == addr) &&
1057 !vma_growsdown(vma->vm_prev, addr);
1058}
1059
1060/* Is the vma a continuation of the stack vma below it? */
1061static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1062{
1063 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1064}
1065
1066static inline int stack_guard_page_end(struct vm_area_struct *vma,
1067 unsigned long addr)
1068{
1069 return (vma->vm_flags & VM_GROWSUP) &&
1070 (vma->vm_end == addr) &&
1071 !vma_growsup(vma->vm_next, addr);
1072}
1073
b7643757
SP
1074extern pid_t
1075vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1076
b6a2fea3
OW
1077extern unsigned long move_page_tables(struct vm_area_struct *vma,
1078 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1079 unsigned long new_addr, unsigned long len,
1080 bool need_rmap_locks);
1da177e4
LT
1081extern unsigned long do_mremap(unsigned long addr,
1082 unsigned long old_len, unsigned long new_len,
1083 unsigned long flags, unsigned long new_addr);
7da4d641
PZ
1084extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1085 unsigned long end, pgprot_t newprot,
4b10e7d5 1086 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1087extern int mprotect_fixup(struct vm_area_struct *vma,
1088 struct vm_area_struct **pprev, unsigned long start,
1089 unsigned long end, unsigned long newflags);
1da177e4 1090
465a454f
PZ
1091/*
1092 * doesn't attempt to fault and will return short.
1093 */
1094int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1095 struct page **pages);
d559db08
KH
1096/*
1097 * per-process(per-mm_struct) statistics.
1098 */
d559db08
KH
1099static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1100{
69c97823
KK
1101 long val = atomic_long_read(&mm->rss_stat.count[member]);
1102
1103#ifdef SPLIT_RSS_COUNTING
1104 /*
1105 * counter is updated in asynchronous manner and may go to minus.
1106 * But it's never be expected number for users.
1107 */
1108 if (val < 0)
1109 val = 0;
172703b0 1110#endif
69c97823
KK
1111 return (unsigned long)val;
1112}
d559db08
KH
1113
1114static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1115{
172703b0 1116 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1117}
1118
1119static inline void inc_mm_counter(struct mm_struct *mm, int member)
1120{
172703b0 1121 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1122}
1123
1124static inline void dec_mm_counter(struct mm_struct *mm, int member)
1125{
172703b0 1126 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1127}
1128
d559db08
KH
1129static inline unsigned long get_mm_rss(struct mm_struct *mm)
1130{
1131 return get_mm_counter(mm, MM_FILEPAGES) +
1132 get_mm_counter(mm, MM_ANONPAGES);
1133}
1134
1135static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1136{
1137 return max(mm->hiwater_rss, get_mm_rss(mm));
1138}
1139
1140static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1141{
1142 return max(mm->hiwater_vm, mm->total_vm);
1143}
1144
1145static inline void update_hiwater_rss(struct mm_struct *mm)
1146{
1147 unsigned long _rss = get_mm_rss(mm);
1148
1149 if ((mm)->hiwater_rss < _rss)
1150 (mm)->hiwater_rss = _rss;
1151}
1152
1153static inline void update_hiwater_vm(struct mm_struct *mm)
1154{
1155 if (mm->hiwater_vm < mm->total_vm)
1156 mm->hiwater_vm = mm->total_vm;
1157}
1158
1159static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1160 struct mm_struct *mm)
1161{
1162 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1163
1164 if (*maxrss < hiwater_rss)
1165 *maxrss = hiwater_rss;
1166}
1167
53bddb4e 1168#if defined(SPLIT_RSS_COUNTING)
05af2e10 1169void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1170#else
05af2e10 1171static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1172{
1173}
1174#endif
465a454f 1175
4e950f6f 1176int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1177
25ca1d6c
NK
1178extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1179 spinlock_t **ptl);
1180static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1181 spinlock_t **ptl)
1182{
1183 pte_t *ptep;
1184 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1185 return ptep;
1186}
c9cfcddf 1187
5f22df00
NP
1188#ifdef __PAGETABLE_PUD_FOLDED
1189static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1190 unsigned long address)
1191{
1192 return 0;
1193}
1194#else
1bb3630e 1195int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1196#endif
1197
1198#ifdef __PAGETABLE_PMD_FOLDED
1199static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1200 unsigned long address)
1201{
1202 return 0;
1203}
1204#else
1bb3630e 1205int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1206#endif
1207
8ac1f832
AA
1208int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1209 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1210int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1211
1da177e4
LT
1212/*
1213 * The following ifdef needed to get the 4level-fixup.h header to work.
