Fix "fs: convert core functions to zero_user_page"
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/sched.h>
5#include <linux/errno.h>
c59ede7b 6#include <linux/capability.h>
1da177e4
LT
7
8#ifdef __KERNEL__
9
1da177e4
LT
10#include <linux/gfp.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/prio_tree.h>
15#include <linux/fs.h>
de5097c2 16#include <linux/mutex.h>
9a11b49a 17#include <linux/debug_locks.h>
d08b3851 18#include <linux/backing-dev.h>
5b99cd0e 19#include <linux/mm_types.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
23
24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25extern unsigned long max_mapnr;
26#endif
27
28extern unsigned long num_physpages;
29extern void * high_memory;
30extern unsigned long vmalloc_earlyreserve;
31extern int page_cluster;
32
33#ifdef CONFIG_SYSCTL
34extern int sysctl_legacy_va_layout;
35#else
36#define sysctl_legacy_va_layout 0
37#endif
38
39#include <asm/page.h>
40#include <asm/pgtable.h>
41#include <asm/processor.h>
1da177e4 42
1da177e4
LT
43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
45/*
46 * Linux kernel virtual memory manager primitives.
47 * The idea being to have a "virtual" mm in the same way
48 * we have a virtual fs - giving a cleaner interface to the
49 * mm details, and allowing different kinds of memory mappings
50 * (from shared memory to executable loading to arbitrary
51 * mmap() functions).
52 */
53
54/*
55 * This struct defines a memory VMM memory area. There is one of these
56 * per VM-area/task. A VM area is any part of the process virtual memory
57 * space that has a special rule for the page-fault handlers (ie a shared
58 * library, the executable area etc).
59 */
60struct vm_area_struct {
61 struct mm_struct * vm_mm; /* The address space we belong to. */
62 unsigned long vm_start; /* Our start address within vm_mm. */
63 unsigned long vm_end; /* The first byte after our end address
64 within vm_mm. */
65
66 /* linked list of VM areas per task, sorted by address */
67 struct vm_area_struct *vm_next;
68
69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
70 unsigned long vm_flags; /* Flags, listed below. */
71
72 struct rb_node vm_rb;
73
74 /*
75 * For areas with an address space and backing store,
76 * linkage into the address_space->i_mmap prio tree, or
77 * linkage to the list of like vmas hanging off its node, or
78 * linkage of vma in the address_space->i_mmap_nonlinear list.
79 */
80 union {
81 struct {
82 struct list_head list;
83 void *parent; /* aligns with prio_tree_node parent */
84 struct vm_area_struct *head;
85 } vm_set;
86
87 struct raw_prio_tree_node prio_tree_node;
88 } shared;
89
90 /*
91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
92 * list, after a COW of one of the file pages. A MAP_SHARED vma
93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
94 * or brk vma (with NULL file) can only be in an anon_vma list.
95 */
96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
98
99 /* Function pointers to deal with this struct. */
100 struct vm_operations_struct * vm_ops;
101
102 /* Information about our backing store: */
103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
104 units, *not* PAGE_CACHE_SIZE */
105 struct file * vm_file; /* File we map to (can be NULL). */
106 void * vm_private_data; /* was vm_pte (shared mem) */
107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
108
109#ifndef CONFIG_MMU
110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
111#endif
112#ifdef CONFIG_NUMA
113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
114#endif
115};
116
c43692e8
CL
117extern struct kmem_cache *vm_area_cachep;
118
1da177e4
LT
119/*
120 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
121 * disabled, then there's a single shared list of VMAs maintained by the
122 * system, and mm's subscribe to these individually
123 */
124struct vm_list_struct {
125 struct vm_list_struct *next;
126 struct vm_area_struct *vma;
127};
128
129#ifndef CONFIG_MMU
130extern struct rb_root nommu_vma_tree;
131extern struct rw_semaphore nommu_vma_sem;
132
133extern unsigned int kobjsize(const void *objp);
134#endif
135
136/*
137 * vm_flags..
138 */
139#define VM_READ 0x00000001 /* currently active flags */
140#define VM_WRITE 0x00000002
141#define VM_EXEC 0x00000004
142#define VM_SHARED 0x00000008
143
7e2cff42 144/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
145#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
146#define VM_MAYWRITE 0x00000020
147#define VM_MAYEXEC 0x00000040
148#define VM_MAYSHARE 0x00000080
149
150#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
151#define VM_GROWSUP 0x00000200
6aab341e 152#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
153#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
154
155#define VM_EXECUTABLE 0x00001000
156#define VM_LOCKED 0x00002000
157#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
158
159 /* Used by sys_madvise() */
160#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
161#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
162
163#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
164#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 165#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
166#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
167#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
168#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
169#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 170#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 171#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
1da177e4
LT
172
173#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
174#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
175#endif
176
177#ifdef CONFIG_STACK_GROWSUP
178#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179#else
180#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
181#endif
182
183#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
184#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
185#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
186#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
187#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
188
189/*
190 * mapping from the currently active vm_flags protection bits (the
191 * low four bits) to a page protection mask..
