import PULS_20180308
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
c9b1d098 47extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 48extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 49
1da177e4
LT
50#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
27ac792c
AR
52/* to align the pointer to the (next) page boundary */
53#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
1da177e4
LT
55/*
56 * Linux kernel virtual memory manager primitives.
57 * The idea being to have a "virtual" mm in the same way
58 * we have a virtual fs - giving a cleaner interface to the
59 * mm details, and allowing different kinds of memory mappings
60 * (from shared memory to executable loading to arbitrary
61 * mmap() functions).
62 */
63
c43692e8
CL
64extern struct kmem_cache *vm_area_cachep;
65
1da177e4 66#ifndef CONFIG_MMU
8feae131
DH
67extern struct rb_root nommu_region_tree;
68extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
69
70extern unsigned int kobjsize(const void *objp);
71#endif
72
73/*
605d9288 74 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 75 */
cc2383ec
KK
76#define VM_NONE 0x00000000
77
1da177e4
LT
78#define VM_READ 0x00000001 /* currently active flags */
79#define VM_WRITE 0x00000002
80#define VM_EXEC 0x00000004
81#define VM_SHARED 0x00000008
82
7e2cff42 83/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
84#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85#define VM_MAYWRITE 0x00000020
86#define VM_MAYEXEC 0x00000040
87#define VM_MAYSHARE 0x00000080
88
89#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 90#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
91#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
92
1da177e4
LT
93#define VM_LOCKED 0x00002000
94#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
6fa3eb70 102#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 103#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 104#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
105#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
106#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 107#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 108#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 109
b379d790 110#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
111#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
112#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 113#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 114
cc2383ec
KK
115#if defined(CONFIG_X86)
116# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
117#elif defined(CONFIG_PPC)
118# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
119#elif defined(CONFIG_PARISC)
120# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
121#elif defined(CONFIG_METAG)
122# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
123#elif defined(CONFIG_IA64)
124# define VM_GROWSUP VM_ARCH_1
125#elif !defined(CONFIG_MMU)
126# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
127#endif
128
129#ifndef VM_GROWSUP
130# define VM_GROWSUP VM_NONE
131#endif
132
a8bef8ff
MG
133/* Bits set in the VMA until the stack is in its final location */
134#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
135
1da177e4
LT
136#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
137#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
138#endif
139
140#ifdef CONFIG_STACK_GROWSUP
141#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
142#else
143#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
144#endif
145
146#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
147#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
148#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
149#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
150#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
151
b291f000 152/*
78f11a25
AA
153 * Special vmas that are non-mergable, non-mlock()able.
154 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 155 */
314e51b9 156#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 157
1da177e4
LT
158/*
159 * mapping from the currently active vm_flags protection bits (the
160 * low four bits) to a page protection mask..
161 */
162extern pgprot_t protection_map[16];
163
d0217ac0
NP
164#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
165#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 166#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 167#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 168#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 169#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 170#define FAULT_FLAG_TRIED 0x40 /* second try */
d0217ac0 171
54cb8821 172/*
d0217ac0 173 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
174 * ->fault function. The vma's ->fault is responsible for returning a bitmask
175 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 176 *
d0217ac0 177 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 178 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 179 */
d0217ac0
NP
180struct vm_fault {
181 unsigned int flags; /* FAULT_FLAG_xxx flags */
182 pgoff_t pgoff; /* Logical page offset based on vma */
183 void __user *virtual_address; /* Faulting virtual address */
184
185 struct page *page; /* ->fault handlers should return a
83c54070 186 * page here, unless VM_FAULT_NOPAGE
d0217ac0 187 * is set (which is also implied by
83c54070 188 * VM_FAULT_ERROR).
d0217ac0 189 */
54cb8821 190};
1da177e4
LT
191
192/*
193 * These are the virtual MM functions - opening of an area, closing and
194 * unmapping it (needed to keep files on disk up-to-date etc), pointer
195 * to the functions called when a no-page or a wp-page exception occurs.
196 */
197struct vm_operations_struct {
198 void (*open)(struct vm_area_struct * area);
199 void (*close)(struct vm_area_struct * area);
d0217ac0 200 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
201
202 /* notification that a previously read-only page is about to become
203 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 204 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
205
206 /* called by access_process_vm when get_user_pages() fails, typically
207 * for use by special VMAs that can switch between memory and hardware
208 */
209 int (*access)(struct vm_area_struct *vma, unsigned long addr,
210 void *buf, int len, int write);
1da177e4 211#ifdef CONFIG_NUMA
a6020ed7
LS
212 /*
213 * set_policy() op must add a reference to any non-NULL @new mempolicy
214 * to hold the policy upon return. Caller should pass NULL @new to
215 * remove a policy and fall back to surrounding context--i.e. do not
216 * install a MPOL_DEFAULT policy, nor the task or system default
217 * mempolicy.
218 */
1da177e4 219 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
220
221 /*
222 * get_policy() op must add reference [mpol_get()] to any policy at
223 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
224 * in mm/mempolicy.c will do this automatically.
225 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
226 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
227 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
228 * must return NULL--i.e., do not "fallback" to task or system default
229 * policy.
230 */
1da177e4
LT
231 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
232 unsigned long addr);
7b2259b3
CL
233 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
234 const nodemask_t *to, unsigned long flags);
1da177e4 235#endif
0b173bc4
KK
236 /* called by sys_remap_file_pages() to populate non-linear mapping */
237 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
238 unsigned long size, pgoff_t pgoff);
1da177e4
LT
239};
240
241struct mmu_gather;
242struct inode;
243
349aef0b
AM
244#define page_private(page) ((page)->private)
245#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 246
b12c4ad1
MK
247/* It's valid only if the page is free path or free_list */
248static inline void set_freepage_migratetype(struct page *page, int migratetype)
249{
95e34412 250 page->index = migratetype;
b12c4ad1
MK
251}
252
253/* It's valid only if the page is free path or free_list */
254static inline int get_freepage_migratetype(struct page *page)
255{
95e34412 256 return page->index;
b12c4ad1
MK
257}
258
1da177e4
LT
259/*
260 * FIXME: take this include out, include page-flags.h in
261 * files which need it (119 of them)
262 */
263#include <linux/page-flags.h>
71e3aac0 264#include <linux/huge_mm.h>
1da177e4
LT
265
266/*
267 * Methods to modify the page usage count.
268 *
269 * What counts for a page usage:
270 * - cache mapping (page->mapping)
271 * - private data (page->private)
272 * - page mapped in a task's page tables, each mapping
273 * is counted separately
274 *
275 * Also, many kernel routines increase the page count before a critical
276 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
277 */
278
279/*
da6052f7 280 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 281 */
7c8ee9a8
NP
282static inline int put_page_testzero(struct page *page)
283{
725d704e 284 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 285 return atomic_dec_and_test(&page->_count);
7c8ee9a8 286}
1da177e4
LT
287
288/*
7c8ee9a8
NP
289 * Try to grab a ref unless the page has a refcount of zero, return false if
290 * that is the case.
