sched: Fix ->min_vruntime calculation in dequeue_entity()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
c8b28116 296#define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
4934a4d3 331#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 332 unsigned int nr_spread_over;
4934a4d3 333#endif
ddc97297 334
62160e3f 335#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337
41a2d6cf
IM
338 /*
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
342 *
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
345 */
3d4b47b4 346 int on_list;
41a2d6cf
IM
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
349
350#ifdef CONFIG_SMP
c09595f6 351 /*
c8cba857 352 * the part of load.weight contributed by tasks
c09595f6 353 */
c8cba857 354 unsigned long task_weight;
c09595f6 355
c8cba857
PZ
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
c09595f6 363
c8cba857 364 /*
3b3d190e
PT
365 * Maintaining per-cpu shares distribution for group scheduling
366 *
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 370 */
2069dd75
PZ
371 u64 load_avg;
372 u64 load_period;
3b3d190e 373 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 374
2069dd75 375 unsigned long load_contribution;
c09595f6 376#endif
6aa645ea
IM
377#endif
378};
1da177e4 379
6aa645ea
IM
380/* Real-Time classes' related field in a runqueue: */
381struct rt_rq {
382 struct rt_prio_array active;
63489e45 383 unsigned long rt_nr_running;
052f1dc7 384#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
385 struct {
386 int curr; /* highest queued rt task prio */
398a153b 387#ifdef CONFIG_SMP
e864c499 388 int next; /* next highest */
398a153b 389#endif
e864c499 390 } highest_prio;
6f505b16 391#endif
fa85ae24 392#ifdef CONFIG_SMP
73fe6aae 393 unsigned long rt_nr_migratory;
a1ba4d8b 394 unsigned long rt_nr_total;
a22d7fc1 395 int overloaded;
917b627d 396 struct plist_head pushable_tasks;
fa85ae24 397#endif
6f505b16 398 int rt_throttled;
fa85ae24 399 u64 rt_time;
ac086bc2 400 u64 rt_runtime;
ea736ed5 401 /* Nests inside the rq lock: */
0986b11b 402 raw_spinlock_t rt_runtime_lock;
6f505b16 403
052f1dc7 404#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
405 unsigned long rt_nr_boosted;
406
6f505b16
PZ
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
6f505b16 410#endif
6aa645ea
IM
411};
412
57d885fe
GH
413#ifdef CONFIG_SMP
414
415/*
416 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
421 *
57d885fe
GH
422 */
423struct root_domain {
424 atomic_t refcount;
dce840a0 425 struct rcu_head rcu;
c6c4927b
RR
426 cpumask_var_t span;
427 cpumask_var_t online;
637f5085 428
0eab9146 429 /*
637f5085
GH
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
432 */
c6c4927b 433 cpumask_var_t rto_mask;
0eab9146 434 atomic_t rto_count;
6e0534f2 435 struct cpupri cpupri;
57d885fe
GH
436};
437
dc938520
GH
438/*
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
441 */
57d885fe
GH
442static struct root_domain def_root_domain;
443
ed2d372c 444#endif /* CONFIG_SMP */
57d885fe 445
1da177e4
LT
446/*
447 * This is the main, per-CPU runqueue data structure.
448 *
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
452 */
70b97a7f 453struct rq {
d8016491 454 /* runqueue lock: */
05fa785c 455 raw_spinlock_t lock;
1da177e4
LT
456
457 /*
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
460 */
461 unsigned long nr_running;
6aa645ea
IM
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 464 unsigned long last_load_update_tick;
46cb4b7c 465#ifdef CONFIG_NO_HZ
39c0cbe2 466 u64 nohz_stamp;
83cd4fe2 467 unsigned char nohz_balance_kick;
46cb4b7c 468#endif
61eadef6 469 int skip_clock_update;
a64692a3 470
d8016491
IM
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
6aa645ea
IM
473 unsigned long nr_load_updates;
474 u64 nr_switches;
475
476 struct cfs_rq cfs;
6f505b16 477 struct rt_rq rt;
6f505b16 478
6aa645ea 479#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
482#endif
483#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 484 struct list_head leaf_rt_rq_list;
1da177e4 485#endif
1da177e4
LT
486
487 /*
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
492 */
493 unsigned long nr_uninterruptible;
494
34f971f6 495 struct task_struct *curr, *idle, *stop;
c9819f45 496 unsigned long next_balance;
1da177e4 497 struct mm_struct *prev_mm;
6aa645ea 498
3e51f33f 499 u64 clock;
305e6835 500 u64 clock_task;
6aa645ea 501
1da177e4
LT
502 atomic_t nr_iowait;
503
504#ifdef CONFIG_SMP
0eab9146 505 struct root_domain *rd;
1da177e4
LT
506 struct sched_domain *sd;
507
e51fd5e2
PZ
508 unsigned long cpu_power;
509
a0a522ce 510 unsigned char idle_at_tick;
1da177e4 511 /* For active balancing */
3f029d3c 512 int post_schedule;
1da177e4
LT
513 int active_balance;
514 int push_cpu;
969c7921 515 struct cpu_stop_work active_balance_work;
d8016491
IM
516 /* cpu of this runqueue: */
517 int cpu;
1f11eb6a 518 int online;
1da177e4 519
a8a51d5e 520 unsigned long avg_load_per_task;
1da177e4 521
e9e9250b
PZ
522 u64 rt_avg;
523 u64 age_stamp;
1b9508f6
MG
524 u64 idle_stamp;
525 u64 avg_idle;
1da177e4
LT
526#endif
527
aa483808
VP
528#ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530#endif
531
dce48a84
TG
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
535
8f4d37ec 536#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
537#ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540#endif
8f4d37ec
PZ
541 struct hrtimer hrtick_timer;
542#endif
543
1da177e4
LT
544#ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
9c2c4802
KC
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
549
550 /* sys_sched_yield() stats */
480b9434 551 unsigned int yld_count;
1da177e4
LT
552
553 /* schedule() stats */
480b9434
KC
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
1da177e4
LT
557
558 /* try_to_wake_up() stats */
480b9434
KC
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
1da177e4 561#endif
317f3941
PZ
562
563#ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565#endif
1da177e4
LT
566};
567
f34e3b61 568static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 569
a64692a3 570
1e5a7405 571static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d 583 rcu_dereference_check((p), \
dce840a0 584 rcu_read_lock_held() || \
d11c563d
PM
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
5091faa4 615 struct task_group *tg;
dc61b1d6
PZ
616 struct cgroup_subsys_state *css;
617
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 619 lockdep_is_held(&p->pi_lock));
5091faa4
MG
620 tg = container_of(css, struct task_group, css);
621
622 return autogroup_task_group(p, tg);
dc61b1d6
PZ
623}
624
625/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
627{
628#ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
631#endif
632
633#ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
636#endif
637}
638
639#else /* CONFIG_CGROUP_SCHED */
640
641static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642static inline struct task_group *task_group(struct task_struct *p)
643{
644 return NULL;
645}
646
647#endif /* CONFIG_CGROUP_SCHED */
648
fe44d621 649static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 650
fe44d621 651static void update_rq_clock(struct rq *rq)
3e51f33f 652{
fe44d621 653 s64 delta;
305e6835 654
61eadef6 655 if (rq->skip_clock_update > 0)
f26f9aff 656 return;
aa483808 657
fe44d621
PZ
658 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
659 rq->clock += delta;
660 update_rq_clock_task(rq, delta);
3e51f33f
PZ
661}
662
bf5c91ba
IM
663/*
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
665 */
666#ifdef CONFIG_SCHED_DEBUG
667# define const_debug __read_mostly
668#else
669# define const_debug static const
670#endif
671
017730c1 672/**
1fd06bb1 673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 674 * @cpu: the processor in question.
017730c1 675 *
017730c1
IM
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
678 */
89f19f04 679int runqueue_is_locked(int cpu)
017730c1 680{
05fa785c 681 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
682}
683
bf5c91ba
IM
684/*
685 * Debugging: various feature bits
686 */
f00b45c1
PZ
687
688#define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
690
bf5c91ba 691enum {
f00b45c1 692#include "sched_features.h"
bf5c91ba
IM
693};
694
f00b45c1
PZ
695#undef SCHED_FEAT
696
697#define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
699
bf5c91ba 700const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
701#include "sched_features.h"
702 0;
703
704#undef SCHED_FEAT
705
706#ifdef CONFIG_SCHED_DEBUG
707#define SCHED_FEAT(name, enabled) \
708 #name ,
709
983ed7a6 710static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
711#include "sched_features.h"
712 NULL
713};
714
715#undef SCHED_FEAT
716
34f3a814 717static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 718{
f00b45c1
PZ
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
722 if (!(sysctl_sched_features & (1UL << i)))
723 seq_puts(m, "NO_");
724 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 725 }
34f3a814 726 seq_puts(m, "\n");
f00b45c1 727
34f3a814 728 return 0;
f00b45c1
PZ
729}
730
731static ssize_t
732sched_feat_write(struct file *filp, const char __user *ubuf,
733 size_t cnt, loff_t *ppos)
734{
735 char buf[64];
7740191c 736 char *cmp;
f00b45c1
PZ
737 int neg = 0;
738 int i;
739
740 if (cnt > 63)
741 cnt = 63;
742
743 if (copy_from_user(&buf, ubuf, cnt))
744 return -EFAULT;
745
746 buf[cnt] = 0;
7740191c 747 cmp = strstrip(buf);
f00b45c1 748
524429c3 749 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
750 neg = 1;
751 cmp += 3;
752 }
753
754 for (i = 0; sched_feat_names[i]; i++) {
7740191c 755 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
756 if (neg)
757 sysctl_sched_features &= ~(1UL << i);
758 else
759 sysctl_sched_features |= (1UL << i);
760 break;
761 }
762 }
763
764 if (!sched_feat_names[i])
765 return -EINVAL;
766
42994724 767 *ppos += cnt;
f00b45c1
PZ
768
769 return cnt;
770}
771
34f3a814
LZ
772static int sched_feat_open(struct inode *inode, struct file *filp)
773{
774 return single_open(filp, sched_feat_show, NULL);
775}
776
828c0950 777static const struct file_operations sched_feat_fops = {
34f3a814
LZ
778 .open = sched_feat_open,
779 .write = sched_feat_write,
780 .read = seq_read,
781 .llseek = seq_lseek,
782 .release = single_release,
f00b45c1
PZ
783};
784
785static __init int sched_init_debug(void)
786{
f00b45c1
PZ
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
788 &sched_feat_fops);
789
790 return 0;
791}
792late_initcall(sched_init_debug);
793
794#endif
795
796#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 797
b82d9fdd
PZ
798/*
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
801 */
802const_debug unsigned int sysctl_sched_nr_migrate = 32;
803
e9e9250b
PZ
804/*
805 * period over which we average the RT time consumption, measured
806 * in ms.
807 *
808 * default: 1s
809 */
810const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
811
fa85ae24 812/*
9f0c1e56 813 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
814 * default: 1s
815 */
9f0c1e56 816unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 817
6892b75e
IM
818static __read_mostly int scheduler_running;
819
9f0c1e56
PZ
820/*
821 * part of the period that we allow rt tasks to run in us.
822 * default: 0.95s
823 */
824int sysctl_sched_rt_runtime = 950000;
fa85ae24 825
d0b27fa7
PZ
826static inline u64 global_rt_period(void)
827{
828 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
829}
830
831static inline u64 global_rt_runtime(void)
832{
e26873bb 833 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
834 return RUNTIME_INF;
835
836 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
837}
fa85ae24 838
1da177e4 839#ifndef prepare_arch_switch
4866cde0
NP
840# define prepare_arch_switch(next) do { } while (0)
841#endif
842#ifndef finish_arch_switch
843# define finish_arch_switch(prev) do { } while (0)
844#endif
845
051a1d1a
DA
846static inline int task_current(struct rq *rq, struct task_struct *p)
847{
848 return rq->curr == p;
849}
850
70b97a7f 851static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 852{
3ca7a440
PZ
853#ifdef CONFIG_SMP
854 return p->on_cpu;
855#else
051a1d1a 856 return task_current(rq, p);
3ca7a440 857#endif
4866cde0
NP
858}
859
3ca7a440 860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 861static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 862{
3ca7a440
PZ
863#ifdef CONFIG_SMP
864 /*
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
867 * here.
868 */
869 next->on_cpu = 1;
870#endif
4866cde0
NP
871}
872
70b97a7f 873static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 874{
3ca7a440
PZ
875#ifdef CONFIG_SMP
876 /*
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
879 * finished.
880 */
881 smp_wmb();
882 prev->on_cpu = 0;
883#endif
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
05fa785c 895 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
906 */
3ca7a440 907 next->on_cpu = 1;
4866cde0
NP
908#endif
909#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 910 raw_spin_unlock_irq(&rq->lock);
4866cde0 911#else
05fa785c 912 raw_spin_unlock(&rq->lock);
4866cde0
NP
913#endif
914}
915
70b97a7f 916static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
917{
918#ifdef CONFIG_SMP
919 /*
3ca7a440 920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
921 * We must ensure this doesn't happen until the switch is completely
922 * finished.
923 */
924 smp_wmb();
3ca7a440 925 prev->on_cpu = 0;
4866cde0
NP
926#endif
927#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 local_irq_enable();
1da177e4 929#endif
4866cde0
NP
930}
931#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 932
0970d299 933/*
0122ec5b 934 * __task_rq_lock - lock the rq @p resides on.
b29739f9 935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
0122ec5b
PZ
941 lockdep_assert_held(&p->pi_lock);
942
3a5c359a 943 for (;;) {
0970d299 944 rq = task_rq(p);
05fa785c 945 raw_spin_lock(&rq->lock);
65cc8e48 946 if (likely(rq == task_rq(p)))
3a5c359a 947 return rq;
05fa785c 948 raw_spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4 952/*
0122ec5b 953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 956 __acquires(p->pi_lock)
1da177e4
LT
957 __acquires(rq->lock)
958{
70b97a7f 959 struct rq *rq;
1da177e4 960
3a5c359a 961 for (;;) {
0122ec5b 962 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
65cc8e48 965 if (likely(rq == task_rq(p)))
3a5c359a 966 return rq;
0122ec5b
PZ
967 raw_spin_unlock(&rq->lock);
968 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
05fa785c 975 raw_spin_unlock(&rq->lock);
b29739f9
IM
976}
977
0122ec5b
PZ
978static inline void
979task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 980 __releases(rq->lock)
0122ec5b 981 __releases(p->pi_lock)
1da177e4 982{
0122ec5b
PZ
983 raw_spin_unlock(&rq->lock);
984 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
985}
986
1da177e4 987/*
cc2a73b5 988 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 989 */
a9957449 990static struct rq *this_rq_lock(void)
1da177e4
LT
991 __acquires(rq->lock)
992{
70b97a7f 993 struct rq *rq;
1da177e4
LT
994
995 local_irq_disable();
996 rq = this_rq();
05fa785c 997 raw_spin_lock(&rq->lock);
1da177e4
LT
998
999 return rq;
1000}
1001
8f4d37ec
PZ
1002#ifdef CONFIG_SCHED_HRTICK
1003/*
1004 * Use HR-timers to deliver accurate preemption points.
1005 *
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * reschedule event.
1009 *
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * rq->lock.
1012 */
8f4d37ec
PZ
1013
1014/*
1015 * Use hrtick when:
1016 * - enabled by features
1017 * - hrtimer is actually high res
1018 */
1019static inline int hrtick_enabled(struct rq *rq)
1020{
1021 if (!sched_feat(HRTICK))
1022 return 0;
ba42059f 1023 if (!cpu_active(cpu_of(rq)))
b328ca18 1024 return 0;
8f4d37ec
PZ
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026}
1027
8f4d37ec
PZ
1028static void hrtick_clear(struct rq *rq)
1029{
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1032}
1033
8f4d37ec
PZ
1034/*
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1037 */
1038static enum hrtimer_restart hrtick(struct hrtimer *timer)
1039{
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1041
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1043
05fa785c 1044 raw_spin_lock(&rq->lock);
3e51f33f 1045 update_rq_clock(rq);
8f4d37ec 1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1047 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1048
1049 return HRTIMER_NORESTART;
1050}
1051
95e904c7 1052#ifdef CONFIG_SMP
31656519
PZ
1053/*
1054 * called from hardirq (IPI) context
1055 */
1056static void __hrtick_start(void *arg)
b328ca18 1057{
31656519 1058 struct rq *rq = arg;
b328ca18 1059
05fa785c 1060 raw_spin_lock(&rq->lock);
31656519
PZ
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
05fa785c 1063 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1064}
1065
31656519
PZ
1066/*
1067 * Called to set the hrtick timer state.
1068 *
1069 * called with rq->lock held and irqs disabled
1070 */
1071static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1072{
31656519
PZ
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1075
cc584b21 1076 hrtimer_set_expires(timer, time);
31656519
PZ
1077
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
6e275637 1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1082 rq->hrtick_csd_pending = 1;
1083 }
b328ca18
PZ
1084}
1085
1086static int
1087hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1088{
1089 int cpu = (int)(long)hcpu;
1090
1091 switch (action) {
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1096 case CPU_DEAD:
1097 case CPU_DEAD_FROZEN:
31656519 1098 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1099 return NOTIFY_OK;
1100 }
1101
1102 return NOTIFY_DONE;
1103}
1104
fa748203 1105static __init void init_hrtick(void)
b328ca18
PZ
1106{
1107 hotcpu_notifier(hotplug_hrtick, 0);
1108}
31656519
PZ
1109#else
1110/*
1111 * Called to set the hrtick timer state.
1112 *
1113 * called with rq->lock held and irqs disabled
1114 */
1115static void hrtick_start(struct rq *rq, u64 delay)
1116{
7f1e2ca9 1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1118 HRTIMER_MODE_REL_PINNED, 0);
31656519 1119}
b328ca18 1120
006c75f1 1121static inline void init_hrtick(void)
8f4d37ec 1122{
8f4d37ec 1123}
31656519 1124#endif /* CONFIG_SMP */
8f4d37ec 1125
31656519 1126static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1127{
31656519
PZ
1128#ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
8f4d37ec 1130
31656519
PZ
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134#endif
8f4d37ec 1135
31656519
PZ
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
8f4d37ec 1138}
006c75f1 1139#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1140static inline void hrtick_clear(struct rq *rq)
1141{
1142}
1143
8f4d37ec
PZ
1144static inline void init_rq_hrtick(struct rq *rq)
1145{
1146}
1147
b328ca18
PZ
1148static inline void init_hrtick(void)
1149{
1150}
006c75f1 1151#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1152
c24d20db
IM
1153/*
1154 * resched_task - mark a task 'to be rescheduled now'.
1155 *
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1158 * the target CPU.
1159 */
1160#ifdef CONFIG_SMP
1161
1162#ifndef tsk_is_polling
1163#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164#endif
1165
31656519 1166static void resched_task(struct task_struct *p)
c24d20db
IM
1167{
1168 int cpu;
1169
05fa785c 1170 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1171
5ed0cec0 1172 if (test_tsk_need_resched(p))
c24d20db
IM
1173 return;
1174
5ed0cec0 1175 set_tsk_need_resched(p);
c24d20db
IM
1176
1177 cpu = task_cpu(p);
1178 if (cpu == smp_processor_id())
1179 return;
1180
1181 /* NEED_RESCHED must be visible before we test polling */
1182 smp_mb();
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1185}
1186
1187static void resched_cpu(int cpu)
1188{
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1191
05fa785c 1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1193 return;
1194 resched_task(cpu_curr(cpu));
05fa785c 1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1196}
06d8308c
TG
1197
1198#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1199/*
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1202 *
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1206 */
1207int get_nohz_timer_target(void)
1208{
1209 int cpu = smp_processor_id();
1210 int i;
1211 struct sched_domain *sd;
1212
057f3fad 1213 rcu_read_lock();
83cd4fe2 1214 for_each_domain(cpu, sd) {
057f3fad
PZ
1215 for_each_cpu(i, sched_domain_span(sd)) {
1216 if (!idle_cpu(i)) {
1217 cpu = i;
1218 goto unlock;
1219 }
1220 }
83cd4fe2 1221 }
057f3fad
PZ
1222unlock:
1223 rcu_read_unlock();
83cd4fe2
VP
1224 return cpu;
1225}
06d8308c
TG
1226/*
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1235 */
1236void wake_up_idle_cpu(int cpu)
1237{
1238 struct rq *rq = cpu_rq(cpu);
1239
1240 if (cpu == smp_processor_id())
1241 return;
1242
1243 /*
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1249 */
1250 if (rq->curr != rq->idle)
1251 return;
1252
1253 /*
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1257 */
5ed0cec0 1258 set_tsk_need_resched(rq->idle);
06d8308c
TG
1259
1260 /* NEED_RESCHED must be visible before we test polling */
1261 smp_mb();
1262 if (!tsk_is_polling(rq->idle))
1263 smp_send_reschedule(cpu);
1264}
39c0cbe2 1265
6d6bc0ad 1266#endif /* CONFIG_NO_HZ */
06d8308c 1267
e9e9250b
PZ
1268static u64 sched_avg_period(void)
1269{
1270 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1271}
1272
1273static void sched_avg_update(struct rq *rq)
1274{
1275 s64 period = sched_avg_period();
1276
1277 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1278 /*
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1282 */
1283 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1284 rq->age_stamp += period;
1285 rq->rt_avg /= 2;
1286 }
1287}
1288
1289static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290{
1291 rq->rt_avg += rt_delta;
1292 sched_avg_update(rq);
1293}
1294
6d6bc0ad 1295#else /* !CONFIG_SMP */
31656519 1296static void resched_task(struct task_struct *p)
c24d20db 1297{
05fa785c 1298 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1299 set_tsk_need_resched(p);
c24d20db 1300}
e9e9250b
PZ
1301
1302static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1303{
1304}
da2b71ed
SS
1305
1306static void sched_avg_update(struct rq *rq)
1307{
1308}
6d6bc0ad 1309#endif /* CONFIG_SMP */
c24d20db 1310
45bf76df
IM
1311#if BITS_PER_LONG == 32
1312# define WMULT_CONST (~0UL)
1313#else
1314# define WMULT_CONST (1UL << 32)
1315#endif
1316
1317#define WMULT_SHIFT 32
1318
194081eb
IM
1319/*
1320 * Shift right and round:
1321 */
cf2ab469 1322#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1323
a7be37ac
PZ
1324/*
1325 * delta *= weight / lw
1326 */
cb1c4fc9 1327static unsigned long
45bf76df
IM
1328calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1329 struct load_weight *lw)
1330{
1331 u64 tmp;
1332
c8b28116
NR
1333 /*
1334 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1335 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1336 * 2^SCHED_LOAD_RESOLUTION.
1337 */
1338 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1339 tmp = (u64)delta_exec * scale_load_down(weight);
1340 else
1341 tmp = (u64)delta_exec;
db670dac 1342
7a232e03 1343 if (!lw->inv_weight) {
c8b28116
NR
1344 unsigned long w = scale_load_down(lw->weight);
1345
1346 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1347 lw->inv_weight = 1;
c8b28116
NR
1348 else if (unlikely(!w))
1349 lw->inv_weight = WMULT_CONST;
7a232e03 1350 else
c8b28116 1351 lw->inv_weight = WMULT_CONST / w;
7a232e03 1352 }
45bf76df 1353
45bf76df
IM
1354 /*
1355 * Check whether we'd overflow the 64-bit multiplication:
1356 */
194081eb 1357 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1358 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1359 WMULT_SHIFT/2);
1360 else
cf2ab469 1361 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1362
ecf691da 1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1364}
1365
1091985b 1366static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1367{
1368 lw->weight += inc;
e89996ae 1369 lw->inv_weight = 0;
45bf76df
IM
1370}
1371
1091985b 1372static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1373{
1374 lw->weight -= dec;
e89996ae 1375 lw->inv_weight = 0;
45bf76df
IM
1376}
1377
2069dd75
PZ
1378static inline void update_load_set(struct load_weight *lw, unsigned long w)
1379{
1380 lw->weight = w;
1381 lw->inv_weight = 0;
1382}
1383
2dd73a4f
PW
1384/*
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1389 * scaled version of the new time slice allocation that they receive on time
1390 * slice expiry etc.
1391 */
1392
cce7ade8
PZ
1393#define WEIGHT_IDLEPRIO 3
1394#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1395
1396/*
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1401 *
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
dd41f596
IM
1407 */
1408static const int prio_to_weight[40] = {
254753dc
IM
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1417};
1418
5714d2de
IM
1419/*
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1421 *
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1425 */
dd41f596 1426static const u32 prio_to_wmult[40] = {
254753dc
IM
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1435};
2dd73a4f 1436
ef12fefa
BR
1437/* Time spent by the tasks of the cpu accounting group executing in ... */
1438enum cpuacct_stat_index {
1439 CPUACCT_STAT_USER, /* ... user mode */
1440 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1441
1442 CPUACCT_STAT_NSTATS,
1443};
1444
d842de87
SV
1445#ifdef CONFIG_CGROUP_CPUACCT
1446static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1447static void cpuacct_update_stats(struct task_struct *tsk,
1448 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1449#else
1450static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1451static inline void cpuacct_update_stats(struct task_struct *tsk,
1452 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1453#endif
1454
18d95a28
PZ
1455static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1456{
1457 update_load_add(&rq->load, load);
1458}
1459
1460static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1461{
1462 update_load_sub(&rq->load, load);
1463}
1464
7940ca36 1465#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1466typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1467
1468/*
1469 * Iterate the full tree, calling @down when first entering a node and @up when
1470 * leaving it for the final time.
1471 */
eb755805 1472static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1473{
1474 struct task_group *parent, *child;
eb755805 1475 int ret;
c09595f6
PZ
1476
1477 rcu_read_lock();
1478 parent = &root_task_group;
1479down:
eb755805
PZ
1480 ret = (*down)(parent, data);
1481 if (ret)
1482 goto out_unlock;
c09595f6
PZ
1483 list_for_each_entry_rcu(child, &parent->children, siblings) {
1484 parent = child;
1485 goto down;
1486
1487up:
1488 continue;
1489 }
eb755805
PZ
1490 ret = (*up)(parent, data);
1491 if (ret)
1492 goto out_unlock;
c09595f6
PZ
1493
1494 child = parent;
1495 parent = parent->parent;
1496 if (parent)
1497 goto up;
eb755805 1498out_unlock:
c09595f6 1499 rcu_read_unlock();
eb755805
PZ
1500
1501 return ret;
c09595f6
PZ
1502}
1503
eb755805
PZ
1504static int tg_nop(struct task_group *tg, void *data)
1505{
1506 return 0;
c09595f6 1507}
eb755805
PZ
1508#endif
1509
1510#ifdef CONFIG_SMP
f5f08f39
PZ
1511/* Used instead of source_load when we know the type == 0 */
1512static unsigned long weighted_cpuload(const int cpu)
1513{
1514 return cpu_rq(cpu)->load.weight;
1515}
1516
1517/*
1518 * Return a low guess at the load of a migration-source cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 *
1521 * We want to under-estimate the load of migration sources, to
1522 * balance conservatively.
1523 */
1524static unsigned long source_load(int cpu, int type)
1525{
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long total = weighted_cpuload(cpu);
1528
1529 if (type == 0 || !sched_feat(LB_BIAS))
1530 return total;
1531
1532 return min(rq->cpu_load[type-1], total);
1533}
1534
1535/*
1536 * Return a high guess at the load of a migration-target cpu weighted
1537 * according to the scheduling class and "nice" value.
1538 */
1539static unsigned long target_load(int cpu, int type)
1540{
1541 struct rq *rq = cpu_rq(cpu);
1542 unsigned long total = weighted_cpuload(cpu);
1543
1544 if (type == 0 || !sched_feat(LB_BIAS))
1545 return total;
1546
1547 return max(rq->cpu_load[type-1], total);
1548}
1549
ae154be1
PZ
1550static unsigned long power_of(int cpu)
1551{
e51fd5e2 1552 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1553}
1554
eb755805
PZ
1555static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556
1557static unsigned long cpu_avg_load_per_task(int cpu)
1558{
1559 struct rq *rq = cpu_rq(cpu);
af6d596f 1560 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1561
4cd42620
SR
1562 if (nr_running)
1563 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1564 else
1565 rq->avg_load_per_task = 0;
eb755805
PZ
1566
1567 return rq->avg_load_per_task;
1568}
1569
1570#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1571
c09595f6 1572/*
c8cba857
PZ
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
c09595f6 1576 */
eb755805 1577static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1578{
c8cba857 1579 unsigned long load;
eb755805 1580 long cpu = (long)data;
c09595f6 1581
c8cba857
PZ
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1586 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1588 }
c09595f6 1589
c8cba857 1590 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1591
eb755805 1592 return 0;
c09595f6
PZ
1593}
1594
eb755805 1595static void update_h_load(long cpu)
c09595f6 1596{
eb755805 1597 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1598}
1599
18d95a28
PZ
1600#endif
1601
8f45e2b5
GH
1602#ifdef CONFIG_PREEMPT
1603
b78bb868
PZ
1604static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1605
70574a99 1606/*
8f45e2b5
GH
1607 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1608 * way at the expense of forcing extra atomic operations in all
1609 * invocations. This assures that the double_lock is acquired using the
1610 * same underlying policy as the spinlock_t on this architecture, which
1611 * reduces latency compared to the unfair variant below. However, it
1612 * also adds more overhead and therefore may reduce throughput.
70574a99 1613 */
8f45e2b5
GH
1614static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1615 __releases(this_rq->lock)
1616 __acquires(busiest->lock)
1617 __acquires(this_rq->lock)
1618{
05fa785c 1619 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1620 double_rq_lock(this_rq, busiest);
1621
1622 return 1;
1623}
1624
1625#else
1626/*
1627 * Unfair double_lock_balance: Optimizes throughput at the expense of
1628 * latency by eliminating extra atomic operations when the locks are
1629 * already in proper order on entry. This favors lower cpu-ids and will
1630 * grant the double lock to lower cpus over higher ids under contention,
1631 * regardless of entry order into the function.
1632 */
1633static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1634 __releases(this_rq->lock)
1635 __acquires(busiest->lock)
1636 __acquires(this_rq->lock)
1637{
1638 int ret = 0;
1639
05fa785c 1640 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1641 if (busiest < this_rq) {
05fa785c
TG
1642 raw_spin_unlock(&this_rq->lock);
1643 raw_spin_lock(&busiest->lock);
1644 raw_spin_lock_nested(&this_rq->lock,
1645 SINGLE_DEPTH_NESTING);
70574a99
AD
1646 ret = 1;
1647 } else
05fa785c
TG
1648 raw_spin_lock_nested(&busiest->lock,
1649 SINGLE_DEPTH_NESTING);
70574a99
AD
1650 }
1651 return ret;
1652}
1653
8f45e2b5
GH
1654#endif /* CONFIG_PREEMPT */
1655
1656/*
1657 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1658 */
1659static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660{
1661 if (unlikely(!irqs_disabled())) {
1662 /* printk() doesn't work good under rq->lock */
05fa785c 1663 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1664 BUG_ON(1);
1665 }
1666
1667 return _double_lock_balance(this_rq, busiest);
1668}
1669
70574a99
AD
1670static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1671 __releases(busiest->lock)
1672{
05fa785c 1673 raw_spin_unlock(&busiest->lock);
70574a99
AD
1674 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1675}
1e3c88bd
PZ
1676
1677/*
1678 * double_rq_lock - safely lock two runqueues
1679 *
1680 * Note this does not disable interrupts like task_rq_lock,
1681 * you need to do so manually before calling.
1682 */
1683static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1684 __acquires(rq1->lock)
1685 __acquires(rq2->lock)
1686{
1687 BUG_ON(!irqs_disabled());
1688 if (rq1 == rq2) {
1689 raw_spin_lock(&rq1->lock);
1690 __acquire(rq2->lock); /* Fake it out ;) */
1691 } else {
1692 if (rq1 < rq2) {
1693 raw_spin_lock(&rq1->lock);
1694 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1695 } else {
1696 raw_spin_lock(&rq2->lock);
1697 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1698 }
1699 }
1e3c88bd
PZ
1700}
1701
1702/*
1703 * double_rq_unlock - safely unlock two runqueues
1704 *
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1707 */
1708static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 __releases(rq1->lock)
1710 __releases(rq2->lock)
1711{
1712 raw_spin_unlock(&rq1->lock);
1713 if (rq1 != rq2)
1714 raw_spin_unlock(&rq2->lock);
1715 else
1716 __release(rq2->lock);
1717}
1718
d95f4122
MG
1719#else /* CONFIG_SMP */
1720
1721/*
1722 * double_rq_lock - safely lock two runqueues
1723 *
1724 * Note this does not disable interrupts like task_rq_lock,
1725 * you need to do so manually before calling.