192 */
193extern pgprot_t protection_map[16];
194
195
196/*
197 * These are the virtual MM functions - opening of an area, closing and
198 * unmapping it (needed to keep files on disk up-to-date etc), pointer
199 * to the functions called when a no-page or a wp-page exception occurs.
200 */
201struct vm_operations_struct {
202 void (*open)(struct vm_area_struct * area);
203 void (*close)(struct vm_area_struct * area);
204 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
f4b81804 205 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
1da177e4 206 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
9637a5ef
DH
207
208 /* notification that a previously read-only page is about to become
209 * writable, if an error is returned it will cause a SIGBUS */
210 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
1da177e4
LT
211#ifdef CONFIG_NUMA
212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
213 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
214 unsigned long addr);
7b2259b3
CL
215 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
216 const nodemask_t *to, unsigned long flags);
1da177e4
LT
217#endif
218};
219
220struct mmu_gather;
221struct inode;
222
349aef0b
AM
223#define page_private(page) ((page)->private)
224#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 225
1da177e4
LT
226/*
227 * FIXME: take this include out, include page-flags.h in
228 * files which need it (119 of them)
229 */
230#include <linux/page-flags.h>
231
725d704e
NP
232#ifdef CONFIG_DEBUG_VM
233#define VM_BUG_ON(cond) BUG_ON(cond)
234#else
235#define VM_BUG_ON(condition) do { } while(0)
236#endif
237
1da177e4
LT
238/*
239 * Methods to modify the page usage count.
240 *
241 * What counts for a page usage:
242 * - cache mapping (page->mapping)
243 * - private data (page->private)
244 * - page mapped in a task's page tables, each mapping
245 * is counted separately
246 *
247 * Also, many kernel routines increase the page count before a critical
248 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
249 */
250
251/*
da6052f7 252 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 253 */
7c8ee9a8
NP
254static inline int put_page_testzero(struct page *page)
255{
725d704e 256 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 257 return atomic_dec_and_test(&page->_count);
7c8ee9a8 258}
1da177e4
LT
259
260/*
7c8ee9a8
NP
261 * Try to grab a ref unless the page has a refcount of zero, return false if
262 * that is the case.
1da177e4 263 */
7c8ee9a8
NP
264static inline int get_page_unless_zero(struct page *page)
265{
725d704e 266 VM_BUG_ON(PageCompound(page));
8dc04efb 267 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 268}
1da177e4 269
d85f3385
CL
270static inline struct page *compound_head(struct page *page)
271{
6d777953 272 if (unlikely(PageTail(page)))
d85f3385
CL
273 return page->first_page;
274 return page;
275}
276
4c21e2f2 277static inline int page_count(struct page *page)
1da177e4 278{
d85f3385 279 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
280}
281
282static inline void get_page(struct page *page)
283{
d85f3385 284 page = compound_head(page);
725d704e 285 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
286 atomic_inc(&page->_count);
287}
288
b49af68f
CL
289static inline struct page *virt_to_head_page(const void *x)
290{
291 struct page *page = virt_to_page(x);
292 return compound_head(page);
293}
294
7835e98b
NP
295/*
296 * Setup the page count before being freed into the page allocator for
297 * the first time (boot or memory hotplug)
298 */
299static inline void init_page_count(struct page *page)
300{
301 atomic_set(&page->_count, 1);
302}
303
1da177e4 304void put_page(struct page *page);
1d7ea732 305void put_pages_list(struct list_head *pages);
1da177e4 306
8dfcc9ba 307void split_page(struct page *page, unsigned int order);
8dfcc9ba 308
33f2ef89
AW
309/*
310 * Compound pages have a destructor function. Provide a
311 * prototype for that function and accessor functions.
312 * These are _only_ valid on the head of a PG_compound page.
313 */
314typedef void compound_page_dtor(struct page *);
315
316static inline void set_compound_page_dtor(struct page *page,
317 compound_page_dtor *dtor)
318{
319 page[1].lru.next = (void *)dtor;
320}
321
322static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
323{
324 return (compound_page_dtor *)page[1].lru.next;
325}
326
d85f3385
CL
327static inline int compound_order(struct page *page)
328{
6d777953 329 if (!PageHead(page))
d85f3385
CL
330 return 0;
331 return (unsigned long)page[1].lru.prev;
332}
333
334static inline void set_compound_order(struct page *page, unsigned long order)
335{
336 page[1].lru.prev = (void *)order;
337}
338
1da177e4
LT
339/*
340 * Multiple processes may "see" the same page. E.g. for untouched
341 * mappings of /dev/null, all processes see the same page full of
342 * zeroes, and text pages of executables and shared libraries have
343 * only one copy in memory, at most, normally.