1da177e4 291 */
7c8ee9a8
NP
292static inline int get_page_unless_zero(struct page *page)
293{
8dc04efb 294 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 295}
1da177e4 296
53df8fdc
WF
297extern int page_is_ram(unsigned long pfn);
298
48667e7a 299/* Support for virtually mapped pages */
b3bdda02
CL
300struct page *vmalloc_to_page(const void *addr);
301unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 302
0738c4bb
PM
303/*
304 * Determine if an address is within the vmalloc range
305 *
306 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
307 * is no special casing required.
308 */
9e2779fa
CL
309static inline int is_vmalloc_addr(const void *x)
310{
0738c4bb 311#ifdef CONFIG_MMU
9e2779fa
CL
312 unsigned long addr = (unsigned long)x;
313
314 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
315#else
316 return 0;
8ca3ed87 317#endif
0738c4bb 318}
81ac3ad9
KH
319#ifdef CONFIG_MMU
320extern int is_vmalloc_or_module_addr(const void *x);
321#else
934831d0 322static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
323{
324 return 0;
325}
326#endif
9e2779fa 327
6fa3eb70
S
328extern void kvfree(const void *addr);
329
e9da73d6
AA
330static inline void compound_lock(struct page *page)
331{
332#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 333 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
334 bit_spin_lock(PG_compound_lock, &page->flags);
335#endif
336}
337
338static inline void compound_unlock(struct page *page)
339{
340#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 341 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
342 bit_spin_unlock(PG_compound_lock, &page->flags);
343#endif
344}
345
346static inline unsigned long compound_lock_irqsave(struct page *page)
347{
348 unsigned long uninitialized_var(flags);
349#ifdef CONFIG_TRANSPARENT_HUGEPAGE
350 local_irq_save(flags);
351 compound_lock(page);
352#endif
353 return flags;
354}
355
356static inline void compound_unlock_irqrestore(struct page *page,
357 unsigned long flags)
358{
359#ifdef CONFIG_TRANSPARENT_HUGEPAGE
360 compound_unlock(page);
361 local_irq_restore(flags);
362#endif
363}
364
d85f3385
CL
365static inline struct page *compound_head(struct page *page)
366{
def52acc
DR
367 if (unlikely(PageTail(page))) {
368 struct page *head = page->first_page;
369
370 /*
371 * page->first_page may be a dangling pointer to an old
372 * compound page, so recheck that it is still a tail
373 * page before returning.
374 */
375 smp_rmb();
376 if (likely(PageTail(page)))
377 return head;
378 }
d85f3385
CL
379 return page;
380}
381
70b50f94
AA
382/*
383 * The atomic page->_mapcount, starts from -1: so that transitions
384 * both from it and to it can be tracked, using atomic_inc_and_test
385 * and atomic_add_negative(-1).
386 */
22b751c3 387static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
388{
389 atomic_set(&(page)->_mapcount, -1);
390}
391
392static inline int page_mapcount(struct page *page)
393{
394 return atomic_read(&(page)->_mapcount) + 1;
395}
396
4c21e2f2 397static inline int page_count(struct page *page)
1da177e4 398{
d85f3385 399 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
400}
401
b35a35b5
AA
402static inline void get_huge_page_tail(struct page *page)
403{
404 /*
405 * __split_huge_page_refcount() cannot run
406 * from under us.
407 */
408 VM_BUG_ON(page_mapcount(page) < 0);
409 VM_BUG_ON(atomic_read(&page->_count) != 0);
410 atomic_inc(&page->_mapcount);
411}
412
70b50f94
AA
413extern bool __get_page_tail(struct page *page);
414
1da177e4
LT
415static inline void get_page(struct page *page)
416{
70b50f94
AA
417 if (unlikely(PageTail(page)))
418 if (likely(__get_page_tail(page)))
419 return;
91807063
AA
420 /*
421 * Getting a normal page or the head of a compound page
70b50f94 422 * requires to already have an elevated page->_count.
91807063 423 */
70b50f94 424 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
425 atomic_inc(&page->_count);
426}
427
b49af68f
CL
428static inline struct page *virt_to_head_page(const void *x)
429{
430 struct page *page = virt_to_page(x);
431 return compound_head(page);
432}
433
7835e98b
NP
434/*
435 * Setup the page count before being freed into the page allocator for
436 * the first time (boot or memory hotplug)
437 */
438static inline void init_page_count(struct page *page)
439{
440 atomic_set(&page->_count, 1);
441}
442
5f24ce5f
AA
443/*
444 * PageBuddy() indicate that the page is free and in the buddy system
445 * (see mm/page_alloc.c).
ef2b4b95
AA
446 *
447 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
448 * -2 so that an underflow of the page_mapcount() won't be mistaken
449 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
450 * efficiently by most CPU architectures.
5f24ce5f 451 */
ef2b4b95
AA
452#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
453
5f24ce5f
AA
454static inline int PageBuddy(struct page *page)
455{
ef2b4b95 456 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
457}
458
459static inline void __SetPageBuddy(struct page *page)
460{
461 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 462 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
463}
464
465static inline void __ClearPageBuddy(struct page *page)
466{
467 VM_BUG_ON(!PageBuddy(page));
468 atomic_set(&page->_mapcount, -1);
469}
470
1da177e4 471void put_page(struct page *page);
1d7ea732 472void put_pages_list(struct list_head *pages);
1da177e4 473
8dfcc9ba 474void split_page(struct page *page, unsigned int order);
748446bb 475int split_free_page(struct page *page);
8dfcc9ba 476
33f2ef89
AW
477/*
478 * Compound pages have a destructor function. Provide a
479 * prototype for that function and accessor functions.
480 * These are _only_ valid on the head of a PG_compound page.
481 */
482typedef void compound_page_dtor(struct page *);
483
484static inline void set_compound_page_dtor(struct page *page,
485 compound_page_dtor *dtor)
486{
487 page[1].lru.next = (void *)dtor;
488}
489
490static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
491{
492 return (compound_page_dtor *)page[1].lru.next;
493}
494
d85f3385
CL
495static inline int compound_order(struct page *page)
496{
6d777953 497 if (!PageHead(page))
d85f3385
CL
498 return 0;
499 return (unsigned long)page[1].lru.prev;
500}
501
37c2ac78
AA
502static inline int compound_trans_order(struct page *page)
503{
504 int order;
505 unsigned long flags;
506
507 if (!PageHead(page))
508 return 0;
509
510 flags = compound_lock_irqsave(page);
511 order = compound_order(page);
512 compound_unlock_irqrestore(page, flags);
513 return order;
514}
515
d85f3385
CL
516static inline void set_compound_order(struct page *page, unsigned long order)
517{
518 page[1].lru.prev = (void *)order;
519}
520
3dece370 521#ifdef CONFIG_MMU
14fd403f
AA
522/*
523 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
524 * servicing faults for write access. In the normal case, do always want
525 * pte_mkwrite. But get_user_pages can cause write faults for mappings
526 * that do not have writing enabled, when used by access_process_vm.
