[PATCH] Hugepages: Use page_to_nid rather than traversing zone pointers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/sched.h>
5#include <linux/errno.h>
c59ede7b 6#include <linux/capability.h>
1da177e4
LT
7
8#ifdef __KERNEL__
9
1da177e4
LT
10#include <linux/gfp.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/prio_tree.h>
15#include <linux/fs.h>
de5097c2 16#include <linux/mutex.h>
9a11b49a 17#include <linux/debug_locks.h>
d08b3851 18#include <linux/backing-dev.h>
1da177e4
LT
19
20struct mempolicy;
21struct anon_vma;
22
23#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24extern unsigned long max_mapnr;
25#endif
26
27extern unsigned long num_physpages;
28extern void * high_memory;
29extern unsigned long vmalloc_earlyreserve;
30extern int page_cluster;
31
32#ifdef CONFIG_SYSCTL
33extern int sysctl_legacy_va_layout;
34#else
35#define sysctl_legacy_va_layout 0
36#endif
37
38#include <asm/page.h>
39#include <asm/pgtable.h>
40#include <asm/processor.h>
1da177e4 41
1da177e4
LT
42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44/*
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
51 */
52
53/*
54 * This struct defines a memory VMM memory area. There is one of these
55 * per VM-area/task. A VM area is any part of the process virtual memory
56 * space that has a special rule for the page-fault handlers (ie a shared
57 * library, the executable area etc).
58 */
59struct vm_area_struct {
60 struct mm_struct * vm_mm; /* The address space we belong to. */
61 unsigned long vm_start; /* Our start address within vm_mm. */
62 unsigned long vm_end; /* The first byte after our end address
63 within vm_mm. */
64
65 /* linked list of VM areas per task, sorted by address */
66 struct vm_area_struct *vm_next;
67
68 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
69 unsigned long vm_flags; /* Flags, listed below. */
70
71 struct rb_node vm_rb;
72
73 /*
74 * For areas with an address space and backing store,
75 * linkage into the address_space->i_mmap prio tree, or
76 * linkage to the list of like vmas hanging off its node, or
77 * linkage of vma in the address_space->i_mmap_nonlinear list.
78 */
79 union {
80 struct {
81 struct list_head list;
82 void *parent; /* aligns with prio_tree_node parent */
83 struct vm_area_struct *head;
84 } vm_set;
85
86 struct raw_prio_tree_node prio_tree_node;
87 } shared;
88
89 /*
90 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
91 * list, after a COW of one of the file pages. A MAP_SHARED vma
92 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
93 * or brk vma (with NULL file) can only be in an anon_vma list.
94 */
95 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
96 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
97
98 /* Function pointers to deal with this struct. */
99 struct vm_operations_struct * vm_ops;
100
101 /* Information about our backing store: */
102 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
103 units, *not* PAGE_CACHE_SIZE */
104 struct file * vm_file; /* File we map to (can be NULL). */
105 void * vm_private_data; /* was vm_pte (shared mem) */
106 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
107
108#ifndef CONFIG_MMU
109 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
110#endif
111#ifdef CONFIG_NUMA
112 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
113#endif
114};
115
116/*
117 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
118 * disabled, then there's a single shared list of VMAs maintained by the
119 * system, and mm's subscribe to these individually
120 */
121struct vm_list_struct {
122 struct vm_list_struct *next;
123 struct vm_area_struct *vma;
124};
125
126#ifndef CONFIG_MMU
127extern struct rb_root nommu_vma_tree;
128extern struct rw_semaphore nommu_vma_sem;
129
130extern unsigned int kobjsize(const void *objp);
131#endif
132
133/*
134 * vm_flags..
135 */
136#define VM_READ 0x00000001 /* currently active flags */
137#define VM_WRITE 0x00000002
138#define VM_EXEC 0x00000004
139#define VM_SHARED 0x00000008
140
7e2cff42 141/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
142#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
143#define VM_MAYWRITE 0x00000020
144#define VM_MAYEXEC 0x00000040
145#define VM_MAYSHARE 0x00000080
146
147#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
148#define VM_GROWSUP 0x00000200
6aab341e 149#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
150#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
151
152#define VM_EXECUTABLE 0x00001000
153#define VM_LOCKED 0x00002000
154#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
155
156 /* Used by sys_madvise() */
157#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
158#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
159
160#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
161#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 162#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
163#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
164#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
165#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
166#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 167#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
1da177e4
LT
168
169#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
170#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
171#endif
172
173#ifdef CONFIG_STACK_GROWSUP
174#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
175#else
176#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
177#endif
178
179#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
180#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
181#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
182#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
183#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
184
185/*
186 * mapping from the currently active vm_flags protection bits (the
187 * low four bits) to a page protection mask..
