PowerPC: Disable SLUB for configurations in which slab page structs are modified
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/sched.h>
5#include <linux/errno.h>
c59ede7b 6#include <linux/capability.h>
1da177e4
LT
7
8#ifdef __KERNEL__
9
1da177e4
LT
10#include <linux/gfp.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/prio_tree.h>
15#include <linux/fs.h>
de5097c2 16#include <linux/mutex.h>
9a11b49a 17#include <linux/debug_locks.h>
d08b3851 18#include <linux/backing-dev.h>
5b99cd0e 19#include <linux/mm_types.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
23
24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25extern unsigned long max_mapnr;
26#endif
27
28extern unsigned long num_physpages;
29extern void * high_memory;
30extern unsigned long vmalloc_earlyreserve;
31extern int page_cluster;
32
33#ifdef CONFIG_SYSCTL
34extern int sysctl_legacy_va_layout;
35#else
36#define sysctl_legacy_va_layout 0
37#endif
38
39#include <asm/page.h>
40#include <asm/pgtable.h>
41#include <asm/processor.h>
1da177e4 42
1da177e4
LT
43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
45/*
46 * Linux kernel virtual memory manager primitives.
47 * The idea being to have a "virtual" mm in the same way
48 * we have a virtual fs - giving a cleaner interface to the
49 * mm details, and allowing different kinds of memory mappings
50 * (from shared memory to executable loading to arbitrary
51 * mmap() functions).
52 */
53
54/*
55 * This struct defines a memory VMM memory area. There is one of these
56 * per VM-area/task. A VM area is any part of the process virtual memory
57 * space that has a special rule for the page-fault handlers (ie a shared
58 * library, the executable area etc).
59 */
60struct vm_area_struct {
61 struct mm_struct * vm_mm; /* The address space we belong to. */
62 unsigned long vm_start; /* Our start address within vm_mm. */
63 unsigned long vm_end; /* The first byte after our end address
64 within vm_mm. */
65
66 /* linked list of VM areas per task, sorted by address */
67 struct vm_area_struct *vm_next;
68
69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
70 unsigned long vm_flags; /* Flags, listed below. */
71
72 struct rb_node vm_rb;
73
74 /*
75 * For areas with an address space and backing store,
76 * linkage into the address_space->i_mmap prio tree, or
77 * linkage to the list of like vmas hanging off its node, or
78 * linkage of vma in the address_space->i_mmap_nonlinear list.
79 */
80 union {
81 struct {
82 struct list_head list;
83 void *parent; /* aligns with prio_tree_node parent */
84 struct vm_area_struct *head;
85 } vm_set;
86
87 struct raw_prio_tree_node prio_tree_node;
88 } shared;
89
90 /*
91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
92 * list, after a COW of one of the file pages. A MAP_SHARED vma
93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
94 * or brk vma (with NULL file) can only be in an anon_vma list.
95 */
96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
98
99 /* Function pointers to deal with this struct. */
100 struct vm_operations_struct * vm_ops;
101
102 /* Information about our backing store: */
103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
104 units, *not* PAGE_CACHE_SIZE */
105 struct file * vm_file; /* File we map to (can be NULL). */
106 void * vm_private_data; /* was vm_pte (shared mem) */
107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
108
109#ifndef CONFIG_MMU
110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
111#endif
112#ifdef CONFIG_NUMA
113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
114#endif
115};
116
c43692e8
CL
117extern struct kmem_cache *vm_area_cachep;
118
1da177e4
LT
119/*
120 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
121 * disabled, then there's a single shared list of VMAs maintained by the
122 * system, and mm's subscribe to these individually
123 */
124struct vm_list_struct {
125 struct vm_list_struct *next;
126 struct vm_area_struct *vma;
127};
128
129#ifndef CONFIG_MMU
130extern struct rb_root nommu_vma_tree;
131extern struct rw_semaphore nommu_vma_sem;
132
133extern unsigned int kobjsize(const void *objp);
134#endif
135
136/*
137 * vm_flags..
138 */
139#define VM_READ 0x00000001 /* currently active flags */
140#define VM_WRITE 0x00000002
141#define VM_EXEC 0x00000004
142#define VM_SHARED 0x00000008
143
7e2cff42 144/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
145#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
146#define VM_MAYWRITE 0x00000020
147#define VM_MAYEXEC 0x00000040
148#define VM_MAYSHARE 0x00000080
149
150#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
151#define VM_GROWSUP 0x00000200
6aab341e 152#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
153#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
154
155#define VM_EXECUTABLE 0x00001000
156#define VM_LOCKED 0x00002000
157#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
158
159 /* Used by sys_madvise() */
160#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
161#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
162
163#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
164#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 165#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
166#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
167#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
168#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
169#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 170#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 171#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
1da177e4
LT
172
173#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
174#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
175#endif
176
177#ifdef CONFIG_STACK_GROWSUP
178#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179#else
180#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
181#endif
182
183#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
184#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
185#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
186#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
187#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
188
189/*
190 * mapping from the currently active vm_flags protection bits (the
191 * low four bits) to a page protection mask..
