memory-hotplug: remove page table of x86_64 architecture
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
1da177e4
LT
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
27ac792c
AR
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
1da177e4
LT
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
c43692e8
CL
61extern struct kmem_cache *vm_area_cachep;
62
1da177e4 63#ifndef CONFIG_MMU
8feae131
DH
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
605d9288 71 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 72 */
cc2383ec
KK
73#define VM_NONE 0x00000000
74
1da177e4
LT
75#define VM_READ 0x00000001 /* currently active flags */
76#define VM_WRITE 0x00000002
77#define VM_EXEC 0x00000004
78#define VM_SHARED 0x00000008
79
7e2cff42 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82#define VM_MAYWRITE 0x00000020
83#define VM_MAYEXEC 0x00000040
84#define VM_MAYSHARE 0x00000080
85
86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
18693050 90#define VM_POPULATE 0x00001000
1da177e4
LT
91#define VM_LOCKED 0x00002000
92#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93
94 /* Used by sys_madvise() */
95#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97
98#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 100#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 101#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
102#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
103#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 104#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 105#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 106
b379d790 107#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
108#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
109#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 110#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 111
cc2383ec
KK
112#if defined(CONFIG_X86)
113# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
114#elif defined(CONFIG_PPC)
115# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
116#elif defined(CONFIG_PARISC)
117# define VM_GROWSUP VM_ARCH_1
118#elif defined(CONFIG_IA64)
119# define VM_GROWSUP VM_ARCH_1
120#elif !defined(CONFIG_MMU)
121# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
122#endif
123
124#ifndef VM_GROWSUP
125# define VM_GROWSUP VM_NONE
126#endif
127
a8bef8ff
MG
128/* Bits set in the VMA until the stack is in its final location */
129#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
130
1da177e4
LT
131#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
132#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
133#endif
134
135#ifdef CONFIG_STACK_GROWSUP
136#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
137#else
138#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
139#endif
140
141#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
142#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
143#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
144#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
145#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
146
b291f000 147/*
78f11a25
AA
148 * Special vmas that are non-mergable, non-mlock()able.
149 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 150 */
314e51b9 151#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 152
1da177e4
LT
153/*
154 * mapping from the currently active vm_flags protection bits (the
155 * low four bits) to a page protection mask..
156 */
157extern pgprot_t protection_map[16];
158
d0217ac0
NP
159#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
160#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 161#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 162#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 163#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 164#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 165#define FAULT_FLAG_TRIED 0x40 /* second try */
d0217ac0 166
54cb8821 167/*
d0217ac0 168 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
169 * ->fault function. The vma's ->fault is responsible for returning a bitmask
170 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 171 *
d0217ac0 172 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 173 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 174 */
d0217ac0
NP
175struct vm_fault {
176 unsigned int flags; /* FAULT_FLAG_xxx flags */
177 pgoff_t pgoff; /* Logical page offset based on vma */
178 void __user *virtual_address; /* Faulting virtual address */
179
180 struct page *page; /* ->fault handlers should return a
83c54070 181 * page here, unless VM_FAULT_NOPAGE
d0217ac0 182 * is set (which is also implied by
83c54070 183 * VM_FAULT_ERROR).
d0217ac0 184 */
54cb8821 185};
1da177e4
LT
186
187/*
188 * These are the virtual MM functions - opening of an area, closing and
189 * unmapping it (needed to keep files on disk up-to-date etc), pointer
190 * to the functions called when a no-page or a wp-page exception occurs.
191 */
192struct vm_operations_struct {
193 void (*open)(struct vm_area_struct * area);
194 void (*close)(struct vm_area_struct * area);
d0217ac0 195 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
196
197 /* notification that a previously read-only page is about to become
198 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 199 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
200
201 /* called by access_process_vm when get_user_pages() fails, typically
202 * for use by special VMAs that can switch between memory and hardware
203 */
204 int (*access)(struct vm_area_struct *vma, unsigned long addr,
205 void *buf, int len, int write);
1da177e4 206#ifdef CONFIG_NUMA
a6020ed7
LS
207 /*
208 * set_policy() op must add a reference to any non-NULL @new mempolicy
209 * to hold the policy upon return. Caller should pass NULL @new to
210 * remove a policy and fall back to surrounding context--i.e. do not
211 * install a MPOL_DEFAULT policy, nor the task or system default
212 * mempolicy.
213 */
1da177e4 214 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
215
216 /*
217 * get_policy() op must add reference [mpol_get()] to any policy at
218 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
219 * in mm/mempolicy.c will do this automatically.
220 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
221 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
222 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
223 * must return NULL--i.e., do not "fallback" to task or system default
224 * policy.
225 */
1da177e4
LT
226 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
227 unsigned long addr);
7b2259b3
CL
228 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
229 const nodemask_t *to, unsigned long flags);
1da177e4 230#endif
0b173bc4
KK
231 /* called by sys_remap_file_pages() to populate non-linear mapping */
232 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
233 unsigned long size, pgoff_t pgoff);
1da177e4
LT
234};
235
236struct mmu_gather;
237struct inode;
238
349aef0b
AM
239#define page_private(page) ((page)->private)
240#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 241
b12c4ad1
MK
242/* It's valid only if the page is free path or free_list */
243static inline void set_freepage_migratetype(struct page *page, int migratetype)
244{
95e34412 245 page->index = migratetype;
b12c4ad1
MK
246}
247
248/* It's valid only if the page is free path or free_list */
249static inline int get_freepage_migratetype(struct page *page)
250{
95e34412 251 return page->index;
b12c4ad1
MK
252}
253
1da177e4
LT
254/*
255 * FIXME: take this include out, include page-flags.h in
256 * files which need it (119 of them)
257 */
258#include <linux/page-flags.h>
71e3aac0 259#include <linux/huge_mm.h>
1da177e4
LT
260
261/*
262 * Methods to modify the page usage count.
263 *
264 * What counts for a page usage:
265 * - cache mapping (page->mapping)
266 * - private data (page->private)
267 * - page mapped in a task's page tables, each mapping
268 * is counted separately
269 *
270 * Also, many kernel routines increase the page count before a critical
271 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
272 */
273
274/*
da6052f7 275 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 276 */
7c8ee9a8
NP
277static inline int put_page_testzero(struct page *page)
278{
725d704e 279 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 280 return atomic_dec_and_test(&page->_count);
7c8ee9a8 281}
1da177e4
LT
282
283/*
7c8ee9a8
NP
284 * Try to grab a ref unless the page has a refcount of zero, return false if
285 * that is the case.