344 *
345 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
346 * page_count() == 0 means the page is free. page->lru is then used for
347 * freelist management in the buddy allocator.
da6052f7 348 * page_count() > 0 means the page has been allocated.
1da177e4 349 *
da6052f7
NP
350 * Pages are allocated by the slab allocator in order to provide memory
351 * to kmalloc and kmem_cache_alloc. In this case, the management of the
352 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
353 * unless a particular usage is carefully commented. (the responsibility of
354 * freeing the kmalloc memory is the caller's, of course).
1da177e4 355 *
da6052f7
NP
356 * A page may be used by anyone else who does a __get_free_page().
357 * In this case, page_count still tracks the references, and should only
358 * be used through the normal accessor functions. The top bits of page->flags
359 * and page->virtual store page management information, but all other fields
360 * are unused and could be used privately, carefully. The management of this
361 * page is the responsibility of the one who allocated it, and those who have
362 * subsequently been given references to it.
363 *
364 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
365 * managed by the Linux memory manager: I/O, buffers, swapping etc.
366 * The following discussion applies only to them.
367 *
da6052f7
NP
368 * A pagecache page contains an opaque `private' member, which belongs to the
369 * page's address_space. Usually, this is the address of a circular list of
370 * the page's disk buffers. PG_private must be set to tell the VM to call
371 * into the filesystem to release these pages.
1da177e4 372 *
da6052f7
NP
373 * A page may belong to an inode's memory mapping. In this case, page->mapping
374 * is the pointer to the inode, and page->index is the file offset of the page,
375 * in units of PAGE_CACHE_SIZE.
1da177e4 376 *
da6052f7
NP
377 * If pagecache pages are not associated with an inode, they are said to be
378 * anonymous pages. These may become associated with the swapcache, and in that
379 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 380 *
da6052f7
NP
381 * In either case (swapcache or inode backed), the pagecache itself holds one
382 * reference to the page. Setting PG_private should also increment the
383 * refcount. The each user mapping also has a reference to the page.
1da177e4 384 *
da6052f7
NP
385 * The pagecache pages are stored in a per-mapping radix tree, which is
386 * rooted at mapping->page_tree, and indexed by offset.
387 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
388 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 389 *
da6052f7 390 * All pagecache pages may be subject to I/O:
1da177e4
LT
391 * - inode pages may need to be read from disk,
392 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
393 * to be written back to the inode on disk,
394 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
395 * modified may need to be swapped out to swap space and (later) to be read
396 * back into memory.
1da177e4
LT
397 */
398
399/*
400 * The zone field is never updated after free_area_init_core()
401 * sets it, so none of the operations on it need to be atomic.
1da177e4 402 */
348f8b6c 403
d41dee36
AW
404
405/*
406 * page->flags layout:
407 *
408 * There are three possibilities for how page->flags get
409 * laid out. The first is for the normal case, without
410 * sparsemem. The second is for sparsemem when there is
411 * plenty of space for node and section. The last is when
412 * we have run out of space and have to fall back to an
413 * alternate (slower) way of determining the node.
414 *
415 * No sparsemem: | NODE | ZONE | ... | FLAGS |
416 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
417 * no space for node: | SECTION | ZONE | ... | FLAGS |
418 */
419#ifdef CONFIG_SPARSEMEM
420#define SECTIONS_WIDTH SECTIONS_SHIFT
421#else
422#define SECTIONS_WIDTH 0
423#endif
424
425#define ZONES_WIDTH ZONES_SHIFT
426
427#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
428#define NODES_WIDTH NODES_SHIFT
429#else
430#define NODES_WIDTH 0
431#endif
432
433/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 434#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
435#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
436#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
437
438/*
439 * We are going to use the flags for the page to node mapping if its in
440 * there. This includes the case where there is no node, so it is implicit.
441 */
89689ae7
CL
442#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
443#define NODE_NOT_IN_PAGE_FLAGS
444#endif
d41dee36
AW
445
446#ifndef PFN_SECTION_SHIFT
447#define PFN_SECTION_SHIFT 0
448#endif
348f8b6c
DH
449
450/*
451 * Define the bit shifts to access each section. For non-existant
452 * sections we define the shift as 0; that plus a 0 mask ensures
453 * the compiler will optimise away reference to them.