192 */
193extern pgprot_t protection_map[16];
194
195
196/*
197 * These are the virtual MM functions - opening of an area, closing and
198 * unmapping it (needed to keep files on disk up-to-date etc), pointer
199 * to the functions called when a no-page or a wp-page exception occurs.
200 */
201struct vm_operations_struct {
202 void (*open)(struct vm_area_struct * area);
203 void (*close)(struct vm_area_struct * area);
204 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
f4b81804 205 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
1da177e4 206 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
9637a5ef
DH
207
208 /* notification that a previously read-only page is about to become
209 * writable, if an error is returned it will cause a SIGBUS */
210 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
1da177e4
LT
211#ifdef CONFIG_NUMA
212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
213 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
214 unsigned long addr);
7b2259b3
CL
215 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
216 const nodemask_t *to, unsigned long flags);
1da177e4
LT
217#endif
218};
219
220struct mmu_gather;
221struct inode;
222
349aef0b
AM
223#define page_private(page) ((page)->private)
224#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 225
1da177e4
LT
226/*
227 * FIXME: take this include out, include page-flags.h in
228 * files which need it (119 of them)
229 */
230#include <linux/page-flags.h>
231
725d704e
NP
232#ifdef CONFIG_DEBUG_VM
233#define VM_BUG_ON(cond) BUG_ON(cond)
234#else
235#define VM_BUG_ON(condition) do { } while(0)
236#endif
237
1da177e4
LT
238/*
239 * Methods to modify the page usage count.
240 *
241 * What counts for a page usage:
242 * - cache mapping (page->mapping)
243 * - private data (page->private)
244 * - page mapped in a task's page tables, each mapping
245 * is counted separately
246 *
247 * Also, many kernel routines increase the page count before a critical
248 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
249 */
250
251/*
da6052f7 252 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 253 */
7c8ee9a8
NP
254static inline int put_page_testzero(struct page *page)
255{
725d704e 256 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 257 return atomic_dec_and_test(&page->_count);
7c8ee9a8 258}
1da177e4
LT
259
260/*
7c8ee9a8
NP
261 * Try to grab a ref unless the page has a refcount of zero, return false if
262 * that is the case.
1da177e4 263 */
7c8ee9a8
NP
264static inline int get_page_unless_zero(struct page *page)
265{
725d704e 266 VM_BUG_ON(PageCompound(page));
8dc04efb 267 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 268}
1da177e4 269
4c21e2f2 270static inline int page_count(struct page *page)
1da177e4 271{
617d2214 272 if (unlikely(PageCompound(page)))
4c21e2f2 273 page = (struct page *)page_private(page);
8dc04efb 274 return atomic_read(&page->_count);
1da177e4
LT
275}
276
277static inline void get_page(struct page *page)
278{
279 if (unlikely(PageCompound(page)))
4c21e2f2 280 page = (struct page *)page_private(page);
725d704e 281 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
282 atomic_inc(&page->_count);
283}
284
7835e98b
NP
285/*
286 * Setup the page count before being freed into the page allocator for
287 * the first time (boot or memory hotplug)
288 */
289static inline void init_page_count(struct page *page)
290{
291 atomic_set(&page->_count, 1);
292}
293
1da177e4 294void put_page(struct page *page);
1d7ea732 295void put_pages_list(struct list_head *pages);
1da177e4 296
8dfcc9ba 297void split_page(struct page *page, unsigned int order);
8dfcc9ba 298
33f2ef89
AW
299/*
300 * Compound pages have a destructor function. Provide a
301 * prototype for that function and accessor functions.
302 * These are _only_ valid on the head of a PG_compound page.
303 */
304typedef void compound_page_dtor(struct page *);
305
306static inline void set_compound_page_dtor(struct page *page,
307 compound_page_dtor *dtor)
308{
309 page[1].lru.next = (void *)dtor;
310}
311
312static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
313{
314 return (compound_page_dtor *)page[1].lru.next;
315}
316
1da177e4
LT
317/*
318 * Multiple processes may "see" the same page. E.g. for untouched
319 * mappings of /dev/null, all processes see the same page full of
320 * zeroes, and text pages of executables and shared libraries have
321 * only one copy in memory, at most, normally.
322 *
323 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
324 * page_count() == 0 means the page is free. page->lru is then used for
325 * freelist management in the buddy allocator.
da6052f7 326 * page_count() > 0 means the page has been allocated.