1da177e4 286 */
7c8ee9a8
NP
287static inline int get_page_unless_zero(struct page *page)
288{
8dc04efb 289 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 290}
1da177e4 291
53df8fdc
WF
292extern int page_is_ram(unsigned long pfn);
293
48667e7a 294/* Support for virtually mapped pages */
b3bdda02
CL
295struct page *vmalloc_to_page(const void *addr);
296unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 297
0738c4bb
PM
298/*
299 * Determine if an address is within the vmalloc range
300 *
301 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
302 * is no special casing required.
303 */
9e2779fa
CL
304static inline int is_vmalloc_addr(const void *x)
305{
0738c4bb 306#ifdef CONFIG_MMU
9e2779fa
CL
307 unsigned long addr = (unsigned long)x;
308
309 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
310#else
311 return 0;
8ca3ed87 312#endif
0738c4bb 313}
81ac3ad9
KH
314#ifdef CONFIG_MMU
315extern int is_vmalloc_or_module_addr(const void *x);
316#else
934831d0 317static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
318{
319 return 0;
320}
321#endif
9e2779fa 322
e9da73d6
AA
323static inline void compound_lock(struct page *page)
324{
325#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 326 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
327 bit_spin_lock(PG_compound_lock, &page->flags);
328#endif
329}
330
331static inline void compound_unlock(struct page *page)
332{
333#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 334 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
335 bit_spin_unlock(PG_compound_lock, &page->flags);
336#endif
337}
338
339static inline unsigned long compound_lock_irqsave(struct page *page)
340{
341 unsigned long uninitialized_var(flags);
342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
343 local_irq_save(flags);
344 compound_lock(page);
345#endif
346 return flags;
347}
348
349static inline void compound_unlock_irqrestore(struct page *page,
350 unsigned long flags)
351{
352#ifdef CONFIG_TRANSPARENT_HUGEPAGE
353 compound_unlock(page);
354 local_irq_restore(flags);
355#endif
356}
357
d85f3385
CL
358static inline struct page *compound_head(struct page *page)
359{
6d777953 360 if (unlikely(PageTail(page)))
d85f3385
CL
361 return page->first_page;
362 return page;
363}
364
70b50f94
AA
365/*
366 * The atomic page->_mapcount, starts from -1: so that transitions
367 * both from it and to it can be tracked, using atomic_inc_and_test
368 * and atomic_add_negative(-1).
369 */
370static inline void reset_page_mapcount(struct page *page)
371{
372 atomic_set(&(page)->_mapcount, -1);
373}
374
375static inline int page_mapcount(struct page *page)
376{
377 return atomic_read(&(page)->_mapcount) + 1;
378}
379
4c21e2f2 380static inline int page_count(struct page *page)
1da177e4 381{
d85f3385 382 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
383}
384
b35a35b5
AA
385static inline void get_huge_page_tail(struct page *page)
386{
387 /*
388 * __split_huge_page_refcount() cannot run
389 * from under us.
390 */
391 VM_BUG_ON(page_mapcount(page) < 0);
392 VM_BUG_ON(atomic_read(&page->_count) != 0);
393 atomic_inc(&page->_mapcount);
394}
395
70b50f94
AA
396extern bool __get_page_tail(struct page *page);
397
1da177e4
LT
398static inline void get_page(struct page *page)
399{
70b50f94
AA
400 if (unlikely(PageTail(page)))
401 if (likely(__get_page_tail(page)))
402 return;
91807063
AA
403 /*
404 * Getting a normal page or the head of a compound page
70b50f94 405 * requires to already have an elevated page->_count.
91807063 406 */
70b50f94 407 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
408 atomic_inc(&page->_count);
409}
410
b49af68f
CL
411static inline struct page *virt_to_head_page(const void *x)
412{
413 struct page *page = virt_to_page(x);
414 return compound_head(page);
415}
416
7835e98b
NP
417/*
418 * Setup the page count before being freed into the page allocator for
419 * the first time (boot or memory hotplug)
420 */
421static inline void init_page_count(struct page *page)
422{
423 atomic_set(&page->_count, 1);
424}
425
5f24ce5f
AA
426/*
427 * PageBuddy() indicate that the page is free and in the buddy system
428 * (see mm/page_alloc.c).
ef2b4b95
AA
429 *
430 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
431 * -2 so that an underflow of the page_mapcount() won't be mistaken
432 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
433 * efficiently by most CPU architectures.
5f24ce5f 434 */
ef2b4b95
AA
435#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
436
5f24ce5f
AA
437static inline int PageBuddy(struct page *page)
438{
ef2b4b95 439 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
440}
441
442static inline void __SetPageBuddy(struct page *page)
443{
444 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 445 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
446}
447
448static inline void __ClearPageBuddy(struct page *page)
449{
450 VM_BUG_ON(!PageBuddy(page));
451 atomic_set(&page->_mapcount, -1);
452}
453
1da177e4 454void put_page(struct page *page);
1d7ea732 455void put_pages_list(struct list_head *pages);
1da177e4 456
8dfcc9ba 457void split_page(struct page *page, unsigned int order);
748446bb 458int split_free_page(struct page *page);
8dfcc9ba 459
33f2ef89
AW
460/*
461 * Compound pages have a destructor function. Provide a
462 * prototype for that function and accessor functions.
463 * These are _only_ valid on the head of a PG_compound page.
464 */
465typedef void compound_page_dtor(struct page *);
466
467static inline void set_compound_page_dtor(struct page *page,
468 compound_page_dtor *dtor)
469{
470 page[1].lru.next = (void *)dtor;
471}
472
473static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
474{
475 return (compound_page_dtor *)page[1].lru.next;
476}
477
d85f3385
CL
478static inline int compound_order(struct page *page)
479{
6d777953 480 if (!PageHead(page))
d85f3385
CL
481 return 0;
482 return (unsigned long)page[1].lru.prev;
483}
484
37c2ac78
AA
485static inline int compound_trans_order(struct page *page)
486{
487 int order;
488 unsigned long flags;
489
490 if (!PageHead(page))
491 return 0;
492
493 flags = compound_lock_irqsave(page);
494 order = compound_order(page);
495 compound_unlock_irqrestore(page, flags);
496 return order;
497}
498
d85f3385
CL
499static inline void set_compound_order(struct page *page, unsigned long order)
500{
501 page[1].lru.prev = (void *)order;
502}
503
3dece370 504#ifdef CONFIG_MMU
14fd403f
AA
505/*
506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
507 * servicing faults for write access. In the normal case, do always want
508 * pte_mkwrite. But get_user_pages can cause write faults for mappings
509 * that do not have writing enabled, when used by access_process_vm.