454 */
d41dee36
AW
455#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
456#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
457#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 458
89689ae7
CL
459/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
460#ifdef NODE_NOT_IN_PAGEFLAGS
461#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
462#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
463 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 464#else
89689ae7 465#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
466#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
467 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
468#endif
469
bd8029b6 470#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 471
d41dee36
AW
472#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
473#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
474#endif
475
d41dee36
AW
476#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
477#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
478#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 479#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 480
2f1b6248 481static inline enum zone_type page_zonenum(struct page *page)
1da177e4 482{
348f8b6c 483 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 484}
1da177e4 485
89689ae7
CL
486/*
487 * The identification function is only used by the buddy allocator for
488 * determining if two pages could be buddies. We are not really
489 * identifying a zone since we could be using a the section number
490 * id if we have not node id available in page flags.
491 * We guarantee only that it will return the same value for two
492 * combinable pages in a zone.
493 */
cb2b95e1
AW
494static inline int page_zone_id(struct page *page)
495{
89689ae7 496 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
497}
498
25ba77c1 499static inline int zone_to_nid(struct zone *zone)
89fa3024 500{
d5f541ed
CL
501#ifdef CONFIG_NUMA
502 return zone->node;
503#else
504 return 0;
505#endif
89fa3024
CL
506}
507
89689ae7 508#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 509extern int page_to_nid(struct page *page);
89689ae7 510#else
25ba77c1 511static inline int page_to_nid(struct page *page)
d41dee36 512{
89689ae7 513 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 514}
89689ae7
CL
515#endif
516
517static inline struct zone *page_zone(struct page *page)
518{
519 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
520}
521
d41dee36
AW
522static inline unsigned long page_to_section(struct page *page)
523{
524 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
525}
526
2f1b6248 527static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
528{
529 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
530 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
531}
2f1b6248 532
348f8b6c
DH
533static inline void set_page_node(struct page *page, unsigned long node)
534{
535 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
536 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 537}
89689ae7 538
d41dee36
AW
539static inline void set_page_section(struct page *page, unsigned long section)
540{
541 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
542 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
543}
1da177e4 544
2f1b6248 545static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 546 unsigned long node, unsigned long pfn)
1da177e4 547{
348f8b6c
DH
548 set_page_zone(page, zone);
549 set_page_node(page, node);
d41dee36 550 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
551}
552
f6ac2354
CL
553/*
554 * Some inline functions in vmstat.h depend on page_zone()
555 */
556#include <linux/vmstat.h>
557
652050ae 558static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
559{
560 return __va(page_to_pfn(page) << PAGE_SHIFT);
561}
562
563#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
564#define HASHED_PAGE_VIRTUAL
565#endif
566
567#if defined(WANT_PAGE_VIRTUAL)
568#define page_address(page) ((page)->virtual)
569#define set_page_address(page, address) \
570 do { \
571 (page)->virtual = (address); \
572 } while(0)
573#define page_address_init() do { } while(0)
574#endif
575
576#if defined(HASHED_PAGE_VIRTUAL)
577void *page_address(struct page *page);
578void set_page_address(struct page *page, void *virtual);
579void page_address_init(void);
580#endif
581
582#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
583#define page_address(page) lowmem_page_address(page)
584#define set_page_address(page, address) do { } while(0)
585#define page_address_init() do { } while(0)
586#endif
587
588/*
589 * On an anonymous page mapped into a user virtual memory area,
590 * page->mapping points to its anon_vma, not to a struct address_space;
591 * with the PAGE_MAPPING_ANON bit set to distinguish it.
592 *
593 * Please note that, confusingly, "page_mapping" refers to the inode
594 * address_space which maps the page from disk; whereas "page_mapped"
595 * refers to user virtual address space into which the page is mapped.
596 */
597#define PAGE_MAPPING_ANON 1
598
599extern struct address_space swapper_space;
600static inline struct address_space *page_mapping(struct page *page)
601{
602 struct address_space *mapping = page->mapping;
603
604 if (unlikely(PageSwapCache(page)))
605 mapping = &swapper_space;
606 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
607 mapping = NULL;
608 return mapping;
609}
610
611static inline int PageAnon(struct page *page)
612{
613 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
614}
615
616/*
617 * Return the pagecache index of the passed page. Regular pagecache pages
618 * use ->index whereas swapcache pages use ->private
619 */
620static inline pgoff_t page_index(struct page *page)
621{
622 if (unlikely(PageSwapCache(page)))
4c21e2f2 623 return page_private(page);
1da177e4
LT
624 return page->index;
625}
626
627/*
628 * The atomic page->_mapcount, like _count, starts from -1:
629 * so that transitions both from it and to it can be tracked,
630 * using atomic_inc_and_test and atomic_add_negative(-1).
631 */
632static inline void reset_page_mapcount(struct page *page)
633{
634 atomic_set(&(page)->_mapcount, -1);
635}
636
637static inline int page_mapcount(struct page *page)
638{
639 return atomic_read(&(page)->_mapcount) + 1;
640}
641
642/*
643 * Return true if this page is mapped into pagetables.
