mm: factor out main logic of access_process_vm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
e9da73d6 17#include <linux/bit_spinlock.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
4e950f6f 21struct file_ra_state;
e8edc6e0 22struct user_struct;
4e950f6f 23struct writeback_control;
1da177e4
LT
24
25#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26extern unsigned long max_mapnr;
27#endif
28
29extern unsigned long num_physpages;
4481374c 30extern unsigned long totalram_pages;
1da177e4 31extern void * high_memory;
1da177e4
LT
32extern int page_cluster;
33
34#ifdef CONFIG_SYSCTL
35extern int sysctl_legacy_va_layout;
36#else
37#define sysctl_legacy_va_layout 0
38#endif
39
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/processor.h>
1da177e4 43
1da177e4
LT
44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
27ac792c
AR
46/* to align the pointer to the (next) page boundary */
47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48
1da177e4
LT
49/*
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
56 */
57
c43692e8
CL
58extern struct kmem_cache *vm_area_cachep;
59
1da177e4 60#ifndef CONFIG_MMU
8feae131
DH
61extern struct rb_root nommu_region_tree;
62extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
63
64extern unsigned int kobjsize(const void *objp);
65#endif
66
67/*
605d9288 68 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
69 */
70#define VM_READ 0x00000001 /* currently active flags */
71#define VM_WRITE 0x00000002
72#define VM_EXEC 0x00000004
73#define VM_SHARED 0x00000008
74
7e2cff42 75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
76#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77#define VM_MAYWRITE 0x00000020
78#define VM_MAYEXEC 0x00000040
79#define VM_MAYSHARE 0x00000080
80
81#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 83#define VM_GROWSUP 0x00000200
8ca3eb08
TL
84#else
85#define VM_GROWSUP 0x00000000
a664b2d8 86#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
8ca3eb08 87#endif
6aab341e 88#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
89#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90
91#define VM_EXECUTABLE 0x00001000
92#define VM_LOCKED 0x00002000
93#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94
95 /* Used by sys_madvise() */
96#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98
99#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 101#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 103#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
104#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
f2d6bfe9 106#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 107#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
f2d6bfe9
JW
108#else
109#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
110#endif
895791da 111#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 112#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 113
d0217ac0 114#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 115#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 116#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 117#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 118#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 119
a8bef8ff
MG
120/* Bits set in the VMA until the stack is in its final location */
121#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
122
1da177e4
LT
123#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
124#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
125#endif
126
127#ifdef CONFIG_STACK_GROWSUP
128#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129#else
130#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
131#endif
132
133#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
134#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
135#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
136#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
137#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
138
b291f000
NP
139/*
140 * special vmas that are non-mergable, non-mlock()able
141 */
142#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
143
1da177e4
LT
144/*
145 * mapping from the currently active vm_flags protection bits (the
146 * low four bits) to a page protection mask..
147 */
148extern pgprot_t protection_map[16];
149
d0217ac0
NP
150#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
151#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 152#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 153#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
d0217ac0 154
6bd9cd50 155/*
156 * This interface is used by x86 PAT code to identify a pfn mapping that is
157 * linear over entire vma. This is to optimize PAT code that deals with
158 * marking the physical region with a particular prot. This is not for generic
159 * mm use. Note also that this check will not work if the pfn mapping is
160 * linear for a vma starting at physical address 0. In which case PAT code
161 * falls back to slow path of reserving physical range page by page.
162 */
3c8bb73a 163static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
164{
895791da 165 return (vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 166}
167
168static inline int is_pfn_mapping(struct vm_area_struct *vma)
169{
170 return (vma->vm_flags & VM_PFNMAP);
171}
d0217ac0 172
54cb8821 173/*
d0217ac0 174 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
175 * ->fault function. The vma's ->fault is responsible for returning a bitmask
176 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 177 *
d0217ac0
NP
178 * pgoff should be used in favour of virtual_address, if possible. If pgoff
179 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
180 * mapping support.
54cb8821 181 */
d0217ac0
NP
182struct vm_fault {
183 unsigned int flags; /* FAULT_FLAG_xxx flags */
184 pgoff_t pgoff; /* Logical page offset based on vma */
185 void __user *virtual_address; /* Faulting virtual address */
186
187 struct page *page; /* ->fault handlers should return a
83c54070 188 * page here, unless VM_FAULT_NOPAGE
d0217ac0 189 * is set (which is also implied by
83c54070 190 * VM_FAULT_ERROR).
d0217ac0 191 */
54cb8821 192};
1da177e4
LT
193
194/*
195 * These are the virtual MM functions - opening of an area, closing and
196 * unmapping it (needed to keep files on disk up-to-date etc), pointer
197 * to the functions called when a no-page or a wp-page exception occurs.
198 */
199struct vm_operations_struct {
200 void (*open)(struct vm_area_struct * area);
201 void (*close)(struct vm_area_struct * area);
d0217ac0 202 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
203
204 /* notification that a previously read-only page is about to become
205 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 206 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
207
208 /* called by access_process_vm when get_user_pages() fails, typically
209 * for use by special VMAs that can switch between memory and hardware
210 */
211 int (*access)(struct vm_area_struct *vma, unsigned long addr,
212 void *buf, int len, int write);
1da177e4 213#ifdef CONFIG_NUMA
a6020ed7
LS
214 /*
215 * set_policy() op must add a reference to any non-NULL @new mempolicy
216 * to hold the policy upon return. Caller should pass NULL @new to
217 * remove a policy and fall back to surrounding context--i.e. do not
218 * install a MPOL_DEFAULT policy, nor the task or system default
219 * mempolicy.
220 */
1da177e4 221 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
222
223 /*
224 * get_policy() op must add reference [mpol_get()] to any policy at
225 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
226 * in mm/mempolicy.c will do this automatically.
227 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
228 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
229 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
230 * must return NULL--i.e., do not "fallback" to task or system default
231 * policy.
232 */
1da177e4
LT
233 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
234 unsigned long addr);
7b2259b3
CL
235 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
236 const nodemask_t *to, unsigned long flags);
1da177e4
LT
237#endif
238};
239
240struct mmu_gather;
241struct inode;
242
349aef0b
AM
243#define page_private(page) ((page)->private)
244#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 245
1da177e4
LT
246/*
247 * FIXME: take this include out, include page-flags.h in
248 * files which need it (119 of them)
249 */
250#include <linux/page-flags.h>
71e3aac0 251#include <linux/huge_mm.h>
1da177e4
LT
252
253/*
254 * Methods to modify the page usage count.