1214 * Remove it when 4level-fixup.h has been removed.
1215 */
1bb3630e 1216#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1217static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1218{
1bb3630e
HD
1219 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1220 NULL: pud_offset(pgd, address);
1da177e4
LT
1221}
1222
1223static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1224{
1bb3630e
HD
1225 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1226 NULL: pmd_offset(pud, address);
1da177e4 1227}
1bb3630e
HD
1228#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1229
f7d0b926 1230#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1231/*
1232 * We tuck a spinlock to guard each pagetable page into its struct page,
1233 * at page->private, with BUILD_BUG_ON to make sure that this will not
1234 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1235 * When freeing, reset page->mapping so free_pages_check won't complain.
1236 */
349aef0b 1237#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1238#define pte_lock_init(_page) do { \
1239 spin_lock_init(__pte_lockptr(_page)); \
1240} while (0)
1241#define pte_lock_deinit(page) ((page)->mapping = NULL)
1242#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1243#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1244/*
1245 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1246 */
1247#define pte_lock_init(page) do {} while (0)
1248#define pte_lock_deinit(page) do {} while (0)
1249#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1250#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1251
2f569afd
MS
1252static inline void pgtable_page_ctor(struct page *page)
1253{
1254 pte_lock_init(page);
1255 inc_zone_page_state(page, NR_PAGETABLE);
1256}
1257
1258static inline void pgtable_page_dtor(struct page *page)
1259{
1260 pte_lock_deinit(page);
1261 dec_zone_page_state(page, NR_PAGETABLE);
1262}
1263
c74df32c
HD
1264#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1265({ \
4c21e2f2 1266 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1267 pte_t *__pte = pte_offset_map(pmd, address); \
1268 *(ptlp) = __ptl; \
1269 spin_lock(__ptl); \
1270 __pte; \
1271})
1272
1273#define pte_unmap_unlock(pte, ptl) do { \
1274 spin_unlock(ptl); \
1275 pte_unmap(pte); \
1276} while (0)
1277
8ac1f832
AA
1278#define pte_alloc_map(mm, vma, pmd, address) \
1279 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1280 pmd, address))? \
1281 NULL: pte_offset_map(pmd, address))
1bb3630e 1282
c74df32c 1283#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1284 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1285 pmd, address))? \
c74df32c
HD
1286 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1287
1bb3630e 1288#define pte_alloc_kernel(pmd, address) \
8ac1f832 1289 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1290 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1291
1292extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1293extern void free_area_init_node(int nid, unsigned long * zones_size,
1294 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1295extern void free_initmem(void);
1296
0ee332c1 1297#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1298/*
0ee332c1 1299 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1300 * zones, allocate the backing mem_map and account for memory holes in a more
1301 * architecture independent manner. This is a substitute for creating the
1302 * zone_sizes[] and zholes_size[] arrays and passing them to
1303 * free_area_init_node()
1304 *
1305 * An architecture is expected to register range of page frames backed by
0ee332c1 1306 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1307 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1308 * usage, an architecture is expected to do something like
1309 *
1310 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1311 * max_highmem_pfn};
1312 * for_each_valid_physical_page_range()
0ee332c1 1313 * memblock_add_node(base, size, nid)
c713216d
MG
1314 * free_area_init_nodes(max_zone_pfns);
1315 *
0ee332c1
TH
1316 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1317 * registered physical page range. Similarly
1318 * sparse_memory_present_with_active_regions() calls memory_present() for
1319 * each range when SPARSEMEM is enabled.