188 */
189extern pgprot_t protection_map[16];
190
191
192/*
193 * These are the virtual MM functions - opening of an area, closing and
194 * unmapping it (needed to keep files on disk up-to-date etc), pointer
195 * to the functions called when a no-page or a wp-page exception occurs.
196 */
197struct vm_operations_struct {
198 void (*open)(struct vm_area_struct * area);
199 void (*close)(struct vm_area_struct * area);
200 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
201 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
9637a5ef
DH
202
203 /* notification that a previously read-only page is about to become
204 * writable, if an error is returned it will cause a SIGBUS */
205 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
1da177e4
LT
206#ifdef CONFIG_NUMA
207 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
208 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
209 unsigned long addr);
7b2259b3
CL
210 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
211 const nodemask_t *to, unsigned long flags);
1da177e4
LT
212#endif
213};
214
215struct mmu_gather;
216struct inode;
217
1da177e4
LT
218/*
219 * Each physical page in the system has a struct page associated with
220 * it to keep track of whatever it is we are using the page for at the
221 * moment. Note that we have no way to track which tasks are using
da6052f7
NP
222 * a page, though if it is a pagecache page, rmap structures can tell us
223 * who is mapping it.
1da177e4
LT
224 */
225struct page {
07808b74 226 unsigned long flags; /* Atomic flags, some possibly
1da177e4
LT
227 * updated asynchronously */
228 atomic_t _count; /* Usage count, see below. */
229 atomic_t _mapcount; /* Count of ptes mapped in mms,
230 * to show when page is mapped
231 * & limit reverse map searches.
232 */
4c21e2f2 233 union {
349aef0b
AM
234 struct {
235 unsigned long private; /* Mapping-private opaque data:
236 * usually used for buffer_heads
237 * if PagePrivate set; used for
676165a8 238 * swp_entry_t if PageSwapCache;
349aef0b 239 * indicates order in the buddy
676165a8 240 * system if PG_buddy is set.
349aef0b
AM
241 */
242 struct address_space *mapping; /* If low bit clear, points to
243 * inode address_space, or NULL.
244 * If page mapped as anonymous
245 * memory, low bit is set, and
246 * it points to anon_vma object:
247 * see PAGE_MAPPING_ANON below.
248 */
249 };
4c21e2f2 250#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
349aef0b 251 spinlock_t ptl;
4c21e2f2 252#endif
349aef0b 253 };
1da177e4
LT
254 pgoff_t index; /* Our offset within mapping. */
255 struct list_head lru; /* Pageout list, eg. active_list
256 * protected by zone->lru_lock !
257 */
258 /*
259 * On machines where all RAM is mapped into kernel address space,
260 * we can simply calculate the virtual address. On machines with
261 * highmem some memory is mapped into kernel virtual memory
262 * dynamically, so we need a place to store that address.
263 * Note that this field could be 16 bits on x86 ... ;)
264 *
265 * Architectures with slow multiplication can define
266 * WANT_PAGE_VIRTUAL in asm/page.h
267 */
268#if defined(WANT_PAGE_VIRTUAL)
269 void *virtual; /* Kernel virtual address (NULL if
270 not kmapped, ie. highmem) */
271#endif /* WANT_PAGE_VIRTUAL */
272};
273
349aef0b
AM
274#define page_private(page) ((page)->private)
275#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 276
1da177e4
LT
277/*
278 * FIXME: take this include out, include page-flags.h in
279 * files which need it (119 of them)
280 */
281#include <linux/page-flags.h>
282
725d704e
NP
283#ifdef CONFIG_DEBUG_VM
284#define VM_BUG_ON(cond) BUG_ON(cond)
285#else
286#define VM_BUG_ON(condition) do { } while(0)
287#endif
288
1da177e4
LT
289/*
290 * Methods to modify the page usage count.
291 *
292 * What counts for a page usage:
293 * - cache mapping (page->mapping)
294 * - private data (page->private)
295 * - page mapped in a task's page tables, each mapping
296 * is counted separately
297 *
298 * Also, many kernel routines increase the page count before a critical
299 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
300 */
301
302/*
da6052f7 303 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 304 */
7c8ee9a8
NP
305static inline int put_page_testzero(struct page *page)
306{
725d704e 307 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 308 return atomic_dec_and_test(&page->_count);
7c8ee9a8 309}
1da177e4
LT
310
311/*
7c8ee9a8
NP
312 * Try to grab a ref unless the page has a refcount of zero, return false if
313 * that is the case.
