audit: rework execve audit
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
13#include <linux/fs.h>
de5097c2 14#include <linux/mutex.h>
9a11b49a 15#include <linux/debug_locks.h>
d08b3851 16#include <linux/backing-dev.h>
5b99cd0e 17#include <linux/mm_types.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
e8edc6e0 21struct user_struct;
1da177e4
LT
22
23#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24extern unsigned long max_mapnr;
25#endif
26
27extern unsigned long num_physpages;
28extern void * high_memory;
1da177e4
LT
29extern int page_cluster;
30
31#ifdef CONFIG_SYSCTL
32extern int sysctl_legacy_va_layout;
33#else
34#define sysctl_legacy_va_layout 0
35#endif
36
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/processor.h>
1da177e4 40
1da177e4
LT
41#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
42
43/*
44 * Linux kernel virtual memory manager primitives.
45 * The idea being to have a "virtual" mm in the same way
46 * we have a virtual fs - giving a cleaner interface to the
47 * mm details, and allowing different kinds of memory mappings
48 * (from shared memory to executable loading to arbitrary
49 * mmap() functions).
50 */
51
52/*
53 * This struct defines a memory VMM memory area. There is one of these
54 * per VM-area/task. A VM area is any part of the process virtual memory
55 * space that has a special rule for the page-fault handlers (ie a shared
56 * library, the executable area etc).
57 */
58struct vm_area_struct {
59 struct mm_struct * vm_mm; /* The address space we belong to. */
60 unsigned long vm_start; /* Our start address within vm_mm. */
61 unsigned long vm_end; /* The first byte after our end address
62 within vm_mm. */
63
64 /* linked list of VM areas per task, sorted by address */
65 struct vm_area_struct *vm_next;
66
67 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
68 unsigned long vm_flags; /* Flags, listed below. */
69
70 struct rb_node vm_rb;
71
72 /*
73 * For areas with an address space and backing store,
74 * linkage into the address_space->i_mmap prio tree, or
75 * linkage to the list of like vmas hanging off its node, or
76 * linkage of vma in the address_space->i_mmap_nonlinear list.
77 */
78 union {
79 struct {
80 struct list_head list;
81 void *parent; /* aligns with prio_tree_node parent */
82 struct vm_area_struct *head;
83 } vm_set;
84
85 struct raw_prio_tree_node prio_tree_node;
86 } shared;
87
88 /*
89 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
90 * list, after a COW of one of the file pages. A MAP_SHARED vma
91 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
92 * or brk vma (with NULL file) can only be in an anon_vma list.
93 */
94 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
95 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
96
97 /* Function pointers to deal with this struct. */
98 struct vm_operations_struct * vm_ops;
99
100 /* Information about our backing store: */
101 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
102 units, *not* PAGE_CACHE_SIZE */
103 struct file * vm_file; /* File we map to (can be NULL). */
104 void * vm_private_data; /* was vm_pte (shared mem) */
105 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106
107#ifndef CONFIG_MMU
108 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
109#endif
110#ifdef CONFIG_NUMA
111 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
112#endif
113};
114
c43692e8
CL
115extern struct kmem_cache *vm_area_cachep;
116
1da177e4
LT
117/*
118 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
119 * disabled, then there's a single shared list of VMAs maintained by the
120 * system, and mm's subscribe to these individually
121 */
122struct vm_list_struct {
123 struct vm_list_struct *next;
124 struct vm_area_struct *vma;
125};
126
127#ifndef CONFIG_MMU
128extern struct rb_root nommu_vma_tree;
129extern struct rw_semaphore nommu_vma_sem;
130
131extern unsigned int kobjsize(const void *objp);
132#endif
133
134/*
135 * vm_flags..
136 */
137#define VM_READ 0x00000001 /* currently active flags */
138#define VM_WRITE 0x00000002
139#define VM_EXEC 0x00000004
140#define VM_SHARED 0x00000008
141
7e2cff42 142/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
143#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
144#define VM_MAYWRITE 0x00000020
145#define VM_MAYEXEC 0x00000040
146#define VM_MAYSHARE 0x00000080
147
148#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
149#define VM_GROWSUP 0x00000200
6aab341e 150#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
151#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
152
153#define VM_EXECUTABLE 0x00001000
154#define VM_LOCKED 0x00002000
155#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
156
157 /* Used by sys_madvise() */
158#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
159#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
160
161#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
162#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 163#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
164#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
165#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
166#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
167#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 168#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 169#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 170
d0217ac0 171#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
1da177e4
LT
172
173#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
174#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
175#endif
176
177#ifdef CONFIG_STACK_GROWSUP
178#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179#else
180#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
181#endif
182
183#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
184#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
185#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
186#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
187#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
188
189/*
190 * mapping from the currently active vm_flags protection bits (the
191 * low four bits) to a page protection mask..
