score: Use HAVE_MEMBLOCK_NODE_MAP
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
e9da73d6 17#include <linux/bit_spinlock.h>
b0d40c92 18#include <linux/shrinker.h>
1da177e4
LT
19
20struct mempolicy;
21struct anon_vma;
4e950f6f 22struct file_ra_state;
e8edc6e0 23struct user_struct;
4e950f6f 24struct writeback_control;
1da177e4
LT
25
26#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
27extern unsigned long max_mapnr;
28#endif
29
30extern unsigned long num_physpages;
4481374c 31extern unsigned long totalram_pages;
1da177e4 32extern void * high_memory;
1da177e4
LT
33extern int page_cluster;
34
35#ifdef CONFIG_SYSCTL
36extern int sysctl_legacy_va_layout;
37#else
38#define sysctl_legacy_va_layout 0
39#endif
40
41#include <asm/page.h>
42#include <asm/pgtable.h>
43#include <asm/processor.h>
1da177e4 44
1da177e4
LT
45#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
46
27ac792c
AR
47/* to align the pointer to the (next) page boundary */
48#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
49
1da177e4
LT
50/*
51 * Linux kernel virtual memory manager primitives.
52 * The idea being to have a "virtual" mm in the same way
53 * we have a virtual fs - giving a cleaner interface to the
54 * mm details, and allowing different kinds of memory mappings
55 * (from shared memory to executable loading to arbitrary
56 * mmap() functions).
57 */
58
c43692e8
CL
59extern struct kmem_cache *vm_area_cachep;
60
1da177e4 61#ifndef CONFIG_MMU
8feae131
DH
62extern struct rb_root nommu_region_tree;
63extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
64
65extern unsigned int kobjsize(const void *objp);
66#endif
67
68/*
605d9288 69 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
70 */
71#define VM_READ 0x00000001 /* currently active flags */
72#define VM_WRITE 0x00000002
73#define VM_EXEC 0x00000004
74#define VM_SHARED 0x00000008
75
7e2cff42 76/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
77#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
78#define VM_MAYWRITE 0x00000020
79#define VM_MAYEXEC 0x00000040
80#define VM_MAYSHARE 0x00000080
81
82#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 83#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 84#define VM_GROWSUP 0x00000200
8ca3eb08
TL
85#else
86#define VM_GROWSUP 0x00000000
a664b2d8 87#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
8ca3eb08 88#endif
6aab341e 89#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
90#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
91
92#define VM_EXECUTABLE 0x00001000
93#define VM_LOCKED 0x00002000
94#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 102#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 103#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 104#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
105#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
106#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
f2d6bfe9 107#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 108#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
f2d6bfe9
JW
109#else
110#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
111#endif
895791da 112#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 113#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 114
d0217ac0 115#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 116#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 117#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 118#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 119#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 120
a8bef8ff
MG
121/* Bits set in the VMA until the stack is in its final location */
122#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
123
1da177e4
LT
124#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
125#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
126#endif
127
128#ifdef CONFIG_STACK_GROWSUP
129#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
130#else
131#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
132#endif
133
134#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
135#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
136#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
137#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
138#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
139
b291f000 140/*
78f11a25
AA
141 * Special vmas that are non-mergable, non-mlock()able.
142 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000
NP
143 */
144#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
145
1da177e4
LT
146/*
147 * mapping from the currently active vm_flags protection bits (the
148 * low four bits) to a page protection mask..
149 */
150extern pgprot_t protection_map[16];
151
d0217ac0
NP
152#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
153#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 154#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 155#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 156#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 157#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
d0217ac0 158
6bd9cd50 159/*
160 * This interface is used by x86 PAT code to identify a pfn mapping that is
161 * linear over entire vma. This is to optimize PAT code that deals with
162 * marking the physical region with a particular prot. This is not for generic
163 * mm use. Note also that this check will not work if the pfn mapping is
164 * linear for a vma starting at physical address 0. In which case PAT code
165 * falls back to slow path of reserving physical range page by page.
166 */
3c8bb73a 167static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
168{
ca16d140 169 return !!(vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 170}
171
172static inline int is_pfn_mapping(struct vm_area_struct *vma)
173{
ca16d140 174 return !!(vma->vm_flags & VM_PFNMAP);
3c8bb73a 175}
d0217ac0 176
54cb8821 177/*
d0217ac0 178 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
179 * ->fault function. The vma's ->fault is responsible for returning a bitmask
180 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 181 *
d0217ac0
NP
182 * pgoff should be used in favour of virtual_address, if possible. If pgoff
183 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
184 * mapping support.
54cb8821 185 */
d0217ac0
NP
186struct vm_fault {
187 unsigned int flags; /* FAULT_FLAG_xxx flags */
188 pgoff_t pgoff; /* Logical page offset based on vma */
189 void __user *virtual_address; /* Faulting virtual address */
190
191 struct page *page; /* ->fault handlers should return a
83c54070 192 * page here, unless VM_FAULT_NOPAGE
d0217ac0 193 * is set (which is also implied by
83c54070 194 * VM_FAULT_ERROR).
d0217ac0 195 */
54cb8821 196};
1da177e4
LT
197
198/*
199 * These are the virtual MM functions - opening of an area, closing and
200 * unmapping it (needed to keep files on disk up-to-date etc), pointer
201 * to the functions called when a no-page or a wp-page exception occurs.
202 */
203struct vm_operations_struct {
204 void (*open)(struct vm_area_struct * area);
205 void (*close)(struct vm_area_struct * area);
d0217ac0 206 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
207
208 /* notification that a previously read-only page is about to become
209 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 210 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
211
212 /* called by access_process_vm when get_user_pages() fails, typically
213 * for use by special VMAs that can switch between memory and hardware
214 */
215 int (*access)(struct vm_area_struct *vma, unsigned long addr,
216 void *buf, int len, int write);
1da177e4 217#ifdef CONFIG_NUMA
a6020ed7
LS
218 /*
219 * set_policy() op must add a reference to any non-NULL @new mempolicy
220 * to hold the policy upon return. Caller should pass NULL @new to
221 * remove a policy and fall back to surrounding context--i.e. do not
222 * install a MPOL_DEFAULT policy, nor the task or system default
223 * mempolicy.
