readahead: readahead page allocations are OK to fail
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
e9da73d6 17#include <linux/bit_spinlock.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
4e950f6f 21struct file_ra_state;
e8edc6e0 22struct user_struct;
4e950f6f 23struct writeback_control;
1da177e4
LT
24
25#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26extern unsigned long max_mapnr;
27#endif
28
29extern unsigned long num_physpages;
4481374c 30extern unsigned long totalram_pages;
1da177e4 31extern void * high_memory;
1da177e4
LT
32extern int page_cluster;
33
34#ifdef CONFIG_SYSCTL
35extern int sysctl_legacy_va_layout;
36#else
37#define sysctl_legacy_va_layout 0
38#endif
39
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/processor.h>
1da177e4 43
1da177e4
LT
44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
27ac792c
AR
46/* to align the pointer to the (next) page boundary */
47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48
1da177e4
LT
49/*
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
56 */
57
c43692e8
CL
58extern struct kmem_cache *vm_area_cachep;
59
1da177e4 60#ifndef CONFIG_MMU
8feae131
DH
61extern struct rb_root nommu_region_tree;
62extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
63
64extern unsigned int kobjsize(const void *objp);
65#endif
66
67/*
605d9288 68 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
69 */
70#define VM_READ 0x00000001 /* currently active flags */
71#define VM_WRITE 0x00000002
72#define VM_EXEC 0x00000004
73#define VM_SHARED 0x00000008
74
7e2cff42 75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
76#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77#define VM_MAYWRITE 0x00000020
78#define VM_MAYEXEC 0x00000040
79#define VM_MAYSHARE 0x00000080
80
81#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 83#define VM_GROWSUP 0x00000200
8ca3eb08
TL
84#else
85#define VM_GROWSUP 0x00000000
a664b2d8 86#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
8ca3eb08 87#endif
6aab341e 88#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
89#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90
91#define VM_EXECUTABLE 0x00001000
92#define VM_LOCKED 0x00002000
93#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94
95 /* Used by sys_madvise() */
96#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98
99#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 101#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 103#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
104#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
f2d6bfe9 106#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 107#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
f2d6bfe9
JW
108#else
109#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
110#endif
895791da 111#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 112#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 113
d0217ac0 114#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 115#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 116#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 117#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 118#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 119
a8bef8ff
MG
120/* Bits set in the VMA until the stack is in its final location */
121#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
122
1da177e4
LT
123#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
124#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
125#endif
126
127#ifdef CONFIG_STACK_GROWSUP
128#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129#else
130#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
131#endif
132
133#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
134#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
135#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
136#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
137#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
138
b291f000 139/*
78f11a25
AA
140 * Special vmas that are non-mergable, non-mlock()able.
141 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000
NP
142 */
143#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
144
1da177e4
LT
145/*
146 * mapping from the currently active vm_flags protection bits (the
147 * low four bits) to a page protection mask..
148 */
149extern pgprot_t protection_map[16];
150
d0217ac0
NP
151#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
152#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 153#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 154#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 155#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 156#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
d0217ac0 157
6bd9cd50 158/*
159 * This interface is used by x86 PAT code to identify a pfn mapping that is
160 * linear over entire vma. This is to optimize PAT code that deals with
161 * marking the physical region with a particular prot. This is not for generic
162 * mm use. Note also that this check will not work if the pfn mapping is
163 * linear for a vma starting at physical address 0. In which case PAT code
164 * falls back to slow path of reserving physical range page by page.
165 */
3c8bb73a 166static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
167{
895791da 168 return (vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 169}
170
171static inline int is_pfn_mapping(struct vm_area_struct *vma)
172{
173 return (vma->vm_flags & VM_PFNMAP);
174}
d0217ac0 175
54cb8821 176/*
d0217ac0 177 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
178 * ->fault function. The vma's ->fault is responsible for returning a bitmask
179 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 180 *
d0217ac0
NP
181 * pgoff should be used in favour of virtual_address, if possible. If pgoff
182 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
183 * mapping support.
54cb8821 184 */
d0217ac0
NP
185struct vm_fault {
186 unsigned int flags; /* FAULT_FLAG_xxx flags */
187 pgoff_t pgoff; /* Logical page offset based on vma */
188 void __user *virtual_address; /* Faulting virtual address */
189
190 struct page *page; /* ->fault handlers should return a
83c54070 191 * page here, unless VM_FAULT_NOPAGE
d0217ac0 192 * is set (which is also implied by
83c54070 193 * VM_FAULT_ERROR).
d0217ac0 194 */
54cb8821 195};
1da177e4
LT
196
197/*
198 * These are the virtual MM functions - opening of an area, closing and
199 * unmapping it (needed to keep files on disk up-to-date etc), pointer
200 * to the functions called when a no-page or a wp-page exception occurs.
201 */
202struct vm_operations_struct {
203 void (*open)(struct vm_area_struct * area);
204 void (*close)(struct vm_area_struct * area);
d0217ac0 205 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
206
207 /* notification that a previously read-only page is about to become
208 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 209 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
210
211 /* called by access_process_vm when get_user_pages() fails, typically
212 * for use by special VMAs that can switch between memory and hardware
213 */
214 int (*access)(struct vm_area_struct *vma, unsigned long addr,
215 void *buf, int len, int write);
1da177e4 216#ifdef CONFIG_NUMA
a6020ed7
LS
217 /*
218 * set_policy() op must add a reference to any non-NULL @new mempolicy
219 * to hold the policy upon return. Caller should pass NULL @new to
220 * remove a policy and fall back to surrounding context--i.e. do not
221 * install a MPOL_DEFAULT policy, nor the task or system default
222 * mempolicy.
223 */
1da177e4 224 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
225
226 /*
227 * get_policy() op must add reference [mpol_get()] to any policy at
228 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
229 * in mm/mempolicy.c will do this automatically.
230 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
231 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
232 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
233 * must return NULL--i.e., do not "fallback" to task or system default
234 * policy.
235 */
1da177e4
LT
236 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
237 unsigned long addr);
7b2259b3
CL
238 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
239 const nodemask_t *to, unsigned long flags);
1da177e4
LT
240#endif
241};
242
243struct mmu_gather;
244struct inode;
245
349aef0b
AM
246#define page_private(page) ((page)->private)
247#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 248
1da177e4
LT
249/*
250 * FIXME: take this include out, include page-flags.h in
251 * files which need it (119 of them)
252 */
253#include <linux/page-flags.h>
71e3aac0 254#include <linux/huge_mm.h>
1da177e4
LT
255
256/*
257 * Methods to modify the page usage count.