192 */
193extern pgprot_t protection_map[16];
194
d0217ac0
NP
195#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
196#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
197
198
54cb8821 199/*
d0217ac0 200 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
201 * ->fault function. The vma's ->fault is responsible for returning a bitmask
202 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 203 *
d0217ac0
NP
204 * pgoff should be used in favour of virtual_address, if possible. If pgoff
205 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
206 * mapping support.
54cb8821 207 */
d0217ac0
NP
208struct vm_fault {
209 unsigned int flags; /* FAULT_FLAG_xxx flags */
210 pgoff_t pgoff; /* Logical page offset based on vma */
211 void __user *virtual_address; /* Faulting virtual address */
212
213 struct page *page; /* ->fault handlers should return a
83c54070 214 * page here, unless VM_FAULT_NOPAGE
d0217ac0 215 * is set (which is also implied by
83c54070 216 * VM_FAULT_ERROR).
d0217ac0 217 */
54cb8821 218};
1da177e4
LT
219
220/*
221 * These are the virtual MM functions - opening of an area, closing and
222 * unmapping it (needed to keep files on disk up-to-date etc), pointer
223 * to the functions called when a no-page or a wp-page exception occurs.
224 */
225struct vm_operations_struct {
226 void (*open)(struct vm_area_struct * area);
227 void (*close)(struct vm_area_struct * area);
d0217ac0 228 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
54cb8821
NP
229 struct page *(*nopage)(struct vm_area_struct *area,
230 unsigned long address, int *type);
231 unsigned long (*nopfn)(struct vm_area_struct *area,
232 unsigned long address);
9637a5ef
DH
233
234 /* notification that a previously read-only page is about to become
235 * writable, if an error is returned it will cause a SIGBUS */
236 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
1da177e4
LT
237#ifdef CONFIG_NUMA
238 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
240 unsigned long addr);
7b2259b3
CL
241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
242 const nodemask_t *to, unsigned long flags);
1da177e4
LT
243#endif
244};
245
246struct mmu_gather;
247struct inode;
248
349aef0b
AM
249#define page_private(page) ((page)->private)
250#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 251
1da177e4
LT
252/*
253 * FIXME: take this include out, include page-flags.h in
254 * files which need it (119 of them)
255 */
256#include <linux/page-flags.h>
257
725d704e
NP
258#ifdef CONFIG_DEBUG_VM
259#define VM_BUG_ON(cond) BUG_ON(cond)
260#else
261#define VM_BUG_ON(condition) do { } while(0)
262#endif
263
1da177e4
LT
264/*
265 * Methods to modify the page usage count.
266 *
267 * What counts for a page usage:
268 * - cache mapping (page->mapping)
269 * - private data (page->private)
270 * - page mapped in a task's page tables, each mapping
271 * is counted separately
272 *
273 * Also, many kernel routines increase the page count before a critical
274 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
275 */
276
277/*
da6052f7 278 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 279 */
7c8ee9a8
NP
280static inline int put_page_testzero(struct page *page)
281{
725d704e 282 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 283 return atomic_dec_and_test(&page->_count);
7c8ee9a8 284}
1da177e4
LT
285
286/*
7c8ee9a8
NP
287 * Try to grab a ref unless the page has a refcount of zero, return false if
288 * that is the case.
1da177e4 289 */
7c8ee9a8
NP
290static inline int get_page_unless_zero(struct page *page)
291{
725d704e 292 VM_BUG_ON(PageCompound(page));
8dc04efb 293 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 294}
1da177e4 295
d85f3385
CL
296static inline struct page *compound_head(struct page *page)
297{
6d777953 298 if (unlikely(PageTail(page)))
d85f3385
CL
299 return page->first_page;
300 return page;
301}
302
4c21e2f2 303static inline int page_count(struct page *page)
1da177e4 304{
d85f3385 305 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
306}
307
308static inline void get_page(struct page *page)
309{
d85f3385 310 page = compound_head(page);
725d704e 311 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
312 atomic_inc(&page->_count);
313}
314
b49af68f
CL
315static inline struct page *virt_to_head_page(const void *x)
316{
317 struct page *page = virt_to_page(x);
318 return compound_head(page);
319}
320
7835e98b
NP
321/*
322 * Setup the page count before being freed into the page allocator for
323 * the first time (boot or memory hotplug)
324 */
325static inline void init_page_count(struct page *page)
326{
327 atomic_set(&page->_count, 1);
328}
329
1da177e4 330void put_page(struct page *page);
1d7ea732 331void put_pages_list(struct list_head *pages);
1da177e4 332
8dfcc9ba 333void split_page(struct page *page, unsigned int order);
8dfcc9ba 334
33f2ef89
AW
335/*
336 * Compound pages have a destructor function. Provide a
337 * prototype for that function and accessor functions.
338 * These are _only_ valid on the head of a PG_compound page.