510 */
511static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512{
513 if (likely(vma->vm_flags & VM_WRITE))
514 pte = pte_mkwrite(pte);
515 return pte;
516}
3dece370 517#endif
14fd403f 518
1da177e4
LT
519/*
520 * Multiple processes may "see" the same page. E.g. for untouched
521 * mappings of /dev/null, all processes see the same page full of
522 * zeroes, and text pages of executables and shared libraries have
523 * only one copy in memory, at most, normally.
524 *
525 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
526 * page_count() == 0 means the page is free. page->lru is then used for
527 * freelist management in the buddy allocator.
da6052f7 528 * page_count() > 0 means the page has been allocated.
1da177e4 529 *
da6052f7
NP
530 * Pages are allocated by the slab allocator in order to provide memory
531 * to kmalloc and kmem_cache_alloc. In this case, the management of the
532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533 * unless a particular usage is carefully commented. (the responsibility of
534 * freeing the kmalloc memory is the caller's, of course).
1da177e4 535 *
da6052f7
NP
536 * A page may be used by anyone else who does a __get_free_page().
537 * In this case, page_count still tracks the references, and should only
538 * be used through the normal accessor functions. The top bits of page->flags
539 * and page->virtual store page management information, but all other fields
540 * are unused and could be used privately, carefully. The management of this
541 * page is the responsibility of the one who allocated it, and those who have
542 * subsequently been given references to it.
543 *
544 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
545 * managed by the Linux memory manager: I/O, buffers, swapping etc.
546 * The following discussion applies only to them.
547 *
da6052f7
NP
548 * A pagecache page contains an opaque `private' member, which belongs to the
549 * page's address_space. Usually, this is the address of a circular list of
550 * the page's disk buffers. PG_private must be set to tell the VM to call
551 * into the filesystem to release these pages.
1da177e4 552 *
da6052f7
NP
553 * A page may belong to an inode's memory mapping. In this case, page->mapping
554 * is the pointer to the inode, and page->index is the file offset of the page,
555 * in units of PAGE_CACHE_SIZE.
1da177e4 556 *
da6052f7
NP
557 * If pagecache pages are not associated with an inode, they are said to be
558 * anonymous pages. These may become associated with the swapcache, and in that
559 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 560 *
da6052f7
NP
561 * In either case (swapcache or inode backed), the pagecache itself holds one
562 * reference to the page. Setting PG_private should also increment the
563 * refcount. The each user mapping also has a reference to the page.
1da177e4 564 *
da6052f7
NP
565 * The pagecache pages are stored in a per-mapping radix tree, which is
566 * rooted at mapping->page_tree, and indexed by offset.
567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 569 *
da6052f7 570 * All pagecache pages may be subject to I/O:
1da177e4
LT
571 * - inode pages may need to be read from disk,
572 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
573 * to be written back to the inode on disk,
574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575 * modified may need to be swapped out to swap space and (later) to be read
576 * back into memory.
1da177e4
LT
577 */
578
579/*
580 * The zone field is never updated after free_area_init_core()
581 * sets it, so none of the operations on it need to be atomic.
1da177e4 582 */
348f8b6c 583
d41dee36
AW
584
585/*
586 * page->flags layout:
587 *
588 * There are three possibilities for how page->flags get
589 * laid out. The first is for the normal case, without
590 * sparsemem. The second is for sparsemem when there is
591 * plenty of space for node and section. The last is when
592 * we have run out of space and have to fall back to an
593 * alternate (slower) way of determining the node.
594 *
308c05e3
CL
595 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
596 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
597 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 598 */
308c05e3 599#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
600#define SECTIONS_WIDTH SECTIONS_SHIFT
601#else
602#define SECTIONS_WIDTH 0
603#endif
604
605#define ZONES_WIDTH ZONES_SHIFT
606
9223b419 607#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
608#define NODES_WIDTH NODES_SHIFT
609#else
308c05e3
CL
610#ifdef CONFIG_SPARSEMEM_VMEMMAP
611#error "Vmemmap: No space for nodes field in page flags"
612#endif
d41dee36
AW
613#define NODES_WIDTH 0
614#endif
615
616/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 617#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
618#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
619#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
620
621/*
622 * We are going to use the flags for the page to node mapping if its in
623 * there. This includes the case where there is no node, so it is implicit.
624 */
89689ae7
CL
625#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
626#define NODE_NOT_IN_PAGE_FLAGS
627#endif
d41dee36 628
348f8b6c 629/*
25985edc 630 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
631 * sections we define the shift as 0; that plus a 0 mask ensures
632 * the compiler will optimise away reference to them.
633 */
d41dee36
AW
634#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
636#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 637
bce54bbf
WD
638/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
639#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 640#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
641#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
642 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 643#else
89689ae7 644#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
645#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
646 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
647#endif
648
bd8029b6 649#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 650
9223b419
CL
651#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
652#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
653#endif
654
d41dee36
AW
655#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
656#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
657#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 658#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 659
33dd4e0e 660static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 661{
348f8b6c 662 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 663}
1da177e4 664
89689ae7
CL
665/*
666 * The identification function is only used by the buddy allocator for
667 * determining if two pages could be buddies. We are not really
668 * identifying a zone since we could be using a the section number
669 * id if we have not node id available in page flags.
670 * We guarantee only that it will return the same value for two
671 * combinable pages in a zone.