258 *
259 * What counts for a page usage:
260 * - cache mapping (page->mapping)
261 * - private data (page->private)
262 * - page mapped in a task's page tables, each mapping
263 * is counted separately
264 *
265 * Also, many kernel routines increase the page count before a critical
266 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
267 */
268
269/*
da6052f7 270 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 271 */
7c8ee9a8
NP
272static inline int put_page_testzero(struct page *page)
273{
725d704e 274 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 275 return atomic_dec_and_test(&page->_count);
7c8ee9a8 276}
1da177e4
LT
277
278/*
7c8ee9a8
NP
279 * Try to grab a ref unless the page has a refcount of zero, return false if
280 * that is the case.
1da177e4 281 */
7c8ee9a8
NP
282static inline int get_page_unless_zero(struct page *page)
283{
8dc04efb 284 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 285}
1da177e4 286
53df8fdc
WF
287extern int page_is_ram(unsigned long pfn);
288
48667e7a 289/* Support for virtually mapped pages */
b3bdda02
CL
290struct page *vmalloc_to_page(const void *addr);
291unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 292
0738c4bb
PM
293/*
294 * Determine if an address is within the vmalloc range
295 *
296 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
297 * is no special casing required.
298 */
9e2779fa
CL
299static inline int is_vmalloc_addr(const void *x)
300{
0738c4bb 301#ifdef CONFIG_MMU
9e2779fa
CL
302 unsigned long addr = (unsigned long)x;
303
304 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
305#else
306 return 0;
8ca3ed87 307#endif
0738c4bb 308}
81ac3ad9
KH
309#ifdef CONFIG_MMU
310extern int is_vmalloc_or_module_addr(const void *x);
311#else
934831d0 312static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
313{
314 return 0;
315}
316#endif
9e2779fa 317
e9da73d6
AA
318static inline void compound_lock(struct page *page)
319{
320#ifdef CONFIG_TRANSPARENT_HUGEPAGE
321 bit_spin_lock(PG_compound_lock, &page->flags);
322#endif
323}
324
325static inline void compound_unlock(struct page *page)
326{
327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 bit_spin_unlock(PG_compound_lock, &page->flags);
329#endif
330}
331
332static inline unsigned long compound_lock_irqsave(struct page *page)
333{
334 unsigned long uninitialized_var(flags);
335#ifdef CONFIG_TRANSPARENT_HUGEPAGE
336 local_irq_save(flags);
337 compound_lock(page);
338#endif
339 return flags;
340}
341
342static inline void compound_unlock_irqrestore(struct page *page,
343 unsigned long flags)
344{
345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
346 compound_unlock(page);
347 local_irq_restore(flags);
348#endif
349}
350
d85f3385
CL
351static inline struct page *compound_head(struct page *page)
352{
6d777953 353 if (unlikely(PageTail(page)))
d85f3385
CL
354 return page->first_page;
355 return page;
356}
357
4c21e2f2 358static inline int page_count(struct page *page)
1da177e4 359{
d85f3385 360 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
361}
362
363static inline void get_page(struct page *page)
364{
91807063
AA
365 /*
366 * Getting a normal page or the head of a compound page
367 * requires to already have an elevated page->_count. Only if
368 * we're getting a tail page, the elevated page->_count is
369 * required only in the head page, so for tail pages the
370 * bugcheck only verifies that the page->_count isn't
371 * negative.
372 */
373 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
1da177e4 374 atomic_inc(&page->_count);
91807063
AA
375 /*
376 * Getting a tail page will elevate both the head and tail
377 * page->_count(s).
378 */
379 if (unlikely(PageTail(page))) {
380 /*
381 * This is safe only because
382 * __split_huge_page_refcount can't run under
383 * get_page().
384 */
385 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
386 atomic_inc(&page->first_page->_count);
387 }
1da177e4
LT
388}
389
b49af68f
CL
390static inline struct page *virt_to_head_page(const void *x)
391{
392 struct page *page = virt_to_page(x);
393 return compound_head(page);
394}
395
7835e98b
NP
396/*
397 * Setup the page count before being freed into the page allocator for
398 * the first time (boot or memory hotplug)
399 */
400static inline void init_page_count(struct page *page)
401{
402 atomic_set(&page->_count, 1);
403}
404
5f24ce5f
AA
405/*
406 * PageBuddy() indicate that the page is free and in the buddy system
407 * (see mm/page_alloc.c).
ef2b4b95
AA
408 *
409 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
410 * -2 so that an underflow of the page_mapcount() won't be mistaken
411 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
412 * efficiently by most CPU architectures.
5f24ce5f 413 */
ef2b4b95
AA
414#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
415
5f24ce5f
AA
416static inline int PageBuddy(struct page *page)
417{
ef2b4b95 418 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
419}
420
421static inline void __SetPageBuddy(struct page *page)
422{
423 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 424 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
425}
426
427static inline void __ClearPageBuddy(struct page *page)
428{
429 VM_BUG_ON(!PageBuddy(page));
430 atomic_set(&page->_mapcount, -1);
431}
432
1da177e4 433void put_page(struct page *page);
1d7ea732 434void put_pages_list(struct list_head *pages);
1da177e4 435
8dfcc9ba 436void split_page(struct page *page, unsigned int order);
748446bb 437int split_free_page(struct page *page);
8dfcc9ba 438
33f2ef89
AW
439/*
440 * Compound pages have a destructor function. Provide a
441 * prototype for that function and accessor functions.
442 * These are _only_ valid on the head of a PG_compound page.
443 */
444typedef void compound_page_dtor(struct page *);
445
446static inline void set_compound_page_dtor(struct page *page,
447 compound_page_dtor *dtor)
448{
449 page[1].lru.next = (void *)dtor;
450}
451
452static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
453{
454 return (compound_page_dtor *)page[1].lru.next;
455}
456
d85f3385
CL
457static inline int compound_order(struct page *page)
458{
6d777953 459 if (!PageHead(page))
d85f3385
CL
460 return 0;
461 return (unsigned long)page[1].lru.prev;
462}
463
37c2ac78
AA
464static inline int compound_trans_order(struct page *page)
465{
466 int order;
467 unsigned long flags;
468
469 if (!PageHead(page))
470 return 0;
471
472 flags = compound_lock_irqsave(page);
473 order = compound_order(page);
474 compound_unlock_irqrestore(page, flags);
475 return order;
476}
477
d85f3385
CL
478static inline void set_compound_order(struct page *page, unsigned long order)
479{
480 page[1].lru.prev = (void *)order;
481}
482
3dece370 483#ifdef CONFIG_MMU
14fd403f
AA
484/*
485 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
486 * servicing faults for write access. In the normal case, do always want
487 * pte_mkwrite. But get_user_pages can cause write faults for mappings
488 * that do not have writing enabled, when used by access_process_vm.