339 */
340typedef void compound_page_dtor(struct page *);
341
342static inline void set_compound_page_dtor(struct page *page,
343 compound_page_dtor *dtor)
344{
345 page[1].lru.next = (void *)dtor;
346}
347
348static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
349{
350 return (compound_page_dtor *)page[1].lru.next;
351}
352
d85f3385
CL
353static inline int compound_order(struct page *page)
354{
6d777953 355 if (!PageHead(page))
d85f3385
CL
356 return 0;
357 return (unsigned long)page[1].lru.prev;
358}
359
360static inline void set_compound_order(struct page *page, unsigned long order)
361{
362 page[1].lru.prev = (void *)order;
363}
364
1da177e4
LT
365/*
366 * Multiple processes may "see" the same page. E.g. for untouched
367 * mappings of /dev/null, all processes see the same page full of
368 * zeroes, and text pages of executables and shared libraries have
369 * only one copy in memory, at most, normally.
370 *
371 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
372 * page_count() == 0 means the page is free. page->lru is then used for
373 * freelist management in the buddy allocator.
da6052f7 374 * page_count() > 0 means the page has been allocated.
1da177e4 375 *
da6052f7
NP
376 * Pages are allocated by the slab allocator in order to provide memory
377 * to kmalloc and kmem_cache_alloc. In this case, the management of the
378 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
379 * unless a particular usage is carefully commented. (the responsibility of
380 * freeing the kmalloc memory is the caller's, of course).
1da177e4 381 *
da6052f7
NP
382 * A page may be used by anyone else who does a __get_free_page().
383 * In this case, page_count still tracks the references, and should only
384 * be used through the normal accessor functions. The top bits of page->flags
385 * and page->virtual store page management information, but all other fields
386 * are unused and could be used privately, carefully. The management of this
387 * page is the responsibility of the one who allocated it, and those who have
388 * subsequently been given references to it.
389 *
390 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
391 * managed by the Linux memory manager: I/O, buffers, swapping etc.
392 * The following discussion applies only to them.
393 *
da6052f7
NP
394 * A pagecache page contains an opaque `private' member, which belongs to the
395 * page's address_space. Usually, this is the address of a circular list of
396 * the page's disk buffers. PG_private must be set to tell the VM to call
397 * into the filesystem to release these pages.
1da177e4 398 *
da6052f7
NP
399 * A page may belong to an inode's memory mapping. In this case, page->mapping
400 * is the pointer to the inode, and page->index is the file offset of the page,
401 * in units of PAGE_CACHE_SIZE.
1da177e4 402 *
da6052f7
NP
403 * If pagecache pages are not associated with an inode, they are said to be
404 * anonymous pages. These may become associated with the swapcache, and in that
405 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 406 *
da6052f7
NP
407 * In either case (swapcache or inode backed), the pagecache itself holds one
408 * reference to the page. Setting PG_private should also increment the
409 * refcount. The each user mapping also has a reference to the page.
1da177e4 410 *
da6052f7
NP
411 * The pagecache pages are stored in a per-mapping radix tree, which is
412 * rooted at mapping->page_tree, and indexed by offset.
413 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
414 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 415 *
da6052f7 416 * All pagecache pages may be subject to I/O:
1da177e4
LT
417 * - inode pages may need to be read from disk,
418 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
419 * to be written back to the inode on disk,
420 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
421 * modified may need to be swapped out to swap space and (later) to be read
422 * back into memory.
1da177e4
LT
423 */
424
425/*
426 * The zone field is never updated after free_area_init_core()
427 * sets it, so none of the operations on it need to be atomic.
1da177e4 428 */
348f8b6c 429
d41dee36
AW
430
431/*
432 * page->flags layout:
433 *
434 * There are three possibilities for how page->flags get
435 * laid out. The first is for the normal case, without
436 * sparsemem. The second is for sparsemem when there is
437 * plenty of space for node and section. The last is when
438 * we have run out of space and have to fall back to an
439 * alternate (slower) way of determining the node.
440 *
441 * No sparsemem: | NODE | ZONE | ... | FLAGS |
442 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
443 * no space for node: | SECTION | ZONE | ... | FLAGS |
444 */
445#ifdef CONFIG_SPARSEMEM
446#define SECTIONS_WIDTH SECTIONS_SHIFT
447#else
448#define SECTIONS_WIDTH 0
449#endif
450
451#define ZONES_WIDTH ZONES_SHIFT
452
453#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
454#define NODES_WIDTH NODES_SHIFT
455#else
456#define NODES_WIDTH 0
457#endif
458
459/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 460#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
461#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
462#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
463
464/*
465 * We are going to use the flags for the page to node mapping if its in
466 * there. This includes the case where there is no node, so it is implicit.
