Merge branch 'linus' into sched/core
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3
SV
308
309/* return group to which a task belongs */
4cf86d77 310static inline struct task_group *task_group(struct task_struct *p)
29f59db3 311{
4cf86d77 312 struct task_group *tg;
9b5b7751 313
7c941438 314#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
24e377a8 317#else
41a2d6cf 318 tg = &init_task_group;
24e377a8 319#endif
9b5b7751 320 return tg;
29f59db3
SV
321}
322
323/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 324static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 325{
052f1dc7 326#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
327 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
328 p->se.parent = task_group(p)->se[cpu];
052f1dc7 329#endif
6f505b16 330
052f1dc7 331#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
332 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
333 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 334#endif
29f59db3
SV
335}
336
337#else
338
6f505b16 339static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
340static inline struct task_group *task_group(struct task_struct *p)
341{
342 return NULL;
343}
29f59db3 344
7c941438 345#endif /* CONFIG_CGROUP_SCHED */
29f59db3 346
6aa645ea
IM
347/* CFS-related fields in a runqueue */
348struct cfs_rq {
349 struct load_weight load;
350 unsigned long nr_running;
351
6aa645ea 352 u64 exec_clock;
e9acbff6 353 u64 min_vruntime;
6aa645ea
IM
354
355 struct rb_root tasks_timeline;
356 struct rb_node *rb_leftmost;
4a55bd5e
PZ
357
358 struct list_head tasks;
359 struct list_head *balance_iterator;
360
361 /*
362 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
363 * It is set to NULL otherwise (i.e when none are currently running).
364 */
4793241b 365 struct sched_entity *curr, *next, *last;
ddc97297 366
5ac5c4d6 367 unsigned int nr_spread_over;
ddc97297 368
62160e3f 369#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
371
41a2d6cf
IM
372 /*
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
376 *
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
379 */
41a2d6cf
IM
380 struct list_head leaf_cfs_rq_list;
381 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
382
383#ifdef CONFIG_SMP
c09595f6 384 /*
c8cba857 385 * the part of load.weight contributed by tasks
c09595f6 386 */
c8cba857 387 unsigned long task_weight;
c09595f6 388
c8cba857
PZ
389 /*
390 * h_load = weight * f(tg)
391 *
392 * Where f(tg) is the recursive weight fraction assigned to
393 * this group.
394 */
395 unsigned long h_load;
c09595f6 396
c8cba857
PZ
397 /*
398 * this cpu's part of tg->shares
399 */
400 unsigned long shares;
f1d239f7
PZ
401
402 /*
403 * load.weight at the time we set shares
404 */
405 unsigned long rq_weight;
c09595f6 406#endif
6aa645ea
IM
407#endif
408};
1da177e4 409
6aa645ea
IM
410/* Real-Time classes' related field in a runqueue: */
411struct rt_rq {
412 struct rt_prio_array active;
63489e45 413 unsigned long rt_nr_running;
052f1dc7 414#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
415 struct {
416 int curr; /* highest queued rt task prio */
398a153b 417#ifdef CONFIG_SMP
e864c499 418 int next; /* next highest */
398a153b 419#endif
e864c499 420 } highest_prio;
6f505b16 421#endif
fa85ae24 422#ifdef CONFIG_SMP
73fe6aae 423 unsigned long rt_nr_migratory;
a1ba4d8b 424 unsigned long rt_nr_total;
a22d7fc1 425 int overloaded;
917b627d 426 struct plist_head pushable_tasks;
fa85ae24 427#endif
6f505b16 428 int rt_throttled;
fa85ae24 429 u64 rt_time;
ac086bc2 430 u64 rt_runtime;
ea736ed5 431 /* Nests inside the rq lock: */
0986b11b 432 raw_spinlock_t rt_runtime_lock;
6f505b16 433
052f1dc7 434#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
435 unsigned long rt_nr_boosted;
436
6f505b16
PZ
437 struct rq *rq;
438 struct list_head leaf_rt_rq_list;
439 struct task_group *tg;
6f505b16 440#endif
6aa645ea
IM
441};
442
57d885fe
GH
443#ifdef CONFIG_SMP
444
445/*
446 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
447 * variables. Each exclusive cpuset essentially defines an island domain by
448 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
449 * exclusive cpuset is created, we also create and attach a new root-domain
450 * object.
451 *
57d885fe
GH
452 */
453struct root_domain {
454 atomic_t refcount;
c6c4927b
RR
455 cpumask_var_t span;
456 cpumask_var_t online;
637f5085 457
0eab9146 458 /*
637f5085
GH
459 * The "RT overload" flag: it gets set if a CPU has more than
460 * one runnable RT task.
461 */
c6c4927b 462 cpumask_var_t rto_mask;
0eab9146 463 atomic_t rto_count;
6e0534f2
GH
464#ifdef CONFIG_SMP
465 struct cpupri cpupri;
466#endif
57d885fe
GH
467};
468
dc938520
GH
469/*
470 * By default the system creates a single root-domain with all cpus as
471 * members (mimicking the global state we have today).
472 */
57d885fe
GH
473static struct root_domain def_root_domain;
474
475#endif
476
1da177e4
LT
477/*
478 * This is the main, per-CPU runqueue data structure.
479 *
480 * Locking rule: those places that want to lock multiple runqueues
481 * (such as the load balancing or the thread migration code), lock
482 * acquire operations must be ordered by ascending &runqueue.
483 */
70b97a7f 484struct rq {
d8016491 485 /* runqueue lock: */
05fa785c 486 raw_spinlock_t lock;
1da177e4
LT
487
488 /*
489 * nr_running and cpu_load should be in the same cacheline because
490 * remote CPUs use both these fields when doing load calculation.
491 */
492 unsigned long nr_running;
6aa645ea
IM
493 #define CPU_LOAD_IDX_MAX 5
494 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 495#ifdef CONFIG_NO_HZ
39c0cbe2 496 u64 nohz_stamp;
46cb4b7c
SS
497 unsigned char in_nohz_recently;
498#endif
a64692a3
MG
499 unsigned int skip_clock_update;
500
d8016491
IM
501 /* capture load from *all* tasks on this cpu: */
502 struct load_weight load;
6aa645ea
IM
503 unsigned long nr_load_updates;
504 u64 nr_switches;
505
506 struct cfs_rq cfs;
6f505b16 507 struct rt_rq rt;
6f505b16 508
6aa645ea 509#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
510 /* list of leaf cfs_rq on this cpu: */
511 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
512#endif
513#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 514 struct list_head leaf_rt_rq_list;
1da177e4 515#endif
1da177e4
LT
516
517 /*
518 * This is part of a global counter where only the total sum
519 * over all CPUs matters. A task can increase this counter on
520 * one CPU and if it got migrated afterwards it may decrease
521 * it on another CPU. Always updated under the runqueue lock:
522 */
523 unsigned long nr_uninterruptible;
524
36c8b586 525 struct task_struct *curr, *idle;
c9819f45 526 unsigned long next_balance;
1da177e4 527 struct mm_struct *prev_mm;
6aa645ea 528
3e51f33f 529 u64 clock;
6aa645ea 530
1da177e4
LT
531 atomic_t nr_iowait;
532
533#ifdef CONFIG_SMP
0eab9146 534 struct root_domain *rd;
1da177e4
LT
535 struct sched_domain *sd;
536
a0a522ce 537 unsigned char idle_at_tick;
1da177e4 538 /* For active balancing */
3f029d3c 539 int post_schedule;
1da177e4
LT
540 int active_balance;
541 int push_cpu;
d8016491
IM
542 /* cpu of this runqueue: */
543 int cpu;
1f11eb6a 544 int online;
1da177e4 545
a8a51d5e 546 unsigned long avg_load_per_task;
1da177e4 547
36c8b586 548 struct task_struct *migration_thread;
1da177e4 549 struct list_head migration_queue;
e9e9250b
PZ
550
551 u64 rt_avg;
552 u64 age_stamp;
1b9508f6
MG
553 u64 idle_stamp;
554 u64 avg_idle;
1da177e4
LT
555#endif
556
dce48a84
TG
557 /* calc_load related fields */
558 unsigned long calc_load_update;
559 long calc_load_active;
560
8f4d37ec 561#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
562#ifdef CONFIG_SMP
563 int hrtick_csd_pending;
564 struct call_single_data hrtick_csd;
565#endif
8f4d37ec
PZ
566 struct hrtimer hrtick_timer;
567#endif
568
1da177e4
LT
569#ifdef CONFIG_SCHEDSTATS
570 /* latency stats */
571 struct sched_info rq_sched_info;
9c2c4802
KC
572 unsigned long long rq_cpu_time;
573 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
574
575 /* sys_sched_yield() stats */
480b9434 576 unsigned int yld_count;
1da177e4
LT
577
578 /* schedule() stats */
480b9434
KC
579 unsigned int sched_switch;
580 unsigned int sched_count;
581 unsigned int sched_goidle;
1da177e4
LT
582
583 /* try_to_wake_up() stats */
480b9434
KC
584 unsigned int ttwu_count;
585 unsigned int ttwu_local;
b8efb561
IM
586
587 /* BKL stats */
480b9434 588 unsigned int bkl_count;
1da177e4
LT
589#endif
590};
591
f34e3b61 592static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 593
7d478721
PZ
594static inline
595void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 596{
7d478721 597 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
598
599 /*
600 * A queue event has occurred, and we're going to schedule. In
601 * this case, we can save a useless back to back clock update.
602 */
603 if (test_tsk_need_resched(p))
604 rq->skip_clock_update = 1;
dd41f596
IM
605}
606
0a2966b4
CL
607static inline int cpu_of(struct rq *rq)
608{
609#ifdef CONFIG_SMP
610 return rq->cpu;
611#else
612 return 0;
613#endif
614}
615
497f0ab3 616#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
617 rcu_dereference_check((p), \
618 rcu_read_lock_sched_held() || \
619 lockdep_is_held(&sched_domains_mutex))
620
674311d5
NP
621/*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 623 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
48f24c4d 628#define for_each_domain(cpu, __sd) \
497f0ab3 629 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
630
631#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632#define this_rq() (&__get_cpu_var(runqueues))
633#define task_rq(p) cpu_rq(task_cpu(p))
634#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 635#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 636
aa9c4c0f 637inline void update_rq_clock(struct rq *rq)
3e51f33f 638{
a64692a3
MG
639 if (!rq->skip_clock_update)
640 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
641}
642
bf5c91ba
IM
643/*
644 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 */
646#ifdef CONFIG_SCHED_DEBUG
647# define const_debug __read_mostly
648#else
649# define const_debug static const
650#endif
651
017730c1
IM
652/**
653 * runqueue_is_locked
e17b38bf 654 * @cpu: the processor in question.
017730c1
IM
655 *
656 * Returns true if the current cpu runqueue is locked.
657 * This interface allows printk to be called with the runqueue lock
658 * held and know whether or not it is OK to wake up the klogd.
659 */
89f19f04 660int runqueue_is_locked(int cpu)
017730c1 661{
05fa785c 662 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
663}
664
bf5c91ba
IM
665/*
666 * Debugging: various feature bits
667 */
f00b45c1
PZ
668
669#define SCHED_FEAT(name, enabled) \
670 __SCHED_FEAT_##name ,
671
bf5c91ba 672enum {
f00b45c1 673#include "sched_features.h"
bf5c91ba
IM
674};
675
f00b45c1
PZ
676#undef SCHED_FEAT
677
678#define SCHED_FEAT(name, enabled) \
679 (1UL << __SCHED_FEAT_##name) * enabled |
680
bf5c91ba 681const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
682#include "sched_features.h"
683 0;
684
685#undef SCHED_FEAT
686
687#ifdef CONFIG_SCHED_DEBUG
688#define SCHED_FEAT(name, enabled) \
689 #name ,
690
983ed7a6 691static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
692#include "sched_features.h"
693 NULL
694};
695
696#undef SCHED_FEAT
697
34f3a814 698static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 699{
f00b45c1
PZ
700 int i;
701
702 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
703 if (!(sysctl_sched_features & (1UL << i)))
704 seq_puts(m, "NO_");
705 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 706 }
34f3a814 707 seq_puts(m, "\n");
f00b45c1 708
34f3a814 709 return 0;
f00b45c1
PZ
710}
711
712static ssize_t
713sched_feat_write(struct file *filp, const char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715{
716 char buf[64];
717 char *cmp = buf;
718 int neg = 0;
719 int i;
720
721 if (cnt > 63)
722 cnt = 63;
723
724 if (copy_from_user(&buf, ubuf, cnt))
725 return -EFAULT;
726
727 buf[cnt] = 0;
728
c24b7c52 729 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
730 neg = 1;
731 cmp += 3;
732 }
733
734 for (i = 0; sched_feat_names[i]; i++) {
735 int len = strlen(sched_feat_names[i]);
736
737 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
738 if (neg)
739 sysctl_sched_features &= ~(1UL << i);
740 else
741 sysctl_sched_features |= (1UL << i);
742 break;
743 }
744 }
745
746 if (!sched_feat_names[i])
747 return -EINVAL;
748
42994724 749 *ppos += cnt;
f00b45c1
PZ
750
751 return cnt;
752}
753
34f3a814
LZ
754static int sched_feat_open(struct inode *inode, struct file *filp)
755{
756 return single_open(filp, sched_feat_show, NULL);
757}
758
828c0950 759static const struct file_operations sched_feat_fops = {
34f3a814
LZ
760 .open = sched_feat_open,
761 .write = sched_feat_write,
762 .read = seq_read,
763 .llseek = seq_lseek,
764 .release = single_release,
f00b45c1
PZ
765};
766
767static __init int sched_init_debug(void)
768{
f00b45c1
PZ
769 debugfs_create_file("sched_features", 0644, NULL, NULL,
770 &sched_feat_fops);
771
772 return 0;
773}
774late_initcall(sched_init_debug);
775
776#endif
777
778#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 779
b82d9fdd
PZ
780/*
781 * Number of tasks to iterate in a single balance run.
782 * Limited because this is done with IRQs disabled.
783 */
784const_debug unsigned int sysctl_sched_nr_migrate = 32;
785
2398f2c6
PZ
786/*
787 * ratelimit for updating the group shares.
55cd5340 788 * default: 0.25ms
2398f2c6 789 */
55cd5340 790unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 791unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 792
ffda12a1
PZ
793/*
794 * Inject some fuzzyness into changing the per-cpu group shares
795 * this avoids remote rq-locks at the expense of fairness.
796 * default: 4
797 */
798unsigned int sysctl_sched_shares_thresh = 4;
799
e9e9250b
PZ
800/*
801 * period over which we average the RT time consumption, measured
802 * in ms.
803 *
804 * default: 1s
805 */
806const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
807
fa85ae24 808/*
9f0c1e56 809 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
810 * default: 1s
811 */
9f0c1e56 812unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 813
6892b75e
IM
814static __read_mostly int scheduler_running;
815
9f0c1e56
PZ
816/*
817 * part of the period that we allow rt tasks to run in us.