1726 */
1727static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1728 __acquires(rq1->lock)
1729 __acquires(rq2->lock)
1730{
1731 BUG_ON(!irqs_disabled());
1732 BUG_ON(rq1 != rq2);
1733 raw_spin_lock(&rq1->lock);
1734 __acquire(rq2->lock); /* Fake it out ;) */
1735}
1736
1737/*
1738 * double_rq_unlock - safely unlock two runqueues
1739 *
1740 * Note this does not restore interrupts like task_rq_unlock,
1741 * you need to do so manually after calling.
1742 */
1743static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1744 __releases(rq1->lock)
1745 __releases(rq2->lock)
1746{
1747 BUG_ON(rq1 != rq2);
1748 raw_spin_unlock(&rq1->lock);
1749 __release(rq2->lock);
1750}
1751
18d95a28
PZ
1752#endif
1753
74f5187a 1754static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1755static void update_sysctl(void);
acb4a848 1756static int get_update_sysctl_factor(void);
fdf3e95d 1757static void update_cpu_load(struct rq *this_rq);
dce48a84 1758
cd29fe6f
PZ
1759static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1760{
1761 set_task_rq(p, cpu);
1762#ifdef CONFIG_SMP
1763 /*
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1767 */
1768 smp_wmb();
1769 task_thread_info(p)->cpu = cpu;
1770#endif
1771}
dce48a84 1772
1e3c88bd 1773static const struct sched_class rt_sched_class;
dd41f596 1774
34f971f6 1775#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1776#define for_each_class(class) \
1777 for (class = sched_class_highest; class; class = class->next)
dd41f596 1778
1e3c88bd
PZ
1779#include "sched_stats.h"
1780
c09595f6 1781static void inc_nr_running(struct rq *rq)
9c217245
IM
1782{
1783 rq->nr_running++;
9c217245
IM
1784}
1785
c09595f6 1786static void dec_nr_running(struct rq *rq)
9c217245
IM
1787{
1788 rq->nr_running--;
9c217245
IM
1789}
1790
45bf76df
IM
1791static void set_load_weight(struct task_struct *p)
1792{
f05998d4
NR
1793 int prio = p->static_prio - MAX_RT_PRIO;
1794 struct load_weight *load = &p->se.load;
1795
dd41f596
IM
1796 /*
1797 * SCHED_IDLE tasks get minimal weight:
1798 */
1799 if (p->policy == SCHED_IDLE) {
c8b28116 1800 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1801 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1802 return;
1803 }
71f8bd46 1804
c8b28116 1805 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1806 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1807}
1808
371fd7e7 1809static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1810{
a64692a3 1811 update_rq_clock(rq);
dd41f596 1812 sched_info_queued(p);
371fd7e7 1813 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1814}
1815
371fd7e7 1816static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1817{
a64692a3 1818 update_rq_clock(rq);
46ac22ba 1819 sched_info_dequeued(p);
371fd7e7 1820 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1821}
1822
1e3c88bd
PZ
1823/*
1824 * activate_task - move a task to the runqueue.
1825 */
371fd7e7 1826static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1827{
1828 if (task_contributes_to_load(p))
1829 rq->nr_uninterruptible--;
1830
371fd7e7 1831 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1832 inc_nr_running(rq);
1833}
1834
1835/*
1836 * deactivate_task - remove a task from the runqueue.
1837 */
371fd7e7 1838static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1839{
1840 if (task_contributes_to_load(p))
1841 rq->nr_uninterruptible++;
1842
371fd7e7 1843 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1844 dec_nr_running(rq);
1845}
1846
b52bfee4
VP
1847#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1848
305e6835
VP
1849/*
1850 * There are no locks covering percpu hardirq/softirq time.
1851 * They are only modified in account_system_vtime, on corresponding CPU
1852 * with interrupts disabled. So, writes are safe.
1853 * They are read and saved off onto struct rq in update_rq_clock().
1854 * This may result in other CPU reading this CPU's irq time and can
1855 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1856 * or new value with a side effect of accounting a slice of irq time to wrong
1857 * task when irq is in progress while we read rq->clock. That is a worthy
1858 * compromise in place of having locks on each irq in account_system_time.
305e6835 1859 */
b52bfee4
VP
1860static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1861static DEFINE_PER_CPU(u64, cpu_softirq_time);
1862
1863static DEFINE_PER_CPU(u64, irq_start_time);
1864static int sched_clock_irqtime;
1865
1866void enable_sched_clock_irqtime(void)
1867{
1868 sched_clock_irqtime = 1;
1869}
1870
1871void disable_sched_clock_irqtime(void)
1872{
1873 sched_clock_irqtime = 0;
1874}
1875
8e92c201
PZ
1876#ifndef CONFIG_64BIT
1877static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1878
1879static inline void irq_time_write_begin(void)
1880{
1881 __this_cpu_inc(irq_time_seq.sequence);
1882 smp_wmb();
1883}
1884
1885static inline void irq_time_write_end(void)
1886{
1887 smp_wmb();
1888 __this_cpu_inc(irq_time_seq.sequence);
1889}
1890
1891static inline u64 irq_time_read(int cpu)
1892{
1893 u64 irq_time;
1894 unsigned seq;
1895
1896 do {
1897 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1898 irq_time = per_cpu(cpu_softirq_time, cpu) +
1899 per_cpu(cpu_hardirq_time, cpu);
1900 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1901
1902 return irq_time;
1903}
1904#else /* CONFIG_64BIT */
1905static inline void irq_time_write_begin(void)
1906{
1907}
1908
1909static inline void irq_time_write_end(void)
1910{
1911}
1912
1913static inline u64 irq_time_read(int cpu)
305e6835 1914{
305e6835
VP
1915 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1916}
8e92c201 1917#endif /* CONFIG_64BIT */
305e6835 1918
fe44d621
PZ
1919/*
1920 * Called before incrementing preempt_count on {soft,}irq_enter
1921 * and before decrementing preempt_count on {soft,}irq_exit.
1922 */
b52bfee4
VP
1923void account_system_vtime(struct task_struct *curr)
1924{
1925 unsigned long flags;
fe44d621 1926 s64 delta;
b52bfee4 1927 int cpu;
b52bfee4
VP
1928
1929 if (!sched_clock_irqtime)
1930 return;
1931
1932 local_irq_save(flags);
1933
b52bfee4 1934 cpu = smp_processor_id();
fe44d621
PZ
1935 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1936 __this_cpu_add(irq_start_time, delta);
1937
8e92c201 1938 irq_time_write_begin();
b52bfee4
VP
1939 /*
1940 * We do not account for softirq time from ksoftirqd here.
1941 * We want to continue accounting softirq time to ksoftirqd thread
1942 * in that case, so as not to confuse scheduler with a special task
1943 * that do not consume any time, but still wants to run.
1944 */
1945 if (hardirq_count())
fe44d621 1946 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1947 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1948 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1949
8e92c201 1950 irq_time_write_end();
b52bfee4
VP
1951 local_irq_restore(flags);
1952}
b7dadc38 1953EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1954
fe44d621 1955static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1956{
fe44d621
PZ
1957 s64 irq_delta;
1958
8e92c201 1959 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1960
1961 /*
1962 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1963 * this case when a previous update_rq_clock() happened inside a
1964 * {soft,}irq region.
1965 *
1966 * When this happens, we stop ->clock_task and only update the
1967 * prev_irq_time stamp to account for the part that fit, so that a next
1968 * update will consume the rest. This ensures ->clock_task is
1969 * monotonic.
1970 *
1971 * It does however cause some slight miss-attribution of {soft,}irq
1972 * time, a more accurate solution would be to update the irq_time using
1973 * the current rq->clock timestamp, except that would require using
1974 * atomic ops.
1975 */
1976 if (irq_delta > delta)
1977 irq_delta = delta;
1978
1979 rq->prev_irq_time += irq_delta;
1980 delta -= irq_delta;
1981 rq->clock_task += delta;
1982
1983 if (irq_delta && sched_feat(NONIRQ_POWER))
1984 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1985}
1986
abb74cef
VP
1987static int irqtime_account_hi_update(void)
1988{
1989 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1990 unsigned long flags;
1991 u64 latest_ns;
1992 int ret = 0;
1993
1994 local_irq_save(flags);
1995 latest_ns = this_cpu_read(cpu_hardirq_time);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1997 ret = 1;
1998 local_irq_restore(flags);
1999 return ret;
2000}
2001
2002static int irqtime_account_si_update(void)
2003{
2004 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2005 unsigned long flags;
2006 u64 latest_ns;
2007 int ret = 0;
2008
2009 local_irq_save(flags);
2010 latest_ns = this_cpu_read(cpu_softirq_time);
2011 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2012 ret = 1;
2013 local_irq_restore(flags);
2014 return ret;
2015}
2016
fe44d621 2017#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2018
abb74cef
VP
2019#define sched_clock_irqtime (0)
2020
fe44d621 2021static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 2022{
fe44d621 2023 rq->clock_task += delta;
305e6835
VP
2024}
2025
fe44d621 2026#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2027
1e3c88bd
PZ
2028#include "sched_idletask.c"
2029#include "sched_fair.c"
2030#include "sched_rt.c"
5091faa4 2031#include "sched_autogroup.c"
34f971f6 2032#include "sched_stoptask.c"
1e3c88bd
PZ
2033#ifdef CONFIG_SCHED_DEBUG
2034# include "sched_debug.c"
2035#endif
2036
34f971f6
PZ
2037void sched_set_stop_task(int cpu, struct task_struct *stop)
2038{
2039 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2040 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2041
2042 if (stop) {
2043 /*
2044 * Make it appear like a SCHED_FIFO task, its something
2045 * userspace knows about and won't get confused about.
2046 *
2047 * Also, it will make PI more or less work without too
2048 * much confusion -- but then, stop work should not
2049 * rely on PI working anyway.
2050 */
2051 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2052
2053 stop->sched_class = &stop_sched_class;
2054 }
2055
2056 cpu_rq(cpu)->stop = stop;
2057
2058 if (old_stop) {
2059 /*
2060 * Reset it back to a normal scheduling class so that
2061 * it can die in pieces.
2062 */
2063 old_stop->sched_class = &rt_sched_class;
2064 }
2065}
2066
14531189 2067/*
dd41f596 2068 * __normal_prio - return the priority that is based on the static prio
14531189 2069 */
14531189
IM
2070static inline int __normal_prio(struct task_struct *p)
2071{
dd41f596 2072 return p->static_prio;
14531189
IM
2073}
2074
b29739f9
IM
2075/*
2076 * Calculate the expected normal priority: i.e. priority
2077 * without taking RT-inheritance into account. Might be
2078 * boosted by interactivity modifiers. Changes upon fork,
2079 * setprio syscalls, and whenever the interactivity
2080 * estimator recalculates.
2081 */
36c8b586 2082static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2083{
2084 int prio;
2085
e05606d3 2086 if (task_has_rt_policy(p))
b29739f9
IM
2087 prio = MAX_RT_PRIO-1 - p->rt_priority;
2088 else
2089 prio = __normal_prio(p);
2090 return prio;
2091}
2092
2093/*
2094 * Calculate the current priority, i.e. the priority
2095 * taken into account by the scheduler. This value might
2096 * be boosted by RT tasks, or might be boosted by
2097 * interactivity modifiers. Will be RT if the task got
2098 * RT-boosted. If not then it returns p->normal_prio.
2099 */
36c8b586 2100static int effective_prio(struct task_struct *p)
b29739f9
IM
2101{
2102 p->normal_prio = normal_prio(p);
2103 /*
2104 * If we are RT tasks or we were boosted to RT priority,
2105 * keep the priority unchanged. Otherwise, update priority
2106 * to the normal priority:
2107 */
2108 if (!rt_prio(p->prio))
2109 return p->normal_prio;
2110 return p->prio;
2111}
2112
1da177e4
LT
2113/**
2114 * task_curr - is this task currently executing on a CPU?
2115 * @p: the task in question.
2116 */
36c8b586 2117inline int task_curr(const struct task_struct *p)
1da177e4
LT
2118{
2119 return cpu_curr(task_cpu(p)) == p;
2120}
2121
cb469845
SR
2122static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2123 const struct sched_class *prev_class,
da7a735e 2124 int oldprio)
cb469845
SR
2125{
2126 if (prev_class != p->sched_class) {
2127 if (prev_class->switched_from)
da7a735e
PZ
2128 prev_class->switched_from(rq, p);
2129 p->sched_class->switched_to(rq, p);
2130 } else if (oldprio != p->prio)
2131 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2132}
2133
1e5a7405
PZ
2134static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2135{
2136 const struct sched_class *class;
2137
2138 if (p->sched_class == rq->curr->sched_class) {
2139 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2140 } else {
2141 for_each_class(class) {
2142 if (class == rq->curr->sched_class)
2143 break;
2144 if (class == p->sched_class) {
2145 resched_task(rq->curr);
2146 break;
2147 }
2148 }
2149 }
2150
2151 /*
2152 * A queue event has occurred, and we're going to schedule. In
2153 * this case, we can save a useless back to back clock update.
2154 */
fd2f4419 2155 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2156 rq->skip_clock_update = 1;
2157}
2158
1da177e4 2159#ifdef CONFIG_SMP
cc367732
IM
2160/*
2161 * Is this task likely cache-hot:
2162 */
e7693a36 2163static int
cc367732
IM
2164task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2165{
2166 s64 delta;
2167
e6c8fba7
PZ
2168 if (p->sched_class != &fair_sched_class)
2169 return 0;
2170
ef8002f6
NR
2171 if (unlikely(p->policy == SCHED_IDLE))
2172 return 0;
2173
f540a608
IM
2174 /*
2175 * Buddy candidates are cache hot:
2176 */
f685ceac 2177 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2178 (&p->se == cfs_rq_of(&p->se)->next ||
2179 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2180 return 1;
2181
6bc1665b
IM
2182 if (sysctl_sched_migration_cost == -1)
2183 return 1;
2184 if (sysctl_sched_migration_cost == 0)
2185 return 0;
2186
cc367732
IM
2187 delta = now - p->se.exec_start;
2188
2189 return delta < (s64)sysctl_sched_migration_cost;
2190}
2191
dd41f596 2192void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2193{
e2912009
PZ
2194#ifdef CONFIG_SCHED_DEBUG
2195 /*
2196 * We should never call set_task_cpu() on a blocked task,
2197 * ttwu() will sort out the placement.
2198 */
077614ee
PZ
2199 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2200 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2201
2202#ifdef CONFIG_LOCKDEP
2203 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2204 lockdep_is_held(&task_rq(p)->lock)));
2205#endif
e2912009
PZ
2206#endif
2207
de1d7286 2208 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2209
0c69774e
PZ
2210 if (task_cpu(p) != new_cpu) {
2211 p->se.nr_migrations++;
2212 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2213 }
dd41f596
IM
2214
2215 __set_task_cpu(p, new_cpu);
c65cc870
IM
2216}
2217
969c7921 2218struct migration_arg {
36c8b586 2219 struct task_struct *task;
1da177e4 2220 int dest_cpu;
70b97a7f 2221};
1da177e4 2222
969c7921
TH
2223static int migration_cpu_stop(void *data);
2224
1da177e4
LT
2225/*
2226 * wait_task_inactive - wait for a thread to unschedule.
2227 *
85ba2d86
RM
2228 * If @match_state is nonzero, it's the @p->state value just checked and
2229 * not expected to change. If it changes, i.e. @p might have woken up,
2230 * then return zero. When we succeed in waiting for @p to be off its CPU,
2231 * we return a positive number (its total switch count). If a second call
2232 * a short while later returns the same number, the caller can be sure that
2233 * @p has remained unscheduled the whole time.
2234 *
1da177e4
LT
2235 * The caller must ensure that the task *will* unschedule sometime soon,
2236 * else this function might spin for a *long* time. This function can't
2237 * be called with interrupts off, or it may introduce deadlock with
2238 * smp_call_function() if an IPI is sent by the same process we are
2239 * waiting to become inactive.
2240 */
85ba2d86 2241unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2242{
2243 unsigned long flags;
dd41f596 2244 int running, on_rq;
85ba2d86 2245 unsigned long ncsw;
70b97a7f 2246 struct rq *rq;
1da177e4 2247
3a5c359a
AK
2248 for (;;) {
2249 /*
2250 * We do the initial early heuristics without holding
2251 * any task-queue locks at all. We'll only try to get
2252 * the runqueue lock when things look like they will
2253 * work out!
2254 */
2255 rq = task_rq(p);
fa490cfd 2256
3a5c359a
AK
2257 /*
2258 * If the task is actively running on another CPU
2259 * still, just relax and busy-wait without holding
2260 * any locks.
2261 *
2262 * NOTE! Since we don't hold any locks, it's not
2263 * even sure that "rq" stays as the right runqueue!
2264 * But we don't care, since "task_running()" will
2265 * return false if the runqueue has changed and p
2266 * is actually now running somewhere else!
2267 */
85ba2d86
RM
2268 while (task_running(rq, p)) {
2269 if (match_state && unlikely(p->state != match_state))
2270 return 0;
3a5c359a 2271 cpu_relax();
85ba2d86 2272 }
fa490cfd 2273
3a5c359a
AK
2274 /*
2275 * Ok, time to look more closely! We need the rq
2276 * lock now, to be *sure*. If we're wrong, we'll
2277 * just go back and repeat.
2278 */
2279 rq = task_rq_lock(p, &flags);
27a9da65 2280 trace_sched_wait_task(p);
3a5c359a 2281 running = task_running(rq, p);
fd2f4419 2282 on_rq = p->on_rq;
85ba2d86 2283 ncsw = 0;
f31e11d8 2284 if (!match_state || p->state == match_state)
93dcf55f 2285 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2286 task_rq_unlock(rq, p, &flags);
fa490cfd 2287
85ba2d86
RM
2288 /*
2289 * If it changed from the expected state, bail out now.
2290 */
2291 if (unlikely(!ncsw))
2292 break;
2293
3a5c359a
AK
2294 /*
2295 * Was it really running after all now that we
2296 * checked with the proper locks actually held?
2297 *
2298 * Oops. Go back and try again..
2299 */
2300 if (unlikely(running)) {
2301 cpu_relax();
2302 continue;
2303 }
fa490cfd 2304
3a5c359a
AK
2305 /*
2306 * It's not enough that it's not actively running,
2307 * it must be off the runqueue _entirely_, and not
2308 * preempted!
2309 *
80dd99b3 2310 * So if it was still runnable (but just not actively
3a5c359a
AK
2311 * running right now), it's preempted, and we should
2312 * yield - it could be a while.
2313 */
2314 if (unlikely(on_rq)) {
8eb90c30
TG
2315 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2316
2317 set_current_state(TASK_UNINTERRUPTIBLE);
2318 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2319 continue;
2320 }
fa490cfd 2321
3a5c359a
AK
2322 /*
2323 * Ahh, all good. It wasn't running, and it wasn't
2324 * runnable, which means that it will never become
2325 * running in the future either. We're all done!
2326 */
2327 break;
2328 }
85ba2d86
RM
2329
2330 return ncsw;
1da177e4
LT
2331}
2332
2333/***
2334 * kick_process - kick a running thread to enter/exit the kernel
2335 * @p: the to-be-kicked thread
2336 *
2337 * Cause a process which is running on another CPU to enter
2338 * kernel-mode, without any delay. (to get signals handled.)
2339 *
25985edc 2340 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2341 * because all it wants to ensure is that the remote task enters
2342 * the kernel. If the IPI races and the task has been migrated
2343 * to another CPU then no harm is done and the purpose has been
2344 * achieved as well.
2345 */
36c8b586 2346void kick_process(struct task_struct *p)
1da177e4
LT
2347{
2348 int cpu;
2349
2350 preempt_disable();
2351 cpu = task_cpu(p);
2352 if ((cpu != smp_processor_id()) && task_curr(p))
2353 smp_send_reschedule(cpu);
2354 preempt_enable();
2355}
b43e3521 2356EXPORT_SYMBOL_GPL(kick_process);
476d139c 2357#endif /* CONFIG_SMP */
1da177e4 2358
970b13ba 2359#ifdef CONFIG_SMP
30da688e 2360/*
013fdb80 2361 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2362 */
5da9a0fb
PZ
2363static int select_fallback_rq(int cpu, struct task_struct *p)
2364{
2365 int dest_cpu;
2366 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2367
2368 /* Look for allowed, online CPU in same node. */
2369 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2370 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2371 return dest_cpu;
2372
2373 /* Any allowed, online CPU? */
2374 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2375 if (dest_cpu < nr_cpu_ids)
2376 return dest_cpu;
2377
2378 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2379 dest_cpu = cpuset_cpus_allowed_fallback(p);
2380 /*
2381 * Don't tell them about moving exiting tasks or
2382 * kernel threads (both mm NULL), since they never
2383 * leave kernel.
2384 */
2385 if (p->mm && printk_ratelimit()) {
2386 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2387 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2388 }
2389
2390 return dest_cpu;
2391}
2392
e2912009 2393/*
013fdb80 2394 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2395 */
970b13ba 2396static inline
7608dec2 2397int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2398{
7608dec2 2399 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2400
2401 /*
2402 * In order not to call set_task_cpu() on a blocking task we need
2403 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2404 * cpu.
2405 *
2406 * Since this is common to all placement strategies, this lives here.
2407 *
2408 * [ this allows ->select_task() to simply return task_cpu(p) and
2409 * not worry about this generic constraint ]
2410 */
2411 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2412 !cpu_online(cpu)))
5da9a0fb 2413 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2414
2415 return cpu;
970b13ba 2416}
09a40af5
MG
2417
2418static void update_avg(u64 *avg, u64 sample)
2419{
2420 s64 diff = sample - *avg;
2421 *avg += diff >> 3;
2422}
970b13ba
PZ
2423#endif
2424
d7c01d27 2425static void
b84cb5df 2426ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2427{
d7c01d27 2428#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2429 struct rq *rq = this_rq();
2430
d7c01d27
PZ
2431#ifdef CONFIG_SMP
2432 int this_cpu = smp_processor_id();
2433
2434 if (cpu == this_cpu) {
2435 schedstat_inc(rq, ttwu_local);
2436 schedstat_inc(p, se.statistics.nr_wakeups_local);
2437 } else {
2438 struct sched_domain *sd;
2439
2440 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2441 rcu_read_lock();
d7c01d27
PZ
2442 for_each_domain(this_cpu, sd) {
2443 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2444 schedstat_inc(sd, ttwu_wake_remote);
2445 break;
2446 }
2447 }
057f3fad 2448 rcu_read_unlock();
d7c01d27
PZ
2449 }
2450#endif /* CONFIG_SMP */
2451
2452 schedstat_inc(rq, ttwu_count);
9ed3811a 2453 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2454
2455 if (wake_flags & WF_SYNC)
9ed3811a 2456 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2457
2458 if (cpu != task_cpu(p))
9ed3811a 2459 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2460
d7c01d27
PZ
2461#endif /* CONFIG_SCHEDSTATS */
2462}
2463
2464static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2465{
9ed3811a 2466 activate_task(rq, p, en_flags);
fd2f4419 2467 p->on_rq = 1;
c2f7115e
PZ
2468
2469 /* if a worker is waking up, notify workqueue */
2470 if (p->flags & PF_WQ_WORKER)
2471 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2472}
2473
23f41eeb
PZ
2474/*
2475 * Mark the task runnable and perform wakeup-preemption.
2476 */
89363381 2477static void
23f41eeb 2478ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2479{
89363381 2480 trace_sched_wakeup(p, true);
9ed3811a
TH
2481 check_preempt_curr(rq, p, wake_flags);
2482
2483 p->state = TASK_RUNNING;
2484#ifdef CONFIG_SMP
2485 if (p->sched_class->task_woken)
2486 p->sched_class->task_woken(rq, p);
2487
2488 if (unlikely(rq->idle_stamp)) {
2489 u64 delta = rq->clock - rq->idle_stamp;
2490 u64 max = 2*sysctl_sched_migration_cost;
2491
2492 if (delta > max)
2493 rq->avg_idle = max;
2494 else
2495 update_avg(&rq->avg_idle, delta);
2496 rq->idle_stamp = 0;
2497 }
2498#endif
2499}
2500
c05fbafb
PZ
2501static void
2502ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2503{
2504#ifdef CONFIG_SMP
2505 if (p->sched_contributes_to_load)
2506 rq->nr_uninterruptible--;
2507#endif
2508
2509 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2510 ttwu_do_wakeup(rq, p, wake_flags);
2511}
2512
2513/*
2514 * Called in case the task @p isn't fully descheduled from its runqueue,
2515 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2516 * since all we need to do is flip p->state to TASK_RUNNING, since
2517 * the task is still ->on_rq.
2518 */
2519static int ttwu_remote(struct task_struct *p, int wake_flags)
2520{
2521 struct rq *rq;
2522 int ret = 0;
2523
2524 rq = __task_rq_lock(p);
2525 if (p->on_rq) {
2526 ttwu_do_wakeup(rq, p, wake_flags);
2527 ret = 1;
2528 }
2529 __task_rq_unlock(rq);
2530
2531 return ret;
2532}
2533
317f3941
PZ
2534#ifdef CONFIG_SMP
2535static void sched_ttwu_pending(void)
2536{
2537 struct rq *rq = this_rq();
2538 struct task_struct *list = xchg(&rq->wake_list, NULL);
2539
2540 if (!list)
2541 return;
2542
2543 raw_spin_lock(&rq->lock);
2544
2545 while (list) {
2546 struct task_struct *p = list;
2547 list = list->wake_entry;
2548 ttwu_do_activate(rq, p, 0);
2549 }
2550
2551 raw_spin_unlock(&rq->lock);
2552}
2553
2554void scheduler_ipi(void)
2555{
2556 sched_ttwu_pending();
2557}
2558
2559static void ttwu_queue_remote(struct task_struct *p, int cpu)
2560{
2561 struct rq *rq = cpu_rq(cpu);
2562 struct task_struct *next = rq->wake_list;
2563
2564 for (;;) {
2565 struct task_struct *old = next;
2566
2567 p->wake_entry = next;
2568 next = cmpxchg(&rq->wake_list, old, p);
2569 if (next == old)
2570 break;
2571 }
2572
2573 if (!next)
2574 smp_send_reschedule(cpu);
2575}
d6aa8f85
PZ
2576
2577#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2578static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2579{
2580 struct rq *rq;
2581 int ret = 0;
2582
2583 rq = __task_rq_lock(p);
2584 if (p->on_cpu) {
2585 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2586 ttwu_do_wakeup(rq, p, wake_flags);
2587 ret = 1;
2588 }
2589 __task_rq_unlock(rq);
2590
2591 return ret;
2592
2593}
2594#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2595#endif /* CONFIG_SMP */
317f3941 2596
c05fbafb
PZ
2597static void ttwu_queue(struct task_struct *p, int cpu)
2598{
2599 struct rq *rq = cpu_rq(cpu);
2600
17d9f311 2601#if defined(CONFIG_SMP)
317f3941
PZ
2602 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2603 ttwu_queue_remote(p, cpu);
2604 return;
2605 }
2606#endif
2607
c05fbafb
PZ
2608 raw_spin_lock(&rq->lock);
2609 ttwu_do_activate(rq, p, 0);
2610 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2611}
2612
2613/**
1da177e4 2614 * try_to_wake_up - wake up a thread
9ed3811a 2615 * @p: the thread to be awakened
1da177e4 2616 * @state: the mask of task states that can be woken
9ed3811a 2617 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2618 *
2619 * Put it on the run-queue if it's not already there. The "current"
2620 * thread is always on the run-queue (except when the actual
2621 * re-schedule is in progress), and as such you're allowed to do
2622 * the simpler "current->state = TASK_RUNNING" to mark yourself
2623 * runnable without the overhead of this.
2624 *
9ed3811a
TH
2625 * Returns %true if @p was woken up, %false if it was already running
2626 * or @state didn't match @p's state.
1da177e4 2627 */
e4a52bcb
PZ
2628static int
2629try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2630{
1da177e4 2631 unsigned long flags;
c05fbafb 2632 int cpu, success = 0;
2398f2c6 2633
04e2f174 2634 smp_wmb();
013fdb80 2635 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2636 if (!(p->state & state))
1da177e4
LT
2637 goto out;
2638
c05fbafb 2639 success = 1; /* we're going to change ->state */
1da177e4 2640 cpu = task_cpu(p);
1da177e4 2641
c05fbafb
PZ
2642 if (p->on_rq && ttwu_remote(p, wake_flags))
2643 goto stat;
1da177e4 2644
1da177e4 2645#ifdef CONFIG_SMP
e9c84311 2646 /*
c05fbafb
PZ
2647 * If the owning (remote) cpu is still in the middle of schedule() with
2648 * this task as prev, wait until its done referencing the task.
e9c84311 2649 */
e4a52bcb
PZ
2650 while (p->on_cpu) {
2651#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2652 /*
d6aa8f85
PZ
2653 * In case the architecture enables interrupts in
2654 * context_switch(), we cannot busy wait, since that
2655 * would lead to deadlocks when an interrupt hits and
2656 * tries to wake up @prev. So bail and do a complete
2657 * remote wakeup.
e4a52bcb 2658 */
d6aa8f85 2659 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2660 goto stat;
d6aa8f85 2661#else
e4a52bcb 2662 cpu_relax();
d6aa8f85 2663#endif
371fd7e7 2664 }
0970d299 2665 /*
e4a52bcb 2666 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2667 */
e4a52bcb 2668 smp_rmb();
1da177e4 2669
a8e4f2ea 2670 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2671 p->state = TASK_WAKING;
e7693a36 2672
e4a52bcb 2673 if (p->sched_class->task_waking)
74f8e4b2 2674 p->sched_class->task_waking(p);
efbbd05a 2675
7608dec2 2676 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
c05fbafb 2677 if (task_cpu(p) != cpu)
e4a52bcb 2678 set_task_cpu(p, cpu);
1da177e4 2679#endif /* CONFIG_SMP */
1da177e4 2680
c05fbafb
PZ
2681 ttwu_queue(p, cpu);
2682stat:
b84cb5df 2683 ttwu_stat(p, cpu, wake_flags);
1da177e4 2684out:
013fdb80 2685 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2686
2687 return success;
2688}
2689
21aa9af0
TH
2690/**
2691 * try_to_wake_up_local - try to wake up a local task with rq lock held
2692 * @p: the thread to be awakened
2693 *
2acca55e 2694 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2695 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2696 * the current task.
21aa9af0
TH
2697 */
2698static void try_to_wake_up_local(struct task_struct *p)
2699{
2700 struct rq *rq = task_rq(p);
21aa9af0
TH
2701
2702 BUG_ON(rq != this_rq());
2703 BUG_ON(p == current);
2704 lockdep_assert_held(&rq->lock);
2705
2acca55e
PZ
2706 if (!raw_spin_trylock(&p->pi_lock)) {
2707 raw_spin_unlock(&rq->lock);
2708 raw_spin_lock(&p->pi_lock);
2709 raw_spin_lock(&rq->lock);
2710 }
2711
21aa9af0 2712 if (!(p->state & TASK_NORMAL))
2acca55e 2713 goto out;
21aa9af0 2714
fd2f4419 2715 if (!p->on_rq)
d7c01d27
PZ
2716 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2717
23f41eeb 2718 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2719 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2720out:
2721 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2722}
2723
50fa610a
DH
2724/**
2725 * wake_up_process - Wake up a specific process
2726 * @p: The process to be woken up.
2727 *
2728 * Attempt to wake up the nominated process and move it to the set of runnable
2729 * processes. Returns 1 if the process was woken up, 0 if it was already
2730 * running.
2731 *
2732 * It may be assumed that this function implies a write memory barrier before
2733 * changing the task state if and only if any tasks are woken up.
2734 */
7ad5b3a5 2735int wake_up_process(struct task_struct *p)
1da177e4 2736{
d9514f6c 2737 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2738}
1da177e4
LT
2739EXPORT_SYMBOL(wake_up_process);
2740
7ad5b3a5 2741int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2742{
2743 return try_to_wake_up(p, state, 0);
2744}
2745
1da177e4
LT
2746/*
2747 * Perform scheduler related setup for a newly forked process p.
2748 * p is forked by current.
dd41f596
IM
2749 *
2750 * __sched_fork() is basic setup used by init_idle() too:
2751 */
2752static void __sched_fork(struct task_struct *p)
2753{
fd2f4419
PZ
2754 p->on_rq = 0;
2755
2756 p->se.on_rq = 0;
dd41f596
IM
2757 p->se.exec_start = 0;
2758 p->se.sum_exec_runtime = 0;
f6cf891c 2759 p->se.prev_sum_exec_runtime = 0;
6c594c21 2760 p->se.nr_migrations = 0;
da7a735e 2761 p->se.vruntime = 0;
fd2f4419 2762 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2763
2764#ifdef CONFIG_SCHEDSTATS
41acab88 2765 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2766#endif
476d139c 2767
fa717060 2768 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2769
e107be36
AK
2770#ifdef CONFIG_PREEMPT_NOTIFIERS
2771 INIT_HLIST_HEAD(&p->preempt_notifiers);
2772#endif
dd41f596
IM
2773}
2774
2775/*
2776 * fork()/clone()-time setup:
2777 */
3e51e3ed 2778void sched_fork(struct task_struct *p)
dd41f596 2779{
0122ec5b 2780 unsigned long flags;
dd41f596
IM
2781 int cpu = get_cpu();
2782
2783 __sched_fork(p);
06b83b5f 2784 /*
0017d735 2785 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2786 * nobody will actually run it, and a signal or other external
2787 * event cannot wake it up and insert it on the runqueue either.