467 */
89689ae7
CL
468#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
469#define NODE_NOT_IN_PAGE_FLAGS
470#endif
d41dee36
AW
471
472#ifndef PFN_SECTION_SHIFT
473#define PFN_SECTION_SHIFT 0
474#endif
348f8b6c
DH
475
476/*
477 * Define the bit shifts to access each section. For non-existant
478 * sections we define the shift as 0; that plus a 0 mask ensures
479 * the compiler will optimise away reference to them.
480 */
d41dee36
AW
481#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
482#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
483#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 484
89689ae7
CL
485/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
486#ifdef NODE_NOT_IN_PAGEFLAGS
487#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
488#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
489 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 490#else
89689ae7 491#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
492#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
493 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
494#endif
495
bd8029b6 496#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 497
d41dee36
AW
498#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
499#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
500#endif
501
d41dee36
AW
502#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
503#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
504#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 505#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 506
2f1b6248 507static inline enum zone_type page_zonenum(struct page *page)
1da177e4 508{
348f8b6c 509 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 510}
1da177e4 511
89689ae7
CL
512/*
513 * The identification function is only used by the buddy allocator for
514 * determining if two pages could be buddies. We are not really
515 * identifying a zone since we could be using a the section number
516 * id if we have not node id available in page flags.
517 * We guarantee only that it will return the same value for two
518 * combinable pages in a zone.
519 */
cb2b95e1
AW
520static inline int page_zone_id(struct page *page)
521{
89689ae7 522 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
523}
524
25ba77c1 525static inline int zone_to_nid(struct zone *zone)
89fa3024 526{
d5f541ed
CL
527#ifdef CONFIG_NUMA
528 return zone->node;
529#else
530 return 0;
531#endif
89fa3024
CL
532}
533
89689ae7 534#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 535extern int page_to_nid(struct page *page);
89689ae7 536#else
25ba77c1 537static inline int page_to_nid(struct page *page)
d41dee36 538{
89689ae7 539 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 540}
89689ae7
CL
541#endif
542
543static inline struct zone *page_zone(struct page *page)
544{
545 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
546}
547
d41dee36
AW
548static inline unsigned long page_to_section(struct page *page)
549{
550 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
551}
552
2f1b6248 553static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
554{
555 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
556 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
557}
2f1b6248 558
348f8b6c
DH
559static inline void set_page_node(struct page *page, unsigned long node)
560{
561 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
562 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 563}
89689ae7 564
d41dee36
AW
565static inline void set_page_section(struct page *page, unsigned long section)
566{
567 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
568 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
569}
1da177e4 570
2f1b6248 571static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 572 unsigned long node, unsigned long pfn)
1da177e4 573{
348f8b6c
DH
574 set_page_zone(page, zone);
575 set_page_node(page, node);
d41dee36 576 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
577}
578
f6ac2354
CL
579/*
580 * Some inline functions in vmstat.h depend on page_zone()
581 */
582#include <linux/vmstat.h>
583
652050ae 584static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
585{
586 return __va(page_to_pfn(page) << PAGE_SHIFT);
587}
588
589#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
590#define HASHED_PAGE_VIRTUAL
591#endif
592
593#if defined(WANT_PAGE_VIRTUAL)
594#define page_address(page) ((page)->virtual)
595#define set_page_address(page, address) \
596 do { \
597 (page)->virtual = (address); \
598 } while(0)
599#define page_address_init() do { } while(0)
600#endif
601
602#if defined(HASHED_PAGE_VIRTUAL)
603void *page_address(struct page *page);
604void set_page_address(struct page *page, void *virtual);
605void page_address_init(void);
606#endif
607
608#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
609#define page_address(page) lowmem_page_address(page)
610#define set_page_address(page, address) do { } while(0)
611#define page_address_init() do { } while(0)
612#endif
613
614/*
615 * On an anonymous page mapped into a user virtual memory area,
616 * page->mapping points to its anon_vma, not to a struct address_space;
617 * with the PAGE_MAPPING_ANON bit set to distinguish it.
618 *
619 * Please note that, confusingly, "page_mapping" refers to the inode
620 * address_space which maps the page from disk; whereas "page_mapped"
621 * refers to user virtual address space into which the page is mapped.
622 */
623#define PAGE_MAPPING_ANON 1
624
625extern struct address_space swapper_space;
626static inline struct address_space *page_mapping(struct page *page)
627{
628 struct address_space *mapping = page->mapping;
629
b5fab14e 630 VM_BUG_ON(PageSlab(page));
1da177e4
LT
631 if (unlikely(PageSwapCache(page)))
632 mapping = &swapper_space;
b9bae340
HD
633#ifdef CONFIG_SLUB
634 else if (unlikely(PageSlab(page)))
635 mapping = NULL;
636#endif
1da177e4
LT
637 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
638 mapping = NULL;
639 return mapping;
640}
641
642static inline int PageAnon(struct page *page)
643{
644 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
645}
646
647/*
648 * Return the pagecache index of the passed page. Regular pagecache pages
649 * use ->index whereas swapcache pages use ->private
650 */
651static inline pgoff_t page_index(struct page *page)
652{
653 if (unlikely(PageSwapCache(page)))
4c21e2f2 654 return page_private(page);
1da177e4
LT
655 return page->index;
656}
657
658/*
659 * The atomic page->_mapcount, like _count, starts from -1:
660 * so that transitions both from it and to it can be tracked,
661 * using atomic_inc_and_test and atomic_add_negative(-1).