818 * default: 0.95s
819 */
820int sysctl_sched_rt_runtime = 950000;
fa85ae24 821
d0b27fa7
PZ
822static inline u64 global_rt_period(void)
823{
824 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
825}
826
827static inline u64 global_rt_runtime(void)
828{
e26873bb 829 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
830 return RUNTIME_INF;
831
832 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
833}
fa85ae24 834
1da177e4 835#ifndef prepare_arch_switch
4866cde0
NP
836# define prepare_arch_switch(next) do { } while (0)
837#endif
838#ifndef finish_arch_switch
839# define finish_arch_switch(prev) do { } while (0)
840#endif
841
051a1d1a
DA
842static inline int task_current(struct rq *rq, struct task_struct *p)
843{
844 return rq->curr == p;
845}
846
4866cde0 847#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 848static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 849{
051a1d1a 850 return task_current(rq, p);
4866cde0
NP
851}
852
70b97a7f 853static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
854{
855}
856
70b97a7f 857static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 858{
da04c035
IM
859#ifdef CONFIG_DEBUG_SPINLOCK
860 /* this is a valid case when another task releases the spinlock */
861 rq->lock.owner = current;
862#endif
8a25d5de
IM
863 /*
864 * If we are tracking spinlock dependencies then we have to
865 * fix up the runqueue lock - which gets 'carried over' from
866 * prev into current:
867 */
868 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
869
05fa785c 870 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
871}
872
873#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
875{
876#ifdef CONFIG_SMP
877 return p->oncpu;
878#else
051a1d1a 879 return task_current(rq, p);
4866cde0
NP
880#endif
881}
882
70b97a7f 883static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
884{
885#ifdef CONFIG_SMP
886 /*
887 * We can optimise this out completely for !SMP, because the
888 * SMP rebalancing from interrupt is the only thing that cares
889 * here.
890 */
891 next->oncpu = 1;
892#endif
893#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 894 raw_spin_unlock_irq(&rq->lock);
4866cde0 895#else
05fa785c 896 raw_spin_unlock(&rq->lock);
4866cde0
NP
897#endif
898}
899
70b97a7f 900static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 /*
904 * After ->oncpu is cleared, the task can be moved to a different CPU.
905 * We must ensure this doesn't happen until the switch is completely
906 * finished.
907 */
908 smp_wmb();
909 prev->oncpu = 0;
910#endif
911#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
912 local_irq_enable();
1da177e4 913#endif
4866cde0
NP
914}
915#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 916
0970d299 917/*
65cc8e48
PZ
918 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
919 * against ttwu().
0970d299
PZ
920 */
921static inline int task_is_waking(struct task_struct *p)
922{
0017d735 923 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
924}
925
b29739f9
IM
926/*
927 * __task_rq_lock - lock the runqueue a given task resides on.
928 * Must be called interrupts disabled.
929 */
70b97a7f 930static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
931 __acquires(rq->lock)
932{
0970d299
PZ
933 struct rq *rq;
934
3a5c359a 935 for (;;) {
0970d299 936 rq = task_rq(p);
05fa785c 937 raw_spin_lock(&rq->lock);
65cc8e48 938 if (likely(rq == task_rq(p)))
3a5c359a 939 return rq;
05fa785c 940 raw_spin_unlock(&rq->lock);
b29739f9 941 }
b29739f9
IM
942}
943
1da177e4
LT
944/*
945 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 946 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
947 * explicitly disabling preemption.
948 */
70b97a7f 949static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
950 __acquires(rq->lock)
951{
70b97a7f 952 struct rq *rq;
1da177e4 953
3a5c359a
AK
954 for (;;) {
955 local_irq_save(*flags);
956 rq = task_rq(p);
05fa785c 957 raw_spin_lock(&rq->lock);
65cc8e48 958 if (likely(rq == task_rq(p)))
3a5c359a 959 return rq;
05fa785c 960 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 961 }
1da177e4
LT
962}
963
ad474cac
ON
964void task_rq_unlock_wait(struct task_struct *p)
965{
966 struct rq *rq = task_rq(p);
967
968 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 969 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
05fa785c 975 raw_spin_unlock(&rq->lock);
b29739f9
IM
976}
977
70b97a7f 978static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
979 __releases(rq->lock)
980{
05fa785c 981 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
982}
983
1da177e4 984/*
cc2a73b5 985 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 986 */
a9957449 987static struct rq *this_rq_lock(void)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4
LT
991
992 local_irq_disable();
993 rq = this_rq();
05fa785c 994 raw_spin_lock(&rq->lock);
1da177e4
LT
995
996 return rq;
997}
998
8f4d37ec
PZ
999#ifdef CONFIG_SCHED_HRTICK
1000/*
1001 * Use HR-timers to deliver accurate preemption points.
1002 *
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1006 *
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1009 */
8f4d37ec
PZ
1010
1011/*
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1015 */
1016static inline int hrtick_enabled(struct rq *rq)
1017{
1018 if (!sched_feat(HRTICK))
1019 return 0;
ba42059f 1020 if (!cpu_active(cpu_of(rq)))
b328ca18 1021 return 0;
8f4d37ec
PZ
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023}
1024
8f4d37ec
PZ
1025static void hrtick_clear(struct rq *rq)
1026{
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1029}
1030
8f4d37ec
PZ
1031/*
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1034 */
1035static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036{
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040
05fa785c 1041 raw_spin_lock(&rq->lock);
3e51f33f 1042 update_rq_clock(rq);
8f4d37ec 1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1044 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1045
1046 return HRTIMER_NORESTART;
1047}
1048
95e904c7 1049#ifdef CONFIG_SMP
31656519
PZ
1050/*
1051 * called from hardirq (IPI) context
1052 */
1053static void __hrtick_start(void *arg)
b328ca18 1054{
31656519 1055 struct rq *rq = arg;
b328ca18 1056
05fa785c 1057 raw_spin_lock(&rq->lock);
31656519
PZ
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
05fa785c 1060 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1061}
1062
31656519
PZ
1063/*
1064 * Called to set the hrtick timer state.
1065 *
1066 * called with rq->lock held and irqs disabled
1067 */
1068static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1069{
31656519
PZ
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1072
cc584b21 1073 hrtimer_set_expires(timer, time);
31656519
PZ
1074
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
6e275637 1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1079 rq->hrtick_csd_pending = 1;
1080 }
b328ca18
PZ
1081}
1082
1083static int
1084hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085{
1086 int cpu = (int)(long)hcpu;
1087
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
31656519 1095 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1096 return NOTIFY_OK;
1097 }
1098
1099 return NOTIFY_DONE;
1100}
1101
fa748203 1102static __init void init_hrtick(void)
b328ca18
PZ
1103{
1104 hotcpu_notifier(hotplug_hrtick, 0);
1105}
31656519
PZ
1106#else
1107/*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112static void hrtick_start(struct rq *rq, u64 delay)
1113{
7f1e2ca9 1114 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1115 HRTIMER_MODE_REL_PINNED, 0);
31656519 1116}
b328ca18 1117
006c75f1 1118static inline void init_hrtick(void)
8f4d37ec 1119{
8f4d37ec 1120}
31656519 1121#endif /* CONFIG_SMP */
8f4d37ec 1122
31656519 1123static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1124{
31656519
PZ
1125#ifdef CONFIG_SMP
1126 rq->hrtick_csd_pending = 0;
8f4d37ec 1127
31656519
PZ
1128 rq->hrtick_csd.flags = 0;
1129 rq->hrtick_csd.func = __hrtick_start;
1130 rq->hrtick_csd.info = rq;
1131#endif
8f4d37ec 1132
31656519
PZ
1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1134 rq->hrtick_timer.function = hrtick;
8f4d37ec 1135}
006c75f1 1136#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1137static inline void hrtick_clear(struct rq *rq)
1138{
1139}
1140
8f4d37ec
PZ
1141static inline void init_rq_hrtick(struct rq *rq)
1142{
1143}
1144
b328ca18
PZ
1145static inline void init_hrtick(void)
1146{
1147}
006c75f1 1148#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1149
c24d20db
IM
1150/*
1151 * resched_task - mark a task 'to be rescheduled now'.
1152 *
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1156 */
1157#ifdef CONFIG_SMP
1158
1159#ifndef tsk_is_polling
1160#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161#endif
1162
31656519 1163static void resched_task(struct task_struct *p)
c24d20db
IM
1164{
1165 int cpu;
1166
05fa785c 1167 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1168
5ed0cec0 1169 if (test_tsk_need_resched(p))
c24d20db
IM
1170 return;
1171
5ed0cec0 1172 set_tsk_need_resched(p);
c24d20db
IM
1173
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1177
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1182}
1183
1184static void resched_cpu(int cpu)
1185{
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1188
05fa785c 1189 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1190 return;
1191 resched_task(cpu_curr(cpu));
05fa785c 1192 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1193}
06d8308c
TG
1194
1195#ifdef CONFIG_NO_HZ
1196/*
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1205 */
1206void wake_up_idle_cpu(int cpu)
1207{
1208 struct rq *rq = cpu_rq(cpu);
1209
1210 if (cpu == smp_processor_id())
1211 return;
1212
1213 /*
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1219 */
1220 if (rq->curr != rq->idle)
1221 return;
1222
1223 /*
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1227 */
5ed0cec0 1228 set_tsk_need_resched(rq->idle);
06d8308c
TG
1229
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1234}
39c0cbe2
MG
1235
1236int nohz_ratelimit(int cpu)
1237{
1238 struct rq *rq = cpu_rq(cpu);
1239 u64 diff = rq->clock - rq->nohz_stamp;
1240
1241 rq->nohz_stamp = rq->clock;
1242
1243 return diff < (NSEC_PER_SEC / HZ) >> 1;
1244}
1245
6d6bc0ad 1246#endif /* CONFIG_NO_HZ */
06d8308c 1247
e9e9250b
PZ
1248static u64 sched_avg_period(void)
1249{
1250 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1251}
1252
1253static void sched_avg_update(struct rq *rq)
1254{
1255 s64 period = sched_avg_period();
1256
1257 while ((s64)(rq->clock - rq->age_stamp) > period) {
1258 rq->age_stamp += period;
1259 rq->rt_avg /= 2;
1260 }
1261}
1262
1263static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1264{
1265 rq->rt_avg += rt_delta;
1266 sched_avg_update(rq);
1267}
1268
6d6bc0ad 1269#else /* !CONFIG_SMP */
31656519 1270static void resched_task(struct task_struct *p)
c24d20db 1271{
05fa785c 1272 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1273 set_tsk_need_resched(p);
c24d20db 1274}
e9e9250b
PZ
1275
1276static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277{
1278}
6d6bc0ad 1279#endif /* CONFIG_SMP */
c24d20db 1280
45bf76df
IM
1281#if BITS_PER_LONG == 32
1282# define WMULT_CONST (~0UL)
1283#else
1284# define WMULT_CONST (1UL << 32)
1285#endif
1286
1287#define WMULT_SHIFT 32
1288
194081eb
IM
1289/*
1290 * Shift right and round:
1291 */
cf2ab469 1292#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1293
a7be37ac
PZ
1294/*
1295 * delta *= weight / lw
1296 */
cb1c4fc9 1297static unsigned long
45bf76df
IM
1298calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1299 struct load_weight *lw)
1300{
1301 u64 tmp;
1302
7a232e03
LJ
1303 if (!lw->inv_weight) {
1304 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1305 lw->inv_weight = 1;
1306 else
1307 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1308 / (lw->weight+1);
1309 }
45bf76df
IM
1310
1311 tmp = (u64)delta_exec * weight;
1312 /*
1313 * Check whether we'd overflow the 64-bit multiplication:
1314 */
194081eb 1315 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1316 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1317 WMULT_SHIFT/2);
1318 else
cf2ab469 1319 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1320
ecf691da 1321 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1322}
1323
1091985b 1324static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1325{
1326 lw->weight += inc;
e89996ae 1327 lw->inv_weight = 0;
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1331{
1332 lw->weight -= dec;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
2dd73a4f
PW
1336/*
1337 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1338 * of tasks with abnormal "nice" values across CPUs the contribution that
1339 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1340 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1341 * scaled version of the new time slice allocation that they receive on time
1342 * slice expiry etc.
1343 */
1344
cce7ade8
PZ
1345#define WEIGHT_IDLEPRIO 3
1346#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1347
1348/*
1349 * Nice levels are multiplicative, with a gentle 10% change for every
1350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1351 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1352 * that remained on nice 0.
1353 *
1354 * The "10% effect" is relative and cumulative: from _any_ nice level,
1355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1357 * If a task goes up by ~10% and another task goes down by ~10% then
1358 * the relative distance between them is ~25%.)
dd41f596
IM
1359 */
1360static const int prio_to_weight[40] = {
254753dc
IM
1361 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1362 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1363 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1364 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1365 /* 0 */ 1024, 820, 655, 526, 423,
1366 /* 5 */ 335, 272, 215, 172, 137,
1367 /* 10 */ 110, 87, 70, 56, 45,
1368 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1369};
1370
5714d2de
IM
1371/*
1372 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1373 *
1374 * In cases where the weight does not change often, we can use the
1375 * precalculated inverse to speed up arithmetics by turning divisions
1376 * into multiplications:
1377 */
dd41f596 1378static const u32 prio_to_wmult[40] = {
254753dc
IM
1379 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1380 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1381 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1387};
2dd73a4f 1388
ef12fefa
BR
1389/* Time spent by the tasks of the cpu accounting group executing in ... */
1390enum cpuacct_stat_index {
1391 CPUACCT_STAT_USER, /* ... user mode */
1392 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1393
1394 CPUACCT_STAT_NSTATS,
1395};
1396
d842de87
SV
1397#ifdef CONFIG_CGROUP_CPUACCT
1398static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1399static void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1401#else
1402static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1403static inline void cpuacct_update_stats(struct task_struct *tsk,
1404 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1405#endif
1406
18d95a28
PZ
1407static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1408{
1409 update_load_add(&rq->load, load);
1410}
1411
1412static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1413{
1414 update_load_sub(&rq->load, load);
1415}
1416
7940ca36 1417#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1418typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1419
1420/*
1421 * Iterate the full tree, calling @down when first entering a node and @up when
1422 * leaving it for the final time.
1423 */
eb755805 1424static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1425{
1426 struct task_group *parent, *child;
eb755805 1427 int ret;
c09595f6
PZ
1428
1429 rcu_read_lock();
1430 parent = &root_task_group;
1431down:
eb755805
PZ
1432 ret = (*down)(parent, data);
1433 if (ret)
1434 goto out_unlock;
c09595f6
PZ
1435 list_for_each_entry_rcu(child, &parent->children, siblings) {
1436 parent = child;
1437 goto down;
1438
1439up:
1440 continue;
1441 }
eb755805
PZ
1442 ret = (*up)(parent, data);
1443 if (ret)
1444 goto out_unlock;
c09595f6
PZ
1445
1446 child = parent;
1447 parent = parent->parent;
1448 if (parent)
1449 goto up;
eb755805 1450out_unlock:
c09595f6 1451 rcu_read_unlock();
eb755805
PZ
1452
1453 return ret;
c09595f6
PZ
1454}
1455
eb755805
PZ
1456static int tg_nop(struct task_group *tg, void *data)
1457{
1458 return 0;
c09595f6 1459}
eb755805
PZ
1460#endif
1461
1462#ifdef CONFIG_SMP
f5f08f39
PZ
1463/* Used instead of source_load when we know the type == 0 */
1464static unsigned long weighted_cpuload(const int cpu)
1465{
1466 return cpu_rq(cpu)->load.weight;
1467}
1468
1469/*
1470 * Return a low guess at the load of a migration-source cpu weighted
1471 * according to the scheduling class and "nice" value.
1472 *
1473 * We want to under-estimate the load of migration sources, to
1474 * balance conservatively.
1475 */
1476static unsigned long source_load(int cpu, int type)
1477{
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1480
1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total;
1483
1484 return min(rq->cpu_load[type-1], total);
1485}
1486
1487/*
1488 * Return a high guess at the load of a migration-target cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 */
1491static unsigned long target_load(int cpu, int type)
1492{
1493 struct rq *rq = cpu_rq(cpu);
1494 unsigned long total = weighted_cpuload(cpu);
1495
1496 if (type == 0 || !sched_feat(LB_BIAS))
1497 return total;
1498
1499 return max(rq->cpu_load[type-1], total);
1500}
1501
ae154be1
PZ
1502static struct sched_group *group_of(int cpu)
1503{
d11c563d 1504 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1505
1506 if (!sd)
1507 return NULL;
1508
1509 return sd->groups;
1510}
1511
1512static unsigned long power_of(int cpu)
1513{
1514 struct sched_group *group = group_of(cpu);
1515
1516 if (!group)
1517 return SCHED_LOAD_SCALE;
1518
1519 return group->cpu_power;
1520}
1521
eb755805
PZ
1522static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1523
1524static unsigned long cpu_avg_load_per_task(int cpu)
1525{
1526 struct rq *rq = cpu_rq(cpu);
af6d596f 1527 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1528
4cd42620
SR
1529 if (nr_running)
1530 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1531 else
1532 rq->avg_load_per_task = 0;
eb755805
PZ
1533
1534 return rq->avg_load_per_task;
1535}
1536
1537#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1538
43cf38eb 1539static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1540
c09595f6
PZ
1541static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1542
1543/*
1544 * Calculate and set the cpu's group shares.