255 *
256 * What counts for a page usage:
257 * - cache mapping (page->mapping)
258 * - private data (page->private)
259 * - page mapped in a task's page tables, each mapping
260 * is counted separately
261 *
262 * Also, many kernel routines increase the page count before a critical
263 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
264 */
265
266/*
da6052f7 267 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 268 */
7c8ee9a8
NP
269static inline int put_page_testzero(struct page *page)
270{
725d704e 271 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 272 return atomic_dec_and_test(&page->_count);
7c8ee9a8 273}
1da177e4
LT
274
275/*
7c8ee9a8
NP
276 * Try to grab a ref unless the page has a refcount of zero, return false if
277 * that is the case.
1da177e4 278 */
7c8ee9a8
NP
279static inline int get_page_unless_zero(struct page *page)
280{
8dc04efb 281 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 282}
1da177e4 283
53df8fdc
WF
284extern int page_is_ram(unsigned long pfn);
285
48667e7a 286/* Support for virtually mapped pages */
b3bdda02
CL
287struct page *vmalloc_to_page(const void *addr);
288unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 289
0738c4bb
PM
290/*
291 * Determine if an address is within the vmalloc range
292 *
293 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
294 * is no special casing required.
295 */
9e2779fa
CL
296static inline int is_vmalloc_addr(const void *x)
297{
0738c4bb 298#ifdef CONFIG_MMU
9e2779fa
CL
299 unsigned long addr = (unsigned long)x;
300
301 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
302#else
303 return 0;
8ca3ed87 304#endif
0738c4bb 305}
81ac3ad9
KH
306#ifdef CONFIG_MMU
307extern int is_vmalloc_or_module_addr(const void *x);
308#else
934831d0 309static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
310{
311 return 0;
312}
313#endif
9e2779fa 314
e9da73d6
AA
315static inline void compound_lock(struct page *page)
316{
317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 bit_spin_lock(PG_compound_lock, &page->flags);
319#endif
320}
321
322static inline void compound_unlock(struct page *page)
323{
324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
325 bit_spin_unlock(PG_compound_lock, &page->flags);
326#endif
327}
328
329static inline unsigned long compound_lock_irqsave(struct page *page)
330{
331 unsigned long uninitialized_var(flags);
332#ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 local_irq_save(flags);
334 compound_lock(page);
335#endif
336 return flags;
337}
338
339static inline void compound_unlock_irqrestore(struct page *page,
340 unsigned long flags)
341{
342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
343 compound_unlock(page);
344 local_irq_restore(flags);
345#endif
346}
347
d85f3385
CL
348static inline struct page *compound_head(struct page *page)
349{
6d777953 350 if (unlikely(PageTail(page)))
d85f3385
CL
351 return page->first_page;
352 return page;
353}
354
4c21e2f2 355static inline int page_count(struct page *page)
1da177e4 356{
d85f3385 357 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
358}
359
360static inline void get_page(struct page *page)
361{
91807063
AA
362 /*
363 * Getting a normal page or the head of a compound page
364 * requires to already have an elevated page->_count. Only if
365 * we're getting a tail page, the elevated page->_count is
366 * required only in the head page, so for tail pages the
367 * bugcheck only verifies that the page->_count isn't
368 * negative.
369 */
370 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
1da177e4 371 atomic_inc(&page->_count);
91807063
AA
372 /*
373 * Getting a tail page will elevate both the head and tail
374 * page->_count(s).
375 */
376 if (unlikely(PageTail(page))) {
377 /*
378 * This is safe only because
379 * __split_huge_page_refcount can't run under
380 * get_page().
381 */
382 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
383 atomic_inc(&page->first_page->_count);
384 }
1da177e4
LT
385}
386
b49af68f
CL
387static inline struct page *virt_to_head_page(const void *x)
388{
389 struct page *page = virt_to_page(x);
390 return compound_head(page);
391}
392
7835e98b
NP
393/*
394 * Setup the page count before being freed into the page allocator for
395 * the first time (boot or memory hotplug)
396 */
397static inline void init_page_count(struct page *page)
398{
399 atomic_set(&page->_count, 1);
400}
401
5f24ce5f
AA
402/*
403 * PageBuddy() indicate that the page is free and in the buddy system
404 * (see mm/page_alloc.c).
ef2b4b95
AA
405 *
406 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
407 * -2 so that an underflow of the page_mapcount() won't be mistaken
408 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
409 * efficiently by most CPU architectures.
5f24ce5f 410 */
ef2b4b95
AA
411#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
412
5f24ce5f
AA
413static inline int PageBuddy(struct page *page)
414{
ef2b4b95 415 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
416}
417
418static inline void __SetPageBuddy(struct page *page)
419{
420 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 421 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
422}
423
424static inline void __ClearPageBuddy(struct page *page)
425{
426 VM_BUG_ON(!PageBuddy(page));
427 atomic_set(&page->_mapcount, -1);
428}
429
1da177e4 430void put_page(struct page *page);
1d7ea732 431void put_pages_list(struct list_head *pages);
1da177e4 432
8dfcc9ba 433void split_page(struct page *page, unsigned int order);
748446bb 434int split_free_page(struct page *page);
8dfcc9ba 435
33f2ef89
AW
436/*
437 * Compound pages have a destructor function. Provide a
438 * prototype for that function and accessor functions.
439 * These are _only_ valid on the head of a PG_compound page.