662 */
663static inline void reset_page_mapcount(struct page *page)
664{
665 atomic_set(&(page)->_mapcount, -1);
666}
667
668static inline int page_mapcount(struct page *page)
669{
670 return atomic_read(&(page)->_mapcount) + 1;
671}
672
673/*
674 * Return true if this page is mapped into pagetables.
675 */
676static inline int page_mapped(struct page *page)
677{
678 return atomic_read(&(page)->_mapcount) >= 0;
679}
680
681/*
682 * Error return values for the *_nopage functions
683 */
684#define NOPAGE_SIGBUS (NULL)
685#define NOPAGE_OOM ((struct page *) (-1))
686
f4b81804
JS
687/*
688 * Error return values for the *_nopfn functions
689 */
690#define NOPFN_SIGBUS ((unsigned long) -1)
691#define NOPFN_OOM ((unsigned long) -2)
22cd25ed 692#define NOPFN_REFAULT ((unsigned long) -3)
f4b81804 693
1da177e4
LT
694/*
695 * Different kinds of faults, as returned by handle_mm_fault().
696 * Used to decide whether a process gets delivered SIGBUS or
697 * just gets major/minor fault counters bumped up.
698 */
d0217ac0 699
83c54070 700#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 701
83c54070
NP
702#define VM_FAULT_OOM 0x0001
703#define VM_FAULT_SIGBUS 0x0002
704#define VM_FAULT_MAJOR 0x0004
705#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
f33ea7f4 706
83c54070
NP
707#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
708#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1da177e4 709
83c54070 710#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
d0217ac0 711
1da177e4
LT
712#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
713
714extern void show_free_areas(void);
715
716#ifdef CONFIG_SHMEM
1da177e4
LT
717int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
718struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
719 unsigned long addr);
720int shmem_lock(struct file *file, int lock, struct user_struct *user);
721#else
03b00ebc
RK
722static inline int shmem_lock(struct file *file, int lock,
723 struct user_struct *user)
724{
725 return 0;
726}
727
728static inline int shmem_set_policy(struct vm_area_struct *vma,
729 struct mempolicy *new)
730{
731 return 0;
732}
733
734static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
735 unsigned long addr)
736{
737 return NULL;
738}
1da177e4
LT
739#endif
740struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
741
742int shmem_zero_setup(struct vm_area_struct *);
743
b0e15190
DH
744#ifndef CONFIG_MMU
745extern unsigned long shmem_get_unmapped_area(struct file *file,
746 unsigned long addr,
747 unsigned long len,
748 unsigned long pgoff,
749 unsigned long flags);
750#endif
751
e8edc6e0 752extern int can_do_mlock(void);
1da177e4
LT
753extern int user_shm_lock(size_t, struct user_struct *);
754extern void user_shm_unlock(size_t, struct user_struct *);
755
756/*
757 * Parameter block passed down to zap_pte_range in exceptional cases.
758 */
759struct zap_details {
760 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
761 struct address_space *check_mapping; /* Check page->mapping if set */
762 pgoff_t first_index; /* Lowest page->index to unmap */
763 pgoff_t last_index; /* Highest page->index to unmap */
764 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
765 unsigned long truncate_count; /* Compare vm_truncate_count */
766};
767
6aab341e 768struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 769unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 770 unsigned long size, struct zap_details *);
508034a3 771unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
772 struct vm_area_struct *start_vma, unsigned long start_addr,
773 unsigned long end_addr, unsigned long *nr_accounted,
774 struct zap_details *);
3bf5ee95
HD
775void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
776 unsigned long end, unsigned long floor, unsigned long ceiling);
777void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 778 unsigned long floor, unsigned long ceiling);
1da177e4
LT
779int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
780 struct vm_area_struct *vma);
781int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
782 unsigned long size, pgprot_t prot);
783void unmap_mapping_range(struct address_space *mapping,
784 loff_t const holebegin, loff_t const holelen, int even_cows);
785
786static inline void unmap_shared_mapping_range(struct address_space *mapping,
787 loff_t const holebegin, loff_t const holelen)
788{
789 unmap_mapping_range(mapping, holebegin, holelen, 0);
790}
791
792extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 793extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
f33ea7f4 794
7ee1dd3f 795#ifdef CONFIG_MMU
83c54070 796extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
7ee1dd3f 797 unsigned long address, int write_access);
7ee1dd3f
DH
798#else
799static inline int handle_mm_fault(struct mm_struct *mm,
800 struct vm_area_struct *vma, unsigned long address,
801 int write_access)
802{
803 /* should never happen if there's no MMU */
804 BUG();
805 return VM_FAULT_SIGBUS;
806}
807#endif
f33ea7f4 808
1da177e4
LT
809extern int make_pages_present(unsigned long addr, unsigned long end);
810extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
811void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
812
813int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
814 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 815void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4 816
cf9a2ae8
DH
817extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
818extern void do_invalidatepage(struct page *page, unsigned long offset);
819
1da177e4 820int __set_page_dirty_nobuffers(struct page *page);
76719325 821int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
822int redirty_page_for_writepage(struct writeback_control *wbc,
823 struct page *page);
824int FASTCALL(set_page_dirty(struct page *page));
825int set_page_dirty_lock(struct page *page);
826int clear_page_dirty_for_io(struct page *page);
827
828extern unsigned long do_mremap(unsigned long addr,
829 unsigned long old_len, unsigned long new_len,
830 unsigned long flags, unsigned long new_addr);
831
832/*
8e1f936b 833 * A callback you can register to apply pressure to ageable caches.