1545 */
34d76c41
PZ
1546static void update_group_shares_cpu(struct task_group *tg, int cpu,
1547 unsigned long sd_shares,
1548 unsigned long sd_rq_weight,
4a6cc4bd 1549 unsigned long *usd_rq_weight)
18d95a28 1550{
34d76c41 1551 unsigned long shares, rq_weight;
a5004278 1552 int boost = 0;
c09595f6 1553
4a6cc4bd 1554 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1555 if (!rq_weight) {
1556 boost = 1;
1557 rq_weight = NICE_0_LOAD;
1558 }
c8cba857 1559
c09595f6 1560 /*
a8af7246
PZ
1561 * \Sum_j shares_j * rq_weight_i
1562 * shares_i = -----------------------------
1563 * \Sum_j rq_weight_j
c09595f6 1564 */
ec4e0e2f 1565 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1566 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1567
ffda12a1
PZ
1568 if (abs(shares - tg->se[cpu]->load.weight) >
1569 sysctl_sched_shares_thresh) {
1570 struct rq *rq = cpu_rq(cpu);
1571 unsigned long flags;
c09595f6 1572
05fa785c 1573 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1574 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1575 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1576 __set_se_shares(tg->se[cpu], shares);
05fa785c 1577 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1578 }
18d95a28 1579}
c09595f6
PZ
1580
1581/*
c8cba857
PZ
1582 * Re-compute the task group their per cpu shares over the given domain.
1583 * This needs to be done in a bottom-up fashion because the rq weight of a
1584 * parent group depends on the shares of its child groups.
c09595f6 1585 */
eb755805 1586static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1587{
cd8ad40d 1588 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1589 unsigned long *usd_rq_weight;
eb755805 1590 struct sched_domain *sd = data;
34d76c41 1591 unsigned long flags;
c8cba857 1592 int i;
c09595f6 1593
34d76c41
PZ
1594 if (!tg->se[0])
1595 return 0;
1596
1597 local_irq_save(flags);
4a6cc4bd 1598 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1599
758b2cdc 1600 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1601 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1602 usd_rq_weight[i] = weight;
34d76c41 1603
cd8ad40d 1604 rq_weight += weight;
ec4e0e2f
KC
1605 /*
1606 * If there are currently no tasks on the cpu pretend there
1607 * is one of average load so that when a new task gets to
1608 * run here it will not get delayed by group starvation.
1609 */
ec4e0e2f
KC
1610 if (!weight)
1611 weight = NICE_0_LOAD;
1612
cd8ad40d 1613 sum_weight += weight;
c8cba857 1614 shares += tg->cfs_rq[i]->shares;
c09595f6 1615 }
c09595f6 1616
cd8ad40d
PZ
1617 if (!rq_weight)
1618 rq_weight = sum_weight;
1619
c8cba857
PZ
1620 if ((!shares && rq_weight) || shares > tg->shares)
1621 shares = tg->shares;
1622
1623 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1624 shares = tg->shares;
c09595f6 1625
758b2cdc 1626 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1627 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1628
1629 local_irq_restore(flags);
eb755805
PZ
1630
1631 return 0;
c09595f6
PZ
1632}
1633
1634/*
c8cba857
PZ
1635 * Compute the cpu's hierarchical load factor for each task group.
1636 * This needs to be done in a top-down fashion because the load of a child
1637 * group is a fraction of its parents load.
c09595f6 1638 */
eb755805 1639static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1640{
c8cba857 1641 unsigned long load;
eb755805 1642 long cpu = (long)data;
c09595f6 1643
c8cba857
PZ
1644 if (!tg->parent) {
1645 load = cpu_rq(cpu)->load.weight;
1646 } else {
1647 load = tg->parent->cfs_rq[cpu]->h_load;
1648 load *= tg->cfs_rq[cpu]->shares;
1649 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1650 }
c09595f6 1651
c8cba857 1652 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1653
eb755805 1654 return 0;
c09595f6
PZ
1655}
1656
c8cba857 1657static void update_shares(struct sched_domain *sd)
4d8d595d 1658{
e7097159
PZ
1659 s64 elapsed;
1660 u64 now;
1661
1662 if (root_task_group_empty())
1663 return;
1664
1665 now = cpu_clock(raw_smp_processor_id());
1666 elapsed = now - sd->last_update;
2398f2c6
PZ
1667
1668 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1669 sd->last_update = now;
eb755805 1670 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1671 }
4d8d595d
PZ
1672}
1673
eb755805 1674static void update_h_load(long cpu)
c09595f6 1675{
e7097159
PZ
1676 if (root_task_group_empty())
1677 return;
1678
eb755805 1679 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1680}
1681
c09595f6
PZ
1682#else
1683
c8cba857 1684static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1685{
1686}
1687
18d95a28
PZ
1688#endif
1689
8f45e2b5
GH
1690#ifdef CONFIG_PREEMPT
1691
b78bb868
PZ
1692static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1693
70574a99 1694/*
8f45e2b5
GH
1695 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1696 * way at the expense of forcing extra atomic operations in all
1697 * invocations. This assures that the double_lock is acquired using the
1698 * same underlying policy as the spinlock_t on this architecture, which
1699 * reduces latency compared to the unfair variant below. However, it
1700 * also adds more overhead and therefore may reduce throughput.
70574a99 1701 */
8f45e2b5
GH
1702static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1703 __releases(this_rq->lock)
1704 __acquires(busiest->lock)
1705 __acquires(this_rq->lock)
1706{
05fa785c 1707 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1708 double_rq_lock(this_rq, busiest);
1709
1710 return 1;
1711}
1712
1713#else
1714/*
1715 * Unfair double_lock_balance: Optimizes throughput at the expense of
1716 * latency by eliminating extra atomic operations when the locks are
1717 * already in proper order on entry. This favors lower cpu-ids and will
1718 * grant the double lock to lower cpus over higher ids under contention,
1719 * regardless of entry order into the function.
1720 */
1721static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1722 __releases(this_rq->lock)
1723 __acquires(busiest->lock)
1724 __acquires(this_rq->lock)
1725{
1726 int ret = 0;
1727
05fa785c 1728 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1729 if (busiest < this_rq) {
05fa785c
TG
1730 raw_spin_unlock(&this_rq->lock);
1731 raw_spin_lock(&busiest->lock);
1732 raw_spin_lock_nested(&this_rq->lock,
1733 SINGLE_DEPTH_NESTING);
70574a99
AD
1734 ret = 1;
1735 } else
05fa785c
TG
1736 raw_spin_lock_nested(&busiest->lock,
1737 SINGLE_DEPTH_NESTING);
70574a99
AD
1738 }
1739 return ret;
1740}
1741
8f45e2b5
GH
1742#endif /* CONFIG_PREEMPT */
1743
1744/*
1745 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1746 */
1747static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748{
1749 if (unlikely(!irqs_disabled())) {
1750 /* printk() doesn't work good under rq->lock */
05fa785c 1751 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1752 BUG_ON(1);
1753 }
1754
1755 return _double_lock_balance(this_rq, busiest);
1756}
1757
70574a99
AD
1758static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1759 __releases(busiest->lock)
1760{
05fa785c 1761 raw_spin_unlock(&busiest->lock);
70574a99
AD
1762 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1763}
1e3c88bd
PZ
1764
1765/*
1766 * double_rq_lock - safely lock two runqueues
1767 *
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1770 */
1771static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1772 __acquires(rq1->lock)
1773 __acquires(rq2->lock)
1774{
1775 BUG_ON(!irqs_disabled());
1776 if (rq1 == rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 __acquire(rq2->lock); /* Fake it out ;) */
1779 } else {
1780 if (rq1 < rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1783 } else {
1784 raw_spin_lock(&rq2->lock);
1785 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1786 }
1787 }
1e3c88bd
PZ
1788}
1789
1790/*
1791 * double_rq_unlock - safely unlock two runqueues
1792 *
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1795 */
1796static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1797 __releases(rq1->lock)
1798 __releases(rq2->lock)
1799{
1800 raw_spin_unlock(&rq1->lock);
1801 if (rq1 != rq2)
1802 raw_spin_unlock(&rq2->lock);
1803 else
1804 __release(rq2->lock);
1805}
1806
18d95a28
PZ
1807#endif
1808
30432094 1809#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1810static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1811{
30432094 1812#ifdef CONFIG_SMP
34e83e85
IM
1813 cfs_rq->shares = shares;
1814#endif
1815}
30432094 1816#endif
e7693a36 1817
dce48a84 1818static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1819static void update_sysctl(void);
acb4a848 1820static int get_update_sysctl_factor(void);
dce48a84 1821
cd29fe6f
PZ
1822static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1823{
1824 set_task_rq(p, cpu);
1825#ifdef CONFIG_SMP
1826 /*
1827 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1828 * successfuly executed on another CPU. We must ensure that updates of
1829 * per-task data have been completed by this moment.
1830 */
1831 smp_wmb();
1832 task_thread_info(p)->cpu = cpu;
1833#endif
1834}
dce48a84 1835
1e3c88bd 1836static const struct sched_class rt_sched_class;
dd41f596
IM
1837
1838#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1839#define for_each_class(class) \
1840 for (class = sched_class_highest; class; class = class->next)
dd41f596 1841
1e3c88bd
PZ
1842#include "sched_stats.h"
1843
c09595f6 1844static void inc_nr_running(struct rq *rq)
9c217245
IM
1845{
1846 rq->nr_running++;
9c217245
IM
1847}
1848
c09595f6 1849static void dec_nr_running(struct rq *rq)
9c217245
IM
1850{
1851 rq->nr_running--;
9c217245
IM
1852}
1853
45bf76df
IM
1854static void set_load_weight(struct task_struct *p)
1855{
1856 if (task_has_rt_policy(p)) {
dd41f596
IM
1857 p->se.load.weight = prio_to_weight[0] * 2;
1858 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1859 return;
1860 }
45bf76df 1861
dd41f596
IM
1862 /*
1863 * SCHED_IDLE tasks get minimal weight:
1864 */
1865 if (p->policy == SCHED_IDLE) {
1866 p->se.load.weight = WEIGHT_IDLEPRIO;
1867 p->se.load.inv_weight = WMULT_IDLEPRIO;
1868 return;
1869 }
71f8bd46 1870
dd41f596
IM
1871 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1872 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1873}
1874
2087a1ad
GH
1875static void update_avg(u64 *avg, u64 sample)
1876{
1877 s64 diff = sample - *avg;
1878 *avg += diff >> 3;
1879}
1880
371fd7e7 1881static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1882{
a64692a3 1883 update_rq_clock(rq);
dd41f596 1884 sched_info_queued(p);
371fd7e7 1885 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1886 p->se.on_rq = 1;
71f8bd46
IM
1887}
1888
371fd7e7 1889static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1890{
a64692a3 1891 update_rq_clock(rq);
46ac22ba 1892 sched_info_dequeued(p);
371fd7e7 1893 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1894 p->se.on_rq = 0;
71f8bd46
IM
1895}
1896
1e3c88bd
PZ
1897/*
1898 * activate_task - move a task to the runqueue.
1899 */
371fd7e7 1900static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1901{
1902 if (task_contributes_to_load(p))
1903 rq->nr_uninterruptible--;
1904
371fd7e7 1905 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1906 inc_nr_running(rq);
1907}
1908
1909/*
1910 * deactivate_task - remove a task from the runqueue.
1911 */
371fd7e7 1912static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1913{
1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible++;
1916
371fd7e7 1917 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1918 dec_nr_running(rq);
1919}
1920
1921#include "sched_idletask.c"
1922#include "sched_fair.c"
1923#include "sched_rt.c"
1924#ifdef CONFIG_SCHED_DEBUG
1925# include "sched_debug.c"
1926#endif
1927
14531189 1928/*
dd41f596 1929 * __normal_prio - return the priority that is based on the static prio
14531189 1930 */
14531189
IM
1931static inline int __normal_prio(struct task_struct *p)
1932{
dd41f596 1933 return p->static_prio;
14531189
IM
1934}
1935
b29739f9
IM
1936/*
1937 * Calculate the expected normal priority: i.e. priority
1938 * without taking RT-inheritance into account. Might be
1939 * boosted by interactivity modifiers. Changes upon fork,
1940 * setprio syscalls, and whenever the interactivity
1941 * estimator recalculates.
1942 */
36c8b586 1943static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1944{
1945 int prio;
1946
e05606d3 1947 if (task_has_rt_policy(p))
b29739f9
IM
1948 prio = MAX_RT_PRIO-1 - p->rt_priority;
1949 else
1950 prio = __normal_prio(p);
1951 return prio;
1952}
1953
1954/*
1955 * Calculate the current priority, i.e. the priority
1956 * taken into account by the scheduler. This value might
1957 * be boosted by RT tasks, or might be boosted by
1958 * interactivity modifiers. Will be RT if the task got
1959 * RT-boosted. If not then it returns p->normal_prio.
1960 */
36c8b586 1961static int effective_prio(struct task_struct *p)
b29739f9
IM
1962{
1963 p->normal_prio = normal_prio(p);
1964 /*
1965 * If we are RT tasks or we were boosted to RT priority,
1966 * keep the priority unchanged. Otherwise, update priority
1967 * to the normal priority:
1968 */
1969 if (!rt_prio(p->prio))
1970 return p->normal_prio;
1971 return p->prio;
1972}
1973
1da177e4
LT
1974/**
1975 * task_curr - is this task currently executing on a CPU?
1976 * @p: the task in question.
1977 */
36c8b586 1978inline int task_curr(const struct task_struct *p)
1da177e4
LT
1979{
1980 return cpu_curr(task_cpu(p)) == p;
1981}
1982
cb469845
SR
1983static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1986{
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993}
1994
1da177e4 1995#ifdef CONFIG_SMP
cc367732
IM
1996/*
1997 * Is this task likely cache-hot:
1998 */
e7693a36 1999static int
cc367732
IM
2000task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2001{
2002 s64 delta;
2003
e6c8fba7
PZ
2004 if (p->sched_class != &fair_sched_class)
2005 return 0;
2006
f540a608
IM
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
f685ceac 2010 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2013 return 1;
2014
6bc1665b
IM
2015 if (sysctl_sched_migration_cost == -1)
2016 return 1;
2017 if (sysctl_sched_migration_cost == 0)
2018 return 0;
2019
cc367732
IM
2020 delta = now - p->se.exec_start;
2021
2022 return delta < (s64)sysctl_sched_migration_cost;
2023}
2024
dd41f596 2025void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2026{
e2912009
PZ
2027#ifdef CONFIG_SCHED_DEBUG
2028 /*
2029 * We should never call set_task_cpu() on a blocked task,
2030 * ttwu() will sort out the placement.
2031 */
077614ee
PZ
2032 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2033 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2034#endif
2035
de1d7286 2036 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2037
0c69774e
PZ
2038 if (task_cpu(p) != new_cpu) {
2039 p->se.nr_migrations++;
2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2041 }
dd41f596
IM
2042
2043 __set_task_cpu(p, new_cpu);
c65cc870
IM
2044}
2045
70b97a7f 2046struct migration_req {
1da177e4 2047 struct list_head list;
1da177e4 2048
36c8b586 2049 struct task_struct *task;
1da177e4
LT
2050 int dest_cpu;
2051
1da177e4 2052 struct completion done;
70b97a7f 2053};
1da177e4
LT
2054
2055/*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
36c8b586 2059static int
70b97a7f 2060migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2061{
70b97a7f 2062 struct rq *rq = task_rq(p);
1da177e4
LT
2063
2064 /*
2065 * If the task is not on a runqueue (and not running), then
e2912009 2066 * the next wake-up will properly place the task.