1da177e4 327 *
da6052f7
NP
328 * Pages are allocated by the slab allocator in order to provide memory
329 * to kmalloc and kmem_cache_alloc. In this case, the management of the
330 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
331 * unless a particular usage is carefully commented. (the responsibility of
332 * freeing the kmalloc memory is the caller's, of course).
1da177e4 333 *
da6052f7
NP
334 * A page may be used by anyone else who does a __get_free_page().
335 * In this case, page_count still tracks the references, and should only
336 * be used through the normal accessor functions. The top bits of page->flags
337 * and page->virtual store page management information, but all other fields
338 * are unused and could be used privately, carefully. The management of this
339 * page is the responsibility of the one who allocated it, and those who have
340 * subsequently been given references to it.
341 *
342 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
343 * managed by the Linux memory manager: I/O, buffers, swapping etc.
344 * The following discussion applies only to them.
345 *
da6052f7
NP
346 * A pagecache page contains an opaque `private' member, which belongs to the
347 * page's address_space. Usually, this is the address of a circular list of
348 * the page's disk buffers. PG_private must be set to tell the VM to call
349 * into the filesystem to release these pages.
1da177e4 350 *
da6052f7
NP
351 * A page may belong to an inode's memory mapping. In this case, page->mapping
352 * is the pointer to the inode, and page->index is the file offset of the page,
353 * in units of PAGE_CACHE_SIZE.
1da177e4 354 *
da6052f7
NP
355 * If pagecache pages are not associated with an inode, they are said to be
356 * anonymous pages. These may become associated with the swapcache, and in that
357 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 358 *
da6052f7
NP
359 * In either case (swapcache or inode backed), the pagecache itself holds one
360 * reference to the page. Setting PG_private should also increment the
361 * refcount. The each user mapping also has a reference to the page.
1da177e4 362 *
da6052f7
NP
363 * The pagecache pages are stored in a per-mapping radix tree, which is
364 * rooted at mapping->page_tree, and indexed by offset.
365 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
366 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 367 *
da6052f7 368 * All pagecache pages may be subject to I/O:
1da177e4
LT
369 * - inode pages may need to be read from disk,
370 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
371 * to be written back to the inode on disk,
372 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
373 * modified may need to be swapped out to swap space and (later) to be read
374 * back into memory.
1da177e4
LT
375 */
376
377/*
378 * The zone field is never updated after free_area_init_core()
379 * sets it, so none of the operations on it need to be atomic.
1da177e4 380 */
348f8b6c 381
d41dee36
AW
382
383/*
384 * page->flags layout:
385 *
386 * There are three possibilities for how page->flags get
387 * laid out. The first is for the normal case, without
388 * sparsemem. The second is for sparsemem when there is
389 * plenty of space for node and section. The last is when
390 * we have run out of space and have to fall back to an
391 * alternate (slower) way of determining the node.
392 *
393 * No sparsemem: | NODE | ZONE | ... | FLAGS |
394 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
395 * no space for node: | SECTION | ZONE | ... | FLAGS |
396 */
397#ifdef CONFIG_SPARSEMEM
398#define SECTIONS_WIDTH SECTIONS_SHIFT
399#else
400#define SECTIONS_WIDTH 0
401#endif
402
403#define ZONES_WIDTH ZONES_SHIFT
404
405#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
406#define NODES_WIDTH NODES_SHIFT
407#else
408#define NODES_WIDTH 0
409#endif
410
411/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 412#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
413#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
414#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
415
416/*
417 * We are going to use the flags for the page to node mapping if its in
418 * there. This includes the case where there is no node, so it is implicit.
419 */
89689ae7
CL
420#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
421#define NODE_NOT_IN_PAGE_FLAGS
422#endif
d41dee36
AW
423
424#ifndef PFN_SECTION_SHIFT
425#define PFN_SECTION_SHIFT 0
426#endif
348f8b6c
DH
427
428/*
429 * Define the bit shifts to access each section. For non-existant
430 * sections we define the shift as 0; that plus a 0 mask ensures
431 * the compiler will optimise away reference to them.
432 */
d41dee36
AW
433#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
434#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
435#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 436
89689ae7
CL
437/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
438#ifdef NODE_NOT_IN_PAGEFLAGS
439#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
440#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
441 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 442#else
89689ae7 443#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
444#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
445 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
446#endif
447
bd8029b6 448#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 449
d41dee36
AW
450#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
451#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
452#endif
453
d41dee36
AW
454#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
455#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
456#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 457#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 458
2f1b6248 459static inline enum zone_type page_zonenum(struct page *page)
1da177e4 460{
348f8b6c 461 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 462}
1da177e4 463
89689ae7
CL
464/*
465 * The identification function is only used by the buddy allocator for
466 * determining if two pages could be buddies. We are not really
467 * identifying a zone since we could be using a the section number
468 * id if we have not node id available in page flags.