644 */
645static inline int page_mapped(struct page *page)
646{
647 return atomic_read(&(page)->_mapcount) >= 0;
648}
649
650/*
651 * Error return values for the *_nopage functions
652 */
653#define NOPAGE_SIGBUS (NULL)
654#define NOPAGE_OOM ((struct page *) (-1))
7f7bbbe5 655#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
1da177e4 656
f4b81804
JS
657/*
658 * Error return values for the *_nopfn functions
659 */
660#define NOPFN_SIGBUS ((unsigned long) -1)
661#define NOPFN_OOM ((unsigned long) -2)
22cd25ed 662#define NOPFN_REFAULT ((unsigned long) -3)
f4b81804 663
1da177e4
LT
664/*
665 * Different kinds of faults, as returned by handle_mm_fault().
666 * Used to decide whether a process gets delivered SIGBUS or
667 * just gets major/minor fault counters bumped up.
668 */
f33ea7f4
NP
669#define VM_FAULT_OOM 0x00
670#define VM_FAULT_SIGBUS 0x01
671#define VM_FAULT_MINOR 0x02
672#define VM_FAULT_MAJOR 0x03
673
674/*
675 * Special case for get_user_pages.
676 * Must be in a distinct bit from the above VM_FAULT_ flags.
677 */
678#define VM_FAULT_WRITE 0x10
1da177e4
LT
679
680#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
681
682extern void show_free_areas(void);
683
684#ifdef CONFIG_SHMEM
1da177e4
LT
685int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
686struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
687 unsigned long addr);
688int shmem_lock(struct file *file, int lock, struct user_struct *user);
689#else
03b00ebc
RK
690static inline int shmem_lock(struct file *file, int lock,
691 struct user_struct *user)
692{
693 return 0;
694}
695
696static inline int shmem_set_policy(struct vm_area_struct *vma,
697 struct mempolicy *new)
698{
699 return 0;
700}
701
702static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
703 unsigned long addr)
704{
705 return NULL;
706}
1da177e4
LT
707#endif
708struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
709
710int shmem_zero_setup(struct vm_area_struct *);
711
b0e15190
DH
712#ifndef CONFIG_MMU
713extern unsigned long shmem_get_unmapped_area(struct file *file,
714 unsigned long addr,
715 unsigned long len,
716 unsigned long pgoff,
717 unsigned long flags);
718#endif
719
1da177e4
LT
720static inline int can_do_mlock(void)
721{
722 if (capable(CAP_IPC_LOCK))
723 return 1;
724 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
725 return 1;
726 return 0;
727}
728extern int user_shm_lock(size_t, struct user_struct *);
729extern void user_shm_unlock(size_t, struct user_struct *);
730
731/*
732 * Parameter block passed down to zap_pte_range in exceptional cases.
733 */
734struct zap_details {
735 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
736 struct address_space *check_mapping; /* Check page->mapping if set */
737 pgoff_t first_index; /* Lowest page->index to unmap */
738 pgoff_t last_index; /* Highest page->index to unmap */
739 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
740 unsigned long truncate_count; /* Compare vm_truncate_count */
741};
742
6aab341e 743struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 744unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 745 unsigned long size, struct zap_details *);
508034a3 746unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
747 struct vm_area_struct *start_vma, unsigned long start_addr,
748 unsigned long end_addr, unsigned long *nr_accounted,
749 struct zap_details *);
3bf5ee95
HD
750void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
751 unsigned long end, unsigned long floor, unsigned long ceiling);
752void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 753 unsigned long floor, unsigned long ceiling);
1da177e4
LT
754int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
755 struct vm_area_struct *vma);
756int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
757 unsigned long size, pgprot_t prot);
758void unmap_mapping_range(struct address_space *mapping,
759 loff_t const holebegin, loff_t const holelen, int even_cows);
760
761static inline void unmap_shared_mapping_range(struct address_space *mapping,
762 loff_t const holebegin, loff_t const holelen)
763{
764 unmap_mapping_range(mapping, holebegin, holelen, 0);
765}
766
767extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 768extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
1da177e4
LT
769extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
770extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
f33ea7f4 771
7ee1dd3f
DH
772#ifdef CONFIG_MMU
773extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
774 unsigned long address, int write_access);
775
776static inline int handle_mm_fault(struct mm_struct *mm,
777 struct vm_area_struct *vma, unsigned long address,
778 int write_access)
f33ea7f4 779{
7ee1dd3f
DH
780 return __handle_mm_fault(mm, vma, address, write_access) &
781 (~VM_FAULT_WRITE);
f33ea7f4 782}
7ee1dd3f
DH
783#else
784static inline int handle_mm_fault(struct mm_struct *mm,
785 struct vm_area_struct *vma, unsigned long address,
786 int write_access)
787{
788 /* should never happen if there's no MMU */
789 BUG();
790 return VM_FAULT_SIGBUS;
791}
792#endif
f33ea7f4 793
1da177e4
LT
794extern int make_pages_present(unsigned long addr, unsigned long end);
795extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
796void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
797
798int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
799 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 800void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4 801
cf9a2ae8
DH
802extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
803extern void do_invalidatepage(struct page *page, unsigned long offset);
804
1da177e4 805int __set_page_dirty_nobuffers(struct page *page);
76719325 806int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
807int redirty_page_for_writepage(struct writeback_control *wbc,
808 struct page *page);
809int FASTCALL(set_page_dirty(struct page *page));
810int set_page_dirty_lock(struct page *page);
811int clear_page_dirty_for_io(struct page *page);
812
813extern unsigned long do_mremap(unsigned long addr,
814 unsigned long old_len, unsigned long new_len,
815 unsigned long flags, unsigned long new_addr);
816
817/*
818 * Prototype to add a shrinker callback for ageable caches.