2788 */
0017d735 2789 p->state = TASK_RUNNING;
dd41f596 2790
b9dc29e7
MG
2791 /*
2792 * Revert to default priority/policy on fork if requested.
2793 */
2794 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2795 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2796 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2797 p->normal_prio = p->static_prio;
2798 }
b9dc29e7 2799
6c697bdf
MG
2800 if (PRIO_TO_NICE(p->static_prio) < 0) {
2801 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2802 p->normal_prio = p->static_prio;
6c697bdf
MG
2803 set_load_weight(p);
2804 }
2805
b9dc29e7
MG
2806 /*
2807 * We don't need the reset flag anymore after the fork. It has
2808 * fulfilled its duty:
2809 */
2810 p->sched_reset_on_fork = 0;
2811 }
ca94c442 2812
f83f9ac2
PW
2813 /*
2814 * Make sure we do not leak PI boosting priority to the child.
2815 */
2816 p->prio = current->normal_prio;
2817
2ddbf952
HS
2818 if (!rt_prio(p->prio))
2819 p->sched_class = &fair_sched_class;
b29739f9 2820
cd29fe6f
PZ
2821 if (p->sched_class->task_fork)
2822 p->sched_class->task_fork(p);
2823
86951599
PZ
2824 /*
2825 * The child is not yet in the pid-hash so no cgroup attach races,
2826 * and the cgroup is pinned to this child due to cgroup_fork()
2827 * is ran before sched_fork().
2828 *
2829 * Silence PROVE_RCU.
2830 */
0122ec5b 2831 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2832 set_task_cpu(p, cpu);
0122ec5b 2833 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2834
52f17b6c 2835#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2836 if (likely(sched_info_on()))
52f17b6c 2837 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2838#endif
3ca7a440
PZ
2839#if defined(CONFIG_SMP)
2840 p->on_cpu = 0;
4866cde0 2841#endif
1da177e4 2842#ifdef CONFIG_PREEMPT
4866cde0 2843 /* Want to start with kernel preemption disabled. */
a1261f54 2844 task_thread_info(p)->preempt_count = 1;
1da177e4 2845#endif
806c09a7 2846#ifdef CONFIG_SMP
917b627d 2847 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2848#endif
917b627d 2849
476d139c 2850 put_cpu();
1da177e4
LT
2851}
2852
2853/*
2854 * wake_up_new_task - wake up a newly created task for the first time.
2855 *
2856 * This function will do some initial scheduler statistics housekeeping
2857 * that must be done for every newly created context, then puts the task
2858 * on the runqueue and wakes it.
2859 */
3e51e3ed 2860void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2861{
2862 unsigned long flags;
dd41f596 2863 struct rq *rq;
fabf318e 2864
ab2515c4 2865 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2866#ifdef CONFIG_SMP
2867 /*
2868 * Fork balancing, do it here and not earlier because:
2869 * - cpus_allowed can change in the fork path
2870 * - any previously selected cpu might disappear through hotplug
fabf318e 2871 */
ab2515c4 2872 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2873#endif
2874
ab2515c4 2875 rq = __task_rq_lock(p);
cd29fe6f 2876 activate_task(rq, p, 0);
fd2f4419 2877 p->on_rq = 1;
89363381 2878 trace_sched_wakeup_new(p, true);
a7558e01 2879 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2880#ifdef CONFIG_SMP
efbbd05a
PZ
2881 if (p->sched_class->task_woken)
2882 p->sched_class->task_woken(rq, p);
9a897c5a 2883#endif
0122ec5b 2884 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2885}
2886
e107be36
AK
2887#ifdef CONFIG_PREEMPT_NOTIFIERS
2888
2889/**
80dd99b3 2890 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2891 * @notifier: notifier struct to register
e107be36
AK
2892 */
2893void preempt_notifier_register(struct preempt_notifier *notifier)
2894{
2895 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2896}
2897EXPORT_SYMBOL_GPL(preempt_notifier_register);
2898
2899/**
2900 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2901 * @notifier: notifier struct to unregister
e107be36
AK
2902 *
2903 * This is safe to call from within a preemption notifier.
2904 */
2905void preempt_notifier_unregister(struct preempt_notifier *notifier)
2906{
2907 hlist_del(&notifier->link);
2908}
2909EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2910
2911static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2912{
2913 struct preempt_notifier *notifier;
2914 struct hlist_node *node;
2915
2916 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2917 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2918}
2919
2920static void
2921fire_sched_out_preempt_notifiers(struct task_struct *curr,
2922 struct task_struct *next)
2923{
2924 struct preempt_notifier *notifier;
2925 struct hlist_node *node;
2926
2927 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2928 notifier->ops->sched_out(notifier, next);
2929}
2930
6d6bc0ad 2931#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2932
2933static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2934{
2935}
2936
2937static void
2938fire_sched_out_preempt_notifiers(struct task_struct *curr,
2939 struct task_struct *next)
2940{
2941}
2942
6d6bc0ad 2943#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2944
4866cde0
NP
2945/**
2946 * prepare_task_switch - prepare to switch tasks
2947 * @rq: the runqueue preparing to switch
421cee29 2948 * @prev: the current task that is being switched out
4866cde0
NP
2949 * @next: the task we are going to switch to.
2950 *
2951 * This is called with the rq lock held and interrupts off. It must
2952 * be paired with a subsequent finish_task_switch after the context
2953 * switch.
2954 *
2955 * prepare_task_switch sets up locking and calls architecture specific
2956 * hooks.
2957 */
e107be36
AK
2958static inline void
2959prepare_task_switch(struct rq *rq, struct task_struct *prev,
2960 struct task_struct *next)
4866cde0 2961{
fe4b04fa
PZ
2962 sched_info_switch(prev, next);
2963 perf_event_task_sched_out(prev, next);
e107be36 2964 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2965 prepare_lock_switch(rq, next);
2966 prepare_arch_switch(next);
fe4b04fa 2967 trace_sched_switch(prev, next);
4866cde0
NP
2968}
2969
1da177e4
LT
2970/**
2971 * finish_task_switch - clean up after a task-switch
344babaa 2972 * @rq: runqueue associated with task-switch
1da177e4
LT
2973 * @prev: the thread we just switched away from.
2974 *
4866cde0
NP
2975 * finish_task_switch must be called after the context switch, paired
2976 * with a prepare_task_switch call before the context switch.
2977 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2978 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2979 *
2980 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2981 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2982 * with the lock held can cause deadlocks; see schedule() for
2983 * details.)
2984 */
a9957449 2985static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2986 __releases(rq->lock)
2987{
1da177e4 2988 struct mm_struct *mm = rq->prev_mm;
55a101f8 2989 long prev_state;
1da177e4
LT
2990
2991 rq->prev_mm = NULL;
2992
2993 /*
2994 * A task struct has one reference for the use as "current".
c394cc9f 2995 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2996 * schedule one last time. The schedule call will never return, and
2997 * the scheduled task must drop that reference.
c394cc9f 2998 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2999 * still held, otherwise prev could be scheduled on another cpu, die
3000 * there before we look at prev->state, and then the reference would
3001 * be dropped twice.
3002 * Manfred Spraul <manfred@colorfullife.com>
3003 */
55a101f8 3004 prev_state = prev->state;
4866cde0 3005 finish_arch_switch(prev);
8381f65d
JI
3006#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3007 local_irq_disable();
3008#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3009 perf_event_task_sched_in(current);
8381f65d
JI
3010#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3011 local_irq_enable();
3012#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3013 finish_lock_switch(rq, prev);
e8fa1362 3014
e107be36 3015 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3016 if (mm)
3017 mmdrop(mm);
c394cc9f 3018 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3019 /*
3020 * Remove function-return probe instances associated with this
3021 * task and put them back on the free list.
9761eea8 3022 */
c6fd91f0 3023 kprobe_flush_task(prev);
1da177e4 3024 put_task_struct(prev);
c6fd91f0 3025 }
1da177e4
LT
3026}
3027
3f029d3c
GH
3028#ifdef CONFIG_SMP
3029
3030/* assumes rq->lock is held */
3031static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3032{
3033 if (prev->sched_class->pre_schedule)
3034 prev->sched_class->pre_schedule(rq, prev);
3035}
3036
3037/* rq->lock is NOT held, but preemption is disabled */
3038static inline void post_schedule(struct rq *rq)
3039{
3040 if (rq->post_schedule) {
3041 unsigned long flags;
3042
05fa785c 3043 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3044 if (rq->curr->sched_class->post_schedule)
3045 rq->curr->sched_class->post_schedule(rq);
05fa785c 3046 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3047
3048 rq->post_schedule = 0;
3049 }
3050}
3051
3052#else
da19ab51 3053
3f029d3c
GH
3054static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3055{
3056}
3057
3058static inline void post_schedule(struct rq *rq)
3059{
1da177e4
LT
3060}
3061
3f029d3c
GH
3062#endif
3063
1da177e4
LT
3064/**
3065 * schedule_tail - first thing a freshly forked thread must call.
3066 * @prev: the thread we just switched away from.
3067 */
36c8b586 3068asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3069 __releases(rq->lock)
3070{
70b97a7f
IM
3071 struct rq *rq = this_rq();
3072
4866cde0 3073 finish_task_switch(rq, prev);
da19ab51 3074
3f029d3c
GH
3075 /*
3076 * FIXME: do we need to worry about rq being invalidated by the
3077 * task_switch?
3078 */
3079 post_schedule(rq);
70b97a7f 3080
4866cde0
NP
3081#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3082 /* In this case, finish_task_switch does not reenable preemption */
3083 preempt_enable();
3084#endif
1da177e4 3085 if (current->set_child_tid)
b488893a 3086 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3087}
3088
3089/*
3090 * context_switch - switch to the new MM and the new
3091 * thread's register state.
3092 */
dd41f596 3093static inline void
70b97a7f 3094context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3095 struct task_struct *next)
1da177e4 3096{
dd41f596 3097 struct mm_struct *mm, *oldmm;
1da177e4 3098
e107be36 3099 prepare_task_switch(rq, prev, next);
fe4b04fa 3100
dd41f596
IM
3101 mm = next->mm;
3102 oldmm = prev->active_mm;
9226d125
ZA
3103 /*
3104 * For paravirt, this is coupled with an exit in switch_to to
3105 * combine the page table reload and the switch backend into
3106 * one hypercall.
3107 */
224101ed 3108 arch_start_context_switch(prev);
9226d125 3109
31915ab4 3110 if (!mm) {
1da177e4
LT
3111 next->active_mm = oldmm;
3112 atomic_inc(&oldmm->mm_count);
3113 enter_lazy_tlb(oldmm, next);
3114 } else
3115 switch_mm(oldmm, mm, next);
3116
31915ab4 3117 if (!prev->mm) {
1da177e4 3118 prev->active_mm = NULL;
1da177e4
LT
3119 rq->prev_mm = oldmm;
3120 }
3a5f5e48
IM
3121 /*
3122 * Since the runqueue lock will be released by the next
3123 * task (which is an invalid locking op but in the case
3124 * of the scheduler it's an obvious special-case), so we
3125 * do an early lockdep release here:
3126 */
3127#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3128 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3129#endif
1da177e4
LT
3130
3131 /* Here we just switch the register state and the stack. */
3132 switch_to(prev, next, prev);
3133
dd41f596
IM
3134 barrier();
3135 /*
3136 * this_rq must be evaluated again because prev may have moved
3137 * CPUs since it called schedule(), thus the 'rq' on its stack
3138 * frame will be invalid.
3139 */
3140 finish_task_switch(this_rq(), prev);
1da177e4
LT
3141}
3142
3143/*
3144 * nr_running, nr_uninterruptible and nr_context_switches:
3145 *
3146 * externally visible scheduler statistics: current number of runnable
3147 * threads, current number of uninterruptible-sleeping threads, total
3148 * number of context switches performed since bootup.
3149 */
3150unsigned long nr_running(void)
3151{
3152 unsigned long i, sum = 0;
3153
3154 for_each_online_cpu(i)
3155 sum += cpu_rq(i)->nr_running;
3156
3157 return sum;
f711f609 3158}
1da177e4
LT
3159
3160unsigned long nr_uninterruptible(void)
f711f609 3161{
1da177e4 3162 unsigned long i, sum = 0;
f711f609 3163
0a945022 3164 for_each_possible_cpu(i)
1da177e4 3165 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3166
3167 /*
1da177e4
LT
3168 * Since we read the counters lockless, it might be slightly
3169 * inaccurate. Do not allow it to go below zero though:
f711f609 3170 */
1da177e4
LT
3171 if (unlikely((long)sum < 0))
3172 sum = 0;
f711f609 3173
1da177e4 3174 return sum;
f711f609 3175}
f711f609 3176
1da177e4 3177unsigned long long nr_context_switches(void)
46cb4b7c 3178{
cc94abfc
SR
3179 int i;
3180 unsigned long long sum = 0;
46cb4b7c 3181
0a945022 3182 for_each_possible_cpu(i)
1da177e4 3183 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3184
1da177e4
LT
3185 return sum;
3186}
483b4ee6 3187
1da177e4
LT
3188unsigned long nr_iowait(void)
3189{
3190 unsigned long i, sum = 0;
483b4ee6 3191
0a945022 3192 for_each_possible_cpu(i)
1da177e4 3193 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3194
1da177e4
LT
3195 return sum;
3196}
483b4ee6 3197
8c215bd3 3198unsigned long nr_iowait_cpu(int cpu)
69d25870 3199{
8c215bd3 3200 struct rq *this = cpu_rq(cpu);
69d25870
AV
3201 return atomic_read(&this->nr_iowait);
3202}
46cb4b7c 3203
69d25870
AV
3204unsigned long this_cpu_load(void)
3205{
3206 struct rq *this = this_rq();
3207 return this->cpu_load[0];
3208}
e790fb0b 3209
46cb4b7c 3210
dce48a84
TG
3211/* Variables and functions for calc_load */
3212static atomic_long_t calc_load_tasks;
3213static unsigned long calc_load_update;
3214unsigned long avenrun[3];
3215EXPORT_SYMBOL(avenrun);
46cb4b7c 3216
74f5187a
PZ
3217static long calc_load_fold_active(struct rq *this_rq)
3218{
3219 long nr_active, delta = 0;
3220
3221 nr_active = this_rq->nr_running;
3222 nr_active += (long) this_rq->nr_uninterruptible;
3223
3224 if (nr_active != this_rq->calc_load_active) {
3225 delta = nr_active - this_rq->calc_load_active;
3226 this_rq->calc_load_active = nr_active;
3227 }
3228
3229 return delta;
3230}
3231
0f004f5a
PZ
3232static unsigned long
3233calc_load(unsigned long load, unsigned long exp, unsigned long active)
3234{
3235 load *= exp;
3236 load += active * (FIXED_1 - exp);
3237 load += 1UL << (FSHIFT - 1);
3238 return load >> FSHIFT;
3239}
3240
74f5187a
PZ
3241#ifdef CONFIG_NO_HZ
3242/*
3243 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3244 *
3245 * When making the ILB scale, we should try to pull this in as well.
3246 */
3247static atomic_long_t calc_load_tasks_idle;
3248
3249static void calc_load_account_idle(struct rq *this_rq)
3250{
3251 long delta;
3252
3253 delta = calc_load_fold_active(this_rq);
3254 if (delta)
3255 atomic_long_add(delta, &calc_load_tasks_idle);
3256}
3257
3258static long calc_load_fold_idle(void)
3259{
3260 long delta = 0;
3261
3262 /*
3263 * Its got a race, we don't care...
3264 */
3265 if (atomic_long_read(&calc_load_tasks_idle))
3266 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3267
3268 return delta;
3269}
0f004f5a
PZ
3270
3271/**
3272 * fixed_power_int - compute: x^n, in O(log n) time
3273 *
3274 * @x: base of the power
3275 * @frac_bits: fractional bits of @x
3276 * @n: power to raise @x to.
3277 *
3278 * By exploiting the relation between the definition of the natural power
3279 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3280 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3281 * (where: n_i \elem {0, 1}, the binary vector representing n),
3282 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3283 * of course trivially computable in O(log_2 n), the length of our binary
3284 * vector.
3285 */
3286static unsigned long
3287fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3288{
3289 unsigned long result = 1UL << frac_bits;
3290
3291 if (n) for (;;) {
3292 if (n & 1) {
3293 result *= x;
3294 result += 1UL << (frac_bits - 1);
3295 result >>= frac_bits;
3296 }
3297 n >>= 1;
3298 if (!n)
3299 break;
3300 x *= x;
3301 x += 1UL << (frac_bits - 1);
3302 x >>= frac_bits;
3303 }
3304
3305 return result;
3306}
3307
3308/*
3309 * a1 = a0 * e + a * (1 - e)
3310 *
3311 * a2 = a1 * e + a * (1 - e)
3312 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3313 * = a0 * e^2 + a * (1 - e) * (1 + e)
3314 *
3315 * a3 = a2 * e + a * (1 - e)
3316 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3317 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3318 *
3319 * ...
3320 *
3321 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3322 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3323 * = a0 * e^n + a * (1 - e^n)
3324 *
3325 * [1] application of the geometric series:
3326 *
3327 * n 1 - x^(n+1)
3328 * S_n := \Sum x^i = -------------
3329 * i=0 1 - x
3330 */
3331static unsigned long
3332calc_load_n(unsigned long load, unsigned long exp,
3333 unsigned long active, unsigned int n)
3334{
3335
3336 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3337}
3338
3339/*
3340 * NO_HZ can leave us missing all per-cpu ticks calling
3341 * calc_load_account_active(), but since an idle CPU folds its delta into
3342 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3343 * in the pending idle delta if our idle period crossed a load cycle boundary.
3344 *
3345 * Once we've updated the global active value, we need to apply the exponential
3346 * weights adjusted to the number of cycles missed.
3347 */
3348static void calc_global_nohz(unsigned long ticks)
3349{
3350 long delta, active, n;
3351
3352 if (time_before(jiffies, calc_load_update))
3353 return;
3354
3355 /*
3356 * If we crossed a calc_load_update boundary, make sure to fold
3357 * any pending idle changes, the respective CPUs might have
3358 * missed the tick driven calc_load_account_active() update
3359 * due to NO_HZ.
3360 */
3361 delta = calc_load_fold_idle();
3362 if (delta)
3363 atomic_long_add(delta, &calc_load_tasks);
3364
3365 /*
3366 * If we were idle for multiple load cycles, apply them.
3367 */
3368 if (ticks >= LOAD_FREQ) {
3369 n = ticks / LOAD_FREQ;
3370
3371 active = atomic_long_read(&calc_load_tasks);
3372 active = active > 0 ? active * FIXED_1 : 0;
3373
3374 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3375 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3376 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3377
3378 calc_load_update += n * LOAD_FREQ;
3379 }
3380
3381 /*
3382 * Its possible the remainder of the above division also crosses
3383 * a LOAD_FREQ period, the regular check in calc_global_load()
3384 * which comes after this will take care of that.
3385 *
3386 * Consider us being 11 ticks before a cycle completion, and us
3387 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3388 * age us 4 cycles, and the test in calc_global_load() will
3389 * pick up the final one.
3390 */
3391}
74f5187a
PZ
3392#else
3393static void calc_load_account_idle(struct rq *this_rq)
3394{
3395}
3396
3397static inline long calc_load_fold_idle(void)
3398{
3399 return 0;
3400}
0f004f5a
PZ
3401
3402static void calc_global_nohz(unsigned long ticks)
3403{
3404}
74f5187a
PZ
3405#endif
3406
2d02494f
TG
3407/**
3408 * get_avenrun - get the load average array
3409 * @loads: pointer to dest load array
3410 * @offset: offset to add
3411 * @shift: shift count to shift the result left
3412 *
3413 * These values are estimates at best, so no need for locking.
3414 */
3415void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3416{
3417 loads[0] = (avenrun[0] + offset) << shift;
3418 loads[1] = (avenrun[1] + offset) << shift;
3419 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3420}
46cb4b7c 3421
46cb4b7c 3422/*
dce48a84
TG
3423 * calc_load - update the avenrun load estimates 10 ticks after the
3424 * CPUs have updated calc_load_tasks.
7835b98b 3425 */
0f004f5a 3426void calc_global_load(unsigned long ticks)
7835b98b 3427{
dce48a84 3428 long active;
1da177e4 3429
0f004f5a
PZ
3430 calc_global_nohz(ticks);
3431
3432 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3433 return;
1da177e4 3434
dce48a84
TG
3435 active = atomic_long_read(&calc_load_tasks);
3436 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3437
dce48a84
TG
3438 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3439 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3440 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3441
dce48a84
TG
3442 calc_load_update += LOAD_FREQ;
3443}
1da177e4 3444
dce48a84 3445/*
74f5187a
PZ
3446 * Called from update_cpu_load() to periodically update this CPU's
3447 * active count.
dce48a84
TG
3448 */
3449static void calc_load_account_active(struct rq *this_rq)
3450{
74f5187a 3451 long delta;
08c183f3 3452
74f5187a
PZ
3453 if (time_before(jiffies, this_rq->calc_load_update))
3454 return;
783609c6 3455
74f5187a
PZ
3456 delta = calc_load_fold_active(this_rq);
3457 delta += calc_load_fold_idle();
3458 if (delta)
dce48a84 3459 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3460
3461 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3462}
3463
fdf3e95d
VP
3464/*
3465 * The exact cpuload at various idx values, calculated at every tick would be
3466 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3467 *
3468 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3469 * on nth tick when cpu may be busy, then we have:
3470 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3471 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3472 *
3473 * decay_load_missed() below does efficient calculation of
3474 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3475 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3476 *
3477 * The calculation is approximated on a 128 point scale.
3478 * degrade_zero_ticks is the number of ticks after which load at any
3479 * particular idx is approximated to be zero.
3480 * degrade_factor is a precomputed table, a row for each load idx.
3481 * Each column corresponds to degradation factor for a power of two ticks,
3482 * based on 128 point scale.
3483 * Example:
3484 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3485 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3486 *
3487 * With this power of 2 load factors, we can degrade the load n times
3488 * by looking at 1 bits in n and doing as many mult/shift instead of
3489 * n mult/shifts needed by the exact degradation.
3490 */
3491#define DEGRADE_SHIFT 7
3492static const unsigned char
3493 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3494static const unsigned char
3495 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3496 {0, 0, 0, 0, 0, 0, 0, 0},
3497 {64, 32, 8, 0, 0, 0, 0, 0},
3498 {96, 72, 40, 12, 1, 0, 0},
3499 {112, 98, 75, 43, 15, 1, 0},
3500 {120, 112, 98, 76, 45, 16, 2} };
3501
3502/*
3503 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3504 * would be when CPU is idle and so we just decay the old load without
3505 * adding any new load.
3506 */
3507static unsigned long
3508decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3509{
3510 int j = 0;
3511
3512 if (!missed_updates)
3513 return load;
3514
3515 if (missed_updates >= degrade_zero_ticks[idx])
3516 return 0;
3517
3518 if (idx == 1)
3519 return load >> missed_updates;
3520
3521 while (missed_updates) {
3522 if (missed_updates % 2)
3523 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3524
3525 missed_updates >>= 1;
3526 j++;
3527 }
3528 return load;
3529}
3530
46cb4b7c 3531/*
dd41f596 3532 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3533 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3534 * every tick. We fix it up based on jiffies.
46cb4b7c 3535 */
dd41f596 3536static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3537{
495eca49 3538 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3539 unsigned long curr_jiffies = jiffies;
3540 unsigned long pending_updates;
dd41f596 3541 int i, scale;
46cb4b7c 3542
dd41f596 3543 this_rq->nr_load_updates++;
46cb4b7c 3544
fdf3e95d
VP
3545 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3546 if (curr_jiffies == this_rq->last_load_update_tick)
3547 return;
3548
3549 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3550 this_rq->last_load_update_tick = curr_jiffies;
3551
dd41f596 3552 /* Update our load: */
fdf3e95d
VP
3553 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3554 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3555 unsigned long old_load, new_load;
7d1e6a9b 3556
dd41f596 3557 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3558
dd41f596 3559 old_load = this_rq->cpu_load[i];
fdf3e95d 3560 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3561 new_load = this_load;
a25707f3
IM
3562 /*
3563 * Round up the averaging division if load is increasing. This
3564 * prevents us from getting stuck on 9 if the load is 10, for
3565 * example.
3566 */
3567 if (new_load > old_load)
fdf3e95d
VP
3568 new_load += scale - 1;
3569
3570 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3571 }
da2b71ed
SS
3572
3573 sched_avg_update(this_rq);
fdf3e95d
VP
3574}
3575
3576static void update_cpu_load_active(struct rq *this_rq)
3577{
3578 update_cpu_load(this_rq);
46cb4b7c 3579
74f5187a 3580 calc_load_account_active(this_rq);
46cb4b7c
SS
3581}
3582
dd41f596 3583#ifdef CONFIG_SMP
8a0be9ef 3584
46cb4b7c 3585/*
38022906
PZ
3586 * sched_exec - execve() is a valuable balancing opportunity, because at
3587 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3588 */
38022906 3589void sched_exec(void)
46cb4b7c 3590{
38022906 3591 struct task_struct *p = current;
1da177e4 3592 unsigned long flags;
0017d735 3593 int dest_cpu;
46cb4b7c 3594
8f42ced9 3595 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3596 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3597 if (dest_cpu == smp_processor_id())
3598 goto unlock;
38022906 3599
8f42ced9 3600 if (likely(cpu_active(dest_cpu))) {
969c7921 3601 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3602
8f42ced9
PZ
3603 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3604 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3605 return;
3606 }
0017d735 3607unlock:
8f42ced9 3608 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3609}
dd41f596 3610
1da177e4
LT
3611#endif
3612
1da177e4
LT
3613DEFINE_PER_CPU(struct kernel_stat, kstat);
3614
3615EXPORT_PER_CPU_SYMBOL(kstat);
3616
3617/*
c5f8d995 3618 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3619 * @p in case that task is currently running.
c5f8d995
HS
3620 *
3621 * Called with task_rq_lock() held on @rq.
1da177e4 3622 */
c5f8d995
HS
3623static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3624{
3625 u64 ns = 0;
3626
3627 if (task_current(rq, p)) {
3628 update_rq_clock(rq);
305e6835 3629 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3630 if ((s64)ns < 0)
3631 ns = 0;
3632 }
3633
3634 return ns;
3635}
3636
bb34d92f 3637unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3638{
1da177e4 3639 unsigned long flags;
41b86e9c 3640 struct rq *rq;
bb34d92f 3641 u64 ns = 0;
48f24c4d 3642
41b86e9c 3643 rq = task_rq_lock(p, &flags);
c5f8d995 3644 ns = do_task_delta_exec(p, rq);
0122ec5b 3645 task_rq_unlock(rq, p, &flags);
1508487e 3646
c5f8d995
HS
3647 return ns;
3648}
f06febc9 3649
c5f8d995
HS
3650/*
3651 * Return accounted runtime for the task.
3652 * In case the task is currently running, return the runtime plus current's
3653 * pending runtime that have not been accounted yet.
3654 */
3655unsigned long long task_sched_runtime(struct task_struct *p)
3656{
3657 unsigned long flags;
3658 struct rq *rq;
3659 u64 ns = 0;
3660
3661 rq = task_rq_lock(p, &flags);
3662 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3663 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3664
3665 return ns;
3666}
48f24c4d 3667
c5f8d995
HS
3668/*
3669 * Return sum_exec_runtime for the thread group.
3670 * In case the task is currently running, return the sum plus current's
3671 * pending runtime that have not been accounted yet.
3672 *
3673 * Note that the thread group might have other running tasks as well,
3674 * so the return value not includes other pending runtime that other
3675 * running tasks might have.
3676 */
3677unsigned long long thread_group_sched_runtime(struct task_struct *p)
3678{
3679 struct task_cputime totals;
3680 unsigned long flags;
3681 struct rq *rq;
3682 u64 ns;
3683
3684 rq = task_rq_lock(p, &flags);
3685 thread_group_cputime(p, &totals);
3686 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3687 task_rq_unlock(rq, p, &flags);
48f24c4d 3688
1da177e4
LT
3689 return ns;
3690}
3691
1da177e4
LT
3692/*
3693 * Account user cpu time to a process.
3694 * @p: the process that the cpu time gets accounted to
1da177e4 3695 * @cputime: the cpu time spent in user space since the last update
457533a7 3696 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3697 */
457533a7
MS
3698void account_user_time(struct task_struct *p, cputime_t cputime,
3699 cputime_t cputime_scaled)
1da177e4
LT
3700{
3701 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3702 cputime64_t tmp;
3703
457533a7 3704 /* Add user time to process. */
1da177e4 3705 p->utime = cputime_add(p->utime, cputime);
457533a7 3706 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3707 account_group_user_time(p, cputime);
1da177e4
LT
3708
3709 /* Add user time to cpustat. */
3710 tmp = cputime_to_cputime64(cputime);
3711 if (TASK_NICE(p) > 0)
3712 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3713 else
3714 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3715
3716 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3717 /* Account for user time used */
3718 acct_update_integrals(p);
1da177e4
LT
3719}
3720
94886b84
LV
3721/*
3722 * Account guest cpu time to a process.
3723 * @p: the process that the cpu time gets accounted to
3724 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3725 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3726 */
457533a7
MS
3727static void account_guest_time(struct task_struct *p, cputime_t cputime,
3728 cputime_t cputime_scaled)
94886b84
LV
3729{
3730 cputime64_t tmp;
3731 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3732
3733 tmp = cputime_to_cputime64(cputime);
3734
457533a7 3735 /* Add guest time to process. */
94886b84 3736 p->utime = cputime_add(p->utime, cputime);
457533a7 3737 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3738 account_group_user_time(p, cputime);
94886b84
LV
3739 p->gtime = cputime_add(p->gtime, cputime);
3740
457533a7 3741 /* Add guest time to cpustat. */
ce0e7b28
RO
3742 if (TASK_NICE(p) > 0) {
3743 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3744 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3745 } else {
3746 cpustat->user = cputime64_add(cpustat->user, tmp);
3747 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3748 }
94886b84
LV
3749}
3750
70a89a66
VP
3751/*
3752 * Account system cpu time to a process and desired cpustat field
3753 * @p: the process that the cpu time gets accounted to
3754 * @cputime: the cpu time spent in kernel space since the last update
3755 * @cputime_scaled: cputime scaled by cpu frequency
3756 * @target_cputime64: pointer to cpustat field that has to be updated
3757 */
3758static inline
3759void __account_system_time(struct task_struct *p, cputime_t cputime,
3760 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3761{
3762 cputime64_t tmp = cputime_to_cputime64(cputime);
3763
3764 /* Add system time to process. */
3765 p->stime = cputime_add(p->stime, cputime);
3766 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3767 account_group_system_time(p, cputime);
3768
3769 /* Add system time to cpustat. */
3770 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3771 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3772
3773 /* Account for system time used */
3774 acct_update_integrals(p);
3775}
3776
1da177e4
LT
3777/*
3778 * Account system cpu time to a process.
3779 * @p: the process that the cpu time gets accounted to
3780 * @hardirq_offset: the offset to subtract from hardirq_count()
3781 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3782 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3783 */
3784void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3785 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3786{
3787 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3788 cputime64_t *target_cputime64;
1da177e4 3789
983ed7a6 3790 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3791 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3792 return;
3793 }
94886b84 3794
1da177e4 3795 if (hardirq_count() - hardirq_offset)
70a89a66 3796 target_cputime64 = &cpustat->irq;
75e1056f 3797 else if (in_serving_softirq())
70a89a66 3798 target_cputime64 = &cpustat->softirq;
1da177e4 3799 else
70a89a66 3800 target_cputime64 = &cpustat->system;
ef12fefa 3801
70a89a66 3802 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3803}
3804
c66f08be 3805/*
1da177e4 3806 * Account for involuntary wait time.
544b4a1f 3807 * @cputime: the cpu time spent in involuntary wait
c66f08be 3808 */
79741dd3 3809void account_steal_time(cputime_t cputime)
c66f08be 3810{
79741dd3
MS
3811 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3812 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3813
3814 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3815}
3816
1da177e4 3817/*
79741dd3
MS
3818 * Account for idle time.