469 * We guarantee only that it will return the same value for two
470 * combinable pages in a zone.
471 */
cb2b95e1
AW
472static inline int page_zone_id(struct page *page)
473{
89689ae7 474 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
475}
476
25ba77c1 477static inline int zone_to_nid(struct zone *zone)
89fa3024 478{
d5f541ed
CL
479#ifdef CONFIG_NUMA
480 return zone->node;
481#else
482 return 0;
483#endif
89fa3024
CL
484}
485
89689ae7 486#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 487extern int page_to_nid(struct page *page);
89689ae7 488#else
25ba77c1 489static inline int page_to_nid(struct page *page)
d41dee36 490{
89689ae7 491 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 492}
89689ae7
CL
493#endif
494
495static inline struct zone *page_zone(struct page *page)
496{
497 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
498}
499
d41dee36
AW
500static inline unsigned long page_to_section(struct page *page)
501{
502 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
503}
504
2f1b6248 505static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
506{
507 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
508 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
509}
2f1b6248 510
348f8b6c
DH
511static inline void set_page_node(struct page *page, unsigned long node)
512{
513 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
514 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 515}
89689ae7 516
d41dee36
AW
517static inline void set_page_section(struct page *page, unsigned long section)
518{
519 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
520 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
521}
1da177e4 522
2f1b6248 523static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 524 unsigned long node, unsigned long pfn)
1da177e4 525{
348f8b6c
DH
526 set_page_zone(page, zone);
527 set_page_node(page, node);
d41dee36 528 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
529}
530
f6ac2354
CL
531/*
532 * Some inline functions in vmstat.h depend on page_zone()
533 */
534#include <linux/vmstat.h>
535
652050ae 536static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
537{
538 return __va(page_to_pfn(page) << PAGE_SHIFT);
539}
540
541#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
542#define HASHED_PAGE_VIRTUAL
543#endif
544
545#if defined(WANT_PAGE_VIRTUAL)
546#define page_address(page) ((page)->virtual)
547#define set_page_address(page, address) \
548 do { \
549 (page)->virtual = (address); \
550 } while(0)
551#define page_address_init() do { } while(0)
552#endif
553
554#if defined(HASHED_PAGE_VIRTUAL)
555void *page_address(struct page *page);
556void set_page_address(struct page *page, void *virtual);
557void page_address_init(void);
558#endif
559
560#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
561#define page_address(page) lowmem_page_address(page)
562#define set_page_address(page, address) do { } while(0)
563#define page_address_init() do { } while(0)
564#endif
565
566/*
567 * On an anonymous page mapped into a user virtual memory area,
568 * page->mapping points to its anon_vma, not to a struct address_space;
569 * with the PAGE_MAPPING_ANON bit set to distinguish it.
570 *
571 * Please note that, confusingly, "page_mapping" refers to the inode
572 * address_space which maps the page from disk; whereas "page_mapped"
573 * refers to user virtual address space into which the page is mapped.
574 */
575#define PAGE_MAPPING_ANON 1
576
577extern struct address_space swapper_space;
578static inline struct address_space *page_mapping(struct page *page)
579{
580 struct address_space *mapping = page->mapping;
581
582 if (unlikely(PageSwapCache(page)))
583 mapping = &swapper_space;
584 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
585 mapping = NULL;
586 return mapping;
587}
588
589static inline int PageAnon(struct page *page)
590{
591 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
592}
593
594/*
595 * Return the pagecache index of the passed page. Regular pagecache pages
596 * use ->index whereas swapcache pages use ->private
597 */
598static inline pgoff_t page_index(struct page *page)
599{
600 if (unlikely(PageSwapCache(page)))
4c21e2f2 601 return page_private(page);
1da177e4
LT
602 return page->index;
603}
604
605/*
606 * The atomic page->_mapcount, like _count, starts from -1:
607 * so that transitions both from it and to it can be tracked,
608 * using atomic_inc_and_test and atomic_add_negative(-1).
609 */
610static inline void reset_page_mapcount(struct page *page)
611{
612 atomic_set(&(page)->_mapcount, -1);
613}
614
615static inline int page_mapcount(struct page *page)
616{
617 return atomic_read(&(page)->_mapcount) + 1;
618}
619
620/*
621 * Return true if this page is mapped into pagetables.
