mm, vmscan: prevent kswapd livelock due to pfmemalloc-throttled process being killed
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
c9b1d098 47extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 48extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 49
1da177e4
LT
50#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
27ac792c
AR
52/* to align the pointer to the (next) page boundary */
53#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
1da177e4
LT
55/*
56 * Linux kernel virtual memory manager primitives.
57 * The idea being to have a "virtual" mm in the same way
58 * we have a virtual fs - giving a cleaner interface to the
59 * mm details, and allowing different kinds of memory mappings
60 * (from shared memory to executable loading to arbitrary
61 * mmap() functions).
62 */
63
c43692e8
CL
64extern struct kmem_cache *vm_area_cachep;
65
1da177e4 66#ifndef CONFIG_MMU
8feae131
DH
67extern struct rb_root nommu_region_tree;
68extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
69
70extern unsigned int kobjsize(const void *objp);
71#endif
72
73/*
605d9288 74 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 75 */
cc2383ec
KK
76#define VM_NONE 0x00000000
77
1da177e4
LT
78#define VM_READ 0x00000001 /* currently active flags */
79#define VM_WRITE 0x00000002
80#define VM_EXEC 0x00000004
81#define VM_SHARED 0x00000008
82
7e2cff42 83/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
84#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85#define VM_MAYWRITE 0x00000020
86#define VM_MAYEXEC 0x00000040
87#define VM_MAYSHARE 0x00000080
88
89#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 90#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
91#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
92
1da177e4
LT
93#define VM_LOCKED 0x00002000
94#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 103#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
104#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 106#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 107#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 108
b379d790 109#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
110#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
111#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 112#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 113
cc2383ec
KK
114#if defined(CONFIG_X86)
115# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
116#elif defined(CONFIG_PPC)
117# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
118#elif defined(CONFIG_PARISC)
119# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
120#elif defined(CONFIG_METAG)
121# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
122#elif defined(CONFIG_IA64)
123# define VM_GROWSUP VM_ARCH_1
124#elif !defined(CONFIG_MMU)
125# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
126#endif
127
128#ifndef VM_GROWSUP
129# define VM_GROWSUP VM_NONE
130#endif
131
a8bef8ff
MG
132/* Bits set in the VMA until the stack is in its final location */
133#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
134
1da177e4
LT
135#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
136#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
137#endif
138
139#ifdef CONFIG_STACK_GROWSUP
140#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
141#else
142#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
143#endif
144
145#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
146#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
147#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
148#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
149#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
150
b291f000 151/*
78f11a25
AA
152 * Special vmas that are non-mergable, non-mlock()able.
153 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 154 */
314e51b9 155#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 156
1da177e4
LT
157/*
158 * mapping from the currently active vm_flags protection bits (the
159 * low four bits) to a page protection mask..
160 */
161extern pgprot_t protection_map[16];
162
d0217ac0
NP
163#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
164#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 165#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 166#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 167#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 168#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 169#define FAULT_FLAG_TRIED 0x40 /* second try */
e2ec2c2b 170#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 171
54cb8821 172/*
d0217ac0 173 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
174 * ->fault function. The vma's ->fault is responsible for returning a bitmask
175 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 176 *
d0217ac0 177 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 178 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 179 */
d0217ac0
NP
180struct vm_fault {
181 unsigned int flags; /* FAULT_FLAG_xxx flags */
182 pgoff_t pgoff; /* Logical page offset based on vma */
183 void __user *virtual_address; /* Faulting virtual address */
184
185 struct page *page; /* ->fault handlers should return a
83c54070 186 * page here, unless VM_FAULT_NOPAGE
d0217ac0 187 * is set (which is also implied by
83c54070 188 * VM_FAULT_ERROR).
d0217ac0 189 */
54cb8821 190};
1da177e4
LT
191
192/*
193 * These are the virtual MM functions - opening of an area, closing and
194 * unmapping it (needed to keep files on disk up-to-date etc), pointer
195 * to the functions called when a no-page or a wp-page exception occurs.
196 */
197struct vm_operations_struct {
198 void (*open)(struct vm_area_struct * area);
199 void (*close)(struct vm_area_struct * area);
d0217ac0 200 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
201
202 /* notification that a previously read-only page is about to become
203 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 204 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
205
206 /* called by access_process_vm when get_user_pages() fails, typically
207 * for use by special VMAs that can switch between memory and hardware
208 */
209 int (*access)(struct vm_area_struct *vma, unsigned long addr,
210 void *buf, int len, int write);
1da177e4 211#ifdef CONFIG_NUMA
a6020ed7
LS
212 /*
213 * set_policy() op must add a reference to any non-NULL @new mempolicy
214 * to hold the policy upon return. Caller should pass NULL @new to
215 * remove a policy and fall back to surrounding context--i.e. do not
216 * install a MPOL_DEFAULT policy, nor the task or system default
217 * mempolicy.
218 */
1da177e4 219 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
220
221 /*
222 * get_policy() op must add reference [mpol_get()] to any policy at
223 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
224 * in mm/mempolicy.c will do this automatically.
225 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
226 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
227 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
228 * must return NULL--i.e., do not "fallback" to task or system default
229 * policy.
230 */
1da177e4
LT
231 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
232 unsigned long addr);
7b2259b3
CL
233 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
234 const nodemask_t *to, unsigned long flags);
1da177e4 235#endif
0b173bc4
KK
236 /* called by sys_remap_file_pages() to populate non-linear mapping */
237 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
238 unsigned long size, pgoff_t pgoff);
1da177e4
LT
239};
240
241struct mmu_gather;
242struct inode;
243
349aef0b
AM
244#define page_private(page) ((page)->private)
245#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 246
b12c4ad1
MK
247/* It's valid only if the page is free path or free_list */
248static inline void set_freepage_migratetype(struct page *page, int migratetype)
249{
95e34412 250 page->index = migratetype;
b12c4ad1
MK
251}
252
253/* It's valid only if the page is free path or free_list */
254static inline int get_freepage_migratetype(struct page *page)
255{
95e34412 256 return page->index;
b12c4ad1
MK
257}
258
1da177e4
LT
259/*
260 * FIXME: take this include out, include page-flags.h in
261 * files which need it (119 of them)
262 */
263#include <linux/page-flags.h>
71e3aac0 264#include <linux/huge_mm.h>
1da177e4
LT
265
266/*
267 * Methods to modify the page usage count.
268 *
269 * What counts for a page usage:
270 * - cache mapping (page->mapping)
271 * - private data (page->private)
272 * - page mapped in a task's page tables, each mapping
273 * is counted separately
274 *
275 * Also, many kernel routines increase the page count before a critical
276 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
277 */
278
279/*
da6052f7 280 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 281 */
7c8ee9a8
NP
282static inline int put_page_testzero(struct page *page)
283{
725d704e 284 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 285 return atomic_dec_and_test(&page->_count);
7c8ee9a8 286}
1da177e4
LT
287
288/*
7c8ee9a8
NP
289 * Try to grab a ref unless the page has a refcount of zero, return false if
290 * that is the case.