672 */
cb2b95e1
AW
673static inline int page_zone_id(struct page *page)
674{
89689ae7 675 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
676}
677
25ba77c1 678static inline int zone_to_nid(struct zone *zone)
89fa3024 679{
d5f541ed
CL
680#ifdef CONFIG_NUMA
681 return zone->node;
682#else
683 return 0;
684#endif
89fa3024
CL
685}
686
89689ae7 687#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 688extern int page_to_nid(const struct page *page);
89689ae7 689#else
33dd4e0e 690static inline int page_to_nid(const struct page *page)
d41dee36 691{
89689ae7 692 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 693}
89689ae7
CL
694#endif
695
57e0a030
MG
696#ifdef CONFIG_NUMA_BALANCING
697static inline int page_xchg_last_nid(struct page *page, int nid)
698{
699 return xchg(&page->_last_nid, nid);
700}
701
702static inline int page_last_nid(struct page *page)
703{
704 return page->_last_nid;
705}
706static inline void reset_page_last_nid(struct page *page)
707{
708 page->_last_nid = -1;
709}
710#else
711static inline int page_xchg_last_nid(struct page *page, int nid)
712{
713 return page_to_nid(page);
714}
715
716static inline int page_last_nid(struct page *page)
717{
718 return page_to_nid(page);
719}
720
721static inline void reset_page_last_nid(struct page *page)
722{
723}
724#endif
725
33dd4e0e 726static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
727{
728 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
729}
730
308c05e3 731#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
732static inline void set_page_section(struct page *page, unsigned long section)
733{
734 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
735 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
736}
737
aa462abe 738static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
739{
740 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
741}
308c05e3 742#endif
d41dee36 743
2f1b6248 744static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
745{
746 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
747 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
748}
2f1b6248 749
348f8b6c
DH
750static inline void set_page_node(struct page *page, unsigned long node)
751{
752 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
753 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 754}
89689ae7 755
2f1b6248 756static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 757 unsigned long node, unsigned long pfn)
1da177e4 758{
348f8b6c
DH
759 set_page_zone(page, zone);
760 set_page_node(page, node);
bf4e8902 761#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 762 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 763#endif
1da177e4
LT
764}
765
f6ac2354
CL
766/*
767 * Some inline functions in vmstat.h depend on page_zone()
768 */
769#include <linux/vmstat.h>
770
33dd4e0e 771static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 772{
aa462abe 773 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
774}
775
776#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
777#define HASHED_PAGE_VIRTUAL
778#endif
779
780#if defined(WANT_PAGE_VIRTUAL)
781#define page_address(page) ((page)->virtual)
782#define set_page_address(page, address) \
783 do { \
784 (page)->virtual = (address); \
785 } while(0)
786#define page_address_init() do { } while(0)
787#endif
788
789#if defined(HASHED_PAGE_VIRTUAL)
f9918794 790void *page_address(const struct page *page);
1da177e4
LT
791void set_page_address(struct page *page, void *virtual);
792void page_address_init(void);
793#endif
794
795#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
796#define page_address(page) lowmem_page_address(page)
797#define set_page_address(page, address) do { } while(0)
798#define page_address_init() do { } while(0)
799#endif
800
801/*
802 * On an anonymous page mapped into a user virtual memory area,
803 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
804 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
805 *
806 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
807 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
808 * and then page->mapping points, not to an anon_vma, but to a private
809 * structure which KSM associates with that merged page. See ksm.h.
810 *
811 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
812 *
813 * Please note that, confusingly, "page_mapping" refers to the inode
814 * address_space which maps the page from disk; whereas "page_mapped"
815 * refers to user virtual address space into which the page is mapped.
816 */
817#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
818#define PAGE_MAPPING_KSM 2
819#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
820
821extern struct address_space swapper_space;
822static inline struct address_space *page_mapping(struct page *page)
823{
824 struct address_space *mapping = page->mapping;
825
b5fab14e 826 VM_BUG_ON(PageSlab(page));
1da177e4
LT
827 if (unlikely(PageSwapCache(page)))
828 mapping = &swapper_space;
e20e8779 829 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
830 mapping = NULL;
831 return mapping;
832}
833
3ca7b3c5
HD
834/* Neutral page->mapping pointer to address_space or anon_vma or other */
835static inline void *page_rmapping(struct page *page)
836{
837 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
838}
839
f981c595
MG
840extern struct address_space *__page_file_mapping(struct page *);
841
842static inline
843struct address_space *page_file_mapping(struct page *page)
844{
845 if (unlikely(PageSwapCache(page)))
846 return __page_file_mapping(page);
847
848 return page->mapping;
849}
850
1da177e4
LT
851static inline int PageAnon(struct page *page)
852{
853 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
854}
855
856/*
857 * Return the pagecache index of the passed page. Regular pagecache pages
858 * use ->index whereas swapcache pages use ->private
859 */
860static inline pgoff_t page_index(struct page *page)
861{
862 if (unlikely(PageSwapCache(page)))
4c21e2f2 863 return page_private(page);
1da177e4
LT
864 return page->index;
865}
866
f981c595
MG
867extern pgoff_t __page_file_index(struct page *page);
868
869/*
870 * Return the file index of the page. Regular pagecache pages use ->index
871 * whereas swapcache pages use swp_offset(->private)
872 */
873static inline pgoff_t page_file_index(struct page *page)
874{
875 if (unlikely(PageSwapCache(page)))
876 return __page_file_index(page);
877
878 return page->index;
879}
880
1da177e4
LT
881/*
882 * Return true if this page is mapped into pagetables.
883 */
884static inline int page_mapped(struct page *page)
885{
886 return atomic_read(&(page)->_mapcount) >= 0;
887}
888
1da177e4
LT
889/*
890 * Different kinds of faults, as returned by handle_mm_fault().
891 * Used to decide whether a process gets delivered SIGBUS or
892 * just gets major/minor fault counters bumped up.
893 */
d0217ac0 894
83c54070 895#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 896
83c54070
NP
897#define VM_FAULT_OOM 0x0001
898#define VM_FAULT_SIGBUS 0x0002
899#define VM_FAULT_MAJOR 0x0004
900#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
901#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
902#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 903
83c54070
NP
904#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
905#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 906#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 907
aa50d3a7
AK
908#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
909
910#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
911 VM_FAULT_HWPOISON_LARGE)
912
913/* Encode hstate index for a hwpoisoned large page */
914#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
915#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 916
1c0fe6e3
NP
917/*
918 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
919 */
920extern void pagefault_out_of_memory(void);
921
1da177e4
LT
922#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
923
ddd588b5 924/*
7bf02ea2 925 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
926 * various contexts.
927 */
928#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
929
7bf02ea2
DR
930extern void show_free_areas(unsigned int flags);
931extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 932
1da177e4
LT
933int shmem_zero_setup(struct vm_area_struct *);
934
e8edc6e0 935extern int can_do_mlock(void);
1da177e4
LT
936extern int user_shm_lock(size_t, struct user_struct *);
937extern void user_shm_unlock(size_t, struct user_struct *);
938
939/*
940 * Parameter block passed down to zap_pte_range in exceptional cases.