622 */
623static inline int page_mapped(struct page *page)
624{
625 return atomic_read(&(page)->_mapcount) >= 0;
626}
627
628/*
629 * Error return values for the *_nopage functions
630 */
631#define NOPAGE_SIGBUS (NULL)
632#define NOPAGE_OOM ((struct page *) (-1))
7f7bbbe5 633#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
1da177e4 634
f4b81804
JS
635/*
636 * Error return values for the *_nopfn functions
637 */
638#define NOPFN_SIGBUS ((unsigned long) -1)
639#define NOPFN_OOM ((unsigned long) -2)
22cd25ed 640#define NOPFN_REFAULT ((unsigned long) -3)
f4b81804 641
1da177e4
LT
642/*
643 * Different kinds of faults, as returned by handle_mm_fault().
644 * Used to decide whether a process gets delivered SIGBUS or
645 * just gets major/minor fault counters bumped up.
646 */
f33ea7f4
NP
647#define VM_FAULT_OOM 0x00
648#define VM_FAULT_SIGBUS 0x01
649#define VM_FAULT_MINOR 0x02
650#define VM_FAULT_MAJOR 0x03
651
652/*
653 * Special case for get_user_pages.
654 * Must be in a distinct bit from the above VM_FAULT_ flags.
655 */
656#define VM_FAULT_WRITE 0x10
1da177e4
LT
657
658#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
659
660extern void show_free_areas(void);
661
662#ifdef CONFIG_SHMEM
1da177e4
LT
663int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
664struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
665 unsigned long addr);
666int shmem_lock(struct file *file, int lock, struct user_struct *user);
667#else
03b00ebc
RK
668static inline int shmem_lock(struct file *file, int lock,
669 struct user_struct *user)
670{
671 return 0;
672}
673
674static inline int shmem_set_policy(struct vm_area_struct *vma,
675 struct mempolicy *new)
676{
677 return 0;
678}
679
680static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
681 unsigned long addr)
682{
683 return NULL;
684}
1da177e4
LT
685#endif
686struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
687
688int shmem_zero_setup(struct vm_area_struct *);
689
b0e15190
DH
690#ifndef CONFIG_MMU
691extern unsigned long shmem_get_unmapped_area(struct file *file,
692 unsigned long addr,
693 unsigned long len,
694 unsigned long pgoff,
695 unsigned long flags);
696#endif
697
1da177e4
LT
698static inline int can_do_mlock(void)
699{
700 if (capable(CAP_IPC_LOCK))
701 return 1;
702 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
703 return 1;
704 return 0;
705}
706extern int user_shm_lock(size_t, struct user_struct *);
707extern void user_shm_unlock(size_t, struct user_struct *);
708
709/*
710 * Parameter block passed down to zap_pte_range in exceptional cases.
711 */
712struct zap_details {
713 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
714 struct address_space *check_mapping; /* Check page->mapping if set */
715 pgoff_t first_index; /* Lowest page->index to unmap */
716 pgoff_t last_index; /* Highest page->index to unmap */
717 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
718 unsigned long truncate_count; /* Compare vm_truncate_count */
719};
720
6aab341e 721struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 722unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 723 unsigned long size, struct zap_details *);
508034a3 724unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
725 struct vm_area_struct *start_vma, unsigned long start_addr,
726 unsigned long end_addr, unsigned long *nr_accounted,
727 struct zap_details *);
3bf5ee95
HD
728void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
729 unsigned long end, unsigned long floor, unsigned long ceiling);
730void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 731 unsigned long floor, unsigned long ceiling);
1da177e4
LT
732int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
733 struct vm_area_struct *vma);
734int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
735 unsigned long size, pgprot_t prot);
736void unmap_mapping_range(struct address_space *mapping,
737 loff_t const holebegin, loff_t const holelen, int even_cows);
738
739static inline void unmap_shared_mapping_range(struct address_space *mapping,
740 loff_t const holebegin, loff_t const holelen)
741{
742 unmap_mapping_range(mapping, holebegin, holelen, 0);
743}
744
745extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 746extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
1da177e4
LT
747extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
748extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
f33ea7f4 749
7ee1dd3f
DH
750#ifdef CONFIG_MMU
751extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
752 unsigned long address, int write_access);
753
754static inline int handle_mm_fault(struct mm_struct *mm,
755 struct vm_area_struct *vma, unsigned long address,
756 int write_access)
f33ea7f4 757{
7ee1dd3f
DH
758 return __handle_mm_fault(mm, vma, address, write_access) &
759 (~VM_FAULT_WRITE);
f33ea7f4 760}
7ee1dd3f
DH
761#else
762static inline int handle_mm_fault(struct mm_struct *mm,
763 struct vm_area_struct *vma, unsigned long address,
764 int write_access)
765{
766 /* should never happen if there's no MMU */
767 BUG();
768 return VM_FAULT_SIGBUS;
769}
770#endif
f33ea7f4 771
1da177e4
LT
772extern int make_pages_present(unsigned long addr, unsigned long end);
773extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
774void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
775
776int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
777 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 778void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4 779
cf9a2ae8
DH
780extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
781extern void do_invalidatepage(struct page *page, unsigned long offset);
782
1da177e4 783int __set_page_dirty_nobuffers(struct page *page);
76719325 784int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
785int redirty_page_for_writepage(struct writeback_control *wbc,
786 struct page *page);
787int FASTCALL(set_page_dirty(struct page *page));
788int set_page_dirty_lock(struct page *page);
789int clear_page_dirty_for_io(struct page *page);
790
791extern unsigned long do_mremap(unsigned long addr,
792 unsigned long old_len, unsigned long new_len,
793 unsigned long flags, unsigned long new_addr);
794
795/*
796 * Prototype to add a shrinker callback for ageable caches.