224 */
1da177e4 225 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
226
227 /*
228 * get_policy() op must add reference [mpol_get()] to any policy at
229 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
230 * in mm/mempolicy.c will do this automatically.
231 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
232 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
233 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
234 * must return NULL--i.e., do not "fallback" to task or system default
235 * policy.
236 */
1da177e4
LT
237 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
238 unsigned long addr);
7b2259b3
CL
239 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
240 const nodemask_t *to, unsigned long flags);
1da177e4
LT
241#endif
242};
243
244struct mmu_gather;
245struct inode;
246
349aef0b
AM
247#define page_private(page) ((page)->private)
248#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 249
1da177e4
LT
250/*
251 * FIXME: take this include out, include page-flags.h in
252 * files which need it (119 of them)
253 */
254#include <linux/page-flags.h>
71e3aac0 255#include <linux/huge_mm.h>
1da177e4
LT
256
257/*
258 * Methods to modify the page usage count.
259 *
260 * What counts for a page usage:
261 * - cache mapping (page->mapping)
262 * - private data (page->private)
263 * - page mapped in a task's page tables, each mapping
264 * is counted separately
265 *
266 * Also, many kernel routines increase the page count before a critical
267 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
268 */
269
270/*
da6052f7 271 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 272 */
7c8ee9a8
NP
273static inline int put_page_testzero(struct page *page)
274{
725d704e 275 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 276 return atomic_dec_and_test(&page->_count);
7c8ee9a8 277}
1da177e4
LT
278
279/*
7c8ee9a8
NP
280 * Try to grab a ref unless the page has a refcount of zero, return false if
281 * that is the case.
1da177e4 282 */
7c8ee9a8
NP
283static inline int get_page_unless_zero(struct page *page)
284{
8dc04efb 285 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 286}
1da177e4 287
53df8fdc
WF
288extern int page_is_ram(unsigned long pfn);
289
48667e7a 290/* Support for virtually mapped pages */
b3bdda02
CL
291struct page *vmalloc_to_page(const void *addr);
292unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 293
0738c4bb
PM
294/*
295 * Determine if an address is within the vmalloc range
296 *
297 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
298 * is no special casing required.
299 */
9e2779fa
CL
300static inline int is_vmalloc_addr(const void *x)
301{
0738c4bb 302#ifdef CONFIG_MMU
9e2779fa
CL
303 unsigned long addr = (unsigned long)x;
304
305 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
306#else
307 return 0;
8ca3ed87 308#endif
0738c4bb 309}
81ac3ad9
KH
310#ifdef CONFIG_MMU
311extern int is_vmalloc_or_module_addr(const void *x);
312#else
934831d0 313static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
314{
315 return 0;
316}
317#endif
9e2779fa 318
e9da73d6
AA
319static inline void compound_lock(struct page *page)
320{
321#ifdef CONFIG_TRANSPARENT_HUGEPAGE
322 bit_spin_lock(PG_compound_lock, &page->flags);
323#endif
324}
325
326static inline void compound_unlock(struct page *page)
327{
328#ifdef CONFIG_TRANSPARENT_HUGEPAGE
329 bit_spin_unlock(PG_compound_lock, &page->flags);
330#endif
331}
332
333static inline unsigned long compound_lock_irqsave(struct page *page)
334{
335 unsigned long uninitialized_var(flags);
336#ifdef CONFIG_TRANSPARENT_HUGEPAGE
337 local_irq_save(flags);
338 compound_lock(page);
339#endif
340 return flags;
341}
342
343static inline void compound_unlock_irqrestore(struct page *page,
344 unsigned long flags)
345{
346#ifdef CONFIG_TRANSPARENT_HUGEPAGE
347 compound_unlock(page);
348 local_irq_restore(flags);
349#endif
350}
351
d85f3385
CL
352static inline struct page *compound_head(struct page *page)
353{
6d777953 354 if (unlikely(PageTail(page)))
d85f3385
CL
355 return page->first_page;
356 return page;
357}
358
70b50f94
AA
359/*
360 * The atomic page->_mapcount, starts from -1: so that transitions
361 * both from it and to it can be tracked, using atomic_inc_and_test
362 * and atomic_add_negative(-1).
363 */
364static inline void reset_page_mapcount(struct page *page)
365{
366 atomic_set(&(page)->_mapcount, -1);
367}
368
369static inline int page_mapcount(struct page *page)
370{
371 return atomic_read(&(page)->_mapcount) + 1;
372}
373
4c21e2f2 374static inline int page_count(struct page *page)
1da177e4 375{
d85f3385 376 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
377}
378
b35a35b5
AA
379static inline void get_huge_page_tail(struct page *page)
380{
381 /*
382 * __split_huge_page_refcount() cannot run
383 * from under us.
384 */
385 VM_BUG_ON(page_mapcount(page) < 0);
386 VM_BUG_ON(atomic_read(&page->_count) != 0);
387 atomic_inc(&page->_mapcount);
388}
389
70b50f94
AA
390extern bool __get_page_tail(struct page *page);
391
1da177e4
LT
392static inline void get_page(struct page *page)
393{
70b50f94
AA
394 if (unlikely(PageTail(page)))
395 if (likely(__get_page_tail(page)))
396 return;
91807063
AA
397 /*
398 * Getting a normal page or the head of a compound page
70b50f94 399 * requires to already have an elevated page->_count.
91807063 400 */
70b50f94 401 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
402 atomic_inc(&page->_count);
403}
404
b49af68f
CL
405static inline struct page *virt_to_head_page(const void *x)
406{
407 struct page *page = virt_to_page(x);
408 return compound_head(page);
409}
410
7835e98b
NP
411/*
412 * Setup the page count before being freed into the page allocator for
413 * the first time (boot or memory hotplug)
414 */
415static inline void init_page_count(struct page *page)
416{
417 atomic_set(&page->_count, 1);
418}
419
5f24ce5f
AA
420/*
421 * PageBuddy() indicate that the page is free and in the buddy system
422 * (see mm/page_alloc.c).
ef2b4b95
AA
423 *
424 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
425 * -2 so that an underflow of the page_mapcount() won't be mistaken
426 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
427 * efficiently by most CPU architectures.