527 */
528static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
529{
530 if (likely(vma->vm_flags & VM_WRITE))
531 pte = pte_mkwrite(pte);
532 return pte;
533}
3dece370 534#endif
14fd403f 535
1da177e4
LT
536/*
537 * Multiple processes may "see" the same page. E.g. for untouched
538 * mappings of /dev/null, all processes see the same page full of
539 * zeroes, and text pages of executables and shared libraries have
540 * only one copy in memory, at most, normally.
541 *
542 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
543 * page_count() == 0 means the page is free. page->lru is then used for
544 * freelist management in the buddy allocator.
da6052f7 545 * page_count() > 0 means the page has been allocated.
1da177e4 546 *
da6052f7
NP
547 * Pages are allocated by the slab allocator in order to provide memory
548 * to kmalloc and kmem_cache_alloc. In this case, the management of the
549 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
550 * unless a particular usage is carefully commented. (the responsibility of
551 * freeing the kmalloc memory is the caller's, of course).
1da177e4 552 *
da6052f7
NP
553 * A page may be used by anyone else who does a __get_free_page().
554 * In this case, page_count still tracks the references, and should only
555 * be used through the normal accessor functions. The top bits of page->flags
556 * and page->virtual store page management information, but all other fields
557 * are unused and could be used privately, carefully. The management of this
558 * page is the responsibility of the one who allocated it, and those who have
559 * subsequently been given references to it.
560 *
561 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
562 * managed by the Linux memory manager: I/O, buffers, swapping etc.
563 * The following discussion applies only to them.
564 *
da6052f7
NP
565 * A pagecache page contains an opaque `private' member, which belongs to the
566 * page's address_space. Usually, this is the address of a circular list of
567 * the page's disk buffers. PG_private must be set to tell the VM to call
568 * into the filesystem to release these pages.
1da177e4 569 *
da6052f7
NP
570 * A page may belong to an inode's memory mapping. In this case, page->mapping
571 * is the pointer to the inode, and page->index is the file offset of the page,
572 * in units of PAGE_CACHE_SIZE.
1da177e4 573 *
da6052f7
NP
574 * If pagecache pages are not associated with an inode, they are said to be
575 * anonymous pages. These may become associated with the swapcache, and in that
576 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 577 *
da6052f7
NP
578 * In either case (swapcache or inode backed), the pagecache itself holds one
579 * reference to the page. Setting PG_private should also increment the
580 * refcount. The each user mapping also has a reference to the page.
1da177e4 581 *
da6052f7
NP
582 * The pagecache pages are stored in a per-mapping radix tree, which is
583 * rooted at mapping->page_tree, and indexed by offset.
584 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
585 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 586 *
da6052f7 587 * All pagecache pages may be subject to I/O:
1da177e4
LT
588 * - inode pages may need to be read from disk,
589 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
590 * to be written back to the inode on disk,
591 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
592 * modified may need to be swapped out to swap space and (later) to be read
593 * back into memory.
1da177e4
LT
594 */
595
596/*
597 * The zone field is never updated after free_area_init_core()
598 * sets it, so none of the operations on it need to be atomic.
1da177e4 599 */
348f8b6c 600
75980e97 601/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
07808b74 602#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
603#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
604#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
75980e97 605#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
d41dee36 606
348f8b6c 607/*
25985edc 608 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
609 * sections we define the shift as 0; that plus a 0 mask ensures
610 * the compiler will optimise away reference to them.
611 */
d41dee36
AW
612#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
613#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
614#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
75980e97 615#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
348f8b6c 616
bce54bbf
WD
617/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
618#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 619#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
620#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
621 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 622#else
89689ae7 623#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
624#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
625 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
626#endif
627
bd8029b6 628#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 629
9223b419
CL
630#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
631#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
632#endif
633
d41dee36
AW
634#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
635#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
636#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
75980e97 637#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
89689ae7 638#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 639
33dd4e0e 640static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 641{
348f8b6c 642 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 643}
1da177e4 644
9127ab4f
CS
645#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
646#define SECTION_IN_PAGE_FLAGS
647#endif
648
89689ae7
CL
649/*
650 * The identification function is only used by the buddy allocator for
651 * determining if two pages could be buddies. We are not really
652 * identifying a zone since we could be using a the section number
653 * id if we have not node id available in page flags.
654 * We guarantee only that it will return the same value for two
655 * combinable pages in a zone.
656 */
cb2b95e1
AW
657static inline int page_zone_id(struct page *page)
658{
89689ae7 659 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
660}
661
25ba77c1 662static inline int zone_to_nid(struct zone *zone)
89fa3024 663{
d5f541ed
CL
664#ifdef CONFIG_NUMA
665 return zone->node;
666#else
667 return 0;
668#endif
89fa3024
CL
669}
670
89689ae7 671#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 672extern int page_to_nid(const struct page *page);
89689ae7 673#else
33dd4e0e 674static inline int page_to_nid(const struct page *page)
d41dee36 675{
89689ae7 676 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 677}
89689ae7
CL
678#endif
679
57e0a030 680#ifdef CONFIG_NUMA_BALANCING
75980e97 681#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
22b751c3 682static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
683{
684 return xchg(&page->_last_nid, nid);
685}
686
22b751c3 687static inline int page_nid_last(struct page *page)
57e0a030
MG
688{
689 return page->_last_nid;
690}
22b751c3 691static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
692{
693 page->_last_nid = -1;
694}
695#else
22b751c3 696static inline int page_nid_last(struct page *page)
75980e97
PZ
697{
698 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
699}
700
22b751c3 701extern int page_nid_xchg_last(struct page *page, int nid);
75980e97 702
22b751c3 703static inline void page_nid_reset_last(struct page *page)
75980e97 704{
4468b8f1
MG
705 int nid = (1 << LAST_NID_SHIFT) - 1;
706
707 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
708 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
75980e97
PZ
709}
710#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
711#else
22b751c3 712static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
713{
714 return page_to_nid(page);
715}
716
22b751c3 717static inline int page_nid_last(struct page *page)
57e0a030
MG
718{
719 return page_to_nid(page);
720}
721
22b751c3 722static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
723{
724}
725#endif
726
33dd4e0e 727static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
728{
729 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
730}
731
9127ab4f 732#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
733static inline void set_page_section(struct page *page, unsigned long section)
734{
735 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
736 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
737}
738
aa462abe 739static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
740{
741 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
742}
308c05e3 743#endif
d41dee36 744
2f1b6248 745static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
746{
747 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
748 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
749}
2f1b6248 750
348f8b6c
DH
751static inline void set_page_node(struct page *page, unsigned long node)
752{
753 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
754 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 755}
89689ae7 756
2f1b6248 757static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 758 unsigned long node, unsigned long pfn)
1da177e4 759{
348f8b6c
DH
760 set_page_zone(page, zone);
761 set_page_node(page, node);
9127ab4f 762#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 763 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 764#endif
1da177e4
LT
765}
766
f6ac2354
CL
767/*
768 * Some inline functions in vmstat.h depend on page_zone()
769 */
770#include <linux/vmstat.h>
771
33dd4e0e 772static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 773{
aa462abe 774 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
775}
776
777#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
778#define HASHED_PAGE_VIRTUAL
779#endif
780
781#if defined(WANT_PAGE_VIRTUAL)
2d363552
GU
782static inline void *page_address(const struct page *page)
783{
784 return page->virtual;
785}
786static inline void set_page_address(struct page *page, void *address)
787{
788 page->virtual = address;
789}
1da177e4
LT
790#define page_address_init() do { } while(0)
791#endif
792
793#if defined(HASHED_PAGE_VIRTUAL)
f9918794 794void *page_address(const struct page *page);
1da177e4
LT
795void set_page_address(struct page *page, void *virtual);
796void page_address_init(void);
797#endif
798
799#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
800#define page_address(page) lowmem_page_address(page)
801#define set_page_address(page, address) do { } while(0)
802#define page_address_init() do { } while(0)
803#endif
804
805/*
806 * On an anonymous page mapped into a user virtual memory area,
807 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
808 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
809 *
810 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
811 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
812 * and then page->mapping points, not to an anon_vma, but to a private
813 * structure which KSM associates with that merged page. See ksm.h.