3819 * @cputime: the cpu time spent in idle wait
1da177e4 3820 */
79741dd3 3821void account_idle_time(cputime_t cputime)
1da177e4
LT
3822{
3823 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3824 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3825 struct rq *rq = this_rq();
1da177e4 3826
79741dd3
MS
3827 if (atomic_read(&rq->nr_iowait) > 0)
3828 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3829 else
3830 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3831}
3832
79741dd3
MS
3833#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3834
abb74cef
VP
3835#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3836/*
3837 * Account a tick to a process and cpustat
3838 * @p: the process that the cpu time gets accounted to
3839 * @user_tick: is the tick from userspace
3840 * @rq: the pointer to rq
3841 *
3842 * Tick demultiplexing follows the order
3843 * - pending hardirq update
3844 * - pending softirq update
3845 * - user_time
3846 * - idle_time
3847 * - system time
3848 * - check for guest_time
3849 * - else account as system_time
3850 *
3851 * Check for hardirq is done both for system and user time as there is
3852 * no timer going off while we are on hardirq and hence we may never get an
3853 * opportunity to update it solely in system time.
3854 * p->stime and friends are only updated on system time and not on irq
3855 * softirq as those do not count in task exec_runtime any more.
3856 */
3857static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3858 struct rq *rq)
3859{
3860 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3861 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3862 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3863
3864 if (irqtime_account_hi_update()) {
3865 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3866 } else if (irqtime_account_si_update()) {
3867 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3868 } else if (this_cpu_ksoftirqd() == p) {
3869 /*
3870 * ksoftirqd time do not get accounted in cpu_softirq_time.
3871 * So, we have to handle it separately here.
3872 * Also, p->stime needs to be updated for ksoftirqd.
3873 */
3874 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3875 &cpustat->softirq);
abb74cef
VP
3876 } else if (user_tick) {
3877 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3878 } else if (p == rq->idle) {
3879 account_idle_time(cputime_one_jiffy);
3880 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3881 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3882 } else {
3883 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3884 &cpustat->system);
3885 }
3886}
3887
3888static void irqtime_account_idle_ticks(int ticks)
3889{
3890 int i;
3891 struct rq *rq = this_rq();
3892
3893 for (i = 0; i < ticks; i++)
3894 irqtime_account_process_tick(current, 0, rq);
3895}
544b4a1f 3896#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3897static void irqtime_account_idle_ticks(int ticks) {}
3898static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3899 struct rq *rq) {}
544b4a1f 3900#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3901
3902/*
3903 * Account a single tick of cpu time.
3904 * @p: the process that the cpu time gets accounted to
3905 * @user_tick: indicates if the tick is a user or a system tick
3906 */
3907void account_process_tick(struct task_struct *p, int user_tick)
3908{
a42548a1 3909 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3910 struct rq *rq = this_rq();
3911
abb74cef
VP
3912 if (sched_clock_irqtime) {
3913 irqtime_account_process_tick(p, user_tick, rq);
3914 return;
3915 }
3916
79741dd3 3917 if (user_tick)
a42548a1 3918 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3919 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3920 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3921 one_jiffy_scaled);
3922 else
a42548a1 3923 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3924}
3925
3926/*
3927 * Account multiple ticks of steal time.
3928 * @p: the process from which the cpu time has been stolen
3929 * @ticks: number of stolen ticks
3930 */
3931void account_steal_ticks(unsigned long ticks)
3932{
3933 account_steal_time(jiffies_to_cputime(ticks));
3934}
3935
3936/*
3937 * Account multiple ticks of idle time.
3938 * @ticks: number of stolen ticks
3939 */
3940void account_idle_ticks(unsigned long ticks)
3941{
abb74cef
VP
3942
3943 if (sched_clock_irqtime) {
3944 irqtime_account_idle_ticks(ticks);
3945 return;
3946 }
3947
79741dd3 3948 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3949}
3950
79741dd3
MS
3951#endif
3952
49048622
BS
3953/*
3954 * Use precise platform statistics if available:
3955 */
3956#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3957void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3958{
d99ca3b9
HS
3959 *ut = p->utime;
3960 *st = p->stime;
49048622
BS
3961}
3962
0cf55e1e 3963void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3964{
0cf55e1e
HS
3965 struct task_cputime cputime;
3966
3967 thread_group_cputime(p, &cputime);
3968
3969 *ut = cputime.utime;
3970 *st = cputime.stime;
49048622
BS
3971}
3972#else
761b1d26
HS
3973
3974#ifndef nsecs_to_cputime
b7b20df9 3975# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3976#endif
3977
d180c5bc 3978void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3979{
d99ca3b9 3980 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3981
3982 /*
3983 * Use CFS's precise accounting:
3984 */
d180c5bc 3985 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3986
3987 if (total) {
e75e863d 3988 u64 temp = rtime;
d180c5bc 3989
e75e863d 3990 temp *= utime;
49048622 3991 do_div(temp, total);
d180c5bc
HS
3992 utime = (cputime_t)temp;
3993 } else
3994 utime = rtime;
49048622 3995
d180c5bc
HS
3996 /*
3997 * Compare with previous values, to keep monotonicity:
3998 */
761b1d26 3999 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4000 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4001
d99ca3b9
HS
4002 *ut = p->prev_utime;
4003 *st = p->prev_stime;
49048622
BS
4004}
4005
0cf55e1e
HS
4006/*
4007 * Must be called with siglock held.
4008 */
4009void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4010{
0cf55e1e
HS
4011 struct signal_struct *sig = p->signal;
4012 struct task_cputime cputime;
4013 cputime_t rtime, utime, total;
49048622 4014
0cf55e1e 4015 thread_group_cputime(p, &cputime);
49048622 4016
0cf55e1e
HS
4017 total = cputime_add(cputime.utime, cputime.stime);
4018 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4019
0cf55e1e 4020 if (total) {
e75e863d 4021 u64 temp = rtime;
49048622 4022
e75e863d 4023 temp *= cputime.utime;
0cf55e1e
HS
4024 do_div(temp, total);
4025 utime = (cputime_t)temp;
4026 } else
4027 utime = rtime;
4028
4029 sig->prev_utime = max(sig->prev_utime, utime);
4030 sig->prev_stime = max(sig->prev_stime,
4031 cputime_sub(rtime, sig->prev_utime));
4032
4033 *ut = sig->prev_utime;
4034 *st = sig->prev_stime;
49048622 4035}
49048622 4036#endif
49048622 4037
7835b98b
CL
4038/*
4039 * This function gets called by the timer code, with HZ frequency.
4040 * We call it with interrupts disabled.
7835b98b
CL
4041 */
4042void scheduler_tick(void)
4043{
7835b98b
CL
4044 int cpu = smp_processor_id();
4045 struct rq *rq = cpu_rq(cpu);
dd41f596 4046 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4047
4048 sched_clock_tick();
dd41f596 4049
05fa785c 4050 raw_spin_lock(&rq->lock);
3e51f33f 4051 update_rq_clock(rq);
fdf3e95d 4052 update_cpu_load_active(rq);
fa85ae24 4053 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4054 raw_spin_unlock(&rq->lock);
7835b98b 4055
e9d2b064 4056 perf_event_task_tick();
e220d2dc 4057
e418e1c2 4058#ifdef CONFIG_SMP
dd41f596
IM
4059 rq->idle_at_tick = idle_cpu(cpu);
4060 trigger_load_balance(rq, cpu);
e418e1c2 4061#endif
1da177e4
LT
4062}
4063
132380a0 4064notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4065{
4066 if (in_lock_functions(addr)) {
4067 addr = CALLER_ADDR2;
4068 if (in_lock_functions(addr))
4069 addr = CALLER_ADDR3;
4070 }
4071 return addr;
4072}
1da177e4 4073
7e49fcce
SR
4074#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4075 defined(CONFIG_PREEMPT_TRACER))
4076
43627582 4077void __kprobes add_preempt_count(int val)
1da177e4 4078{
6cd8a4bb 4079#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4080 /*
4081 * Underflow?
4082 */
9a11b49a
IM
4083 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4084 return;
6cd8a4bb 4085#endif
1da177e4 4086 preempt_count() += val;
6cd8a4bb 4087#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4088 /*
4089 * Spinlock count overflowing soon?
4090 */
33859f7f
MOS
4091 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4092 PREEMPT_MASK - 10);
6cd8a4bb
SR
4093#endif
4094 if (preempt_count() == val)
4095 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4096}
4097EXPORT_SYMBOL(add_preempt_count);
4098
43627582 4099void __kprobes sub_preempt_count(int val)
1da177e4 4100{
6cd8a4bb 4101#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4102 /*
4103 * Underflow?
4104 */
01e3eb82 4105 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4106 return;
1da177e4
LT
4107 /*
4108 * Is the spinlock portion underflowing?
4109 */
9a11b49a
IM
4110 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4111 !(preempt_count() & PREEMPT_MASK)))
4112 return;
6cd8a4bb 4113#endif
9a11b49a 4114
6cd8a4bb
SR
4115 if (preempt_count() == val)
4116 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4117 preempt_count() -= val;
4118}
4119EXPORT_SYMBOL(sub_preempt_count);
4120
4121#endif
4122
4123/*
dd41f596 4124 * Print scheduling while atomic bug:
1da177e4 4125 */
dd41f596 4126static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4127{
838225b4
SS
4128 struct pt_regs *regs = get_irq_regs();
4129
3df0fc5b
PZ
4130 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4131 prev->comm, prev->pid, preempt_count());
838225b4 4132
dd41f596 4133 debug_show_held_locks(prev);
e21f5b15 4134 print_modules();
dd41f596
IM
4135 if (irqs_disabled())
4136 print_irqtrace_events(prev);
838225b4
SS
4137
4138 if (regs)
4139 show_regs(regs);
4140 else
4141 dump_stack();
dd41f596 4142}
1da177e4 4143
dd41f596
IM
4144/*
4145 * Various schedule()-time debugging checks and statistics:
4146 */
4147static inline void schedule_debug(struct task_struct *prev)
4148{
1da177e4 4149 /*
41a2d6cf 4150 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4151 * schedule() atomically, we ignore that path for now.
4152 * Otherwise, whine if we are scheduling when we should not be.
4153 */
3f33a7ce 4154 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4155 __schedule_bug(prev);
4156
1da177e4
LT
4157 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4158
2d72376b 4159 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4160}
4161
6cecd084 4162static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4163{
61eadef6 4164 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4165 update_rq_clock(rq);
6cecd084 4166 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4167}
4168
dd41f596
IM
4169/*
4170 * Pick up the highest-prio task:
4171 */
4172static inline struct task_struct *
b67802ea 4173pick_next_task(struct rq *rq)
dd41f596 4174{
5522d5d5 4175 const struct sched_class *class;
dd41f596 4176 struct task_struct *p;
1da177e4
LT
4177
4178 /*
dd41f596
IM
4179 * Optimization: we know that if all tasks are in
4180 * the fair class we can call that function directly:
1da177e4 4181 */
dd41f596 4182 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4183 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4184 if (likely(p))
4185 return p;
1da177e4
LT
4186 }
4187
34f971f6 4188 for_each_class(class) {
fb8d4724 4189 p = class->pick_next_task(rq);
dd41f596
IM
4190 if (p)
4191 return p;
dd41f596 4192 }
34f971f6
PZ
4193
4194 BUG(); /* the idle class will always have a runnable task */
dd41f596 4195}
1da177e4 4196
dd41f596
IM
4197/*
4198 * schedule() is the main scheduler function.
4199 */
ff743345 4200asmlinkage void __sched schedule(void)
dd41f596
IM
4201{
4202 struct task_struct *prev, *next;
67ca7bde 4203 unsigned long *switch_count;
dd41f596 4204 struct rq *rq;
31656519 4205 int cpu;
dd41f596 4206
ff743345
PZ
4207need_resched:
4208 preempt_disable();
dd41f596
IM
4209 cpu = smp_processor_id();
4210 rq = cpu_rq(cpu);
25502a6c 4211 rcu_note_context_switch(cpu);
dd41f596 4212 prev = rq->curr;
dd41f596 4213
dd41f596 4214 schedule_debug(prev);
1da177e4 4215
31656519 4216 if (sched_feat(HRTICK))
f333fdc9 4217 hrtick_clear(rq);
8f4d37ec 4218
05fa785c 4219 raw_spin_lock_irq(&rq->lock);
1da177e4 4220
246d86b5 4221 switch_count = &prev->nivcsw;
1da177e4 4222 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4223 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4224 prev->state = TASK_RUNNING;
21aa9af0 4225 } else {
2acca55e
PZ
4226 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4227 prev->on_rq = 0;
4228
21aa9af0 4229 /*
2acca55e
PZ
4230 * If a worker went to sleep, notify and ask workqueue
4231 * whether it wants to wake up a task to maintain
4232 * concurrency.
21aa9af0
TH
4233 */
4234 if (prev->flags & PF_WQ_WORKER) {
4235 struct task_struct *to_wakeup;
4236
4237 to_wakeup = wq_worker_sleeping(prev, cpu);
4238 if (to_wakeup)
4239 try_to_wake_up_local(to_wakeup);
4240 }
fd2f4419 4241
6631e635 4242 /*
2acca55e
PZ
4243 * If we are going to sleep and we have plugged IO
4244 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4245 */
4246 if (blk_needs_flush_plug(prev)) {
4247 raw_spin_unlock(&rq->lock);
a237c1c5 4248 blk_schedule_flush_plug(prev);
6631e635
LT
4249 raw_spin_lock(&rq->lock);
4250 }
21aa9af0 4251 }
dd41f596 4252 switch_count = &prev->nvcsw;
1da177e4
LT
4253 }
4254
3f029d3c 4255 pre_schedule(rq, prev);
f65eda4f 4256
dd41f596 4257 if (unlikely(!rq->nr_running))
1da177e4 4258 idle_balance(cpu, rq);
1da177e4 4259
df1c99d4 4260 put_prev_task(rq, prev);
b67802ea 4261 next = pick_next_task(rq);
f26f9aff
MG
4262 clear_tsk_need_resched(prev);
4263 rq->skip_clock_update = 0;
1da177e4 4264
1da177e4 4265 if (likely(prev != next)) {
1da177e4
LT
4266 rq->nr_switches++;
4267 rq->curr = next;
4268 ++*switch_count;
4269
dd41f596 4270 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4271 /*
246d86b5
ON
4272 * The context switch have flipped the stack from under us
4273 * and restored the local variables which were saved when
4274 * this task called schedule() in the past. prev == current
4275 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4276 */
4277 cpu = smp_processor_id();
4278 rq = cpu_rq(cpu);
1da177e4 4279 } else
05fa785c 4280 raw_spin_unlock_irq(&rq->lock);
1da177e4 4281
3f029d3c 4282 post_schedule(rq);
1da177e4 4283
1da177e4 4284 preempt_enable_no_resched();
ff743345 4285 if (need_resched())
1da177e4
LT
4286 goto need_resched;
4287}
1da177e4
LT
4288EXPORT_SYMBOL(schedule);
4289
c08f7829 4290#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4291
c6eb3dda
PZ
4292static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4293{
4294 bool ret = false;
0d66bf6d 4295
c6eb3dda
PZ
4296 rcu_read_lock();
4297 if (lock->owner != owner)
4298 goto fail;
0d66bf6d
PZ
4299
4300 /*
c6eb3dda
PZ
4301 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4302 * lock->owner still matches owner, if that fails, owner might
4303 * point to free()d memory, if it still matches, the rcu_read_lock()
4304 * ensures the memory stays valid.
0d66bf6d 4305 */
c6eb3dda 4306 barrier();
0d66bf6d 4307
c6eb3dda
PZ
4308 ret = owner->on_cpu;
4309fail:
4310 rcu_read_unlock();
0d66bf6d 4311
c6eb3dda
PZ
4312 return ret;
4313}
0d66bf6d 4314
c6eb3dda
PZ
4315/*
4316 * Look out! "owner" is an entirely speculative pointer
4317 * access and not reliable.
4318 */
4319int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4320{
4321 if (!sched_feat(OWNER_SPIN))
4322 return 0;
0d66bf6d 4323
c6eb3dda
PZ
4324 while (owner_running(lock, owner)) {
4325 if (need_resched())
0d66bf6d
PZ
4326 return 0;
4327
335d7afb 4328 arch_mutex_cpu_relax();
0d66bf6d 4329 }
4b402210 4330
c6eb3dda
PZ
4331 /*
4332 * If the owner changed to another task there is likely
4333 * heavy contention, stop spinning.
4334 */
4335 if (lock->owner)
4336 return 0;
4337
0d66bf6d
PZ
4338 return 1;
4339}
4340#endif
4341
1da177e4
LT
4342#ifdef CONFIG_PREEMPT
4343/*
2ed6e34f 4344 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4345 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4346 * occur there and call schedule directly.
4347 */
d1f74e20 4348asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4349{
4350 struct thread_info *ti = current_thread_info();
6478d880 4351
1da177e4
LT
4352 /*
4353 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4354 * we do not want to preempt the current task. Just return..
1da177e4 4355 */
beed33a8 4356 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4357 return;
4358
3a5c359a 4359 do {
d1f74e20 4360 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4361 schedule();
d1f74e20 4362 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4363
3a5c359a
AK
4364 /*
4365 * Check again in case we missed a preemption opportunity
4366 * between schedule and now.
4367 */
4368 barrier();
5ed0cec0 4369 } while (need_resched());
1da177e4 4370}
1da177e4
LT
4371EXPORT_SYMBOL(preempt_schedule);
4372
4373/*
2ed6e34f 4374 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4375 * off of irq context.
4376 * Note, that this is called and return with irqs disabled. This will
4377 * protect us against recursive calling from irq.
4378 */
4379asmlinkage void __sched preempt_schedule_irq(void)
4380{
4381 struct thread_info *ti = current_thread_info();
6478d880 4382
2ed6e34f 4383 /* Catch callers which need to be fixed */
1da177e4
LT
4384 BUG_ON(ti->preempt_count || !irqs_disabled());
4385
3a5c359a
AK
4386 do {
4387 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4388 local_irq_enable();
4389 schedule();
4390 local_irq_disable();
3a5c359a 4391 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4392
3a5c359a
AK
4393 /*
4394 * Check again in case we missed a preemption opportunity
4395 * between schedule and now.
4396 */
4397 barrier();
5ed0cec0 4398 } while (need_resched());
1da177e4
LT
4399}
4400
4401#endif /* CONFIG_PREEMPT */
4402
63859d4f 4403int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4404 void *key)
1da177e4 4405{
63859d4f 4406 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4407}
1da177e4
LT
4408EXPORT_SYMBOL(default_wake_function);
4409
4410/*
41a2d6cf
IM
4411 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4412 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4413 * number) then we wake all the non-exclusive tasks and one exclusive task.
4414 *
4415 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4416 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4417 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4418 */
78ddb08f 4419static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4420 int nr_exclusive, int wake_flags, void *key)
1da177e4 4421{
2e45874c 4422 wait_queue_t *curr, *next;
1da177e4 4423
2e45874c 4424 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4425 unsigned flags = curr->flags;
4426
63859d4f 4427 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4428 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4429 break;
4430 }
4431}
4432
4433/**
4434 * __wake_up - wake up threads blocked on a waitqueue.
4435 * @q: the waitqueue
4436 * @mode: which threads
4437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4438 * @key: is directly passed to the wakeup function
50fa610a
DH
4439 *
4440 * It may be assumed that this function implies a write memory barrier before
4441 * changing the task state if and only if any tasks are woken up.
1da177e4 4442 */
7ad5b3a5 4443void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4444 int nr_exclusive, void *key)
1da177e4
LT
4445{
4446 unsigned long flags;
4447
4448 spin_lock_irqsave(&q->lock, flags);
4449 __wake_up_common(q, mode, nr_exclusive, 0, key);
4450 spin_unlock_irqrestore(&q->lock, flags);
4451}
1da177e4
LT
4452EXPORT_SYMBOL(__wake_up);
4453
4454/*
4455 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4456 */
7ad5b3a5 4457void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4458{
4459 __wake_up_common(q, mode, 1, 0, NULL);
4460}
22c43c81 4461EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4462
4ede816a
DL
4463void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4464{
4465 __wake_up_common(q, mode, 1, 0, key);
4466}
bf294b41 4467EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4468
1da177e4 4469/**
4ede816a 4470 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4471 * @q: the waitqueue
4472 * @mode: which threads
4473 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4474 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4475 *
4476 * The sync wakeup differs that the waker knows that it will schedule
4477 * away soon, so while the target thread will be woken up, it will not
4478 * be migrated to another CPU - ie. the two threads are 'synchronized'
4479 * with each other. This can prevent needless bouncing between CPUs.
4480 *
4481 * On UP it can prevent extra preemption.
50fa610a
DH
4482 *
4483 * It may be assumed that this function implies a write memory barrier before
4484 * changing the task state if and only if any tasks are woken up.
1da177e4 4485 */
4ede816a
DL
4486void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4487 int nr_exclusive, void *key)
1da177e4
LT
4488{
4489 unsigned long flags;
7d478721 4490 int wake_flags = WF_SYNC;
1da177e4
LT
4491
4492 if (unlikely(!q))
4493 return;
4494
4495 if (unlikely(!nr_exclusive))
7d478721 4496 wake_flags = 0;
1da177e4
LT
4497
4498 spin_lock_irqsave(&q->lock, flags);
7d478721 4499 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4500 spin_unlock_irqrestore(&q->lock, flags);
4501}
4ede816a
DL
4502EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4503
4504/*
4505 * __wake_up_sync - see __wake_up_sync_key()
4506 */
4507void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4508{
4509 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4510}
1da177e4
LT
4511EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4512
65eb3dc6
KD
4513/**
4514 * complete: - signals a single thread waiting on this completion
4515 * @x: holds the state of this particular completion
4516 *
4517 * This will wake up a single thread waiting on this completion. Threads will be
4518 * awakened in the same order in which they were queued.
4519 *
4520 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4521 *
4522 * It may be assumed that this function implies a write memory barrier before
4523 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4524 */
b15136e9 4525void complete(struct completion *x)
1da177e4
LT
4526{
4527 unsigned long flags;
4528
4529 spin_lock_irqsave(&x->wait.lock, flags);
4530 x->done++;
d9514f6c 4531 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4532 spin_unlock_irqrestore(&x->wait.lock, flags);
4533}
4534EXPORT_SYMBOL(complete);
4535
65eb3dc6
KD
4536/**
4537 * complete_all: - signals all threads waiting on this completion
4538 * @x: holds the state of this particular completion
4539 *
4540 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4541 *
4542 * It may be assumed that this function implies a write memory barrier before
4543 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4544 */
b15136e9 4545void complete_all(struct completion *x)
1da177e4
LT
4546{
4547 unsigned long flags;
4548
4549 spin_lock_irqsave(&x->wait.lock, flags);
4550 x->done += UINT_MAX/2;
d9514f6c 4551 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4552 spin_unlock_irqrestore(&x->wait.lock, flags);
4553}
4554EXPORT_SYMBOL(complete_all);
4555
8cbbe86d
AK
4556static inline long __sched
4557do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4558{
1da177e4
LT
4559 if (!x->done) {
4560 DECLARE_WAITQUEUE(wait, current);
4561
a93d2f17 4562 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4563 do {
94d3d824 4564 if (signal_pending_state(state, current)) {
ea71a546
ON
4565 timeout = -ERESTARTSYS;
4566 break;
8cbbe86d
AK
4567 }
4568 __set_current_state(state);
1da177e4
LT
4569 spin_unlock_irq(&x->wait.lock);
4570 timeout = schedule_timeout(timeout);
4571 spin_lock_irq(&x->wait.lock);
ea71a546 4572 } while (!x->done && timeout);
1da177e4 4573 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4574 if (!x->done)
4575 return timeout;
1da177e4
LT
4576 }
4577 x->done--;
ea71a546 4578 return timeout ?: 1;
1da177e4 4579}
1da177e4 4580
8cbbe86d
AK
4581static long __sched
4582wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4583{
1da177e4
LT
4584 might_sleep();
4585
4586 spin_lock_irq(&x->wait.lock);
8cbbe86d 4587 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4588 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4589 return timeout;
4590}
1da177e4 4591
65eb3dc6
KD
4592/**
4593 * wait_for_completion: - waits for completion of a task
4594 * @x: holds the state of this particular completion
4595 *
4596 * This waits to be signaled for completion of a specific task. It is NOT
4597 * interruptible and there is no timeout.
4598 *
4599 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4600 * and interrupt capability. Also see complete().
4601 */
b15136e9 4602void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4603{
4604 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4605}
8cbbe86d 4606EXPORT_SYMBOL(wait_for_completion);
1da177e4 4607
65eb3dc6
KD
4608/**
4609 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4610 * @x: holds the state of this particular completion
4611 * @timeout: timeout value in jiffies
4612 *
4613 * This waits for either a completion of a specific task to be signaled or for a
4614 * specified timeout to expire. The timeout is in jiffies. It is not
4615 * interruptible.
4616 */
b15136e9 4617unsigned long __sched
8cbbe86d 4618wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4619{
8cbbe86d 4620 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4621}
8cbbe86d 4622EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4623
65eb3dc6
KD
4624/**
4625 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4626 * @x: holds the state of this particular completion
4627 *
4628 * This waits for completion of a specific task to be signaled. It is
4629 * interruptible.
4630 */
8cbbe86d 4631int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4632{
51e97990
AK
4633 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4634 if (t == -ERESTARTSYS)
4635 return t;
4636 return 0;
0fec171c 4637}
8cbbe86d 4638EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4639
65eb3dc6
KD
4640/**
4641 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4642 * @x: holds the state of this particular completion
4643 * @timeout: timeout value in jiffies
4644 *
4645 * This waits for either a completion of a specific task to be signaled or for a
4646 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4647 */
6bf41237 4648long __sched
8cbbe86d
AK
4649wait_for_completion_interruptible_timeout(struct completion *x,
4650 unsigned long timeout)
0fec171c 4651{
8cbbe86d 4652 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4653}
8cbbe86d 4654EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4655
65eb3dc6
KD
4656/**
4657 * wait_for_completion_killable: - waits for completion of a task (killable)
4658 * @x: holds the state of this particular completion
4659 *
4660 * This waits to be signaled for completion of a specific task. It can be
4661 * interrupted by a kill signal.
4662 */
009e577e
MW
4663int __sched wait_for_completion_killable(struct completion *x)
4664{
4665 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4666 if (t == -ERESTARTSYS)
4667 return t;
4668 return 0;
4669}
4670EXPORT_SYMBOL(wait_for_completion_killable);
4671
0aa12fb4
SW
4672/**
4673 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4674 * @x: holds the state of this particular completion
4675 * @timeout: timeout value in jiffies
4676 *
4677 * This waits for either a completion of a specific task to be
4678 * signaled or for a specified timeout to expire. It can be
4679 * interrupted by a kill signal. The timeout is in jiffies.
4680 */
6bf41237 4681long __sched
0aa12fb4
SW
4682wait_for_completion_killable_timeout(struct completion *x,
4683 unsigned long timeout)
4684{
4685 return wait_for_common(x, timeout, TASK_KILLABLE);
4686}
4687EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4688
be4de352
DC
4689/**
4690 * try_wait_for_completion - try to decrement a completion without blocking
4691 * @x: completion structure
4692 *
4693 * Returns: 0 if a decrement cannot be done without blocking
4694 * 1 if a decrement succeeded.
4695 *
4696 * If a completion is being used as a counting completion,
4697 * attempt to decrement the counter without blocking. This
4698 * enables us to avoid waiting if the resource the completion
4699 * is protecting is not available.
4700 */
4701bool try_wait_for_completion(struct completion *x)
4702{
7539a3b3 4703 unsigned long flags;
be4de352
DC
4704 int ret = 1;
4705
7539a3b3 4706 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4707 if (!x->done)
4708 ret = 0;
4709 else
4710 x->done--;
7539a3b3 4711 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4712 return ret;
4713}
4714EXPORT_SYMBOL(try_wait_for_completion);
4715
4716/**
4717 * completion_done - Test to see if a completion has any waiters
4718 * @x: completion structure
4719 *
4720 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4721 * 1 if there are no waiters.
4722 *
4723 */
4724bool completion_done(struct completion *x)
4725{
7539a3b3 4726 unsigned long flags;
be4de352
DC
4727 int ret = 1;
4728
7539a3b3 4729 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4730 if (!x->done)
4731 ret = 0;
7539a3b3 4732 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4733 return ret;
4734}
4735EXPORT_SYMBOL(completion_done);
4736
8cbbe86d
AK
4737static long __sched
4738sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4739{
0fec171c
IM
4740 unsigned long flags;
4741 wait_queue_t wait;
4742
4743 init_waitqueue_entry(&wait, current);
1da177e4 4744
8cbbe86d 4745 __set_current_state(state);
1da177e4 4746
8cbbe86d
AK
4747 spin_lock_irqsave(&q->lock, flags);
4748 __add_wait_queue(q, &wait);
4749 spin_unlock(&q->lock);
4750 timeout = schedule_timeout(timeout);
4751 spin_lock_irq(&q->lock);
4752 __remove_wait_queue(q, &wait);
4753 spin_unlock_irqrestore(&q->lock, flags);
4754
4755 return timeout;
4756}
4757
4758void __sched interruptible_sleep_on(wait_queue_head_t *q)
4759{
4760 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4761}
1da177e4
LT
4762EXPORT_SYMBOL(interruptible_sleep_on);
4763
0fec171c 4764long __sched
95cdf3b7 4765interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4766{
8cbbe86d 4767 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4768}
1da177e4
LT
4769EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4770
0fec171c 4771void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4772{
8cbbe86d 4773 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4774}
1da177e4
LT
4775EXPORT_SYMBOL(sleep_on);
4776
0fec171c 4777long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4778{
8cbbe86d 4779 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4780}
1da177e4
LT
4781EXPORT_SYMBOL(sleep_on_timeout);
4782
b29739f9
IM
4783#ifdef CONFIG_RT_MUTEXES
4784
4785/*
4786 * rt_mutex_setprio - set the current priority of a task
4787 * @p: task
4788 * @prio: prio value (kernel-internal form)
4789 *
4790 * This function changes the 'effective' priority of a task. It does
4791 * not touch ->normal_prio like __setscheduler().
4792 *
4793 * Used by the rt_mutex code to implement priority inheritance logic.
4794 */
36c8b586 4795void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4796{
83b699ed 4797 int oldprio, on_rq, running;
70b97a7f 4798 struct rq *rq;
83ab0aa0 4799 const struct sched_class *prev_class;
b29739f9
IM
4800
4801 BUG_ON(prio < 0 || prio > MAX_PRIO);
4802
0122ec5b 4803 rq = __task_rq_lock(p);
b29739f9 4804
a8027073 4805 trace_sched_pi_setprio(p, prio);
d5f9f942 4806 oldprio = p->prio;
83ab0aa0 4807 prev_class = p->sched_class;
fd2f4419 4808 on_rq = p->on_rq;
051a1d1a 4809 running = task_current(rq, p);
0e1f3483 4810 if (on_rq)
69be72c1 4811 dequeue_task(rq, p, 0);
0e1f3483
HS
4812 if (running)
4813 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4814
4815 if (rt_prio(prio))
4816 p->sched_class = &rt_sched_class;
4817 else
4818 p->sched_class = &fair_sched_class;
4819
b29739f9
IM
4820 p->prio = prio;
4821
0e1f3483
HS
4822 if (running)
4823 p->sched_class->set_curr_task(rq);
da7a735e 4824 if (on_rq)
371fd7e7 4825 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4826
da7a735e 4827 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4828 __task_rq_unlock(rq);
b29739f9
IM
4829}
4830
4831#endif
4832
36c8b586 4833void set_user_nice(struct task_struct *p, long nice)
1da177e4 4834{
dd41f596 4835 int old_prio, delta, on_rq;
1da177e4 4836 unsigned long flags;
70b97a7f 4837 struct rq *rq;
1da177e4
LT
4838
4839 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4840 return;
4841 /*
4842 * We have to be careful, if called from sys_setpriority(),
4843 * the task might be in the middle of scheduling on another CPU.
4844 */
4845 rq = task_rq_lock(p, &flags);
4846 /*
4847 * The RT priorities are set via sched_setscheduler(), but we still
4848 * allow the 'normal' nice value to be set - but as expected
4849 * it wont have any effect on scheduling until the task is
dd41f596 4850 * SCHED_FIFO/SCHED_RR:
1da177e4 4851 */
e05606d3 4852 if (task_has_rt_policy(p)) {
1da177e4
LT
4853 p->static_prio = NICE_TO_PRIO(nice);
4854 goto out_unlock;
4855 }
fd2f4419 4856 on_rq = p->on_rq;
c09595f6 4857 if (on_rq)
69be72c1 4858 dequeue_task(rq, p, 0);
1da177e4 4859
1da177e4 4860 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4861 set_load_weight(p);
b29739f9
IM
4862 old_prio = p->prio;
4863 p->prio = effective_prio(p);
4864 delta = p->prio - old_prio;
1da177e4 4865
dd41f596 4866 if (on_rq) {
371fd7e7 4867 enqueue_task(rq, p, 0);
1da177e4 4868 /*
d5f9f942
AM
4869 * If the task increased its priority or is running and
4870 * lowered its priority, then reschedule its CPU:
1da177e4 4871 */
d5f9f942 4872 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4873 resched_task(rq->curr);
4874 }
4875out_unlock:
0122ec5b 4876 task_rq_unlock(rq, p, &flags);
1da177e4 4877}
1da177e4
LT
4878EXPORT_SYMBOL(set_user_nice);
4879
e43379f1
MM
4880/*
4881 * can_nice - check if a task can reduce its nice value
4882 * @p: task
4883 * @nice: nice value
4884 */
36c8b586 4885int can_nice(const struct task_struct *p, const int nice)
e43379f1 4886{
024f4747
MM
4887 /* convert nice value [19,-20] to rlimit style value [1,40] */
4888 int nice_rlim = 20 - nice;
48f24c4d 4889
78d7d407 4890 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4891 capable(CAP_SYS_NICE));
4892}
4893
1da177e4
LT
4894#ifdef __ARCH_WANT_SYS_NICE
4895
4896/*
4897 * sys_nice - change the priority of the current process.