941 */
942struct zap_details {
943 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
944 struct address_space *check_mapping; /* Check page->mapping if set */
945 pgoff_t first_index; /* Lowest page->index to unmap */
946 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
947};
948
7e675137
NP
949struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
950 pte_t pte);
951
c627f9cc
JS
952int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
953 unsigned long size);
14f5ff5d 954void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 955 unsigned long size, struct zap_details *);
4f74d2c8
LT
956void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
957 unsigned long start, unsigned long end);
e6473092
MM
958
959/**
960 * mm_walk - callbacks for walk_page_range
961 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
962 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
963 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
964 * this handler is required to be able to handle
965 * pmd_trans_huge() pmds. They may simply choose to
966 * split_huge_page() instead of handling it explicitly.
e6473092
MM
967 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
968 * @pte_hole: if set, called for each hole at all levels
5dc37642 969 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
970 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
971 * is used.
e6473092
MM
972 *
973 * (see walk_page_range for more details)
974 */
975struct mm_walk {
2165009b
DH
976 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
977 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
978 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
979 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
980 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
981 int (*hugetlb_entry)(pte_t *, unsigned long,
982 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
983 struct mm_struct *mm;
984 void *private;
e6473092
MM
985};
986
2165009b
DH
987int walk_page_range(unsigned long addr, unsigned long end,
988 struct mm_walk *walk);
42b77728 989void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 990 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
991int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
992 struct vm_area_struct *vma);
1da177e4
LT
993void unmap_mapping_range(struct address_space *mapping,
994 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
995int follow_pfn(struct vm_area_struct *vma, unsigned long address,
996 unsigned long *pfn);
d87fe660 997int follow_phys(struct vm_area_struct *vma, unsigned long address,
998 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
999int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1000 void *buf, int len, int write);
1da177e4
LT
1001
1002static inline void unmap_shared_mapping_range(struct address_space *mapping,
1003 loff_t const holebegin, loff_t const holelen)
1004{
1005 unmap_mapping_range(mapping, holebegin, holelen, 0);
1006}
1007
25d9e2d1 1008extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 1009extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1010void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1011int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1012int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1013int invalidate_inode_page(struct page *page);
1014
7ee1dd3f 1015#ifdef CONFIG_MMU
83c54070 1016extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1017 unsigned long address, unsigned int flags);
5c723ba5
PZ
1018extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1019 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1020#else
1021static inline int handle_mm_fault(struct mm_struct *mm,
1022 struct vm_area_struct *vma, unsigned long address,
d06063cc 1023 unsigned int flags)
7ee1dd3f
DH
1024{
1025 /* should never happen if there's no MMU */
1026 BUG();
1027 return VM_FAULT_SIGBUS;
1028}
5c723ba5
PZ
1029static inline int fixup_user_fault(struct task_struct *tsk,
1030 struct mm_struct *mm, unsigned long address,
1031 unsigned int fault_flags)
1032{
1033 /* should never happen if there's no MMU */
1034 BUG();
1035 return -EFAULT;
1036}
7ee1dd3f 1037#endif
f33ea7f4 1038
1da177e4 1039extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1040extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1041 void *buf, int len, int write);
1da177e4 1042
0014bd99
HY
1043int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1044 unsigned long start, int len, unsigned int foll_flags,
1045 struct page **pages, struct vm_area_struct **vmas,
1046 int *nonblocking);
d2bf6be8 1047int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1048 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
1049 struct page **pages, struct vm_area_struct **vmas);
1050int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1051 struct page **pages);
18022c5d
MG
1052struct kvec;
1053int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1054 struct page **pages);
1055int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1056struct page *get_dump_page(unsigned long addr);
1da177e4 1057
cf9a2ae8
DH
1058extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1059extern void do_invalidatepage(struct page *page, unsigned long offset);
1060
1da177e4 1061int __set_page_dirty_nobuffers(struct page *page);
76719325 1062int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1063int redirty_page_for_writepage(struct writeback_control *wbc,
1064 struct page *page);
e3a7cca1 1065void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1066void account_page_writeback(struct page *page);
b3c97528 1067int set_page_dirty(struct page *page);
1da177e4
LT
1068int set_page_dirty_lock(struct page *page);
1069int clear_page_dirty_for_io(struct page *page);
1070
39aa3cb3 1071/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1072static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1073{
1074 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1075}
1076
a09a79f6
MP
1077static inline int stack_guard_page_start(struct vm_area_struct *vma,
1078 unsigned long addr)
1079{
1080 return (vma->vm_flags & VM_GROWSDOWN) &&
1081 (vma->vm_start == addr) &&
1082 !vma_growsdown(vma->vm_prev, addr);
1083}
1084
1085/* Is the vma a continuation of the stack vma below it? */
1086static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1087{
1088 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1089}
1090
1091static inline int stack_guard_page_end(struct vm_area_struct *vma,
1092 unsigned long addr)
1093{
1094 return (vma->vm_flags & VM_GROWSUP) &&
1095 (vma->vm_end == addr) &&
1096 !vma_growsup(vma->vm_next, addr);
1097}
1098
b7643757
SP
1099extern pid_t
1100vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1101
b6a2fea3
OW
1102extern unsigned long move_page_tables(struct vm_area_struct *vma,
1103 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1104 unsigned long new_addr, unsigned long len,
1105 bool need_rmap_locks);
1da177e4
LT
1106extern unsigned long do_mremap(unsigned long addr,
1107 unsigned long old_len, unsigned long new_len,
1108 unsigned long flags, unsigned long new_addr);
7da4d641
PZ
1109extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1110 unsigned long end, pgprot_t newprot,
4b10e7d5 1111 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1112extern int mprotect_fixup(struct vm_area_struct *vma,
1113 struct vm_area_struct **pprev, unsigned long start,
1114 unsigned long end, unsigned long newflags);
1da177e4 1115
465a454f
PZ
1116/*
1117 * doesn't attempt to fault and will return short.
1118 */
1119int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1120 struct page **pages);
d559db08
KH
1121/*
1122 * per-process(per-mm_struct) statistics.
1123 */
d559db08
KH
1124static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1125{
69c97823
KK
1126 long val = atomic_long_read(&mm->rss_stat.count[member]);
1127
1128#ifdef SPLIT_RSS_COUNTING
1129 /*
1130 * counter is updated in asynchronous manner and may go to minus.