814 *
815 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
816 *
817 * Please note that, confusingly, "page_mapping" refers to the inode
818 * address_space which maps the page from disk; whereas "page_mapped"
819 * refers to user virtual address space into which the page is mapped.
820 */
821#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
822#define PAGE_MAPPING_KSM 2
823#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 824
9800339b 825extern struct address_space *page_mapping(struct page *page);
1da177e4 826
3ca7b3c5
HD
827/* Neutral page->mapping pointer to address_space or anon_vma or other */
828static inline void *page_rmapping(struct page *page)
829{
830 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
831}
832
f981c595
MG
833extern struct address_space *__page_file_mapping(struct page *);
834
835static inline
836struct address_space *page_file_mapping(struct page *page)
837{
838 if (unlikely(PageSwapCache(page)))
839 return __page_file_mapping(page);
840
841 return page->mapping;
842}
843
1da177e4
LT
844static inline int PageAnon(struct page *page)
845{
846 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
847}
848
849/*
850 * Return the pagecache index of the passed page. Regular pagecache pages
851 * use ->index whereas swapcache pages use ->private
852 */
853static inline pgoff_t page_index(struct page *page)
854{
855 if (unlikely(PageSwapCache(page)))
4c21e2f2 856 return page_private(page);
1da177e4
LT
857 return page->index;
858}
859
f981c595
MG
860extern pgoff_t __page_file_index(struct page *page);
861
862/*
863 * Return the file index of the page. Regular pagecache pages use ->index
864 * whereas swapcache pages use swp_offset(->private)
865 */
866static inline pgoff_t page_file_index(struct page *page)
867{
868 if (unlikely(PageSwapCache(page)))
869 return __page_file_index(page);
870
871 return page->index;
872}
873
1da177e4
LT
874/*
875 * Return true if this page is mapped into pagetables.
876 */
877static inline int page_mapped(struct page *page)
878{
879 return atomic_read(&(page)->_mapcount) >= 0;
880}
881
1da177e4
LT
882/*
883 * Different kinds of faults, as returned by handle_mm_fault().
884 * Used to decide whether a process gets delivered SIGBUS or
885 * just gets major/minor fault counters bumped up.
886 */
d0217ac0 887
83c54070 888#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 889
83c54070
NP
890#define VM_FAULT_OOM 0x0001
891#define VM_FAULT_SIGBUS 0x0002
892#define VM_FAULT_MAJOR 0x0004
893#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
894#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
895#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 896
83c54070
NP
897#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
898#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 899#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 900
aa50d3a7
AK
901#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
902
903#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
904 VM_FAULT_HWPOISON_LARGE)
905
906/* Encode hstate index for a hwpoisoned large page */
907#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
908#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 909
1c0fe6e3
NP
910/*
911 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
912 */
913extern void pagefault_out_of_memory(void);
914
1da177e4
LT
915#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
916
ddd588b5 917/*
7bf02ea2 918 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
919 * various contexts.
920 */
4b59e6c4
DR
921#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
922#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
ddd588b5 923
7bf02ea2
DR
924extern void show_free_areas(unsigned int flags);
925extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 926
6fa3eb70 927void shmem_set_file(struct vm_area_struct *vma, struct file *file);
1da177e4
LT
928int shmem_zero_setup(struct vm_area_struct *);
929
e8edc6e0 930extern int can_do_mlock(void);
1da177e4
LT
931extern int user_shm_lock(size_t, struct user_struct *);
932extern void user_shm_unlock(size_t, struct user_struct *);
933
934/*
935 * Parameter block passed down to zap_pte_range in exceptional cases.
936 */
937struct zap_details {
938 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
939 struct address_space *check_mapping; /* Check page->mapping if set */
940 pgoff_t first_index; /* Lowest page->index to unmap */
941 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
942};
943
7e675137
NP
944struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
945 pte_t pte);
946
c627f9cc
JS
947int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
948 unsigned long size);
14f5ff5d 949void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 950 unsigned long size, struct zap_details *);
4f74d2c8
LT
951void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
952 unsigned long start, unsigned long end);
e6473092
MM
953
954/**
955 * mm_walk - callbacks for walk_page_range
956 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
957 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
958 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
959 * this handler is required to be able to handle
960 * pmd_trans_huge() pmds. They may simply choose to
961 * split_huge_page() instead of handling it explicitly.
e6473092
MM
962 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
963 * @pte_hole: if set, called for each hole at all levels
5dc37642 964 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
965 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
966 * is used.