489 */
490static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
491{
492 if (likely(vma->vm_flags & VM_WRITE))
493 pte = pte_mkwrite(pte);
494 return pte;
495}
3dece370 496#endif
14fd403f 497
1da177e4
LT
498/*
499 * Multiple processes may "see" the same page. E.g. for untouched
500 * mappings of /dev/null, all processes see the same page full of
501 * zeroes, and text pages of executables and shared libraries have
502 * only one copy in memory, at most, normally.
503 *
504 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
505 * page_count() == 0 means the page is free. page->lru is then used for
506 * freelist management in the buddy allocator.
da6052f7 507 * page_count() > 0 means the page has been allocated.
1da177e4 508 *
da6052f7
NP
509 * Pages are allocated by the slab allocator in order to provide memory
510 * to kmalloc and kmem_cache_alloc. In this case, the management of the
511 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
512 * unless a particular usage is carefully commented. (the responsibility of
513 * freeing the kmalloc memory is the caller's, of course).
1da177e4 514 *
da6052f7
NP
515 * A page may be used by anyone else who does a __get_free_page().
516 * In this case, page_count still tracks the references, and should only
517 * be used through the normal accessor functions. The top bits of page->flags
518 * and page->virtual store page management information, but all other fields
519 * are unused and could be used privately, carefully. The management of this
520 * page is the responsibility of the one who allocated it, and those who have
521 * subsequently been given references to it.
522 *
523 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
524 * managed by the Linux memory manager: I/O, buffers, swapping etc.
525 * The following discussion applies only to them.
526 *
da6052f7
NP
527 * A pagecache page contains an opaque `private' member, which belongs to the
528 * page's address_space. Usually, this is the address of a circular list of
529 * the page's disk buffers. PG_private must be set to tell the VM to call
530 * into the filesystem to release these pages.
1da177e4 531 *
da6052f7
NP
532 * A page may belong to an inode's memory mapping. In this case, page->mapping
533 * is the pointer to the inode, and page->index is the file offset of the page,
534 * in units of PAGE_CACHE_SIZE.
1da177e4 535 *
da6052f7
NP
536 * If pagecache pages are not associated with an inode, they are said to be
537 * anonymous pages. These may become associated with the swapcache, and in that
538 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 539 *
da6052f7
NP
540 * In either case (swapcache or inode backed), the pagecache itself holds one
541 * reference to the page. Setting PG_private should also increment the
542 * refcount. The each user mapping also has a reference to the page.
1da177e4 543 *
da6052f7
NP
544 * The pagecache pages are stored in a per-mapping radix tree, which is
545 * rooted at mapping->page_tree, and indexed by offset.
546 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
547 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 548 *
da6052f7 549 * All pagecache pages may be subject to I/O:
1da177e4
LT
550 * - inode pages may need to be read from disk,
551 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
552 * to be written back to the inode on disk,
553 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
554 * modified may need to be swapped out to swap space and (later) to be read
555 * back into memory.
1da177e4
LT
556 */
557
558/*
559 * The zone field is never updated after free_area_init_core()
560 * sets it, so none of the operations on it need to be atomic.
1da177e4 561 */
348f8b6c 562
d41dee36
AW
563
564/*
565 * page->flags layout:
566 *
567 * There are three possibilities for how page->flags get
568 * laid out. The first is for the normal case, without
569 * sparsemem. The second is for sparsemem when there is
570 * plenty of space for node and section. The last is when
571 * we have run out of space and have to fall back to an
572 * alternate (slower) way of determining the node.
573 *
308c05e3
CL
574 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
575 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
576 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 577 */
308c05e3 578#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
579#define SECTIONS_WIDTH SECTIONS_SHIFT
580#else
581#define SECTIONS_WIDTH 0
582#endif
583
584#define ZONES_WIDTH ZONES_SHIFT
585
9223b419 586#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
587#define NODES_WIDTH NODES_SHIFT
588#else
308c05e3
CL
589#ifdef CONFIG_SPARSEMEM_VMEMMAP
590#error "Vmemmap: No space for nodes field in page flags"
591#endif
d41dee36
AW
592#define NODES_WIDTH 0
593#endif
594
595/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 596#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
597#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
598#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
599
600/*
601 * We are going to use the flags for the page to node mapping if its in
602 * there. This includes the case where there is no node, so it is implicit.
603 */
89689ae7
CL
604#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
605#define NODE_NOT_IN_PAGE_FLAGS
606#endif
d41dee36
AW
607
608#ifndef PFN_SECTION_SHIFT
609#define PFN_SECTION_SHIFT 0
610#endif
348f8b6c
DH
611
612/*
25985edc 613 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
614 * sections we define the shift as 0; that plus a 0 mask ensures
615 * the compiler will optimise away reference to them.
616 */
d41dee36
AW
617#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
618#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
619#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 620
bce54bbf
WD
621/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
622#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 623#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
624#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
625 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 626#else
89689ae7 627#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
628#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
629 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
630#endif
631
bd8029b6 632#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 633
9223b419
CL
634#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
635#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
636#endif
637
d41dee36
AW
638#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
639#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
640#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 641#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 642
2f1b6248 643static inline enum zone_type page_zonenum(struct page *page)
1da177e4 644{
348f8b6c 645 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 646}
1da177e4 647
89689ae7
CL
648/*
649 * The identification function is only used by the buddy allocator for
650 * determining if two pages could be buddies. We are not really
651 * identifying a zone since we could be using a the section number
652 * id if we have not node id available in page flags.
653 * We guarantee only that it will return the same value for two
654 * combinable pages in a zone.