1da177e4 2067 */
e2912009 2068 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2069 return 0;
1da177e4
LT
2070
2071 init_completion(&req->done);
1da177e4
LT
2072 req->task = p;
2073 req->dest_cpu = dest_cpu;
2074 list_add(&req->list, &rq->migration_queue);
48f24c4d 2075
1da177e4
LT
2076 return 1;
2077}
2078
a26b89f0
MM
2079/*
2080 * wait_task_context_switch - wait for a thread to complete at least one
2081 * context switch.
2082 *
2083 * @p must not be current.
2084 */
2085void wait_task_context_switch(struct task_struct *p)
2086{
2087 unsigned long nvcsw, nivcsw, flags;
2088 int running;
2089 struct rq *rq;
2090
2091 nvcsw = p->nvcsw;
2092 nivcsw = p->nivcsw;
2093 for (;;) {
2094 /*
2095 * The runqueue is assigned before the actual context
2096 * switch. We need to take the runqueue lock.
2097 *
2098 * We could check initially without the lock but it is
2099 * very likely that we need to take the lock in every
2100 * iteration.
2101 */
2102 rq = task_rq_lock(p, &flags);
2103 running = task_running(rq, p);
2104 task_rq_unlock(rq, &flags);
2105
2106 if (likely(!running))
2107 break;
2108 /*
2109 * The switch count is incremented before the actual
2110 * context switch. We thus wait for two switches to be
2111 * sure at least one completed.
2112 */
2113 if ((p->nvcsw - nvcsw) > 1)
2114 break;
2115 if ((p->nivcsw - nivcsw) > 1)
2116 break;
2117
2118 cpu_relax();
2119 }
2120}
2121
1da177e4
LT
2122/*
2123 * wait_task_inactive - wait for a thread to unschedule.
2124 *
85ba2d86
RM
2125 * If @match_state is nonzero, it's the @p->state value just checked and
2126 * not expected to change. If it changes, i.e. @p might have woken up,
2127 * then return zero. When we succeed in waiting for @p to be off its CPU,
2128 * we return a positive number (its total switch count). If a second call
2129 * a short while later returns the same number, the caller can be sure that
2130 * @p has remained unscheduled the whole time.
2131 *
1da177e4
LT
2132 * The caller must ensure that the task *will* unschedule sometime soon,
2133 * else this function might spin for a *long* time. This function can't
2134 * be called with interrupts off, or it may introduce deadlock with
2135 * smp_call_function() if an IPI is sent by the same process we are
2136 * waiting to become inactive.
2137 */
85ba2d86 2138unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2139{
2140 unsigned long flags;
dd41f596 2141 int running, on_rq;
85ba2d86 2142 unsigned long ncsw;
70b97a7f 2143 struct rq *rq;
1da177e4 2144
3a5c359a
AK
2145 for (;;) {
2146 /*
2147 * We do the initial early heuristics without holding
2148 * any task-queue locks at all. We'll only try to get
2149 * the runqueue lock when things look like they will
2150 * work out!
2151 */
2152 rq = task_rq(p);
fa490cfd 2153
3a5c359a
AK
2154 /*
2155 * If the task is actively running on another CPU
2156 * still, just relax and busy-wait without holding
2157 * any locks.
2158 *
2159 * NOTE! Since we don't hold any locks, it's not
2160 * even sure that "rq" stays as the right runqueue!
2161 * But we don't care, since "task_running()" will
2162 * return false if the runqueue has changed and p
2163 * is actually now running somewhere else!
2164 */
85ba2d86
RM
2165 while (task_running(rq, p)) {
2166 if (match_state && unlikely(p->state != match_state))
2167 return 0;
3a5c359a 2168 cpu_relax();
85ba2d86 2169 }
fa490cfd 2170
3a5c359a
AK
2171 /*
2172 * Ok, time to look more closely! We need the rq
2173 * lock now, to be *sure*. If we're wrong, we'll
2174 * just go back and repeat.
2175 */
2176 rq = task_rq_lock(p, &flags);
0a16b607 2177 trace_sched_wait_task(rq, p);
3a5c359a
AK
2178 running = task_running(rq, p);
2179 on_rq = p->se.on_rq;
85ba2d86 2180 ncsw = 0;
f31e11d8 2181 if (!match_state || p->state == match_state)
93dcf55f 2182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2183 task_rq_unlock(rq, &flags);
fa490cfd 2184
85ba2d86
RM
2185 /*
2186 * If it changed from the expected state, bail out now.
2187 */
2188 if (unlikely(!ncsw))
2189 break;
2190
3a5c359a
AK
2191 /*
2192 * Was it really running after all now that we
2193 * checked with the proper locks actually held?
2194 *
2195 * Oops. Go back and try again..
2196 */
2197 if (unlikely(running)) {
2198 cpu_relax();
2199 continue;
2200 }
fa490cfd 2201
3a5c359a
AK
2202 /*
2203 * It's not enough that it's not actively running,
2204 * it must be off the runqueue _entirely_, and not
2205 * preempted!
2206 *
80dd99b3 2207 * So if it was still runnable (but just not actively
3a5c359a
AK
2208 * running right now), it's preempted, and we should
2209 * yield - it could be a while.
2210 */
2211 if (unlikely(on_rq)) {
2212 schedule_timeout_uninterruptible(1);
2213 continue;
2214 }
fa490cfd 2215
3a5c359a
AK
2216 /*
2217 * Ahh, all good. It wasn't running, and it wasn't
2218 * runnable, which means that it will never become
2219 * running in the future either. We're all done!
2220 */
2221 break;
2222 }
85ba2d86
RM
2223
2224 return ncsw;
1da177e4
LT
2225}
2226
2227/***
2228 * kick_process - kick a running thread to enter/exit the kernel
2229 * @p: the to-be-kicked thread
2230 *
2231 * Cause a process which is running on another CPU to enter
2232 * kernel-mode, without any delay. (to get signals handled.)
2233 *
2234 * NOTE: this function doesnt have to take the runqueue lock,
2235 * because all it wants to ensure is that the remote task enters
2236 * the kernel. If the IPI races and the task has been migrated
2237 * to another CPU then no harm is done and the purpose has been
2238 * achieved as well.
2239 */
36c8b586 2240void kick_process(struct task_struct *p)
1da177e4
LT
2241{
2242 int cpu;
2243
2244 preempt_disable();
2245 cpu = task_cpu(p);
2246 if ((cpu != smp_processor_id()) && task_curr(p))
2247 smp_send_reschedule(cpu);
2248 preempt_enable();
2249}
b43e3521 2250EXPORT_SYMBOL_GPL(kick_process);
476d139c 2251#endif /* CONFIG_SMP */
1da177e4 2252
0793a61d
TG
2253/**
2254 * task_oncpu_function_call - call a function on the cpu on which a task runs
2255 * @p: the task to evaluate
2256 * @func: the function to be called
2257 * @info: the function call argument
2258 *
2259 * Calls the function @func when the task is currently running. This might
2260 * be on the current CPU, which just calls the function directly
2261 */
2262void task_oncpu_function_call(struct task_struct *p,
2263 void (*func) (void *info), void *info)
2264{
2265 int cpu;
2266
2267 preempt_disable();
2268 cpu = task_cpu(p);
2269 if (task_curr(p))
2270 smp_call_function_single(cpu, func, info, 1);
2271 preempt_enable();
2272}
2273
970b13ba 2274#ifdef CONFIG_SMP
30da688e
ON
2275/*
2276 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2277 */
5da9a0fb
PZ
2278static int select_fallback_rq(int cpu, struct task_struct *p)
2279{
2280 int dest_cpu;
2281 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2282
2283 /* Look for allowed, online CPU in same node. */
2284 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2285 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2286 return dest_cpu;
2287
2288 /* Any allowed, online CPU? */
2289 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2290 if (dest_cpu < nr_cpu_ids)
2291 return dest_cpu;
2292
2293 /* No more Mr. Nice Guy. */
897f0b3c 2294 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2295 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2296 /*
2297 * Don't tell them about moving exiting tasks or
2298 * kernel threads (both mm NULL), since they never
2299 * leave kernel.
2300 */
2301 if (p->mm && printk_ratelimit()) {
2302 printk(KERN_INFO "process %d (%s) no "
2303 "longer affine to cpu%d\n",
2304 task_pid_nr(p), p->comm, cpu);
2305 }
2306 }
2307
2308 return dest_cpu;
2309}
2310
e2912009 2311/*
30da688e 2312 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2313 */
970b13ba 2314static inline
0017d735 2315int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2316{
0017d735 2317 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2318
2319 /*
2320 * In order not to call set_task_cpu() on a blocking task we need
2321 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2322 * cpu.
2323 *
2324 * Since this is common to all placement strategies, this lives here.
2325 *
2326 * [ this allows ->select_task() to simply return task_cpu(p) and
2327 * not worry about this generic constraint ]
2328 */
2329 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2330 !cpu_online(cpu)))
5da9a0fb 2331 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2332
2333 return cpu;
970b13ba
PZ
2334}
2335#endif
2336
1da177e4
LT
2337/***
2338 * try_to_wake_up - wake up a thread
2339 * @p: the to-be-woken-up thread
2340 * @state: the mask of task states that can be woken
2341 * @sync: do a synchronous wakeup?
2342 *
2343 * Put it on the run-queue if it's not already there. The "current"
2344 * thread is always on the run-queue (except when the actual
2345 * re-schedule is in progress), and as such you're allowed to do
2346 * the simpler "current->state = TASK_RUNNING" to mark yourself
2347 * runnable without the overhead of this.
2348 *
2349 * returns failure only if the task is already active.
2350 */
7d478721
PZ
2351static int try_to_wake_up(struct task_struct *p, unsigned int state,
2352 int wake_flags)
1da177e4 2353{
cc367732 2354 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2355 unsigned long flags;
371fd7e7 2356 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2357 struct rq *rq;
1da177e4 2358
e9c84311 2359 this_cpu = get_cpu();
2398f2c6 2360
04e2f174 2361 smp_wmb();
ab3b3aa5 2362 rq = task_rq_lock(p, &flags);
e9c84311 2363 if (!(p->state & state))
1da177e4
LT
2364 goto out;
2365
dd41f596 2366 if (p->se.on_rq)
1da177e4
LT
2367 goto out_running;
2368
2369 cpu = task_cpu(p);
cc367732 2370 orig_cpu = cpu;
1da177e4
LT
2371
2372#ifdef CONFIG_SMP
2373 if (unlikely(task_running(rq, p)))
2374 goto out_activate;
2375
e9c84311
PZ
2376 /*
2377 * In order to handle concurrent wakeups and release the rq->lock
2378 * we put the task in TASK_WAKING state.
eb24073b
IM
2379 *
2380 * First fix up the nr_uninterruptible count:
e9c84311 2381 */
cc87f76a
PZ
2382 if (task_contributes_to_load(p)) {
2383 if (likely(cpu_online(orig_cpu)))
2384 rq->nr_uninterruptible--;
2385 else
2386 this_rq()->nr_uninterruptible--;
2387 }
e9c84311 2388 p->state = TASK_WAKING;
efbbd05a 2389
371fd7e7 2390 if (p->sched_class->task_waking) {
efbbd05a 2391 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2392 en_flags |= ENQUEUE_WAKING;
2393 }
efbbd05a 2394
0017d735
PZ
2395 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2396 if (cpu != orig_cpu)
5d2f5a61 2397 set_task_cpu(p, cpu);
0017d735 2398 __task_rq_unlock(rq);
ab19cb23 2399
0970d299
PZ
2400 rq = cpu_rq(cpu);
2401 raw_spin_lock(&rq->lock);
f5dc3753 2402
0970d299
PZ
2403 /*
2404 * We migrated the task without holding either rq->lock, however
2405 * since the task is not on the task list itself, nobody else
2406 * will try and migrate the task, hence the rq should match the
2407 * cpu we just moved it to.
2408 */
2409 WARN_ON(task_cpu(p) != cpu);
e9c84311 2410 WARN_ON(p->state != TASK_WAKING);
1da177e4 2411
e7693a36
GH
2412#ifdef CONFIG_SCHEDSTATS
2413 schedstat_inc(rq, ttwu_count);
2414 if (cpu == this_cpu)
2415 schedstat_inc(rq, ttwu_local);
2416 else {
2417 struct sched_domain *sd;
2418 for_each_domain(this_cpu, sd) {
758b2cdc 2419 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2420 schedstat_inc(sd, ttwu_wake_remote);
2421 break;
2422 }
2423 }
2424 }
6d6bc0ad 2425#endif /* CONFIG_SCHEDSTATS */
e7693a36 2426
1da177e4
LT
2427out_activate:
2428#endif /* CONFIG_SMP */
41acab88 2429 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2430 if (wake_flags & WF_SYNC)
41acab88 2431 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2432 if (orig_cpu != cpu)
41acab88 2433 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2434 if (cpu == this_cpu)
41acab88 2435 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2436 else
41acab88 2437 schedstat_inc(p, se.statistics.nr_wakeups_remote);
371fd7e7 2438 activate_task(rq, p, en_flags);
1da177e4
LT
2439 success = 1;
2440
2441out_running:
468a15bb 2442 trace_sched_wakeup(rq, p, success);
7d478721 2443 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2444
1da177e4 2445 p->state = TASK_RUNNING;
9a897c5a 2446#ifdef CONFIG_SMP
efbbd05a
PZ
2447 if (p->sched_class->task_woken)
2448 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2449
2450 if (unlikely(rq->idle_stamp)) {
2451 u64 delta = rq->clock - rq->idle_stamp;
2452 u64 max = 2*sysctl_sched_migration_cost;
2453
2454 if (delta > max)
2455 rq->avg_idle = max;
2456 else
2457 update_avg(&rq->avg_idle, delta);
2458 rq->idle_stamp = 0;
2459 }
9a897c5a 2460#endif
1da177e4
LT
2461out:
2462 task_rq_unlock(rq, &flags);
e9c84311 2463 put_cpu();
1da177e4
LT
2464
2465 return success;
2466}
2467
50fa610a
DH
2468/**
2469 * wake_up_process - Wake up a specific process
2470 * @p: The process to be woken up.
2471 *
2472 * Attempt to wake up the nominated process and move it to the set of runnable
2473 * processes. Returns 1 if the process was woken up, 0 if it was already
2474 * running.
2475 *
2476 * It may be assumed that this function implies a write memory barrier before
2477 * changing the task state if and only if any tasks are woken up.
2478 */
7ad5b3a5 2479int wake_up_process(struct task_struct *p)
1da177e4 2480{
d9514f6c 2481 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2482}
1da177e4
LT
2483EXPORT_SYMBOL(wake_up_process);
2484
7ad5b3a5 2485int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2486{
2487 return try_to_wake_up(p, state, 0);
2488}
2489
1da177e4
LT
2490/*
2491 * Perform scheduler related setup for a newly forked process p.