5f24ce5f 428 */
ef2b4b95
AA
429#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
430
5f24ce5f
AA
431static inline int PageBuddy(struct page *page)
432{
ef2b4b95 433 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
434}
435
436static inline void __SetPageBuddy(struct page *page)
437{
438 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 439 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
440}
441
442static inline void __ClearPageBuddy(struct page *page)
443{
444 VM_BUG_ON(!PageBuddy(page));
445 atomic_set(&page->_mapcount, -1);
446}
447
1da177e4 448void put_page(struct page *page);
1d7ea732 449void put_pages_list(struct list_head *pages);
1da177e4 450
8dfcc9ba 451void split_page(struct page *page, unsigned int order);
748446bb 452int split_free_page(struct page *page);
8dfcc9ba 453
33f2ef89
AW
454/*
455 * Compound pages have a destructor function. Provide a
456 * prototype for that function and accessor functions.
457 * These are _only_ valid on the head of a PG_compound page.
458 */
459typedef void compound_page_dtor(struct page *);
460
461static inline void set_compound_page_dtor(struct page *page,
462 compound_page_dtor *dtor)
463{
464 page[1].lru.next = (void *)dtor;
465}
466
467static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
468{
469 return (compound_page_dtor *)page[1].lru.next;
470}
471
d85f3385
CL
472static inline int compound_order(struct page *page)
473{
6d777953 474 if (!PageHead(page))
d85f3385
CL
475 return 0;
476 return (unsigned long)page[1].lru.prev;
477}
478
37c2ac78
AA
479static inline int compound_trans_order(struct page *page)
480{
481 int order;
482 unsigned long flags;
483
484 if (!PageHead(page))
485 return 0;
486
487 flags = compound_lock_irqsave(page);
488 order = compound_order(page);
489 compound_unlock_irqrestore(page, flags);
490 return order;
491}
492
d85f3385
CL
493static inline void set_compound_order(struct page *page, unsigned long order)
494{
495 page[1].lru.prev = (void *)order;
496}
497
3dece370 498#ifdef CONFIG_MMU
14fd403f
AA
499/*
500 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
501 * servicing faults for write access. In the normal case, do always want
502 * pte_mkwrite. But get_user_pages can cause write faults for mappings
503 * that do not have writing enabled, when used by access_process_vm.
504 */
505static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
506{
507 if (likely(vma->vm_flags & VM_WRITE))
508 pte = pte_mkwrite(pte);
509 return pte;
510}
3dece370 511#endif
14fd403f 512
1da177e4
LT
513/*
514 * Multiple processes may "see" the same page. E.g. for untouched
515 * mappings of /dev/null, all processes see the same page full of
516 * zeroes, and text pages of executables and shared libraries have
517 * only one copy in memory, at most, normally.
518 *
519 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
520 * page_count() == 0 means the page is free. page->lru is then used for
521 * freelist management in the buddy allocator.
da6052f7 522 * page_count() > 0 means the page has been allocated.
1da177e4 523 *
da6052f7
NP
524 * Pages are allocated by the slab allocator in order to provide memory
525 * to kmalloc and kmem_cache_alloc. In this case, the management of the
526 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
527 * unless a particular usage is carefully commented. (the responsibility of
528 * freeing the kmalloc memory is the caller's, of course).
1da177e4 529 *
da6052f7
NP
530 * A page may be used by anyone else who does a __get_free_page().
531 * In this case, page_count still tracks the references, and should only
532 * be used through the normal accessor functions. The top bits of page->flags
533 * and page->virtual store page management information, but all other fields
534 * are unused and could be used privately, carefully. The management of this
535 * page is the responsibility of the one who allocated it, and those who have
536 * subsequently been given references to it.
537 *
538 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
539 * managed by the Linux memory manager: I/O, buffers, swapping etc.
540 * The following discussion applies only to them.
541 *
da6052f7
NP
542 * A pagecache page contains an opaque `private' member, which belongs to the
543 * page's address_space. Usually, this is the address of a circular list of
544 * the page's disk buffers. PG_private must be set to tell the VM to call
545 * into the filesystem to release these pages.
1da177e4 546 *
da6052f7
NP
547 * A page may belong to an inode's memory mapping. In this case, page->mapping
548 * is the pointer to the inode, and page->index is the file offset of the page,
549 * in units of PAGE_CACHE_SIZE.
1da177e4 550 *
da6052f7
NP
551 * If pagecache pages are not associated with an inode, they are said to be
552 * anonymous pages. These may become associated with the swapcache, and in that
553 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 554 *
da6052f7
NP
555 * In either case (swapcache or inode backed), the pagecache itself holds one
556 * reference to the page. Setting PG_private should also increment the
557 * refcount. The each user mapping also has a reference to the page.
1da177e4 558 *
da6052f7
NP
559 * The pagecache pages are stored in a per-mapping radix tree, which is
560 * rooted at mapping->page_tree, and indexed by offset.
561 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
562 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 563 *
da6052f7 564 * All pagecache pages may be subject to I/O:
1da177e4
LT
565 * - inode pages may need to be read from disk,
566 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
567 * to be written back to the inode on disk,
568 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
569 * modified may need to be swapped out to swap space and (later) to be read
570 * back into memory.
1da177e4
LT
571 */
572
573/*
574 * The zone field is never updated after free_area_init_core()
575 * sets it, so none of the operations on it need to be atomic.
1da177e4 576 */
348f8b6c 577
d41dee36
AW
578
579/*
580 * page->flags layout:
581 *
582 * There are three possibilities for how page->flags get
583 * laid out. The first is for the normal case, without
584 * sparsemem. The second is for sparsemem when there is
585 * plenty of space for node and section. The last is when
586 * we have run out of space and have to fall back to an
587 * alternate (slower) way of determining the node.
588 *
308c05e3
CL
589 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
590 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
591 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 592 */
308c05e3 593#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
594#define SECTIONS_WIDTH SECTIONS_SHIFT
595#else
596#define SECTIONS_WIDTH 0
597#endif
598
599#define ZONES_WIDTH ZONES_SHIFT
600
9223b419 601#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
602#define NODES_WIDTH NODES_SHIFT
603#else
308c05e3
CL
604#ifdef CONFIG_SPARSEMEM_VMEMMAP
605#error "Vmemmap: No space for nodes field in page flags"
606#endif
d41dee36
AW
607#define NODES_WIDTH 0
608#endif
609
610/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 611#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
612#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
613#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
614
615/*
616 * We are going to use the flags for the page to node mapping if its in
617 * there. This includes the case where there is no node, so it is implicit.