1da177e4 291 */
7c8ee9a8
NP
292static inline int get_page_unless_zero(struct page *page)
293{
8dc04efb 294 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 295}
1da177e4 296
53df8fdc
WF
297extern int page_is_ram(unsigned long pfn);
298
48667e7a 299/* Support for virtually mapped pages */
b3bdda02
CL
300struct page *vmalloc_to_page(const void *addr);
301unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 302
0738c4bb
PM
303/*
304 * Determine if an address is within the vmalloc range
305 *
306 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
307 * is no special casing required.
308 */
9e2779fa
CL
309static inline int is_vmalloc_addr(const void *x)
310{
0738c4bb 311#ifdef CONFIG_MMU
9e2779fa
CL
312 unsigned long addr = (unsigned long)x;
313
314 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
315#else
316 return 0;
8ca3ed87 317#endif
0738c4bb 318}
81ac3ad9
KH
319#ifdef CONFIG_MMU
320extern int is_vmalloc_or_module_addr(const void *x);
321#else
934831d0 322static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
323{
324 return 0;
325}
326#endif
9e2779fa 327
e9da73d6
AA
328static inline void compound_lock(struct page *page)
329{
330#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 331 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
332 bit_spin_lock(PG_compound_lock, &page->flags);
333#endif
334}
335
336static inline void compound_unlock(struct page *page)
337{
338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 339 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
340 bit_spin_unlock(PG_compound_lock, &page->flags);
341#endif
342}
343
344static inline unsigned long compound_lock_irqsave(struct page *page)
345{
346 unsigned long uninitialized_var(flags);
347#ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 local_irq_save(flags);
349 compound_lock(page);
350#endif
351 return flags;
352}
353
354static inline void compound_unlock_irqrestore(struct page *page,
355 unsigned long flags)
356{
357#ifdef CONFIG_TRANSPARENT_HUGEPAGE
358 compound_unlock(page);
359 local_irq_restore(flags);
360#endif
361}
362
d85f3385
CL
363static inline struct page *compound_head(struct page *page)
364{
def52acc
DR
365 if (unlikely(PageTail(page))) {
366 struct page *head = page->first_page;
367
368 /*
369 * page->first_page may be a dangling pointer to an old
370 * compound page, so recheck that it is still a tail
371 * page before returning.
372 */
373 smp_rmb();
374 if (likely(PageTail(page)))
375 return head;
376 }
d85f3385
CL
377 return page;
378}
379
70b50f94
AA
380/*
381 * The atomic page->_mapcount, starts from -1: so that transitions
382 * both from it and to it can be tracked, using atomic_inc_and_test
383 * and atomic_add_negative(-1).
384 */
22b751c3 385static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
386{
387 atomic_set(&(page)->_mapcount, -1);
388}
389
390static inline int page_mapcount(struct page *page)
391{
392 return atomic_read(&(page)->_mapcount) + 1;
393}
394
4c21e2f2 395static inline int page_count(struct page *page)
1da177e4 396{
d85f3385 397 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
398}
399
b35a35b5
AA
400static inline void get_huge_page_tail(struct page *page)
401{
402 /*
403 * __split_huge_page_refcount() cannot run
404 * from under us.
405 */
406 VM_BUG_ON(page_mapcount(page) < 0);
407 VM_BUG_ON(atomic_read(&page->_count) != 0);
408 atomic_inc(&page->_mapcount);
409}
410
70b50f94
AA
411extern bool __get_page_tail(struct page *page);
412
1da177e4
LT
413static inline void get_page(struct page *page)
414{
70b50f94
AA
415 if (unlikely(PageTail(page)))
416 if (likely(__get_page_tail(page)))
417 return;
91807063
AA
418 /*
419 * Getting a normal page or the head of a compound page
70b50f94 420 * requires to already have an elevated page->_count.
91807063 421 */
70b50f94 422 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
423 atomic_inc(&page->_count);
424}
425
b49af68f
CL
426static inline struct page *virt_to_head_page(const void *x)
427{
428 struct page *page = virt_to_page(x);
429 return compound_head(page);
430}
431
7835e98b
NP
432/*
433 * Setup the page count before being freed into the page allocator for
434 * the first time (boot or memory hotplug)
435 */
436static inline void init_page_count(struct page *page)
437{
438 atomic_set(&page->_count, 1);
439}
440
5f24ce5f
AA
441/*
442 * PageBuddy() indicate that the page is free and in the buddy system
443 * (see mm/page_alloc.c).
ef2b4b95
AA
444 *
445 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
446 * -2 so that an underflow of the page_mapcount() won't be mistaken
447 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
448 * efficiently by most CPU architectures.
5f24ce5f 449 */
ef2b4b95
AA
450#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
451
5f24ce5f
AA
452static inline int PageBuddy(struct page *page)
453{
ef2b4b95 454 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
455}
456
457static inline void __SetPageBuddy(struct page *page)
458{
459 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 460 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
461}
462
463static inline void __ClearPageBuddy(struct page *page)
464{
465 VM_BUG_ON(!PageBuddy(page));
466 atomic_set(&page->_mapcount, -1);
467}
468
1da177e4 469void put_page(struct page *page);
1d7ea732 470void put_pages_list(struct list_head *pages);
1da177e4 471
8dfcc9ba 472void split_page(struct page *page, unsigned int order);
748446bb 473int split_free_page(struct page *page);
8dfcc9ba 474
33f2ef89
AW
475/*
476 * Compound pages have a destructor function. Provide a
477 * prototype for that function and accessor functions.
478 * These are _only_ valid on the head of a PG_compound page.
479 */
480typedef void compound_page_dtor(struct page *);
481
482static inline void set_compound_page_dtor(struct page *page,
483 compound_page_dtor *dtor)
484{
485 page[1].lru.next = (void *)dtor;
486}
487
488static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
489{
490 return (compound_page_dtor *)page[1].lru.next;
491}
492
d85f3385
CL
493static inline int compound_order(struct page *page)
494{
6d777953 495 if (!PageHead(page))
d85f3385
CL
496 return 0;
497 return (unsigned long)page[1].lru.prev;
498}
499
37c2ac78
AA
500static inline int compound_trans_order(struct page *page)
501{
502 int order;
503 unsigned long flags;
504
505 if (!PageHead(page))
506 return 0;
507
508 flags = compound_lock_irqsave(page);
509 order = compound_order(page);
510 compound_unlock_irqrestore(page, flags);
511 return order;
512}
513
d85f3385
CL
514static inline void set_compound_order(struct page *page, unsigned long order)
515{
516 page[1].lru.prev = (void *)order;
517}
518
3dece370 519#ifdef CONFIG_MMU
14fd403f
AA
520/*
521 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
522 * servicing faults for write access. In the normal case, do always want
523 * pte_mkwrite. But get_user_pages can cause write faults for mappings
524 * that do not have writing enabled, when used by access_process_vm.