1da177e4 314 */
7c8ee9a8
NP
315static inline int get_page_unless_zero(struct page *page)
316{
725d704e 317 VM_BUG_ON(PageCompound(page));
8dc04efb 318 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 319}
1da177e4 320
4c21e2f2 321static inline int page_count(struct page *page)
1da177e4 322{
617d2214 323 if (unlikely(PageCompound(page)))
4c21e2f2 324 page = (struct page *)page_private(page);
8dc04efb 325 return atomic_read(&page->_count);
1da177e4
LT
326}
327
328static inline void get_page(struct page *page)
329{
330 if (unlikely(PageCompound(page)))
4c21e2f2 331 page = (struct page *)page_private(page);
725d704e 332 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
333 atomic_inc(&page->_count);
334}
335
7835e98b
NP
336/*
337 * Setup the page count before being freed into the page allocator for
338 * the first time (boot or memory hotplug)
339 */
340static inline void init_page_count(struct page *page)
341{
342 atomic_set(&page->_count, 1);
343}
344
1da177e4 345void put_page(struct page *page);
1d7ea732 346void put_pages_list(struct list_head *pages);
1da177e4 347
8dfcc9ba 348void split_page(struct page *page, unsigned int order);
8dfcc9ba 349
1da177e4
LT
350/*
351 * Multiple processes may "see" the same page. E.g. for untouched
352 * mappings of /dev/null, all processes see the same page full of
353 * zeroes, and text pages of executables and shared libraries have
354 * only one copy in memory, at most, normally.
355 *
356 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
357 * page_count() == 0 means the page is free. page->lru is then used for
358 * freelist management in the buddy allocator.
da6052f7 359 * page_count() > 0 means the page has been allocated.
1da177e4 360 *
da6052f7
NP
361 * Pages are allocated by the slab allocator in order to provide memory
362 * to kmalloc and kmem_cache_alloc. In this case, the management of the
363 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
364 * unless a particular usage is carefully commented. (the responsibility of
365 * freeing the kmalloc memory is the caller's, of course).
1da177e4 366 *
da6052f7
NP
367 * A page may be used by anyone else who does a __get_free_page().
368 * In this case, page_count still tracks the references, and should only
369 * be used through the normal accessor functions. The top bits of page->flags
370 * and page->virtual store page management information, but all other fields
371 * are unused and could be used privately, carefully. The management of this
372 * page is the responsibility of the one who allocated it, and those who have
373 * subsequently been given references to it.
374 *
375 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
376 * managed by the Linux memory manager: I/O, buffers, swapping etc.
377 * The following discussion applies only to them.
378 *
da6052f7
NP
379 * A pagecache page contains an opaque `private' member, which belongs to the
380 * page's address_space. Usually, this is the address of a circular list of
381 * the page's disk buffers. PG_private must be set to tell the VM to call
382 * into the filesystem to release these pages.
1da177e4 383 *
da6052f7
NP
384 * A page may belong to an inode's memory mapping. In this case, page->mapping
385 * is the pointer to the inode, and page->index is the file offset of the page,
386 * in units of PAGE_CACHE_SIZE.
1da177e4 387 *
da6052f7
NP
388 * If pagecache pages are not associated with an inode, they are said to be
389 * anonymous pages. These may become associated with the swapcache, and in that
390 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 391 *
da6052f7
NP
392 * In either case (swapcache or inode backed), the pagecache itself holds one
393 * reference to the page. Setting PG_private should also increment the
394 * refcount. The each user mapping also has a reference to the page.
1da177e4 395 *
da6052f7
NP
396 * The pagecache pages are stored in a per-mapping radix tree, which is
397 * rooted at mapping->page_tree, and indexed by offset.
398 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
399 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 400 *
da6052f7 401 * All pagecache pages may be subject to I/O:
1da177e4
LT
402 * - inode pages may need to be read from disk,
403 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
404 * to be written back to the inode on disk,
405 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
406 * modified may need to be swapped out to swap space and (later) to be read
407 * back into memory.
1da177e4
LT
408 */
409
410/*
411 * The zone field is never updated after free_area_init_core()
412 * sets it, so none of the operations on it need to be atomic.