618 */
89689ae7
CL
619#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
620#define NODE_NOT_IN_PAGE_FLAGS
621#endif
d41dee36 622
348f8b6c 623/*
25985edc 624 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
625 * sections we define the shift as 0; that plus a 0 mask ensures
626 * the compiler will optimise away reference to them.
627 */
d41dee36
AW
628#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
629#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
630#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 631
bce54bbf
WD
632/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
633#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 634#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
635#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
636 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 637#else
89689ae7 638#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
639#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
640 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
641#endif
642
bd8029b6 643#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 644
9223b419
CL
645#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
646#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
647#endif
648
d41dee36
AW
649#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
650#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
651#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 652#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 653
33dd4e0e 654static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 655{
348f8b6c 656 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 657}
1da177e4 658
89689ae7
CL
659/*
660 * The identification function is only used by the buddy allocator for
661 * determining if two pages could be buddies. We are not really
662 * identifying a zone since we could be using a the section number
663 * id if we have not node id available in page flags.
664 * We guarantee only that it will return the same value for two
665 * combinable pages in a zone.
666 */
cb2b95e1
AW
667static inline int page_zone_id(struct page *page)
668{
89689ae7 669 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
670}
671
25ba77c1 672static inline int zone_to_nid(struct zone *zone)
89fa3024 673{
d5f541ed
CL
674#ifdef CONFIG_NUMA
675 return zone->node;
676#else
677 return 0;
678#endif
89fa3024
CL
679}
680
89689ae7 681#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 682extern int page_to_nid(const struct page *page);
89689ae7 683#else
33dd4e0e 684static inline int page_to_nid(const struct page *page)
d41dee36 685{
89689ae7 686 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 687}
89689ae7
CL
688#endif
689
33dd4e0e 690static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
691{
692 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
693}
694
308c05e3 695#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
696static inline void set_page_section(struct page *page, unsigned long section)
697{
698 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
699 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
700}
701
aa462abe 702static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
703{
704 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
705}
308c05e3 706#endif
d41dee36 707
2f1b6248 708static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
709{
710 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
711 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
712}
2f1b6248 713
348f8b6c
DH
714static inline void set_page_node(struct page *page, unsigned long node)
715{
716 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
717 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 718}
89689ae7 719
2f1b6248 720static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 721 unsigned long node, unsigned long pfn)
1da177e4 722{
348f8b6c
DH
723 set_page_zone(page, zone);
724 set_page_node(page, node);
bf4e8902 725#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 726 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 727#endif
1da177e4
LT
728}
729
f6ac2354
CL
730/*
731 * Some inline functions in vmstat.h depend on page_zone()
732 */
733#include <linux/vmstat.h>
734
33dd4e0e 735static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 736{
c6f6b596 737 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
738}
739
740#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
741#define HASHED_PAGE_VIRTUAL
742#endif
743
744#if defined(WANT_PAGE_VIRTUAL)
745#define page_address(page) ((page)->virtual)
746#define set_page_address(page, address) \
747 do { \
748 (page)->virtual = (address); \
749 } while(0)
750#define page_address_init() do { } while(0)
751#endif
752
753#if defined(HASHED_PAGE_VIRTUAL)
f9918794 754void *page_address(const struct page *page);
1da177e4
LT
755void set_page_address(struct page *page, void *virtual);
756void page_address_init(void);
757#endif
758
759#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
760#define page_address(page) lowmem_page_address(page)
761#define set_page_address(page, address) do { } while(0)
762#define page_address_init() do { } while(0)
763#endif
764
765/*
766 * On an anonymous page mapped into a user virtual memory area,
767 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
768 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
769 *
770 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
771 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
772 * and then page->mapping points, not to an anon_vma, but to a private
773 * structure which KSM associates with that merged page. See ksm.h.
774 *
775 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
776 *
777 * Please note that, confusingly, "page_mapping" refers to the inode
778 * address_space which maps the page from disk; whereas "page_mapped"
779 * refers to user virtual address space into which the page is mapped.
780 */
781#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
782#define PAGE_MAPPING_KSM 2
783#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
784
785extern struct address_space swapper_space;
786static inline struct address_space *page_mapping(struct page *page)
787{
788 struct address_space *mapping = page->mapping;
789
b5fab14e 790 VM_BUG_ON(PageSlab(page));
1da177e4
LT
791 if (unlikely(PageSwapCache(page)))
792 mapping = &swapper_space;
e20e8779 793 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
794 mapping = NULL;
795 return mapping;
796}
797
3ca7b3c5
HD
798/* Neutral page->mapping pointer to address_space or anon_vma or other */
799static inline void *page_rmapping(struct page *page)
800{
801 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
802}
803
1da177e4
LT
804static inline int PageAnon(struct page *page)
805{
806 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
807}
808
809/*
810 * Return the pagecache index of the passed page. Regular pagecache pages
811 * use ->index whereas swapcache pages use ->private
812 */
813static inline pgoff_t page_index(struct page *page)
814{
815 if (unlikely(PageSwapCache(page)))
4c21e2f2 816 return page_private(page);
1da177e4
LT
817 return page->index;
818}
819
1da177e4
LT
820/*
821 * Return true if this page is mapped into pagetables.
822 */
823static inline int page_mapped(struct page *page)
824{
825 return atomic_read(&(page)->_mapcount) >= 0;
826}
827
1da177e4
LT
828/*
829 * Different kinds of faults, as returned by handle_mm_fault().
830 * Used to decide whether a process gets delivered SIGBUS or
831 * just gets major/minor fault counters bumped up.
832 */
d0217ac0 833
83c54070 834#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 835
83c54070
NP
836#define VM_FAULT_OOM 0x0001
837#define VM_FAULT_SIGBUS 0x0002
838#define VM_FAULT_MAJOR 0x0004
839#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
840#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
841#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 842
83c54070
NP
843#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
844#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 845#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 846
aa50d3a7
AK
847#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
848
849#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
850 VM_FAULT_HWPOISON_LARGE)
851
852/* Encode hstate index for a hwpoisoned large page */
853#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
854#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 855
1c0fe6e3
NP
856/*
857 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
858 */
859extern void pagefault_out_of_memory(void);
860
1da177e4
LT
861#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
862
ddd588b5 863/*
7bf02ea2 864 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
865 * various contexts.