655 */
cb2b95e1
AW
656static inline int page_zone_id(struct page *page)
657{
89689ae7 658 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
659}
660
25ba77c1 661static inline int zone_to_nid(struct zone *zone)
89fa3024 662{
d5f541ed
CL
663#ifdef CONFIG_NUMA
664 return zone->node;
665#else
666 return 0;
667#endif
89fa3024
CL
668}
669
89689ae7 670#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 671extern int page_to_nid(struct page *page);
89689ae7 672#else
25ba77c1 673static inline int page_to_nid(struct page *page)
d41dee36 674{
89689ae7 675 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 676}
89689ae7
CL
677#endif
678
679static inline struct zone *page_zone(struct page *page)
680{
681 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
682}
683
308c05e3 684#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
685static inline unsigned long page_to_section(struct page *page)
686{
687 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
688}
308c05e3 689#endif
d41dee36 690
2f1b6248 691static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
692{
693 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
694 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
695}
2f1b6248 696
348f8b6c
DH
697static inline void set_page_node(struct page *page, unsigned long node)
698{
699 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
700 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 701}
89689ae7 702
d41dee36
AW
703static inline void set_page_section(struct page *page, unsigned long section)
704{
705 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
706 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
707}
1da177e4 708
2f1b6248 709static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 710 unsigned long node, unsigned long pfn)
1da177e4 711{
348f8b6c
DH
712 set_page_zone(page, zone);
713 set_page_node(page, node);
d41dee36 714 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
715}
716
f6ac2354
CL
717/*
718 * Some inline functions in vmstat.h depend on page_zone()
719 */
720#include <linux/vmstat.h>
721
652050ae 722static __always_inline void *lowmem_page_address(struct page *page)
1da177e4 723{
c6f6b596 724 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
725}
726
727#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
728#define HASHED_PAGE_VIRTUAL
729#endif
730
731#if defined(WANT_PAGE_VIRTUAL)
732#define page_address(page) ((page)->virtual)
733#define set_page_address(page, address) \
734 do { \
735 (page)->virtual = (address); \
736 } while(0)
737#define page_address_init() do { } while(0)
738#endif
739
740#if defined(HASHED_PAGE_VIRTUAL)
741void *page_address(struct page *page);
742void set_page_address(struct page *page, void *virtual);
743void page_address_init(void);
744#endif
745
746#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
747#define page_address(page) lowmem_page_address(page)
748#define set_page_address(page, address) do { } while(0)
749#define page_address_init() do { } while(0)
750#endif
751
752/*
753 * On an anonymous page mapped into a user virtual memory area,
754 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
755 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
756 *
757 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
758 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
759 * and then page->mapping points, not to an anon_vma, but to a private
760 * structure which KSM associates with that merged page. See ksm.h.
761 *
762 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
763 *
764 * Please note that, confusingly, "page_mapping" refers to the inode
765 * address_space which maps the page from disk; whereas "page_mapped"
766 * refers to user virtual address space into which the page is mapped.
767 */
768#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
769#define PAGE_MAPPING_KSM 2
770#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
771
772extern struct address_space swapper_space;
773static inline struct address_space *page_mapping(struct page *page)
774{
775 struct address_space *mapping = page->mapping;
776
b5fab14e 777 VM_BUG_ON(PageSlab(page));
1da177e4
LT
778 if (unlikely(PageSwapCache(page)))
779 mapping = &swapper_space;
e20e8779 780 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
781 mapping = NULL;
782 return mapping;
783}
784
3ca7b3c5
HD
785/* Neutral page->mapping pointer to address_space or anon_vma or other */
786static inline void *page_rmapping(struct page *page)
787{
788 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
789}
790
1da177e4
LT
791static inline int PageAnon(struct page *page)
792{
793 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
794}
795
796/*
797 * Return the pagecache index of the passed page. Regular pagecache pages
798 * use ->index whereas swapcache pages use ->private
799 */
800static inline pgoff_t page_index(struct page *page)
801{
802 if (unlikely(PageSwapCache(page)))
4c21e2f2 803 return page_private(page);
1da177e4
LT
804 return page->index;
805}
806
807/*
808 * The atomic page->_mapcount, like _count, starts from -1:
809 * so that transitions both from it and to it can be tracked,
810 * using atomic_inc_and_test and atomic_add_negative(-1).
811 */
812static inline void reset_page_mapcount(struct page *page)
813{
814 atomic_set(&(page)->_mapcount, -1);
815}
816
817static inline int page_mapcount(struct page *page)
818{
819 return atomic_read(&(page)->_mapcount) + 1;
820}
821
822/*
823 * Return true if this page is mapped into pagetables.
824 */
825static inline int page_mapped(struct page *page)
826{
827 return atomic_read(&(page)->_mapcount) >= 0;
828}
829
1da177e4
LT
830/*
831 * Different kinds of faults, as returned by handle_mm_fault().
832 * Used to decide whether a process gets delivered SIGBUS or
833 * just gets major/minor fault counters bumped up.
834 */
d0217ac0 835
83c54070 836#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 837
83c54070
NP
838#define VM_FAULT_OOM 0x0001
839#define VM_FAULT_SIGBUS 0x0002
840#define VM_FAULT_MAJOR 0x0004
841#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
842#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
843#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 844
83c54070
NP
845#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
846#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 847#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 848
aa50d3a7
AK
849#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
850
851#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
852 VM_FAULT_HWPOISON_LARGE)
853
854/* Encode hstate index for a hwpoisoned large page */
855#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
856#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 857
1c0fe6e3
NP
858/*
859 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
860 */
861extern void pagefault_out_of_memory(void);
862
1da177e4
LT
863#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
864
ddd588b5 865/*
7bf02ea2 866 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
867 * various contexts.
868 */
869#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
870
7bf02ea2
DR
871extern void show_free_areas(unsigned int flags);
872extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 873
3f96b79a 874int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 875struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
876int shmem_zero_setup(struct vm_area_struct *);
877
b0e15190
DH
878#ifndef CONFIG_MMU
879extern unsigned long shmem_get_unmapped_area(struct file *file,
880 unsigned long addr,
881 unsigned long len,
882 unsigned long pgoff,
883 unsigned long flags);
884#endif
885
e8edc6e0 886extern int can_do_mlock(void);
1da177e4
LT
887extern int user_shm_lock(size_t, struct user_struct *);
888extern void user_shm_unlock(size_t, struct user_struct *);
889
890/*
891 * Parameter block passed down to zap_pte_range in exceptional cases.