1da177e4 413 */
348f8b6c 414
d41dee36
AW
415
416/*
417 * page->flags layout:
418 *
419 * There are three possibilities for how page->flags get
420 * laid out. The first is for the normal case, without
421 * sparsemem. The second is for sparsemem when there is
422 * plenty of space for node and section. The last is when
423 * we have run out of space and have to fall back to an
424 * alternate (slower) way of determining the node.
425 *
426 * No sparsemem: | NODE | ZONE | ... | FLAGS |
427 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
428 * no space for node: | SECTION | ZONE | ... | FLAGS |
429 */
430#ifdef CONFIG_SPARSEMEM
431#define SECTIONS_WIDTH SECTIONS_SHIFT
432#else
433#define SECTIONS_WIDTH 0
434#endif
435
436#define ZONES_WIDTH ZONES_SHIFT
437
438#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
439#define NODES_WIDTH NODES_SHIFT
440#else
441#define NODES_WIDTH 0
442#endif
443
444/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 445#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
446#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
447#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
448
449/*
450 * We are going to use the flags for the page to node mapping if its in
451 * there. This includes the case where there is no node, so it is implicit.
452 */
453#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
454
455#ifndef PFN_SECTION_SHIFT
456#define PFN_SECTION_SHIFT 0
457#endif
348f8b6c
DH
458
459/*
460 * Define the bit shifts to access each section. For non-existant
461 * sections we define the shift as 0; that plus a 0 mask ensures
462 * the compiler will optimise away reference to them.
463 */
d41dee36
AW
464#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
465#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
466#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 467
d41dee36
AW
468/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
469#if FLAGS_HAS_NODE
348f8b6c 470#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
d41dee36
AW
471#else
472#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
473#endif
348f8b6c
DH
474#define ZONETABLE_PGSHIFT ZONES_PGSHIFT
475
d41dee36
AW
476#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
477#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
478#endif
479
d41dee36
AW
480#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
481#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
482#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
348f8b6c
DH
483#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
484
2f1b6248 485static inline enum zone_type page_zonenum(struct page *page)
1da177e4 486{
348f8b6c 487 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 488}
1da177e4
LT
489
490struct zone;
491extern struct zone *zone_table[];
492
cb2b95e1
AW
493static inline int page_zone_id(struct page *page)
494{
495 return (page->flags >> ZONETABLE_PGSHIFT) & ZONETABLE_MASK;
496}
1da177e4
LT
497static inline struct zone *page_zone(struct page *page)
498{
cb2b95e1 499 return zone_table[page_zone_id(page)];
348f8b6c
DH
500}
501
d41dee36
AW
502static inline unsigned long page_to_nid(struct page *page)
503{
504 if (FLAGS_HAS_NODE)
505 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
506 else
507 return page_zone(page)->zone_pgdat->node_id;
508}
509static inline unsigned long page_to_section(struct page *page)
510{
511 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
512}
513
2f1b6248 514static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
515{
516 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
517 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
518}
2f1b6248 519
348f8b6c
DH
520static inline void set_page_node(struct page *page, unsigned long node)
521{
522 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
523 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 524}
d41dee36
AW
525static inline void set_page_section(struct page *page, unsigned long section)
526{
527 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
528 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
529}
1da177e4 530
2f1b6248 531static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 532 unsigned long node, unsigned long pfn)
1da177e4 533{
348f8b6c
DH
534 set_page_zone(page, zone);
535 set_page_node(page, node);
d41dee36 536 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
537}
538
f6ac2354
CL
539/*
540 * Some inline functions in vmstat.h depend on page_zone()
541 */
542#include <linux/vmstat.h>
543
1da177e4
LT
544#ifndef CONFIG_DISCONTIGMEM
545/* The array of struct pages - for discontigmem use pgdat->lmem_map */
546extern struct page *mem_map;
547#endif
548
652050ae 549static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
550{
551 return __va(page_to_pfn(page) << PAGE_SHIFT);
552}
553
554#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
555#define HASHED_PAGE_VIRTUAL
556#endif
557
558#if defined(WANT_PAGE_VIRTUAL)
559#define page_address(page) ((page)->virtual)
560#define set_page_address(page, address) \
561 do { \
562 (page)->virtual = (address); \
563 } while(0)
564#define page_address_init() do { } while(0)
565#endif
566
567#if defined(HASHED_PAGE_VIRTUAL)
568void *page_address(struct page *page);
569void set_page_address(struct page *page, void *virtual);
570void page_address_init(void);
571#endif
572
573#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
574#define page_address(page) lowmem_page_address(page)
575#define set_page_address(page, address) do { } while(0)
576#define page_address_init() do { } while(0)
577#endif
578
579/*
580 * On an anonymous page mapped into a user virtual memory area,
581 * page->mapping points to its anon_vma, not to a struct address_space;
582 * with the PAGE_MAPPING_ANON bit set to distinguish it.