e6473092
MM
967 *
968 * (see walk_page_range for more details)
969 */
970struct mm_walk {
0f157a5b
AM
971 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
972 unsigned long next, struct mm_walk *walk);
973 int (*pud_entry)(pud_t *pud, unsigned long addr,
974 unsigned long next, struct mm_walk *walk);
975 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
976 unsigned long next, struct mm_walk *walk);
977 int (*pte_entry)(pte_t *pte, unsigned long addr,
978 unsigned long next, struct mm_walk *walk);
979 int (*pte_hole)(unsigned long addr, unsigned long next,
980 struct mm_walk *walk);
981 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
982 unsigned long addr, unsigned long next,
983 struct mm_walk *walk);
2165009b
DH
984 struct mm_struct *mm;
985 void *private;
e6473092
MM
986};
987
2165009b
DH
988int walk_page_range(unsigned long addr, unsigned long end,
989 struct mm_walk *walk);
42b77728 990void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 991 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
992int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
993 struct vm_area_struct *vma);
1da177e4
LT
994void unmap_mapping_range(struct address_space *mapping,
995 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
996int follow_pfn(struct vm_area_struct *vma, unsigned long address,
997 unsigned long *pfn);
d87fe660 998int follow_phys(struct vm_area_struct *vma, unsigned long address,
999 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1000int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1001 void *buf, int len, int write);
1da177e4
LT
1002
1003static inline void unmap_shared_mapping_range(struct address_space *mapping,
1004 loff_t const holebegin, loff_t const holelen)
1005{
1006 unmap_mapping_range(mapping, holebegin, holelen, 0);
1007}
1008
25d9e2d1 1009extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 1010extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1011void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1012int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1013int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1014int invalidate_inode_page(struct page *page);
1015
7ee1dd3f 1016#ifdef CONFIG_MMU
83c54070 1017extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1018 unsigned long address, unsigned int flags);
5c723ba5
PZ
1019extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1020 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1021#else
1022static inline int handle_mm_fault(struct mm_struct *mm,
1023 struct vm_area_struct *vma, unsigned long address,
d06063cc 1024 unsigned int flags)
7ee1dd3f
DH
1025{
1026 /* should never happen if there's no MMU */
1027 BUG();
1028 return VM_FAULT_SIGBUS;
1029}
5c723ba5
PZ
1030static inline int fixup_user_fault(struct task_struct *tsk,
1031 struct mm_struct *mm, unsigned long address,
1032 unsigned int fault_flags)
1033{
1034 /* should never happen if there's no MMU */
1035 BUG();
1036 return -EFAULT;
1037}
7ee1dd3f 1038#endif
f33ea7f4 1039
1da177e4 1040extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1041extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1042 void *buf, int len, int write);
1da177e4 1043
28a35716
ML
1044long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1045 unsigned long start, unsigned long nr_pages,
1046 unsigned int foll_flags, struct page **pages,
1047 struct vm_area_struct **vmas, int *nonblocking);
1048long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1049 unsigned long start, unsigned long nr_pages,
1050 int write, int force, struct page **pages,
1051 struct vm_area_struct **vmas);
d2bf6be8
NP
1052int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1053 struct page **pages);
18022c5d
MG
1054struct kvec;
1055int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1056 struct page **pages);
1057int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1058struct page *get_dump_page(unsigned long addr);
1da177e4 1059
cf9a2ae8
DH
1060extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1061extern void do_invalidatepage(struct page *page, unsigned long offset);
1062
1da177e4 1063int __set_page_dirty_nobuffers(struct page *page);
76719325 1064int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1065int redirty_page_for_writepage(struct writeback_control *wbc,
1066 struct page *page);
e3a7cca1 1067void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1068void account_page_writeback(struct page *page);
b3c97528 1069int set_page_dirty(struct page *page);
1da177e4
LT
1070int set_page_dirty_lock(struct page *page);
1071int clear_page_dirty_for_io(struct page *page);
1072
39aa3cb3 1073/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1074static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1075{
1076 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1077}
1078
a09a79f6
MP
1079static inline int stack_guard_page_start(struct vm_area_struct *vma,
1080 unsigned long addr)
1081{
1082 return (vma->vm_flags & VM_GROWSDOWN) &&
1083 (vma->vm_start == addr) &&
1084 !vma_growsdown(vma->vm_prev, addr);
1085}
1086
1087/* Is the vma a continuation of the stack vma below it? */
1088static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1089{
1090 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1091}
1092
1093static inline int stack_guard_page_end(struct vm_area_struct *vma,
1094 unsigned long addr)
1095{
1096 return (vma->vm_flags & VM_GROWSUP) &&
1097 (vma->vm_end == addr) &&
1098 !vma_growsup(vma->vm_next, addr);
1099}
1100
b7643757
SP
1101extern pid_t
1102vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1103
b6a2fea3
OW
1104extern unsigned long move_page_tables(struct vm_area_struct *vma,
1105 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1106 unsigned long new_addr, unsigned long len,
1107 bool need_rmap_locks);
7da4d641
PZ
1108extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1109 unsigned long end, pgprot_t newprot,
4b10e7d5 1110 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1111extern int mprotect_fixup(struct vm_area_struct *vma,
1112 struct vm_area_struct **pprev, unsigned long start,
1113 unsigned long end, unsigned long newflags);
1da177e4 1114
465a454f
PZ
1115/*
1116 * doesn't attempt to fault and will return short.
1117 */
1118int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1119 struct page **pages);
d559db08
KH
1120/*
1121 * per-process(per-mm_struct) statistics.
1122 */
d559db08
KH
1123static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1124{
69c97823
KK
1125 long val = atomic_long_read(&mm->rss_stat.count[member]);
1126
1127#ifdef SPLIT_RSS_COUNTING
1128 /*
1129 * counter is updated in asynchronous manner and may go to minus.
1130 * But it's never be expected number for users.
1131 */
1132 if (val < 0)
1133 val = 0;
172703b0 1134#endif
69c97823
KK
1135 return (unsigned long)val;
1136}
d559db08
KH
1137
1138static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1139{
172703b0 1140 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1141}
1142
1143static inline void inc_mm_counter(struct mm_struct *mm, int member)
1144{
172703b0 1145 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1146}
1147
1148static inline void dec_mm_counter(struct mm_struct *mm, int member)
1149{
172703b0 1150 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1151}
1152
d559db08
KH
1153static inline unsigned long get_mm_rss(struct mm_struct *mm)
1154{
1155 return get_mm_counter(mm, MM_FILEPAGES) +
1156 get_mm_counter(mm, MM_ANONPAGES);
1157}
1158
1159static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1160{
1161 return max(mm->hiwater_rss, get_mm_rss(mm));
1162}
1163
1164static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1165{
1166 return max(mm->hiwater_vm, mm->total_vm);
1167}
1168
1169static inline void update_hiwater_rss(struct mm_struct *mm)
1170{
1171 unsigned long _rss = get_mm_rss(mm);
1172
1173 if ((mm)->hiwater_rss < _rss)
1174 (mm)->hiwater_rss = _rss;
1175}
1176
1177static inline void update_hiwater_vm(struct mm_struct *mm)
1178{
1179 if (mm->hiwater_vm < mm->total_vm)
1180 mm->hiwater_vm = mm->total_vm;
1181}
1182
1183static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1184 struct mm_struct *mm)
1185{
1186 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1187
1188 if (*maxrss < hiwater_rss)
1189 *maxrss = hiwater_rss;
1190}
1191
53bddb4e 1192#if defined(SPLIT_RSS_COUNTING)
05af2e10 1193void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1194#else
05af2e10 1195static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1196{
1197}
1198#endif
465a454f 1199
4e950f6f 1200int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1201
25ca1d6c
NK
1202extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1203 spinlock_t **ptl);
1204static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1205 spinlock_t **ptl)
1206{
1207 pte_t *ptep;
1208 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1209 return ptep;
1210}
c9cfcddf 1211
5f22df00
NP
1212#ifdef __PAGETABLE_PUD_FOLDED
1213static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1214 unsigned long address)
1215{
1216 return 0;
1217}
1218#else
1bb3630e 1219int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1220#endif
1221
1222#ifdef __PAGETABLE_PMD_FOLDED
1223static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1224 unsigned long address)
1225{
1226 return 0;
1227}
1228#else
1bb3630e 1229int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1230#endif
1231
8ac1f832
AA
1232int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1233 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1234int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1235
1da177e4
LT
1236/*
1237 * The following ifdef needed to get the 4level-fixup.h header to work.