525 */
526static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
527{
528 if (likely(vma->vm_flags & VM_WRITE))
529 pte = pte_mkwrite(pte);
530 return pte;
531}
3dece370 532#endif
14fd403f 533
1da177e4
LT
534/*
535 * Multiple processes may "see" the same page. E.g. for untouched
536 * mappings of /dev/null, all processes see the same page full of
537 * zeroes, and text pages of executables and shared libraries have
538 * only one copy in memory, at most, normally.
539 *
540 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
541 * page_count() == 0 means the page is free. page->lru is then used for
542 * freelist management in the buddy allocator.
da6052f7 543 * page_count() > 0 means the page has been allocated.
1da177e4 544 *
da6052f7
NP
545 * Pages are allocated by the slab allocator in order to provide memory
546 * to kmalloc and kmem_cache_alloc. In this case, the management of the
547 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
548 * unless a particular usage is carefully commented. (the responsibility of
549 * freeing the kmalloc memory is the caller's, of course).
1da177e4 550 *
da6052f7
NP
551 * A page may be used by anyone else who does a __get_free_page().
552 * In this case, page_count still tracks the references, and should only
553 * be used through the normal accessor functions. The top bits of page->flags
554 * and page->virtual store page management information, but all other fields
555 * are unused and could be used privately, carefully. The management of this
556 * page is the responsibility of the one who allocated it, and those who have
557 * subsequently been given references to it.
558 *
559 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
560 * managed by the Linux memory manager: I/O, buffers, swapping etc.
561 * The following discussion applies only to them.
562 *
da6052f7
NP
563 * A pagecache page contains an opaque `private' member, which belongs to the
564 * page's address_space. Usually, this is the address of a circular list of
565 * the page's disk buffers. PG_private must be set to tell the VM to call
566 * into the filesystem to release these pages.
1da177e4 567 *
da6052f7
NP
568 * A page may belong to an inode's memory mapping. In this case, page->mapping
569 * is the pointer to the inode, and page->index is the file offset of the page,
570 * in units of PAGE_CACHE_SIZE.
1da177e4 571 *
da6052f7
NP
572 * If pagecache pages are not associated with an inode, they are said to be
573 * anonymous pages. These may become associated with the swapcache, and in that
574 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 575 *
da6052f7
NP
576 * In either case (swapcache or inode backed), the pagecache itself holds one
577 * reference to the page. Setting PG_private should also increment the
578 * refcount. The each user mapping also has a reference to the page.
1da177e4 579 *
da6052f7
NP
580 * The pagecache pages are stored in a per-mapping radix tree, which is
581 * rooted at mapping->page_tree, and indexed by offset.
582 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
583 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 584 *
da6052f7 585 * All pagecache pages may be subject to I/O:
1da177e4
LT
586 * - inode pages may need to be read from disk,
587 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
588 * to be written back to the inode on disk,
589 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
590 * modified may need to be swapped out to swap space and (later) to be read
591 * back into memory.
1da177e4
LT
592 */
593
594/*
595 * The zone field is never updated after free_area_init_core()
596 * sets it, so none of the operations on it need to be atomic.
1da177e4 597 */
348f8b6c 598
75980e97 599/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
07808b74 600#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
601#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
602#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
75980e97 603#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
d41dee36 604
348f8b6c 605/*
25985edc 606 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
607 * sections we define the shift as 0; that plus a 0 mask ensures
608 * the compiler will optimise away reference to them.
609 */
d41dee36
AW
610#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
611#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
612#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
75980e97 613#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
348f8b6c 614
bce54bbf
WD
615/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
616#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 617#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
618#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
619 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 620#else
89689ae7 621#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
622#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
623 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
624#endif
625
bd8029b6 626#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 627
9223b419
CL
628#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
629#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
630#endif
631
d41dee36
AW
632#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
633#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
634#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
75980e97 635#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
89689ae7 636#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 637
33dd4e0e 638static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 639{
348f8b6c 640 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 641}
1da177e4 642
9127ab4f
CS
643#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
644#define SECTION_IN_PAGE_FLAGS
645#endif
646
89689ae7
CL
647/*
648 * The identification function is only used by the buddy allocator for
649 * determining if two pages could be buddies. We are not really
650 * identifying a zone since we could be using a the section number
651 * id if we have not node id available in page flags.
652 * We guarantee only that it will return the same value for two
653 * combinable pages in a zone.
654 */
cb2b95e1
AW
655static inline int page_zone_id(struct page *page)
656{
89689ae7 657 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
658}
659
25ba77c1 660static inline int zone_to_nid(struct zone *zone)
89fa3024 661{
d5f541ed
CL
662#ifdef CONFIG_NUMA
663 return zone->node;
664#else
665 return 0;
666#endif
89fa3024
CL
667}
668
89689ae7 669#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 670extern int page_to_nid(const struct page *page);
89689ae7 671#else
33dd4e0e 672static inline int page_to_nid(const struct page *page)
d41dee36 673{
89689ae7 674 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 675}
89689ae7
CL
676#endif
677
57e0a030 678#ifdef CONFIG_NUMA_BALANCING
75980e97 679#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
22b751c3 680static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
681{
682 return xchg(&page->_last_nid, nid);
683}
684
22b751c3 685static inline int page_nid_last(struct page *page)
57e0a030
MG
686{
687 return page->_last_nid;
688}
22b751c3 689static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
690{
691 page->_last_nid = -1;
692}
693#else
22b751c3 694static inline int page_nid_last(struct page *page)
75980e97
PZ
695{
696 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
697}
698
22b751c3 699extern int page_nid_xchg_last(struct page *page, int nid);
75980e97 700
22b751c3 701static inline void page_nid_reset_last(struct page *page)
75980e97 702{
4468b8f1
MG
703 int nid = (1 << LAST_NID_SHIFT) - 1;
704
705 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
706 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
75980e97
PZ
707}
708#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
709#else
22b751c3 710static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
711{
712 return page_to_nid(page);
713}
714
22b751c3 715static inline int page_nid_last(struct page *page)
57e0a030
MG
716{
717 return page_to_nid(page);
718}
719
22b751c3 720static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
721{
722}
723#endif
724
33dd4e0e 725static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
726{
727 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
728}
729
9127ab4f 730#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
731static inline void set_page_section(struct page *page, unsigned long section)
732{
733 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
734 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
735}
736
aa462abe 737static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
738{
739 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
740}
308c05e3 741#endif
d41dee36 742
2f1b6248 743static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
744{
745 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
746 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
747}
2f1b6248 748
348f8b6c
DH
749static inline void set_page_node(struct page *page, unsigned long node)
750{
751 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
752 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 753}
89689ae7 754
2f1b6248 755static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 756 unsigned long node, unsigned long pfn)
1da177e4 757{
348f8b6c
DH
758 set_page_zone(page, zone);
759 set_page_node(page, node);
9127ab4f 760#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 761 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 762#endif
1da177e4
LT
763}
764
f6ac2354
CL
765/*
766 * Some inline functions in vmstat.h depend on page_zone()
767 */
768#include <linux/vmstat.h>
769
33dd4e0e 770static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 771{
aa462abe 772 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
773}
774
775#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
776#define HASHED_PAGE_VIRTUAL
777#endif
778
779#if defined(WANT_PAGE_VIRTUAL)
2d363552
GU
780static inline void *page_address(const struct page *page)
781{
782 return page->virtual;
783}
784static inline void set_page_address(struct page *page, void *address)
785{
786 page->virtual = address;
787}
1da177e4
LT
788#define page_address_init() do { } while(0)
789#endif
790
791#if defined(HASHED_PAGE_VIRTUAL)
f9918794 792void *page_address(const struct page *page);
1da177e4
LT
793void set_page_address(struct page *page, void *virtual);
794void page_address_init(void);
795#endif
796
797#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
798#define page_address(page) lowmem_page_address(page)
799#define set_page_address(page, address) do { } while(0)
800#define page_address_init() do { } while(0)
801#endif
802
803/*
804 * On an anonymous page mapped into a user virtual memory area,
805 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
806 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
807 *
808 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
809 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
810 * and then page->mapping points, not to an anon_vma, but to a private
811 * structure which KSM associates with that merged page. See ksm.h.