892 */
893struct zap_details {
894 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
895 struct address_space *check_mapping; /* Check page->mapping if set */
896 pgoff_t first_index; /* Lowest page->index to unmap */
897 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
898};
899
7e675137
NP
900struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
901 pte_t pte);
902
c627f9cc
JS
903int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
904 unsigned long size);
ee39b37b 905unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 906 unsigned long size, struct zap_details *);
d16dfc55 907unsigned long unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
908 struct vm_area_struct *start_vma, unsigned long start_addr,
909 unsigned long end_addr, unsigned long *nr_accounted,
910 struct zap_details *);
e6473092
MM
911
912/**
913 * mm_walk - callbacks for walk_page_range
914 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
915 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
916 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
917 * this handler is required to be able to handle
918 * pmd_trans_huge() pmds. They may simply choose to
919 * split_huge_page() instead of handling it explicitly.
e6473092
MM
920 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
921 * @pte_hole: if set, called for each hole at all levels
5dc37642 922 * @hugetlb_entry: if set, called for each hugetlb entry
e6473092
MM
923 *
924 * (see walk_page_range for more details)
925 */
926struct mm_walk {
2165009b
DH
927 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
928 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
929 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
930 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
931 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
932 int (*hugetlb_entry)(pte_t *, unsigned long,
933 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
934 struct mm_struct *mm;
935 void *private;
e6473092
MM
936};
937
2165009b
DH
938int walk_page_range(unsigned long addr, unsigned long end,
939 struct mm_walk *walk);
42b77728 940void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 941 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
942int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
943 struct vm_area_struct *vma);
1da177e4
LT
944void unmap_mapping_range(struct address_space *mapping,
945 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
946int follow_pfn(struct vm_area_struct *vma, unsigned long address,
947 unsigned long *pfn);
d87fe660 948int follow_phys(struct vm_area_struct *vma, unsigned long address,
949 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
950int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
951 void *buf, int len, int write);
1da177e4
LT
952
953static inline void unmap_shared_mapping_range(struct address_space *mapping,
954 loff_t const holebegin, loff_t const holelen)
955{
956 unmap_mapping_range(mapping, holebegin, holelen, 0);
957}
958
25d9e2d1 959extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 960extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 961extern int vmtruncate(struct inode *inode, loff_t offset);
962extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 963
750b4987 964int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 965int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 966
83f78668
WF
967int invalidate_inode_page(struct page *page);
968
7ee1dd3f 969#ifdef CONFIG_MMU
83c54070 970extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 971 unsigned long address, unsigned int flags);
7ee1dd3f
DH
972#else
973static inline int handle_mm_fault(struct mm_struct *mm,
974 struct vm_area_struct *vma, unsigned long address,
d06063cc 975 unsigned int flags)
7ee1dd3f
DH
976{
977 /* should never happen if there's no MMU */
978 BUG();
979 return VM_FAULT_SIGBUS;
980}
981#endif
f33ea7f4 982
1da177e4
LT
983extern int make_pages_present(unsigned long addr, unsigned long end);
984extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
985extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
986 void *buf, int len, int write);
1da177e4 987
0014bd99
HY
988int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
989 unsigned long start, int len, unsigned int foll_flags,
990 struct page **pages, struct vm_area_struct **vmas,
991 int *nonblocking);
d2bf6be8 992int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 993 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
994 struct page **pages, struct vm_area_struct **vmas);
995int get_user_pages_fast(unsigned long start, int nr_pages, int write,
996 struct page **pages);
f3e8fccd 997struct page *get_dump_page(unsigned long addr);
1da177e4 998
cf9a2ae8
DH
999extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1000extern void do_invalidatepage(struct page *page, unsigned long offset);
1001
1da177e4 1002int __set_page_dirty_nobuffers(struct page *page);
76719325 1003int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1004int redirty_page_for_writepage(struct writeback_control *wbc,
1005 struct page *page);
e3a7cca1 1006void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1007void account_page_writeback(struct page *page);
b3c97528 1008int set_page_dirty(struct page *page);
1da177e4
LT
1009int set_page_dirty_lock(struct page *page);
1010int clear_page_dirty_for_io(struct page *page);
1011
39aa3cb3 1012/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1013static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1014{
1015 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1016}
1017
a09a79f6
MP
1018static inline int stack_guard_page_start(struct vm_area_struct *vma,
1019 unsigned long addr)
1020{
1021 return (vma->vm_flags & VM_GROWSDOWN) &&
1022 (vma->vm_start == addr) &&
1023 !vma_growsdown(vma->vm_prev, addr);
1024}
1025
1026/* Is the vma a continuation of the stack vma below it? */
1027static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1028{
1029 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1030}
1031
1032static inline int stack_guard_page_end(struct vm_area_struct *vma,
1033 unsigned long addr)
1034{
1035 return (vma->vm_flags & VM_GROWSUP) &&
1036 (vma->vm_end == addr) &&
1037 !vma_growsup(vma->vm_next, addr);
1038}
1039
b6a2fea3
OW
1040extern unsigned long move_page_tables(struct vm_area_struct *vma,
1041 unsigned long old_addr, struct vm_area_struct *new_vma,
1042 unsigned long new_addr, unsigned long len);
1da177e4
LT
1043extern unsigned long do_mremap(unsigned long addr,
1044 unsigned long old_len, unsigned long new_len,
1045 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1046extern int mprotect_fixup(struct vm_area_struct *vma,
1047 struct vm_area_struct **pprev, unsigned long start,
1048 unsigned long end, unsigned long newflags);
1da177e4 1049
465a454f
PZ
1050/*
1051 * doesn't attempt to fault and will return short.
1052 */
1053int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1054 struct page **pages);
d559db08
KH
1055/*
1056 * per-process(per-mm_struct) statistics.
1057 */
34e55232 1058#if defined(SPLIT_RSS_COUNTING)
d559db08
KH
1059/*
1060 * The mm counters are not protected by its page_table_lock,
1061 * so must be incremented atomically.
1062 */
1063static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1064{
1065 atomic_long_set(&mm->rss_stat.count[member], value);
1066}
1067
34e55232 1068unsigned long get_mm_counter(struct mm_struct *mm, int member);
d559db08
KH
1069
1070static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1071{
1072 atomic_long_add(value, &mm->rss_stat.count[member]);
1073}
1074
1075static inline void inc_mm_counter(struct mm_struct *mm, int member)
1076{
1077 atomic_long_inc(&mm->rss_stat.count[member]);
1078}
1079
1080static inline void dec_mm_counter(struct mm_struct *mm, int member)
1081{
1082 atomic_long_dec(&mm->rss_stat.count[member]);
1083}
1084
1085#else /* !USE_SPLIT_PTLOCKS */
1086/*
1087 * The mm counters are protected by its page_table_lock,
1088 * so can be incremented directly.