1da177e4 834 *
8e1f936b
RR
835 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
836 * look through the least-recently-used 'nr_to_scan' entries and
837 * attempt to free them up. It should return the number of objects
838 * which remain in the cache. If it returns -1, it means it cannot do
839 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 840 *
8e1f936b
RR
841 * The 'gfpmask' refers to the allocation we are currently trying to
842 * fulfil.
843 *
844 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
845 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 846 */
8e1f936b
RR
847struct shrinker {
848 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
849 int seeks; /* seeks to recreate an obj */
1da177e4 850
8e1f936b
RR
851 /* These are for internal use */
852 struct list_head list;
853 long nr; /* objs pending delete */
854};
855#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
856extern void register_shrinker(struct shrinker *);
857extern void unregister_shrinker(struct shrinker *);
1da177e4 858
d08b3851
PZ
859/*
860 * Some shared mappigns will want the pages marked read-only
861 * to track write events. If so, we'll downgrade vm_page_prot
862 * to the private version (using protection_map[] without the
863 * VM_SHARED bit).
864 */
865static inline int vma_wants_writenotify(struct vm_area_struct *vma)
866{
867 unsigned int vm_flags = vma->vm_flags;
868
869 /* If it was private or non-writable, the write bit is already clear */
870 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
871 return 0;
872
873 /* The backer wishes to know when pages are first written to? */
874 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
875 return 1;
876
877 /* The open routine did something to the protections already? */
878 if (pgprot_val(vma->vm_page_prot) !=
879 pgprot_val(protection_map[vm_flags &
880 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
881 return 0;
882
883 /* Specialty mapping? */
884 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
885 return 0;
886
887 /* Can the mapping track the dirty pages? */
888 return vma->vm_file && vma->vm_file->f_mapping &&
889 mapping_cap_account_dirty(vma->vm_file->f_mapping);
890}
891
c9cfcddf
LT
892extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
893
5f22df00
NP
894#ifdef __PAGETABLE_PUD_FOLDED
895static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
896 unsigned long address)
897{
898 return 0;
899}
900#else
1bb3630e 901int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
902#endif
903
904#ifdef __PAGETABLE_PMD_FOLDED
905static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
906 unsigned long address)
907{
908 return 0;
909}
910#else
1bb3630e 911int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
912#endif
913
1bb3630e
HD
914int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
915int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
916
1da177e4
LT
917/*
918 * The following ifdef needed to get the 4level-fixup.h header to work.
919 * Remove it when 4level-fixup.h has been removed.
920 */
1bb3630e 921#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
922static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
923{
1bb3630e
HD
924 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
925 NULL: pud_offset(pgd, address);
1da177e4
LT
926}
927
928static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
929{
1bb3630e
HD
930 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
931 NULL: pmd_offset(pud, address);
1da177e4 932}
1bb3630e
HD
933#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
934
4c21e2f2
HD
935#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
936/*
937 * We tuck a spinlock to guard each pagetable page into its struct page,
938 * at page->private, with BUILD_BUG_ON to make sure that this will not
939 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
940 * When freeing, reset page->mapping so free_pages_check won't complain.
941 */
349aef0b 942#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
943#define pte_lock_init(_page) do { \
944 spin_lock_init(__pte_lockptr(_page)); \
945} while (0)
946#define pte_lock_deinit(page) ((page)->mapping = NULL)
947#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
948#else
949/*
950 * We use mm->page_table_lock to guard all pagetable pages of the mm.