812 *
813 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
814 *
815 * Please note that, confusingly, "page_mapping" refers to the inode
816 * address_space which maps the page from disk; whereas "page_mapped"
817 * refers to user virtual address space into which the page is mapped.
818 */
819#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
820#define PAGE_MAPPING_KSM 2
821#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 822
9800339b 823extern struct address_space *page_mapping(struct page *page);
1da177e4 824
3ca7b3c5
HD
825/* Neutral page->mapping pointer to address_space or anon_vma or other */
826static inline void *page_rmapping(struct page *page)
827{
828 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
829}
830
f981c595
MG
831extern struct address_space *__page_file_mapping(struct page *);
832
833static inline
834struct address_space *page_file_mapping(struct page *page)
835{
836 if (unlikely(PageSwapCache(page)))
837 return __page_file_mapping(page);
838
839 return page->mapping;
840}
841
1da177e4
LT
842static inline int PageAnon(struct page *page)
843{
844 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
845}
846
847/*
848 * Return the pagecache index of the passed page. Regular pagecache pages
849 * use ->index whereas swapcache pages use ->private
850 */
851static inline pgoff_t page_index(struct page *page)
852{
853 if (unlikely(PageSwapCache(page)))
4c21e2f2 854 return page_private(page);
1da177e4
LT
855 return page->index;
856}
857
f981c595
MG
858extern pgoff_t __page_file_index(struct page *page);
859
860/*
861 * Return the file index of the page. Regular pagecache pages use ->index
862 * whereas swapcache pages use swp_offset(->private)
863 */
864static inline pgoff_t page_file_index(struct page *page)
865{
866 if (unlikely(PageSwapCache(page)))
867 return __page_file_index(page);
868
869 return page->index;
870}
871
1da177e4
LT
872/*
873 * Return true if this page is mapped into pagetables.
874 */
875static inline int page_mapped(struct page *page)
876{
877 return atomic_read(&(page)->_mapcount) >= 0;
878}
879
1da177e4
LT
880/*
881 * Different kinds of faults, as returned by handle_mm_fault().
882 * Used to decide whether a process gets delivered SIGBUS or
883 * just gets major/minor fault counters bumped up.
884 */
d0217ac0 885
83c54070 886#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 887
83c54070
NP
888#define VM_FAULT_OOM 0x0001
889#define VM_FAULT_SIGBUS 0x0002
890#define VM_FAULT_MAJOR 0x0004
891#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
892#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
893#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 894
83c54070
NP
895#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
896#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 897#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 898
aa50d3a7
AK
899#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
900
901#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
902 VM_FAULT_HWPOISON_LARGE)
903
904/* Encode hstate index for a hwpoisoned large page */
905#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
906#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 907
1c0fe6e3
NP
908/*
909 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
910 */
911extern void pagefault_out_of_memory(void);
912
1da177e4
LT
913#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
914
ddd588b5 915/*
7bf02ea2 916 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
917 * various contexts.
918 */
4b59e6c4
DR
919#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
920#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
ddd588b5 921
7bf02ea2
DR
922extern void show_free_areas(unsigned int flags);
923extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 924
1da177e4
LT
925int shmem_zero_setup(struct vm_area_struct *);
926
e8edc6e0 927extern int can_do_mlock(void);
1da177e4
LT
928extern int user_shm_lock(size_t, struct user_struct *);
929extern void user_shm_unlock(size_t, struct user_struct *);
930
931/*
932 * Parameter block passed down to zap_pte_range in exceptional cases.
933 */
934struct zap_details {
935 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
936 struct address_space *check_mapping; /* Check page->mapping if set */
937 pgoff_t first_index; /* Lowest page->index to unmap */
938 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
939};
940
7e675137
NP
941struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
942 pte_t pte);
943
c627f9cc
JS
944int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
945 unsigned long size);
14f5ff5d 946void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 947 unsigned long size, struct zap_details *);
4f74d2c8
LT
948void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
949 unsigned long start, unsigned long end);
e6473092
MM
950
951/**
952 * mm_walk - callbacks for walk_page_range
953 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
954 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
955 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
956 * this handler is required to be able to handle
957 * pmd_trans_huge() pmds. They may simply choose to
958 * split_huge_page() instead of handling it explicitly.
e6473092
MM
959 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
960 * @pte_hole: if set, called for each hole at all levels
5dc37642 961 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
962 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
963 * is used.