440 */
441typedef void compound_page_dtor(struct page *);
442
443static inline void set_compound_page_dtor(struct page *page,
444 compound_page_dtor *dtor)
445{
446 page[1].lru.next = (void *)dtor;
447}
448
449static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
450{
451 return (compound_page_dtor *)page[1].lru.next;
452}
453
d85f3385
CL
454static inline int compound_order(struct page *page)
455{
6d777953 456 if (!PageHead(page))
d85f3385
CL
457 return 0;
458 return (unsigned long)page[1].lru.prev;
459}
460
37c2ac78
AA
461static inline int compound_trans_order(struct page *page)
462{
463 int order;
464 unsigned long flags;
465
466 if (!PageHead(page))
467 return 0;
468
469 flags = compound_lock_irqsave(page);
470 order = compound_order(page);
471 compound_unlock_irqrestore(page, flags);
472 return order;
473}
474
d85f3385
CL
475static inline void set_compound_order(struct page *page, unsigned long order)
476{
477 page[1].lru.prev = (void *)order;
478}
479
3dece370 480#ifdef CONFIG_MMU
14fd403f
AA
481/*
482 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
483 * servicing faults for write access. In the normal case, do always want
484 * pte_mkwrite. But get_user_pages can cause write faults for mappings
485 * that do not have writing enabled, when used by access_process_vm.
486 */
487static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
488{
489 if (likely(vma->vm_flags & VM_WRITE))
490 pte = pte_mkwrite(pte);
491 return pte;
492}
3dece370 493#endif
14fd403f 494
1da177e4
LT
495/*
496 * Multiple processes may "see" the same page. E.g. for untouched
497 * mappings of /dev/null, all processes see the same page full of
498 * zeroes, and text pages of executables and shared libraries have
499 * only one copy in memory, at most, normally.
500 *
501 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
502 * page_count() == 0 means the page is free. page->lru is then used for
503 * freelist management in the buddy allocator.
da6052f7 504 * page_count() > 0 means the page has been allocated.
1da177e4 505 *
da6052f7
NP
506 * Pages are allocated by the slab allocator in order to provide memory
507 * to kmalloc and kmem_cache_alloc. In this case, the management of the
508 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
509 * unless a particular usage is carefully commented. (the responsibility of
510 * freeing the kmalloc memory is the caller's, of course).
1da177e4 511 *
da6052f7
NP
512 * A page may be used by anyone else who does a __get_free_page().
513 * In this case, page_count still tracks the references, and should only
514 * be used through the normal accessor functions. The top bits of page->flags
515 * and page->virtual store page management information, but all other fields
516 * are unused and could be used privately, carefully. The management of this
517 * page is the responsibility of the one who allocated it, and those who have
518 * subsequently been given references to it.
519 *
520 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
521 * managed by the Linux memory manager: I/O, buffers, swapping etc.
522 * The following discussion applies only to them.
523 *
da6052f7
NP
524 * A pagecache page contains an opaque `private' member, which belongs to the
525 * page's address_space. Usually, this is the address of a circular list of
526 * the page's disk buffers. PG_private must be set to tell the VM to call
527 * into the filesystem to release these pages.
1da177e4 528 *
da6052f7
NP
529 * A page may belong to an inode's memory mapping. In this case, page->mapping
530 * is the pointer to the inode, and page->index is the file offset of the page,
531 * in units of PAGE_CACHE_SIZE.
1da177e4 532 *
da6052f7
NP
533 * If pagecache pages are not associated with an inode, they are said to be
534 * anonymous pages. These may become associated with the swapcache, and in that
535 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 536 *
da6052f7
NP
537 * In either case (swapcache or inode backed), the pagecache itself holds one
538 * reference to the page. Setting PG_private should also increment the
539 * refcount. The each user mapping also has a reference to the page.
1da177e4 540 *
da6052f7
NP
541 * The pagecache pages are stored in a per-mapping radix tree, which is
542 * rooted at mapping->page_tree, and indexed by offset.
543 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
544 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 545 *
da6052f7 546 * All pagecache pages may be subject to I/O:
1da177e4
LT
547 * - inode pages may need to be read from disk,
548 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
549 * to be written back to the inode on disk,
550 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
551 * modified may need to be swapped out to swap space and (later) to be read
552 * back into memory.
1da177e4
LT
553 */
554
555/*
556 * The zone field is never updated after free_area_init_core()
557 * sets it, so none of the operations on it need to be atomic.
1da177e4 558 */
348f8b6c 559
d41dee36
AW
560
561/*
562 * page->flags layout:
563 *
564 * There are three possibilities for how page->flags get
565 * laid out. The first is for the normal case, without
566 * sparsemem. The second is for sparsemem when there is
567 * plenty of space for node and section. The last is when
568 * we have run out of space and have to fall back to an
569 * alternate (slower) way of determining the node.
570 *
308c05e3
CL
571 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
572 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
573 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 574 */
308c05e3 575#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
576#define SECTIONS_WIDTH SECTIONS_SHIFT
577#else
578#define SECTIONS_WIDTH 0
579#endif
580
581#define ZONES_WIDTH ZONES_SHIFT
582
9223b419 583#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
584#define NODES_WIDTH NODES_SHIFT
585#else
308c05e3
CL
586#ifdef CONFIG_SPARSEMEM_VMEMMAP
587#error "Vmemmap: No space for nodes field in page flags"
588#endif
d41dee36
AW
589#define NODES_WIDTH 0
590#endif
591
592/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 593#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
594#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
595#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
596
597/*
598 * We are going to use the flags for the page to node mapping if its in
599 * there. This includes the case where there is no node, so it is implicit.
600 */
89689ae7
CL
601#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
602#define NODE_NOT_IN_PAGE_FLAGS
603#endif
d41dee36
AW
604
605#ifndef PFN_SECTION_SHIFT
606#define PFN_SECTION_SHIFT 0
607#endif
348f8b6c
DH
608
609/*
610 * Define the bit shifts to access each section. For non-existant
611 * sections we define the shift as 0; that plus a 0 mask ensures
612 * the compiler will optimise away reference to them.
613 */
d41dee36
AW
614#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
615#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
616#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 617
bce54bbf
WD
618/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
619#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 620#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
621#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
622 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 623#else
89689ae7 624#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
625#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
626 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
627#endif
628
bd8029b6 629#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 630
9223b419
CL
631#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
633#endif
634
d41dee36
AW
635#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
636#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
637#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 638#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 639
2f1b6248 640static inline enum zone_type page_zonenum(struct page *page)
1da177e4 641{
348f8b6c 642 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 643}
1da177e4 644
89689ae7
CL
645/*
646 * The identification function is only used by the buddy allocator for
647 * determining if two pages could be buddies. We are not really
648 * identifying a zone since we could be using a the section number
649 * id if we have not node id available in page flags.