1089 */
1090static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1091{
1092 mm->rss_stat.count[member] = value;
1093}
1094
1095static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1096{
1097 return mm->rss_stat.count[member];
1098}
1099
1100static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1101{
1102 mm->rss_stat.count[member] += value;
1103}
1104
1105static inline void inc_mm_counter(struct mm_struct *mm, int member)
1106{
1107 mm->rss_stat.count[member]++;
1108}
1109
1110static inline void dec_mm_counter(struct mm_struct *mm, int member)
1111{
1112 mm->rss_stat.count[member]--;
1113}
1114
1115#endif /* !USE_SPLIT_PTLOCKS */
1116
1117static inline unsigned long get_mm_rss(struct mm_struct *mm)
1118{
1119 return get_mm_counter(mm, MM_FILEPAGES) +
1120 get_mm_counter(mm, MM_ANONPAGES);
1121}
1122
1123static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1124{
1125 return max(mm->hiwater_rss, get_mm_rss(mm));
1126}
1127
1128static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1129{
1130 return max(mm->hiwater_vm, mm->total_vm);
1131}
1132
1133static inline void update_hiwater_rss(struct mm_struct *mm)
1134{
1135 unsigned long _rss = get_mm_rss(mm);
1136
1137 if ((mm)->hiwater_rss < _rss)
1138 (mm)->hiwater_rss = _rss;
1139}
1140
1141static inline void update_hiwater_vm(struct mm_struct *mm)
1142{
1143 if (mm->hiwater_vm < mm->total_vm)
1144 mm->hiwater_vm = mm->total_vm;
1145}
1146
1147static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1148 struct mm_struct *mm)
1149{
1150 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1151
1152 if (*maxrss < hiwater_rss)
1153 *maxrss = hiwater_rss;
1154}
1155
53bddb4e 1156#if defined(SPLIT_RSS_COUNTING)
34e55232 1157void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1158#else
1159static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1160{
1161}
1162#endif
465a454f 1163
1da177e4 1164/*
8e1f936b 1165 * A callback you can register to apply pressure to ageable caches.
1da177e4 1166 *
8e1f936b
RR
1167 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1168 * look through the least-recently-used 'nr_to_scan' entries and
1169 * attempt to free them up. It should return the number of objects
1170 * which remain in the cache. If it returns -1, it means it cannot do
1171 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 1172 *
8e1f936b
RR
1173 * The 'gfpmask' refers to the allocation we are currently trying to
1174 * fulfil.
1175 *
1176 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1177 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 1178 */
8e1f936b 1179struct shrinker {
7f8275d0 1180 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
8e1f936b 1181 int seeks; /* seeks to recreate an obj */
1da177e4 1182
8e1f936b
RR
1183 /* These are for internal use */
1184 struct list_head list;
1185 long nr; /* objs pending delete */
1186};
1187#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1188extern void register_shrinker(struct shrinker *);
1189extern void unregister_shrinker(struct shrinker *);
1da177e4 1190
4e950f6f 1191int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1192
25ca1d6c
NK
1193extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1194 spinlock_t **ptl);
1195static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1196 spinlock_t **ptl)
1197{
1198 pte_t *ptep;
1199 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1200 return ptep;
1201}
c9cfcddf 1202
5f22df00
NP
1203#ifdef __PAGETABLE_PUD_FOLDED
1204static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1205 unsigned long address)
1206{
1207 return 0;
1208}
1209#else
1bb3630e 1210int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1211#endif
1212
1213#ifdef __PAGETABLE_PMD_FOLDED
1214static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1215 unsigned long address)
1216{
1217 return 0;
1218}
1219#else
1bb3630e 1220int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1221#endif
1222
8ac1f832
AA
1223int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1224 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1225int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1226
1da177e4
LT
1227/*
1228 * The following ifdef needed to get the 4level-fixup.h header to work.
1229 * Remove it when 4level-fixup.h has been removed.
1230 */
1bb3630e 1231#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1232static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1233{
1bb3630e
HD
1234 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1235 NULL: pud_offset(pgd, address);
1da177e4
LT
1236}
1237
1238static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1239{
1bb3630e
HD
1240 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1241 NULL: pmd_offset(pud, address);
1da177e4 1242}
1bb3630e
HD
1243#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1244
f7d0b926 1245#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1246/*
1247 * We tuck a spinlock to guard each pagetable page into its struct page,
1248 * at page->private, with BUILD_BUG_ON to make sure that this will not
1249 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1250 * When freeing, reset page->mapping so free_pages_check won't complain.
1251 */
349aef0b 1252#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1253#define pte_lock_init(_page) do { \
1254 spin_lock_init(__pte_lockptr(_page)); \
1255} while (0)
1256#define pte_lock_deinit(page) ((page)->mapping = NULL)
1257#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1258#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1259/*
1260 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1261 */
1262#define pte_lock_init(page) do {} while (0)
1263#define pte_lock_deinit(page) do {} while (0)
1264#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1265#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1266
2f569afd
MS
1267static inline void pgtable_page_ctor(struct page *page)
1268{
1269 pte_lock_init(page);
1270 inc_zone_page_state(page, NR_PAGETABLE);
1271}
1272
1273static inline void pgtable_page_dtor(struct page *page)
1274{
1275 pte_lock_deinit(page);
1276 dec_zone_page_state(page, NR_PAGETABLE);
1277}
1278
c74df32c
HD
1279#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1280({ \
4c21e2f2 1281 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1282 pte_t *__pte = pte_offset_map(pmd, address); \
1283 *(ptlp) = __ptl; \
1284 spin_lock(__ptl); \
1285 __pte; \
1286})
1287
1288#define pte_unmap_unlock(pte, ptl) do { \
1289 spin_unlock(ptl); \
1290 pte_unmap(pte); \
1291} while (0)
1292
8ac1f832
AA
1293#define pte_alloc_map(mm, vma, pmd, address) \
1294 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1295 pmd, address))? \
1296 NULL: pte_offset_map(pmd, address))
1bb3630e 1297
c74df32c 1298#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1299 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1300 pmd, address))? \
c74df32c
HD
1301 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1302
1bb3630e 1303#define pte_alloc_kernel(pmd, address) \
8ac1f832 1304 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1305 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1306
1307extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1308extern void free_area_init_node(int nid, unsigned long * zones_size,
1309 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1310#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1311/*
1312 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1313 * zones, allocate the backing mem_map and account for memory holes in a more
1314 * architecture independent manner. This is a substitute for creating the
1315 * zone_sizes[] and zholes_size[] arrays and passing them to
1316 * free_area_init_node()
1317 *
1318 * An architecture is expected to register range of page frames backed by
1319 * physical memory with add_active_range() before calling
1320 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1321 * usage, an architecture is expected to do something like
1322 *
1323 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1324 * max_highmem_pfn};
1325 * for_each_valid_physical_page_range()
1326 * add_active_range(node_id, start_pfn, end_pfn)
1327 * free_area_init_nodes(max_zone_pfns);
1328 *
1329 * If the architecture guarantees that there are no holes in the ranges
1330 * registered with add_active_range(), free_bootmem_active_regions()
1331 * will call free_bootmem_node() for each registered physical page range.