951 */
952#define pte_lock_init(page) do {} while (0)
953#define pte_lock_deinit(page) do {} while (0)
954#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
955#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
956
c74df32c
HD
957#define pte_offset_map_lock(mm, pmd, address, ptlp) \
958({ \
4c21e2f2 959 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
960 pte_t *__pte = pte_offset_map(pmd, address); \
961 *(ptlp) = __ptl; \
962 spin_lock(__ptl); \
963 __pte; \
964})
965
966#define pte_unmap_unlock(pte, ptl) do { \
967 spin_unlock(ptl); \
968 pte_unmap(pte); \
969} while (0)
970
1bb3630e
HD
971#define pte_alloc_map(mm, pmd, address) \
972 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
973 NULL: pte_offset_map(pmd, address))
974
c74df32c
HD
975#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
976 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
977 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
978
1bb3630e
HD
979#define pte_alloc_kernel(pmd, address) \
980 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
981 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
982
983extern void free_area_init(unsigned long * zones_size);
984extern void free_area_init_node(int nid, pg_data_t *pgdat,
985 unsigned long * zones_size, unsigned long zone_start_pfn,
986 unsigned long *zholes_size);
c713216d
MG
987#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
988/*
989 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
990 * zones, allocate the backing mem_map and account for memory holes in a more
991 * architecture independent manner. This is a substitute for creating the
992 * zone_sizes[] and zholes_size[] arrays and passing them to
993 * free_area_init_node()
994 *
995 * An architecture is expected to register range of page frames backed by
996 * physical memory with add_active_range() before calling
997 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
998 * usage, an architecture is expected to do something like
999 *
1000 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1001 * max_highmem_pfn};
1002 * for_each_valid_physical_page_range()
1003 * add_active_range(node_id, start_pfn, end_pfn)
1004 * free_area_init_nodes(max_zone_pfns);
1005 *
1006 * If the architecture guarantees that there are no holes in the ranges
1007 * registered with add_active_range(), free_bootmem_active_regions()
1008 * will call free_bootmem_node() for each registered physical page range.
1009 * Similarly sparse_memory_present_with_active_regions() calls
1010 * memory_present() for each range when SPARSEMEM is enabled.
1011 *
1012 * See mm/page_alloc.c for more information on each function exposed by
1013 * CONFIG_ARCH_POPULATES_NODE_MAP
1014 */
1015extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1016extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1017 unsigned long end_pfn);
1018extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
1019 unsigned long new_end_pfn);
fb01439c
MG
1020extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1021 unsigned long end_pfn);
c713216d
MG
1022extern void remove_all_active_ranges(void);
1023extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1024 unsigned long end_pfn);
1025extern void get_pfn_range_for_nid(unsigned int nid,
1026 unsigned long *start_pfn, unsigned long *end_pfn);
1027extern unsigned long find_min_pfn_with_active_regions(void);
1028extern unsigned long find_max_pfn_with_active_regions(void);
1029extern void free_bootmem_with_active_regions(int nid,
1030 unsigned long max_low_pfn);
1031extern void sparse_memory_present_with_active_regions(int nid);
1032#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1033extern int early_pfn_to_nid(unsigned long pfn);
1034#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1035#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 1036extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1037extern void memmap_init_zone(unsigned long, int, unsigned long,
1038 unsigned long, enum memmap_context);
3947be19 1039extern void setup_per_zone_pages_min(void);
1da177e4
LT
1040extern void mem_init(void);
1041extern void show_mem(void);
1042extern void si_meminfo(struct sysinfo * val);
1043extern void si_meminfo_node(struct sysinfo *val, int nid);
1044
e7c8d5c9
CL
1045#ifdef CONFIG_NUMA
1046extern void setup_per_cpu_pageset(void);
1047#else
1048static inline void setup_per_cpu_pageset(void) {}
1049#endif
1050
1da177e4
LT
1051/* prio_tree.c */
1052void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1053void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1054void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1055struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1056 struct prio_tree_iter *iter);
1057
1058#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1059 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1060 (vma = vma_prio_tree_next(vma, iter)); )
1061
1062static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1063 struct list_head *list)
1064{
1065 vma->shared.vm_set.parent = NULL;
1066 list_add_tail(&vma->shared.vm_set.list, list);
1067}
1068
1069/* mmap.c */
1070extern int __vm_enough_memory(long pages, int cap_sys_admin);
1071extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1072 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1073extern struct vm_area_struct *vma_merge(struct mm_struct *,
1074 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1075 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1076 struct mempolicy *);
1077extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1078extern int split_vma(struct mm_struct *,
1079 struct vm_area_struct *, unsigned long addr, int new_below);
1080extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1081extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1082 struct rb_node **, struct rb_node *);
a8fb5618 1083extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1084extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1085 unsigned long addr, unsigned long len, pgoff_t pgoff);