797 *
798 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
799 * scan `nr_to_scan' objects, attempting to free them.
800 *
845d3431 801 * The callback must return the number of objects which remain in the cache.
1da177e4 802 *
845d3431 803 * The callback will be passed nr_to_scan == 0 when the VM is querying the
1da177e4
LT
804 * cache size, so a fastpath for that case is appropriate.
805 */
6daa0e28 806typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
1da177e4
LT
807
808/*
809 * Add an aging callback. The int is the number of 'seeks' it takes
810 * to recreate one of the objects that these functions age.
811 */
812
813#define DEFAULT_SEEKS 2
814struct shrinker;
815extern struct shrinker *set_shrinker(int, shrinker_t);
816extern void remove_shrinker(struct shrinker *shrinker);
817
d08b3851
PZ
818/*
819 * Some shared mappigns will want the pages marked read-only
820 * to track write events. If so, we'll downgrade vm_page_prot
821 * to the private version (using protection_map[] without the
822 * VM_SHARED bit).
823 */
824static inline int vma_wants_writenotify(struct vm_area_struct *vma)
825{
826 unsigned int vm_flags = vma->vm_flags;
827
828 /* If it was private or non-writable, the write bit is already clear */
829 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
830 return 0;
831
832 /* The backer wishes to know when pages are first written to? */
833 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
834 return 1;
835
836 /* The open routine did something to the protections already? */
837 if (pgprot_val(vma->vm_page_prot) !=
838 pgprot_val(protection_map[vm_flags &
839 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
840 return 0;
841
842 /* Specialty mapping? */
843 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
844 return 0;
845
846 /* Can the mapping track the dirty pages? */
847 return vma->vm_file && vma->vm_file->f_mapping &&
848 mapping_cap_account_dirty(vma->vm_file->f_mapping);
849}
850
c9cfcddf
LT
851extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
852
5f22df00
NP
853#ifdef __PAGETABLE_PUD_FOLDED
854static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
855 unsigned long address)
856{
857 return 0;
858}
859#else
1bb3630e 860int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
861#endif
862
863#ifdef __PAGETABLE_PMD_FOLDED
864static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
865 unsigned long address)
866{
867 return 0;
868}
869#else
1bb3630e 870int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
871#endif
872
1bb3630e
HD
873int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
874int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
875
1da177e4
LT
876/*
877 * The following ifdef needed to get the 4level-fixup.h header to work.
878 * Remove it when 4level-fixup.h has been removed.
879 */
1bb3630e 880#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
881static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
882{
1bb3630e
HD
883 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
884 NULL: pud_offset(pgd, address);
1da177e4
LT
885}
886
887static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
888{
1bb3630e
HD
889 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
890 NULL: pmd_offset(pud, address);
1da177e4 891}
1bb3630e
HD
892#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
893
4c21e2f2
HD
894#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
895/*
896 * We tuck a spinlock to guard each pagetable page into its struct page,
897 * at page->private, with BUILD_BUG_ON to make sure that this will not
898 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
899 * When freeing, reset page->mapping so free_pages_check won't complain.
900 */
349aef0b 901#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
902#define pte_lock_init(_page) do { \
903 spin_lock_init(__pte_lockptr(_page)); \
904} while (0)
905#define pte_lock_deinit(page) ((page)->mapping = NULL)
906#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
907#else
908/*
909 * We use mm->page_table_lock to guard all pagetable pages of the mm.