2492 * p is forked by current.
dd41f596
IM
2493 *
2494 * __sched_fork() is basic setup used by init_idle() too:
2495 */
2496static void __sched_fork(struct task_struct *p)
2497{
dd41f596
IM
2498 p->se.exec_start = 0;
2499 p->se.sum_exec_runtime = 0;
f6cf891c 2500 p->se.prev_sum_exec_runtime = 0;
6c594c21 2501 p->se.nr_migrations = 0;
6cfb0d5d
IM
2502
2503#ifdef CONFIG_SCHEDSTATS
41acab88 2504 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2505#endif
476d139c 2506
fa717060 2507 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2508 p->se.on_rq = 0;
4a55bd5e 2509 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2510
e107be36
AK
2511#ifdef CONFIG_PREEMPT_NOTIFIERS
2512 INIT_HLIST_HEAD(&p->preempt_notifiers);
2513#endif
dd41f596
IM
2514}
2515
2516/*
2517 * fork()/clone()-time setup:
2518 */
2519void sched_fork(struct task_struct *p, int clone_flags)
2520{
2521 int cpu = get_cpu();
2522
2523 __sched_fork(p);
06b83b5f 2524 /*
0017d735 2525 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2526 * nobody will actually run it, and a signal or other external
2527 * event cannot wake it up and insert it on the runqueue either.
2528 */
0017d735 2529 p->state = TASK_RUNNING;
dd41f596 2530
b9dc29e7
MG
2531 /*
2532 * Revert to default priority/policy on fork if requested.
2533 */
2534 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2535 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2536 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2537 p->normal_prio = p->static_prio;
2538 }
b9dc29e7 2539
6c697bdf
MG
2540 if (PRIO_TO_NICE(p->static_prio) < 0) {
2541 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2542 p->normal_prio = p->static_prio;
6c697bdf
MG
2543 set_load_weight(p);
2544 }
2545
b9dc29e7
MG
2546 /*
2547 * We don't need the reset flag anymore after the fork. It has
2548 * fulfilled its duty:
2549 */
2550 p->sched_reset_on_fork = 0;
2551 }
ca94c442 2552
f83f9ac2
PW
2553 /*
2554 * Make sure we do not leak PI boosting priority to the child.
2555 */
2556 p->prio = current->normal_prio;
2557
2ddbf952
HS
2558 if (!rt_prio(p->prio))
2559 p->sched_class = &fair_sched_class;
b29739f9 2560
cd29fe6f
PZ
2561 if (p->sched_class->task_fork)
2562 p->sched_class->task_fork(p);
2563
5f3edc1b
PZ
2564 set_task_cpu(p, cpu);
2565
52f17b6c 2566#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2567 if (likely(sched_info_on()))
52f17b6c 2568 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2569#endif
d6077cb8 2570#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2571 p->oncpu = 0;
2572#endif
1da177e4 2573#ifdef CONFIG_PREEMPT
4866cde0 2574 /* Want to start with kernel preemption disabled. */
a1261f54 2575 task_thread_info(p)->preempt_count = 1;
1da177e4 2576#endif
917b627d
GH
2577 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2578
476d139c 2579 put_cpu();
1da177e4
LT
2580}
2581
2582/*
2583 * wake_up_new_task - wake up a newly created task for the first time.
2584 *
2585 * This function will do some initial scheduler statistics housekeeping
2586 * that must be done for every newly created context, then puts the task
2587 * on the runqueue and wakes it.
2588 */
7ad5b3a5 2589void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2590{
2591 unsigned long flags;
dd41f596 2592 struct rq *rq;
c890692b 2593 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2594
2595#ifdef CONFIG_SMP
0017d735
PZ
2596 rq = task_rq_lock(p, &flags);
2597 p->state = TASK_WAKING;
2598
fabf318e
PZ
2599 /*
2600 * Fork balancing, do it here and not earlier because:
2601 * - cpus_allowed can change in the fork path
2602 * - any previously selected cpu might disappear through hotplug
2603 *
0017d735
PZ
2604 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2605 * without people poking at ->cpus_allowed.
fabf318e 2606 */
0017d735 2607 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2608 set_task_cpu(p, cpu);
0970d299 2609
06b83b5f 2610 p->state = TASK_RUNNING;
0017d735
PZ
2611 task_rq_unlock(rq, &flags);
2612#endif
2613
2614 rq = task_rq_lock(p, &flags);
cd29fe6f 2615 activate_task(rq, p, 0);
c71dd42d 2616 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2617 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2618#ifdef CONFIG_SMP
efbbd05a
PZ
2619 if (p->sched_class->task_woken)
2620 p->sched_class->task_woken(rq, p);
9a897c5a 2621#endif
dd41f596 2622 task_rq_unlock(rq, &flags);
fabf318e 2623 put_cpu();
1da177e4
LT
2624}
2625
e107be36
AK
2626#ifdef CONFIG_PREEMPT_NOTIFIERS
2627
2628/**
80dd99b3 2629 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2630 * @notifier: notifier struct to register
e107be36
AK
2631 */
2632void preempt_notifier_register(struct preempt_notifier *notifier)
2633{
2634 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2635}
2636EXPORT_SYMBOL_GPL(preempt_notifier_register);
2637
2638/**
2639 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2640 * @notifier: notifier struct to unregister
e107be36
AK
2641 *
2642 * This is safe to call from within a preemption notifier.
2643 */
2644void preempt_notifier_unregister(struct preempt_notifier *notifier)
2645{
2646 hlist_del(&notifier->link);
2647}
2648EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2649
2650static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651{
2652 struct preempt_notifier *notifier;
2653 struct hlist_node *node;
2654
2655 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2656 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2657}
2658
2659static void
2660fire_sched_out_preempt_notifiers(struct task_struct *curr,
2661 struct task_struct *next)
2662{
2663 struct preempt_notifier *notifier;
2664 struct hlist_node *node;
2665
2666 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667 notifier->ops->sched_out(notifier, next);
2668}
2669
6d6bc0ad 2670#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2671
2672static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2673{
2674}
2675
2676static void
2677fire_sched_out_preempt_notifiers(struct task_struct *curr,
2678 struct task_struct *next)
2679{
2680}
2681
6d6bc0ad 2682#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2683
4866cde0
NP
2684/**
2685 * prepare_task_switch - prepare to switch tasks
2686 * @rq: the runqueue preparing to switch
421cee29 2687 * @prev: the current task that is being switched out
4866cde0
NP
2688 * @next: the task we are going to switch to.
2689 *
2690 * This is called with the rq lock held and interrupts off. It must
2691 * be paired with a subsequent finish_task_switch after the context
2692 * switch.
2693 *
2694 * prepare_task_switch sets up locking and calls architecture specific
2695 * hooks.
2696 */
e107be36
AK
2697static inline void
2698prepare_task_switch(struct rq *rq, struct task_struct *prev,
2699 struct task_struct *next)
4866cde0 2700{
e107be36 2701 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2702 prepare_lock_switch(rq, next);
2703 prepare_arch_switch(next);
2704}
2705
1da177e4
LT
2706/**
2707 * finish_task_switch - clean up after a task-switch
344babaa 2708 * @rq: runqueue associated with task-switch
1da177e4
LT
2709 * @prev: the thread we just switched away from.
2710 *
4866cde0
NP
2711 * finish_task_switch must be called after the context switch, paired
2712 * with a prepare_task_switch call before the context switch.
2713 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2714 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2715 *
2716 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2717 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2718 * with the lock held can cause deadlocks; see schedule() for
2719 * details.)
2720 */
a9957449 2721static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2722 __releases(rq->lock)
2723{
1da177e4 2724 struct mm_struct *mm = rq->prev_mm;
55a101f8 2725 long prev_state;
1da177e4
LT
2726
2727 rq->prev_mm = NULL;
2728
2729 /*
2730 * A task struct has one reference for the use as "current".
c394cc9f 2731 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2732 * schedule one last time. The schedule call will never return, and
2733 * the scheduled task must drop that reference.
c394cc9f 2734 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2735 * still held, otherwise prev could be scheduled on another cpu, die
2736 * there before we look at prev->state, and then the reference would
2737 * be dropped twice.
2738 * Manfred Spraul <manfred@colorfullife.com>
2739 */
55a101f8 2740 prev_state = prev->state;
4866cde0 2741 finish_arch_switch(prev);
8381f65d
JI
2742#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2743 local_irq_disable();
2744#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2745 perf_event_task_sched_in(current);
8381f65d
JI
2746#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2747 local_irq_enable();
2748#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2749 finish_lock_switch(rq, prev);
e8fa1362 2750
e107be36 2751 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2752 if (mm)
2753 mmdrop(mm);
c394cc9f 2754 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2755 /*
2756 * Remove function-return probe instances associated with this
2757 * task and put them back on the free list.
9761eea8 2758 */
c6fd91f0 2759 kprobe_flush_task(prev);
1da177e4 2760 put_task_struct(prev);
c6fd91f0 2761 }
1da177e4
LT
2762}
2763
3f029d3c
GH
2764#ifdef CONFIG_SMP
2765
2766/* assumes rq->lock is held */
2767static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2768{
2769 if (prev->sched_class->pre_schedule)
2770 prev->sched_class->pre_schedule(rq, prev);
2771}
2772
2773/* rq->lock is NOT held, but preemption is disabled */
2774static inline void post_schedule(struct rq *rq)
2775{
2776 if (rq->post_schedule) {
2777 unsigned long flags;
2778
05fa785c 2779 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2780 if (rq->curr->sched_class->post_schedule)
2781 rq->curr->sched_class->post_schedule(rq);
05fa785c 2782 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2783
2784 rq->post_schedule = 0;
2785 }
2786}
2787
2788#else
da19ab51 2789
3f029d3c
GH
2790static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2791{
2792}
2793
2794static inline void post_schedule(struct rq *rq)
2795{
1da177e4
LT
2796}
2797
3f029d3c
GH
2798#endif
2799
1da177e4
LT
2800/**
2801 * schedule_tail - first thing a freshly forked thread must call.
2802 * @prev: the thread we just switched away from.
2803 */
36c8b586 2804asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2805 __releases(rq->lock)
2806{
70b97a7f
IM
2807 struct rq *rq = this_rq();
2808
4866cde0 2809 finish_task_switch(rq, prev);
da19ab51 2810
3f029d3c
GH
2811 /*
2812 * FIXME: do we need to worry about rq being invalidated by the
2813 * task_switch?
2814 */
2815 post_schedule(rq);
70b97a7f 2816
4866cde0
NP
2817#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2818 /* In this case, finish_task_switch does not reenable preemption */
2819 preempt_enable();
2820#endif
1da177e4 2821 if (current->set_child_tid)
b488893a 2822 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2823}
2824
2825/*
2826 * context_switch - switch to the new MM and the new
2827 * thread's register state.
2828 */
dd41f596 2829static inline void
70b97a7f 2830context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2831 struct task_struct *next)
1da177e4 2832{
dd41f596 2833 struct mm_struct *mm, *oldmm;
1da177e4 2834
e107be36 2835 prepare_task_switch(rq, prev, next);
0a16b607 2836 trace_sched_switch(rq, prev, next);
dd41f596
IM
2837 mm = next->mm;
2838 oldmm = prev->active_mm;
9226d125
ZA
2839 /*
2840 * For paravirt, this is coupled with an exit in switch_to to
2841 * combine the page table reload and the switch backend into
2842 * one hypercall.
2843 */
224101ed 2844 arch_start_context_switch(prev);
9226d125 2845
710390d9 2846 if (likely(!mm)) {
1da177e4
LT
2847 next->active_mm = oldmm;
2848 atomic_inc(&oldmm->mm_count);
2849 enter_lazy_tlb(oldmm, next);
2850 } else
2851 switch_mm(oldmm, mm, next);
2852
710390d9 2853 if (likely(!prev->mm)) {
1da177e4 2854 prev->active_mm = NULL;
1da177e4
LT
2855 rq->prev_mm = oldmm;
2856 }
3a5f5e48
IM
2857 /*
2858 * Since the runqueue lock will be released by the next
2859 * task (which is an invalid locking op but in the case
2860 * of the scheduler it's an obvious special-case), so we
2861 * do an early lockdep release here:
2862 */
2863#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2864 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2865#endif
1da177e4
LT
2866
2867 /* Here we just switch the register state and the stack. */
2868 switch_to(prev, next, prev);
2869
dd41f596
IM
2870 barrier();
2871 /*
2872 * this_rq must be evaluated again because prev may have moved
2873 * CPUs since it called schedule(), thus the 'rq' on its stack
2874 * frame will be invalid.
2875 */
2876 finish_task_switch(this_rq(), prev);
1da177e4
LT
2877}
2878
2879/*
2880 * nr_running, nr_uninterruptible and nr_context_switches:
2881 *
2882 * externally visible scheduler statistics: current number of runnable
2883 * threads, current number of uninterruptible-sleeping threads, total
2884 * number of context switches performed since bootup.
2885 */
2886unsigned long nr_running(void)
2887{
2888 unsigned long i, sum = 0;
2889
2890 for_each_online_cpu(i)
2891 sum += cpu_rq(i)->nr_running;
2892
2893 return sum;
f711f609 2894}
1da177e4
LT
2895
2896unsigned long nr_uninterruptible(void)
f711f609 2897{
1da177e4 2898 unsigned long i, sum = 0;
f711f609 2899
0a945022 2900 for_each_possible_cpu(i)
1da177e4 2901 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2902
2903 /*
1da177e4
LT
2904 * Since we read the counters lockless, it might be slightly
2905 * inaccurate. Do not allow it to go below zero though:
f711f609 2906 */
1da177e4
LT
2907 if (unlikely((long)sum < 0))
2908 sum = 0;
f711f609 2909
1da177e4 2910 return sum;
f711f609 2911}
f711f609 2912
1da177e4 2913unsigned long long nr_context_switches(void)
46cb4b7c 2914{
cc94abfc
SR
2915 int i;
2916 unsigned long long sum = 0;
46cb4b7c 2917
0a945022 2918 for_each_possible_cpu(i)
1da177e4 2919 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2920
1da177e4
LT
2921 return sum;
2922}
483b4ee6 2923
1da177e4
LT
2924unsigned long nr_iowait(void)
2925{
2926 unsigned long i, sum = 0;
483b4ee6 2927
0a945022 2928 for_each_possible_cpu(i)
1da177e4 2929 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2930
1da177e4
LT
2931 return sum;
2932}
483b4ee6 2933
69d25870
AV
2934unsigned long nr_iowait_cpu(void)
2935{
2936 struct rq *this = this_rq();
2937 return atomic_read(&this->nr_iowait);
2938}
46cb4b7c 2939
69d25870
AV
2940unsigned long this_cpu_load(void)
2941{
2942 struct rq *this = this_rq();
2943 return this->cpu_load[0];
2944}
e790fb0b 2945
46cb4b7c 2946
dce48a84
TG
2947/* Variables and functions for calc_load */
2948static atomic_long_t calc_load_tasks;
2949static unsigned long calc_load_update;
2950unsigned long avenrun[3];
2951EXPORT_SYMBOL(avenrun);
46cb4b7c 2952
2d02494f
TG
2953/**
2954 * get_avenrun - get the load average array
2955 * @loads: pointer to dest load array
2956 * @offset: offset to add
2957 * @shift: shift count to shift the result left
2958 *
2959 * These values are estimates at best, so no need for locking.
2960 */
2961void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2962{
2963 loads[0] = (avenrun[0] + offset) << shift;
2964 loads[1] = (avenrun[1] + offset) << shift;
2965 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2966}
46cb4b7c 2967
dce48a84
TG
2968static unsigned long
2969calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2970{
dce48a84
TG
2971 load *= exp;
2972 load += active * (FIXED_1 - exp);
2973 return load >> FSHIFT;
2974}
46cb4b7c
SS
2975
2976/*
dce48a84
TG
2977 * calc_load - update the avenrun load estimates 10 ticks after the
2978 * CPUs have updated calc_load_tasks.