1131 * But it's never be expected number for users.
1132 */
1133 if (val < 0)
1134 val = 0;
172703b0 1135#endif
69c97823
KK
1136 return (unsigned long)val;
1137}
d559db08
KH
1138
1139static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1140{
172703b0 1141 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1142}
1143
1144static inline void inc_mm_counter(struct mm_struct *mm, int member)
1145{
172703b0 1146 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1147}
1148
1149static inline void dec_mm_counter(struct mm_struct *mm, int member)
1150{
172703b0 1151 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1152}
1153
d559db08
KH
1154static inline unsigned long get_mm_rss(struct mm_struct *mm)
1155{
1156 return get_mm_counter(mm, MM_FILEPAGES) +
1157 get_mm_counter(mm, MM_ANONPAGES);
1158}
1159
1160static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1161{
1162 return max(mm->hiwater_rss, get_mm_rss(mm));
1163}
1164
1165static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1166{
1167 return max(mm->hiwater_vm, mm->total_vm);
1168}
1169
1170static inline void update_hiwater_rss(struct mm_struct *mm)
1171{
1172 unsigned long _rss = get_mm_rss(mm);
1173
1174 if ((mm)->hiwater_rss < _rss)
1175 (mm)->hiwater_rss = _rss;
1176}
1177
1178static inline void update_hiwater_vm(struct mm_struct *mm)
1179{
1180 if (mm->hiwater_vm < mm->total_vm)
1181 mm->hiwater_vm = mm->total_vm;
1182}
1183
1184static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1185 struct mm_struct *mm)
1186{
1187 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1188
1189 if (*maxrss < hiwater_rss)
1190 *maxrss = hiwater_rss;
1191}
1192
53bddb4e 1193#if defined(SPLIT_RSS_COUNTING)
05af2e10 1194void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1195#else
05af2e10 1196static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1197{
1198}
1199#endif
465a454f 1200
4e950f6f 1201int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1202
25ca1d6c
NK
1203extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1204 spinlock_t **ptl);
1205static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1206 spinlock_t **ptl)
1207{
1208 pte_t *ptep;
1209 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1210 return ptep;
1211}
c9cfcddf 1212
5f22df00
NP
1213#ifdef __PAGETABLE_PUD_FOLDED
1214static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1215 unsigned long address)
1216{
1217 return 0;
1218}
1219#else
1bb3630e 1220int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1221#endif
1222
1223#ifdef __PAGETABLE_PMD_FOLDED
1224static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1225 unsigned long address)
1226{
1227 return 0;
1228}
1229#else
1bb3630e 1230int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1231#endif
1232
8ac1f832
AA
1233int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1234 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1235int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1236
1da177e4
LT
1237/*
1238 * The following ifdef needed to get the 4level-fixup.h header to work.
1239 * Remove it when 4level-fixup.h has been removed.
1240 */
1bb3630e 1241#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1242static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1243{
1bb3630e
HD
1244 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1245 NULL: pud_offset(pgd, address);
1da177e4
LT
1246}
1247
1248static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1249{
1bb3630e
HD
1250 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1251 NULL: pmd_offset(pud, address);
1da177e4 1252}
1bb3630e
HD
1253#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1254
f7d0b926 1255#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1256/*
1257 * We tuck a spinlock to guard each pagetable page into its struct page,
1258 * at page->private, with BUILD_BUG_ON to make sure that this will not
1259 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1260 * When freeing, reset page->mapping so free_pages_check won't complain.
1261 */
349aef0b 1262#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1263#define pte_lock_init(_page) do { \
1264 spin_lock_init(__pte_lockptr(_page)); \
1265} while (0)
1266#define pte_lock_deinit(page) ((page)->mapping = NULL)
1267#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1268#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1269/*
1270 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1271 */
1272#define pte_lock_init(page) do {} while (0)
1273#define pte_lock_deinit(page) do {} while (0)
1274#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1275#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1276
2f569afd
MS
1277static inline void pgtable_page_ctor(struct page *page)
1278{
1279 pte_lock_init(page);
1280 inc_zone_page_state(page, NR_PAGETABLE);
1281}
1282
1283static inline void pgtable_page_dtor(struct page *page)
1284{
1285 pte_lock_deinit(page);
1286 dec_zone_page_state(page, NR_PAGETABLE);
1287}
1288
c74df32c
HD
1289#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1290({ \
4c21e2f2 1291 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1292 pte_t *__pte = pte_offset_map(pmd, address); \
1293 *(ptlp) = __ptl; \
1294 spin_lock(__ptl); \
1295 __pte; \
1296})
1297
1298#define pte_unmap_unlock(pte, ptl) do { \
1299 spin_unlock(ptl); \
1300 pte_unmap(pte); \
1301} while (0)
1302
8ac1f832
AA
1303#define pte_alloc_map(mm, vma, pmd, address) \
1304 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1305 pmd, address))? \
1306 NULL: pte_offset_map(pmd, address))
1bb3630e 1307
c74df32c 1308#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1309 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1310 pmd, address))? \
c74df32c
HD
1311 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1312
1bb3630e 1313#define pte_alloc_kernel(pmd, address) \
8ac1f832 1314 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1315 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1316
1317extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1318extern void free_area_init_node(int nid, unsigned long * zones_size,
1319 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1320extern void free_initmem(void);
1321
0ee332c1 1322#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1323/*
0ee332c1 1324 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1325 * zones, allocate the backing mem_map and account for memory holes in a more
1326 * architecture independent manner. This is a substitute for creating the
1327 * zone_sizes[] and zholes_size[] arrays and passing them to
1328 * free_area_init_node()
1329 *
1330 * An architecture is expected to register range of page frames backed by
0ee332c1 1331 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1332 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1333 * usage, an architecture is expected to do something like
1334 *
1335 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1336 * max_highmem_pfn};
1337 * for_each_valid_physical_page_range()
0ee332c1 1338 * memblock_add_node(base, size, nid)
c713216d
MG
1339 * free_area_init_nodes(max_zone_pfns);
1340 *
0ee332c1
TH
1341 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1342 * registered physical page range. Similarly
1343 * sparse_memory_present_with_active_regions() calls memory_present() for
1344 * each range when SPARSEMEM is enabled.