910 */
911#define pte_lock_init(page) do {} while (0)
912#define pte_lock_deinit(page) do {} while (0)
913#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
914#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
915
c74df32c
HD
916#define pte_offset_map_lock(mm, pmd, address, ptlp) \
917({ \
4c21e2f2 918 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
919 pte_t *__pte = pte_offset_map(pmd, address); \
920 *(ptlp) = __ptl; \
921 spin_lock(__ptl); \
922 __pte; \
923})
924
925#define pte_unmap_unlock(pte, ptl) do { \
926 spin_unlock(ptl); \
927 pte_unmap(pte); \
928} while (0)
929
1bb3630e
HD
930#define pte_alloc_map(mm, pmd, address) \
931 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
932 NULL: pte_offset_map(pmd, address))
933
c74df32c
HD
934#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
935 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
936 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
937
1bb3630e
HD
938#define pte_alloc_kernel(pmd, address) \
939 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
940 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
941
942extern void free_area_init(unsigned long * zones_size);
943extern void free_area_init_node(int nid, pg_data_t *pgdat,
944 unsigned long * zones_size, unsigned long zone_start_pfn,
945 unsigned long *zholes_size);
c713216d
MG
946#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
947/*
948 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
949 * zones, allocate the backing mem_map and account for memory holes in a more
950 * architecture independent manner. This is a substitute for creating the
951 * zone_sizes[] and zholes_size[] arrays and passing them to
952 * free_area_init_node()
953 *
954 * An architecture is expected to register range of page frames backed by
955 * physical memory with add_active_range() before calling
956 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
957 * usage, an architecture is expected to do something like
958 *
959 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
960 * max_highmem_pfn};
961 * for_each_valid_physical_page_range()
962 * add_active_range(node_id, start_pfn, end_pfn)
963 * free_area_init_nodes(max_zone_pfns);
964 *
965 * If the architecture guarantees that there are no holes in the ranges
966 * registered with add_active_range(), free_bootmem_active_regions()
967 * will call free_bootmem_node() for each registered physical page range.
968 * Similarly sparse_memory_present_with_active_regions() calls
969 * memory_present() for each range when SPARSEMEM is enabled.
970 *
971 * See mm/page_alloc.c for more information on each function exposed by
972 * CONFIG_ARCH_POPULATES_NODE_MAP
973 */
974extern void free_area_init_nodes(unsigned long *max_zone_pfn);
975extern void add_active_range(unsigned int nid, unsigned long start_pfn,
976 unsigned long end_pfn);
977extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
978 unsigned long new_end_pfn);
fb01439c
MG
979extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
980 unsigned long end_pfn);
c713216d
MG
981extern void remove_all_active_ranges(void);
982extern unsigned long absent_pages_in_range(unsigned long start_pfn,
983 unsigned long end_pfn);
984extern void get_pfn_range_for_nid(unsigned int nid,
985 unsigned long *start_pfn, unsigned long *end_pfn);
986extern unsigned long find_min_pfn_with_active_regions(void);
987extern unsigned long find_max_pfn_with_active_regions(void);
988extern void free_bootmem_with_active_regions(int nid,
989 unsigned long max_low_pfn);
990extern void sparse_memory_present_with_active_regions(int nid);
991#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
992extern int early_pfn_to_nid(unsigned long pfn);
993#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
994#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 995extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
996extern void memmap_init_zone(unsigned long, int, unsigned long,
997 unsigned long, enum memmap_context);
3947be19 998extern void setup_per_zone_pages_min(void);
1da177e4
LT
999extern void mem_init(void);
1000extern void show_mem(void);
1001extern void si_meminfo(struct sysinfo * val);
1002extern void si_meminfo_node(struct sysinfo *val, int nid);
1003
e7c8d5c9
CL
1004#ifdef CONFIG_NUMA
1005extern void setup_per_cpu_pageset(void);
1006#else
1007static inline void setup_per_cpu_pageset(void) {}
1008#endif
1009
1da177e4
LT
1010/* prio_tree.c */
1011void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1012void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1013void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1014struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1015 struct prio_tree_iter *iter);
1016
1017#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1018 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1019 (vma = vma_prio_tree_next(vma, iter)); )
1020
1021static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1022 struct list_head *list)
1023{
1024 vma->shared.vm_set.parent = NULL;
1025 list_add_tail(&vma->shared.vm_set.list, list);
1026}
1027
1028/* mmap.c */
1029extern int __vm_enough_memory(long pages, int cap_sys_admin);
1030extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1031 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1032extern struct vm_area_struct *vma_merge(struct mm_struct *,
1033 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1034 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1035 struct mempolicy *);
1036extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1037extern int split_vma(struct mm_struct *,
1038 struct vm_area_struct *, unsigned long addr, int new_below);
1039extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1040extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1041 struct rb_node **, struct rb_node *);