4898 * @increment: priority increment
4899 *
4900 * sys_setpriority is a more generic, but much slower function that
4901 * does similar things.
4902 */
5add95d4 4903SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4904{
48f24c4d 4905 long nice, retval;
1da177e4
LT
4906
4907 /*
4908 * Setpriority might change our priority at the same moment.
4909 * We don't have to worry. Conceptually one call occurs first
4910 * and we have a single winner.
4911 */
e43379f1
MM
4912 if (increment < -40)
4913 increment = -40;
1da177e4
LT
4914 if (increment > 40)
4915 increment = 40;
4916
2b8f836f 4917 nice = TASK_NICE(current) + increment;
1da177e4
LT
4918 if (nice < -20)
4919 nice = -20;
4920 if (nice > 19)
4921 nice = 19;
4922
e43379f1
MM
4923 if (increment < 0 && !can_nice(current, nice))
4924 return -EPERM;
4925
1da177e4
LT
4926 retval = security_task_setnice(current, nice);
4927 if (retval)
4928 return retval;
4929
4930 set_user_nice(current, nice);
4931 return 0;
4932}
4933
4934#endif
4935
4936/**
4937 * task_prio - return the priority value of a given task.
4938 * @p: the task in question.
4939 *
4940 * This is the priority value as seen by users in /proc.
4941 * RT tasks are offset by -200. Normal tasks are centered
4942 * around 0, value goes from -16 to +15.
4943 */
36c8b586 4944int task_prio(const struct task_struct *p)
1da177e4
LT
4945{
4946 return p->prio - MAX_RT_PRIO;
4947}
4948
4949/**
4950 * task_nice - return the nice value of a given task.
4951 * @p: the task in question.
4952 */
36c8b586 4953int task_nice(const struct task_struct *p)
1da177e4
LT
4954{
4955 return TASK_NICE(p);
4956}
150d8bed 4957EXPORT_SYMBOL(task_nice);
1da177e4
LT
4958
4959/**
4960 * idle_cpu - is a given cpu idle currently?
4961 * @cpu: the processor in question.
4962 */
4963int idle_cpu(int cpu)
4964{
4965 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4966}
4967
1da177e4
LT
4968/**
4969 * idle_task - return the idle task for a given cpu.
4970 * @cpu: the processor in question.
4971 */
36c8b586 4972struct task_struct *idle_task(int cpu)
1da177e4
LT
4973{
4974 return cpu_rq(cpu)->idle;
4975}
4976
4977/**
4978 * find_process_by_pid - find a process with a matching PID value.
4979 * @pid: the pid in question.
4980 */
a9957449 4981static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4982{
228ebcbe 4983 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4984}
4985
4986/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4987static void
4988__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4989{
1da177e4
LT
4990 p->policy = policy;
4991 p->rt_priority = prio;
b29739f9
IM
4992 p->normal_prio = normal_prio(p);
4993 /* we are holding p->pi_lock already */
4994 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4995 if (rt_prio(p->prio))
4996 p->sched_class = &rt_sched_class;
4997 else
4998 p->sched_class = &fair_sched_class;
2dd73a4f 4999 set_load_weight(p);
1da177e4
LT
5000}
5001
c69e8d9c
DH
5002/*
5003 * check the target process has a UID that matches the current process's
5004 */
5005static bool check_same_owner(struct task_struct *p)
5006{
5007 const struct cred *cred = current_cred(), *pcred;
5008 bool match;
5009
5010 rcu_read_lock();
5011 pcred = __task_cred(p);
b0e77598
SH
5012 if (cred->user->user_ns == pcred->user->user_ns)
5013 match = (cred->euid == pcred->euid ||
5014 cred->euid == pcred->uid);
5015 else
5016 match = false;
c69e8d9c
DH
5017 rcu_read_unlock();
5018 return match;
5019}
5020
961ccddd 5021static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5022 const struct sched_param *param, bool user)
1da177e4 5023{
83b699ed 5024 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5025 unsigned long flags;
83ab0aa0 5026 const struct sched_class *prev_class;
70b97a7f 5027 struct rq *rq;
ca94c442 5028 int reset_on_fork;
1da177e4 5029
66e5393a
SR
5030 /* may grab non-irq protected spin_locks */
5031 BUG_ON(in_interrupt());
1da177e4
LT
5032recheck:
5033 /* double check policy once rq lock held */
ca94c442
LP
5034 if (policy < 0) {
5035 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5036 policy = oldpolicy = p->policy;
ca94c442
LP
5037 } else {
5038 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5039 policy &= ~SCHED_RESET_ON_FORK;
5040
5041 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5042 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5043 policy != SCHED_IDLE)
5044 return -EINVAL;
5045 }
5046
1da177e4
LT
5047 /*
5048 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5049 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5050 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5051 */
5052 if (param->sched_priority < 0 ||
95cdf3b7 5053 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5054 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5055 return -EINVAL;
e05606d3 5056 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5057 return -EINVAL;
5058
37e4ab3f
OC
5059 /*
5060 * Allow unprivileged RT tasks to decrease priority:
5061 */
961ccddd 5062 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5063 if (rt_policy(policy)) {
a44702e8
ON
5064 unsigned long rlim_rtprio =
5065 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5066
5067 /* can't set/change the rt policy */
5068 if (policy != p->policy && !rlim_rtprio)
5069 return -EPERM;
5070
5071 /* can't increase priority */
5072 if (param->sched_priority > p->rt_priority &&
5073 param->sched_priority > rlim_rtprio)
5074 return -EPERM;
5075 }
c02aa73b 5076
dd41f596 5077 /*
c02aa73b
DH
5078 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5079 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5080 */
c02aa73b
DH
5081 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5082 if (!can_nice(p, TASK_NICE(p)))
5083 return -EPERM;
5084 }
5fe1d75f 5085
37e4ab3f 5086 /* can't change other user's priorities */
c69e8d9c 5087 if (!check_same_owner(p))
37e4ab3f 5088 return -EPERM;
ca94c442
LP
5089
5090 /* Normal users shall not reset the sched_reset_on_fork flag */
5091 if (p->sched_reset_on_fork && !reset_on_fork)
5092 return -EPERM;
37e4ab3f 5093 }
1da177e4 5094
725aad24 5095 if (user) {
b0ae1981 5096 retval = security_task_setscheduler(p);
725aad24
JF
5097 if (retval)
5098 return retval;
5099 }
5100
b29739f9
IM
5101 /*
5102 * make sure no PI-waiters arrive (or leave) while we are
5103 * changing the priority of the task:
0122ec5b 5104 *
25985edc 5105 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5106 * runqueue lock must be held.
5107 */
0122ec5b 5108 rq = task_rq_lock(p, &flags);
dc61b1d6 5109
34f971f6
PZ
5110 /*
5111 * Changing the policy of the stop threads its a very bad idea
5112 */
5113 if (p == rq->stop) {
0122ec5b 5114 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5115 return -EINVAL;
5116 }
5117
a51e9198
DF
5118 /*
5119 * If not changing anything there's no need to proceed further:
5120 */
5121 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5122 param->sched_priority == p->rt_priority))) {
5123
5124 __task_rq_unlock(rq);
5125 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5126 return 0;
5127 }
5128
dc61b1d6
PZ
5129#ifdef CONFIG_RT_GROUP_SCHED
5130 if (user) {
5131 /*
5132 * Do not allow realtime tasks into groups that have no runtime
5133 * assigned.
5134 */
5135 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5136 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5137 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5138 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5139 return -EPERM;
5140 }
5141 }
5142#endif
5143
1da177e4
LT
5144 /* recheck policy now with rq lock held */
5145 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5146 policy = oldpolicy = -1;
0122ec5b 5147 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5148 goto recheck;
5149 }
fd2f4419 5150 on_rq = p->on_rq;
051a1d1a 5151 running = task_current(rq, p);
0e1f3483 5152 if (on_rq)
2e1cb74a 5153 deactivate_task(rq, p, 0);
0e1f3483
HS
5154 if (running)
5155 p->sched_class->put_prev_task(rq, p);
f6b53205 5156
ca94c442
LP
5157 p->sched_reset_on_fork = reset_on_fork;
5158
1da177e4 5159 oldprio = p->prio;
83ab0aa0 5160 prev_class = p->sched_class;
dd41f596 5161 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5162
0e1f3483
HS
5163 if (running)
5164 p->sched_class->set_curr_task(rq);
da7a735e 5165 if (on_rq)
dd41f596 5166 activate_task(rq, p, 0);
cb469845 5167
da7a735e 5168 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5169 task_rq_unlock(rq, p, &flags);
b29739f9 5170
95e02ca9
TG
5171 rt_mutex_adjust_pi(p);
5172
1da177e4
LT
5173 return 0;
5174}
961ccddd
RR
5175
5176/**
5177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5178 * @p: the task in question.
5179 * @policy: new policy.
5180 * @param: structure containing the new RT priority.
5181 *
5182 * NOTE that the task may be already dead.
5183 */
5184int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5185 const struct sched_param *param)
961ccddd
RR
5186{
5187 return __sched_setscheduler(p, policy, param, true);
5188}
1da177e4
LT
5189EXPORT_SYMBOL_GPL(sched_setscheduler);
5190
961ccddd
RR
5191/**
5192 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5193 * @p: the task in question.
5194 * @policy: new policy.
5195 * @param: structure containing the new RT priority.
5196 *
5197 * Just like sched_setscheduler, only don't bother checking if the
5198 * current context has permission. For example, this is needed in
5199 * stop_machine(): we create temporary high priority worker threads,
5200 * but our caller might not have that capability.
5201 */
5202int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5203 const struct sched_param *param)
961ccddd
RR
5204{
5205 return __sched_setscheduler(p, policy, param, false);
5206}
5207
95cdf3b7
IM
5208static int
5209do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5210{
1da177e4
LT
5211 struct sched_param lparam;
5212 struct task_struct *p;
36c8b586 5213 int retval;
1da177e4
LT
5214
5215 if (!param || pid < 0)
5216 return -EINVAL;
5217 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5218 return -EFAULT;
5fe1d75f
ON
5219
5220 rcu_read_lock();
5221 retval = -ESRCH;
1da177e4 5222 p = find_process_by_pid(pid);
5fe1d75f
ON
5223 if (p != NULL)
5224 retval = sched_setscheduler(p, policy, &lparam);
5225 rcu_read_unlock();
36c8b586 5226
1da177e4
LT
5227 return retval;
5228}
5229
5230/**
5231 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5232 * @pid: the pid in question.
5233 * @policy: new policy.
5234 * @param: structure containing the new RT priority.
5235 */
5add95d4
HC
5236SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5237 struct sched_param __user *, param)
1da177e4 5238{
c21761f1
JB
5239 /* negative values for policy are not valid */
5240 if (policy < 0)
5241 return -EINVAL;
5242
1da177e4
LT
5243 return do_sched_setscheduler(pid, policy, param);
5244}
5245
5246/**
5247 * sys_sched_setparam - set/change the RT priority of a thread
5248 * @pid: the pid in question.
5249 * @param: structure containing the new RT priority.
5250 */
5add95d4 5251SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5252{
5253 return do_sched_setscheduler(pid, -1, param);
5254}
5255
5256/**
5257 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5258 * @pid: the pid in question.
5259 */
5add95d4 5260SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5261{
36c8b586 5262 struct task_struct *p;
3a5c359a 5263 int retval;
1da177e4
LT
5264
5265 if (pid < 0)
3a5c359a 5266 return -EINVAL;
1da177e4
LT
5267
5268 retval = -ESRCH;
5fe85be0 5269 rcu_read_lock();
1da177e4
LT
5270 p = find_process_by_pid(pid);
5271 if (p) {
5272 retval = security_task_getscheduler(p);
5273 if (!retval)
ca94c442
LP
5274 retval = p->policy
5275 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5276 }
5fe85be0 5277 rcu_read_unlock();
1da177e4
LT
5278 return retval;
5279}
5280
5281/**
ca94c442 5282 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5283 * @pid: the pid in question.
5284 * @param: structure containing the RT priority.
5285 */
5add95d4 5286SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5287{
5288 struct sched_param lp;
36c8b586 5289 struct task_struct *p;
3a5c359a 5290 int retval;
1da177e4
LT
5291
5292 if (!param || pid < 0)
3a5c359a 5293 return -EINVAL;
1da177e4 5294
5fe85be0 5295 rcu_read_lock();
1da177e4
LT
5296 p = find_process_by_pid(pid);
5297 retval = -ESRCH;
5298 if (!p)
5299 goto out_unlock;
5300
5301 retval = security_task_getscheduler(p);
5302 if (retval)
5303 goto out_unlock;
5304
5305 lp.sched_priority = p->rt_priority;
5fe85be0 5306 rcu_read_unlock();
1da177e4
LT
5307
5308 /*
5309 * This one might sleep, we cannot do it with a spinlock held ...
5310 */
5311 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5312
1da177e4
LT
5313 return retval;
5314
5315out_unlock:
5fe85be0 5316 rcu_read_unlock();
1da177e4
LT
5317 return retval;
5318}
5319
96f874e2 5320long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5321{
5a16f3d3 5322 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5323 struct task_struct *p;
5324 int retval;
1da177e4 5325
95402b38 5326 get_online_cpus();
23f5d142 5327 rcu_read_lock();
1da177e4
LT
5328
5329 p = find_process_by_pid(pid);
5330 if (!p) {
23f5d142 5331 rcu_read_unlock();
95402b38 5332 put_online_cpus();
1da177e4
LT
5333 return -ESRCH;
5334 }
5335
23f5d142 5336 /* Prevent p going away */
1da177e4 5337 get_task_struct(p);
23f5d142 5338 rcu_read_unlock();
1da177e4 5339
5a16f3d3
RR
5340 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5341 retval = -ENOMEM;
5342 goto out_put_task;
5343 }
5344 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5345 retval = -ENOMEM;
5346 goto out_free_cpus_allowed;
5347 }
1da177e4 5348 retval = -EPERM;
b0e77598 5349 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5350 goto out_unlock;
5351
b0ae1981 5352 retval = security_task_setscheduler(p);
e7834f8f
DQ
5353 if (retval)
5354 goto out_unlock;
5355
5a16f3d3
RR
5356 cpuset_cpus_allowed(p, cpus_allowed);
5357 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5358again:
5a16f3d3 5359 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5360
8707d8b8 5361 if (!retval) {
5a16f3d3
RR
5362 cpuset_cpus_allowed(p, cpus_allowed);
5363 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5364 /*
5365 * We must have raced with a concurrent cpuset
5366 * update. Just reset the cpus_allowed to the
5367 * cpuset's cpus_allowed
5368 */
5a16f3d3 5369 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5370 goto again;
5371 }
5372 }
1da177e4 5373out_unlock:
5a16f3d3
RR
5374 free_cpumask_var(new_mask);
5375out_free_cpus_allowed:
5376 free_cpumask_var(cpus_allowed);
5377out_put_task:
1da177e4 5378 put_task_struct(p);
95402b38 5379 put_online_cpus();
1da177e4
LT
5380 return retval;
5381}
5382
5383static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5384 struct cpumask *new_mask)
1da177e4 5385{
96f874e2
RR
5386 if (len < cpumask_size())
5387 cpumask_clear(new_mask);
5388 else if (len > cpumask_size())
5389 len = cpumask_size();
5390
1da177e4
LT
5391 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5392}
5393
5394/**
5395 * sys_sched_setaffinity - set the cpu affinity of a process
5396 * @pid: pid of the process
5397 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5398 * @user_mask_ptr: user-space pointer to the new cpu mask
5399 */
5add95d4
HC
5400SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5401 unsigned long __user *, user_mask_ptr)
1da177e4 5402{
5a16f3d3 5403 cpumask_var_t new_mask;
1da177e4
LT
5404 int retval;
5405
5a16f3d3
RR
5406 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5407 return -ENOMEM;
1da177e4 5408
5a16f3d3
RR
5409 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5410 if (retval == 0)
5411 retval = sched_setaffinity(pid, new_mask);
5412 free_cpumask_var(new_mask);
5413 return retval;
1da177e4
LT
5414}
5415
96f874e2 5416long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5417{
36c8b586 5418 struct task_struct *p;
31605683 5419 unsigned long flags;
1da177e4 5420 int retval;
1da177e4 5421
95402b38 5422 get_online_cpus();
23f5d142 5423 rcu_read_lock();
1da177e4
LT
5424
5425 retval = -ESRCH;
5426 p = find_process_by_pid(pid);
5427 if (!p)
5428 goto out_unlock;
5429
e7834f8f
DQ
5430 retval = security_task_getscheduler(p);
5431 if (retval)
5432 goto out_unlock;
5433
013fdb80 5434 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5435 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5436 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5437
5438out_unlock:
23f5d142 5439 rcu_read_unlock();
95402b38 5440 put_online_cpus();
1da177e4 5441
9531b62f 5442 return retval;
1da177e4
LT
5443}
5444
5445/**
5446 * sys_sched_getaffinity - get the cpu affinity of a process
5447 * @pid: pid of the process
5448 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5449 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5450 */
5add95d4
HC
5451SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5452 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5453{
5454 int ret;
f17c8607 5455 cpumask_var_t mask;
1da177e4 5456
84fba5ec 5457 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5458 return -EINVAL;
5459 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5460 return -EINVAL;
5461
f17c8607
RR
5462 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5463 return -ENOMEM;
1da177e4 5464
f17c8607
RR
5465 ret = sched_getaffinity(pid, mask);
5466 if (ret == 0) {
8bc037fb 5467 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5468
5469 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5470 ret = -EFAULT;
5471 else
cd3d8031 5472 ret = retlen;
f17c8607
RR
5473 }
5474 free_cpumask_var(mask);
1da177e4 5475
f17c8607 5476 return ret;
1da177e4
LT
5477}
5478
5479/**
5480 * sys_sched_yield - yield the current processor to other threads.
5481 *
dd41f596
IM
5482 * This function yields the current CPU to other tasks. If there are no
5483 * other threads running on this CPU then this function will return.
1da177e4 5484 */
5add95d4 5485SYSCALL_DEFINE0(sched_yield)
1da177e4 5486{
70b97a7f 5487 struct rq *rq = this_rq_lock();
1da177e4 5488
2d72376b 5489 schedstat_inc(rq, yld_count);
4530d7ab 5490 current->sched_class->yield_task(rq);
1da177e4
LT
5491
5492 /*
5493 * Since we are going to call schedule() anyway, there's
5494 * no need to preempt or enable interrupts:
5495 */
5496 __release(rq->lock);
8a25d5de 5497 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5498 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5499 preempt_enable_no_resched();
5500
5501 schedule();
5502
5503 return 0;
5504}
5505
d86ee480
PZ
5506static inline int should_resched(void)
5507{
5508 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5509}
5510
e7b38404 5511static void __cond_resched(void)
1da177e4 5512{
e7aaaa69
FW
5513 add_preempt_count(PREEMPT_ACTIVE);
5514 schedule();
5515 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5516}
5517
02b67cc3 5518int __sched _cond_resched(void)
1da177e4 5519{
d86ee480 5520 if (should_resched()) {
1da177e4
LT
5521 __cond_resched();
5522 return 1;
5523 }
5524 return 0;
5525}
02b67cc3 5526EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5527
5528/*
613afbf8 5529 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5530 * call schedule, and on return reacquire the lock.
5531 *
41a2d6cf 5532 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5533 * operations here to prevent schedule() from being called twice (once via
5534 * spin_unlock(), once by hand).
5535 */
613afbf8 5536int __cond_resched_lock(spinlock_t *lock)
1da177e4 5537{
d86ee480 5538 int resched = should_resched();
6df3cecb
JK
5539 int ret = 0;
5540
f607c668
PZ
5541 lockdep_assert_held(lock);
5542
95c354fe 5543 if (spin_needbreak(lock) || resched) {
1da177e4 5544 spin_unlock(lock);
d86ee480 5545 if (resched)
95c354fe
NP
5546 __cond_resched();
5547 else
5548 cpu_relax();
6df3cecb 5549 ret = 1;
1da177e4 5550 spin_lock(lock);
1da177e4 5551 }
6df3cecb 5552 return ret;
1da177e4 5553}
613afbf8 5554EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5555
613afbf8 5556int __sched __cond_resched_softirq(void)
1da177e4
LT
5557{
5558 BUG_ON(!in_softirq());
5559
d86ee480 5560 if (should_resched()) {
98d82567 5561 local_bh_enable();
1da177e4
LT
5562 __cond_resched();
5563 local_bh_disable();
5564 return 1;
5565 }
5566 return 0;
5567}
613afbf8 5568EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5569
1da177e4
LT
5570/**
5571 * yield - yield the current processor to other threads.
5572 *
72fd4a35 5573 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5574 * thread runnable and calls sys_sched_yield().
5575 */
5576void __sched yield(void)
5577{
5578 set_current_state(TASK_RUNNING);
5579 sys_sched_yield();
5580}
1da177e4
LT
5581EXPORT_SYMBOL(yield);
5582
d95f4122
MG
5583/**
5584 * yield_to - yield the current processor to another thread in
5585 * your thread group, or accelerate that thread toward the
5586 * processor it's on.
16addf95
RD
5587 * @p: target task
5588 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5589 *
5590 * It's the caller's job to ensure that the target task struct
5591 * can't go away on us before we can do any checks.
5592 *
5593 * Returns true if we indeed boosted the target task.
5594 */
5595bool __sched yield_to(struct task_struct *p, bool preempt)
5596{
5597 struct task_struct *curr = current;
5598 struct rq *rq, *p_rq;
5599 unsigned long flags;
5600 bool yielded = 0;
5601
5602 local_irq_save(flags);
5603 rq = this_rq();
5604
5605again:
5606 p_rq = task_rq(p);
5607 double_rq_lock(rq, p_rq);
5608 while (task_rq(p) != p_rq) {
5609 double_rq_unlock(rq, p_rq);
5610 goto again;
5611 }
5612
5613 if (!curr->sched_class->yield_to_task)
5614 goto out;
5615
5616 if (curr->sched_class != p->sched_class)
5617 goto out;
5618
5619 if (task_running(p_rq, p) || p->state)
5620 goto out;
5621
5622 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5623 if (yielded) {
d95f4122 5624 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5625 /*
5626 * Make p's CPU reschedule; pick_next_entity takes care of
5627 * fairness.
5628 */
5629 if (preempt && rq != p_rq)
5630 resched_task(p_rq->curr);
5631 }
d95f4122
MG
5632
5633out:
5634 double_rq_unlock(rq, p_rq);
5635 local_irq_restore(flags);
5636
5637 if (yielded)
5638 schedule();
5639
5640 return yielded;
5641}
5642EXPORT_SYMBOL_GPL(yield_to);
5643
1da177e4 5644/*
41a2d6cf 5645 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5646 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5647 */
5648void __sched io_schedule(void)
5649{
54d35f29 5650 struct rq *rq = raw_rq();
1da177e4 5651
0ff92245 5652 delayacct_blkio_start();
1da177e4 5653 atomic_inc(&rq->nr_iowait);
73c10101 5654 blk_flush_plug(current);
8f0dfc34 5655 current->in_iowait = 1;
1da177e4 5656 schedule();
8f0dfc34 5657 current->in_iowait = 0;
1da177e4 5658 atomic_dec(&rq->nr_iowait);
0ff92245 5659 delayacct_blkio_end();
1da177e4 5660}
1da177e4
LT
5661EXPORT_SYMBOL(io_schedule);
5662
5663long __sched io_schedule_timeout(long timeout)
5664{
54d35f29 5665 struct rq *rq = raw_rq();
1da177e4
LT
5666 long ret;
5667
0ff92245 5668 delayacct_blkio_start();
1da177e4 5669 atomic_inc(&rq->nr_iowait);
73c10101 5670 blk_flush_plug(current);
8f0dfc34 5671 current->in_iowait = 1;
1da177e4 5672 ret = schedule_timeout(timeout);
8f0dfc34 5673 current->in_iowait = 0;
1da177e4 5674 atomic_dec(&rq->nr_iowait);
0ff92245 5675 delayacct_blkio_end();
1da177e4
LT
5676 return ret;
5677}
5678
5679/**
5680 * sys_sched_get_priority_max - return maximum RT priority.
5681 * @policy: scheduling class.
5682 *
5683 * this syscall returns the maximum rt_priority that can be used
5684 * by a given scheduling class.
5685 */
5add95d4 5686SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5687{
5688 int ret = -EINVAL;
5689
5690 switch (policy) {
5691 case SCHED_FIFO:
5692 case SCHED_RR:
5693 ret = MAX_USER_RT_PRIO-1;
5694 break;
5695 case SCHED_NORMAL:
b0a9499c 5696 case SCHED_BATCH:
dd41f596 5697 case SCHED_IDLE:
1da177e4
LT
5698 ret = 0;
5699 break;
5700 }
5701 return ret;
5702}
5703
5704/**
5705 * sys_sched_get_priority_min - return minimum RT priority.
5706 * @policy: scheduling class.
5707 *
5708 * this syscall returns the minimum rt_priority that can be used
5709 * by a given scheduling class.
5710 */
5add95d4 5711SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5712{
5713 int ret = -EINVAL;
5714
5715 switch (policy) {
5716 case SCHED_FIFO:
5717 case SCHED_RR:
5718 ret = 1;
5719 break;
5720 case SCHED_NORMAL:
b0a9499c 5721 case SCHED_BATCH:
dd41f596 5722 case SCHED_IDLE:
1da177e4
LT
5723 ret = 0;
5724 }
5725 return ret;
5726}
5727
5728/**
5729 * sys_sched_rr_get_interval - return the default timeslice of a process.
5730 * @pid: pid of the process.
5731 * @interval: userspace pointer to the timeslice value.
5732 *
5733 * this syscall writes the default timeslice value of a given process
5734 * into the user-space timespec buffer. A value of '0' means infinity.
5735 */
17da2bd9 5736SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5737 struct timespec __user *, interval)
1da177e4 5738{
36c8b586 5739 struct task_struct *p;
a4ec24b4 5740 unsigned int time_slice;
dba091b9
TG
5741 unsigned long flags;
5742 struct rq *rq;
3a5c359a 5743 int retval;
1da177e4 5744 struct timespec t;
1da177e4
LT
5745
5746 if (pid < 0)
3a5c359a 5747 return -EINVAL;
1da177e4
LT
5748
5749 retval = -ESRCH;
1a551ae7 5750 rcu_read_lock();
1da177e4
LT
5751 p = find_process_by_pid(pid);
5752 if (!p)
5753 goto out_unlock;
5754
5755 retval = security_task_getscheduler(p);
5756 if (retval)
5757 goto out_unlock;
5758
dba091b9
TG
5759 rq = task_rq_lock(p, &flags);
5760 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5761 task_rq_unlock(rq, p, &flags);
a4ec24b4 5762
1a551ae7 5763 rcu_read_unlock();
a4ec24b4 5764 jiffies_to_timespec(time_slice, &t);
1da177e4 5765 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5766 return retval;
3a5c359a 5767
1da177e4 5768out_unlock:
1a551ae7 5769 rcu_read_unlock();
1da177e4
LT
5770 return retval;
5771}
5772
7c731e0a 5773static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5774
82a1fcb9 5775void sched_show_task(struct task_struct *p)
1da177e4 5776{
1da177e4 5777 unsigned long free = 0;
36c8b586 5778 unsigned state;
1da177e4 5779
1da177e4 5780 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5781 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5782 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5783#if BITS_PER_LONG == 32
1da177e4 5784 if (state == TASK_RUNNING)
3df0fc5b 5785 printk(KERN_CONT " running ");
1da177e4 5786 else
3df0fc5b 5787 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5788#else
5789 if (state == TASK_RUNNING)
3df0fc5b 5790 printk(KERN_CONT " running task ");
1da177e4 5791 else
3df0fc5b 5792 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5793#endif
5794#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5795 free = stack_not_used(p);
1da177e4 5796#endif
3df0fc5b 5797 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5798 task_pid_nr(p), task_pid_nr(p->real_parent),
5799 (unsigned long)task_thread_info(p)->flags);
1da177e4 5800
5fb5e6de 5801 show_stack(p, NULL);
1da177e4
LT
5802}
5803
e59e2ae2 5804void show_state_filter(unsigned long state_filter)
1da177e4 5805{
36c8b586 5806 struct task_struct *g, *p;
1da177e4 5807
4bd77321 5808#if BITS_PER_LONG == 32
3df0fc5b
PZ
5809 printk(KERN_INFO
5810 " task PC stack pid father\n");
1da177e4 5811#else
3df0fc5b
PZ
5812 printk(KERN_INFO
5813 " task PC stack pid father\n");
1da177e4
LT
5814#endif
5815 read_lock(&tasklist_lock);
5816 do_each_thread(g, p) {
5817 /*
5818 * reset the NMI-timeout, listing all files on a slow
25985edc 5819 * console might take a lot of time:
1da177e4
LT
5820 */
5821 touch_nmi_watchdog();
39bc89fd 5822 if (!state_filter || (p->state & state_filter))
82a1fcb9 5823 sched_show_task(p);
1da177e4
LT
5824 } while_each_thread(g, p);
5825
04c9167f
JF
5826 touch_all_softlockup_watchdogs();
5827
dd41f596
IM
5828#ifdef CONFIG_SCHED_DEBUG
5829 sysrq_sched_debug_show();
5830#endif
1da177e4 5831 read_unlock(&tasklist_lock);
e59e2ae2
IM
5832 /*
5833 * Only show locks if all tasks are dumped:
5834 */
93335a21 5835 if (!state_filter)
e59e2ae2 5836 debug_show_all_locks();
1da177e4
LT
5837}
5838
1df21055
IM
5839void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5840{
dd41f596 5841 idle->sched_class = &idle_sched_class;
1df21055
IM
5842}
5843
f340c0d1
IM
5844/**
5845 * init_idle - set up an idle thread for a given CPU
5846 * @idle: task in question
5847 * @cpu: cpu the idle task belongs to
5848 *
5849 * NOTE: this function does not set the idle thread's NEED_RESCHED
5850 * flag, to make booting more robust.
5851 */
5c1e1767 5852void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5853{
70b97a7f 5854 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5855 unsigned long flags;
5856
05fa785c 5857 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5858
dd41f596 5859 __sched_fork(idle);
06b83b5f 5860 idle->state = TASK_RUNNING;
dd41f596
IM
5861 idle->se.exec_start = sched_clock();
5862
96f874e2 5863 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5864 /*
5865 * We're having a chicken and egg problem, even though we are
5866 * holding rq->lock, the cpu isn't yet set to this cpu so the
5867 * lockdep check in task_group() will fail.
5868 *
5869 * Similar case to sched_fork(). / Alternatively we could
5870 * use task_rq_lock() here and obtain the other rq->lock.
5871 *
5872 * Silence PROVE_RCU
5873 */
5874 rcu_read_lock();
dd41f596 5875 __set_task_cpu(idle, cpu);
6506cf6c 5876 rcu_read_unlock();
1da177e4 5877
1da177e4 5878 rq->curr = rq->idle = idle;
3ca7a440
PZ
5879#if defined(CONFIG_SMP)
5880 idle->on_cpu = 1;
4866cde0 5881#endif
05fa785c 5882 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5883
5884 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5885 task_thread_info(idle)->preempt_count = 0;
625f2a37 5886
dd41f596
IM
5887 /*
5888 * The idle tasks have their own, simple scheduling class:
5889 */
5890 idle->sched_class = &idle_sched_class;
868baf07 5891 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5892}
5893
5894/*
5895 * In a system that switches off the HZ timer nohz_cpu_mask
5896 * indicates which cpus entered this state. This is used
5897 * in the rcu update to wait only for active cpus. For system
5898 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5899 * always be CPU_BITS_NONE.
1da177e4 5900 */
6a7b3dc3 5901cpumask_var_t nohz_cpu_mask;
1da177e4 5902
19978ca6
IM
5903/*
5904 * Increase the granularity value when there are more CPUs,
5905 * because with more CPUs the 'effective latency' as visible
5906 * to users decreases. But the relationship is not linear,
5907 * so pick a second-best guess by going with the log2 of the
5908 * number of CPUs.