c713216d
MG
1345 *
1346 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1347 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1348 */
1349extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1350unsigned long node_map_pfn_alignment(void);
32996250
YL
1351unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1352 unsigned long end_pfn);
c713216d
MG
1353extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1354 unsigned long end_pfn);
1355extern void get_pfn_range_for_nid(unsigned int nid,
1356 unsigned long *start_pfn, unsigned long *end_pfn);
1357extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1358extern void free_bootmem_with_active_regions(int nid,
1359 unsigned long max_low_pfn);
1360extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1361
0ee332c1 1362#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1363
0ee332c1 1364#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1365 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1366static inline int __early_pfn_to_nid(unsigned long pfn)
1367{
1368 return 0;
1369}
1370#else
1371/* please see mm/page_alloc.c */
1372extern int __meminit early_pfn_to_nid(unsigned long pfn);
1373#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1374/* there is a per-arch backend function. */
1375extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1376#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1377#endif
1378
0e0b864e 1379extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1380extern void memmap_init_zone(unsigned long, int, unsigned long,
1381 unsigned long, enum memmap_context);
bc75d33f 1382extern void setup_per_zone_wmarks(void);
1b79acc9 1383extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1384extern void mem_init(void);
8feae131 1385extern void __init mmap_init(void);
b2b755b5 1386extern void show_mem(unsigned int flags);
1da177e4
LT
1387extern void si_meminfo(struct sysinfo * val);
1388extern void si_meminfo_node(struct sysinfo *val, int nid);
1389
3ee9a4f0
JP
1390extern __printf(3, 4)
1391void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1392
e7c8d5c9 1393extern void setup_per_cpu_pageset(void);
e7c8d5c9 1394
112067f0 1395extern void zone_pcp_update(struct zone *zone);
340175b7 1396extern void zone_pcp_reset(struct zone *zone);
112067f0 1397
8feae131 1398/* nommu.c */
33e5d769 1399extern atomic_long_t mmap_pages_allocated;
7e660872 1400extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1401
6b2dbba8 1402/* interval_tree.c */
6b2dbba8
ML
1403void vma_interval_tree_insert(struct vm_area_struct *node,
1404 struct rb_root *root);
9826a516
ML
1405void vma_interval_tree_insert_after(struct vm_area_struct *node,
1406 struct vm_area_struct *prev,
1407 struct rb_root *root);
6b2dbba8
ML
1408void vma_interval_tree_remove(struct vm_area_struct *node,
1409 struct rb_root *root);
1410struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1411 unsigned long start, unsigned long last);
1412struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1413 unsigned long start, unsigned long last);
1414
1415#define vma_interval_tree_foreach(vma, root, start, last) \
1416 for (vma = vma_interval_tree_iter_first(root, start, last); \
1417 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1418
1419static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1420 struct list_head *list)
1421{
6b2dbba8 1422 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1423}
1424
bf181b9f
ML
1425void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1426 struct rb_root *root);
1427void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1428 struct rb_root *root);
1429struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1430 struct rb_root *root, unsigned long start, unsigned long last);
1431struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1432 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1433#ifdef CONFIG_DEBUG_VM_RB
1434void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1435#endif
bf181b9f
ML
1436
1437#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1438 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1439 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1440
1da177e4 1441/* mmap.c */
34b4e4aa 1442extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1443extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1444 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1445extern struct vm_area_struct *vma_merge(struct mm_struct *,
1446 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1447 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1448 struct mempolicy *);
1449extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1450extern int split_vma(struct mm_struct *,
1451 struct vm_area_struct *, unsigned long addr, int new_below);
1452extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1453extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1454 struct rb_node **, struct rb_node *);
a8fb5618 1455extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1456extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1457 unsigned long addr, unsigned long len, pgoff_t pgoff,
1458 bool *need_rmap_locks);
1da177e4 1459extern void exit_mmap(struct mm_struct *);
925d1c40 1460
7906d00c
AA
1461extern int mm_take_all_locks(struct mm_struct *mm);
1462extern void mm_drop_all_locks(struct mm_struct *mm);
1463
38646013
JS
1464extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1465extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1466
119f657c 1467extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1468extern int install_special_mapping(struct mm_struct *mm,
1469 unsigned long addr, unsigned long len,
1470 unsigned long flags, struct page **pages);
1da177e4
LT
1471
1472extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1473
0165ab44 1474extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1475 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1476extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1477 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1478 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1479extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1480
bebeb3d6
ML
1481#ifdef CONFIG_MMU
1482extern int __mm_populate(unsigned long addr, unsigned long len,
1483 int ignore_errors);
1484static inline void mm_populate(unsigned long addr, unsigned long len)
1485{
1486 /* Ignore errors */
1487 (void) __mm_populate(addr, len, 1);
1488}
1489#else
1490static inline void mm_populate(unsigned long addr, unsigned long len) {}
1491#endif
1492
e4eb1ff6
LT
1493/* These take the mm semaphore themselves */
1494extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1495extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1496extern unsigned long vm_mmap(struct file *, unsigned long,
1497 unsigned long, unsigned long,
1498 unsigned long, unsigned long);
1da177e4 1499
db4fbfb9
ML
1500struct vm_unmapped_area_info {
1501#define VM_UNMAPPED_AREA_TOPDOWN 1
1502 unsigned long flags;
1503 unsigned long length;
1504 unsigned long low_limit;
1505 unsigned long high_limit;
1506 unsigned long align_mask;
1507 unsigned long align_offset;
1508};
1509
1510extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1511extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1512
1513/*
1514 * Search for an unmapped address range.
1515 *
1516 * We are looking for a range that:
1517 * - does not intersect with any VMA;
1518 * - is contained within the [low_limit, high_limit) interval;
1519 * - is at least the desired size.