c713216d
MG
1320 *
1321 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1322 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1323 */
1324extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1325unsigned long node_map_pfn_alignment(void);
32996250
YL
1326unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1327 unsigned long end_pfn);
c713216d
MG
1328extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1329 unsigned long end_pfn);
1330extern void get_pfn_range_for_nid(unsigned int nid,
1331 unsigned long *start_pfn, unsigned long *end_pfn);
1332extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1333extern void free_bootmem_with_active_regions(int nid,
1334 unsigned long max_low_pfn);
1335extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1336
0ee332c1 1337#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1338
0ee332c1 1339#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1340 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1341static inline int __early_pfn_to_nid(unsigned long pfn)
1342{
1343 return 0;
1344}
1345#else
1346/* please see mm/page_alloc.c */
1347extern int __meminit early_pfn_to_nid(unsigned long pfn);
1348#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1349/* there is a per-arch backend function. */
1350extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1351#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1352#endif
1353
0e0b864e 1354extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1355extern void memmap_init_zone(unsigned long, int, unsigned long,
1356 unsigned long, enum memmap_context);
bc75d33f 1357extern void setup_per_zone_wmarks(void);
1b79acc9 1358extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1359extern void mem_init(void);
8feae131 1360extern void __init mmap_init(void);
b2b755b5 1361extern void show_mem(unsigned int flags);
1da177e4
LT
1362extern void si_meminfo(struct sysinfo * val);
1363extern void si_meminfo_node(struct sysinfo *val, int nid);
1364
3ee9a4f0
JP
1365extern __printf(3, 4)
1366void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1367
e7c8d5c9 1368extern void setup_per_cpu_pageset(void);
e7c8d5c9 1369
112067f0 1370extern void zone_pcp_update(struct zone *zone);
340175b7 1371extern void zone_pcp_reset(struct zone *zone);
112067f0 1372
75f7ad8e
PS
1373/* page_alloc.c */
1374extern int min_free_kbytes;
1375
8feae131 1376/* nommu.c */
33e5d769 1377extern atomic_long_t mmap_pages_allocated;
7e660872 1378extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1379
6b2dbba8 1380/* interval_tree.c */
6b2dbba8
ML
1381void vma_interval_tree_insert(struct vm_area_struct *node,
1382 struct rb_root *root);
9826a516
ML
1383void vma_interval_tree_insert_after(struct vm_area_struct *node,
1384 struct vm_area_struct *prev,
1385 struct rb_root *root);
6b2dbba8
ML
1386void vma_interval_tree_remove(struct vm_area_struct *node,
1387 struct rb_root *root);
1388struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1389 unsigned long start, unsigned long last);
1390struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1391 unsigned long start, unsigned long last);
1392
1393#define vma_interval_tree_foreach(vma, root, start, last) \
1394 for (vma = vma_interval_tree_iter_first(root, start, last); \
1395 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1396
1397static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1398 struct list_head *list)
1399{
6b2dbba8 1400 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1401}
1402
bf181b9f
ML
1403void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1404 struct rb_root *root);
1405void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1406 struct rb_root *root);
1407struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1408 struct rb_root *root, unsigned long start, unsigned long last);
1409struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1410 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1411#ifdef CONFIG_DEBUG_VM_RB
1412void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1413#endif
bf181b9f
ML
1414
1415#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1416 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1417 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1418
1da177e4 1419/* mmap.c */
34b4e4aa 1420extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1421extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1422 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1423extern struct vm_area_struct *vma_merge(struct mm_struct *,
1424 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1425 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1426 struct mempolicy *);
1427extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1428extern int split_vma(struct mm_struct *,
1429 struct vm_area_struct *, unsigned long addr, int new_below);
1430extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1431extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1432 struct rb_node **, struct rb_node *);
a8fb5618 1433extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1434extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1435 unsigned long addr, unsigned long len, pgoff_t pgoff,
1436 bool *need_rmap_locks);
1da177e4 1437extern void exit_mmap(struct mm_struct *);
925d1c40 1438
7906d00c
AA
1439extern int mm_take_all_locks(struct mm_struct *mm);
1440extern void mm_drop_all_locks(struct mm_struct *mm);
1441
38646013
JS
1442extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1443extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1444
119f657c 1445extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1446extern int install_special_mapping(struct mm_struct *mm,
1447 unsigned long addr, unsigned long len,
1448 unsigned long flags, struct page **pages);
1da177e4
LT
1449
1450extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1451
0165ab44 1452extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1453 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1454extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1455 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1456 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1457extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1458
bebeb3d6
ML
1459#ifdef CONFIG_MMU
1460extern int __mm_populate(unsigned long addr, unsigned long len,
1461 int ignore_errors);
1462static inline void mm_populate(unsigned long addr, unsigned long len)
1463{
1464 /* Ignore errors */
1465 (void) __mm_populate(addr, len, 1);
1466}
1467#else
1468static inline void mm_populate(unsigned long addr, unsigned long len) {}
1469#endif
1470
e4eb1ff6
LT
1471/* These take the mm semaphore themselves */
1472extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1473extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1474extern unsigned long vm_mmap(struct file *, unsigned long,
1475 unsigned long, unsigned long,
1476 unsigned long, unsigned long);
1da177e4 1477
db4fbfb9
ML
1478struct vm_unmapped_area_info {
1479#define VM_UNMAPPED_AREA_TOPDOWN 1
1480 unsigned long flags;
1481 unsigned long length;
1482 unsigned long low_limit;
1483 unsigned long high_limit;
1484 unsigned long align_mask;
1485 unsigned long align_offset;
1486};
1487
1488extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1489extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1490
1491/*
1492 * Search for an unmapped address range.