a8fb5618 1042extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1043extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1044 unsigned long addr, unsigned long len, pgoff_t pgoff);
1045extern void exit_mmap(struct mm_struct *);
119f657c 1046extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1047extern int install_special_mapping(struct mm_struct *mm,
1048 unsigned long addr, unsigned long len,
1049 unsigned long flags, struct page **pages);
1da177e4
LT
1050
1051extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1052
1053extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1054 unsigned long len, unsigned long prot,
1055 unsigned long flag, unsigned long pgoff);
1056
1057static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1058 unsigned long len, unsigned long prot,
1059 unsigned long flag, unsigned long offset)
1060{
1061 unsigned long ret = -EINVAL;
1062 if ((offset + PAGE_ALIGN(len)) < offset)
1063 goto out;
1064 if (!(offset & ~PAGE_MASK))
1065 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1066out:
1067 return ret;
1068}
1069
1070extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1071
1072extern unsigned long do_brk(unsigned long, unsigned long);
1073
1074/* filemap.c */
1075extern unsigned long page_unuse(struct page *);
1076extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1077extern void truncate_inode_pages_range(struct address_space *,
1078 loff_t lstart, loff_t lend);
1da177e4
LT
1079
1080/* generic vm_area_ops exported for stackable file systems */
1081extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1082extern int filemap_populate(struct vm_area_struct *, unsigned long,
1083 unsigned long, pgprot_t, unsigned long, int);
1084
1085/* mm/page-writeback.c */
1086int write_one_page(struct page *page, int wait);
1087
1088/* readahead.c */
1089#define VM_MAX_READAHEAD 128 /* kbytes */
1090#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1091#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1092 * turning readahead off */
1093
1094int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1095 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1096int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8
AM
1097 pgoff_t offset, unsigned long nr_to_read);
1098unsigned long page_cache_readahead(struct address_space *mapping,
1da177e4
LT
1099 struct file_ra_state *ra,
1100 struct file *filp,
7361f4d8 1101 pgoff_t offset,
1da177e4
LT
1102 unsigned long size);
1103void handle_ra_miss(struct address_space *mapping,
1104 struct file_ra_state *ra, pgoff_t offset);
1105unsigned long max_sane_readahead(unsigned long nr);
1106
1107/* Do stack extension */
46dea3d0 1108extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1109#ifdef CONFIG_IA64
46dea3d0 1110extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1111#endif
1da177e4
LT
1112
1113/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1114extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1115extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1116 struct vm_area_struct **pprev);
1117
1118/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1119 NULL if none. Assume start_addr < end_addr. */
1120static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1121{
1122 struct vm_area_struct * vma = find_vma(mm,start_addr);
1123
1124 if (vma && end_addr <= vma->vm_start)
1125 vma = NULL;
1126 return vma;
1127}
1128
1129static inline unsigned long vma_pages(struct vm_area_struct *vma)
1130{
1131 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1132}
1133
804af2cf 1134pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd
HD
1135struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1136struct page *vmalloc_to_page(void *addr);
1137unsigned long vmalloc_to_pfn(void *addr);
1138int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1139 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1140int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1141int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1142 unsigned long pfn);
deceb6cd 1143
6aab341e 1144struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1145 unsigned int foll_flags);
1146#define FOLL_WRITE 0x01 /* check pte is writable */
1147#define FOLL_TOUCH 0x02 /* mark page accessed */
1148#define FOLL_GET 0x04 /* do get_page on page */
1149#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4 1150
aee16b3c
JF
1151typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1152 void *data);
1153extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1154 unsigned long size, pte_fn_t fn, void *data);
1155
1da177e4 1156#ifdef CONFIG_PROC_FS
ab50b8ed 1157void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1158#else
ab50b8ed 1159static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1160 unsigned long flags, struct file *file, long pages)
1161{
1162}
1163#endif /* CONFIG_PROC_FS */
1164
1da177e4
LT
1165#ifndef CONFIG_DEBUG_PAGEALLOC
1166static inline void
9858db50 1167kernel_map_pages(struct page *page, int numpages, int enable) {}
1da177e4
LT
1168#endif
1169
1170extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1171#ifdef __HAVE_ARCH_GATE_AREA
1172int in_gate_area_no_task(unsigned long addr);
1173int in_gate_area(struct task_struct *task, unsigned long addr);
1174#else
1175int in_gate_area_no_task(unsigned long addr);
1176#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1177#endif /* __HAVE_ARCH_GATE_AREA */
1178
9d0243bc
AM
1179int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1180 void __user *, size_t *, loff_t *);
69e05944 1181unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc
AM
1182 unsigned long lru_pages);
1183void drop_pagecache(void);
1184void drop_slab(void);
1185
7a9166e3
LY
1186#ifndef CONFIG_MMU
1187#define randomize_va_space 0
1188#else
a62eaf15 1189extern int randomize_va_space;
7a9166e3 1190#endif
a62eaf15 1191
f269fdd1 1192__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
e6e5494c 1193
1da177e4
LT
1194#endif /* __KERNEL__ */
1195#endif /* _LINUX_MM_H */