583 *
584 * Please note that, confusingly, "page_mapping" refers to the inode
585 * address_space which maps the page from disk; whereas "page_mapped"
586 * refers to user virtual address space into which the page is mapped.
587 */
588#define PAGE_MAPPING_ANON 1
589
590extern struct address_space swapper_space;
591static inline struct address_space *page_mapping(struct page *page)
592{
593 struct address_space *mapping = page->mapping;
594
595 if (unlikely(PageSwapCache(page)))
596 mapping = &swapper_space;
597 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
598 mapping = NULL;
599 return mapping;
600}
601
602static inline int PageAnon(struct page *page)
603{
604 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
605}
606
607/*
608 * Return the pagecache index of the passed page. Regular pagecache pages
609 * use ->index whereas swapcache pages use ->private
610 */
611static inline pgoff_t page_index(struct page *page)
612{
613 if (unlikely(PageSwapCache(page)))
4c21e2f2 614 return page_private(page);
1da177e4
LT
615 return page->index;
616}
617
618/*
619 * The atomic page->_mapcount, like _count, starts from -1:
620 * so that transitions both from it and to it can be tracked,
621 * using atomic_inc_and_test and atomic_add_negative(-1).
622 */
623static inline void reset_page_mapcount(struct page *page)
624{
625 atomic_set(&(page)->_mapcount, -1);
626}
627
628static inline int page_mapcount(struct page *page)
629{
630 return atomic_read(&(page)->_mapcount) + 1;
631}
632
633/*
634 * Return true if this page is mapped into pagetables.
635 */
636static inline int page_mapped(struct page *page)
637{
638 return atomic_read(&(page)->_mapcount) >= 0;
639}
640
641/*
642 * Error return values for the *_nopage functions
643 */
644#define NOPAGE_SIGBUS (NULL)
645#define NOPAGE_OOM ((struct page *) (-1))
646
647/*
648 * Different kinds of faults, as returned by handle_mm_fault().
649 * Used to decide whether a process gets delivered SIGBUS or
650 * just gets major/minor fault counters bumped up.
651 */
f33ea7f4
NP
652#define VM_FAULT_OOM 0x00
653#define VM_FAULT_SIGBUS 0x01
654#define VM_FAULT_MINOR 0x02
655#define VM_FAULT_MAJOR 0x03
656
657/*
658 * Special case for get_user_pages.
659 * Must be in a distinct bit from the above VM_FAULT_ flags.
660 */
661#define VM_FAULT_WRITE 0x10
1da177e4
LT
662
663#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
664
665extern void show_free_areas(void);
666
667#ifdef CONFIG_SHMEM
668struct page *shmem_nopage(struct vm_area_struct *vma,
669 unsigned long address, int *type);
670int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
671struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
672 unsigned long addr);
673int shmem_lock(struct file *file, int lock, struct user_struct *user);
674#else
675#define shmem_nopage filemap_nopage
03b00ebc
RK
676
677static inline int shmem_lock(struct file *file, int lock,
678 struct user_struct *user)
679{
680 return 0;
681}
682
683static inline int shmem_set_policy(struct vm_area_struct *vma,
684 struct mempolicy *new)
685{
686 return 0;
687}
688
689static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
690 unsigned long addr)
691{
692 return NULL;
693}
1da177e4
LT
694#endif
695struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
b0e15190 696extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
1da177e4
LT
697
698int shmem_zero_setup(struct vm_area_struct *);
699
b0e15190
DH
700#ifndef CONFIG_MMU
701extern unsigned long shmem_get_unmapped_area(struct file *file,
702 unsigned long addr,
703 unsigned long len,
704 unsigned long pgoff,
705 unsigned long flags);
706#endif
707
1da177e4
LT
708static inline int can_do_mlock(void)
709{
710 if (capable(CAP_IPC_LOCK))
711 return 1;
712 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
713 return 1;
714 return 0;
715}
716extern int user_shm_lock(size_t, struct user_struct *);
717extern void user_shm_unlock(size_t, struct user_struct *);
718
719/*
720 * Parameter block passed down to zap_pte_range in exceptional cases.