650 * We guarantee only that it will return the same value for two
651 * combinable pages in a zone.
652 */
cb2b95e1
AW
653static inline int page_zone_id(struct page *page)
654{
89689ae7 655 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
656}
657
25ba77c1 658static inline int zone_to_nid(struct zone *zone)
89fa3024 659{
d5f541ed
CL
660#ifdef CONFIG_NUMA
661 return zone->node;
662#else
663 return 0;
664#endif
89fa3024
CL
665}
666
89689ae7 667#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 668extern int page_to_nid(struct page *page);
89689ae7 669#else
25ba77c1 670static inline int page_to_nid(struct page *page)
d41dee36 671{
89689ae7 672 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 673}
89689ae7
CL
674#endif
675
676static inline struct zone *page_zone(struct page *page)
677{
678 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
679}
680
308c05e3 681#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
682static inline unsigned long page_to_section(struct page *page)
683{
684 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
685}
308c05e3 686#endif
d41dee36 687
2f1b6248 688static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
689{
690 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
691 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
692}
2f1b6248 693
348f8b6c
DH
694static inline void set_page_node(struct page *page, unsigned long node)
695{
696 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
697 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 698}
89689ae7 699
d41dee36
AW
700static inline void set_page_section(struct page *page, unsigned long section)
701{
702 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
703 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
704}
1da177e4 705
2f1b6248 706static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 707 unsigned long node, unsigned long pfn)
1da177e4 708{
348f8b6c
DH
709 set_page_zone(page, zone);
710 set_page_node(page, node);
d41dee36 711 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
712}
713
f6ac2354
CL
714/*
715 * Some inline functions in vmstat.h depend on page_zone()
716 */
717#include <linux/vmstat.h>
718
652050ae 719static __always_inline void *lowmem_page_address(struct page *page)
1da177e4 720{
c6f6b596 721 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
722}
723
724#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
725#define HASHED_PAGE_VIRTUAL
726#endif
727
728#if defined(WANT_PAGE_VIRTUAL)
729#define page_address(page) ((page)->virtual)
730#define set_page_address(page, address) \
731 do { \
732 (page)->virtual = (address); \
733 } while(0)
734#define page_address_init() do { } while(0)
735#endif
736
737#if defined(HASHED_PAGE_VIRTUAL)
738void *page_address(struct page *page);
739void set_page_address(struct page *page, void *virtual);
740void page_address_init(void);
741#endif
742
743#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
744#define page_address(page) lowmem_page_address(page)
745#define set_page_address(page, address) do { } while(0)
746#define page_address_init() do { } while(0)
747#endif
748
749/*
750 * On an anonymous page mapped into a user virtual memory area,
751 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
752 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
753 *
754 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
755 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
756 * and then page->mapping points, not to an anon_vma, but to a private
757 * structure which KSM associates with that merged page. See ksm.h.
758 *
759 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
760 *
761 * Please note that, confusingly, "page_mapping" refers to the inode
762 * address_space which maps the page from disk; whereas "page_mapped"
763 * refers to user virtual address space into which the page is mapped.
764 */
765#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
766#define PAGE_MAPPING_KSM 2
767#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
768
769extern struct address_space swapper_space;
770static inline struct address_space *page_mapping(struct page *page)
771{
772 struct address_space *mapping = page->mapping;
773
b5fab14e 774 VM_BUG_ON(PageSlab(page));
1da177e4
LT
775 if (unlikely(PageSwapCache(page)))
776 mapping = &swapper_space;
e20e8779 777 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
778 mapping = NULL;
779 return mapping;
780}
781
3ca7b3c5
HD
782/* Neutral page->mapping pointer to address_space or anon_vma or other */
783static inline void *page_rmapping(struct page *page)
784{
785 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
786}
787
1da177e4
LT
788static inline int PageAnon(struct page *page)
789{
790 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
791}
792
793/*
794 * Return the pagecache index of the passed page. Regular pagecache pages
795 * use ->index whereas swapcache pages use ->private
796 */
797static inline pgoff_t page_index(struct page *page)
798{
799 if (unlikely(PageSwapCache(page)))
4c21e2f2 800 return page_private(page);
1da177e4
LT
801 return page->index;
802}
803
804/*
805 * The atomic page->_mapcount, like _count, starts from -1:
806 * so that transitions both from it and to it can be tracked,
807 * using atomic_inc_and_test and atomic_add_negative(-1).
808 */
809static inline void reset_page_mapcount(struct page *page)
810{
811 atomic_set(&(page)->_mapcount, -1);
812}
813
814static inline int page_mapcount(struct page *page)
815{
816 return atomic_read(&(page)->_mapcount) + 1;
817}
818
819/*
820 * Return true if this page is mapped into pagetables.
821 */
822static inline int page_mapped(struct page *page)
823{
824 return atomic_read(&(page)->_mapcount) >= 0;
825}
826
1da177e4
LT
827/*
828 * Different kinds of faults, as returned by handle_mm_fault().
829 * Used to decide whether a process gets delivered SIGBUS or
830 * just gets major/minor fault counters bumped up.
831 */
d0217ac0 832
83c54070 833#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 834
83c54070
NP
835#define VM_FAULT_OOM 0x0001
836#define VM_FAULT_SIGBUS 0x0002
837#define VM_FAULT_MAJOR 0x0004
838#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
839#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
840#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 841
83c54070
NP
842#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
843#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 844#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 845
aa50d3a7
AK
846#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
847
848#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
849 VM_FAULT_HWPOISON_LARGE)
850
851/* Encode hstate index for a hwpoisoned large page */
852#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
853#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 854
1c0fe6e3
NP
855/*
856 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
857 */
858extern void pagefault_out_of_memory(void);
859
1da177e4
LT
860#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
861
862extern void show_free_areas(void);
863
3f96b79a 864int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 865struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
866int shmem_zero_setup(struct vm_area_struct *);
867
b0e15190
DH
868#ifndef CONFIG_MMU
869extern unsigned long shmem_get_unmapped_area(struct file *file,
870 unsigned long addr,
871 unsigned long len,
872 unsigned long pgoff,
873 unsigned long flags);
874#endif
875
e8edc6e0 876extern int can_do_mlock(void);
1da177e4
LT
877extern int user_shm_lock(size_t, struct user_struct *);
878extern void user_shm_unlock(size_t, struct user_struct *);
879
880/*
881 * Parameter block passed down to zap_pte_range in exceptional cases.