1332 * Similarly sparse_memory_present_with_active_regions() calls
1333 * memory_present() for each range when SPARSEMEM is enabled.
1334 *
1335 * See mm/page_alloc.c for more information on each function exposed by
1336 * CONFIG_ARCH_POPULATES_NODE_MAP
1337 */
1338extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1339extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1340 unsigned long end_pfn);
cc1050ba
YL
1341extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1342 unsigned long end_pfn);
c713216d 1343extern void remove_all_active_ranges(void);
32996250
YL
1344void sort_node_map(void);
1345unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1346 unsigned long end_pfn);
c713216d
MG
1347extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1348 unsigned long end_pfn);
1349extern void get_pfn_range_for_nid(unsigned int nid,
1350 unsigned long *start_pfn, unsigned long *end_pfn);
1351extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1352extern void free_bootmem_with_active_regions(int nid,
1353 unsigned long max_low_pfn);
08677214
YL
1354int add_from_early_node_map(struct range *range, int az,
1355 int nr_range, int nid);
edbe7d23
YL
1356u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1357 u64 goal, u64 limit);
d52d53b8 1358typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1359extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d 1360extern void sparse_memory_present_with_active_regions(int nid);
c713216d 1361#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1362
1363#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1364 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1365static inline int __early_pfn_to_nid(unsigned long pfn)
1366{
1367 return 0;
1368}
1369#else
1370/* please see mm/page_alloc.c */
1371extern int __meminit early_pfn_to_nid(unsigned long pfn);
1372#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1373/* there is a per-arch backend function. */
1374extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1375#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1376#endif
1377
0e0b864e 1378extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1379extern void memmap_init_zone(unsigned long, int, unsigned long,
1380 unsigned long, enum memmap_context);
bc75d33f 1381extern void setup_per_zone_wmarks(void);
1b79acc9 1382extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1383extern void mem_init(void);
8feae131 1384extern void __init mmap_init(void);
b2b755b5 1385extern void show_mem(unsigned int flags);
1da177e4
LT
1386extern void si_meminfo(struct sysinfo * val);
1387extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1388extern int after_bootmem;
1da177e4 1389
a238ab5b
DH
1390extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1391
e7c8d5c9 1392extern void setup_per_cpu_pageset(void);
e7c8d5c9 1393
112067f0
SL
1394extern void zone_pcp_update(struct zone *zone);
1395
8feae131 1396/* nommu.c */
33e5d769 1397extern atomic_long_t mmap_pages_allocated;
7e660872 1398extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1399
1da177e4
LT
1400/* prio_tree.c */
1401void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1402void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1403void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1404struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1405 struct prio_tree_iter *iter);
1406
1407#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1408 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1409 (vma = vma_prio_tree_next(vma, iter)); )
1410
1411static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1412 struct list_head *list)
1413{
1414 vma->shared.vm_set.parent = NULL;
1415 list_add_tail(&vma->shared.vm_set.list, list);
1416}
1417
1418/* mmap.c */
34b4e4aa 1419extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1420extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1421 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1422extern struct vm_area_struct *vma_merge(struct mm_struct *,
1423 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1424 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1425 struct mempolicy *);
1426extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1427extern int split_vma(struct mm_struct *,
1428 struct vm_area_struct *, unsigned long addr, int new_below);
1429extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1430extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1431 struct rb_node **, struct rb_node *);
a8fb5618 1432extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1433extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1434 unsigned long addr, unsigned long len, pgoff_t pgoff);
1435extern void exit_mmap(struct mm_struct *);
925d1c40 1436
7906d00c
AA
1437extern int mm_take_all_locks(struct mm_struct *mm);
1438extern void mm_drop_all_locks(struct mm_struct *mm);
1439
925d1c40
MH
1440#ifdef CONFIG_PROC_FS
1441/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1442extern void added_exe_file_vma(struct mm_struct *mm);
1443extern void removed_exe_file_vma(struct mm_struct *mm);
1444#else
1445static inline void added_exe_file_vma(struct mm_struct *mm)
1446{}
1447
1448static inline void removed_exe_file_vma(struct mm_struct *mm)
1449{}
1450#endif /* CONFIG_PROC_FS */
1451
119f657c 1452extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1453extern int install_special_mapping(struct mm_struct *mm,
1454 unsigned long addr, unsigned long len,
1455 unsigned long flags, struct page **pages);
1da177e4
LT
1456
1457extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1458
1459extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1460 unsigned long len, unsigned long prot,
1461 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1462extern unsigned long mmap_region(struct file *file, unsigned long addr,
1463 unsigned long len, unsigned long flags,
5a6fe125 1464 unsigned int vm_flags, unsigned long pgoff);
1da177e4
LT
1465
1466static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1467 unsigned long len, unsigned long prot,
1468 unsigned long flag, unsigned long offset)
1469{
1470 unsigned long ret = -EINVAL;
1471 if ((offset + PAGE_ALIGN(len)) < offset)
1472 goto out;
1473 if (!(offset & ~PAGE_MASK))
1474 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1475out:
1476 return ret;
1477}
1478
1479extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1480
1481extern unsigned long do_brk(unsigned long, unsigned long);
1482
1483/* filemap.c */
1484extern unsigned long page_unuse(struct page *);
1485extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1486extern void truncate_inode_pages_range(struct address_space *,
1487 loff_t lstart, loff_t lend);
1da177e4
LT
1488
1489/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1490extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1491
1492/* mm/page-writeback.c */
1493int write_one_page(struct page *page, int wait);
1cf6e7d8 1494void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1495
1496/* readahead.c */
1497#define VM_MAX_READAHEAD 128 /* kbytes */
1498#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1499
1da177e4 1500int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1501 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1502
1503void page_cache_sync_readahead(struct address_space *mapping,