866 */
867#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
868
7bf02ea2
DR
869extern void show_free_areas(unsigned int flags);
870extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 871
3f96b79a 872int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 873struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
874int shmem_zero_setup(struct vm_area_struct *);
875
e8edc6e0 876extern int can_do_mlock(void);
1da177e4
LT
877extern int user_shm_lock(size_t, struct user_struct *);
878extern void user_shm_unlock(size_t, struct user_struct *);
879
880/*
881 * Parameter block passed down to zap_pte_range in exceptional cases.
882 */
883struct zap_details {
884 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
885 struct address_space *check_mapping; /* Check page->mapping if set */
886 pgoff_t first_index; /* Lowest page->index to unmap */
887 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
888};
889
7e675137
NP
890struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
891 pte_t pte);
892
c627f9cc
JS
893int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
894 unsigned long size);
ee39b37b 895unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 896 unsigned long size, struct zap_details *);
d16dfc55 897unsigned long unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
898 struct vm_area_struct *start_vma, unsigned long start_addr,
899 unsigned long end_addr, unsigned long *nr_accounted,
900 struct zap_details *);
e6473092
MM
901
902/**
903 * mm_walk - callbacks for walk_page_range
904 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
905 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
906 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
907 * this handler is required to be able to handle
908 * pmd_trans_huge() pmds. They may simply choose to
909 * split_huge_page() instead of handling it explicitly.
e6473092
MM
910 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
911 * @pte_hole: if set, called for each hole at all levels
5dc37642 912 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
913 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
914 * is used.
e6473092
MM
915 *
916 * (see walk_page_range for more details)
917 */
918struct mm_walk {
2165009b
DH
919 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
920 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
921 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
922 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
923 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
924 int (*hugetlb_entry)(pte_t *, unsigned long,
925 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
926 struct mm_struct *mm;
927 void *private;
e6473092
MM
928};
929
2165009b
DH
930int walk_page_range(unsigned long addr, unsigned long end,
931 struct mm_walk *walk);
42b77728 932void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 933 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
934int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
935 struct vm_area_struct *vma);
1da177e4
LT
936void unmap_mapping_range(struct address_space *mapping,
937 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
938int follow_pfn(struct vm_area_struct *vma, unsigned long address,
939 unsigned long *pfn);
d87fe660 940int follow_phys(struct vm_area_struct *vma, unsigned long address,
941 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
942int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
943 void *buf, int len, int write);
1da177e4
LT
944
945static inline void unmap_shared_mapping_range(struct address_space *mapping,
946 loff_t const holebegin, loff_t const holelen)
947{
948 unmap_mapping_range(mapping, holebegin, holelen, 0);
949}
950
25d9e2d1 951extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 952extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 953extern int vmtruncate(struct inode *inode, loff_t offset);
954extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 955
750b4987 956int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 957int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 958
83f78668
WF
959int invalidate_inode_page(struct page *page);
960
7ee1dd3f 961#ifdef CONFIG_MMU
83c54070 962extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 963 unsigned long address, unsigned int flags);
5c723ba5
PZ
964extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
965 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
966#else
967static inline int handle_mm_fault(struct mm_struct *mm,
968 struct vm_area_struct *vma, unsigned long address,
d06063cc 969 unsigned int flags)
7ee1dd3f
DH
970{
971 /* should never happen if there's no MMU */
972 BUG();
973 return VM_FAULT_SIGBUS;
974}
5c723ba5
PZ
975static inline int fixup_user_fault(struct task_struct *tsk,
976 struct mm_struct *mm, unsigned long address,
977 unsigned int fault_flags)
978{
979 /* should never happen if there's no MMU */
980 BUG();
981 return -EFAULT;
982}
7ee1dd3f 983#endif
f33ea7f4 984
1da177e4
LT
985extern int make_pages_present(unsigned long addr, unsigned long end);
986extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
987extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
988 void *buf, int len, int write);
1da177e4 989
0014bd99
HY
990int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
991 unsigned long start, int len, unsigned int foll_flags,
992 struct page **pages, struct vm_area_struct **vmas,
993 int *nonblocking);
d2bf6be8 994int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 995 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
996 struct page **pages, struct vm_area_struct **vmas);
997int get_user_pages_fast(unsigned long start, int nr_pages, int write,
998 struct page **pages);
f3e8fccd 999struct page *get_dump_page(unsigned long addr);
1da177e4 1000
cf9a2ae8
DH
1001extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1002extern void do_invalidatepage(struct page *page, unsigned long offset);
1003
1da177e4 1004int __set_page_dirty_nobuffers(struct page *page);
76719325 1005int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1006int redirty_page_for_writepage(struct writeback_control *wbc,
1007 struct page *page);
e3a7cca1 1008void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1009void account_page_writeback(struct page *page);
b3c97528 1010int set_page_dirty(struct page *page);
1da177e4
LT
1011int set_page_dirty_lock(struct page *page);
1012int clear_page_dirty_for_io(struct page *page);
1013
39aa3cb3 1014/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1015static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1016{
1017 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1018}
1019
a09a79f6
MP
1020static inline int stack_guard_page_start(struct vm_area_struct *vma,
1021 unsigned long addr)
1022{
1023 return (vma->vm_flags & VM_GROWSDOWN) &&
1024 (vma->vm_start == addr) &&
1025 !vma_growsdown(vma->vm_prev, addr);
1026}
1027
1028/* Is the vma a continuation of the stack vma below it? */
1029static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1030{
1031 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1032}
1033
1034static inline int stack_guard_page_end(struct vm_area_struct *vma,
1035 unsigned long addr)
1036{
1037 return (vma->vm_flags & VM_GROWSUP) &&
1038 (vma->vm_end == addr) &&
1039 !vma_growsup(vma->vm_next, addr);
1040}
1041
b6a2fea3
OW
1042extern unsigned long move_page_tables(struct vm_area_struct *vma,
1043 unsigned long old_addr, struct vm_area_struct *new_vma,
1044 unsigned long new_addr, unsigned long len);
1da177e4
LT
1045extern unsigned long do_mremap(unsigned long addr,
1046 unsigned long old_len, unsigned long new_len,
1047 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1048extern int mprotect_fixup(struct vm_area_struct *vma,
1049 struct vm_area_struct **pprev, unsigned long start,
1050 unsigned long end, unsigned long newflags);
1da177e4 1051
465a454f
PZ
1052/*
1053 * doesn't attempt to fault and will return short.