1238 * Remove it when 4level-fixup.h has been removed.
1239 */
1bb3630e 1240#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1241static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1242{
1bb3630e
HD
1243 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1244 NULL: pud_offset(pgd, address);
1da177e4
LT
1245}
1246
1247static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1248{
1bb3630e
HD
1249 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1250 NULL: pmd_offset(pud, address);
1da177e4 1251}
1bb3630e
HD
1252#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1253
f7d0b926 1254#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1255/*
1256 * We tuck a spinlock to guard each pagetable page into its struct page,
1257 * at page->private, with BUILD_BUG_ON to make sure that this will not
1258 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1259 * When freeing, reset page->mapping so free_pages_check won't complain.
1260 */
349aef0b 1261#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1262#define pte_lock_init(_page) do { \
1263 spin_lock_init(__pte_lockptr(_page)); \
1264} while (0)
1265#define pte_lock_deinit(page) ((page)->mapping = NULL)
1266#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1267#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1268/*
1269 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1270 */
1271#define pte_lock_init(page) do {} while (0)
1272#define pte_lock_deinit(page) do {} while (0)
1273#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1274#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1275
2f569afd
MS
1276static inline void pgtable_page_ctor(struct page *page)
1277{
1278 pte_lock_init(page);
1279 inc_zone_page_state(page, NR_PAGETABLE);
1280}
1281
1282static inline void pgtable_page_dtor(struct page *page)
1283{
1284 pte_lock_deinit(page);
1285 dec_zone_page_state(page, NR_PAGETABLE);
1286}
1287
c74df32c
HD
1288#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1289({ \
4c21e2f2 1290 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1291 pte_t *__pte = pte_offset_map(pmd, address); \
1292 *(ptlp) = __ptl; \
1293 spin_lock(__ptl); \
1294 __pte; \
1295})
1296
1297#define pte_unmap_unlock(pte, ptl) do { \
1298 spin_unlock(ptl); \
1299 pte_unmap(pte); \
1300} while (0)
1301
8ac1f832
AA
1302#define pte_alloc_map(mm, vma, pmd, address) \
1303 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1304 pmd, address))? \
1305 NULL: pte_offset_map(pmd, address))
1bb3630e 1306
c74df32c 1307#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1308 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1309 pmd, address))? \
c74df32c
HD
1310 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1311
1bb3630e 1312#define pte_alloc_kernel(pmd, address) \
8ac1f832 1313 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1314 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1315
1316extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1317extern void free_area_init_node(int nid, unsigned long * zones_size,
1318 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1319extern void free_initmem(void);
1320
69afade7
JL
1321/*
1322 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1323 * into the buddy system. The freed pages will be poisoned with pattern
1324 * "poison" if it's non-zero.
1325 * Return pages freed into the buddy system.
1326 */
1327extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1328 int poison, char *s);
cfa11e08
JL
1329#ifdef CONFIG_HIGHMEM
1330/*
1331 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1332 * and totalram_pages.
1333 */
1334extern void free_highmem_page(struct page *page);
1335#endif
69afade7
JL
1336
1337static inline void adjust_managed_page_count(struct page *page, long count)
1338{
1339 totalram_pages += count;
1340}
1341
1342/* Free the reserved page into the buddy system, so it gets managed. */
1343static inline void __free_reserved_page(struct page *page)
1344{
1345 ClearPageReserved(page);
1346 init_page_count(page);
1347 __free_page(page);
1348}
1349
1350static inline void free_reserved_page(struct page *page)
1351{
1352 __free_reserved_page(page);
1353 adjust_managed_page_count(page, 1);
1354}
1355
1356static inline void mark_page_reserved(struct page *page)
1357{
1358 SetPageReserved(page);
1359 adjust_managed_page_count(page, -1);
1360}
1361
1362/*
1363 * Default method to free all the __init memory into the buddy system.
1364 * The freed pages will be poisoned with pattern "poison" if it is
1365 * non-zero. Return pages freed into the buddy system.
1366 */
1367static inline unsigned long free_initmem_default(int poison)
1368{
1369 extern char __init_begin[], __init_end[];
1370
1371 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1372 ((unsigned long)&__init_end) & PAGE_MASK,
1373 poison, "unused kernel");
1374}
1375
0ee332c1 1376#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1377/*
0ee332c1 1378 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1379 * zones, allocate the backing mem_map and account for memory holes in a more
1380 * architecture independent manner. This is a substitute for creating the
1381 * zone_sizes[] and zholes_size[] arrays and passing them to
1382 * free_area_init_node()
1383 *
1384 * An architecture is expected to register range of page frames backed by
0ee332c1 1385 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1386 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1387 * usage, an architecture is expected to do something like
1388 *
1389 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1390 * max_highmem_pfn};
1391 * for_each_valid_physical_page_range()
0ee332c1 1392 * memblock_add_node(base, size, nid)
c713216d
MG
1393 * free_area_init_nodes(max_zone_pfns);
1394 *
0ee332c1
TH
1395 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1396 * registered physical page range. Similarly
1397 * sparse_memory_present_with_active_regions() calls memory_present() for
1398 * each range when SPARSEMEM is enabled.