721 */
722struct zap_details {
723 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
724 struct address_space *check_mapping; /* Check page->mapping if set */
725 pgoff_t first_index; /* Lowest page->index to unmap */
726 pgoff_t last_index; /* Highest page->index to unmap */
727 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
728 unsigned long truncate_count; /* Compare vm_truncate_count */
729};
730
6aab341e 731struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 732unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 733 unsigned long size, struct zap_details *);
508034a3 734unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
735 struct vm_area_struct *start_vma, unsigned long start_addr,
736 unsigned long end_addr, unsigned long *nr_accounted,
737 struct zap_details *);
3bf5ee95
HD
738void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
739 unsigned long end, unsigned long floor, unsigned long ceiling);
740void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 741 unsigned long floor, unsigned long ceiling);
1da177e4
LT
742int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
743 struct vm_area_struct *vma);
744int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
745 unsigned long size, pgprot_t prot);
746void unmap_mapping_range(struct address_space *mapping,
747 loff_t const holebegin, loff_t const holelen, int even_cows);
748
749static inline void unmap_shared_mapping_range(struct address_space *mapping,
750 loff_t const holebegin, loff_t const holelen)
751{
752 unmap_mapping_range(mapping, holebegin, holelen, 0);
753}
754
755extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 756extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
1da177e4
LT
757extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
758extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
f33ea7f4 759
7ee1dd3f
DH
760#ifdef CONFIG_MMU
761extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
762 unsigned long address, int write_access);
763
764static inline int handle_mm_fault(struct mm_struct *mm,
765 struct vm_area_struct *vma, unsigned long address,
766 int write_access)
f33ea7f4 767{
7ee1dd3f
DH
768 return __handle_mm_fault(mm, vma, address, write_access) &
769 (~VM_FAULT_WRITE);
f33ea7f4 770}
7ee1dd3f
DH
771#else
772static inline int handle_mm_fault(struct mm_struct *mm,
773 struct vm_area_struct *vma, unsigned long address,
774 int write_access)
775{
776 /* should never happen if there's no MMU */
777 BUG();
778 return VM_FAULT_SIGBUS;
779}
780#endif
f33ea7f4 781
1da177e4
LT
782extern int make_pages_present(unsigned long addr, unsigned long end);
783extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
784void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
785
786int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
787 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 788void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4
LT
789
790int __set_page_dirty_buffers(struct page *page);
791int __set_page_dirty_nobuffers(struct page *page);
792int redirty_page_for_writepage(struct writeback_control *wbc,
793 struct page *page);
794int FASTCALL(set_page_dirty(struct page *page));
795int set_page_dirty_lock(struct page *page);
796int clear_page_dirty_for_io(struct page *page);
797
798extern unsigned long do_mremap(unsigned long addr,
799 unsigned long old_len, unsigned long new_len,
800 unsigned long flags, unsigned long new_addr);
801
802/*
803 * Prototype to add a shrinker callback for ageable caches.
804 *
805 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
806 * scan `nr_to_scan' objects, attempting to free them.
807 *
845d3431 808 * The callback must return the number of objects which remain in the cache.
1da177e4 809 *
845d3431 810 * The callback will be passed nr_to_scan == 0 when the VM is querying the
1da177e4
LT
811 * cache size, so a fastpath for that case is appropriate.
812 */
6daa0e28 813typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
1da177e4
LT
814
815/*
816 * Add an aging callback. The int is the number of 'seeks' it takes
817 * to recreate one of the objects that these functions age.
818 */
819
820#define DEFAULT_SEEKS 2
821struct shrinker;
822extern struct shrinker *set_shrinker(int, shrinker_t);
823extern void remove_shrinker(struct shrinker *shrinker);
824
d08b3851
PZ
825/*
826 * Some shared mappigns will want the pages marked read-only
827 * to track write events. If so, we'll downgrade vm_page_prot
828 * to the private version (using protection_map[] without the
829 * VM_SHARED bit).
830 */
831static inline int vma_wants_writenotify(struct vm_area_struct *vma)
832{
833 unsigned int vm_flags = vma->vm_flags;
834
835 /* If it was private or non-writable, the write bit is already clear */
836 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
837 return 0;
838
839 /* The backer wishes to know when pages are first written to? */
840 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
841 return 1;
842
843 /* The open routine did something to the protections already? */
844 if (pgprot_val(vma->vm_page_prot) !=
845 pgprot_val(protection_map[vm_flags &
846 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
847 return 0;
848
849 /* Specialty mapping? */
850 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
851 return 0;
852
853 /* Can the mapping track the dirty pages? */
854 return vma->vm_file && vma->vm_file->f_mapping &&
855 mapping_cap_account_dirty(vma->vm_file->f_mapping);
856}
857
c9cfcddf
LT
858extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
859
1bb3630e
HD
860int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
861int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
862int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
863int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
864
1da177e4
LT
865/*
866 * The following ifdef needed to get the 4level-fixup.h header to work.