882 */
883struct zap_details {
884 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
885 struct address_space *check_mapping; /* Check page->mapping if set */
886 pgoff_t first_index; /* Lowest page->index to unmap */
887 pgoff_t last_index; /* Highest page->index to unmap */
888 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
889 unsigned long truncate_count; /* Compare vm_truncate_count */
890};
891
7e675137
NP
892struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
893 pte_t pte);
894
c627f9cc
JS
895int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
896 unsigned long size);
ee39b37b 897unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 898 unsigned long size, struct zap_details *);
508034a3 899unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
900 struct vm_area_struct *start_vma, unsigned long start_addr,
901 unsigned long end_addr, unsigned long *nr_accounted,
902 struct zap_details *);
e6473092
MM
903
904/**
905 * mm_walk - callbacks for walk_page_range
906 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
907 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
908 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
909 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
910 * @pte_hole: if set, called for each hole at all levels
5dc37642 911 * @hugetlb_entry: if set, called for each hugetlb entry
e6473092
MM
912 *
913 * (see walk_page_range for more details)
914 */
915struct mm_walk {
2165009b
DH
916 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
917 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
918 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
919 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
920 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
921 int (*hugetlb_entry)(pte_t *, unsigned long,
922 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
923 struct mm_struct *mm;
924 void *private;
e6473092
MM
925};
926
2165009b
DH
927int walk_page_range(unsigned long addr, unsigned long end,
928 struct mm_walk *walk);
42b77728 929void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 930 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
931int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
932 struct vm_area_struct *vma);
1da177e4
LT
933void unmap_mapping_range(struct address_space *mapping,
934 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
935int follow_pfn(struct vm_area_struct *vma, unsigned long address,
936 unsigned long *pfn);
d87fe660 937int follow_phys(struct vm_area_struct *vma, unsigned long address,
938 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
939int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
940 void *buf, int len, int write);
1da177e4
LT
941
942static inline void unmap_shared_mapping_range(struct address_space *mapping,
943 loff_t const holebegin, loff_t const holelen)
944{
945 unmap_mapping_range(mapping, holebegin, holelen, 0);
946}
947
25d9e2d1 948extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 949extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 950extern int vmtruncate(struct inode *inode, loff_t offset);
951extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 952
750b4987 953int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 954int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 955
83f78668
WF
956int invalidate_inode_page(struct page *page);
957
7ee1dd3f 958#ifdef CONFIG_MMU
83c54070 959extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 960 unsigned long address, unsigned int flags);
7ee1dd3f
DH
961#else
962static inline int handle_mm_fault(struct mm_struct *mm,
963 struct vm_area_struct *vma, unsigned long address,
d06063cc 964 unsigned int flags)
7ee1dd3f
DH
965{
966 /* should never happen if there's no MMU */
967 BUG();
968 return VM_FAULT_SIGBUS;
969}
970#endif
f33ea7f4 971
1da177e4
LT
972extern int make_pages_present(unsigned long addr, unsigned long end);
973extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1da177e4 974
0014bd99
HY
975int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
976 unsigned long start, int len, unsigned int foll_flags,
977 struct page **pages, struct vm_area_struct **vmas,
978 int *nonblocking);
d2bf6be8 979int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 980 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
981 struct page **pages, struct vm_area_struct **vmas);
982int get_user_pages_fast(unsigned long start, int nr_pages, int write,
983 struct page **pages);
f3e8fccd 984struct page *get_dump_page(unsigned long addr);
1da177e4 985
cf9a2ae8
DH
986extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
987extern void do_invalidatepage(struct page *page, unsigned long offset);
988
1da177e4 989int __set_page_dirty_nobuffers(struct page *page);
76719325 990int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
991int redirty_page_for_writepage(struct writeback_control *wbc,
992 struct page *page);
e3a7cca1 993void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 994void account_page_writeback(struct page *page);
b3c97528 995int set_page_dirty(struct page *page);
1da177e4
LT
996int set_page_dirty_lock(struct page *page);
997int clear_page_dirty_for_io(struct page *page);
998
39aa3cb3
SB
999/* Is the vma a continuation of the stack vma above it? */
1000static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
1001{
1002 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1003}
1004
b6a2fea3
OW
1005extern unsigned long move_page_tables(struct vm_area_struct *vma,
1006 unsigned long old_addr, struct vm_area_struct *new_vma,
1007 unsigned long new_addr, unsigned long len);
1da177e4
LT
1008extern unsigned long do_mremap(unsigned long addr,
1009 unsigned long old_len, unsigned long new_len,
1010 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1011extern int mprotect_fixup(struct vm_area_struct *vma,
1012 struct vm_area_struct **pprev, unsigned long start,
1013 unsigned long end, unsigned long newflags);
1da177e4 1014
465a454f
PZ
1015/*
1016 * doesn't attempt to fault and will return short.
1017 */
1018int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1019 struct page **pages);
d559db08
KH
1020/*
1021 * per-process(per-mm_struct) statistics.
1022 */
34e55232 1023#if defined(SPLIT_RSS_COUNTING)
d559db08
KH
1024/*
1025 * The mm counters are not protected by its page_table_lock,
1026 * so must be incremented atomically.
1027 */
1028static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1029{
1030 atomic_long_set(&mm->rss_stat.count[member], value);
1031}
1032
34e55232 1033unsigned long get_mm_counter(struct mm_struct *mm, int member);
d559db08
KH
1034
1035static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1036{
1037 atomic_long_add(value, &mm->rss_stat.count[member]);
1038}
1039
1040static inline void inc_mm_counter(struct mm_struct *mm, int member)
1041{
1042 atomic_long_inc(&mm->rss_stat.count[member]);
1043}
1044
1045static inline void dec_mm_counter(struct mm_struct *mm, int member)
1046{
1047 atomic_long_dec(&mm->rss_stat.count[member]);
1048}
1049
1050#else /* !USE_SPLIT_PTLOCKS */
1051/*
1052 * The mm counters are protected by its page_table_lock,
1053 * so can be incremented directly.