1504 struct file_ra_state *ra,
1505 struct file *filp,
1506 pgoff_t offset,
1507 unsigned long size);
1508
1509void page_cache_async_readahead(struct address_space *mapping,
1510 struct file_ra_state *ra,
1511 struct file *filp,
1512 struct page *pg,
1513 pgoff_t offset,
1514 unsigned long size);
1515
1da177e4 1516unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1517unsigned long ra_submit(struct file_ra_state *ra,
1518 struct address_space *mapping,
1519 struct file *filp);
1da177e4 1520
d05f3169 1521/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1522extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1523
1524/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1525extern int expand_downwards(struct vm_area_struct *vma,
1526 unsigned long address);
8ca3eb08 1527#if VM_GROWSUP
46dea3d0 1528extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1529#else
1530 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1531#endif
1da177e4
LT
1532
1533/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1534extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1535extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1536 struct vm_area_struct **pprev);
1537
1538/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1539 NULL if none. Assume start_addr < end_addr. */
1540static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1541{
1542 struct vm_area_struct * vma = find_vma(mm,start_addr);
1543
1544 if (vma && end_addr <= vma->vm_start)
1545 vma = NULL;
1546 return vma;
1547}
1548
1549static inline unsigned long vma_pages(struct vm_area_struct *vma)
1550{
1551 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1552}
1553
bad849b3 1554#ifdef CONFIG_MMU
804af2cf 1555pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1556#else
1557static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1558{
1559 return __pgprot(0);
1560}
1561#endif
1562
deceb6cd 1563struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1564int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1565 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1566int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1567int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1568 unsigned long pfn);
423bad60
NP
1569int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1570 unsigned long pfn);
deceb6cd 1571
6aab341e 1572struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1573 unsigned int foll_flags);
1574#define FOLL_WRITE 0x01 /* check pte is writable */
1575#define FOLL_TOUCH 0x02 /* mark page accessed */
1576#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1577#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1578#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1579#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1580 * and return without waiting upon it */
110d74a9 1581#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1582#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1583#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1584
2f569afd 1585typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1586 void *data);
1587extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1588 unsigned long size, pte_fn_t fn, void *data);
1589
1da177e4 1590#ifdef CONFIG_PROC_FS
ab50b8ed 1591void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1592#else
ab50b8ed 1593static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1594 unsigned long flags, struct file *file, long pages)
1595{
1596}
1597#endif /* CONFIG_PROC_FS */
1598
12d6f21e
IM
1599#ifdef CONFIG_DEBUG_PAGEALLOC
1600extern int debug_pagealloc_enabled;
1601
1602extern void kernel_map_pages(struct page *page, int numpages, int enable);
1603
1604static inline void enable_debug_pagealloc(void)
1605{
1606 debug_pagealloc_enabled = 1;
1607}
8a235efa
RW
1608#ifdef CONFIG_HIBERNATION
1609extern bool kernel_page_present(struct page *page);
1610#endif /* CONFIG_HIBERNATION */
12d6f21e 1611#else
1da177e4 1612static inline void
9858db50 1613kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1614static inline void enable_debug_pagealloc(void)
1615{
1616}
8a235efa
RW
1617#ifdef CONFIG_HIBERNATION
1618static inline bool kernel_page_present(struct page *page) { return true; }
1619#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1620#endif
1621
31db58b3 1622extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1623#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1624int in_gate_area_no_mm(unsigned long addr);
83b964bb 1625int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1626#else
cae5d390
SW
1627int in_gate_area_no_mm(unsigned long addr);
1628#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1629#endif /* __HAVE_ARCH_GATE_AREA */
1630
8d65af78 1631int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1632 void __user *, size_t *, loff_t *);
69e05944 1633unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc 1634 unsigned long lru_pages);
9d0243bc 1635
7a9166e3
LY
1636#ifndef CONFIG_MMU
1637#define randomize_va_space 0
1638#else
a62eaf15 1639extern int randomize_va_space;
7a9166e3 1640#endif
a62eaf15 1641
045e72ac 1642const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1643void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1644
9bdac914
YL
1645void sparse_mem_maps_populate_node(struct page **map_map,
1646 unsigned long pnum_begin,
1647 unsigned long pnum_end,
1648 unsigned long map_count,
1649 int nodeid);
1650
98f3cfc1 1651struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1652pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1653pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1654pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1655pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1656void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1657void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1658void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1659int vmemmap_populate_basepages(struct page *start_page,
1660 unsigned long pages, int node);
1661int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1662void vmemmap_populate_print_last(void);
8f6aac41 1663
6a46079c 1664
82ba011b
AK
1665enum mf_flags {
1666 MF_COUNT_INCREASED = 1 << 0,
1667};
6a46079c 1668extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1669extern int __memory_failure(unsigned long pfn, int trapno, int flags);
847ce401 1670extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1671extern int sysctl_memory_failure_early_kill;
1672extern int sysctl_memory_failure_recovery;
facb6011 1673extern void shake_page(struct page *p, int access);
6a46079c 1674extern atomic_long_t mce_bad_pages;
facb6011 1675extern int soft_offline_page(struct page *page, int flags);
6a46079c 1676
718a3821
WF
1677extern void dump_page(struct page *page);
1678
47ad8475
AA
1679#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1680extern void clear_huge_page(struct page *page,
1681 unsigned long addr,
1682 unsigned int pages_per_huge_page);
1683extern void copy_user_huge_page(struct page *dst, struct page *src,
1684 unsigned long addr, struct vm_area_struct *vma,
1685 unsigned int pages_per_huge_page);
1686#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1687
1da177e4
LT
1688#endif /* __KERNEL__ */
1689#endif /* _LINUX_MM_H */