819 *
820 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
821 * scan `nr_to_scan' objects, attempting to free them.
822 *
845d3431 823 * The callback must return the number of objects which remain in the cache.
1da177e4 824 *
845d3431 825 * The callback will be passed nr_to_scan == 0 when the VM is querying the
1da177e4
LT
826 * cache size, so a fastpath for that case is appropriate.
827 */
6daa0e28 828typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
1da177e4
LT
829
830/*
831 * Add an aging callback. The int is the number of 'seeks' it takes
832 * to recreate one of the objects that these functions age.
833 */
834
835#define DEFAULT_SEEKS 2
836struct shrinker;
837extern struct shrinker *set_shrinker(int, shrinker_t);
838extern void remove_shrinker(struct shrinker *shrinker);
839
d08b3851
PZ
840/*
841 * Some shared mappigns will want the pages marked read-only
842 * to track write events. If so, we'll downgrade vm_page_prot
843 * to the private version (using protection_map[] without the
844 * VM_SHARED bit).
845 */
846static inline int vma_wants_writenotify(struct vm_area_struct *vma)
847{
848 unsigned int vm_flags = vma->vm_flags;
849
850 /* If it was private or non-writable, the write bit is already clear */
851 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
852 return 0;
853
854 /* The backer wishes to know when pages are first written to? */
855 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
856 return 1;
857
858 /* The open routine did something to the protections already? */
859 if (pgprot_val(vma->vm_page_prot) !=
860 pgprot_val(protection_map[vm_flags &
861 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
862 return 0;
863
864 /* Specialty mapping? */
865 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
866 return 0;
867
868 /* Can the mapping track the dirty pages? */
869 return vma->vm_file && vma->vm_file->f_mapping &&
870 mapping_cap_account_dirty(vma->vm_file->f_mapping);
871}
872
c9cfcddf
LT
873extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
874
5f22df00
NP
875#ifdef __PAGETABLE_PUD_FOLDED
876static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
877 unsigned long address)
878{
879 return 0;
880}
881#else
1bb3630e 882int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
883#endif
884
885#ifdef __PAGETABLE_PMD_FOLDED
886static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
887 unsigned long address)
888{
889 return 0;
890}
891#else
1bb3630e 892int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
893#endif
894
1bb3630e
HD
895int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
896int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
897
1da177e4
LT
898/*
899 * The following ifdef needed to get the 4level-fixup.h header to work.
900 * Remove it when 4level-fixup.h has been removed.
901 */
1bb3630e 902#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
903static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
904{
1bb3630e
HD
905 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
906 NULL: pud_offset(pgd, address);
1da177e4
LT
907}
908
909static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
910{
1bb3630e
HD
911 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
912 NULL: pmd_offset(pud, address);
1da177e4 913}
1bb3630e
HD
914#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
915
4c21e2f2
HD
916#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
917/*
918 * We tuck a spinlock to guard each pagetable page into its struct page,
919 * at page->private, with BUILD_BUG_ON to make sure that this will not
920 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
921 * When freeing, reset page->mapping so free_pages_check won't complain.
922 */
349aef0b 923#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
924#define pte_lock_init(_page) do { \
925 spin_lock_init(__pte_lockptr(_page)); \
926} while (0)
927#define pte_lock_deinit(page) ((page)->mapping = NULL)
928#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
929#else
930/*
931 * We use mm->page_table_lock to guard all pagetable pages of the mm.