5909 *
5910 * This idea comes from the SD scheduler of Con Kolivas:
5911 */
acb4a848 5912static int get_update_sysctl_factor(void)
19978ca6 5913{
4ca3ef71 5914 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5915 unsigned int factor;
5916
5917 switch (sysctl_sched_tunable_scaling) {
5918 case SCHED_TUNABLESCALING_NONE:
5919 factor = 1;
5920 break;
5921 case SCHED_TUNABLESCALING_LINEAR:
5922 factor = cpus;
5923 break;
5924 case SCHED_TUNABLESCALING_LOG:
5925 default:
5926 factor = 1 + ilog2(cpus);
5927 break;
5928 }
19978ca6 5929
acb4a848
CE
5930 return factor;
5931}
19978ca6 5932
acb4a848
CE
5933static void update_sysctl(void)
5934{
5935 unsigned int factor = get_update_sysctl_factor();
19978ca6 5936
0bcdcf28
CE
5937#define SET_SYSCTL(name) \
5938 (sysctl_##name = (factor) * normalized_sysctl_##name)
5939 SET_SYSCTL(sched_min_granularity);
5940 SET_SYSCTL(sched_latency);
5941 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5942#undef SET_SYSCTL
5943}
55cd5340 5944
0bcdcf28
CE
5945static inline void sched_init_granularity(void)
5946{
5947 update_sysctl();
19978ca6
IM
5948}
5949
1da177e4
LT
5950#ifdef CONFIG_SMP
5951/*
5952 * This is how migration works:
5953 *
969c7921
TH
5954 * 1) we invoke migration_cpu_stop() on the target CPU using
5955 * stop_one_cpu().
5956 * 2) stopper starts to run (implicitly forcing the migrated thread
5957 * off the CPU)
5958 * 3) it checks whether the migrated task is still in the wrong runqueue.
5959 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5960 * it and puts it into the right queue.
969c7921
TH
5961 * 5) stopper completes and stop_one_cpu() returns and the migration
5962 * is done.
1da177e4
LT
5963 */
5964
5965/*
5966 * Change a given task's CPU affinity. Migrate the thread to a
5967 * proper CPU and schedule it away if the CPU it's executing on
5968 * is removed from the allowed bitmask.
5969 *
5970 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5971 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5972 * call is not atomic; no spinlocks may be held.
5973 */
96f874e2 5974int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5975{
5976 unsigned long flags;
70b97a7f 5977 struct rq *rq;
969c7921 5978 unsigned int dest_cpu;
48f24c4d 5979 int ret = 0;
1da177e4
LT
5980
5981 rq = task_rq_lock(p, &flags);
e2912009 5982
db44fc01
YZ
5983 if (cpumask_equal(&p->cpus_allowed, new_mask))
5984 goto out;
5985
6ad4c188 5986 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5987 ret = -EINVAL;
5988 goto out;
5989 }
5990
db44fc01 5991 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5992 ret = -EINVAL;
5993 goto out;
5994 }
5995
73fe6aae 5996 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5997 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5998 else {
96f874e2
RR
5999 cpumask_copy(&p->cpus_allowed, new_mask);
6000 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6001 }
6002
1da177e4 6003 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6004 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6005 goto out;
6006
969c7921 6007 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6008 if (p->on_rq) {
969c7921 6009 struct migration_arg arg = { p, dest_cpu };
1da177e4 6010 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6011 task_rq_unlock(rq, p, &flags);
969c7921 6012 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6013 tlb_migrate_finish(p->mm);
6014 return 0;
6015 }
6016out:
0122ec5b 6017 task_rq_unlock(rq, p, &flags);
48f24c4d 6018
1da177e4
LT
6019 return ret;
6020}
cd8ba7cd 6021EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6022
6023/*
41a2d6cf 6024 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6025 * this because either it can't run here any more (set_cpus_allowed()
6026 * away from this CPU, or CPU going down), or because we're
6027 * attempting to rebalance this task on exec (sched_exec).
6028 *
6029 * So we race with normal scheduler movements, but that's OK, as long
6030 * as the task is no longer on this CPU.
efc30814
KK
6031 *
6032 * Returns non-zero if task was successfully migrated.
1da177e4 6033 */
efc30814 6034static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6035{
70b97a7f 6036 struct rq *rq_dest, *rq_src;
e2912009 6037 int ret = 0;
1da177e4 6038
e761b772 6039 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6040 return ret;
1da177e4
LT
6041
6042 rq_src = cpu_rq(src_cpu);
6043 rq_dest = cpu_rq(dest_cpu);
6044
0122ec5b 6045 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6046 double_rq_lock(rq_src, rq_dest);
6047 /* Already moved. */
6048 if (task_cpu(p) != src_cpu)
b1e38734 6049 goto done;
1da177e4 6050 /* Affinity changed (again). */
96f874e2 6051 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6052 goto fail;
1da177e4 6053
e2912009
PZ
6054 /*
6055 * If we're not on a rq, the next wake-up will ensure we're
6056 * placed properly.
6057 */
fd2f4419 6058 if (p->on_rq) {
2e1cb74a 6059 deactivate_task(rq_src, p, 0);
e2912009 6060 set_task_cpu(p, dest_cpu);
dd41f596 6061 activate_task(rq_dest, p, 0);
15afe09b 6062 check_preempt_curr(rq_dest, p, 0);
1da177e4 6063 }
b1e38734 6064done:
efc30814 6065 ret = 1;
b1e38734 6066fail:
1da177e4 6067 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6068 raw_spin_unlock(&p->pi_lock);
efc30814 6069 return ret;
1da177e4
LT
6070}
6071
6072/*
969c7921
TH
6073 * migration_cpu_stop - this will be executed by a highprio stopper thread
6074 * and performs thread migration by bumping thread off CPU then
6075 * 'pushing' onto another runqueue.
1da177e4 6076 */
969c7921 6077static int migration_cpu_stop(void *data)
1da177e4 6078{
969c7921 6079 struct migration_arg *arg = data;
f7b4cddc 6080
969c7921
TH
6081 /*
6082 * The original target cpu might have gone down and we might
6083 * be on another cpu but it doesn't matter.
6084 */
f7b4cddc 6085 local_irq_disable();
969c7921 6086 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6087 local_irq_enable();
1da177e4 6088 return 0;
f7b4cddc
ON
6089}
6090
1da177e4 6091#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6092
054b9108 6093/*
48c5ccae
PZ
6094 * Ensures that the idle task is using init_mm right before its cpu goes
6095 * offline.
054b9108 6096 */
48c5ccae 6097void idle_task_exit(void)
1da177e4 6098{
48c5ccae 6099 struct mm_struct *mm = current->active_mm;
e76bd8d9 6100
48c5ccae 6101 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6102
48c5ccae
PZ
6103 if (mm != &init_mm)
6104 switch_mm(mm, &init_mm, current);
6105 mmdrop(mm);
1da177e4
LT
6106}
6107
6108/*
6109 * While a dead CPU has no uninterruptible tasks queued at this point,
6110 * it might still have a nonzero ->nr_uninterruptible counter, because
6111 * for performance reasons the counter is not stricly tracking tasks to
6112 * their home CPUs. So we just add the counter to another CPU's counter,
6113 * to keep the global sum constant after CPU-down:
6114 */
70b97a7f 6115static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6116{
6ad4c188 6117 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6118
1da177e4
LT
6119 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6120 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6121}
6122
dd41f596 6123/*
48c5ccae 6124 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6125 */
48c5ccae 6126static void calc_global_load_remove(struct rq *rq)
1da177e4 6127{
48c5ccae
PZ
6128 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6129 rq->calc_load_active = 0;
1da177e4
LT
6130}
6131
48f24c4d 6132/*
48c5ccae
PZ
6133 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6134 * try_to_wake_up()->select_task_rq().
6135 *
6136 * Called with rq->lock held even though we'er in stop_machine() and
6137 * there's no concurrency possible, we hold the required locks anyway
6138 * because of lock validation efforts.
1da177e4 6139 */
48c5ccae 6140static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6141{
70b97a7f 6142 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6143 struct task_struct *next, *stop = rq->stop;
6144 int dest_cpu;
1da177e4
LT
6145
6146 /*
48c5ccae
PZ
6147 * Fudge the rq selection such that the below task selection loop
6148 * doesn't get stuck on the currently eligible stop task.
6149 *
6150 * We're currently inside stop_machine() and the rq is either stuck
6151 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6152 * either way we should never end up calling schedule() until we're
6153 * done here.
1da177e4 6154 */
48c5ccae 6155 rq->stop = NULL;
48f24c4d 6156
dd41f596 6157 for ( ; ; ) {
48c5ccae
PZ
6158 /*
6159 * There's this thread running, bail when that's the only
6160 * remaining thread.
6161 */
6162 if (rq->nr_running == 1)
dd41f596 6163 break;
48c5ccae 6164
b67802ea 6165 next = pick_next_task(rq);
48c5ccae 6166 BUG_ON(!next);
79c53799 6167 next->sched_class->put_prev_task(rq, next);
e692ab53 6168
48c5ccae
PZ
6169 /* Find suitable destination for @next, with force if needed. */
6170 dest_cpu = select_fallback_rq(dead_cpu, next);
6171 raw_spin_unlock(&rq->lock);
6172
6173 __migrate_task(next, dead_cpu, dest_cpu);
6174
6175 raw_spin_lock(&rq->lock);
1da177e4 6176 }
dce48a84 6177
48c5ccae 6178 rq->stop = stop;
dce48a84 6179}
48c5ccae 6180
1da177e4
LT
6181#endif /* CONFIG_HOTPLUG_CPU */
6182
e692ab53
NP
6183#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6184
6185static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6186 {
6187 .procname = "sched_domain",
c57baf1e 6188 .mode = 0555,
e0361851 6189 },
56992309 6190 {}
e692ab53
NP
6191};
6192
6193static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6194 {
6195 .procname = "kernel",
c57baf1e 6196 .mode = 0555,
e0361851
AD
6197 .child = sd_ctl_dir,
6198 },
56992309 6199 {}
e692ab53
NP
6200};
6201
6202static struct ctl_table *sd_alloc_ctl_entry(int n)
6203{
6204 struct ctl_table *entry =
5cf9f062 6205 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6206
e692ab53
NP
6207 return entry;
6208}
6209
6382bc90
MM
6210static void sd_free_ctl_entry(struct ctl_table **tablep)
6211{
cd790076 6212 struct ctl_table *entry;
6382bc90 6213
cd790076
MM
6214 /*
6215 * In the intermediate directories, both the child directory and
6216 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6217 * will always be set. In the lowest directory the names are
cd790076
MM
6218 * static strings and all have proc handlers.
6219 */
6220 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6221 if (entry->child)
6222 sd_free_ctl_entry(&entry->child);
cd790076
MM
6223 if (entry->proc_handler == NULL)
6224 kfree(entry->procname);
6225 }
6382bc90
MM
6226
6227 kfree(*tablep);
6228 *tablep = NULL;
6229}
6230
e692ab53 6231static void
e0361851 6232set_table_entry(struct ctl_table *entry,
e692ab53
NP
6233 const char *procname, void *data, int maxlen,
6234 mode_t mode, proc_handler *proc_handler)
6235{
e692ab53
NP
6236 entry->procname = procname;
6237 entry->data = data;
6238 entry->maxlen = maxlen;
6239 entry->mode = mode;
6240 entry->proc_handler = proc_handler;
6241}
6242
6243static struct ctl_table *
6244sd_alloc_ctl_domain_table(struct sched_domain *sd)
6245{
a5d8c348 6246 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6247
ad1cdc1d
MM
6248 if (table == NULL)
6249 return NULL;
6250
e0361851 6251 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6252 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6253 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6254 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6255 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6256 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6257 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6258 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6259 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6260 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6261 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6262 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6263 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6264 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6265 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6266 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6267 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6268 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6269 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6270 &sd->cache_nice_tries,
6271 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6272 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6273 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6274 set_table_entry(&table[11], "name", sd->name,
6275 CORENAME_MAX_SIZE, 0444, proc_dostring);
6276 /* &table[12] is terminator */
e692ab53
NP
6277
6278 return table;
6279}
6280
9a4e7159 6281static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6282{
6283 struct ctl_table *entry, *table;
6284 struct sched_domain *sd;
6285 int domain_num = 0, i;
6286 char buf[32];
6287
6288 for_each_domain(cpu, sd)
6289 domain_num++;
6290 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6291 if (table == NULL)
6292 return NULL;
e692ab53
NP
6293
6294 i = 0;
6295 for_each_domain(cpu, sd) {
6296 snprintf(buf, 32, "domain%d", i);
e692ab53 6297 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6298 entry->mode = 0555;
e692ab53
NP
6299 entry->child = sd_alloc_ctl_domain_table(sd);
6300 entry++;
6301 i++;
6302 }
6303 return table;
6304}
6305
6306static struct ctl_table_header *sd_sysctl_header;
6382bc90 6307static void register_sched_domain_sysctl(void)
e692ab53 6308{
6ad4c188 6309 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6310 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6311 char buf[32];
6312
7378547f
MM
6313 WARN_ON(sd_ctl_dir[0].child);
6314 sd_ctl_dir[0].child = entry;
6315
ad1cdc1d
MM
6316 if (entry == NULL)
6317 return;
6318
6ad4c188 6319 for_each_possible_cpu(i) {
e692ab53 6320 snprintf(buf, 32, "cpu%d", i);
e692ab53 6321 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6322 entry->mode = 0555;
e692ab53 6323 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6324 entry++;
e692ab53 6325 }
7378547f
MM
6326
6327 WARN_ON(sd_sysctl_header);
e692ab53
NP
6328 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6329}
6382bc90 6330
7378547f 6331/* may be called multiple times per register */
6382bc90
MM
6332static void unregister_sched_domain_sysctl(void)
6333{
7378547f
MM
6334 if (sd_sysctl_header)
6335 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6336 sd_sysctl_header = NULL;
7378547f
MM
6337 if (sd_ctl_dir[0].child)
6338 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6339}
e692ab53 6340#else
6382bc90
MM
6341static void register_sched_domain_sysctl(void)
6342{
6343}
6344static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6345{
6346}
6347#endif
6348
1f11eb6a
GH
6349static void set_rq_online(struct rq *rq)
6350{
6351 if (!rq->online) {
6352 const struct sched_class *class;
6353
c6c4927b 6354 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6355 rq->online = 1;
6356
6357 for_each_class(class) {
6358 if (class->rq_online)
6359 class->rq_online(rq);
6360 }
6361 }
6362}
6363
6364static void set_rq_offline(struct rq *rq)
6365{
6366 if (rq->online) {
6367 const struct sched_class *class;
6368
6369 for_each_class(class) {
6370 if (class->rq_offline)
6371 class->rq_offline(rq);
6372 }
6373
c6c4927b 6374 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6375 rq->online = 0;
6376 }
6377}
6378
1da177e4
LT
6379/*
6380 * migration_call - callback that gets triggered when a CPU is added.
6381 * Here we can start up the necessary migration thread for the new CPU.
6382 */
48f24c4d
IM
6383static int __cpuinit
6384migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6385{
48f24c4d 6386 int cpu = (long)hcpu;
1da177e4 6387 unsigned long flags;
969c7921 6388 struct rq *rq = cpu_rq(cpu);
1da177e4 6389
48c5ccae 6390 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6391
1da177e4 6392 case CPU_UP_PREPARE:
a468d389 6393 rq->calc_load_update = calc_load_update;
1da177e4 6394 break;
48f24c4d 6395
1da177e4 6396 case CPU_ONLINE:
1f94ef59 6397 /* Update our root-domain */
05fa785c 6398 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6399 if (rq->rd) {
c6c4927b 6400 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6401
6402 set_rq_online(rq);
1f94ef59 6403 }
05fa785c 6404 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6405 break;
48f24c4d 6406
1da177e4 6407#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6408 case CPU_DYING:
317f3941 6409 sched_ttwu_pending();
57d885fe 6410 /* Update our root-domain */
05fa785c 6411 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6412 if (rq->rd) {
c6c4927b 6413 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6414 set_rq_offline(rq);
57d885fe 6415 }
48c5ccae
PZ
6416 migrate_tasks(cpu);
6417 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6418 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6419
6420 migrate_nr_uninterruptible(rq);
6421 calc_global_load_remove(rq);
57d885fe 6422 break;
1da177e4
LT
6423#endif
6424 }
49c022e6
PZ
6425
6426 update_max_interval();
6427
1da177e4
LT
6428 return NOTIFY_OK;
6429}
6430
f38b0820
PM
6431/*
6432 * Register at high priority so that task migration (migrate_all_tasks)
6433 * happens before everything else. This has to be lower priority than
cdd6c482 6434 * the notifier in the perf_event subsystem, though.
1da177e4 6435 */
26c2143b 6436static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6437 .notifier_call = migration_call,
50a323b7 6438 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6439};
6440
3a101d05
TH
6441static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6442 unsigned long action, void *hcpu)
6443{
6444 switch (action & ~CPU_TASKS_FROZEN) {
6445 case CPU_ONLINE:
6446 case CPU_DOWN_FAILED:
6447 set_cpu_active((long)hcpu, true);
6448 return NOTIFY_OK;
6449 default:
6450 return NOTIFY_DONE;
6451 }
6452}
6453
6454static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6455 unsigned long action, void *hcpu)
6456{
6457 switch (action & ~CPU_TASKS_FROZEN) {
6458 case CPU_DOWN_PREPARE:
6459 set_cpu_active((long)hcpu, false);
6460 return NOTIFY_OK;
6461 default:
6462 return NOTIFY_DONE;
6463 }
6464}
6465
7babe8db 6466static int __init migration_init(void)
1da177e4
LT
6467{
6468 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6469 int err;
48f24c4d 6470
3a101d05 6471 /* Initialize migration for the boot CPU */
07dccf33
AM
6472 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6473 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6474 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6475 register_cpu_notifier(&migration_notifier);
7babe8db 6476
3a101d05
TH
6477 /* Register cpu active notifiers */
6478 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6479 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6480
a004cd42 6481 return 0;
1da177e4 6482}
7babe8db 6483early_initcall(migration_init);
1da177e4
LT
6484#endif
6485
6486#ifdef CONFIG_SMP
476f3534 6487
4cb98839
PZ
6488static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6489
3e9830dc 6490#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6491
f6630114
MT
6492static __read_mostly int sched_domain_debug_enabled;
6493
6494static int __init sched_domain_debug_setup(char *str)
6495{
6496 sched_domain_debug_enabled = 1;
6497
6498 return 0;
6499}
6500early_param("sched_debug", sched_domain_debug_setup);
6501
7c16ec58 6502static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6503 struct cpumask *groupmask)
1da177e4 6504{
4dcf6aff 6505 struct sched_group *group = sd->groups;
434d53b0 6506 char str[256];
1da177e4 6507
968ea6d8 6508 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6509 cpumask_clear(groupmask);
4dcf6aff
IM
6510
6511 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6512
6513 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6514 printk("does not load-balance\n");
4dcf6aff 6515 if (sd->parent)
3df0fc5b
PZ
6516 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6517 " has parent");
4dcf6aff 6518 return -1;
41c7ce9a
NP
6519 }
6520
3df0fc5b 6521 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6522
758b2cdc 6523 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6524 printk(KERN_ERR "ERROR: domain->span does not contain "
6525 "CPU%d\n", cpu);
4dcf6aff 6526 }
758b2cdc 6527 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6528 printk(KERN_ERR "ERROR: domain->groups does not contain"
6529 " CPU%d\n", cpu);
4dcf6aff 6530 }
1da177e4 6531
4dcf6aff 6532 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6533 do {
4dcf6aff 6534 if (!group) {
3df0fc5b
PZ
6535 printk("\n");
6536 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6537 break;
6538 }
6539
18a3885f 6540 if (!group->cpu_power) {
3df0fc5b
PZ
6541 printk(KERN_CONT "\n");
6542 printk(KERN_ERR "ERROR: domain->cpu_power not "
6543 "set\n");
4dcf6aff
IM
6544 break;
6545 }
1da177e4 6546
758b2cdc 6547 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6548 printk(KERN_CONT "\n");
6549 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6550 break;
6551 }
1da177e4 6552
758b2cdc 6553 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6554 printk(KERN_CONT "\n");
6555 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6556 break;
6557 }
1da177e4 6558
758b2cdc 6559 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6560
968ea6d8 6561 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6562
3df0fc5b 6563 printk(KERN_CONT " %s", str);
1399fa78 6564 if (group->cpu_power != SCHED_POWER_SCALE) {
3df0fc5b
PZ
6565 printk(KERN_CONT " (cpu_power = %d)",
6566 group->cpu_power);
381512cf 6567 }
1da177e4 6568
4dcf6aff
IM
6569 group = group->next;
6570 } while (group != sd->groups);
3df0fc5b 6571 printk(KERN_CONT "\n");
1da177e4 6572
758b2cdc 6573 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6574 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6575
758b2cdc
RR
6576 if (sd->parent &&
6577 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6578 printk(KERN_ERR "ERROR: parent span is not a superset "
6579 "of domain->span\n");
4dcf6aff
IM
6580 return 0;
6581}
1da177e4 6582
4dcf6aff
IM
6583static void sched_domain_debug(struct sched_domain *sd, int cpu)
6584{
6585 int level = 0;
1da177e4 6586
f6630114
MT
6587 if (!sched_domain_debug_enabled)
6588 return;
6589
4dcf6aff
IM
6590 if (!sd) {
6591 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6592 return;
6593 }
1da177e4 6594
4dcf6aff
IM
6595 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6596
6597 for (;;) {
4cb98839 6598 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6599 break;
1da177e4
LT
6600 level++;
6601 sd = sd->parent;
33859f7f 6602 if (!sd)
4dcf6aff
IM
6603 break;
6604 }
1da177e4 6605}
6d6bc0ad 6606#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6607# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6608#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6609
1a20ff27 6610static int sd_degenerate(struct sched_domain *sd)
245af2c7 6611{
758b2cdc 6612 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6613 return 1;
6614
6615 /* Following flags need at least 2 groups */
6616 if (sd->flags & (SD_LOAD_BALANCE |
6617 SD_BALANCE_NEWIDLE |
6618 SD_BALANCE_FORK |
89c4710e
SS
6619 SD_BALANCE_EXEC |
6620 SD_SHARE_CPUPOWER |
6621 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6622 if (sd->groups != sd->groups->next)
6623 return 0;
6624 }
6625
6626 /* Following flags don't use groups */
c88d5910 6627 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6628 return 0;
6629
6630 return 1;
6631}
6632
48f24c4d
IM
6633static int
6634sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6635{
6636 unsigned long cflags = sd->flags, pflags = parent->flags;
6637
6638 if (sd_degenerate(parent))
6639 return 1;
6640
758b2cdc 6641 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6642 return 0;
6643
245af2c7
SS
6644 /* Flags needing groups don't count if only 1 group in parent */
6645 if (parent->groups == parent->groups->next) {
6646 pflags &= ~(SD_LOAD_BALANCE |
6647 SD_BALANCE_NEWIDLE |
6648 SD_BALANCE_FORK |
89c4710e
SS
6649 SD_BALANCE_EXEC |
6650 SD_SHARE_CPUPOWER |
6651 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6652 if (nr_node_ids == 1)
6653 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6654 }
6655 if (~cflags & pflags)
6656 return 0;
6657
6658 return 1;
6659}
6660
dce840a0 6661static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6662{
dce840a0 6663 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6664
68e74568 6665 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6666 free_cpumask_var(rd->rto_mask);
6667 free_cpumask_var(rd->online);
6668 free_cpumask_var(rd->span);
6669 kfree(rd);
6670}
6671
57d885fe
GH
6672static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6673{
a0490fa3 6674 struct root_domain *old_rd = NULL;
57d885fe 6675 unsigned long flags;
57d885fe 6676
05fa785c 6677 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6678
6679 if (rq->rd) {
a0490fa3 6680 old_rd = rq->rd;
57d885fe 6681
c6c4927b 6682 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6683 set_rq_offline(rq);
57d885fe 6684
c6c4927b 6685 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6686
a0490fa3
IM
6687 /*
6688 * If we dont want to free the old_rt yet then
6689 * set old_rd to NULL to skip the freeing later
6690 * in this function:
6691 */
6692 if (!atomic_dec_and_test(&old_rd->refcount))
6693 old_rd = NULL;
57d885fe
GH
6694 }
6695
6696 atomic_inc(&rd->refcount);
6697 rq->rd = rd;
6698
c6c4927b 6699 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6700 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6701 set_rq_online(rq);
57d885fe 6702
05fa785c 6703 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6704
6705 if (old_rd)
dce840a0 6706 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6707}
6708
68c38fc3 6709static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6710{
6711 memset(rd, 0, sizeof(*rd));
6712
68c38fc3 6713 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6714 goto out;
68c38fc3 6715 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6716 goto free_span;
68c38fc3 6717 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6718 goto free_online;
6e0534f2 6719
68c38fc3 6720 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6721 goto free_rto_mask;
c6c4927b 6722 return 0;
6e0534f2 6723
68e74568
RR
6724free_rto_mask:
6725 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6726free_online:
6727 free_cpumask_var(rd->online);
6728free_span:
6729 free_cpumask_var(rd->span);
0c910d28 6730out:
c6c4927b 6731 return -ENOMEM;
57d885fe
GH
6732}
6733
6734static void init_defrootdomain(void)
6735{
68c38fc3 6736 init_rootdomain(&def_root_domain);
c6c4927b 6737
57d885fe
GH
6738 atomic_set(&def_root_domain.refcount, 1);
6739}
6740
dc938520 6741static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6742{
6743 struct root_domain *rd;
6744
6745 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6746 if (!rd)
6747 return NULL;
6748
68c38fc3 6749 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6750 kfree(rd);
6751 return NULL;
6752 }
57d885fe
GH
6753
6754 return rd;
6755}
6756
dce840a0
PZ
6757static void free_sched_domain(struct rcu_head *rcu)
6758{
6759 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6760 if (atomic_dec_and_test(&sd->groups->ref))
6761 kfree(sd->groups);
6762 kfree(sd);
6763}
6764
6765static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6766{
6767 call_rcu(&sd->rcu, free_sched_domain);
6768}
6769
6770static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6771{
6772 for (; sd; sd = sd->parent)
6773 destroy_sched_domain(sd, cpu);
6774}
6775
1da177e4 6776/*
0eab9146 6777 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6778 * hold the hotplug lock.
6779 */
0eab9146
IM
6780static void
6781cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6782{
70b97a7f 6783 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6784 struct sched_domain *tmp;
6785
6786 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6787 for (tmp = sd; tmp; ) {
245af2c7
SS
6788 struct sched_domain *parent = tmp->parent;
6789 if (!parent)
6790 break;
f29c9b1c 6791
1a848870 6792 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6793 tmp->parent = parent->parent;
1a848870
SS
6794 if (parent->parent)
6795 parent->parent->child = tmp;
dce840a0 6796 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6797 } else
6798 tmp = tmp->parent;
245af2c7
SS
6799 }
6800
1a848870 6801 if (sd && sd_degenerate(sd)) {
dce840a0 6802 tmp = sd;
245af2c7 6803 sd = sd->parent;
dce840a0 6804 destroy_sched_domain(tmp, cpu);
1a848870
SS
6805 if (sd)
6806 sd->child = NULL;
6807 }
1da177e4 6808
4cb98839 6809 sched_domain_debug(sd, cpu);
1da177e4 6810
57d885fe 6811 rq_attach_root(rq, rd);
dce840a0 6812 tmp = rq->sd;
674311d5 6813 rcu_assign_pointer(rq->sd, sd);
dce840a0 6814 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6815}
6816
6817/* cpus with isolated domains */
dcc30a35 6818static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6819
6820/* Setup the mask of cpus configured for isolated domains */
6821static int __init isolated_cpu_setup(char *str)
6822{
bdddd296 6823 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6824 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6825 return 1;
6826}
6827
8927f494 6828__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6829
9c1cfda2 6830#define SD_NODES_PER_DOMAIN 16
1da177e4 6831
9c1cfda2 6832#ifdef CONFIG_NUMA
198e2f18 6833
9c1cfda2
JH
6834/**
6835 * find_next_best_node - find the next node to include in a sched_domain
6836 * @node: node whose sched_domain we're building
6837 * @used_nodes: nodes already in the sched_domain
6838 *
41a2d6cf 6839 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6840 * finds the closest node not already in the @used_nodes map.
6841 *
6842 * Should use nodemask_t.
6843 */
c5f59f08 6844static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 6845{
7142d17e 6846 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
6847
6848 min_val = INT_MAX;
6849
076ac2af 6850 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6851 /* Start at @node */
076ac2af 6852 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6853
6854 if (!nr_cpus_node(n))
6855 continue;
6856
6857 /* Skip already used nodes */
c5f59f08 6858 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6859 continue;
6860
6861 /* Simple min distance search */
6862 val = node_distance(node, n);
6863
6864 if (val < min_val) {
6865 min_val = val;
6866 best_node = n;
6867 }
6868 }
6869
7142d17e
HD
6870 if (best_node != -1)
6871 node_set(best_node, *used_nodes);
9c1cfda2
JH
6872 return best_node;
6873}
6874
6875/**
6876 * sched_domain_node_span - get a cpumask for a node's sched_domain
6877 * @node: node whose cpumask we're constructing
73486722 6878 * @span: resulting cpumask
9c1cfda2 6879 *
41a2d6cf 6880 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6881 * should be one that prevents unnecessary balancing, but also spreads tasks
6882 * out optimally.
6883 */
96f874e2 6884static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6885{
c5f59f08 6886 nodemask_t used_nodes;
48f24c4d 6887 int i;
9c1cfda2 6888
6ca09dfc 6889 cpumask_clear(span);
c5f59f08 6890 nodes_clear(used_nodes);
9c1cfda2 6891
6ca09dfc 6892 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6893 node_set(node, used_nodes);
9c1cfda2
JH
6894
6895 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6896 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
6897 if (next_node < 0)
6898 break;
6ca09dfc 6899 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6900 }
9c1cfda2 6901}
d3081f52
PZ
6902
6903static const struct cpumask *cpu_node_mask(int cpu)
6904{
6905 lockdep_assert_held(&sched_domains_mutex);
6906
6907 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6908
6909 return sched_domains_tmpmask;
6910}
2c402dc3
PZ
6911
6912static const struct cpumask *cpu_allnodes_mask(int cpu)
6913{
6914 return cpu_possible_mask;
6915}
6d6bc0ad 6916#endif /* CONFIG_NUMA */
9c1cfda2 6917
d3081f52
PZ
6918static const struct cpumask *cpu_cpu_mask(int cpu)
6919{
6920 return cpumask_of_node(cpu_to_node(cpu));
6921}
6922
5c45bf27 6923int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6924
dce840a0
PZ
6925struct sd_data {
6926 struct sched_domain **__percpu sd;
6927 struct sched_group **__percpu sg;
6928};
6929
49a02c51 6930struct s_data {
21d42ccf 6931 struct sched_domain ** __percpu sd;
49a02c51
AH
6932 struct root_domain *rd;
6933};
6934
2109b99e 6935enum s_alloc {
2109b99e 6936 sa_rootdomain,
21d42ccf 6937 sa_sd,
dce840a0 6938 sa_sd_storage,
2109b99e
AH
6939 sa_none,
6940};
6941
54ab4ff4
PZ
6942struct sched_domain_topology_level;
6943
6944typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6945typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6946
6947struct sched_domain_topology_level {
2c402dc3
PZ
6948 sched_domain_init_f init;
6949 sched_domain_mask_f mask;
54ab4ff4 6950 struct sd_data data;
eb7a74e6
PZ
6951};
6952
9c1cfda2 6953/*
dce840a0 6954 * Assumes the sched_domain tree is fully constructed
9c1cfda2 6955 */
dce840a0 6956static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6957{
dce840a0
PZ
6958 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6959 struct sched_domain *child = sd->child;
1da177e4 6960
dce840a0
PZ
6961 if (child)
6962 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6963
6711cab4 6964 if (sg)
dce840a0
PZ
6965 *sg = *per_cpu_ptr(sdd->sg, cpu);
6966
6967 return cpu;
1e9f28fa 6968}
1e9f28fa 6969
01a08546 6970/*
dce840a0
PZ
6971 * build_sched_groups takes the cpumask we wish to span, and a pointer
6972 * to a function which identifies what group(along with sched group) a CPU
6973 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6974 * (due to the fact that we keep track of groups covered with a struct cpumask).
6975 *
6976 * build_sched_groups will build a circular linked list of the groups
6977 * covered by the given span, and will set each group's ->cpumask correctly,
6978 * and ->cpu_power to 0.