867 * Remove it when 4level-fixup.h has been removed.
868 */
1bb3630e 869#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
870static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
871{
1bb3630e
HD
872 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
873 NULL: pud_offset(pgd, address);
1da177e4
LT
874}
875
876static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
877{
1bb3630e
HD
878 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
879 NULL: pmd_offset(pud, address);
1da177e4 880}
1bb3630e
HD
881#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
882
4c21e2f2
HD
883#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
884/*
885 * We tuck a spinlock to guard each pagetable page into its struct page,
886 * at page->private, with BUILD_BUG_ON to make sure that this will not
887 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
888 * When freeing, reset page->mapping so free_pages_check won't complain.
889 */
349aef0b 890#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
891#define pte_lock_init(_page) do { \
892 spin_lock_init(__pte_lockptr(_page)); \
893} while (0)
894#define pte_lock_deinit(page) ((page)->mapping = NULL)
895#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
896#else
897/*
898 * We use mm->page_table_lock to guard all pagetable pages of the mm.
899 */
900#define pte_lock_init(page) do {} while (0)
901#define pte_lock_deinit(page) do {} while (0)
902#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
903#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
904
c74df32c
HD
905#define pte_offset_map_lock(mm, pmd, address, ptlp) \
906({ \
4c21e2f2 907 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
908 pte_t *__pte = pte_offset_map(pmd, address); \
909 *(ptlp) = __ptl; \
910 spin_lock(__ptl); \
911 __pte; \
912})
913
914#define pte_unmap_unlock(pte, ptl) do { \
915 spin_unlock(ptl); \
916 pte_unmap(pte); \
917} while (0)
918
1bb3630e
HD
919#define pte_alloc_map(mm, pmd, address) \
920 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
921 NULL: pte_offset_map(pmd, address))
922
c74df32c
HD
923#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
924 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
925 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
926
1bb3630e
HD
927#define pte_alloc_kernel(pmd, address) \
928 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
929 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
930
931extern void free_area_init(unsigned long * zones_size);
932extern void free_area_init_node(int nid, pg_data_t *pgdat,
933 unsigned long * zones_size, unsigned long zone_start_pfn,
934 unsigned long *zholes_size);
935extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
3947be19 936extern void setup_per_zone_pages_min(void);
1da177e4
LT
937extern void mem_init(void);
938extern void show_mem(void);
939extern void si_meminfo(struct sysinfo * val);
940extern void si_meminfo_node(struct sysinfo *val, int nid);
941
e7c8d5c9
CL
942#ifdef CONFIG_NUMA
943extern void setup_per_cpu_pageset(void);
944#else
945static inline void setup_per_cpu_pageset(void) {}
946#endif
947
1da177e4
LT
948/* prio_tree.c */
949void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
950void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
951void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
952struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
953 struct prio_tree_iter *iter);
954
955#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
956 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
957 (vma = vma_prio_tree_next(vma, iter)); )
958
959static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
960 struct list_head *list)
961{
962 vma->shared.vm_set.parent = NULL;
963 list_add_tail(&vma->shared.vm_set.list, list);
964}
965
966/* mmap.c */
967extern int __vm_enough_memory(long pages, int cap_sys_admin);
968extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
969 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
970extern struct vm_area_struct *vma_merge(struct mm_struct *,
971 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
972 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
973 struct mempolicy *);
974extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
975extern int split_vma(struct mm_struct *,
976 struct vm_area_struct *, unsigned long addr, int new_below);
977extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
978extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
979 struct rb_node **, struct rb_node *);
a8fb5618 980extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
981extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
982 unsigned long addr, unsigned long len, pgoff_t pgoff);
983extern void exit_mmap(struct mm_struct *);
119f657c 984extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1da177e4
LT
985
986extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
987
988extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
989 unsigned long len, unsigned long prot,
990 unsigned long flag, unsigned long pgoff);
991
992static inline unsigned long do_mmap(struct file *file, unsigned long addr,