7835b98b 2979 */
dce48a84 2980void calc_global_load(void)
7835b98b 2981{
dce48a84
TG
2982 unsigned long upd = calc_load_update + 10;
2983 long active;
1da177e4 2984
dce48a84
TG
2985 if (time_before(jiffies, upd))
2986 return;
1da177e4 2987
dce48a84
TG
2988 active = atomic_long_read(&calc_load_tasks);
2989 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2990
dce48a84
TG
2991 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2992 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2993 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2994
dce48a84
TG
2995 calc_load_update += LOAD_FREQ;
2996}
1da177e4 2997
dce48a84
TG
2998/*
2999 * Either called from update_cpu_load() or from a cpu going idle
3000 */
3001static void calc_load_account_active(struct rq *this_rq)
3002{
3003 long nr_active, delta;
08c183f3 3004
dce48a84
TG
3005 nr_active = this_rq->nr_running;
3006 nr_active += (long) this_rq->nr_uninterruptible;
783609c6 3007
dce48a84
TG
3008 if (nr_active != this_rq->calc_load_active) {
3009 delta = nr_active - this_rq->calc_load_active;
3010 this_rq->calc_load_active = nr_active;
3011 atomic_long_add(delta, &calc_load_tasks);
1da177e4 3012 }
46cb4b7c
SS
3013}
3014
3015/*
dd41f596
IM
3016 * Update rq->cpu_load[] statistics. This function is usually called every
3017 * scheduler tick (TICK_NSEC).
46cb4b7c 3018 */
dd41f596 3019static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3020{
495eca49 3021 unsigned long this_load = this_rq->load.weight;
dd41f596 3022 int i, scale;
46cb4b7c 3023
dd41f596 3024 this_rq->nr_load_updates++;
46cb4b7c 3025
dd41f596
IM
3026 /* Update our load: */
3027 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3028 unsigned long old_load, new_load;
7d1e6a9b 3029
dd41f596 3030 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3031
dd41f596
IM
3032 old_load = this_rq->cpu_load[i];
3033 new_load = this_load;
a25707f3
IM
3034 /*
3035 * Round up the averaging division if load is increasing. This
3036 * prevents us from getting stuck on 9 if the load is 10, for
3037 * example.
3038 */
3039 if (new_load > old_load)
3040 new_load += scale-1;
dd41f596
IM
3041 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3042 }
46cb4b7c 3043
dce48a84
TG
3044 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3045 this_rq->calc_load_update += LOAD_FREQ;
3046 calc_load_account_active(this_rq);
46cb4b7c 3047 }
46cb4b7c
SS
3048}
3049
dd41f596 3050#ifdef CONFIG_SMP
8a0be9ef 3051
46cb4b7c 3052/*
38022906
PZ
3053 * sched_exec - execve() is a valuable balancing opportunity, because at
3054 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3055 */
38022906 3056void sched_exec(void)
46cb4b7c 3057{
38022906 3058 struct task_struct *p = current;
70b97a7f 3059 struct migration_req req;
1da177e4 3060 unsigned long flags;
70b97a7f 3061 struct rq *rq;
0017d735 3062 int dest_cpu;
46cb4b7c 3063
1da177e4 3064 rq = task_rq_lock(p, &flags);
0017d735
PZ
3065 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3066 if (dest_cpu == smp_processor_id())
3067 goto unlock;
3068
46cb4b7c 3069 /*
38022906 3070 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3071 */
30da688e
ON
3072 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3073 likely(cpu_active(dest_cpu)) &&
3074 migrate_task(p, dest_cpu, &req)) {
1da177e4
LT
3075 /* Need to wait for migration thread (might exit: take ref). */
3076 struct task_struct *mt = rq->migration_thread;
dd41f596 3077
1da177e4
LT
3078 get_task_struct(mt);
3079 task_rq_unlock(rq, &flags);
3080 wake_up_process(mt);
3081 put_task_struct(mt);
3082 wait_for_completion(&req.done);
dd41f596 3083
1da177e4
LT
3084 return;
3085 }
0017d735 3086unlock:
1da177e4 3087 task_rq_unlock(rq, &flags);
1da177e4 3088}
dd41f596 3089
1da177e4
LT
3090#endif
3091
1da177e4
LT
3092DEFINE_PER_CPU(struct kernel_stat, kstat);
3093
3094EXPORT_PER_CPU_SYMBOL(kstat);
3095
3096/*
c5f8d995 3097 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3098 * @p in case that task is currently running.
c5f8d995
HS
3099 *
3100 * Called with task_rq_lock() held on @rq.
1da177e4 3101 */
c5f8d995
HS
3102static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3103{
3104 u64 ns = 0;
3105
3106 if (task_current(rq, p)) {
3107 update_rq_clock(rq);
3108 ns = rq->clock - p->se.exec_start;
3109 if ((s64)ns < 0)
3110 ns = 0;
3111 }
3112
3113 return ns;
3114}
3115
bb34d92f 3116unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3117{
1da177e4 3118 unsigned long flags;
41b86e9c 3119 struct rq *rq;
bb34d92f 3120 u64 ns = 0;
48f24c4d 3121
41b86e9c 3122 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3123 ns = do_task_delta_exec(p, rq);
3124 task_rq_unlock(rq, &flags);
1508487e 3125
c5f8d995
HS
3126 return ns;
3127}
f06febc9 3128
c5f8d995
HS
3129/*
3130 * Return accounted runtime for the task.
3131 * In case the task is currently running, return the runtime plus current's
3132 * pending runtime that have not been accounted yet.
3133 */
3134unsigned long long task_sched_runtime(struct task_struct *p)
3135{
3136 unsigned long flags;
3137 struct rq *rq;
3138 u64 ns = 0;
3139
3140 rq = task_rq_lock(p, &flags);
3141 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3142 task_rq_unlock(rq, &flags);
3143
3144 return ns;
3145}
48f24c4d 3146
c5f8d995
HS
3147/*
3148 * Return sum_exec_runtime for the thread group.
3149 * In case the task is currently running, return the sum plus current's
3150 * pending runtime that have not been accounted yet.
3151 *
3152 * Note that the thread group might have other running tasks as well,
3153 * so the return value not includes other pending runtime that other
3154 * running tasks might have.
3155 */
3156unsigned long long thread_group_sched_runtime(struct task_struct *p)
3157{
3158 struct task_cputime totals;
3159 unsigned long flags;
3160 struct rq *rq;
3161 u64 ns;
3162
3163 rq = task_rq_lock(p, &flags);
3164 thread_group_cputime(p, &totals);
3165 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3166 task_rq_unlock(rq, &flags);
48f24c4d 3167
1da177e4
LT
3168 return ns;
3169}
3170
1da177e4
LT
3171/*
3172 * Account user cpu time to a process.
3173 * @p: the process that the cpu time gets accounted to
1da177e4 3174 * @cputime: the cpu time spent in user space since the last update
457533a7 3175 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3176 */
457533a7
MS
3177void account_user_time(struct task_struct *p, cputime_t cputime,
3178 cputime_t cputime_scaled)
1da177e4
LT
3179{
3180 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3181 cputime64_t tmp;
3182
457533a7 3183 /* Add user time to process. */
1da177e4 3184 p->utime = cputime_add(p->utime, cputime);
457533a7 3185 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3186 account_group_user_time(p, cputime);
1da177e4
LT
3187
3188 /* Add user time to cpustat. */
3189 tmp = cputime_to_cputime64(cputime);
3190 if (TASK_NICE(p) > 0)
3191 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3192 else
3193 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3194
3195 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3196 /* Account for user time used */
3197 acct_update_integrals(p);
1da177e4
LT
3198}
3199
94886b84
LV
3200/*
3201 * Account guest cpu time to a process.
3202 * @p: the process that the cpu time gets accounted to
3203 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3204 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3205 */
457533a7
MS
3206static void account_guest_time(struct task_struct *p, cputime_t cputime,
3207 cputime_t cputime_scaled)
94886b84
LV
3208{
3209 cputime64_t tmp;
3210 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3211
3212 tmp = cputime_to_cputime64(cputime);
3213
457533a7 3214 /* Add guest time to process. */
94886b84 3215 p->utime = cputime_add(p->utime, cputime);
457533a7 3216 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3217 account_group_user_time(p, cputime);
94886b84
LV
3218 p->gtime = cputime_add(p->gtime, cputime);
3219
457533a7 3220 /* Add guest time to cpustat. */
ce0e7b28
RO
3221 if (TASK_NICE(p) > 0) {
3222 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3223 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3224 } else {
3225 cpustat->user = cputime64_add(cpustat->user, tmp);
3226 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3227 }
94886b84
LV
3228}
3229
1da177e4
LT
3230/*
3231 * Account system cpu time to a process.
3232 * @p: the process that the cpu time gets accounted to
3233 * @hardirq_offset: the offset to subtract from hardirq_count()
3234 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3235 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3236 */
3237void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3238 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3239{
3240 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3241 cputime64_t tmp;
3242
983ed7a6 3243 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3244 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3245 return;
3246 }
94886b84 3247
457533a7 3248 /* Add system time to process. */
1da177e4 3249 p->stime = cputime_add(p->stime, cputime);
457533a7 3250 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3251 account_group_system_time(p, cputime);
1da177e4
LT
3252
3253 /* Add system time to cpustat. */
3254 tmp = cputime_to_cputime64(cputime);
3255 if (hardirq_count() - hardirq_offset)
3256 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3257 else if (softirq_count())
3258 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3259 else
79741dd3
MS
3260 cpustat->system = cputime64_add(cpustat->system, tmp);
3261
ef12fefa
BR
3262 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3263
1da177e4
LT
3264 /* Account for system time used */
3265 acct_update_integrals(p);
1da177e4
LT
3266}
3267
c66f08be 3268/*
1da177e4 3269 * Account for involuntary wait time.
1da177e4 3270 * @steal: the cpu time spent in involuntary wait
c66f08be 3271 */
79741dd3 3272void account_steal_time(cputime_t cputime)
c66f08be 3273{
79741dd3
MS
3274 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3275 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3276
3277 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3278}
3279
1da177e4 3280/*
79741dd3
MS
3281 * Account for idle time.
3282 * @cputime: the cpu time spent in idle wait
1da177e4 3283 */
79741dd3 3284void account_idle_time(cputime_t cputime)
1da177e4
LT
3285{
3286 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3287 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3288 struct rq *rq = this_rq();
1da177e4 3289
79741dd3
MS
3290 if (atomic_read(&rq->nr_iowait) > 0)
3291 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3292 else
3293 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3294}
3295
79741dd3
MS
3296#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3297
3298/*
3299 * Account a single tick of cpu time.
3300 * @p: the process that the cpu time gets accounted to
3301 * @user_tick: indicates if the tick is a user or a system tick
3302 */
3303void account_process_tick(struct task_struct *p, int user_tick)
3304{
a42548a1 3305 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3306 struct rq *rq = this_rq();
3307
3308 if (user_tick)
a42548a1 3309 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3310 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3311 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3312 one_jiffy_scaled);
3313 else
a42548a1 3314 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3315}
3316
3317/*
3318 * Account multiple ticks of steal time.
3319 * @p: the process from which the cpu time has been stolen
3320 * @ticks: number of stolen ticks
3321 */
3322void account_steal_ticks(unsigned long ticks)
3323{
3324 account_steal_time(jiffies_to_cputime(ticks));
3325}
3326
3327/*
3328 * Account multiple ticks of idle time.
3329 * @ticks: number of stolen ticks
3330 */
3331void account_idle_ticks(unsigned long ticks)
3332{
3333 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3334}
3335
79741dd3
MS
3336#endif
3337
49048622
BS
3338/*
3339 * Use precise platform statistics if available:
3340 */
3341#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3342void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3343{
d99ca3b9
HS
3344 *ut = p->utime;
3345 *st = p->stime;
49048622
BS
3346}
3347
0cf55e1e 3348void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3349{
0cf55e1e
HS
3350 struct task_cputime cputime;
3351
3352 thread_group_cputime(p, &cputime);
3353
3354 *ut = cputime.utime;
3355 *st = cputime.stime;
49048622
BS
3356}
3357#else
761b1d26
HS
3358
3359#ifndef nsecs_to_cputime
b7b20df9 3360# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3361#endif
3362
d180c5bc 3363void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3364{
d99ca3b9 3365 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3366
3367 /*
3368 * Use CFS's precise accounting:
3369 */
d180c5bc 3370 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3371
3372 if (total) {
d180c5bc
HS
3373 u64 temp;
3374
3375 temp = (u64)(rtime * utime);
49048622 3376 do_div(temp, total);
d180c5bc
HS
3377 utime = (cputime_t)temp;
3378 } else
3379 utime = rtime;
49048622 3380
d180c5bc
HS
3381 /*
3382 * Compare with previous values, to keep monotonicity:
3383 */
761b1d26 3384 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3385 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3386
d99ca3b9
HS
3387 *ut = p->prev_utime;
3388 *st = p->prev_stime;
49048622
BS
3389}
3390
0cf55e1e
HS
3391/*
3392 * Must be called with siglock held.
3393 */
3394void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3395{
0cf55e1e
HS
3396 struct signal_struct *sig = p->signal;
3397 struct task_cputime cputime;
3398 cputime_t rtime, utime, total;
49048622 3399
0cf55e1e 3400 thread_group_cputime(p, &cputime);
49048622 3401
0cf55e1e
HS
3402 total = cputime_add(cputime.utime, cputime.stime);
3403 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3404
0cf55e1e
HS
3405 if (total) {
3406 u64 temp;
49048622 3407
0cf55e1e
HS
3408 temp = (u64)(rtime * cputime.utime);
3409 do_div(temp, total);
3410 utime = (cputime_t)temp;
3411 } else
3412 utime = rtime;
3413
3414 sig->prev_utime = max(sig->prev_utime, utime);
3415 sig->prev_stime = max(sig->prev_stime,
3416 cputime_sub(rtime, sig->prev_utime));
3417
3418 *ut = sig->prev_utime;
3419 *st = sig->prev_stime;
49048622 3420}
49048622 3421#endif
49048622 3422
7835b98b
CL
3423/*
3424 * This function gets called by the timer code, with HZ frequency.
3425 * We call it with interrupts disabled.
3426 *
3427 * It also gets called by the fork code, when changing the parent's
3428 * timeslices.
3429 */
3430void scheduler_tick(void)
3431{
7835b98b
CL
3432 int cpu = smp_processor_id();
3433 struct rq *rq = cpu_rq(cpu);
dd41f596 3434 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3435
3436 sched_clock_tick();
dd41f596 3437
05fa785c 3438 raw_spin_lock(&rq->lock);
3e51f33f 3439 update_rq_clock(rq);
f1a438d8 3440 update_cpu_load(rq);
fa85ae24 3441 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3442 raw_spin_unlock(&rq->lock);
7835b98b 3443
49f47433 3444 perf_event_task_tick(curr);
e220d2dc 3445
e418e1c2 3446#ifdef CONFIG_SMP
dd41f596
IM
3447 rq->idle_at_tick = idle_cpu(cpu);
3448 trigger_load_balance(rq, cpu);
e418e1c2 3449#endif
1da177e4
LT
3450}
3451
132380a0 3452notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3453{
3454 if (in_lock_functions(addr)) {
3455 addr = CALLER_ADDR2;
3456 if (in_lock_functions(addr))
3457 addr = CALLER_ADDR3;
3458 }
3459 return addr;
3460}
1da177e4 3461
7e49fcce
SR
3462#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3463 defined(CONFIG_PREEMPT_TRACER))
3464
43627582 3465void __kprobes add_preempt_count(int val)
1da177e4 3466{
6cd8a4bb 3467#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3468 /*
3469 * Underflow?
3470 */
9a11b49a
IM
3471 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3472 return;
6cd8a4bb 3473#endif
1da177e4 3474 preempt_count() += val;
6cd8a4bb 3475#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3476 /*
3477 * Spinlock count overflowing soon?
3478 */
33859f7f
MOS
3479 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3480 PREEMPT_MASK - 10);
6cd8a4bb
SR
3481#endif
3482 if (preempt_count() == val)
3483 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3484}
3485EXPORT_SYMBOL(add_preempt_count);
3486
43627582 3487void __kprobes sub_preempt_count(int val)
1da177e4 3488{
6cd8a4bb 3489#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3490 /*
3491 * Underflow?