c713216d
MG
1399 *
1400 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1401 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1402 */
1403extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1404unsigned long node_map_pfn_alignment(void);
32996250
YL
1405unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1406 unsigned long end_pfn);
c713216d
MG
1407extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1408 unsigned long end_pfn);
1409extern void get_pfn_range_for_nid(unsigned int nid,
1410 unsigned long *start_pfn, unsigned long *end_pfn);
1411extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1412extern void free_bootmem_with_active_regions(int nid,
1413 unsigned long max_low_pfn);
1414extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1415
0ee332c1 1416#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1417
0ee332c1 1418#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1419 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1420static inline int __early_pfn_to_nid(unsigned long pfn)
1421{
1422 return 0;
1423}
1424#else
1425/* please see mm/page_alloc.c */
1426extern int __meminit early_pfn_to_nid(unsigned long pfn);
1427#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1428/* there is a per-arch backend function. */
1429extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1430#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1431#endif
1432
0e0b864e 1433extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1434extern void memmap_init_zone(unsigned long, int, unsigned long,
1435 unsigned long, enum memmap_context);
bc75d33f 1436extern void setup_per_zone_wmarks(void);
1b79acc9 1437extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1438extern void mem_init(void);
8feae131 1439extern void __init mmap_init(void);
b2b755b5 1440extern void show_mem(unsigned int flags);
1da177e4
LT
1441extern void si_meminfo(struct sysinfo * val);
1442extern void si_meminfo_node(struct sysinfo *val, int nid);
1443
3ee9a4f0
JP
1444extern __printf(3, 4)
1445void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1446
e7c8d5c9 1447extern void setup_per_cpu_pageset(void);
e7c8d5c9 1448
112067f0 1449extern void zone_pcp_update(struct zone *zone);
340175b7 1450extern void zone_pcp_reset(struct zone *zone);
112067f0 1451
75f7ad8e
PS
1452/* page_alloc.c */
1453extern int min_free_kbytes;
1454
8feae131 1455/* nommu.c */
33e5d769 1456extern atomic_long_t mmap_pages_allocated;
7e660872 1457extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1458
6b2dbba8 1459/* interval_tree.c */
6b2dbba8
ML
1460void vma_interval_tree_insert(struct vm_area_struct *node,
1461 struct rb_root *root);
9826a516
ML
1462void vma_interval_tree_insert_after(struct vm_area_struct *node,
1463 struct vm_area_struct *prev,
1464 struct rb_root *root);
6b2dbba8
ML
1465void vma_interval_tree_remove(struct vm_area_struct *node,
1466 struct rb_root *root);
1467struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1468 unsigned long start, unsigned long last);
1469struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1470 unsigned long start, unsigned long last);
1471
1472#define vma_interval_tree_foreach(vma, root, start, last) \
1473 for (vma = vma_interval_tree_iter_first(root, start, last); \
1474 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1475
1476static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1477 struct list_head *list)
1478{
6b2dbba8 1479 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1480}
1481
bf181b9f
ML
1482void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1483 struct rb_root *root);
1484void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1485 struct rb_root *root);
1486struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1487 struct rb_root *root, unsigned long start, unsigned long last);
1488struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1489 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1490#ifdef CONFIG_DEBUG_VM_RB
1491void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1492#endif
bf181b9f
ML
1493
1494#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1495 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1496 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1497
1da177e4 1498/* mmap.c */
34b4e4aa 1499extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1500extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1501 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1502extern struct vm_area_struct *vma_merge(struct mm_struct *,
1503 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1504 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
6fa3eb70 1505 struct mempolicy *, const char __user *);
1da177e4
LT
1506extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1507extern int split_vma(struct mm_struct *,
1508 struct vm_area_struct *, unsigned long addr, int new_below);
1509extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1510extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1511 struct rb_node **, struct rb_node *);
a8fb5618 1512extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1513extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1514 unsigned long addr, unsigned long len, pgoff_t pgoff,
1515 bool *need_rmap_locks);
1da177e4 1516extern void exit_mmap(struct mm_struct *);
925d1c40 1517
7906d00c
AA
1518extern int mm_take_all_locks(struct mm_struct *mm);
1519extern void mm_drop_all_locks(struct mm_struct *mm);
1520
38646013
JS
1521extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1522extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1523
119f657c 1524extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1525extern int install_special_mapping(struct mm_struct *mm,
1526 unsigned long addr, unsigned long len,
1527 unsigned long flags, struct page **pages);
1da177e4
LT
1528
1529extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1530
0165ab44 1531extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1532 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1533extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1534 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1535 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1536extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1537
bebeb3d6
ML
1538#ifdef CONFIG_MMU
1539extern int __mm_populate(unsigned long addr, unsigned long len,
1540 int ignore_errors);
1541static inline void mm_populate(unsigned long addr, unsigned long len)
1542{
1543 /* Ignore errors */
1544 (void) __mm_populate(addr, len, 1);
1545}
1546#else
1547static inline void mm_populate(unsigned long addr, unsigned long len) {}
1548#endif
1549
e4eb1ff6
LT
1550/* These take the mm semaphore themselves */
1551extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1552extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1553extern unsigned long vm_mmap(struct file *, unsigned long,
1554 unsigned long, unsigned long,
1555 unsigned long, unsigned long);
1da177e4 1556
db4fbfb9
ML
1557struct vm_unmapped_area_info {
1558#define VM_UNMAPPED_AREA_TOPDOWN 1
1559 unsigned long flags;
1560 unsigned long length;
1561 unsigned long low_limit;
1562 unsigned long high_limit;
1563 unsigned long align_mask;
1564 unsigned long align_offset;
1565};
1566
1567extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1568extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1569
1570/*
1571 * Search for an unmapped address range.
1572 *
1573 * We are looking for a range that:
1574 * - does not intersect with any VMA;
1575 * - is contained within the [low_limit, high_limit) interval;
1576 * - is at least the desired size.