1054 */
1055static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1056{
1057 mm->rss_stat.count[member] = value;
1058}
1059
1060static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1061{
1062 return mm->rss_stat.count[member];
1063}
1064
1065static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1066{
1067 mm->rss_stat.count[member] += value;
1068}
1069
1070static inline void inc_mm_counter(struct mm_struct *mm, int member)
1071{
1072 mm->rss_stat.count[member]++;
1073}
1074
1075static inline void dec_mm_counter(struct mm_struct *mm, int member)
1076{
1077 mm->rss_stat.count[member]--;
1078}
1079
1080#endif /* !USE_SPLIT_PTLOCKS */
1081
1082static inline unsigned long get_mm_rss(struct mm_struct *mm)
1083{
1084 return get_mm_counter(mm, MM_FILEPAGES) +
1085 get_mm_counter(mm, MM_ANONPAGES);
1086}
1087
1088static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1089{
1090 return max(mm->hiwater_rss, get_mm_rss(mm));
1091}
1092
1093static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1094{
1095 return max(mm->hiwater_vm, mm->total_vm);
1096}
1097
1098static inline void update_hiwater_rss(struct mm_struct *mm)
1099{
1100 unsigned long _rss = get_mm_rss(mm);
1101
1102 if ((mm)->hiwater_rss < _rss)
1103 (mm)->hiwater_rss = _rss;
1104}
1105
1106static inline void update_hiwater_vm(struct mm_struct *mm)
1107{
1108 if (mm->hiwater_vm < mm->total_vm)
1109 mm->hiwater_vm = mm->total_vm;
1110}
1111
1112static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1113 struct mm_struct *mm)
1114{
1115 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1116
1117 if (*maxrss < hiwater_rss)
1118 *maxrss = hiwater_rss;
1119}
1120
53bddb4e 1121#if defined(SPLIT_RSS_COUNTING)
34e55232 1122void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1123#else
1124static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1125{
1126}
1127#endif
465a454f 1128
1da177e4 1129/*
8e1f936b 1130 * A callback you can register to apply pressure to ageable caches.
1da177e4 1131 *
8e1f936b
RR
1132 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1133 * look through the least-recently-used 'nr_to_scan' entries and
1134 * attempt to free them up. It should return the number of objects
1135 * which remain in the cache. If it returns -1, it means it cannot do
1136 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 1137 *
8e1f936b
RR
1138 * The 'gfpmask' refers to the allocation we are currently trying to
1139 * fulfil.
1140 *
1141 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1142 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 1143 */
8e1f936b 1144struct shrinker {
7f8275d0 1145 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
8e1f936b 1146 int seeks; /* seeks to recreate an obj */
1da177e4 1147
8e1f936b
RR
1148 /* These are for internal use */
1149 struct list_head list;
1150 long nr; /* objs pending delete */
1151};
1152#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1153extern void register_shrinker(struct shrinker *);
1154extern void unregister_shrinker(struct shrinker *);
1da177e4 1155
4e950f6f 1156int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1157
25ca1d6c
NK
1158extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1159 spinlock_t **ptl);
1160static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1161 spinlock_t **ptl)
1162{
1163 pte_t *ptep;
1164 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1165 return ptep;
1166}
c9cfcddf 1167
5f22df00
NP
1168#ifdef __PAGETABLE_PUD_FOLDED
1169static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1170 unsigned long address)
1171{
1172 return 0;
1173}
1174#else
1bb3630e 1175int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1176#endif
1177
1178#ifdef __PAGETABLE_PMD_FOLDED
1179static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1180 unsigned long address)
1181{
1182 return 0;
1183}
1184#else
1bb3630e 1185int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1186#endif
1187
8ac1f832
AA
1188int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1189 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1190int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1191
1da177e4
LT
1192/*
1193 * The following ifdef needed to get the 4level-fixup.h header to work.
1194 * Remove it when 4level-fixup.h has been removed.
1195 */
1bb3630e 1196#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1197static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1198{
1bb3630e
HD
1199 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1200 NULL: pud_offset(pgd, address);
1da177e4
LT
1201}
1202
1203static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1204{
1bb3630e
HD
1205 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1206 NULL: pmd_offset(pud, address);
1da177e4 1207}
1bb3630e
HD
1208#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1209
f7d0b926 1210#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1211/*
1212 * We tuck a spinlock to guard each pagetable page into its struct page,
1213 * at page->private, with BUILD_BUG_ON to make sure that this will not
1214 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1215 * When freeing, reset page->mapping so free_pages_check won't complain.
1216 */
349aef0b 1217#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1218#define pte_lock_init(_page) do { \
1219 spin_lock_init(__pte_lockptr(_page)); \
1220} while (0)
1221#define pte_lock_deinit(page) ((page)->mapping = NULL)
1222#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1223#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1224/*
1225 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1226 */
1227#define pte_lock_init(page) do {} while (0)
1228#define pte_lock_deinit(page) do {} while (0)
1229#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1230#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1231
2f569afd
MS
1232static inline void pgtable_page_ctor(struct page *page)
1233{
1234 pte_lock_init(page);
1235 inc_zone_page_state(page, NR_PAGETABLE);
1236}
1237
1238static inline void pgtable_page_dtor(struct page *page)
1239{
1240 pte_lock_deinit(page);
1241 dec_zone_page_state(page, NR_PAGETABLE);
1242}
1243
c74df32c
HD
1244#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1245({ \
4c21e2f2 1246 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1247 pte_t *__pte = pte_offset_map(pmd, address); \
1248 *(ptlp) = __ptl; \
1249 spin_lock(__ptl); \
1250 __pte; \
1251})
1252
1253#define pte_unmap_unlock(pte, ptl) do { \
1254 spin_unlock(ptl); \
1255 pte_unmap(pte); \
1256} while (0)
1257
8ac1f832
AA
1258#define pte_alloc_map(mm, vma, pmd, address) \
1259 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1260 pmd, address))? \
1261 NULL: pte_offset_map(pmd, address))
1bb3630e 1262
c74df32c 1263#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1264 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1265 pmd, address))? \
c74df32c
HD
1266 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1267
1bb3630e 1268#define pte_alloc_kernel(pmd, address) \
8ac1f832 1269 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1270 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1271
1272extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1273extern void free_area_init_node(int nid, unsigned long * zones_size,
1274 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1275#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1276/*
1277 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1278 * zones, allocate the backing mem_map and account for memory holes in a more
1279 * architecture independent manner. This is a substitute for creating the
1280 * zone_sizes[] and zholes_size[] arrays and passing them to
1281 * free_area_init_node()
1282 *
1283 * An architecture is expected to register range of page frames backed by
1284 * physical memory with add_active_range() before calling
1285 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1286 * usage, an architecture is expected to do something like
1287 *
1288 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1289 * max_highmem_pfn};
1290 * for_each_valid_physical_page_range()
1291 * add_active_range(node_id, start_pfn, end_pfn)
1292 * free_area_init_nodes(max_zone_pfns);
1293 *
1294 * If the architecture guarantees that there are no holes in the ranges
1295 * registered with add_active_range(), free_bootmem_active_regions()
1296 * will call free_bootmem_node() for each registered physical page range.