993 unsigned long len, unsigned long prot,
994 unsigned long flag, unsigned long offset)
995{
996 unsigned long ret = -EINVAL;
997 if ((offset + PAGE_ALIGN(len)) < offset)
998 goto out;
999 if (!(offset & ~PAGE_MASK))
1000 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1001out:
1002 return ret;
1003}
1004
1005extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1006
1007extern unsigned long do_brk(unsigned long, unsigned long);
1008
1009/* filemap.c */
1010extern unsigned long page_unuse(struct page *);
1011extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1012extern void truncate_inode_pages_range(struct address_space *,
1013 loff_t lstart, loff_t lend);
1da177e4
LT
1014
1015/* generic vm_area_ops exported for stackable file systems */
1016extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1017extern int filemap_populate(struct vm_area_struct *, unsigned long,
1018 unsigned long, pgprot_t, unsigned long, int);
1019
1020/* mm/page-writeback.c */
1021int write_one_page(struct page *page, int wait);
1022
1023/* readahead.c */
1024#define VM_MAX_READAHEAD 128 /* kbytes */
1025#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1026#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1027 * turning readahead off */
1028
1029int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1030 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1031int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8
AM
1032 pgoff_t offset, unsigned long nr_to_read);
1033unsigned long page_cache_readahead(struct address_space *mapping,
1da177e4
LT
1034 struct file_ra_state *ra,
1035 struct file *filp,
7361f4d8 1036 pgoff_t offset,
1da177e4
LT
1037 unsigned long size);
1038void handle_ra_miss(struct address_space *mapping,
1039 struct file_ra_state *ra, pgoff_t offset);
1040unsigned long max_sane_readahead(unsigned long nr);
1041
1042/* Do stack extension */
46dea3d0 1043extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1044#ifdef CONFIG_IA64
46dea3d0 1045extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1046#endif
1da177e4
LT
1047
1048/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1049extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1050extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1051 struct vm_area_struct **pprev);
1052
1053/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1054 NULL if none. Assume start_addr < end_addr. */
1055static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1056{
1057 struct vm_area_struct * vma = find_vma(mm,start_addr);
1058
1059 if (vma && end_addr <= vma->vm_start)
1060 vma = NULL;
1061 return vma;
1062}
1063
1064static inline unsigned long vma_pages(struct vm_area_struct *vma)
1065{
1066 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1067}
1068
804af2cf 1069pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd
HD
1070struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1071struct page *vmalloc_to_page(void *addr);
1072unsigned long vmalloc_to_pfn(void *addr);
1073int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1074 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1075int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
deceb6cd 1076
6aab341e 1077struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1078 unsigned int foll_flags);
1079#define FOLL_WRITE 0x01 /* check pte is writable */
1080#define FOLL_TOUCH 0x02 /* mark page accessed */
1081#define FOLL_GET 0x04 /* do get_page on page */
1082#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4
LT
1083
1084#ifdef CONFIG_PROC_FS
ab50b8ed 1085void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1086#else
ab50b8ed 1087static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1088 unsigned long flags, struct file *file, long pages)
1089{
1090}
1091#endif /* CONFIG_PROC_FS */
1092
1da177e4
LT
1093#ifndef CONFIG_DEBUG_PAGEALLOC
1094static inline void
1095kernel_map_pages(struct page *page, int numpages, int enable)
1096{
de5097c2 1097 if (!PageHighMem(page) && !enable)
f9b8404c
IM
1098 debug_check_no_locks_freed(page_address(page),
1099 numpages * PAGE_SIZE);
1da177e4
LT
1100}
1101#endif
1102
1103extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1104#ifdef __HAVE_ARCH_GATE_AREA
1105int in_gate_area_no_task(unsigned long addr);
1106int in_gate_area(struct task_struct *task, unsigned long addr);
1107#else
1108int in_gate_area_no_task(unsigned long addr);
1109#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1110#endif /* __HAVE_ARCH_GATE_AREA */
1111
79befd0c
AA
1112/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
1113#define OOM_DISABLE -17
1114
9d0243bc
AM
1115int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1116 void __user *, size_t *, loff_t *);
69e05944 1117unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc
AM
1118 unsigned long lru_pages);
1119void drop_pagecache(void);
1120void drop_slab(void);
1121
7a9166e3
LY
1122#ifndef CONFIG_MMU
1123#define randomize_va_space 0
1124#else
a62eaf15 1125extern int randomize_va_space;
7a9166e3 1126#endif
a62eaf15 1127
e6e5494c
IM
1128const char *arch_vma_name(struct vm_area_struct *vma);
1129
1da177e4
LT
1130#endif /* __KERNEL__ */
1131#endif /* _LINUX_MM_H */