1577 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1578 */
1579static inline unsigned long
1580vm_unmapped_area(struct vm_unmapped_area_info *info)
1581{
1582 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1583 return unmapped_area(info);
1584 else
1585 return unmapped_area_topdown(info);
1586}
1587
85821aab 1588/* truncate.c */
1da177e4 1589extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1590extern void truncate_inode_pages_range(struct address_space *,
1591 loff_t lstart, loff_t lend);
1da177e4
LT
1592
1593/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1594extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1595extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1596
1597/* mm/page-writeback.c */
1598int write_one_page(struct page *page, int wait);
1cf6e7d8 1599void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1600
1601/* readahead.c */
1602#define VM_MAX_READAHEAD 128 /* kbytes */
1603#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1604
1da177e4 1605int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1606 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1607
1608void page_cache_sync_readahead(struct address_space *mapping,
1609 struct file_ra_state *ra,
1610 struct file *filp,
1611 pgoff_t offset,
1612 unsigned long size);
1613
1614void page_cache_async_readahead(struct address_space *mapping,
1615 struct file_ra_state *ra,
1616 struct file *filp,
1617 struct page *pg,
1618 pgoff_t offset,
1619 unsigned long size);
1620
1da177e4 1621unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1622unsigned long ra_submit(struct file_ra_state *ra,
1623 struct address_space *mapping,
1624 struct file *filp);
1da177e4 1625
d05f3169 1626/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1627extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1628
1629/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1630extern int expand_downwards(struct vm_area_struct *vma,
1631 unsigned long address);
8ca3eb08 1632#if VM_GROWSUP
46dea3d0 1633extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1634#else
1635 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1636#endif
1da177e4
LT
1637
1638/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1639extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1640extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1641 struct vm_area_struct **pprev);
1642
1643/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1644 NULL if none. Assume start_addr < end_addr. */
1645static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1646{
1647 struct vm_area_struct * vma = find_vma(mm,start_addr);
1648
1649 if (vma && end_addr <= vma->vm_start)
1650 vma = NULL;
1651 return vma;
1652}
1653
1654static inline unsigned long vma_pages(struct vm_area_struct *vma)
1655{
1656 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1657}
1658
640708a2
PE
1659/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1660static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1661 unsigned long vm_start, unsigned long vm_end)
1662{
1663 struct vm_area_struct *vma = find_vma(mm, vm_start);
1664
1665 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1666 vma = NULL;
1667
1668 return vma;
1669}
1670
bad849b3 1671#ifdef CONFIG_MMU
804af2cf 1672pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1673#else
1674static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1675{
1676 return __pgprot(0);
1677}
1678#endif
1679
b24f53a0 1680#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1681unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1682 unsigned long start, unsigned long end);
1683#endif
1684
deceb6cd 1685struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1686int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1687 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1688int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1689int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1690 unsigned long pfn);
423bad60
NP
1691int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1692 unsigned long pfn);
b4cbb197
LT
1693int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1694
deceb6cd 1695
240aadee
ML
1696struct page *follow_page_mask(struct vm_area_struct *vma,
1697 unsigned long address, unsigned int foll_flags,
1698 unsigned int *page_mask);
1699
1700static inline struct page *follow_page(struct vm_area_struct *vma,
1701 unsigned long address, unsigned int foll_flags)
1702{
1703 unsigned int unused_page_mask;
1704 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1705}
1706
deceb6cd
HD
1707#define FOLL_WRITE 0x01 /* check pte is writable */
1708#define FOLL_TOUCH 0x02 /* mark page accessed */
1709#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1710#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1711#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1712#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1713 * and return without waiting upon it */
110d74a9 1714#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1715#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1716#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1717#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1718#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
4b9e9796 1719#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 1720
2f569afd 1721typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1722 void *data);
1723extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1724 unsigned long size, pte_fn_t fn, void *data);
1725
1da177e4 1726#ifdef CONFIG_PROC_FS
ab50b8ed 1727void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1728#else
ab50b8ed 1729static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1730 unsigned long flags, struct file *file, long pages)
1731{
44de9d0c 1732 mm->total_vm += pages;
1da177e4
LT
1733}
1734#endif /* CONFIG_PROC_FS */
1735
12d6f21e 1736#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1737extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1738#ifdef CONFIG_HIBERNATION
1739extern bool kernel_page_present(struct page *page);
1740#endif /* CONFIG_HIBERNATION */
12d6f21e 1741#else
1da177e4 1742static inline void
9858db50 1743kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1744#ifdef CONFIG_HIBERNATION
1745static inline bool kernel_page_present(struct page *page) { return true; }
1746#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1747#endif
1748
31db58b3 1749extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1750#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1751int in_gate_area_no_mm(unsigned long addr);
83b964bb 1752int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1753#else
cae5d390
SW
1754int in_gate_area_no_mm(unsigned long addr);
1755#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1756#endif /* __HAVE_ARCH_GATE_AREA */
1757
146732ce
JT
1758#ifdef CONFIG_SYSCTL
1759extern int sysctl_drop_caches;
8d65af78 1760int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1761 void __user *, size_t *, loff_t *);
146732ce
JT
1762#endif
1763
a09ed5e0 1764unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1765 unsigned long nr_pages_scanned,
1766 unsigned long lru_pages);
6fa3eb70 1767void drop_pagecache(void);
9d0243bc 1768
7a9166e3
LY
1769#ifndef CONFIG_MMU
1770#define randomize_va_space 0
1771#else
a62eaf15 1772extern int randomize_va_space;
7a9166e3 1773#endif
a62eaf15 1774
045e72ac 1775const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1776void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1777
9bdac914
YL
1778void sparse_mem_maps_populate_node(struct page **map_map,
1779 unsigned long pnum_begin,
1780 unsigned long pnum_end,
1781 unsigned long map_count,
1782 int nodeid);
1783
98f3cfc1 1784struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1785pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1786pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1787pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1788pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1789void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1790void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1791void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
1792int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1793 int node);
1794int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 1795void vmemmap_populate_print_last(void);
0197518c 1796#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 1797void vmemmap_free(unsigned long start, unsigned long end);
0197518c 1798#endif
46723bfa
YI
1799void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1800 unsigned long size);
6a46079c 1801
82ba011b
AK
1802enum mf_flags {
1803 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1804 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1805 MF_MUST_KILL = 1 << 2,
82ba011b 1806};
cd42f4a3 1807extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1808extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1809extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1810extern int sysctl_memory_failure_early_kill;
1811extern int sysctl_memory_failure_recovery;
facb6011 1812extern void shake_page(struct page *p, int access);
293c07e3 1813extern atomic_long_t num_poisoned_pages;
facb6011 1814extern int soft_offline_page(struct page *page, int flags);
6a46079c 1815
718a3821
WF
1816extern void dump_page(struct page *page);
1817
47ad8475
AA
1818#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1819extern void clear_huge_page(struct page *page,
1820 unsigned long addr,
1821 unsigned int pages_per_huge_page);
1822extern void copy_user_huge_page(struct page *dst, struct page *src,
1823 unsigned long addr, struct vm_area_struct *vma,
1824 unsigned int pages_per_huge_page);
1825#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1826
c0a32fc5
SG
1827#ifdef CONFIG_DEBUG_PAGEALLOC
1828extern unsigned int _debug_guardpage_minorder;
1829
1830static inline unsigned int debug_guardpage_minorder(void)
1831{
1832 return _debug_guardpage_minorder;
1833}
1834
1835static inline bool page_is_guard(struct page *page)
1836{
1837 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1838}
1839#else
1840static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1841static inline bool page_is_guard(struct page *page) { return false; }
1842#endif /* CONFIG_DEBUG_PAGEALLOC */
1843
f9872caf
CS
1844#if MAX_NUMNODES > 1
1845void __init setup_nr_node_ids(void);
1846#else
1847static inline void setup_nr_node_ids(void) {}
1848#endif
1849
1da177e4
LT
1850#endif /* __KERNEL__ */
1851#endif /* _LINUX_MM_H */