01a08546 6979 */
dce840a0 6980static void
f96225fd 6981build_sched_groups(struct sched_domain *sd)
1da177e4 6982{
dce840a0
PZ
6983 struct sched_group *first = NULL, *last = NULL;
6984 struct sd_data *sdd = sd->private;
6985 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6986 struct cpumask *covered;
dce840a0 6987 int i;
9c1cfda2 6988
f96225fd
PZ
6989 lockdep_assert_held(&sched_domains_mutex);
6990 covered = sched_domains_tmpmask;
6991
dce840a0 6992 cpumask_clear(covered);
6711cab4 6993
dce840a0
PZ
6994 for_each_cpu(i, span) {
6995 struct sched_group *sg;
6996 int group = get_group(i, sdd, &sg);
6997 int j;
6711cab4 6998
dce840a0
PZ
6999 if (cpumask_test_cpu(i, covered))
7000 continue;
6711cab4 7001
dce840a0
PZ
7002 cpumask_clear(sched_group_cpus(sg));
7003 sg->cpu_power = 0;
0601a88d 7004
dce840a0
PZ
7005 for_each_cpu(j, span) {
7006 if (get_group(j, sdd, NULL) != group)
7007 continue;
0601a88d 7008
dce840a0
PZ
7009 cpumask_set_cpu(j, covered);
7010 cpumask_set_cpu(j, sched_group_cpus(sg));
7011 }
0601a88d 7012
dce840a0
PZ
7013 if (!first)
7014 first = sg;
7015 if (last)
7016 last->next = sg;
7017 last = sg;
7018 }
7019 last->next = first;
0601a88d 7020}
51888ca2 7021
89c4710e
SS
7022/*
7023 * Initialize sched groups cpu_power.
7024 *
7025 * cpu_power indicates the capacity of sched group, which is used while
7026 * distributing the load between different sched groups in a sched domain.
7027 * Typically cpu_power for all the groups in a sched domain will be same unless
7028 * there are asymmetries in the topology. If there are asymmetries, group
7029 * having more cpu_power will pickup more load compared to the group having
7030 * less cpu_power.
89c4710e
SS
7031 */
7032static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7033{
89c4710e
SS
7034 WARN_ON(!sd || !sd->groups);
7035
13318a71 7036 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7037 return;
7038
aae6d3dd
SS
7039 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7040
d274cb30 7041 update_group_power(sd, cpu);
89c4710e
SS
7042}
7043
7c16ec58
MT
7044/*
7045 * Initializers for schedule domains
7046 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7047 */
7048
a5d8c348
IM
7049#ifdef CONFIG_SCHED_DEBUG
7050# define SD_INIT_NAME(sd, type) sd->name = #type
7051#else
7052# define SD_INIT_NAME(sd, type) do { } while (0)
7053#endif
7054
54ab4ff4
PZ
7055#define SD_INIT_FUNC(type) \
7056static noinline struct sched_domain * \
7057sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7058{ \
7059 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7060 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7061 SD_INIT_NAME(sd, type); \
7062 sd->private = &tl->data; \
7063 return sd; \
7c16ec58
MT
7064}
7065
7066SD_INIT_FUNC(CPU)
7067#ifdef CONFIG_NUMA
7068 SD_INIT_FUNC(ALLNODES)
7069 SD_INIT_FUNC(NODE)
7070#endif
7071#ifdef CONFIG_SCHED_SMT
7072 SD_INIT_FUNC(SIBLING)
7073#endif
7074#ifdef CONFIG_SCHED_MC
7075 SD_INIT_FUNC(MC)
7076#endif
01a08546
HC
7077#ifdef CONFIG_SCHED_BOOK
7078 SD_INIT_FUNC(BOOK)
7079#endif
7c16ec58 7080
1d3504fc 7081static int default_relax_domain_level = -1;
60495e77 7082int sched_domain_level_max;
1d3504fc
HS
7083
7084static int __init setup_relax_domain_level(char *str)
7085{
30e0e178
LZ
7086 unsigned long val;
7087
7088 val = simple_strtoul(str, NULL, 0);
60495e77 7089 if (val < sched_domain_level_max)
30e0e178
LZ
7090 default_relax_domain_level = val;
7091
1d3504fc
HS
7092 return 1;
7093}
7094__setup("relax_domain_level=", setup_relax_domain_level);
7095
7096static void set_domain_attribute(struct sched_domain *sd,
7097 struct sched_domain_attr *attr)
7098{
7099 int request;
7100
7101 if (!attr || attr->relax_domain_level < 0) {
7102 if (default_relax_domain_level < 0)
7103 return;
7104 else
7105 request = default_relax_domain_level;
7106 } else
7107 request = attr->relax_domain_level;
7108 if (request < sd->level) {
7109 /* turn off idle balance on this domain */
c88d5910 7110 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7111 } else {
7112 /* turn on idle balance on this domain */
c88d5910 7113 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7114 }
7115}
7116
54ab4ff4
PZ
7117static void __sdt_free(const struct cpumask *cpu_map);
7118static int __sdt_alloc(const struct cpumask *cpu_map);
7119
2109b99e
AH
7120static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7121 const struct cpumask *cpu_map)
7122{
7123 switch (what) {
2109b99e 7124 case sa_rootdomain:
822ff793
PZ
7125 if (!atomic_read(&d->rd->refcount))
7126 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7127 case sa_sd:
7128 free_percpu(d->sd); /* fall through */
dce840a0 7129 case sa_sd_storage:
54ab4ff4 7130 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7131 case sa_none:
7132 break;
7133 }
7134}
3404c8d9 7135
2109b99e
AH
7136static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7137 const struct cpumask *cpu_map)
7138{
dce840a0
PZ
7139 memset(d, 0, sizeof(*d));
7140
54ab4ff4
PZ
7141 if (__sdt_alloc(cpu_map))
7142 return sa_sd_storage;
dce840a0
PZ
7143 d->sd = alloc_percpu(struct sched_domain *);
7144 if (!d->sd)
7145 return sa_sd_storage;
2109b99e 7146 d->rd = alloc_rootdomain();
dce840a0 7147 if (!d->rd)
21d42ccf 7148 return sa_sd;
2109b99e
AH
7149 return sa_rootdomain;
7150}
57d885fe 7151
dce840a0
PZ
7152/*
7153 * NULL the sd_data elements we've used to build the sched_domain and
7154 * sched_group structure so that the subsequent __free_domain_allocs()
7155 * will not free the data we're using.
7156 */
7157static void claim_allocations(int cpu, struct sched_domain *sd)
7158{
7159 struct sd_data *sdd = sd->private;
7160 struct sched_group *sg = sd->groups;
7161
7162 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7163 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7164
7165 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7166 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7167 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7168 }
7169}
7170
2c402dc3
PZ
7171#ifdef CONFIG_SCHED_SMT
7172static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7173{
2c402dc3 7174 return topology_thread_cpumask(cpu);
3bd65a80 7175}
2c402dc3 7176#endif
7f4588f3 7177
d069b916
PZ
7178/*
7179 * Topology list, bottom-up.
7180 */
2c402dc3 7181static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7182#ifdef CONFIG_SCHED_SMT
7183 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7184#endif
1e9f28fa 7185#ifdef CONFIG_SCHED_MC
2c402dc3 7186 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7187#endif
d069b916
PZ
7188#ifdef CONFIG_SCHED_BOOK
7189 { sd_init_BOOK, cpu_book_mask, },
7190#endif
7191 { sd_init_CPU, cpu_cpu_mask, },
7192#ifdef CONFIG_NUMA
7193 { sd_init_NODE, cpu_node_mask, },
7194 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7195#endif
eb7a74e6
PZ
7196 { NULL, },
7197};
7198
7199static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7200
54ab4ff4
PZ
7201static int __sdt_alloc(const struct cpumask *cpu_map)
7202{
7203 struct sched_domain_topology_level *tl;
7204 int j;
7205
7206 for (tl = sched_domain_topology; tl->init; tl++) {
7207 struct sd_data *sdd = &tl->data;
7208
7209 sdd->sd = alloc_percpu(struct sched_domain *);
7210 if (!sdd->sd)
7211 return -ENOMEM;
7212
7213 sdd->sg = alloc_percpu(struct sched_group *);
7214 if (!sdd->sg)
7215 return -ENOMEM;
7216
7217 for_each_cpu(j, cpu_map) {
7218 struct sched_domain *sd;
7219 struct sched_group *sg;
7220
7221 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7222 GFP_KERNEL, cpu_to_node(j));
7223 if (!sd)
7224 return -ENOMEM;
7225
7226 *per_cpu_ptr(sdd->sd, j) = sd;
7227
7228 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7229 GFP_KERNEL, cpu_to_node(j));
7230 if (!sg)
7231 return -ENOMEM;
7232
7233 *per_cpu_ptr(sdd->sg, j) = sg;
7234 }
7235 }
7236
7237 return 0;
7238}
7239
7240static void __sdt_free(const struct cpumask *cpu_map)
7241{
7242 struct sched_domain_topology_level *tl;
7243 int j;
7244
7245 for (tl = sched_domain_topology; tl->init; tl++) {
7246 struct sd_data *sdd = &tl->data;
7247
7248 for_each_cpu(j, cpu_map) {
7249 kfree(*per_cpu_ptr(sdd->sd, j));
7250 kfree(*per_cpu_ptr(sdd->sg, j));
7251 }
7252 free_percpu(sdd->sd);
7253 free_percpu(sdd->sg);
7254 }
7255}
7256
2c402dc3
PZ
7257struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7258 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7259 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7260 int cpu)
7261{
54ab4ff4 7262 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7263 if (!sd)
d069b916 7264 return child;
2c402dc3
PZ
7265
7266 set_domain_attribute(sd, attr);
7267 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7268 if (child) {
7269 sd->level = child->level + 1;
7270 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7271 child->parent = sd;
60495e77 7272 }
d069b916 7273 sd->child = child;
2c402dc3
PZ
7274
7275 return sd;
7276}
7277
2109b99e
AH
7278/*
7279 * Build sched domains for a given set of cpus and attach the sched domains
7280 * to the individual cpus
7281 */
dce840a0
PZ
7282static int build_sched_domains(const struct cpumask *cpu_map,
7283 struct sched_domain_attr *attr)
2109b99e
AH
7284{
7285 enum s_alloc alloc_state = sa_none;
dce840a0 7286 struct sched_domain *sd;
2109b99e 7287 struct s_data d;
822ff793 7288 int i, ret = -ENOMEM;
9c1cfda2 7289
2109b99e
AH
7290 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7291 if (alloc_state != sa_rootdomain)
7292 goto error;
9c1cfda2 7293
dce840a0 7294 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7295 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7296 struct sched_domain_topology_level *tl;
7297
3bd65a80 7298 sd = NULL;
2c402dc3
PZ
7299 for (tl = sched_domain_topology; tl->init; tl++)
7300 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
d274cb30 7301
d069b916
PZ
7302 while (sd->child)
7303 sd = sd->child;
7304
21d42ccf 7305 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7306 }
7307
7308 /* Build the groups for the domains */
7309 for_each_cpu(i, cpu_map) {
7310 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7311 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7312 get_group(i, sd->private, &sd->groups);
7313 atomic_inc(&sd->groups->ref);
21d42ccf 7314
dce840a0
PZ
7315 if (i != cpumask_first(sched_domain_span(sd)))
7316 continue;
7317
f96225fd 7318 build_sched_groups(sd);
1cf51902 7319 }
a06dadbe 7320 }
9c1cfda2 7321
1da177e4 7322 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7323 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7324 if (!cpumask_test_cpu(i, cpu_map))
7325 continue;
9c1cfda2 7326
dce840a0
PZ
7327 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7328 claim_allocations(i, sd);
cd4ea6ae 7329 init_sched_groups_power(i, sd);
dce840a0 7330 }
f712c0c7 7331 }
9c1cfda2 7332
1da177e4 7333 /* Attach the domains */
dce840a0 7334 rcu_read_lock();
abcd083a 7335 for_each_cpu(i, cpu_map) {
21d42ccf 7336 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7337 cpu_attach_domain(sd, d.rd, i);
1da177e4 7338 }
dce840a0 7339 rcu_read_unlock();
51888ca2 7340
822ff793 7341 ret = 0;
51888ca2 7342error:
2109b99e 7343 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7344 return ret;
1da177e4 7345}
029190c5 7346
acc3f5d7 7347static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7348static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7349static struct sched_domain_attr *dattr_cur;
7350 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7351
7352/*
7353 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7354 * cpumask) fails, then fallback to a single sched domain,
7355 * as determined by the single cpumask fallback_doms.
029190c5 7356 */
4212823f 7357static cpumask_var_t fallback_doms;
029190c5 7358
ee79d1bd
HC
7359/*
7360 * arch_update_cpu_topology lets virtualized architectures update the
7361 * cpu core maps. It is supposed to return 1 if the topology changed
7362 * or 0 if it stayed the same.
7363 */
7364int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7365{
ee79d1bd 7366 return 0;
22e52b07
HC
7367}
7368
acc3f5d7
RR
7369cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7370{
7371 int i;
7372 cpumask_var_t *doms;
7373
7374 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7375 if (!doms)
7376 return NULL;
7377 for (i = 0; i < ndoms; i++) {
7378 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7379 free_sched_domains(doms, i);
7380 return NULL;
7381 }
7382 }
7383 return doms;
7384}
7385
7386void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7387{
7388 unsigned int i;
7389 for (i = 0; i < ndoms; i++)
7390 free_cpumask_var(doms[i]);
7391 kfree(doms);
7392}
7393
1a20ff27 7394/*
41a2d6cf 7395 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7396 * For now this just excludes isolated cpus, but could be used to
7397 * exclude other special cases in the future.
1a20ff27 7398 */
c4a8849a 7399static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7400{
7378547f
MM
7401 int err;
7402
22e52b07 7403 arch_update_cpu_topology();
029190c5 7404 ndoms_cur = 1;
acc3f5d7 7405 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7406 if (!doms_cur)
acc3f5d7
RR
7407 doms_cur = &fallback_doms;
7408 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7409 dattr_cur = NULL;
dce840a0 7410 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7411 register_sched_domain_sysctl();
7378547f
MM
7412
7413 return err;
1a20ff27
DG
7414}
7415
1a20ff27
DG
7416/*
7417 * Detach sched domains from a group of cpus specified in cpu_map
7418 * These cpus will now be attached to the NULL domain
7419 */
96f874e2 7420static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7421{
7422 int i;
7423
dce840a0 7424 rcu_read_lock();
abcd083a 7425 for_each_cpu(i, cpu_map)
57d885fe 7426 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7427 rcu_read_unlock();
1a20ff27
DG
7428}
7429
1d3504fc
HS
7430/* handle null as "default" */
7431static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7432 struct sched_domain_attr *new, int idx_new)
7433{
7434 struct sched_domain_attr tmp;
7435
7436 /* fast path */
7437 if (!new && !cur)
7438 return 1;
7439
7440 tmp = SD_ATTR_INIT;
7441 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7442 new ? (new + idx_new) : &tmp,
7443 sizeof(struct sched_domain_attr));
7444}
7445
029190c5
PJ
7446/*
7447 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7448 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7449 * doms_new[] to the current sched domain partitioning, doms_cur[].
7450 * It destroys each deleted domain and builds each new domain.
7451 *
acc3f5d7 7452 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7453 * The masks don't intersect (don't overlap.) We should setup one
7454 * sched domain for each mask. CPUs not in any of the cpumasks will
7455 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7456 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7457 * it as it is.
7458 *
acc3f5d7
RR
7459 * The passed in 'doms_new' should be allocated using
7460 * alloc_sched_domains. This routine takes ownership of it and will
7461 * free_sched_domains it when done with it. If the caller failed the
7462 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7463 * and partition_sched_domains() will fallback to the single partition
7464 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7465 *
96f874e2 7466 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7467 * ndoms_new == 0 is a special case for destroying existing domains,
7468 * and it will not create the default domain.
dfb512ec 7469 *
029190c5
PJ
7470 * Call with hotplug lock held
7471 */
acc3f5d7 7472void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7473 struct sched_domain_attr *dattr_new)
029190c5 7474{
dfb512ec 7475 int i, j, n;
d65bd5ec 7476 int new_topology;
029190c5 7477
712555ee 7478 mutex_lock(&sched_domains_mutex);
a1835615 7479
7378547f
MM
7480 /* always unregister in case we don't destroy any domains */
7481 unregister_sched_domain_sysctl();
7482
d65bd5ec
HC
7483 /* Let architecture update cpu core mappings. */
7484 new_topology = arch_update_cpu_topology();
7485
dfb512ec 7486 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7487
7488 /* Destroy deleted domains */
7489 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7490 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7491 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7492 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7493 goto match1;
7494 }
7495 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7496 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7497match1:
7498 ;
7499 }
7500
e761b772
MK
7501 if (doms_new == NULL) {
7502 ndoms_cur = 0;
acc3f5d7 7503 doms_new = &fallback_doms;
6ad4c188 7504 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7505 WARN_ON_ONCE(dattr_new);
e761b772
MK
7506 }
7507
029190c5
PJ
7508 /* Build new domains */
7509 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7510 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7511 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7512 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7513 goto match2;
7514 }
7515 /* no match - add a new doms_new */
dce840a0 7516 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7517match2:
7518 ;
7519 }
7520
7521 /* Remember the new sched domains */
acc3f5d7
RR
7522 if (doms_cur != &fallback_doms)
7523 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7524 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7525 doms_cur = doms_new;
1d3504fc 7526 dattr_cur = dattr_new;
029190c5 7527 ndoms_cur = ndoms_new;
7378547f
MM
7528
7529 register_sched_domain_sysctl();
a1835615 7530
712555ee 7531 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7532}
7533
5c45bf27 7534#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7535static void reinit_sched_domains(void)
5c45bf27 7536{
95402b38 7537 get_online_cpus();
dfb512ec
MK
7538
7539 /* Destroy domains first to force the rebuild */
7540 partition_sched_domains(0, NULL, NULL);
7541
e761b772 7542 rebuild_sched_domains();
95402b38 7543 put_online_cpus();
5c45bf27
SS
7544}
7545
7546static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7547{
afb8a9b7 7548 unsigned int level = 0;
5c45bf27 7549
afb8a9b7
GS
7550 if (sscanf(buf, "%u", &level) != 1)
7551 return -EINVAL;
7552
7553 /*
7554 * level is always be positive so don't check for
7555 * level < POWERSAVINGS_BALANCE_NONE which is 0
7556 * What happens on 0 or 1 byte write,
7557 * need to check for count as well?
7558 */
7559
7560 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7561 return -EINVAL;
7562
7563 if (smt)
afb8a9b7 7564 sched_smt_power_savings = level;
5c45bf27 7565 else
afb8a9b7 7566 sched_mc_power_savings = level;
5c45bf27 7567
c4a8849a 7568 reinit_sched_domains();
5c45bf27 7569
c70f22d2 7570 return count;
5c45bf27
SS
7571}
7572
5c45bf27 7573#ifdef CONFIG_SCHED_MC
f718cd4a 7574static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7575 struct sysdev_class_attribute *attr,
f718cd4a 7576 char *page)
5c45bf27
SS
7577{
7578 return sprintf(page, "%u\n", sched_mc_power_savings);
7579}
f718cd4a 7580static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7581 struct sysdev_class_attribute *attr,
48f24c4d 7582 const char *buf, size_t count)
5c45bf27
SS
7583{
7584 return sched_power_savings_store(buf, count, 0);
7585}
f718cd4a
AK
7586static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7587 sched_mc_power_savings_show,
7588 sched_mc_power_savings_store);
5c45bf27
SS
7589#endif
7590
7591#ifdef CONFIG_SCHED_SMT
f718cd4a 7592static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7593 struct sysdev_class_attribute *attr,
f718cd4a 7594 char *page)
5c45bf27
SS
7595{
7596 return sprintf(page, "%u\n", sched_smt_power_savings);
7597}
f718cd4a 7598static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7599 struct sysdev_class_attribute *attr,
48f24c4d 7600 const char *buf, size_t count)
5c45bf27
SS
7601{
7602 return sched_power_savings_store(buf, count, 1);
7603}
f718cd4a
AK
7604static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7605 sched_smt_power_savings_show,
6707de00
AB
7606 sched_smt_power_savings_store);
7607#endif
7608
39aac648 7609int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7610{
7611 int err = 0;
7612
7613#ifdef CONFIG_SCHED_SMT
7614 if (smt_capable())
7615 err = sysfs_create_file(&cls->kset.kobj,
7616 &attr_sched_smt_power_savings.attr);
7617#endif
7618#ifdef CONFIG_SCHED_MC
7619 if (!err && mc_capable())
7620 err = sysfs_create_file(&cls->kset.kobj,
7621 &attr_sched_mc_power_savings.attr);
7622#endif
7623 return err;
7624}
6d6bc0ad 7625#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7626
1da177e4 7627/*
3a101d05
TH
7628 * Update cpusets according to cpu_active mask. If cpusets are
7629 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7630 * around partition_sched_domains().
1da177e4 7631 */
0b2e918a
TH
7632static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7633 void *hcpu)
e761b772 7634{
3a101d05 7635 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7636 case CPU_ONLINE:
6ad4c188 7637 case CPU_DOWN_FAILED:
3a101d05 7638 cpuset_update_active_cpus();
e761b772 7639 return NOTIFY_OK;
3a101d05
TH
7640 default:
7641 return NOTIFY_DONE;
7642 }
7643}
e761b772 7644
0b2e918a
TH
7645static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7646 void *hcpu)
3a101d05
TH
7647{
7648 switch (action & ~CPU_TASKS_FROZEN) {
7649 case CPU_DOWN_PREPARE:
7650 cpuset_update_active_cpus();
7651 return NOTIFY_OK;
e761b772
MK
7652 default:
7653 return NOTIFY_DONE;
7654 }
7655}
e761b772
MK
7656
7657static int update_runtime(struct notifier_block *nfb,
7658 unsigned long action, void *hcpu)
1da177e4 7659{
7def2be1
PZ
7660 int cpu = (int)(long)hcpu;
7661
1da177e4 7662 switch (action) {
1da177e4 7663 case CPU_DOWN_PREPARE:
8bb78442 7664 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7665 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7666 return NOTIFY_OK;
7667
1da177e4 7668 case CPU_DOWN_FAILED:
8bb78442 7669 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7670 case CPU_ONLINE:
8bb78442 7671 case CPU_ONLINE_FROZEN:
7def2be1 7672 enable_runtime(cpu_rq(cpu));
e761b772
MK
7673 return NOTIFY_OK;
7674
1da177e4
LT
7675 default:
7676 return NOTIFY_DONE;
7677 }
1da177e4 7678}
1da177e4
LT
7679
7680void __init sched_init_smp(void)
7681{
dcc30a35
RR
7682 cpumask_var_t non_isolated_cpus;
7683
7684 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7685 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7686
95402b38 7687 get_online_cpus();
712555ee 7688 mutex_lock(&sched_domains_mutex);
c4a8849a 7689 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7690 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7691 if (cpumask_empty(non_isolated_cpus))
7692 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7693 mutex_unlock(&sched_domains_mutex);
95402b38 7694 put_online_cpus();
e761b772 7695
3a101d05
TH
7696 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7697 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7698
7699 /* RT runtime code needs to handle some hotplug events */
7700 hotcpu_notifier(update_runtime, 0);
7701
b328ca18 7702 init_hrtick();
5c1e1767
NP
7703
7704 /* Move init over to a non-isolated CPU */
dcc30a35 7705 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7706 BUG();
19978ca6 7707 sched_init_granularity();
dcc30a35 7708 free_cpumask_var(non_isolated_cpus);
4212823f 7709
0e3900e6 7710 init_sched_rt_class();
1da177e4
LT
7711}
7712#else
7713void __init sched_init_smp(void)
7714{
19978ca6 7715 sched_init_granularity();
1da177e4
LT
7716}
7717#endif /* CONFIG_SMP */
7718
cd1bb94b
AB
7719const_debug unsigned int sysctl_timer_migration = 1;
7720
1da177e4
LT
7721int in_sched_functions(unsigned long addr)
7722{
1da177e4
LT
7723 return in_lock_functions(addr) ||
7724 (addr >= (unsigned long)__sched_text_start
7725 && addr < (unsigned long)__sched_text_end);
7726}
7727
a9957449 7728static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7729{
7730 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7731 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7732#ifdef CONFIG_FAIR_GROUP_SCHED
7733 cfs_rq->rq = rq;
f07333bf 7734 /* allow initial update_cfs_load() to truncate */
6ea72f12 7735#ifdef CONFIG_SMP
f07333bf 7736 cfs_rq->load_stamp = 1;
6ea72f12 7737#endif
dd41f596 7738#endif
67e9fb2a 7739 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7740}
7741
fa85ae24
PZ
7742static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7743{
7744 struct rt_prio_array *array;
7745 int i;
7746
7747 array = &rt_rq->active;
7748 for (i = 0; i < MAX_RT_PRIO; i++) {
7749 INIT_LIST_HEAD(array->queue + i);
7750 __clear_bit(i, array->bitmap);
7751 }
7752 /* delimiter for bitsearch: */
7753 __set_bit(MAX_RT_PRIO, array->bitmap);
7754
052f1dc7 7755#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7756 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7757#ifdef CONFIG_SMP
e864c499 7758 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7759#endif
48d5e258 7760#endif
fa85ae24
PZ
7761#ifdef CONFIG_SMP
7762 rt_rq->rt_nr_migratory = 0;
fa85ae24 7763 rt_rq->overloaded = 0;
05fa785c 7764 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7765#endif
7766
7767 rt_rq->rt_time = 0;
7768 rt_rq->rt_throttled = 0;
ac086bc2 7769 rt_rq->rt_runtime = 0;
0986b11b 7770 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7771
052f1dc7 7772#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7773 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7774 rt_rq->rq = rq;
7775#endif
fa85ae24
PZ
7776}
7777
6f505b16 7778#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7779static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7780 struct sched_entity *se, int cpu,
ec7dc8ac 7781 struct sched_entity *parent)
6f505b16 7782{
ec7dc8ac 7783 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7784 tg->cfs_rq[cpu] = cfs_rq;
7785 init_cfs_rq(cfs_rq, rq);
7786 cfs_rq->tg = tg;
6f505b16
PZ
7787
7788 tg->se[cpu] = se;
07e06b01 7789 /* se could be NULL for root_task_group */
354d60c2
DG
7790 if (!se)
7791 return;
7792
ec7dc8ac
DG
7793 if (!parent)
7794 se->cfs_rq = &rq->cfs;
7795 else
7796 se->cfs_rq = parent->my_q;
7797
6f505b16 7798 se->my_q = cfs_rq;
9437178f 7799 update_load_set(&se->load, 0);
ec7dc8ac 7800 se->parent = parent;
6f505b16 7801}
052f1dc7 7802#endif
6f505b16 7803
052f1dc7 7804#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7805static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7806 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7807 struct sched_rt_entity *parent)
6f505b16 7808{
ec7dc8ac
DG
7809 struct rq *rq = cpu_rq(cpu);
7810
6f505b16
PZ
7811 tg->rt_rq[cpu] = rt_rq;
7812 init_rt_rq(rt_rq, rq);
7813 rt_rq->tg = tg;
ac086bc2 7814 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7815
7816 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7817 if (!rt_se)
7818 return;
7819
ec7dc8ac
DG
7820 if (!parent)
7821 rt_se->rt_rq = &rq->rt;
7822 else
7823 rt_se->rt_rq = parent->my_q;
7824
6f505b16 7825 rt_se->my_q = rt_rq;
ec7dc8ac 7826 rt_se->parent = parent;
6f505b16
PZ
7827 INIT_LIST_HEAD(&rt_se->run_list);
7828}
7829#endif
7830
1da177e4
LT
7831void __init sched_init(void)
7832{
dd41f596 7833 int i, j;
434d53b0
MT
7834 unsigned long alloc_size = 0, ptr;
7835
7836#ifdef CONFIG_FAIR_GROUP_SCHED
7837 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7838#endif
7839#ifdef CONFIG_RT_GROUP_SCHED
7840 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7841#endif
df7c8e84 7842#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7843 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7844#endif
434d53b0 7845 if (alloc_size) {
36b7b6d4 7846 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7847
7848#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7849 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7850 ptr += nr_cpu_ids * sizeof(void **);
7851
07e06b01 7852 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7853 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7854
6d6bc0ad 7855#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7856#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7857 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7858 ptr += nr_cpu_ids * sizeof(void **);
7859
07e06b01 7860 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7861 ptr += nr_cpu_ids * sizeof(void **);
7862
6d6bc0ad 7863#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7864#ifdef CONFIG_CPUMASK_OFFSTACK
7865 for_each_possible_cpu(i) {
7866 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7867 ptr += cpumask_size();
7868 }
7869#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7870 }
dd41f596 7871
57d885fe
GH
7872#ifdef CONFIG_SMP
7873 init_defrootdomain();
7874#endif
7875
d0b27fa7
PZ
7876 init_rt_bandwidth(&def_rt_bandwidth,
7877 global_rt_period(), global_rt_runtime());
7878
7879#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7880 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7881 global_rt_period(), global_rt_runtime());
6d6bc0ad 7882#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7883
7c941438 7884#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7885 list_add(&root_task_group.list, &task_groups);
7886 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7887 autogroup_init(&init_task);
7c941438 7888#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7889
0a945022 7890 for_each_possible_cpu(i) {
70b97a7f 7891 struct rq *rq;
1da177e4
LT
7892
7893 rq = cpu_rq(i);
05fa785c 7894 raw_spin_lock_init(&rq->lock);
7897986b 7895 rq->nr_running = 0;
dce48a84
TG
7896 rq->calc_load_active = 0;
7897 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7898 init_cfs_rq(&rq->cfs, rq);
6f505b16 7899 init_rt_rq(&rq->rt, rq);
dd41f596 7900#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7901 root_task_group.shares = root_task_group_load;
6f505b16 7902 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7903 /*
07e06b01 7904 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7905 *
7906 * In case of task-groups formed thr' the cgroup filesystem, it
7907 * gets 100% of the cpu resources in the system. This overall
7908 * system cpu resource is divided among the tasks of
07e06b01 7909 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7910 * based on each entity's (task or task-group's) weight
7911 * (se->load.weight).
7912 *
07e06b01 7913 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7914 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7915 * then A0's share of the cpu resource is:
7916 *
0d905bca 7917 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7918 *
07e06b01
YZ
7919 * We achieve this by letting root_task_group's tasks sit
7920 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7921 */
07e06b01 7922 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7923#endif /* CONFIG_FAIR_GROUP_SCHED */
7924
7925 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7926#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7927 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7928 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7929#endif
1da177e4 7930
dd41f596
IM
7931 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7932 rq->cpu_load[j] = 0;
fdf3e95d
VP
7933
7934 rq->last_load_update_tick = jiffies;
7935
1da177e4 7936#ifdef CONFIG_SMP
41c7ce9a 7937 rq->sd = NULL;
57d885fe 7938 rq->rd = NULL;
1399fa78 7939 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 7940 rq->post_schedule = 0;
1da177e4 7941 rq->active_balance = 0;
dd41f596 7942 rq->next_balance = jiffies;
1da177e4 7943 rq->push_cpu = 0;
0a2966b4 7944 rq->cpu = i;
1f11eb6a 7945 rq->online = 0;
eae0c9df
MG
7946 rq->idle_stamp = 0;
7947 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7948 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7949#ifdef CONFIG_NO_HZ
7950 rq->nohz_balance_kick = 0;
7951 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7952#endif
1da177e4 7953#endif
8f4d37ec 7954 init_rq_hrtick(rq);
1da177e4 7955 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7956 }
7957
2dd73a4f 7958 set_load_weight(&init_task);
b50f60ce 7959
e107be36
AK
7960#ifdef CONFIG_PREEMPT_NOTIFIERS
7961 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7962#endif
7963
c9819f45 7964#ifdef CONFIG_SMP
962cf36c 7965 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7966#endif
7967
b50f60ce 7968#ifdef CONFIG_RT_MUTEXES
1d615482 7969 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7970#endif
7971
1da177e4
LT
7972 /*
7973 * The boot idle thread does lazy MMU switching as well:
7974 */
7975 atomic_inc(&init_mm.mm_count);
7976 enter_lazy_tlb(&init_mm, current);
7977
7978 /*
7979 * Make us the idle thread. Technically, schedule() should not be
7980 * called from this thread, however somewhere below it might be,
7981 * but because we are the idle thread, we just pick up running again
7982 * when this runqueue becomes "idle".