3492 */
01e3eb82 3493 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3494 return;
1da177e4
LT
3495 /*
3496 * Is the spinlock portion underflowing?
3497 */
9a11b49a
IM
3498 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3499 !(preempt_count() & PREEMPT_MASK)))
3500 return;
6cd8a4bb 3501#endif
9a11b49a 3502
6cd8a4bb
SR
3503 if (preempt_count() == val)
3504 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3505 preempt_count() -= val;
3506}
3507EXPORT_SYMBOL(sub_preempt_count);
3508
3509#endif
3510
3511/*
dd41f596 3512 * Print scheduling while atomic bug:
1da177e4 3513 */
dd41f596 3514static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3515{
838225b4
SS
3516 struct pt_regs *regs = get_irq_regs();
3517
3df0fc5b
PZ
3518 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3519 prev->comm, prev->pid, preempt_count());
838225b4 3520
dd41f596 3521 debug_show_held_locks(prev);
e21f5b15 3522 print_modules();
dd41f596
IM
3523 if (irqs_disabled())
3524 print_irqtrace_events(prev);
838225b4
SS
3525
3526 if (regs)
3527 show_regs(regs);
3528 else
3529 dump_stack();
dd41f596 3530}
1da177e4 3531
dd41f596
IM
3532/*
3533 * Various schedule()-time debugging checks and statistics:
3534 */
3535static inline void schedule_debug(struct task_struct *prev)
3536{
1da177e4 3537 /*
41a2d6cf 3538 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3539 * schedule() atomically, we ignore that path for now.
3540 * Otherwise, whine if we are scheduling when we should not be.
3541 */
3f33a7ce 3542 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3543 __schedule_bug(prev);
3544
1da177e4
LT
3545 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3546
2d72376b 3547 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3548#ifdef CONFIG_SCHEDSTATS
3549 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3550 schedstat_inc(this_rq(), bkl_count);
3551 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3552 }
3553#endif
dd41f596
IM
3554}
3555
6cecd084 3556static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3557{
a64692a3
MG
3558 if (prev->se.on_rq)
3559 update_rq_clock(rq);
3560 rq->skip_clock_update = 0;
6cecd084 3561 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3562}
3563
dd41f596
IM
3564/*
3565 * Pick up the highest-prio task:
3566 */
3567static inline struct task_struct *
b67802ea 3568pick_next_task(struct rq *rq)
dd41f596 3569{
5522d5d5 3570 const struct sched_class *class;
dd41f596 3571 struct task_struct *p;
1da177e4
LT
3572
3573 /*
dd41f596
IM
3574 * Optimization: we know that if all tasks are in
3575 * the fair class we can call that function directly:
1da177e4 3576 */
dd41f596 3577 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3578 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3579 if (likely(p))
3580 return p;
1da177e4
LT
3581 }
3582
dd41f596
IM
3583 class = sched_class_highest;
3584 for ( ; ; ) {
fb8d4724 3585 p = class->pick_next_task(rq);
dd41f596
IM
3586 if (p)
3587 return p;
3588 /*
3589 * Will never be NULL as the idle class always
3590 * returns a non-NULL p:
3591 */
3592 class = class->next;
3593 }
3594}
1da177e4 3595
dd41f596
IM
3596/*
3597 * schedule() is the main scheduler function.
3598 */
ff743345 3599asmlinkage void __sched schedule(void)
dd41f596
IM
3600{
3601 struct task_struct *prev, *next;
67ca7bde 3602 unsigned long *switch_count;
dd41f596 3603 struct rq *rq;
31656519 3604 int cpu;
dd41f596 3605
ff743345
PZ
3606need_resched:
3607 preempt_disable();
dd41f596
IM
3608 cpu = smp_processor_id();
3609 rq = cpu_rq(cpu);
d6714c22 3610 rcu_sched_qs(cpu);
dd41f596
IM
3611 prev = rq->curr;
3612 switch_count = &prev->nivcsw;
3613
3614 release_kernel_lock(prev);
3615need_resched_nonpreemptible:
3616
3617 schedule_debug(prev);
1da177e4 3618
31656519 3619 if (sched_feat(HRTICK))
f333fdc9 3620 hrtick_clear(rq);
8f4d37ec 3621
05fa785c 3622 raw_spin_lock_irq(&rq->lock);
1e819950 3623 clear_tsk_need_resched(prev);
1da177e4 3624
1da177e4 3625 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3626 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3627 prev->state = TASK_RUNNING;
16882c1e 3628 else
371fd7e7 3629 deactivate_task(rq, prev, DEQUEUE_SLEEP);
dd41f596 3630 switch_count = &prev->nvcsw;
1da177e4
LT
3631 }
3632
3f029d3c 3633 pre_schedule(rq, prev);
f65eda4f 3634
dd41f596 3635 if (unlikely(!rq->nr_running))
1da177e4 3636 idle_balance(cpu, rq);
1da177e4 3637
df1c99d4 3638 put_prev_task(rq, prev);
b67802ea 3639 next = pick_next_task(rq);
1da177e4 3640
1da177e4 3641 if (likely(prev != next)) {
673a90a1 3642 sched_info_switch(prev, next);
49f47433 3643 perf_event_task_sched_out(prev, next);
673a90a1 3644
1da177e4
LT
3645 rq->nr_switches++;
3646 rq->curr = next;
3647 ++*switch_count;
3648
dd41f596 3649 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3650 /*
3651 * the context switch might have flipped the stack from under
3652 * us, hence refresh the local variables.
3653 */
3654 cpu = smp_processor_id();
3655 rq = cpu_rq(cpu);
1da177e4 3656 } else
05fa785c 3657 raw_spin_unlock_irq(&rq->lock);
1da177e4 3658
3f029d3c 3659 post_schedule(rq);
1da177e4 3660
6d558c3a
YZ
3661 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3662 prev = rq->curr;
3663 switch_count = &prev->nivcsw;
1da177e4 3664 goto need_resched_nonpreemptible;
6d558c3a 3665 }
8f4d37ec 3666
1da177e4 3667 preempt_enable_no_resched();
ff743345 3668 if (need_resched())
1da177e4
LT
3669 goto need_resched;
3670}
1da177e4
LT
3671EXPORT_SYMBOL(schedule);
3672
c08f7829 3673#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3674/*
3675 * Look out! "owner" is an entirely speculative pointer
3676 * access and not reliable.
3677 */
3678int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3679{
3680 unsigned int cpu;
3681 struct rq *rq;
3682
3683 if (!sched_feat(OWNER_SPIN))
3684 return 0;
3685
3686#ifdef CONFIG_DEBUG_PAGEALLOC
3687 /*
3688 * Need to access the cpu field knowing that
3689 * DEBUG_PAGEALLOC could have unmapped it if
3690 * the mutex owner just released it and exited.
3691 */
3692 if (probe_kernel_address(&owner->cpu, cpu))
3693 goto out;
3694#else
3695 cpu = owner->cpu;
3696#endif
3697
3698 /*
3699 * Even if the access succeeded (likely case),
3700 * the cpu field may no longer be valid.
3701 */
3702 if (cpu >= nr_cpumask_bits)
3703 goto out;
3704
3705 /*
3706 * We need to validate that we can do a
3707 * get_cpu() and that we have the percpu area.
3708 */
3709 if (!cpu_online(cpu))
3710 goto out;
3711
3712 rq = cpu_rq(cpu);
3713
3714 for (;;) {
3715 /*
3716 * Owner changed, break to re-assess state.
3717 */
3718 if (lock->owner != owner)
3719 break;
3720
3721 /*
3722 * Is that owner really running on that cpu?
3723 */
3724 if (task_thread_info(rq->curr) != owner || need_resched())
3725 return 0;
3726
3727 cpu_relax();
3728 }
3729out:
3730 return 1;
3731}
3732#endif
3733
1da177e4
LT
3734#ifdef CONFIG_PREEMPT
3735/*
2ed6e34f 3736 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3737 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3738 * occur there and call schedule directly.
3739 */
3740asmlinkage void __sched preempt_schedule(void)
3741{
3742 struct thread_info *ti = current_thread_info();
6478d880 3743
1da177e4
LT
3744 /*
3745 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3746 * we do not want to preempt the current task. Just return..
1da177e4 3747 */
beed33a8 3748 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3749 return;
3750
3a5c359a
AK
3751 do {
3752 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3753 schedule();
3a5c359a 3754 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3755
3a5c359a
AK
3756 /*
3757 * Check again in case we missed a preemption opportunity
3758 * between schedule and now.
3759 */
3760 barrier();
5ed0cec0 3761 } while (need_resched());
1da177e4 3762}
1da177e4
LT
3763EXPORT_SYMBOL(preempt_schedule);
3764
3765/*
2ed6e34f 3766 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3767 * off of irq context.
3768 * Note, that this is called and return with irqs disabled. This will
3769 * protect us against recursive calling from irq.
3770 */
3771asmlinkage void __sched preempt_schedule_irq(void)
3772{
3773 struct thread_info *ti = current_thread_info();
6478d880 3774
2ed6e34f 3775 /* Catch callers which need to be fixed */
1da177e4
LT
3776 BUG_ON(ti->preempt_count || !irqs_disabled());
3777
3a5c359a
AK
3778 do {
3779 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3780 local_irq_enable();
3781 schedule();
3782 local_irq_disable();
3a5c359a 3783 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3784
3a5c359a
AK
3785 /*
3786 * Check again in case we missed a preemption opportunity
3787 * between schedule and now.
3788 */
3789 barrier();
5ed0cec0 3790 } while (need_resched());
1da177e4
LT
3791}
3792
3793#endif /* CONFIG_PREEMPT */
3794
63859d4f 3795int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3796 void *key)
1da177e4 3797{
63859d4f 3798 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3799}
1da177e4
LT
3800EXPORT_SYMBOL(default_wake_function);
3801
3802/*
41a2d6cf
IM
3803 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3804 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3805 * number) then we wake all the non-exclusive tasks and one exclusive task.
3806 *
3807 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3808 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3809 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3810 */
78ddb08f 3811static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3812 int nr_exclusive, int wake_flags, void *key)
1da177e4 3813{
2e45874c 3814 wait_queue_t *curr, *next;
1da177e4 3815
2e45874c 3816 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3817 unsigned flags = curr->flags;
3818
63859d4f 3819 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3820 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3821 break;
3822 }
3823}
3824
3825/**
3826 * __wake_up - wake up threads blocked on a waitqueue.
3827 * @q: the waitqueue
3828 * @mode: which threads
3829 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3830 * @key: is directly passed to the wakeup function
50fa610a
DH
3831 *
3832 * It may be assumed that this function implies a write memory barrier before
3833 * changing the task state if and only if any tasks are woken up.
1da177e4 3834 */
7ad5b3a5 3835void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3836 int nr_exclusive, void *key)
1da177e4
LT
3837{
3838 unsigned long flags;
3839
3840 spin_lock_irqsave(&q->lock, flags);
3841 __wake_up_common(q, mode, nr_exclusive, 0, key);
3842 spin_unlock_irqrestore(&q->lock, flags);
3843}
1da177e4
LT
3844EXPORT_SYMBOL(__wake_up);
3845
3846/*
3847 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3848 */
7ad5b3a5 3849void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3850{
3851 __wake_up_common(q, mode, 1, 0, NULL);
3852}
3853
4ede816a
DL
3854void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3855{
3856 __wake_up_common(q, mode, 1, 0, key);
3857}
3858
1da177e4 3859/**
4ede816a 3860 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3861 * @q: the waitqueue
3862 * @mode: which threads
3863 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3864 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3865 *
3866 * The sync wakeup differs that the waker knows that it will schedule
3867 * away soon, so while the target thread will be woken up, it will not
3868 * be migrated to another CPU - ie. the two threads are 'synchronized'
3869 * with each other. This can prevent needless bouncing between CPUs.
3870 *
3871 * On UP it can prevent extra preemption.
50fa610a
DH
3872 *
3873 * It may be assumed that this function implies a write memory barrier before
3874 * changing the task state if and only if any tasks are woken up.
1da177e4 3875 */
4ede816a
DL
3876void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3877 int nr_exclusive, void *key)
1da177e4
LT
3878{
3879 unsigned long flags;
7d478721 3880 int wake_flags = WF_SYNC;
1da177e4
LT
3881
3882 if (unlikely(!q))
3883 return;
3884
3885 if (unlikely(!nr_exclusive))
7d478721 3886 wake_flags = 0;
1da177e4
LT
3887
3888 spin_lock_irqsave(&q->lock, flags);
7d478721 3889 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3890 spin_unlock_irqrestore(&q->lock, flags);
3891}
4ede816a
DL
3892EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3893
3894/*
3895 * __wake_up_sync - see __wake_up_sync_key()
3896 */
3897void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3898{
3899 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3900}
1da177e4
LT
3901EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3902
65eb3dc6
KD
3903/**
3904 * complete: - signals a single thread waiting on this completion
3905 * @x: holds the state of this particular completion
3906 *
3907 * This will wake up a single thread waiting on this completion. Threads will be
3908 * awakened in the same order in which they were queued.
3909 *
3910 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3911 *
3912 * It may be assumed that this function implies a write memory barrier before
3913 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3914 */
b15136e9 3915void complete(struct completion *x)
1da177e4
LT
3916{
3917 unsigned long flags;
3918
3919 spin_lock_irqsave(&x->wait.lock, flags);
3920 x->done++;
d9514f6c 3921 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3922 spin_unlock_irqrestore(&x->wait.lock, flags);
3923}
3924EXPORT_SYMBOL(complete);
3925
65eb3dc6
KD
3926/**
3927 * complete_all: - signals all threads waiting on this completion
3928 * @x: holds the state of this particular completion
3929 *
3930 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3931 *
3932 * It may be assumed that this function implies a write memory barrier before
3933 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3934 */
b15136e9 3935void complete_all(struct completion *x)
1da177e4
LT
3936{
3937 unsigned long flags;
3938
3939 spin_lock_irqsave(&x->wait.lock, flags);
3940 x->done += UINT_MAX/2;
d9514f6c 3941 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3942 spin_unlock_irqrestore(&x->wait.lock, flags);
3943}
3944EXPORT_SYMBOL(complete_all);
3945
8cbbe86d
AK
3946static inline long __sched
3947do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3948{
1da177e4
LT
3949 if (!x->done) {
3950 DECLARE_WAITQUEUE(wait, current);
3951
3952 wait.flags |= WQ_FLAG_EXCLUSIVE;
3953 __add_wait_queue_tail(&x->wait, &wait);
3954 do {
94d3d824 3955 if (signal_pending_state(state, current)) {
ea71a546
ON
3956 timeout = -ERESTARTSYS;
3957 break;
8cbbe86d
AK
3958 }
3959 __set_current_state(state);
1da177e4
LT
3960 spin_unlock_irq(&x->wait.lock);
3961 timeout = schedule_timeout(timeout);
3962 spin_lock_irq(&x->wait.lock);
ea71a546 3963 } while (!x->done && timeout);
1da177e4 3964 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3965 if (!x->done)
3966 return timeout;
1da177e4
LT
3967 }
3968 x->done--;
ea71a546 3969 return timeout ?: 1;
1da177e4 3970}
1da177e4 3971
8cbbe86d
AK
3972static long __sched
3973wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3974{
1da177e4
LT
3975 might_sleep();
3976
3977 spin_lock_irq(&x->wait.lock);
8cbbe86d 3978 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3979 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3980 return timeout;
3981}
1da177e4 3982
65eb3dc6
KD
3983/**
3984 * wait_for_completion: - waits for completion of a task
3985 * @x: holds the state of this particular completion
3986 *
3987 * This waits to be signaled for completion of a specific task. It is NOT
3988 * interruptible and there is no timeout.
3989 *
3990 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3991 * and interrupt capability. Also see complete().