1493 *
1494 * We are looking for a range that:
1495 * - does not intersect with any VMA;
1496 * - is contained within the [low_limit, high_limit) interval;
1497 * - is at least the desired size.
1498 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1499 */
1500static inline unsigned long
1501vm_unmapped_area(struct vm_unmapped_area_info *info)
1502{
1503 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1504 return unmapped_area(info);
1505 else
1506 return unmapped_area_topdown(info);
1507}
1508
85821aab 1509/* truncate.c */
1da177e4 1510extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1511extern void truncate_inode_pages_range(struct address_space *,
1512 loff_t lstart, loff_t lend);
1da177e4
LT
1513
1514/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1515extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1516extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1517
1518/* mm/page-writeback.c */
1519int write_one_page(struct page *page, int wait);
1cf6e7d8 1520void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1521
1522/* readahead.c */
1523#define VM_MAX_READAHEAD 128 /* kbytes */
1524#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1525
1da177e4 1526int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1527 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1528
1529void page_cache_sync_readahead(struct address_space *mapping,
1530 struct file_ra_state *ra,
1531 struct file *filp,
1532 pgoff_t offset,
1533 unsigned long size);
1534
1535void page_cache_async_readahead(struct address_space *mapping,
1536 struct file_ra_state *ra,
1537 struct file *filp,
1538 struct page *pg,
1539 pgoff_t offset,
1540 unsigned long size);
1541
1da177e4 1542unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1543unsigned long ra_submit(struct file_ra_state *ra,
1544 struct address_space *mapping,
1545 struct file *filp);
1da177e4 1546
d05f3169 1547/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1548extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1549
1550/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1551extern int expand_downwards(struct vm_area_struct *vma,
1552 unsigned long address);
8ca3eb08 1553#if VM_GROWSUP
46dea3d0 1554extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1555#else
1556 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1557#endif
1da177e4
LT
1558
1559/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1560extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1561extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1562 struct vm_area_struct **pprev);
1563
1564/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1565 NULL if none. Assume start_addr < end_addr. */
1566static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1567{
1568 struct vm_area_struct * vma = find_vma(mm,start_addr);
1569
1570 if (vma && end_addr <= vma->vm_start)
1571 vma = NULL;
1572 return vma;
1573}
1574
1575static inline unsigned long vma_pages(struct vm_area_struct *vma)
1576{
1577 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1578}
1579
640708a2
PE
1580/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1581static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1582 unsigned long vm_start, unsigned long vm_end)
1583{
1584 struct vm_area_struct *vma = find_vma(mm, vm_start);
1585
1586 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1587 vma = NULL;
1588
1589 return vma;
1590}
1591
bad849b3 1592#ifdef CONFIG_MMU
804af2cf 1593pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1594#else
1595static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1596{
1597 return __pgprot(0);
1598}
1599#endif
1600
b24f53a0 1601#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1602unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1603 unsigned long start, unsigned long end);
1604#endif
1605
deceb6cd 1606struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1607int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1608 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1609int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1610int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1611 unsigned long pfn);
423bad60
NP
1612int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1613 unsigned long pfn);
b4cbb197
LT
1614int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1615
deceb6cd 1616
240aadee
ML
1617struct page *follow_page_mask(struct vm_area_struct *vma,
1618 unsigned long address, unsigned int foll_flags,
1619 unsigned int *page_mask);
1620
1621static inline struct page *follow_page(struct vm_area_struct *vma,
1622 unsigned long address, unsigned int foll_flags)
1623{
1624 unsigned int unused_page_mask;
1625 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1626}
1627
deceb6cd
HD
1628#define FOLL_WRITE 0x01 /* check pte is writable */
1629#define FOLL_TOUCH 0x02 /* mark page accessed */
1630#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1631#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1632#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1633#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1634 * and return without waiting upon it */