1520 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1521 */
1522static inline unsigned long
1523vm_unmapped_area(struct vm_unmapped_area_info *info)
1524{
1525 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1526 return unmapped_area(info);
1527 else
1528 return unmapped_area_topdown(info);
1529}
1530
85821aab 1531/* truncate.c */
1da177e4 1532extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1533extern void truncate_inode_pages_range(struct address_space *,
1534 loff_t lstart, loff_t lend);
1da177e4
LT
1535
1536/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1537extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1538extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1539
1540/* mm/page-writeback.c */
1541int write_one_page(struct page *page, int wait);
1cf6e7d8 1542void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1543
1544/* readahead.c */
1545#define VM_MAX_READAHEAD 128 /* kbytes */
1546#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1547
1da177e4 1548int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1549 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1550
1551void page_cache_sync_readahead(struct address_space *mapping,
1552 struct file_ra_state *ra,
1553 struct file *filp,
1554 pgoff_t offset,
1555 unsigned long size);
1556
1557void page_cache_async_readahead(struct address_space *mapping,
1558 struct file_ra_state *ra,
1559 struct file *filp,
1560 struct page *pg,
1561 pgoff_t offset,
1562 unsigned long size);
1563
1da177e4 1564unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1565unsigned long ra_submit(struct file_ra_state *ra,
1566 struct address_space *mapping,
1567 struct file *filp);
1da177e4 1568
d05f3169 1569/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1570extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1571
1572/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1573extern int expand_downwards(struct vm_area_struct *vma,
1574 unsigned long address);
8ca3eb08 1575#if VM_GROWSUP
46dea3d0 1576extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1577#else
1578 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1579#endif
1da177e4
LT
1580
1581/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1582extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1583extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1584 struct vm_area_struct **pprev);
1585
1586/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1587 NULL if none. Assume start_addr < end_addr. */
1588static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1589{
1590 struct vm_area_struct * vma = find_vma(mm,start_addr);
1591
1592 if (vma && end_addr <= vma->vm_start)
1593 vma = NULL;
1594 return vma;
1595}
1596
1597static inline unsigned long vma_pages(struct vm_area_struct *vma)
1598{
1599 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1600}
1601
640708a2
PE
1602/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1603static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1604 unsigned long vm_start, unsigned long vm_end)
1605{
1606 struct vm_area_struct *vma = find_vma(mm, vm_start);
1607
1608 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1609 vma = NULL;
1610
1611 return vma;
1612}
1613
bad849b3 1614#ifdef CONFIG_MMU
804af2cf 1615pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1616#else
1617static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1618{
1619 return __pgprot(0);
1620}
1621#endif
1622
b24f53a0 1623#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1624unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1625 unsigned long start, unsigned long end);
1626#endif
1627
deceb6cd 1628struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1629int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1630 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1631int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1632int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1633 unsigned long pfn);
423bad60
NP
1634int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1635 unsigned long pfn);
deceb6cd 1636
6aab341e 1637struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1638 unsigned int foll_flags);
1639#define FOLL_WRITE 0x01 /* check pte is writable */
1640#define FOLL_TOUCH 0x02 /* mark page accessed */
1641#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1642#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1643#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1644#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1645 * and return without waiting upon it */
110d74a9 1646#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1647#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1648#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1649#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1da177e4 1650
2f569afd 1651typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1652 void *data);
1653extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1654 unsigned long size, pte_fn_t fn, void *data);
1655
1da177e4 1656#ifdef CONFIG_PROC_FS
ab50b8ed 1657void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1658#else
ab50b8ed 1659static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1660 unsigned long flags, struct file *file, long pages)
1661{
44de9d0c 1662 mm->total_vm += pages;
1da177e4
LT
1663}
1664#endif /* CONFIG_PROC_FS */
1665
12d6f21e 1666#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1667extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1668#ifdef CONFIG_HIBERNATION
1669extern bool kernel_page_present(struct page *page);
1670#endif /* CONFIG_HIBERNATION */
12d6f21e 1671#else
1da177e4 1672static inline void
9858db50 1673kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1674#ifdef CONFIG_HIBERNATION
1675static inline bool kernel_page_present(struct page *page) { return true; }
1676#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1677#endif
1678
31db58b3 1679extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1680#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1681int in_gate_area_no_mm(unsigned long addr);
83b964bb 1682int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1683#else
cae5d390
SW
1684int in_gate_area_no_mm(unsigned long addr);
1685#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1686#endif /* __HAVE_ARCH_GATE_AREA */
1687
8d65af78 1688int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1689 void __user *, size_t *, loff_t *);
a09ed5e0 1690unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1691 unsigned long nr_pages_scanned,
1692 unsigned long lru_pages);
9d0243bc 1693
7a9166e3
LY
1694#ifndef CONFIG_MMU
1695#define randomize_va_space 0
1696#else
a62eaf15 1697extern int randomize_va_space;
7a9166e3 1698#endif
a62eaf15 1699
045e72ac 1700const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1701void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1702
9bdac914
YL
1703void sparse_mem_maps_populate_node(struct page **map_map,
1704 unsigned long pnum_begin,
1705 unsigned long pnum_end,
1706 unsigned long map_count,
1707 int nodeid);
1708
98f3cfc1 1709struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1710pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1711pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1712pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1713pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1714void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1715void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1716void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1717int vmemmap_populate_basepages(struct page *start_page,
1718 unsigned long pages, int node);
1719int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1720void vmemmap_populate_print_last(void);
46723bfa
YI
1721void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1722 unsigned long size);
6a46079c 1723
82ba011b
AK
1724enum mf_flags {
1725 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1726 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1727 MF_MUST_KILL = 1 << 2,
82ba011b 1728};
cd42f4a3 1729extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1730extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1731extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1732extern int sysctl_memory_failure_early_kill;
1733extern int sysctl_memory_failure_recovery;
facb6011 1734extern void shake_page(struct page *p, int access);
6a46079c 1735extern atomic_long_t mce_bad_pages;
facb6011 1736extern int soft_offline_page(struct page *page, int flags);
6a46079c 1737
718a3821
WF
1738extern void dump_page(struct page *page);
1739
47ad8475
AA
1740#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1741extern void clear_huge_page(struct page *page,
1742 unsigned long addr,
1743 unsigned int pages_per_huge_page);
1744extern void copy_user_huge_page(struct page *dst, struct page *src,
1745 unsigned long addr, struct vm_area_struct *vma,
1746 unsigned int pages_per_huge_page);
1747#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1748
c0a32fc5
SG
1749#ifdef CONFIG_DEBUG_PAGEALLOC
1750extern unsigned int _debug_guardpage_minorder;
1751
1752static inline unsigned int debug_guardpage_minorder(void)
1753{
1754 return _debug_guardpage_minorder;
1755}
1756
1757static inline bool page_is_guard(struct page *page)
1758{
1759 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1760}
1761#else
1762static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1763static inline bool page_is_guard(struct page *page) { return false; }
1764#endif /* CONFIG_DEBUG_PAGEALLOC */
1765
1da177e4
LT
1766#endif /* __KERNEL__ */
1767#endif /* _LINUX_MM_H */