932 */
933#define pte_lock_init(page) do {} while (0)
934#define pte_lock_deinit(page) do {} while (0)
935#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
936#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
937
c74df32c
HD
938#define pte_offset_map_lock(mm, pmd, address, ptlp) \
939({ \
4c21e2f2 940 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
941 pte_t *__pte = pte_offset_map(pmd, address); \
942 *(ptlp) = __ptl; \
943 spin_lock(__ptl); \
944 __pte; \
945})
946
947#define pte_unmap_unlock(pte, ptl) do { \
948 spin_unlock(ptl); \
949 pte_unmap(pte); \
950} while (0)
951
1bb3630e
HD
952#define pte_alloc_map(mm, pmd, address) \
953 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
954 NULL: pte_offset_map(pmd, address))
955
c74df32c
HD
956#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
957 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
958 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
959
1bb3630e
HD
960#define pte_alloc_kernel(pmd, address) \
961 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
962 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
963
964extern void free_area_init(unsigned long * zones_size);
965extern void free_area_init_node(int nid, pg_data_t *pgdat,
966 unsigned long * zones_size, unsigned long zone_start_pfn,
967 unsigned long *zholes_size);
c713216d
MG
968#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
969/*
970 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
971 * zones, allocate the backing mem_map and account for memory holes in a more
972 * architecture independent manner. This is a substitute for creating the
973 * zone_sizes[] and zholes_size[] arrays and passing them to
974 * free_area_init_node()
975 *
976 * An architecture is expected to register range of page frames backed by
977 * physical memory with add_active_range() before calling
978 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
979 * usage, an architecture is expected to do something like
980 *
981 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
982 * max_highmem_pfn};
983 * for_each_valid_physical_page_range()
984 * add_active_range(node_id, start_pfn, end_pfn)
985 * free_area_init_nodes(max_zone_pfns);
986 *
987 * If the architecture guarantees that there are no holes in the ranges
988 * registered with add_active_range(), free_bootmem_active_regions()
989 * will call free_bootmem_node() for each registered physical page range.
990 * Similarly sparse_memory_present_with_active_regions() calls
991 * memory_present() for each range when SPARSEMEM is enabled.
992 *
993 * See mm/page_alloc.c for more information on each function exposed by
994 * CONFIG_ARCH_POPULATES_NODE_MAP
995 */
996extern void free_area_init_nodes(unsigned long *max_zone_pfn);
997extern void add_active_range(unsigned int nid, unsigned long start_pfn,
998 unsigned long end_pfn);
999extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
1000 unsigned long new_end_pfn);
fb01439c
MG
1001extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1002 unsigned long end_pfn);
c713216d
MG
1003extern void remove_all_active_ranges(void);
1004extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1005 unsigned long end_pfn);
1006extern void get_pfn_range_for_nid(unsigned int nid,
1007 unsigned long *start_pfn, unsigned long *end_pfn);
1008extern unsigned long find_min_pfn_with_active_regions(void);
1009extern unsigned long find_max_pfn_with_active_regions(void);
1010extern void free_bootmem_with_active_regions(int nid,
1011 unsigned long max_low_pfn);
1012extern void sparse_memory_present_with_active_regions(int nid);
1013#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1014extern int early_pfn_to_nid(unsigned long pfn);
1015#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1016#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 1017extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1018extern void memmap_init_zone(unsigned long, int, unsigned long,
1019 unsigned long, enum memmap_context);
3947be19 1020extern void setup_per_zone_pages_min(void);
1da177e4
LT
1021extern void mem_init(void);
1022extern void show_mem(void);
1023extern void si_meminfo(struct sysinfo * val);
1024extern void si_meminfo_node(struct sysinfo *val, int nid);
1025
e7c8d5c9
CL
1026#ifdef CONFIG_NUMA
1027extern void setup_per_cpu_pageset(void);
1028#else
1029static inline void setup_per_cpu_pageset(void) {}
1030#endif
1031
1da177e4
LT
1032/* prio_tree.c */
1033void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1034void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1035void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1036struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1037 struct prio_tree_iter *iter);
1038
1039#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1040 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1041 (vma = vma_prio_tree_next(vma, iter)); )
1042
1043static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1044 struct list_head *list)
1045{
1046 vma->shared.vm_set.parent = NULL;
1047 list_add_tail(&vma->shared.vm_set.list, list);
1048}
1049
1050/* mmap.c */
1051extern int __vm_enough_memory(long pages, int cap_sys_admin);
1052extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1053 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1054extern struct vm_area_struct *vma_merge(struct mm_struct *,
1055 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1056 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1057 struct mempolicy *);
1058extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1059extern int split_vma(struct mm_struct *,
1060 struct vm_area_struct *, unsigned long addr, int new_below);
1061extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1062extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1063 struct rb_node **, struct rb_node *);