110d74a9 1635#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1636#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1637#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1638#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1639#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1640
2f569afd 1641typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1642 void *data);
1643extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1644 unsigned long size, pte_fn_t fn, void *data);
1645
1da177e4 1646#ifdef CONFIG_PROC_FS
ab50b8ed 1647void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1648#else
ab50b8ed 1649static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1650 unsigned long flags, struct file *file, long pages)
1651{
44de9d0c 1652 mm->total_vm += pages;
1da177e4
LT
1653}
1654#endif /* CONFIG_PROC_FS */
1655
12d6f21e 1656#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1657extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1658#ifdef CONFIG_HIBERNATION
1659extern bool kernel_page_present(struct page *page);
1660#endif /* CONFIG_HIBERNATION */
12d6f21e 1661#else
1da177e4 1662static inline void
9858db50 1663kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1664#ifdef CONFIG_HIBERNATION
1665static inline bool kernel_page_present(struct page *page) { return true; }
1666#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1667#endif
1668
31db58b3 1669extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1670#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1671int in_gate_area_no_mm(unsigned long addr);
83b964bb 1672int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1673#else
cae5d390
SW
1674int in_gate_area_no_mm(unsigned long addr);
1675#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1676#endif /* __HAVE_ARCH_GATE_AREA */
1677
8d65af78 1678int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1679 void __user *, size_t *, loff_t *);
a09ed5e0 1680unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1681 unsigned long nr_pages_scanned,
1682 unsigned long lru_pages);
9d0243bc 1683
7a9166e3
LY
1684#ifndef CONFIG_MMU
1685#define randomize_va_space 0
1686#else
a62eaf15 1687extern int randomize_va_space;
7a9166e3 1688#endif
a62eaf15 1689
045e72ac 1690const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1691void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1692
9bdac914
YL
1693void sparse_mem_maps_populate_node(struct page **map_map,
1694 unsigned long pnum_begin,
1695 unsigned long pnum_end,
1696 unsigned long map_count,
1697 int nodeid);
1698
98f3cfc1 1699struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1700pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1701pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1702pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1703pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1704void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1705void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1706void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1707int vmemmap_populate_basepages(struct page *start_page,
1708 unsigned long pages, int node);
1709int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1710void vmemmap_populate_print_last(void);
0197518c
TC
1711#ifdef CONFIG_MEMORY_HOTPLUG
1712void vmemmap_free(struct page *memmap, unsigned long nr_pages);
1713#endif
46723bfa
YI
1714void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1715 unsigned long size);
6a46079c 1716
82ba011b
AK
1717enum mf_flags {
1718 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1719 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1720 MF_MUST_KILL = 1 << 2,
82ba011b 1721};
cd42f4a3 1722extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1723extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1724extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1725extern int sysctl_memory_failure_early_kill;
1726extern int sysctl_memory_failure_recovery;
facb6011 1727extern void shake_page(struct page *p, int access);
293c07e3 1728extern atomic_long_t num_poisoned_pages;
facb6011 1729extern int soft_offline_page(struct page *page, int flags);
6a46079c 1730
718a3821
WF
1731extern void dump_page(struct page *page);
1732
47ad8475
AA
1733#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1734extern void clear_huge_page(struct page *page,
1735 unsigned long addr,
1736 unsigned int pages_per_huge_page);
1737extern void copy_user_huge_page(struct page *dst, struct page *src,
1738 unsigned long addr, struct vm_area_struct *vma,
1739 unsigned int pages_per_huge_page);
1740#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1741
c0a32fc5
SG
1742#ifdef CONFIG_DEBUG_PAGEALLOC
1743extern unsigned int _debug_guardpage_minorder;
1744
1745static inline unsigned int debug_guardpage_minorder(void)
1746{
1747 return _debug_guardpage_minorder;
1748}
1749
1750static inline bool page_is_guard(struct page *page)
1751{
1752 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1753}
1754#else
1755static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1756static inline bool page_is_guard(struct page *page) { return false; }
1757#endif /* CONFIG_DEBUG_PAGEALLOC */
1758
1da177e4
LT
1759#endif /* __KERNEL__ */
1760#endif /* _LINUX_MM_H */