e6473092
MM
964 *
965 * (see walk_page_range for more details)
966 */
967struct mm_walk {
0f157a5b
AM
968 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
969 unsigned long next, struct mm_walk *walk);
970 int (*pud_entry)(pud_t *pud, unsigned long addr,
971 unsigned long next, struct mm_walk *walk);
972 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
973 unsigned long next, struct mm_walk *walk);
974 int (*pte_entry)(pte_t *pte, unsigned long addr,
975 unsigned long next, struct mm_walk *walk);
976 int (*pte_hole)(unsigned long addr, unsigned long next,
977 struct mm_walk *walk);
978 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
979 unsigned long addr, unsigned long next,
980 struct mm_walk *walk);
2165009b
DH
981 struct mm_struct *mm;
982 void *private;
e6473092
MM
983};
984
2165009b
DH
985int walk_page_range(unsigned long addr, unsigned long end,
986 struct mm_walk *walk);
42b77728 987void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 988 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
989int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
990 struct vm_area_struct *vma);
1da177e4
LT
991void unmap_mapping_range(struct address_space *mapping,
992 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
993int follow_pfn(struct vm_area_struct *vma, unsigned long address,
994 unsigned long *pfn);
d87fe660 995int follow_phys(struct vm_area_struct *vma, unsigned long address,
996 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
997int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
998 void *buf, int len, int write);
1da177e4
LT
999
1000static inline void unmap_shared_mapping_range(struct address_space *mapping,
1001 loff_t const holebegin, loff_t const holelen)
1002{
1003 unmap_mapping_range(mapping, holebegin, holelen, 0);
1004}
1005
25d9e2d1 1006extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 1007extern void truncate_setsize(struct inode *inode, loff_t newsize);
6cbdf115 1008void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1009void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1010int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1011int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1012int invalidate_inode_page(struct page *page);
1013
7ee1dd3f 1014#ifdef CONFIG_MMU
83c54070 1015extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1016 unsigned long address, unsigned int flags);
5c723ba5
PZ
1017extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1018 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1019#else
1020static inline int handle_mm_fault(struct mm_struct *mm,
1021 struct vm_area_struct *vma, unsigned long address,
d06063cc 1022 unsigned int flags)
7ee1dd3f
DH
1023{
1024 /* should never happen if there's no MMU */
1025 BUG();
1026 return VM_FAULT_SIGBUS;
1027}
5c723ba5
PZ
1028static inline int fixup_user_fault(struct task_struct *tsk,
1029 struct mm_struct *mm, unsigned long address,
1030 unsigned int fault_flags)
1031{
1032 /* should never happen if there's no MMU */
1033 BUG();
1034 return -EFAULT;
1035}
7ee1dd3f 1036#endif
f33ea7f4 1037
1da177e4 1038extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1039extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1040 void *buf, int len, int write);
1da177e4 1041
28a35716
ML
1042long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1043 unsigned long start, unsigned long nr_pages,
1044 unsigned int foll_flags, struct page **pages,
1045 struct vm_area_struct **vmas, int *nonblocking);
1046long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1047 unsigned long start, unsigned long nr_pages,
1048 int write, int force, struct page **pages,
1049 struct vm_area_struct **vmas);
d2bf6be8
NP
1050int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1051 struct page **pages);
18022c5d
MG
1052struct kvec;
1053int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1054 struct page **pages);
1055int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1056struct page *get_dump_page(unsigned long addr);
1da177e4 1057
cf9a2ae8
DH
1058extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1059extern void do_invalidatepage(struct page *page, unsigned long offset);
1060
1da177e4 1061int __set_page_dirty_nobuffers(struct page *page);
76719325 1062int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1063int redirty_page_for_writepage(struct writeback_control *wbc,
1064 struct page *page);
e3a7cca1 1065void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1066void account_page_writeback(struct page *page);
b3c97528 1067int set_page_dirty(struct page *page);
1da177e4
LT
1068int set_page_dirty_lock(struct page *page);
1069int clear_page_dirty_for_io(struct page *page);
1070
39aa3cb3 1071/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1072static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1073{
1074 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1075}
1076
a09a79f6
MP
1077static inline int stack_guard_page_start(struct vm_area_struct *vma,
1078 unsigned long addr)
1079{
1080 return (vma->vm_flags & VM_GROWSDOWN) &&
1081 (vma->vm_start == addr) &&
1082 !vma_growsdown(vma->vm_prev, addr);
1083}
1084
1085/* Is the vma a continuation of the stack vma below it? */
1086static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1087{
1088 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1089}
1090
1091static inline int stack_guard_page_end(struct vm_area_struct *vma,
1092 unsigned long addr)
1093{
1094 return (vma->vm_flags & VM_GROWSUP) &&
1095 (vma->vm_end == addr) &&
1096 !vma_growsup(vma->vm_next, addr);
1097}
1098
b7643757
SP
1099extern pid_t
1100vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1101
b6a2fea3
OW
1102extern unsigned long move_page_tables(struct vm_area_struct *vma,
1103 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1104 unsigned long new_addr, unsigned long len,
1105 bool need_rmap_locks);
7da4d641
PZ
1106extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1107 unsigned long end, pgprot_t newprot,
4b10e7d5 1108 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1109extern int mprotect_fixup(struct vm_area_struct *vma,
1110 struct vm_area_struct **pprev, unsigned long start,
1111 unsigned long end, unsigned long newflags);
1da177e4 1112
465a454f
PZ
1113/*
1114 * doesn't attempt to fault and will return short.
1115 */
1116int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1117 struct page **pages);
d559db08
KH
1118/*
1119 * per-process(per-mm_struct) statistics.
1120 */
d559db08
KH
1121static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1122{
69c97823
KK
1123 long val = atomic_long_read(&mm->rss_stat.count[member]);
1124
1125#ifdef SPLIT_RSS_COUNTING
1126 /*
1127 * counter is updated in asynchronous manner and may go to minus.
1128 * But it's never be expected number for users.
1129 */
1130 if (val < 0)
1131 val = 0;
172703b0 1132#endif
69c97823
KK
1133 return (unsigned long)val;
1134}
d559db08
KH
1135
1136static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1137{
172703b0 1138 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1139}
1140
1141static inline void inc_mm_counter(struct mm_struct *mm, int member)
1142{
172703b0 1143 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1144}
1145
1146static inline void dec_mm_counter(struct mm_struct *mm, int member)
1147{
172703b0 1148 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1149}
1150
d559db08
KH
1151static inline unsigned long get_mm_rss(struct mm_struct *mm)
1152{
1153 return get_mm_counter(mm, MM_FILEPAGES) +
1154 get_mm_counter(mm, MM_ANONPAGES);
1155}
1156
1157static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1158{
1159 return max(mm->hiwater_rss, get_mm_rss(mm));
1160}
1161
1162static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1163{
1164 return max(mm->hiwater_vm, mm->total_vm);
1165}
1166
1167static inline void update_hiwater_rss(struct mm_struct *mm)
1168{
1169 unsigned long _rss = get_mm_rss(mm);
1170
1171 if ((mm)->hiwater_rss < _rss)
1172 (mm)->hiwater_rss = _rss;
1173}
1174
1175static inline void update_hiwater_vm(struct mm_struct *mm)
1176{
1177 if (mm->hiwater_vm < mm->total_vm)
1178 mm->hiwater_vm = mm->total_vm;
1179}
1180
1181static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1182 struct mm_struct *mm)
1183{
1184 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1185
1186 if (*maxrss < hiwater_rss)
1187 *maxrss = hiwater_rss;
1188}
1189
53bddb4e 1190#if defined(SPLIT_RSS_COUNTING)
05af2e10 1191void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1192#else
05af2e10 1193static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1194{
1195}
1196#endif
465a454f 1197
4e950f6f 1198int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1199
25ca1d6c
NK
1200extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1201 spinlock_t **ptl);
1202static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1203 spinlock_t **ptl)
1204{
1205 pte_t *ptep;
1206 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1207 return ptep;
1208}
c9cfcddf 1209
5f22df00
NP
1210#ifdef __PAGETABLE_PUD_FOLDED
1211static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1212 unsigned long address)
1213{
1214 return 0;
1215}
1216#else
1bb3630e 1217int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1218#endif
1219
1220#ifdef __PAGETABLE_PMD_FOLDED
1221static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1222 unsigned long address)
1223{
1224 return 0;
1225}
1226#else
1bb3630e 1227int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1228#endif
1229
8ac1f832
AA
1230int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1231 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1232int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1233
1da177e4
LT
1234/*
1235 * The following ifdef needed to get the 4level-fixup.h header to work.