a8fb5618 1064extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1065extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1066 unsigned long addr, unsigned long len, pgoff_t pgoff);
1067extern void exit_mmap(struct mm_struct *);
119f657c 1068extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1069extern int install_special_mapping(struct mm_struct *mm,
1070 unsigned long addr, unsigned long len,
1071 unsigned long flags, struct page **pages);
1da177e4
LT
1072
1073extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1074
1075extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1076 unsigned long len, unsigned long prot,
1077 unsigned long flag, unsigned long pgoff);
1078
1079static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1080 unsigned long len, unsigned long prot,
1081 unsigned long flag, unsigned long offset)
1082{
1083 unsigned long ret = -EINVAL;
1084 if ((offset + PAGE_ALIGN(len)) < offset)
1085 goto out;
1086 if (!(offset & ~PAGE_MASK))
1087 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1088out:
1089 return ret;
1090}
1091
1092extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1093
1094extern unsigned long do_brk(unsigned long, unsigned long);
1095
1096/* filemap.c */
1097extern unsigned long page_unuse(struct page *);
1098extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1099extern void truncate_inode_pages_range(struct address_space *,
1100 loff_t lstart, loff_t lend);
1da177e4
LT
1101
1102/* generic vm_area_ops exported for stackable file systems */
1103extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1104extern int filemap_populate(struct vm_area_struct *, unsigned long,
1105 unsigned long, pgprot_t, unsigned long, int);
1106
1107/* mm/page-writeback.c */
1108int write_one_page(struct page *page, int wait);
1109
1110/* readahead.c */
1111#define VM_MAX_READAHEAD 128 /* kbytes */
1112#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1113#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1114 * turning readahead off */
1115
1116int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1117 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1118int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8
AM
1119 pgoff_t offset, unsigned long nr_to_read);
1120unsigned long page_cache_readahead(struct address_space *mapping,
1da177e4
LT
1121 struct file_ra_state *ra,
1122 struct file *filp,
7361f4d8 1123 pgoff_t offset,
1da177e4
LT
1124 unsigned long size);
1125void handle_ra_miss(struct address_space *mapping,
1126 struct file_ra_state *ra, pgoff_t offset);
1127unsigned long max_sane_readahead(unsigned long nr);
1128
1129/* Do stack extension */
46dea3d0 1130extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1131#ifdef CONFIG_IA64
46dea3d0 1132extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1133#endif
1da177e4
LT
1134
1135/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1136extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1137extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1138 struct vm_area_struct **pprev);
1139
1140/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1141 NULL if none. Assume start_addr < end_addr. */
1142static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1143{
1144 struct vm_area_struct * vma = find_vma(mm,start_addr);
1145
1146 if (vma && end_addr <= vma->vm_start)
1147 vma = NULL;
1148 return vma;
1149}
1150
1151static inline unsigned long vma_pages(struct vm_area_struct *vma)
1152{
1153 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1154}
1155
804af2cf 1156pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd
HD
1157struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1158struct page *vmalloc_to_page(void *addr);
1159unsigned long vmalloc_to_pfn(void *addr);
1160int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1161 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1162int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1163int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1164 unsigned long pfn);
deceb6cd 1165
6aab341e 1166struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1167 unsigned int foll_flags);
1168#define FOLL_WRITE 0x01 /* check pte is writable */
1169#define FOLL_TOUCH 0x02 /* mark page accessed */
1170#define FOLL_GET 0x04 /* do get_page on page */
1171#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4 1172
aee16b3c
JF
1173typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1174 void *data);
1175extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1176 unsigned long size, pte_fn_t fn, void *data);
1177
1da177e4 1178#ifdef CONFIG_PROC_FS
ab50b8ed 1179void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1180#else
ab50b8ed 1181static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1182 unsigned long flags, struct file *file, long pages)
1183{
1184}
1185#endif /* CONFIG_PROC_FS */
1186
1da177e4
LT
1187#ifndef CONFIG_DEBUG_PAGEALLOC
1188static inline void
9858db50 1189kernel_map_pages(struct page *page, int numpages, int enable) {}
1da177e4
LT
1190#endif
1191
1192extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1193#ifdef __HAVE_ARCH_GATE_AREA
1194int in_gate_area_no_task(unsigned long addr);
1195int in_gate_area(struct task_struct *task, unsigned long addr);
1196#else
1197int in_gate_area_no_task(unsigned long addr);
1198#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1199#endif /* __HAVE_ARCH_GATE_AREA */
1200
9d0243bc
AM
1201int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1202 void __user *, size_t *, loff_t *);
69e05944 1203unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc
AM
1204 unsigned long lru_pages);
1205void drop_pagecache(void);
1206void drop_slab(void);
1207
7a9166e3
LY
1208#ifndef CONFIG_MMU
1209#define randomize_va_space 0
1210#else
a62eaf15 1211extern int randomize_va_space;
7a9166e3 1212#endif
a62eaf15 1213
f269fdd1 1214__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
e6e5494c 1215
1da177e4
LT
1216#endif /* __KERNEL__ */
1217#endif /* _LINUX_MM_H */