1054 */
1055int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1056 struct page **pages);
d559db08
KH
1057/*
1058 * per-process(per-mm_struct) statistics.
1059 */
d559db08
KH
1060static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1061{
1062 atomic_long_set(&mm->rss_stat.count[member], value);
1063}
1064
172703b0 1065#if defined(SPLIT_RSS_COUNTING)
34e55232 1066unsigned long get_mm_counter(struct mm_struct *mm, int member);
172703b0 1067#else
d559db08
KH
1068static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1069{
172703b0 1070 return atomic_long_read(&mm->rss_stat.count[member]);
d559db08 1071}
172703b0 1072#endif
d559db08
KH
1073
1074static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1075{
172703b0 1076 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1077}
1078
1079static inline void inc_mm_counter(struct mm_struct *mm, int member)
1080{
172703b0 1081 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1082}
1083
1084static inline void dec_mm_counter(struct mm_struct *mm, int member)
1085{
172703b0 1086 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1087}
1088
d559db08
KH
1089static inline unsigned long get_mm_rss(struct mm_struct *mm)
1090{
1091 return get_mm_counter(mm, MM_FILEPAGES) +
1092 get_mm_counter(mm, MM_ANONPAGES);
1093}
1094
1095static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1096{
1097 return max(mm->hiwater_rss, get_mm_rss(mm));
1098}
1099
1100static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1101{
1102 return max(mm->hiwater_vm, mm->total_vm);
1103}
1104
1105static inline void update_hiwater_rss(struct mm_struct *mm)
1106{
1107 unsigned long _rss = get_mm_rss(mm);
1108
1109 if ((mm)->hiwater_rss < _rss)
1110 (mm)->hiwater_rss = _rss;
1111}
1112
1113static inline void update_hiwater_vm(struct mm_struct *mm)
1114{
1115 if (mm->hiwater_vm < mm->total_vm)
1116 mm->hiwater_vm = mm->total_vm;
1117}
1118
1119static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1120 struct mm_struct *mm)
1121{
1122 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1123
1124 if (*maxrss < hiwater_rss)
1125 *maxrss = hiwater_rss;
1126}
1127
53bddb4e 1128#if defined(SPLIT_RSS_COUNTING)
34e55232 1129void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1130#else
1131static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1132{
1133}
1134#endif
465a454f 1135
4e950f6f 1136int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1137
25ca1d6c
NK
1138extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1139 spinlock_t **ptl);
1140static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1141 spinlock_t **ptl)
1142{
1143 pte_t *ptep;
1144 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1145 return ptep;
1146}
c9cfcddf 1147
5f22df00
NP
1148#ifdef __PAGETABLE_PUD_FOLDED
1149static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1150 unsigned long address)
1151{
1152 return 0;
1153}
1154#else
1bb3630e 1155int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1156#endif
1157
1158#ifdef __PAGETABLE_PMD_FOLDED
1159static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1160 unsigned long address)
1161{
1162 return 0;
1163}
1164#else
1bb3630e 1165int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1166#endif
1167
8ac1f832
AA
1168int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1169 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1170int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1171
1da177e4
LT
1172/*
1173 * The following ifdef needed to get the 4level-fixup.h header to work.
1174 * Remove it when 4level-fixup.h has been removed.
1175 */
1bb3630e 1176#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1177static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1178{
1bb3630e
HD
1179 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1180 NULL: pud_offset(pgd, address);
1da177e4
LT
1181}
1182
1183static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1184{
1bb3630e
HD
1185 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1186 NULL: pmd_offset(pud, address);
1da177e4 1187}
1bb3630e
HD
1188#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1189
f7d0b926 1190#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1191/*
1192 * We tuck a spinlock to guard each pagetable page into its struct page,
1193 * at page->private, with BUILD_BUG_ON to make sure that this will not
1194 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1195 * When freeing, reset page->mapping so free_pages_check won't complain.
1196 */
349aef0b 1197#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1198#define pte_lock_init(_page) do { \
1199 spin_lock_init(__pte_lockptr(_page)); \
1200} while (0)
1201#define pte_lock_deinit(page) ((page)->mapping = NULL)
1202#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1203#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1204/*
1205 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1206 */
1207#define pte_lock_init(page) do {} while (0)
1208#define pte_lock_deinit(page) do {} while (0)
1209#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1210#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1211
2f569afd
MS
1212static inline void pgtable_page_ctor(struct page *page)
1213{
1214 pte_lock_init(page);
1215 inc_zone_page_state(page, NR_PAGETABLE);
1216}
1217
1218static inline void pgtable_page_dtor(struct page *page)
1219{
1220 pte_lock_deinit(page);
1221 dec_zone_page_state(page, NR_PAGETABLE);
1222}
1223
c74df32c
HD
1224#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1225({ \
4c21e2f2 1226 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1227 pte_t *__pte = pte_offset_map(pmd, address); \
1228 *(ptlp) = __ptl; \
1229 spin_lock(__ptl); \
1230 __pte; \
1231})
1232
1233#define pte_unmap_unlock(pte, ptl) do { \
1234 spin_unlock(ptl); \
1235 pte_unmap(pte); \
1236} while (0)
1237
8ac1f832
AA
1238#define pte_alloc_map(mm, vma, pmd, address) \
1239 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1240 pmd, address))? \
1241 NULL: pte_offset_map(pmd, address))
1bb3630e 1242
c74df32c 1243#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1244 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1245 pmd, address))? \
c74df32c
HD
1246 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1247
1bb3630e 1248#define pte_alloc_kernel(pmd, address) \
8ac1f832 1249 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1250 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1251
1252extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1253extern void free_area_init_node(int nid, unsigned long * zones_size,
1254 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1255#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1256/*
1257 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1258 * zones, allocate the backing mem_map and account for memory holes in a more
1259 * architecture independent manner. This is a substitute for creating the
1260 * zone_sizes[] and zholes_size[] arrays and passing them to
1261 * free_area_init_node()
1262 *
1263 * An architecture is expected to register range of page frames backed by
1264 * physical memory with add_active_range() before calling
1265 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1266 * usage, an architecture is expected to do something like
1267 *
1268 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1269 * max_highmem_pfn};
1270 * for_each_valid_physical_page_range()
1271 * add_active_range(node_id, start_pfn, end_pfn)
1272 * free_area_init_nodes(max_zone_pfns);
1273 *
1274 * If the architecture guarantees that there are no holes in the ranges
1275 * registered with add_active_range(), free_bootmem_active_regions()
1276 * will call free_bootmem_node() for each registered physical page range.