1086extern void exit_mmap(struct mm_struct *);
119f657c 1087extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1088extern int install_special_mapping(struct mm_struct *mm,
1089 unsigned long addr, unsigned long len,
1090 unsigned long flags, struct page **pages);
1da177e4
LT
1091
1092extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1093
1094extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1095 unsigned long len, unsigned long prot,
1096 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1097extern unsigned long mmap_region(struct file *file, unsigned long addr,
1098 unsigned long len, unsigned long flags,
1099 unsigned int vm_flags, unsigned long pgoff,
1100 int accountable);
1da177e4
LT
1101
1102static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1103 unsigned long len, unsigned long prot,
1104 unsigned long flag, unsigned long offset)
1105{
1106 unsigned long ret = -EINVAL;
1107 if ((offset + PAGE_ALIGN(len)) < offset)
1108 goto out;
1109 if (!(offset & ~PAGE_MASK))
1110 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1111out:
1112 return ret;
1113}
1114
1115extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1116
1117extern unsigned long do_brk(unsigned long, unsigned long);
1118
1119/* filemap.c */
1120extern unsigned long page_unuse(struct page *);
1121extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1122extern void truncate_inode_pages_range(struct address_space *,
1123 loff_t lstart, loff_t lend);
1da177e4
LT
1124
1125/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1126extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1127
1128/* mm/page-writeback.c */
1129int write_one_page(struct page *page, int wait);
1130
1131/* readahead.c */
1132#define VM_MAX_READAHEAD 128 /* kbytes */
1133#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1134#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1135 * turning readahead off */
1136
1137int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1138 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1139int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1140 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1141
1142void page_cache_sync_readahead(struct address_space *mapping,
1143 struct file_ra_state *ra,
1144 struct file *filp,
1145 pgoff_t offset,
1146 unsigned long size);
1147
1148void page_cache_async_readahead(struct address_space *mapping,
1149 struct file_ra_state *ra,
1150 struct file *filp,
1151 struct page *pg,
1152 pgoff_t offset,
1153 unsigned long size);
1154
1da177e4
LT
1155unsigned long max_sane_readahead(unsigned long nr);
1156
1157/* Do stack extension */
46dea3d0 1158extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1159#ifdef CONFIG_IA64
46dea3d0 1160extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1161#endif
1da177e4
LT
1162
1163/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1164extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1165extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1166 struct vm_area_struct **pprev);
1167
1168/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1169 NULL if none. Assume start_addr < end_addr. */
1170static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1171{
1172 struct vm_area_struct * vma = find_vma(mm,start_addr);
1173
1174 if (vma && end_addr <= vma->vm_start)
1175 vma = NULL;
1176 return vma;
1177}
1178
1179static inline unsigned long vma_pages(struct vm_area_struct *vma)
1180{
1181 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1182}
1183
804af2cf 1184pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd
HD
1185struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1186struct page *vmalloc_to_page(void *addr);
1187unsigned long vmalloc_to_pfn(void *addr);
1188int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1189 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1190int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1191int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1192 unsigned long pfn);
deceb6cd 1193
6aab341e 1194struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1195 unsigned int foll_flags);
1196#define FOLL_WRITE 0x01 /* check pte is writable */
1197#define FOLL_TOUCH 0x02 /* mark page accessed */
1198#define FOLL_GET 0x04 /* do get_page on page */
1199#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4 1200
aee16b3c
JF
1201typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1202 void *data);
1203extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1204 unsigned long size, pte_fn_t fn, void *data);
1205
1da177e4 1206#ifdef CONFIG_PROC_FS
ab50b8ed 1207void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1208#else
ab50b8ed 1209static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1210 unsigned long flags, struct file *file, long pages)
1211{
1212}
1213#endif /* CONFIG_PROC_FS */
1214
1da177e4
LT
1215#ifndef CONFIG_DEBUG_PAGEALLOC
1216static inline void
9858db50 1217kernel_map_pages(struct page *page, int numpages, int enable) {}
1da177e4
LT
1218#endif
1219
1220extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1221#ifdef __HAVE_ARCH_GATE_AREA
1222int in_gate_area_no_task(unsigned long addr);
1223int in_gate_area(struct task_struct *task, unsigned long addr);
1224#else
1225int in_gate_area_no_task(unsigned long addr);
1226#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1227#endif /* __HAVE_ARCH_GATE_AREA */
1228
9d0243bc
AM
1229int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1230 void __user *, size_t *, loff_t *);
69e05944 1231unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc
AM
1232 unsigned long lru_pages);
1233void drop_pagecache(void);
1234void drop_slab(void);
1235
7a9166e3
LY
1236#ifndef CONFIG_MMU
1237#define randomize_va_space 0
1238#else
a62eaf15 1239extern int randomize_va_space;
7a9166e3 1240#endif
a62eaf15 1241
f269fdd1 1242__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
e6e5494c 1243
1da177e4
LT
1244#endif /* __KERNEL__ */
1245#endif /* _LINUX_MM_H */