1297 * Similarly sparse_memory_present_with_active_regions() calls
1298 * memory_present() for each range when SPARSEMEM is enabled.
1299 *
1300 * See mm/page_alloc.c for more information on each function exposed by
1301 * CONFIG_ARCH_POPULATES_NODE_MAP
1302 */
1303extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1304extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1305 unsigned long end_pfn);
cc1050ba
YL
1306extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1307 unsigned long end_pfn);
c713216d 1308extern void remove_all_active_ranges(void);
32996250
YL
1309void sort_node_map(void);
1310unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1311 unsigned long end_pfn);
c713216d
MG
1312extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1313 unsigned long end_pfn);
1314extern void get_pfn_range_for_nid(unsigned int nid,
1315 unsigned long *start_pfn, unsigned long *end_pfn);
1316extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1317extern void free_bootmem_with_active_regions(int nid,
1318 unsigned long max_low_pfn);
08677214
YL
1319int add_from_early_node_map(struct range *range, int az,
1320 int nr_range, int nid);
edbe7d23
YL
1321u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1322 u64 goal, u64 limit);
d52d53b8 1323typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1324extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d 1325extern void sparse_memory_present_with_active_regions(int nid);
c713216d 1326#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1327
1328#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1329 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1330static inline int __early_pfn_to_nid(unsigned long pfn)
1331{
1332 return 0;
1333}
1334#else
1335/* please see mm/page_alloc.c */
1336extern int __meminit early_pfn_to_nid(unsigned long pfn);
1337#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1338/* there is a per-arch backend function. */
1339extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1340#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1341#endif
1342
0e0b864e 1343extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1344extern void memmap_init_zone(unsigned long, int, unsigned long,
1345 unsigned long, enum memmap_context);
bc75d33f 1346extern void setup_per_zone_wmarks(void);
96cb4df5 1347extern void calculate_zone_inactive_ratio(struct zone *zone);
1da177e4 1348extern void mem_init(void);
8feae131 1349extern void __init mmap_init(void);
1da177e4
LT
1350extern void show_mem(void);
1351extern void si_meminfo(struct sysinfo * val);
1352extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1353extern int after_bootmem;
1da177e4 1354
e7c8d5c9 1355extern void setup_per_cpu_pageset(void);
e7c8d5c9 1356
112067f0
SL
1357extern void zone_pcp_update(struct zone *zone);
1358
8feae131 1359/* nommu.c */
33e5d769 1360extern atomic_long_t mmap_pages_allocated;
7e660872 1361extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1362
1da177e4
LT
1363/* prio_tree.c */
1364void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1365void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1366void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1367struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1368 struct prio_tree_iter *iter);
1369
1370#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1371 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1372 (vma = vma_prio_tree_next(vma, iter)); )
1373
1374static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1375 struct list_head *list)
1376{
1377 vma->shared.vm_set.parent = NULL;
1378 list_add_tail(&vma->shared.vm_set.list, list);
1379}
1380
1381/* mmap.c */
34b4e4aa 1382extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1383extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1384 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1385extern struct vm_area_struct *vma_merge(struct mm_struct *,
1386 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1387 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1388 struct mempolicy *);
1389extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1390extern int split_vma(struct mm_struct *,
1391 struct vm_area_struct *, unsigned long addr, int new_below);
1392extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1393extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1394 struct rb_node **, struct rb_node *);
a8fb5618 1395extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1396extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1397 unsigned long addr, unsigned long len, pgoff_t pgoff);
1398extern void exit_mmap(struct mm_struct *);
925d1c40 1399
7906d00c
AA
1400extern int mm_take_all_locks(struct mm_struct *mm);
1401extern void mm_drop_all_locks(struct mm_struct *mm);
1402
925d1c40
MH
1403#ifdef CONFIG_PROC_FS
1404/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1405extern void added_exe_file_vma(struct mm_struct *mm);
1406extern void removed_exe_file_vma(struct mm_struct *mm);
1407#else
1408static inline void added_exe_file_vma(struct mm_struct *mm)
1409{}
1410
1411static inline void removed_exe_file_vma(struct mm_struct *mm)
1412{}
1413#endif /* CONFIG_PROC_FS */
1414
119f657c 1415extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1416extern int install_special_mapping(struct mm_struct *mm,
1417 unsigned long addr, unsigned long len,
1418 unsigned long flags, struct page **pages);
1da177e4
LT
1419
1420extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1421
1422extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1423 unsigned long len, unsigned long prot,
1424 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1425extern unsigned long mmap_region(struct file *file, unsigned long addr,
1426 unsigned long len, unsigned long flags,
5a6fe125 1427 unsigned int vm_flags, unsigned long pgoff);
1da177e4
LT
1428
1429static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1430 unsigned long len, unsigned long prot,
1431 unsigned long flag, unsigned long offset)
1432{
1433 unsigned long ret = -EINVAL;
1434 if ((offset + PAGE_ALIGN(len)) < offset)
1435 goto out;
1436 if (!(offset & ~PAGE_MASK))
1437 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1438out:
1439 return ret;
1440}
1441
1442extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1443
1444extern unsigned long do_brk(unsigned long, unsigned long);
1445
1446/* filemap.c */
1447extern unsigned long page_unuse(struct page *);
1448extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1449extern void truncate_inode_pages_range(struct address_space *,
1450 loff_t lstart, loff_t lend);
1da177e4
LT
1451
1452/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1453extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1454
1455/* mm/page-writeback.c */
1456int write_one_page(struct page *page, int wait);
1cf6e7d8 1457void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1458
1459/* readahead.c */
1460#define VM_MAX_READAHEAD 128 /* kbytes */
1461#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1462
1da177e4 1463int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1464 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1465