7983 */
7984 init_idle(current, smp_processor_id());
dce48a84
TG
7985
7986 calc_load_update = jiffies + LOAD_FREQ;
7987
dd41f596
IM
7988 /*
7989 * During early bootup we pretend to be a normal task:
7990 */
7991 current->sched_class = &fair_sched_class;
6892b75e 7992
6a7b3dc3 7993 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7994 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7995#ifdef CONFIG_SMP
4cb98839 7996 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 7997#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7998 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7999 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8000 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8001 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8002 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8003#endif
bdddd296
RR
8004 /* May be allocated at isolcpus cmdline parse time */
8005 if (cpu_isolated_map == NULL)
8006 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8007#endif /* SMP */
6a7b3dc3 8008
6892b75e 8009 scheduler_running = 1;
1da177e4
LT
8010}
8011
8012#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8013static inline int preempt_count_equals(int preempt_offset)
8014{
234da7bc 8015 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8016
4ba8216c 8017 return (nested == preempt_offset);
e4aafea2
FW
8018}
8019
d894837f 8020void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8021{
48f24c4d 8022#ifdef in_atomic
1da177e4
LT
8023 static unsigned long prev_jiffy; /* ratelimiting */
8024
e4aafea2
FW
8025 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8026 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8027 return;
8028 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8029 return;
8030 prev_jiffy = jiffies;
8031
3df0fc5b
PZ
8032 printk(KERN_ERR
8033 "BUG: sleeping function called from invalid context at %s:%d\n",
8034 file, line);
8035 printk(KERN_ERR
8036 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8037 in_atomic(), irqs_disabled(),
8038 current->pid, current->comm);
aef745fc
IM
8039
8040 debug_show_held_locks(current);
8041 if (irqs_disabled())
8042 print_irqtrace_events(current);
8043 dump_stack();
1da177e4
LT
8044#endif
8045}
8046EXPORT_SYMBOL(__might_sleep);
8047#endif
8048
8049#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8050static void normalize_task(struct rq *rq, struct task_struct *p)
8051{
da7a735e
PZ
8052 const struct sched_class *prev_class = p->sched_class;
8053 int old_prio = p->prio;
3a5e4dc1 8054 int on_rq;
3e51f33f 8055
fd2f4419 8056 on_rq = p->on_rq;
3a5e4dc1
AK
8057 if (on_rq)
8058 deactivate_task(rq, p, 0);
8059 __setscheduler(rq, p, SCHED_NORMAL, 0);
8060 if (on_rq) {
8061 activate_task(rq, p, 0);
8062 resched_task(rq->curr);
8063 }
da7a735e
PZ
8064
8065 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8066}
8067
1da177e4
LT
8068void normalize_rt_tasks(void)
8069{
a0f98a1c 8070 struct task_struct *g, *p;
1da177e4 8071 unsigned long flags;
70b97a7f 8072 struct rq *rq;
1da177e4 8073
4cf5d77a 8074 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8075 do_each_thread(g, p) {
178be793
IM
8076 /*
8077 * Only normalize user tasks:
8078 */
8079 if (!p->mm)
8080 continue;
8081
6cfb0d5d 8082 p->se.exec_start = 0;
6cfb0d5d 8083#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8084 p->se.statistics.wait_start = 0;
8085 p->se.statistics.sleep_start = 0;
8086 p->se.statistics.block_start = 0;
6cfb0d5d 8087#endif
dd41f596
IM
8088
8089 if (!rt_task(p)) {
8090 /*
8091 * Renice negative nice level userspace
8092 * tasks back to 0:
8093 */
8094 if (TASK_NICE(p) < 0 && p->mm)
8095 set_user_nice(p, 0);
1da177e4 8096 continue;
dd41f596 8097 }
1da177e4 8098
1d615482 8099 raw_spin_lock(&p->pi_lock);
b29739f9 8100 rq = __task_rq_lock(p);
1da177e4 8101
178be793 8102 normalize_task(rq, p);
3a5e4dc1 8103
b29739f9 8104 __task_rq_unlock(rq);
1d615482 8105 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8106 } while_each_thread(g, p);
8107
4cf5d77a 8108 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8109}
8110
8111#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8112
67fc4e0c 8113#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8114/*
67fc4e0c 8115 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8116 *
8117 * They can only be called when the whole system has been
8118 * stopped - every CPU needs to be quiescent, and no scheduling
8119 * activity can take place. Using them for anything else would
8120 * be a serious bug, and as a result, they aren't even visible
8121 * under any other configuration.
8122 */
8123
8124/**
8125 * curr_task - return the current task for a given cpu.
8126 * @cpu: the processor in question.
8127 *
8128 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8129 */
36c8b586 8130struct task_struct *curr_task(int cpu)
1df5c10a
LT
8131{
8132 return cpu_curr(cpu);
8133}
8134
67fc4e0c
JW
8135#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8136
8137#ifdef CONFIG_IA64
1df5c10a
LT
8138/**
8139 * set_curr_task - set the current task for a given cpu.
8140 * @cpu: the processor in question.
8141 * @p: the task pointer to set.
8142 *
8143 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8144 * are serviced on a separate stack. It allows the architecture to switch the
8145 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8146 * must be called with all CPU's synchronized, and interrupts disabled, the
8147 * and caller must save the original value of the current task (see
8148 * curr_task() above) and restore that value before reenabling interrupts and
8149 * re-starting the system.
8150 *
8151 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8152 */
36c8b586 8153void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8154{
8155 cpu_curr(cpu) = p;
8156}
8157
8158#endif
29f59db3 8159
bccbe08a
PZ
8160#ifdef CONFIG_FAIR_GROUP_SCHED
8161static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8162{
8163 int i;
8164
8165 for_each_possible_cpu(i) {
8166 if (tg->cfs_rq)
8167 kfree(tg->cfs_rq[i]);
8168 if (tg->se)
8169 kfree(tg->se[i]);
6f505b16
PZ
8170 }
8171
8172 kfree(tg->cfs_rq);
8173 kfree(tg->se);
6f505b16
PZ
8174}
8175
ec7dc8ac
DG
8176static
8177int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8178{
29f59db3 8179 struct cfs_rq *cfs_rq;
eab17229 8180 struct sched_entity *se;
29f59db3
SV
8181 int i;
8182
434d53b0 8183 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8184 if (!tg->cfs_rq)
8185 goto err;
434d53b0 8186 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8187 if (!tg->se)
8188 goto err;
052f1dc7
PZ
8189
8190 tg->shares = NICE_0_LOAD;
29f59db3
SV
8191
8192 for_each_possible_cpu(i) {
eab17229
LZ
8193 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8194 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8195 if (!cfs_rq)
8196 goto err;
8197
eab17229
LZ
8198 se = kzalloc_node(sizeof(struct sched_entity),
8199 GFP_KERNEL, cpu_to_node(i));
29f59db3 8200 if (!se)
dfc12eb2 8201 goto err_free_rq;
29f59db3 8202
3d4b47b4 8203 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8204 }
8205
8206 return 1;
8207
49246274 8208err_free_rq:
dfc12eb2 8209 kfree(cfs_rq);
49246274 8210err:
bccbe08a
PZ
8211 return 0;
8212}
8213
bccbe08a
PZ
8214static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8215{
3d4b47b4
PZ
8216 struct rq *rq = cpu_rq(cpu);
8217 unsigned long flags;
3d4b47b4
PZ
8218
8219 /*
8220 * Only empty task groups can be destroyed; so we can speculatively
8221 * check on_list without danger of it being re-added.
8222 */
8223 if (!tg->cfs_rq[cpu]->on_list)
8224 return;
8225
8226 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8227 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8228 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8229}
6d6bc0ad 8230#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8231static inline void free_fair_sched_group(struct task_group *tg)
8232{
8233}
8234
ec7dc8ac
DG
8235static inline
8236int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8237{
8238 return 1;
8239}
8240
bccbe08a
PZ
8241static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8242{
8243}
6d6bc0ad 8244#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8245
8246#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8247static void free_rt_sched_group(struct task_group *tg)
8248{
8249 int i;
8250
d0b27fa7
PZ
8251 destroy_rt_bandwidth(&tg->rt_bandwidth);
8252
bccbe08a
PZ
8253 for_each_possible_cpu(i) {
8254 if (tg->rt_rq)
8255 kfree(tg->rt_rq[i]);
8256 if (tg->rt_se)
8257 kfree(tg->rt_se[i]);
8258 }
8259
8260 kfree(tg->rt_rq);
8261 kfree(tg->rt_se);
8262}
8263
ec7dc8ac
DG
8264static
8265int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8266{
8267 struct rt_rq *rt_rq;
eab17229 8268 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8269 int i;
8270
434d53b0 8271 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8272 if (!tg->rt_rq)
8273 goto err;
434d53b0 8274 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8275 if (!tg->rt_se)
8276 goto err;
8277
d0b27fa7
PZ
8278 init_rt_bandwidth(&tg->rt_bandwidth,
8279 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8280
8281 for_each_possible_cpu(i) {
eab17229
LZ
8282 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8283 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8284 if (!rt_rq)
8285 goto err;
29f59db3 8286
eab17229
LZ
8287 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8288 GFP_KERNEL, cpu_to_node(i));
6f505b16 8289 if (!rt_se)
dfc12eb2 8290 goto err_free_rq;
29f59db3 8291
3d4b47b4 8292 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8293 }
8294
bccbe08a
PZ
8295 return 1;
8296
49246274 8297err_free_rq:
dfc12eb2 8298 kfree(rt_rq);
49246274 8299err:
bccbe08a
PZ
8300 return 0;
8301}
6d6bc0ad 8302#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8303static inline void free_rt_sched_group(struct task_group *tg)
8304{
8305}
8306
ec7dc8ac
DG
8307static inline
8308int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8309{
8310 return 1;
8311}
6d6bc0ad 8312#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8313
7c941438 8314#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8315static void free_sched_group(struct task_group *tg)
8316{
8317 free_fair_sched_group(tg);
8318 free_rt_sched_group(tg);
e9aa1dd1 8319 autogroup_free(tg);
bccbe08a
PZ
8320 kfree(tg);
8321}
8322
8323/* allocate runqueue etc for a new task group */
ec7dc8ac 8324struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8325{
8326 struct task_group *tg;
8327 unsigned long flags;
bccbe08a
PZ
8328
8329 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8330 if (!tg)
8331 return ERR_PTR(-ENOMEM);
8332
ec7dc8ac 8333 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8334 goto err;
8335
ec7dc8ac 8336 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8337 goto err;
8338
8ed36996 8339 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8340 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8341
8342 WARN_ON(!parent); /* root should already exist */
8343
8344 tg->parent = parent;
f473aa5e 8345 INIT_LIST_HEAD(&tg->children);
09f2724a 8346 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8347 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8348
9b5b7751 8349 return tg;
29f59db3
SV
8350
8351err:
6f505b16 8352 free_sched_group(tg);
29f59db3
SV
8353 return ERR_PTR(-ENOMEM);
8354}
8355
9b5b7751 8356/* rcu callback to free various structures associated with a task group */
6f505b16 8357static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8358{
29f59db3 8359 /* now it should be safe to free those cfs_rqs */
6f505b16 8360 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8361}
8362
9b5b7751 8363/* Destroy runqueue etc associated with a task group */
4cf86d77 8364void sched_destroy_group(struct task_group *tg)
29f59db3 8365{
8ed36996 8366 unsigned long flags;
9b5b7751 8367 int i;
29f59db3 8368
3d4b47b4
PZ
8369 /* end participation in shares distribution */
8370 for_each_possible_cpu(i)
bccbe08a 8371 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8372
8373 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8374 list_del_rcu(&tg->list);
f473aa5e 8375 list_del_rcu(&tg->siblings);
8ed36996 8376 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8377
9b5b7751 8378 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8379 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8380}
8381
9b5b7751 8382/* change task's runqueue when it moves between groups.
3a252015
IM
8383 * The caller of this function should have put the task in its new group
8384 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8385 * reflect its new group.
9b5b7751
SV
8386 */
8387void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8388{
8389 int on_rq, running;
8390 unsigned long flags;
8391 struct rq *rq;
8392
8393 rq = task_rq_lock(tsk, &flags);
8394
051a1d1a 8395 running = task_current(rq, tsk);
fd2f4419 8396 on_rq = tsk->on_rq;
29f59db3 8397
0e1f3483 8398 if (on_rq)
29f59db3 8399 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8400 if (unlikely(running))
8401 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8402
810b3817 8403#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8404 if (tsk->sched_class->task_move_group)
8405 tsk->sched_class->task_move_group(tsk, on_rq);
8406 else
810b3817 8407#endif
b2b5ce02 8408 set_task_rq(tsk, task_cpu(tsk));
810b3817 8409
0e1f3483
HS
8410 if (unlikely(running))
8411 tsk->sched_class->set_curr_task(rq);
8412 if (on_rq)
371fd7e7 8413 enqueue_task(rq, tsk, 0);
29f59db3 8414
0122ec5b 8415 task_rq_unlock(rq, tsk, &flags);
29f59db3 8416}
7c941438 8417#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8418
052f1dc7 8419#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8420static DEFINE_MUTEX(shares_mutex);
8421
4cf86d77 8422int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8423{
8424 int i;
8ed36996 8425 unsigned long flags;
c61935fd 8426
ec7dc8ac
DG
8427 /*
8428 * We can't change the weight of the root cgroup.
8429 */
8430 if (!tg->se[0])
8431 return -EINVAL;
8432
18d95a28
PZ
8433 if (shares < MIN_SHARES)
8434 shares = MIN_SHARES;
cb4ad1ff
MX
8435 else if (shares > MAX_SHARES)
8436 shares = MAX_SHARES;
62fb1851 8437
8ed36996 8438 mutex_lock(&shares_mutex);
9b5b7751 8439 if (tg->shares == shares)
5cb350ba 8440 goto done;
29f59db3 8441
9b5b7751 8442 tg->shares = shares;
c09595f6 8443 for_each_possible_cpu(i) {
9437178f
PT
8444 struct rq *rq = cpu_rq(i);
8445 struct sched_entity *se;
8446
8447 se = tg->se[i];
8448 /* Propagate contribution to hierarchy */
8449 raw_spin_lock_irqsave(&rq->lock, flags);
8450 for_each_sched_entity(se)
6d5ab293 8451 update_cfs_shares(group_cfs_rq(se));
9437178f 8452 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8453 }
29f59db3 8454
5cb350ba 8455done:
8ed36996 8456 mutex_unlock(&shares_mutex);
9b5b7751 8457 return 0;
29f59db3
SV
8458}
8459
5cb350ba
DG
8460unsigned long sched_group_shares(struct task_group *tg)
8461{
8462 return tg->shares;
8463}
052f1dc7 8464#endif
5cb350ba 8465
052f1dc7 8466#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8467/*
9f0c1e56 8468 * Ensure that the real time constraints are schedulable.
6f505b16 8469 */
9f0c1e56
PZ
8470static DEFINE_MUTEX(rt_constraints_mutex);
8471
8472static unsigned long to_ratio(u64 period, u64 runtime)
8473{
8474 if (runtime == RUNTIME_INF)
9a7e0b18 8475 return 1ULL << 20;
9f0c1e56 8476
9a7e0b18 8477 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8478}
8479
9a7e0b18
PZ
8480/* Must be called with tasklist_lock held */
8481static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8482{
9a7e0b18 8483 struct task_struct *g, *p;
b40b2e8e 8484
9a7e0b18
PZ
8485 do_each_thread(g, p) {
8486 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8487 return 1;
8488 } while_each_thread(g, p);
b40b2e8e 8489
9a7e0b18
PZ
8490 return 0;
8491}
b40b2e8e 8492
9a7e0b18
PZ
8493struct rt_schedulable_data {
8494 struct task_group *tg;
8495 u64 rt_period;
8496 u64 rt_runtime;
8497};
b40b2e8e 8498
9a7e0b18
PZ
8499static int tg_schedulable(struct task_group *tg, void *data)
8500{
8501 struct rt_schedulable_data *d = data;
8502 struct task_group *child;
8503 unsigned long total, sum = 0;
8504 u64 period, runtime;
b40b2e8e 8505
9a7e0b18
PZ
8506 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8507 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8508
9a7e0b18
PZ
8509 if (tg == d->tg) {
8510 period = d->rt_period;
8511 runtime = d->rt_runtime;
b40b2e8e 8512 }
b40b2e8e 8513
4653f803
PZ
8514 /*
8515 * Cannot have more runtime than the period.
8516 */
8517 if (runtime > period && runtime != RUNTIME_INF)
8518 return -EINVAL;
6f505b16 8519
4653f803
PZ
8520 /*
8521 * Ensure we don't starve existing RT tasks.
8522 */
9a7e0b18
PZ
8523 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8524 return -EBUSY;
6f505b16 8525
9a7e0b18 8526 total = to_ratio(period, runtime);
6f505b16 8527
4653f803
PZ
8528 /*
8529 * Nobody can have more than the global setting allows.
8530 */
8531 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8532 return -EINVAL;
6f505b16 8533
4653f803
PZ
8534 /*
8535 * The sum of our children's runtime should not exceed our own.
8536 */
9a7e0b18
PZ
8537 list_for_each_entry_rcu(child, &tg->children, siblings) {
8538 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8539 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8540
9a7e0b18
PZ
8541 if (child == d->tg) {
8542 period = d->rt_period;
8543 runtime = d->rt_runtime;
8544 }
6f505b16 8545
9a7e0b18 8546 sum += to_ratio(period, runtime);
9f0c1e56 8547 }
6f505b16 8548
9a7e0b18
PZ
8549 if (sum > total)
8550 return -EINVAL;
8551
8552 return 0;
6f505b16
PZ
8553}
8554
9a7e0b18 8555static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8556{
9a7e0b18
PZ
8557 struct rt_schedulable_data data = {
8558 .tg = tg,
8559 .rt_period = period,
8560 .rt_runtime = runtime,
8561 };
8562
8563 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8564}
8565
d0b27fa7
PZ
8566static int tg_set_bandwidth(struct task_group *tg,
8567 u64 rt_period, u64 rt_runtime)
6f505b16 8568{
ac086bc2 8569 int i, err = 0;
9f0c1e56 8570
9f0c1e56 8571 mutex_lock(&rt_constraints_mutex);
521f1a24 8572 read_lock(&tasklist_lock);
9a7e0b18
PZ
8573 err = __rt_schedulable(tg, rt_period, rt_runtime);
8574 if (err)
9f0c1e56 8575 goto unlock;
ac086bc2 8576
0986b11b 8577 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8578 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8579 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8580
8581 for_each_possible_cpu(i) {
8582 struct rt_rq *rt_rq = tg->rt_rq[i];
8583
0986b11b 8584 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8585 rt_rq->rt_runtime = rt_runtime;
0986b11b 8586 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8587 }
0986b11b 8588 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8589unlock:
521f1a24 8590 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8591 mutex_unlock(&rt_constraints_mutex);
8592
8593 return err;
6f505b16
PZ
8594}
8595
d0b27fa7
PZ
8596int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8597{
8598 u64 rt_runtime, rt_period;
8599
8600 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8601 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8602 if (rt_runtime_us < 0)
8603 rt_runtime = RUNTIME_INF;
8604
8605 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8606}
8607
9f0c1e56
PZ
8608long sched_group_rt_runtime(struct task_group *tg)
8609{
8610 u64 rt_runtime_us;
8611
d0b27fa7 8612 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8613 return -1;
8614
d0b27fa7 8615 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8616 do_div(rt_runtime_us, NSEC_PER_USEC);
8617 return rt_runtime_us;
8618}
d0b27fa7
PZ
8619
8620int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8621{
8622 u64 rt_runtime, rt_period;
8623
8624 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8625 rt_runtime = tg->rt_bandwidth.rt_runtime;
8626
619b0488
R
8627 if (rt_period == 0)
8628 return -EINVAL;
8629
d0b27fa7
PZ
8630 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8631}
8632
8633long sched_group_rt_period(struct task_group *tg)
8634{
8635 u64 rt_period_us;
8636
8637 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8638 do_div(rt_period_us, NSEC_PER_USEC);
8639 return rt_period_us;
8640}
8641
8642static int sched_rt_global_constraints(void)
8643{
4653f803 8644 u64 runtime, period;
d0b27fa7
PZ
8645 int ret = 0;
8646
ec5d4989
HS
8647 if (sysctl_sched_rt_period <= 0)
8648 return -EINVAL;
8649
4653f803
PZ
8650 runtime = global_rt_runtime();
8651 period = global_rt_period();
8652
8653 /*
8654 * Sanity check on the sysctl variables.
8655 */
8656 if (runtime > period && runtime != RUNTIME_INF)
8657 return -EINVAL;
10b612f4 8658
d0b27fa7 8659 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8660 read_lock(&tasklist_lock);
4653f803 8661 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8662 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8663 mutex_unlock(&rt_constraints_mutex);
8664
8665 return ret;
8666}
54e99124
DG
8667
8668int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8669{
8670 /* Don't accept realtime tasks when there is no way for them to run */
8671 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8672 return 0;
8673
8674 return 1;
8675}
8676
6d6bc0ad 8677#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8678static int sched_rt_global_constraints(void)
8679{
ac086bc2
PZ
8680 unsigned long flags;
8681 int i;
8682
ec5d4989
HS
8683 if (sysctl_sched_rt_period <= 0)
8684 return -EINVAL;
8685
60aa605d
PZ
8686 /*
8687 * There's always some RT tasks in the root group
8688 * -- migration, kstopmachine etc..
8689 */
8690 if (sysctl_sched_rt_runtime == 0)
8691 return -EBUSY;
8692
0986b11b 8693 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8694 for_each_possible_cpu(i) {
8695 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8696
0986b11b 8697 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8698 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8699 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8700 }
0986b11b 8701 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8702
d0b27fa7
PZ
8703 return 0;
8704}
6d6bc0ad 8705#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8706
8707int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8708 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8709 loff_t *ppos)
8710{
8711 int ret;
8712 int old_period, old_runtime;
8713 static DEFINE_MUTEX(mutex);
8714
8715 mutex_lock(&mutex);
8716 old_period = sysctl_sched_rt_period;
8717 old_runtime = sysctl_sched_rt_runtime;
8718
8d65af78 8719 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8720
8721 if (!ret && write) {
8722 ret = sched_rt_global_constraints();
8723 if (ret) {
8724 sysctl_sched_rt_period = old_period;
8725 sysctl_sched_rt_runtime = old_runtime;
8726 } else {
8727 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8728 def_rt_bandwidth.rt_period =
8729 ns_to_ktime(global_rt_period());
8730 }
8731 }
8732 mutex_unlock(&mutex);
8733
8734 return ret;
8735}
68318b8e 8736
052f1dc7 8737#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8738
8739/* return corresponding task_group object of a cgroup */
2b01dfe3 8740static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8741{
2b01dfe3
PM
8742 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8743 struct task_group, css);
68318b8e
SV
8744}
8745
8746static struct cgroup_subsys_state *
2b01dfe3 8747cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8748{
ec7dc8ac 8749 struct task_group *tg, *parent;
68318b8e 8750
2b01dfe3 8751 if (!cgrp->parent) {
68318b8e 8752 /* This is early initialization for the top cgroup */
07e06b01 8753 return &root_task_group.css;
68318b8e
SV
8754 }
8755
ec7dc8ac
DG
8756 parent = cgroup_tg(cgrp->parent);
8757 tg = sched_create_group(parent);
68318b8e
SV
8758 if (IS_ERR(tg))
8759 return ERR_PTR(-ENOMEM);
8760
68318b8e
SV
8761 return &tg->css;
8762}
8763
41a2d6cf
IM
8764static void
8765cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8766{
2b01dfe3 8767 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8768
8769 sched_destroy_group(tg);
8770}
8771
41a2d6cf 8772static int
be367d09 8773cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8774{
b68aa230 8775#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8776 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8777 return -EINVAL;
8778#else
68318b8e
SV
8779 /* We don't support RT-tasks being in separate groups */
8780 if (tsk->sched_class != &fair_sched_class)
8781 return -EINVAL;
b68aa230 8782#endif
be367d09
BB
8783 return 0;
8784}
68318b8e 8785
68318b8e 8786static void
f780bdb7 8787cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
8788{
8789 sched_move_task(tsk);
8790}
8791
068c5cc5 8792static void
d41d5a01
PZ
8793cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8794 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8795{
8796 /*
8797 * cgroup_exit() is called in the copy_process() failure path.
8798 * Ignore this case since the task hasn't ran yet, this avoids
8799 * trying to poke a half freed task state from generic code.
8800 */
8801 if (!(task->flags & PF_EXITING))
8802 return;
8803
8804 sched_move_task(task);
8805}
8806
052f1dc7 8807#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8808static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8809 u64 shareval)
68318b8e 8810{
c8b28116 8811 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
8812}
8813
f4c753b7 8814static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8815{
2b01dfe3 8816 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 8817
c8b28116 8818 return (u64) scale_load_down(tg->shares);
68318b8e 8819}
6d6bc0ad 8820#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8821
052f1dc7 8822#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8823static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8824 s64 val)
6f505b16 8825{
06ecb27c 8826 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8827}
8828
06ecb27c 8829static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8830{
06ecb27c 8831 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8832}
d0b27fa7
PZ
8833
8834static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8835 u64 rt_period_us)
8836{
8837 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8838}
8839
8840static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8841{
8842 return sched_group_rt_period(cgroup_tg(cgrp));
8843}
6d6bc0ad 8844#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8845
fe5c7cc2 8846static struct cftype cpu_files[] = {
052f1dc7 8847#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8848 {
8849 .name = "shares",
f4c753b7
PM
8850 .read_u64 = cpu_shares_read_u64,
8851 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8852 },
052f1dc7
PZ
8853#endif
8854#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8855 {
9f0c1e56 8856 .name = "rt_runtime_us",
06ecb27c
PM
8857 .read_s64 = cpu_rt_runtime_read,
8858 .write_s64 = cpu_rt_runtime_write,
6f505b16 8859 },
d0b27fa7
PZ
8860 {
8861 .name = "rt_period_us",
f4c753b7
PM
8862 .read_u64 = cpu_rt_period_read_uint,
8863 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8864 },
052f1dc7 8865#endif
68318b8e
SV
8866};
8867
8868static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8869{
fe5c7cc2 8870 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8871}
8872
8873struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8874 .name = "cpu",
8875 .create = cpu_cgroup_create,
8876 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
8877 .can_attach_task = cpu_cgroup_can_attach_task,
8878 .attach_task = cpu_cgroup_attach_task,
068c5cc5 8879 .exit = cpu_cgroup_exit,
38605cae
IM
8880 .populate = cpu_cgroup_populate,
8881 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8882 .early_init = 1,
8883};
8884
052f1dc7 8885#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8886
8887#ifdef CONFIG_CGROUP_CPUACCT
8888
8889/*
8890 * CPU accounting code for task groups.
8891 *
8892 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8893 * (balbir@in.ibm.com).
8894 */
8895
934352f2 8896/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8897struct cpuacct {
8898 struct cgroup_subsys_state css;
8899 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8900 u64 __percpu *cpuusage;
ef12fefa 8901 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8902 struct cpuacct *parent;
d842de87
SV
8903};
8904
8905struct cgroup_subsys cpuacct_subsys;
8906
8907/* return cpu accounting group corresponding to this container */
32cd756a 8908static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8909{
32cd756a 8910 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8911 struct cpuacct, css);
8912}
8913
8914/* return cpu accounting group to which this task belongs */
8915static inline struct cpuacct *task_ca(struct task_struct *tsk)
8916{
8917 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8918 struct cpuacct, css);
8919}
8920
8921/* create a new cpu accounting group */
8922static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8923 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8924{
8925 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8926 int i;
d842de87
SV
8927
8928 if (!ca)
ef12fefa 8929 goto out;
d842de87
SV
8930
8931 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8932 if (!ca->cpuusage)
8933 goto out_free_ca;
8934
8935 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8936 if (percpu_counter_init(&ca->cpustat[i], 0))
8937 goto out_free_counters;
d842de87 8938
934352f2
BR
8939 if (cgrp->parent)
8940 ca->parent = cgroup_ca(cgrp->parent);
8941
d842de87 8942 return &ca->css;
ef12fefa
BR
8943
8944out_free_counters:
8945 while (--i >= 0)
8946 percpu_counter_destroy(&ca->cpustat[i]);
8947 free_percpu(ca->cpuusage);
8948out_free_ca:
8949 kfree(ca);
8950out:
8951 return ERR_PTR(-ENOMEM);
d842de87
SV
8952}
8953
8954/* destroy an existing cpu accounting group */
41a2d6cf 8955static void
32cd756a 8956cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8957{
32cd756a 8958 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8959 int i;
d842de87 8960
ef12fefa
BR
8961 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8962 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8963 free_percpu(ca->cpuusage);
8964 kfree(ca);
8965}
8966
720f5498
KC
8967static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8968{
b36128c8 8969 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8970 u64 data;
8971
8972#ifndef CONFIG_64BIT
8973 /*
8974 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8975 */
05fa785c 8976 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8977 data = *cpuusage;
05fa785c 8978 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8979#else
8980 data = *cpuusage;
8981#endif
8982
8983 return data;
8984}
8985
8986static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8987{
b36128c8 8988 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8989
8990#ifndef CONFIG_64BIT
8991 /*
8992 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8993 */
05fa785c 8994 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8995 *cpuusage = val;
05fa785c 8996 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8997#else
8998 *cpuusage = val;
8999#endif
9000}
9001
d842de87 9002/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9003static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9004{
32cd756a 9005 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9006 u64 totalcpuusage = 0;
9007 int i;
9008
720f5498
KC
9009 for_each_present_cpu(i)
9010 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9011
9012 return totalcpuusage;
9013}
9014
0297b803
DG
9015static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9016 u64 reset)
9017{
9018 struct cpuacct *ca = cgroup_ca(cgrp);
9019 int err = 0;
9020 int i;
9021
9022 if (reset) {
9023 err = -EINVAL;
9024 goto out;
9025 }
9026
720f5498
KC
9027 for_each_present_cpu(i)
9028 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9029
0297b803
DG
9030out:
9031 return err;
9032}
9033
e9515c3c
KC
9034static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9035 struct seq_file *m)
9036{
9037 struct cpuacct *ca = cgroup_ca(cgroup);
9038 u64 percpu;
9039 int i;
9040
9041 for_each_present_cpu(i) {
9042 percpu = cpuacct_cpuusage_read(ca, i);
9043 seq_printf(m, "%llu ", (unsigned long long) percpu);
9044 }
9045 seq_printf(m, "\n");
9046 return 0;
9047}
9048
ef12fefa
BR
9049static const char *cpuacct_stat_desc[] = {
9050 [CPUACCT_STAT_USER] = "user",
9051 [CPUACCT_STAT_SYSTEM] = "system",
9052};
9053
9054static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9055 struct cgroup_map_cb *cb)
9056{
9057 struct cpuacct *ca = cgroup_ca(cgrp);
9058 int i;
9059
9060 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9061 s64 val = percpu_counter_read(&ca->cpustat[i]);
9062 val = cputime64_to_clock_t(val);
9063 cb->fill(cb, cpuacct_stat_desc[i], val);
9064 }
9065 return 0;
9066}
9067
d842de87
SV
9068static struct cftype files[] = {
9069 {
9070 .name = "usage",
f4c753b7
PM
9071 .read_u64 = cpuusage_read,
9072 .write_u64 = cpuusage_write,
d842de87 9073 },
e9515c3c
KC
9074 {
9075 .name = "usage_percpu",
9076 .read_seq_string = cpuacct_percpu_seq_read,
9077 },
ef12fefa
BR
9078 {
9079 .name = "stat",
9080 .read_map = cpuacct_stats_show,
9081 },
d842de87
SV
9082};
9083
32cd756a 9084static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9085{
32cd756a 9086 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9087}
9088
9089/*
9090 * charge this task's execution time to its accounting group.
9091 *
9092 * called with rq->lock held.
9093 */
9094static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9095{
9096 struct cpuacct *ca;
934352f2 9097 int cpu;
d842de87 9098
c40c6f85 9099 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9100 return;
9101
934352f2 9102 cpu = task_cpu(tsk);
a18b83b7
BR
9103
9104 rcu_read_lock();
9105
d842de87 9106 ca = task_ca(tsk);
d842de87 9107
934352f2 9108 for (; ca; ca = ca->parent) {
b36128c8 9109 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9110 *cpuusage += cputime;
9111 }
a18b83b7
BR
9112
9113 rcu_read_unlock();
d842de87
SV
9114}
9115
fa535a77
AB
9116/*
9117 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9118 * in cputime_t units. As a result, cpuacct_update_stats calls
9119 * percpu_counter_add with values large enough to always overflow the
9120 * per cpu batch limit causing bad SMP scalability.
9121 *
9122 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9123 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9124 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9125 */
9126#ifdef CONFIG_SMP
9127#define CPUACCT_BATCH \
9128 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9129#else
9130#define CPUACCT_BATCH 0
9131#endif
9132
ef12fefa
BR
9133/*
9134 * Charge the system/user time to the task's accounting group.
9135 */
9136static void cpuacct_update_stats(struct task_struct *tsk,
9137 enum cpuacct_stat_index idx, cputime_t val)
9138{
9139 struct cpuacct *ca;
fa535a77 9140 int batch = CPUACCT_BATCH;
ef12fefa
BR
9141
9142 if (unlikely(!cpuacct_subsys.active))
9143 return;
9144
9145 rcu_read_lock();
9146 ca = task_ca(tsk);
9147
9148 do {
fa535a77 9149 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9150 ca = ca->parent;
9151 } while (ca);
9152 rcu_read_unlock();
9153}
9154
d842de87
SV
9155struct cgroup_subsys cpuacct_subsys = {
9156 .name = "cpuacct",
9157 .create = cpuacct_create,
9158 .destroy = cpuacct_destroy,
9159 .populate = cpuacct_populate,
9160 .subsys_id = cpuacct_subsys_id,
9161};
9162#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9163