1277 * Similarly sparse_memory_present_with_active_regions() calls
1278 * memory_present() for each range when SPARSEMEM is enabled.
1279 *
1280 * See mm/page_alloc.c for more information on each function exposed by
1281 * CONFIG_ARCH_POPULATES_NODE_MAP
1282 */
1283extern void free_area_init_nodes(unsigned long *max_zone_pfn);
7c0caeb8 1284#ifndef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
1285extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1286 unsigned long end_pfn);
cc1050ba
YL
1287extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1288 unsigned long end_pfn);
c713216d 1289extern void remove_all_active_ranges(void);
32996250 1290void sort_node_map(void);
7c0caeb8 1291#endif
1e01979c 1292unsigned long node_map_pfn_alignment(void);
32996250
YL
1293unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1294 unsigned long end_pfn);
c713216d
MG
1295extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1296 unsigned long end_pfn);
1297extern void get_pfn_range_for_nid(unsigned int nid,
1298 unsigned long *start_pfn, unsigned long *end_pfn);
1299extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1300extern void free_bootmem_with_active_regions(int nid,
1301 unsigned long max_low_pfn);
08677214
YL
1302int add_from_early_node_map(struct range *range, int az,
1303 int nr_range, int nid);
c713216d 1304extern void sparse_memory_present_with_active_regions(int nid);
5dfe8660
TH
1305
1306extern void __next_mem_pfn_range(int *idx, int nid,
1307 unsigned long *out_start_pfn,
1308 unsigned long *out_end_pfn, int *out_nid);
1309
1310/**
1311 * for_each_mem_pfn_range - early memory pfn range iterator
1312 * @i: an integer used as loop variable
1313 * @nid: node selector, %MAX_NUMNODES for all nodes
1314 * @p_start: ptr to ulong for start pfn of the range, can be %NULL
1315 * @p_end: ptr to ulong for end pfn of the range, can be %NULL
1316 * @p_nid: ptr to int for nid of the range, can be %NULL
1317 *
1318 * Walks over configured memory ranges. Available after early_node_map is
1319 * populated.
1320 */
1321#define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \
1322 for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
1323 i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
1324
c713216d 1325#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1326
1327#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1328 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1329static inline int __early_pfn_to_nid(unsigned long pfn)
1330{
1331 return 0;
1332}
1333#else
1334/* please see mm/page_alloc.c */
1335extern int __meminit early_pfn_to_nid(unsigned long pfn);
1336#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1337/* there is a per-arch backend function. */
1338extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1339#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1340#endif
1341
0e0b864e 1342extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1343extern void memmap_init_zone(unsigned long, int, unsigned long,
1344 unsigned long, enum memmap_context);
bc75d33f 1345extern void setup_per_zone_wmarks(void);
1b79acc9 1346extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1347extern void mem_init(void);
8feae131 1348extern void __init mmap_init(void);
b2b755b5 1349extern void show_mem(unsigned int flags);
1da177e4
LT
1350extern void si_meminfo(struct sysinfo * val);
1351extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1352extern int after_bootmem;
1da177e4 1353
3ee9a4f0
JP
1354extern __printf(3, 4)
1355void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1356
e7c8d5c9 1357extern void setup_per_cpu_pageset(void);
e7c8d5c9 1358
112067f0
SL
1359extern void zone_pcp_update(struct zone *zone);
1360
8feae131 1361/* nommu.c */
33e5d769 1362extern atomic_long_t mmap_pages_allocated;
7e660872 1363extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1364
1da177e4
LT
1365/* prio_tree.c */
1366void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1367void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1368void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1369struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1370 struct prio_tree_iter *iter);
1371
1372#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1373 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1374 (vma = vma_prio_tree_next(vma, iter)); )
1375
1376static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1377 struct list_head *list)
1378{
1379 vma->shared.vm_set.parent = NULL;
1380 list_add_tail(&vma->shared.vm_set.list, list);
1381}
1382
1383/* mmap.c */
34b4e4aa 1384extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1385extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1386 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1387extern struct vm_area_struct *vma_merge(struct mm_struct *,
1388 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1389 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1390 struct mempolicy *);
1391extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1392extern int split_vma(struct mm_struct *,
1393 struct vm_area_struct *, unsigned long addr, int new_below);
1394extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1395extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1396 struct rb_node **, struct rb_node *);
a8fb5618 1397extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1398extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1399 unsigned long addr, unsigned long len, pgoff_t pgoff);
1400extern void exit_mmap(struct mm_struct *);
925d1c40 1401
7906d00c
AA
1402extern int mm_take_all_locks(struct mm_struct *mm);
1403extern void mm_drop_all_locks(struct mm_struct *mm);
1404
925d1c40
MH
1405/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1406extern void added_exe_file_vma(struct mm_struct *mm);
1407extern void removed_exe_file_vma(struct mm_struct *mm);
38646013
JS
1408extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1409extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1410
119f657c 1411extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1412extern int install_special_mapping(struct mm_struct *mm,
1413 unsigned long addr, unsigned long len,
1414 unsigned long flags, struct page **pages);
1da177e4
LT
1415
1416extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1417
1418extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1419 unsigned long len, unsigned long prot,
1420 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1421extern unsigned long mmap_region(struct file *file, unsigned long addr,
1422 unsigned long len, unsigned long flags,
ca16d140 1423 vm_flags_t vm_flags, unsigned long pgoff);
1da177e4
LT
1424
1425static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1426 unsigned long len, unsigned long prot,
1427 unsigned long flag, unsigned long offset)
1428{
1429 unsigned long ret = -EINVAL;
1430 if ((offset + PAGE_ALIGN(len)) < offset)
1431 goto out;
1432 if (!(offset & ~PAGE_MASK))
1433 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1434out:
1435 return ret;
1436}
1437
1438extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1439
1440extern unsigned long do_brk(unsigned long, unsigned long);
1441
85821aab 1442/* truncate.c */
1da177e4 1443extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1444extern void truncate_inode_pages_range(struct address_space *,
1445 loff_t lstart, loff_t lend);
1da177e4
LT
1446
1447/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1448extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1449
1450/* mm/page-writeback.c */
1451int write_one_page(struct page *page, int wait);
1cf6e7d8 1452void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1453