1466void page_cache_sync_readahead(struct address_space *mapping,
1467 struct file_ra_state *ra,
1468 struct file *filp,
1469 pgoff_t offset,
1470 unsigned long size);
1471
1472void page_cache_async_readahead(struct address_space *mapping,
1473 struct file_ra_state *ra,
1474 struct file *filp,
1475 struct page *pg,
1476 pgoff_t offset,
1477 unsigned long size);
1478
1da177e4 1479unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1480unsigned long ra_submit(struct file_ra_state *ra,
1481 struct address_space *mapping,
1482 struct file *filp);
1da177e4
LT
1483
1484/* Do stack extension */
46dea3d0 1485extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1486#if VM_GROWSUP
46dea3d0 1487extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1488#else
1489 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1490#endif
b6a2fea3
OW
1491extern int expand_stack_downwards(struct vm_area_struct *vma,
1492 unsigned long address);
1da177e4
LT
1493
1494/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1495extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1496extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1497 struct vm_area_struct **pprev);
1498
1499/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1500 NULL if none. Assume start_addr < end_addr. */
1501static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1502{
1503 struct vm_area_struct * vma = find_vma(mm,start_addr);
1504
1505 if (vma && end_addr <= vma->vm_start)
1506 vma = NULL;
1507 return vma;
1508}
1509
1510static inline unsigned long vma_pages(struct vm_area_struct *vma)
1511{
1512 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1513}
1514
bad849b3 1515#ifdef CONFIG_MMU
804af2cf 1516pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1517#else
1518static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1519{
1520 return __pgprot(0);
1521}
1522#endif
1523
deceb6cd 1524struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1525int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1526 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1527int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1528int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1529 unsigned long pfn);
423bad60
NP
1530int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1531 unsigned long pfn);
deceb6cd 1532
6aab341e 1533struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1534 unsigned int foll_flags);
1535#define FOLL_WRITE 0x01 /* check pte is writable */
1536#define FOLL_TOUCH 0x02 /* mark page accessed */
1537#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1538#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1539#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
110d74a9 1540#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1541#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1542#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1543
2f569afd 1544typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1545 void *data);
1546extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1547 unsigned long size, pte_fn_t fn, void *data);
1548
1da177e4 1549#ifdef CONFIG_PROC_FS
ab50b8ed 1550void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1551#else
ab50b8ed 1552static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1553 unsigned long flags, struct file *file, long pages)
1554{
1555}
1556#endif /* CONFIG_PROC_FS */
1557
12d6f21e
IM
1558#ifdef CONFIG_DEBUG_PAGEALLOC
1559extern int debug_pagealloc_enabled;
1560
1561extern void kernel_map_pages(struct page *page, int numpages, int enable);
1562
1563static inline void enable_debug_pagealloc(void)
1564{
1565 debug_pagealloc_enabled = 1;
1566}
8a235efa
RW
1567#ifdef CONFIG_HIBERNATION
1568extern bool kernel_page_present(struct page *page);
1569#endif /* CONFIG_HIBERNATION */
12d6f21e 1570#else
1da177e4 1571static inline void
9858db50 1572kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1573static inline void enable_debug_pagealloc(void)
1574{
1575}
8a235efa
RW
1576#ifdef CONFIG_HIBERNATION
1577static inline bool kernel_page_present(struct page *page) { return true; }
1578#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1579#endif
1580
31db58b3 1581extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1582#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1583int in_gate_area_no_mm(unsigned long addr);
83b964bb 1584int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1585#else
cae5d390
SW
1586int in_gate_area_no_mm(unsigned long addr);
1587#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1588#endif /* __HAVE_ARCH_GATE_AREA */
1589
8d65af78 1590int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1591 void __user *, size_t *, loff_t *);
69e05944 1592unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc 1593 unsigned long lru_pages);
9d0243bc 1594
7a9166e3
LY
1595#ifndef CONFIG_MMU
1596#define randomize_va_space 0
1597#else
a62eaf15 1598extern int randomize_va_space;
7a9166e3 1599#endif
a62eaf15 1600
045e72ac 1601const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1602void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1603
9bdac914
YL
1604void sparse_mem_maps_populate_node(struct page **map_map,
1605 unsigned long pnum_begin,
1606 unsigned long pnum_end,
1607 unsigned long map_count,
1608 int nodeid);
1609
98f3cfc1 1610struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1611pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1612pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1613pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1614pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1615void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1616void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1617void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1618int vmemmap_populate_basepages(struct page *start_page,
1619 unsigned long pages, int node);
1620int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1621void vmemmap_populate_print_last(void);
8f6aac41 1622
6a46079c 1623
82ba011b
AK
1624enum mf_flags {
1625 MF_COUNT_INCREASED = 1 << 0,
1626};
6a46079c 1627extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1628extern int __memory_failure(unsigned long pfn, int trapno, int flags);
847ce401 1629extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1630extern int sysctl_memory_failure_early_kill;
1631extern int sysctl_memory_failure_recovery;
facb6011 1632extern void shake_page(struct page *p, int access);
6a46079c 1633extern atomic_long_t mce_bad_pages;
facb6011 1634extern int soft_offline_page(struct page *page, int flags);
6a46079c 1635
718a3821
WF
1636extern void dump_page(struct page *page);
1637
47ad8475
AA
1638#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1639extern void clear_huge_page(struct page *page,
1640 unsigned long addr,
1641 unsigned int pages_per_huge_page);
1642extern void copy_user_huge_page(struct page *dst, struct page *src,
1643 unsigned long addr, struct vm_area_struct *vma,
1644 unsigned int pages_per_huge_page);
1645#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1646
1da177e4
LT
1647#endif /* __KERNEL__ */
1648#endif /* _LINUX_MM_H */