1236 * Remove it when 4level-fixup.h has been removed.
1237 */
1bb3630e 1238#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1239static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1240{
1bb3630e
HD
1241 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1242 NULL: pud_offset(pgd, address);
1da177e4
LT
1243}
1244
1245static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1246{
1bb3630e
HD
1247 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1248 NULL: pmd_offset(pud, address);
1da177e4 1249}
1bb3630e
HD
1250#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1251
f7d0b926 1252#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1253/*
1254 * We tuck a spinlock to guard each pagetable page into its struct page,
1255 * at page->private, with BUILD_BUG_ON to make sure that this will not
1256 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1257 * When freeing, reset page->mapping so free_pages_check won't complain.
1258 */
349aef0b 1259#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1260#define pte_lock_init(_page) do { \
1261 spin_lock_init(__pte_lockptr(_page)); \
1262} while (0)
1263#define pte_lock_deinit(page) ((page)->mapping = NULL)
1264#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1265#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1266/*
1267 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1268 */
1269#define pte_lock_init(page) do {} while (0)
1270#define pte_lock_deinit(page) do {} while (0)
1271#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1272#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1273
2f569afd
MS
1274static inline void pgtable_page_ctor(struct page *page)
1275{
1276 pte_lock_init(page);
1277 inc_zone_page_state(page, NR_PAGETABLE);
1278}
1279
1280static inline void pgtable_page_dtor(struct page *page)
1281{
1282 pte_lock_deinit(page);
1283 dec_zone_page_state(page, NR_PAGETABLE);
1284}
1285
c74df32c
HD
1286#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1287({ \
4c21e2f2 1288 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1289 pte_t *__pte = pte_offset_map(pmd, address); \
1290 *(ptlp) = __ptl; \
1291 spin_lock(__ptl); \
1292 __pte; \
1293})
1294
1295#define pte_unmap_unlock(pte, ptl) do { \
1296 spin_unlock(ptl); \
1297 pte_unmap(pte); \
1298} while (0)
1299
8ac1f832
AA
1300#define pte_alloc_map(mm, vma, pmd, address) \
1301 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1302 pmd, address))? \
1303 NULL: pte_offset_map(pmd, address))
1bb3630e 1304
c74df32c 1305#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1306 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1307 pmd, address))? \
c74df32c
HD
1308 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1309
1bb3630e 1310#define pte_alloc_kernel(pmd, address) \
8ac1f832 1311 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1312 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1313
1314extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1315extern void free_area_init_node(int nid, unsigned long * zones_size,
1316 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1317extern void free_initmem(void);
1318
69afade7
JL
1319/*
1320 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1321 * into the buddy system. The freed pages will be poisoned with pattern
1322 * "poison" if it's non-zero.
1323 * Return pages freed into the buddy system.
1324 */
1325extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1326 int poison, char *s);
cfa11e08
JL
1327#ifdef CONFIG_HIGHMEM
1328/*
1329 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1330 * and totalram_pages.
1331 */
1332extern void free_highmem_page(struct page *page);
1333#endif
69afade7
JL
1334
1335static inline void adjust_managed_page_count(struct page *page, long count)
1336{
1337 totalram_pages += count;
1338}
1339
1340/* Free the reserved page into the buddy system, so it gets managed. */
1341static inline void __free_reserved_page(struct page *page)
1342{
1343 ClearPageReserved(page);
1344 init_page_count(page);
1345 __free_page(page);
1346}
1347
1348static inline void free_reserved_page(struct page *page)
1349{
1350 __free_reserved_page(page);
1351 adjust_managed_page_count(page, 1);
1352}
1353
1354static inline void mark_page_reserved(struct page *page)
1355{
1356 SetPageReserved(page);
1357 adjust_managed_page_count(page, -1);
1358}
1359
1360/*
1361 * Default method to free all the __init memory into the buddy system.
1362 * The freed pages will be poisoned with pattern "poison" if it is
1363 * non-zero. Return pages freed into the buddy system.
1364 */
1365static inline unsigned long free_initmem_default(int poison)
1366{
1367 extern char __init_begin[], __init_end[];
1368
1369 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1370 ((unsigned long)&__init_end) & PAGE_MASK,
1371 poison, "unused kernel");
1372}
1373
0ee332c1 1374#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1375/*
0ee332c1 1376 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1377 * zones, allocate the backing mem_map and account for memory holes in a more
1378 * architecture independent manner. This is a substitute for creating the
1379 * zone_sizes[] and zholes_size[] arrays and passing them to
1380 * free_area_init_node()
1381 *
1382 * An architecture is expected to register range of page frames backed by
0ee332c1 1383 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1384 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1385 * usage, an architecture is expected to do something like
1386 *
1387 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1388 * max_highmem_pfn};
1389 * for_each_valid_physical_page_range()
0ee332c1 1390 * memblock_add_node(base, size, nid)
c713216d
MG
1391 * free_area_init_nodes(max_zone_pfns);
1392 *
0ee332c1
TH
1393 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1394 * registered physical page range. Similarly
1395 * sparse_memory_present_with_active_regions() calls memory_present() for
1396 * each range when SPARSEMEM is enabled.