1454/* readahead.c */
1455#define VM_MAX_READAHEAD 128 /* kbytes */
1456#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1457
1da177e4 1458int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1459 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1460
1461void page_cache_sync_readahead(struct address_space *mapping,
1462 struct file_ra_state *ra,
1463 struct file *filp,
1464 pgoff_t offset,
1465 unsigned long size);
1466
1467void page_cache_async_readahead(struct address_space *mapping,
1468 struct file_ra_state *ra,
1469 struct file *filp,
1470 struct page *pg,
1471 pgoff_t offset,
1472 unsigned long size);
1473
1da177e4 1474unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1475unsigned long ra_submit(struct file_ra_state *ra,
1476 struct address_space *mapping,
1477 struct file *filp);
1da177e4 1478
d05f3169 1479/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1480extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1481
1482/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1483extern int expand_downwards(struct vm_area_struct *vma,
1484 unsigned long address);
8ca3eb08 1485#if VM_GROWSUP
46dea3d0 1486extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1487#else
1488 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1489#endif
1da177e4
LT
1490
1491/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1492extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1493extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1494 struct vm_area_struct **pprev);
1495
1496/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1497 NULL if none. Assume start_addr < end_addr. */
1498static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1499{
1500 struct vm_area_struct * vma = find_vma(mm,start_addr);
1501
1502 if (vma && end_addr <= vma->vm_start)
1503 vma = NULL;
1504 return vma;
1505}
1506
1507static inline unsigned long vma_pages(struct vm_area_struct *vma)
1508{
1509 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1510}
1511
bad849b3 1512#ifdef CONFIG_MMU
804af2cf 1513pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1514#else
1515static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1516{
1517 return __pgprot(0);
1518}
1519#endif
1520
deceb6cd 1521struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1522int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1523 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1524int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1525int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1526 unsigned long pfn);
423bad60
NP
1527int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1528 unsigned long pfn);
deceb6cd 1529
6aab341e 1530struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1531 unsigned int foll_flags);
1532#define FOLL_WRITE 0x01 /* check pte is writable */
1533#define FOLL_TOUCH 0x02 /* mark page accessed */
1534#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1535#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1536#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1537#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1538 * and return without waiting upon it */
110d74a9 1539#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1540#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1541#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1542
2f569afd 1543typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1544 void *data);
1545extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1546 unsigned long size, pte_fn_t fn, void *data);
1547
1da177e4 1548#ifdef CONFIG_PROC_FS
ab50b8ed 1549void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1550#else
ab50b8ed 1551static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1552 unsigned long flags, struct file *file, long pages)
1553{
1554}
1555#endif /* CONFIG_PROC_FS */
1556
12d6f21e
IM
1557#ifdef CONFIG_DEBUG_PAGEALLOC
1558extern int debug_pagealloc_enabled;
1559
1560extern void kernel_map_pages(struct page *page, int numpages, int enable);
1561
1562static inline void enable_debug_pagealloc(void)
1563{
1564 debug_pagealloc_enabled = 1;
1565}
8a235efa
RW
1566#ifdef CONFIG_HIBERNATION
1567extern bool kernel_page_present(struct page *page);
1568#endif /* CONFIG_HIBERNATION */
12d6f21e 1569#else
1da177e4 1570static inline void
9858db50 1571kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1572static inline void enable_debug_pagealloc(void)
1573{
1574}
8a235efa
RW
1575#ifdef CONFIG_HIBERNATION
1576static inline bool kernel_page_present(struct page *page) { return true; }
1577#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1578#endif
1579
31db58b3 1580extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1581#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1582int in_gate_area_no_mm(unsigned long addr);
83b964bb 1583int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1584#else
cae5d390
SW
1585int in_gate_area_no_mm(unsigned long addr);
1586#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1587#endif /* __HAVE_ARCH_GATE_AREA */
1588
8d65af78 1589int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1590 void __user *, size_t *, loff_t *);
a09ed5e0 1591unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1592 unsigned long nr_pages_scanned,
1593 unsigned long lru_pages);
9d0243bc 1594
7a9166e3
LY
1595#ifndef CONFIG_MMU
1596#define randomize_va_space 0
1597#else
a62eaf15 1598extern int randomize_va_space;
7a9166e3 1599#endif
a62eaf15 1600
045e72ac 1601const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1602void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1603
9bdac914
YL
1604void sparse_mem_maps_populate_node(struct page **map_map,
1605 unsigned long pnum_begin,
1606 unsigned long pnum_end,
1607 unsigned long map_count,
1608 int nodeid);
1609
98f3cfc1 1610struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1611pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1612pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1613pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1614pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1615void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1616void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1617void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1618int vmemmap_populate_basepages(struct page *start_page,
1619 unsigned long pages, int node);
1620int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1621void vmemmap_populate_print_last(void);
8f6aac41 1622
6a46079c 1623
82ba011b
AK
1624enum mf_flags {
1625 MF_COUNT_INCREASED = 1 << 0,
1626};
6a46079c 1627extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1628extern int __memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1629extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1630extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1631extern int sysctl_memory_failure_early_kill;
1632extern int sysctl_memory_failure_recovery;
facb6011 1633extern void shake_page(struct page *p, int access);
6a46079c 1634extern atomic_long_t mce_bad_pages;
facb6011 1635extern int soft_offline_page(struct page *page, int flags);
6a46079c 1636
718a3821
WF
1637extern void dump_page(struct page *page);
1638
47ad8475
AA
1639#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1640extern void clear_huge_page(struct page *page,
1641 unsigned long addr,
1642 unsigned int pages_per_huge_page);
1643extern void copy_user_huge_page(struct page *dst, struct page *src,
1644 unsigned long addr, struct vm_area_struct *vma,
1645 unsigned int pages_per_huge_page);
1646#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1647
1da177e4
LT
1648#endif /* __KERNEL__ */
1649#endif /* _LINUX_MM_H */