c713216d
MG
1397 *
1398 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1399 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1400 */
1401extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1402unsigned long node_map_pfn_alignment(void);
32996250
YL
1403unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1404 unsigned long end_pfn);
c713216d
MG
1405extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1406 unsigned long end_pfn);
1407extern void get_pfn_range_for_nid(unsigned int nid,
1408 unsigned long *start_pfn, unsigned long *end_pfn);
1409extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1410extern void free_bootmem_with_active_regions(int nid,
1411 unsigned long max_low_pfn);
1412extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1413
0ee332c1 1414#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1415
0ee332c1 1416#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1417 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1418static inline int __early_pfn_to_nid(unsigned long pfn)
1419{
1420 return 0;
1421}
1422#else
1423/* please see mm/page_alloc.c */
1424extern int __meminit early_pfn_to_nid(unsigned long pfn);
1425#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1426/* there is a per-arch backend function. */
1427extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1428#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1429#endif
1430
0e0b864e 1431extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1432extern void memmap_init_zone(unsigned long, int, unsigned long,
1433 unsigned long, enum memmap_context);
bc75d33f 1434extern void setup_per_zone_wmarks(void);
1b79acc9 1435extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1436extern void mem_init(void);
8feae131 1437extern void __init mmap_init(void);
b2b755b5 1438extern void show_mem(unsigned int flags);
1da177e4
LT
1439extern void si_meminfo(struct sysinfo * val);
1440extern void si_meminfo_node(struct sysinfo *val, int nid);
1441
3ee9a4f0
JP
1442extern __printf(3, 4)
1443void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1444
e7c8d5c9 1445extern void setup_per_cpu_pageset(void);
e7c8d5c9 1446
112067f0 1447extern void zone_pcp_update(struct zone *zone);
340175b7 1448extern void zone_pcp_reset(struct zone *zone);
112067f0 1449
75f7ad8e
PS
1450/* page_alloc.c */
1451extern int min_free_kbytes;
1452
8feae131 1453/* nommu.c */
33e5d769 1454extern atomic_long_t mmap_pages_allocated;
7e660872 1455extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1456
6b2dbba8 1457/* interval_tree.c */
6b2dbba8
ML
1458void vma_interval_tree_insert(struct vm_area_struct *node,
1459 struct rb_root *root);
9826a516
ML
1460void vma_interval_tree_insert_after(struct vm_area_struct *node,
1461 struct vm_area_struct *prev,
1462 struct rb_root *root);
6b2dbba8
ML
1463void vma_interval_tree_remove(struct vm_area_struct *node,
1464 struct rb_root *root);
1465struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1466 unsigned long start, unsigned long last);
1467struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1468 unsigned long start, unsigned long last);
1469
1470#define vma_interval_tree_foreach(vma, root, start, last) \
1471 for (vma = vma_interval_tree_iter_first(root, start, last); \
1472 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1473
1474static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1475 struct list_head *list)
1476{
6b2dbba8 1477 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1478}
1479
bf181b9f
ML
1480void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1481 struct rb_root *root);
1482void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1483 struct rb_root *root);
1484struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1485 struct rb_root *root, unsigned long start, unsigned long last);
1486struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1487 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1488#ifdef CONFIG_DEBUG_VM_RB
1489void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1490#endif
bf181b9f
ML
1491
1492#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1493 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1494 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1495
1da177e4 1496/* mmap.c */
34b4e4aa 1497extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1498extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1499 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1500extern struct vm_area_struct *vma_merge(struct mm_struct *,
1501 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1502 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1503 struct mempolicy *);
1504extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1505extern int split_vma(struct mm_struct *,
1506 struct vm_area_struct *, unsigned long addr, int new_below);
1507extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1508extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1509 struct rb_node **, struct rb_node *);
a8fb5618 1510extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1511extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1512 unsigned long addr, unsigned long len, pgoff_t pgoff,
1513 bool *need_rmap_locks);
1da177e4 1514extern void exit_mmap(struct mm_struct *);
925d1c40 1515
7906d00c
AA
1516extern int mm_take_all_locks(struct mm_struct *mm);
1517extern void mm_drop_all_locks(struct mm_struct *mm);
1518
38646013
JS
1519extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1520extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1521
119f657c 1522extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1523extern int install_special_mapping(struct mm_struct *mm,
1524 unsigned long addr, unsigned long len,
1525 unsigned long flags, struct page **pages);
1da177e4
LT
1526
1527extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1528
0165ab44 1529extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1530 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1531extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1532 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1533 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1534extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1535
bebeb3d6
ML
1536#ifdef CONFIG_MMU
1537extern int __mm_populate(unsigned long addr, unsigned long len,
1538 int ignore_errors);
1539static inline void mm_populate(unsigned long addr, unsigned long len)
1540{
1541 /* Ignore errors */
1542 (void) __mm_populate(addr, len, 1);
1543}
1544#else
1545static inline void mm_populate(unsigned long addr, unsigned long len) {}
1546#endif
1547
e4eb1ff6
LT
1548/* These take the mm semaphore themselves */
1549extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1550extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1551extern unsigned long vm_mmap(struct file *, unsigned long,
1552 unsigned long, unsigned long,
1553 unsigned long, unsigned long);
1da177e4 1554
db4fbfb9
ML
1555struct vm_unmapped_area_info {
1556#define VM_UNMAPPED_AREA_TOPDOWN 1
1557 unsigned long flags;
1558 unsigned long length;
1559 unsigned long low_limit;
1560 unsigned long high_limit;
1561 unsigned long align_mask;
1562 unsigned long align_offset;
1563};
1564
1565extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1566extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1567
1568/*
1569 * Search for an unmapped address range.
1570 *
1571 * We are looking for a range that:
1572 * - does not intersect with any VMA;
1573 * - is contained within the [low_limit, high_limit) interval;
1574 * - is at least the desired size.
1575 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1576 */
1577static inline unsigned long
1578vm_unmapped_area(struct vm_unmapped_area_info *info)
1579{
1580 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1581 return unmapped_area(info);
1582 else
1583 return unmapped_area_topdown(info);
1584}
1585
85821aab 1586/* truncate.c */
1da177e4 1587extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1588extern void truncate_inode_pages_range(struct address_space *,
1589 loff_t lstart, loff_t lend);
1da177e4
LT
1590
1591/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1592extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1593extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1594
1595/* mm/page-writeback.c */
1596int write_one_page(struct page *page, int wait);
1cf6e7d8 1597void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1598
1599/* readahead.c */
1600#define VM_MAX_READAHEAD 128 /* kbytes */
1601#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1602
1da177e4 1603int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1604 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1605
1606void page_cache_sync_readahead(struct address_space *mapping,
1607 struct file_ra_state *ra,
1608 struct file *filp,
1609 pgoff_t offset,
1610 unsigned long size);
1611
1612void page_cache_async_readahead(struct address_space *mapping,
1613 struct file_ra_state *ra,
1614 struct file *filp,
1615 struct page *pg,
1616 pgoff_t offset,
1617 unsigned long size);
1618
1da177e4 1619unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1620unsigned long ra_submit(struct file_ra_state *ra,
1621 struct address_space *mapping,
1622 struct file *filp);
1da177e4 1623
d05f3169 1624/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1625extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1626
1627/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1628extern int expand_downwards(struct vm_area_struct *vma,
1629 unsigned long address);
8ca3eb08 1630#if VM_GROWSUP
46dea3d0 1631extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1632#else
1633 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1634#endif
1da177e4
LT
1635
1636/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1637extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1638extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1639 struct vm_area_struct **pprev);
1640
1641/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1642 NULL if none. Assume start_addr < end_addr. */
1643static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1644{
1645 struct vm_area_struct * vma = find_vma(mm,start_addr);
1646
1647 if (vma && end_addr <= vma->vm_start)
1648 vma = NULL;
1649 return vma;
1650}
1651
1652static inline unsigned long vma_pages(struct vm_area_struct *vma)
1653{
1654 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1655}
1656
640708a2
PE
1657/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1658static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1659 unsigned long vm_start, unsigned long vm_end)
1660{
1661 struct vm_area_struct *vma = find_vma(mm, vm_start);
1662
1663 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1664 vma = NULL;
1665
1666 return vma;
1667}
1668
bad849b3 1669#ifdef CONFIG_MMU
804af2cf 1670pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1671#else
1672static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1673{
1674 return __pgprot(0);
1675}
1676#endif
1677
b24f53a0 1678#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1679unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1680 unsigned long start, unsigned long end);
1681#endif
1682
deceb6cd 1683struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1684int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1685 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1686int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1687int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1688 unsigned long pfn);
423bad60
NP
1689int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1690 unsigned long pfn);
b4cbb197
LT
1691int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1692
deceb6cd 1693
240aadee
ML
1694struct page *follow_page_mask(struct vm_area_struct *vma,
1695 unsigned long address, unsigned int foll_flags,
1696 unsigned int *page_mask);
1697
1698static inline struct page *follow_page(struct vm_area_struct *vma,
1699 unsigned long address, unsigned int foll_flags)
1700{
1701 unsigned int unused_page_mask;
1702 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1703}
1704
deceb6cd
HD
1705#define FOLL_WRITE 0x01 /* check pte is writable */
1706#define FOLL_TOUCH 0x02 /* mark page accessed */
1707#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1708#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1709#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1710#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1711 * and return without waiting upon it */
110d74a9 1712#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1713#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1714#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1715#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1716#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1717
2f569afd 1718typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1719 void *data);
1720extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1721 unsigned long size, pte_fn_t fn, void *data);
1722
1da177e4 1723#ifdef CONFIG_PROC_FS
ab50b8ed 1724void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1725#else
ab50b8ed 1726static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1727 unsigned long flags, struct file *file, long pages)
1728{
44de9d0c 1729 mm->total_vm += pages;
1da177e4
LT
1730}
1731#endif /* CONFIG_PROC_FS */
1732
12d6f21e 1733#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1734extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1735#ifdef CONFIG_HIBERNATION
1736extern bool kernel_page_present(struct page *page);
1737#endif /* CONFIG_HIBERNATION */
12d6f21e 1738#else
1da177e4 1739static inline void
9858db50 1740kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1741#ifdef CONFIG_HIBERNATION
1742static inline bool kernel_page_present(struct page *page) { return true; }
1743#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1744#endif
1745
31db58b3 1746extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1747#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1748int in_gate_area_no_mm(unsigned long addr);
83b964bb 1749int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1750#else
cae5d390
SW
1751int in_gate_area_no_mm(unsigned long addr);
1752#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1753#endif /* __HAVE_ARCH_GATE_AREA */
1754
146732ce
JT
1755#ifdef CONFIG_SYSCTL
1756extern int sysctl_drop_caches;
8d65af78 1757int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1758 void __user *, size_t *, loff_t *);
146732ce
JT
1759#endif
1760
a09ed5e0 1761unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1762 unsigned long nr_pages_scanned,
1763 unsigned long lru_pages);
9d0243bc 1764
7a9166e3
LY
1765#ifndef CONFIG_MMU
1766#define randomize_va_space 0
1767#else
a62eaf15 1768extern int randomize_va_space;
7a9166e3 1769#endif
a62eaf15 1770
045e72ac 1771const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1772void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1773
9bdac914
YL
1774void sparse_mem_maps_populate_node(struct page **map_map,
1775 unsigned long pnum_begin,
1776 unsigned long pnum_end,
1777 unsigned long map_count,
1778 int nodeid);
1779
98f3cfc1 1780struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1781pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1782pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1783pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1784pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1785void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1786void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1787void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
1788int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1789 int node);
1790int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 1791void vmemmap_populate_print_last(void);
0197518c 1792#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 1793void vmemmap_free(unsigned long start, unsigned long end);
0197518c 1794#endif
46723bfa
YI
1795void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1796 unsigned long size);
6a46079c 1797
82ba011b
AK
1798enum mf_flags {
1799 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1800 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1801 MF_MUST_KILL = 1 << 2,
82ba011b 1802};
cd42f4a3 1803extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1804extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1805extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1806extern int sysctl_memory_failure_early_kill;
1807extern int sysctl_memory_failure_recovery;
facb6011 1808extern void shake_page(struct page *p, int access);
293c07e3 1809extern atomic_long_t num_poisoned_pages;
facb6011 1810extern int soft_offline_page(struct page *page, int flags);
6a46079c 1811
718a3821
WF
1812extern void dump_page(struct page *page);
1813
47ad8475
AA
1814#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1815extern void clear_huge_page(struct page *page,
1816 unsigned long addr,
1817 unsigned int pages_per_huge_page);
1818extern void copy_user_huge_page(struct page *dst, struct page *src,
1819 unsigned long addr, struct vm_area_struct *vma,
1820 unsigned int pages_per_huge_page);
1821#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1822
c0a32fc5
SG
1823#ifdef CONFIG_DEBUG_PAGEALLOC
1824extern unsigned int _debug_guardpage_minorder;
1825
1826static inline unsigned int debug_guardpage_minorder(void)
1827{
1828 return _debug_guardpage_minorder;
1829}
1830
1831static inline bool page_is_guard(struct page *page)
1832{
1833 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1834}
1835#else
1836static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1837static inline bool page_is_guard(struct page *page) { return false; }
1838#endif /* CONFIG_DEBUG_PAGEALLOC */
1839
f9872caf
CS
1840#if MAX_NUMNODES > 1
1841void __init setup_nr_node_ids(void);
1842#else
1843static inline void setup_nr_node_ids(void) {}
1844#endif
1845
1da177e4
LT
1846#endif /* __KERNEL__ */
1847#endif /* _LINUX_MM_H */