3992 */
b15136e9 3993void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3994{
3995 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3996}
8cbbe86d 3997EXPORT_SYMBOL(wait_for_completion);
1da177e4 3998
65eb3dc6
KD
3999/**
4000 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4001 * @x: holds the state of this particular completion
4002 * @timeout: timeout value in jiffies
4003 *
4004 * This waits for either a completion of a specific task to be signaled or for a
4005 * specified timeout to expire. The timeout is in jiffies. It is not
4006 * interruptible.
4007 */
b15136e9 4008unsigned long __sched
8cbbe86d 4009wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4010{
8cbbe86d 4011 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4012}
8cbbe86d 4013EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4014
65eb3dc6
KD
4015/**
4016 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4017 * @x: holds the state of this particular completion
4018 *
4019 * This waits for completion of a specific task to be signaled. It is
4020 * interruptible.
4021 */
8cbbe86d 4022int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4023{
51e97990
AK
4024 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4025 if (t == -ERESTARTSYS)
4026 return t;
4027 return 0;
0fec171c 4028}
8cbbe86d 4029EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4030
65eb3dc6
KD
4031/**
4032 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4033 * @x: holds the state of this particular completion
4034 * @timeout: timeout value in jiffies
4035 *
4036 * This waits for either a completion of a specific task to be signaled or for a
4037 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4038 */
b15136e9 4039unsigned long __sched
8cbbe86d
AK
4040wait_for_completion_interruptible_timeout(struct completion *x,
4041 unsigned long timeout)
0fec171c 4042{
8cbbe86d 4043 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4044}
8cbbe86d 4045EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4046
65eb3dc6
KD
4047/**
4048 * wait_for_completion_killable: - waits for completion of a task (killable)
4049 * @x: holds the state of this particular completion
4050 *
4051 * This waits to be signaled for completion of a specific task. It can be
4052 * interrupted by a kill signal.
4053 */
009e577e
MW
4054int __sched wait_for_completion_killable(struct completion *x)
4055{
4056 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4057 if (t == -ERESTARTSYS)
4058 return t;
4059 return 0;
4060}
4061EXPORT_SYMBOL(wait_for_completion_killable);
4062
be4de352
DC
4063/**
4064 * try_wait_for_completion - try to decrement a completion without blocking
4065 * @x: completion structure
4066 *
4067 * Returns: 0 if a decrement cannot be done without blocking
4068 * 1 if a decrement succeeded.
4069 *
4070 * If a completion is being used as a counting completion,
4071 * attempt to decrement the counter without blocking. This
4072 * enables us to avoid waiting if the resource the completion
4073 * is protecting is not available.
4074 */
4075bool try_wait_for_completion(struct completion *x)
4076{
7539a3b3 4077 unsigned long flags;
be4de352
DC
4078 int ret = 1;
4079
7539a3b3 4080 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4081 if (!x->done)
4082 ret = 0;
4083 else
4084 x->done--;
7539a3b3 4085 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4086 return ret;
4087}
4088EXPORT_SYMBOL(try_wait_for_completion);
4089
4090/**
4091 * completion_done - Test to see if a completion has any waiters
4092 * @x: completion structure
4093 *
4094 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4095 * 1 if there are no waiters.
4096 *
4097 */
4098bool completion_done(struct completion *x)
4099{
7539a3b3 4100 unsigned long flags;
be4de352
DC
4101 int ret = 1;
4102
7539a3b3 4103 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4104 if (!x->done)
4105 ret = 0;
7539a3b3 4106 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4107 return ret;
4108}
4109EXPORT_SYMBOL(completion_done);
4110
8cbbe86d
AK
4111static long __sched
4112sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4113{
0fec171c
IM
4114 unsigned long flags;
4115 wait_queue_t wait;
4116
4117 init_waitqueue_entry(&wait, current);
1da177e4 4118
8cbbe86d 4119 __set_current_state(state);
1da177e4 4120
8cbbe86d
AK
4121 spin_lock_irqsave(&q->lock, flags);
4122 __add_wait_queue(q, &wait);
4123 spin_unlock(&q->lock);
4124 timeout = schedule_timeout(timeout);
4125 spin_lock_irq(&q->lock);
4126 __remove_wait_queue(q, &wait);
4127 spin_unlock_irqrestore(&q->lock, flags);
4128
4129 return timeout;
4130}
4131
4132void __sched interruptible_sleep_on(wait_queue_head_t *q)
4133{
4134 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4135}
1da177e4
LT
4136EXPORT_SYMBOL(interruptible_sleep_on);
4137
0fec171c 4138long __sched
95cdf3b7 4139interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4140{
8cbbe86d 4141 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4142}
1da177e4
LT
4143EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4144
0fec171c 4145void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4146{
8cbbe86d 4147 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4148}
1da177e4
LT
4149EXPORT_SYMBOL(sleep_on);
4150
0fec171c 4151long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4152{
8cbbe86d 4153 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4154}
1da177e4
LT
4155EXPORT_SYMBOL(sleep_on_timeout);
4156
b29739f9
IM
4157#ifdef CONFIG_RT_MUTEXES
4158
4159/*
4160 * rt_mutex_setprio - set the current priority of a task
4161 * @p: task
4162 * @prio: prio value (kernel-internal form)
4163 *
4164 * This function changes the 'effective' priority of a task. It does
4165 * not touch ->normal_prio like __setscheduler().
4166 *
4167 * Used by the rt_mutex code to implement priority inheritance logic.
4168 */
36c8b586 4169void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4170{
4171 unsigned long flags;
83b699ed 4172 int oldprio, on_rq, running;
70b97a7f 4173 struct rq *rq;
83ab0aa0 4174 const struct sched_class *prev_class;
b29739f9
IM
4175
4176 BUG_ON(prio < 0 || prio > MAX_PRIO);
4177
4178 rq = task_rq_lock(p, &flags);
4179
d5f9f942 4180 oldprio = p->prio;
83ab0aa0 4181 prev_class = p->sched_class;
dd41f596 4182 on_rq = p->se.on_rq;
051a1d1a 4183 running = task_current(rq, p);
0e1f3483 4184 if (on_rq)
69be72c1 4185 dequeue_task(rq, p, 0);
0e1f3483
HS
4186 if (running)
4187 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4188
4189 if (rt_prio(prio))
4190 p->sched_class = &rt_sched_class;
4191 else
4192 p->sched_class = &fair_sched_class;
4193
b29739f9
IM
4194 p->prio = prio;
4195
0e1f3483
HS
4196 if (running)
4197 p->sched_class->set_curr_task(rq);
dd41f596 4198 if (on_rq) {
371fd7e7 4199 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4200
4201 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4202 }
4203 task_rq_unlock(rq, &flags);
4204}
4205
4206#endif
4207
36c8b586 4208void set_user_nice(struct task_struct *p, long nice)
1da177e4 4209{
dd41f596 4210 int old_prio, delta, on_rq;
1da177e4 4211 unsigned long flags;
70b97a7f 4212 struct rq *rq;
1da177e4
LT
4213
4214 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4215 return;
4216 /*
4217 * We have to be careful, if called from sys_setpriority(),
4218 * the task might be in the middle of scheduling on another CPU.
4219 */
4220 rq = task_rq_lock(p, &flags);
4221 /*
4222 * The RT priorities are set via sched_setscheduler(), but we still
4223 * allow the 'normal' nice value to be set - but as expected
4224 * it wont have any effect on scheduling until the task is
dd41f596 4225 * SCHED_FIFO/SCHED_RR:
1da177e4 4226 */
e05606d3 4227 if (task_has_rt_policy(p)) {
1da177e4
LT
4228 p->static_prio = NICE_TO_PRIO(nice);
4229 goto out_unlock;
4230 }
dd41f596 4231 on_rq = p->se.on_rq;
c09595f6 4232 if (on_rq)
69be72c1 4233 dequeue_task(rq, p, 0);
1da177e4 4234
1da177e4 4235 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4236 set_load_weight(p);
b29739f9
IM
4237 old_prio = p->prio;
4238 p->prio = effective_prio(p);
4239 delta = p->prio - old_prio;
1da177e4 4240
dd41f596 4241 if (on_rq) {
371fd7e7 4242 enqueue_task(rq, p, 0);
1da177e4 4243 /*
d5f9f942
AM
4244 * If the task increased its priority or is running and
4245 * lowered its priority, then reschedule its CPU:
1da177e4 4246 */
d5f9f942 4247 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4248 resched_task(rq->curr);
4249 }
4250out_unlock:
4251 task_rq_unlock(rq, &flags);
4252}
1da177e4
LT
4253EXPORT_SYMBOL(set_user_nice);
4254
e43379f1
MM
4255/*
4256 * can_nice - check if a task can reduce its nice value
4257 * @p: task
4258 * @nice: nice value
4259 */
36c8b586 4260int can_nice(const struct task_struct *p, const int nice)
e43379f1 4261{
024f4747
MM
4262 /* convert nice value [19,-20] to rlimit style value [1,40] */
4263 int nice_rlim = 20 - nice;
48f24c4d 4264
78d7d407 4265 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4266 capable(CAP_SYS_NICE));
4267}
4268
1da177e4
LT
4269#ifdef __ARCH_WANT_SYS_NICE
4270
4271/*
4272 * sys_nice - change the priority of the current process.
4273 * @increment: priority increment
4274 *
4275 * sys_setpriority is a more generic, but much slower function that
4276 * does similar things.
4277 */
5add95d4 4278SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4279{
48f24c4d 4280 long nice, retval;
1da177e4
LT
4281
4282 /*
4283 * Setpriority might change our priority at the same moment.
4284 * We don't have to worry. Conceptually one call occurs first
4285 * and we have a single winner.
4286 */
e43379f1
MM
4287 if (increment < -40)
4288 increment = -40;
1da177e4
LT
4289 if (increment > 40)
4290 increment = 40;
4291
2b8f836f 4292 nice = TASK_NICE(current) + increment;
1da177e4
LT
4293 if (nice < -20)
4294 nice = -20;
4295 if (nice > 19)
4296 nice = 19;
4297
e43379f1
MM
4298 if (increment < 0 && !can_nice(current, nice))
4299 return -EPERM;
4300
1da177e4
LT
4301 retval = security_task_setnice(current, nice);
4302 if (retval)
4303 return retval;
4304
4305 set_user_nice(current, nice);
4306 return 0;
4307}
4308
4309#endif
4310
4311/**
4312 * task_prio - return the priority value of a given task.
4313 * @p: the task in question.
4314 *
4315 * This is the priority value as seen by users in /proc.
4316 * RT tasks are offset by -200. Normal tasks are centered
4317 * around 0, value goes from -16 to +15.
4318 */
36c8b586 4319int task_prio(const struct task_struct *p)
1da177e4
LT
4320{
4321 return p->prio - MAX_RT_PRIO;
4322}
4323
4324/**
4325 * task_nice - return the nice value of a given task.
4326 * @p: the task in question.
4327 */
36c8b586 4328int task_nice(const struct task_struct *p)
1da177e4
LT
4329{
4330 return TASK_NICE(p);
4331}
150d8bed 4332EXPORT_SYMBOL(task_nice);
1da177e4
LT
4333
4334/**
4335 * idle_cpu - is a given cpu idle currently?
4336 * @cpu: the processor in question.
4337 */
4338int idle_cpu(int cpu)
4339{
4340 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4341}
4342
1da177e4
LT
4343/**
4344 * idle_task - return the idle task for a given cpu.
4345 * @cpu: the processor in question.
4346 */
36c8b586 4347struct task_struct *idle_task(int cpu)
1da177e4
LT
4348{
4349 return cpu_rq(cpu)->idle;
4350}
4351
4352/**
4353 * find_process_by_pid - find a process with a matching PID value.
4354 * @pid: the pid in question.
4355 */
a9957449 4356static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4357{
228ebcbe 4358 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4359}
4360
4361/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4362static void
4363__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4364{
dd41f596 4365 BUG_ON(p->se.on_rq);
48f24c4d 4366
1da177e4
LT
4367 p->policy = policy;
4368 p->rt_priority = prio;
b29739f9
IM
4369 p->normal_prio = normal_prio(p);
4370 /* we are holding p->pi_lock already */
4371 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4372 if (rt_prio(p->prio))
4373 p->sched_class = &rt_sched_class;
4374 else
4375 p->sched_class = &fair_sched_class;
2dd73a4f 4376 set_load_weight(p);
1da177e4
LT
4377}
4378
c69e8d9c
DH
4379/*
4380 * check the target process has a UID that matches the current process's
4381 */
4382static bool check_same_owner(struct task_struct *p)
4383{
4384 const struct cred *cred = current_cred(), *pcred;
4385 bool match;
4386
4387 rcu_read_lock();
4388 pcred = __task_cred(p);
4389 match = (cred->euid == pcred->euid ||
4390 cred->euid == pcred->uid);
4391 rcu_read_unlock();
4392 return match;
4393}
4394
961ccddd
RR
4395static int __sched_setscheduler(struct task_struct *p, int policy,
4396 struct sched_param *param, bool user)
1da177e4 4397{
83b699ed 4398 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4399 unsigned long flags;
83ab0aa0 4400 const struct sched_class *prev_class;
70b97a7f 4401 struct rq *rq;
ca94c442 4402 int reset_on_fork;
1da177e4 4403
66e5393a
SR
4404 /* may grab non-irq protected spin_locks */
4405 BUG_ON(in_interrupt());
1da177e4
LT
4406recheck:
4407 /* double check policy once rq lock held */
ca94c442
LP
4408 if (policy < 0) {
4409 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4410 policy = oldpolicy = p->policy;
ca94c442
LP
4411 } else {
4412 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4413 policy &= ~SCHED_RESET_ON_FORK;
4414
4415 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4416 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4417 policy != SCHED_IDLE)
4418 return -EINVAL;
4419 }
4420
1da177e4
LT
4421 /*
4422 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4423 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4424 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4425 */
4426 if (param->sched_priority < 0 ||
95cdf3b7 4427 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4428 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4429 return -EINVAL;
e05606d3 4430 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4431 return -EINVAL;
4432
37e4ab3f
OC
4433 /*
4434 * Allow unprivileged RT tasks to decrease priority:
4435 */
961ccddd 4436 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4437 if (rt_policy(policy)) {
8dc3e909 4438 unsigned long rlim_rtprio;
8dc3e909
ON
4439
4440 if (!lock_task_sighand(p, &flags))
4441 return -ESRCH;
78d7d407 4442 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4443 unlock_task_sighand(p, &flags);
4444
4445 /* can't set/change the rt policy */
4446 if (policy != p->policy && !rlim_rtprio)
4447 return -EPERM;
4448
4449 /* can't increase priority */
4450 if (param->sched_priority > p->rt_priority &&
4451 param->sched_priority > rlim_rtprio)
4452 return -EPERM;
4453 }
dd41f596
IM
4454 /*
4455 * Like positive nice levels, dont allow tasks to
4456 * move out of SCHED_IDLE either:
4457 */
4458 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4459 return -EPERM;
5fe1d75f 4460
37e4ab3f 4461 /* can't change other user's priorities */
c69e8d9c 4462 if (!check_same_owner(p))
37e4ab3f 4463 return -EPERM;
ca94c442
LP
4464
4465 /* Normal users shall not reset the sched_reset_on_fork flag */
4466 if (p->sched_reset_on_fork && !reset_on_fork)
4467 return -EPERM;
37e4ab3f 4468 }
1da177e4 4469
725aad24 4470 if (user) {
b68aa230 4471#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4472 /*
4473 * Do not allow realtime tasks into groups that have no runtime
4474 * assigned.
4475 */
9a7e0b18
PZ
4476 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4477 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4478 return -EPERM;
b68aa230
PZ
4479#endif
4480
725aad24
JF
4481 retval = security_task_setscheduler(p, policy, param);
4482 if (retval)
4483 return retval;
4484 }
4485
b29739f9
IM
4486 /*
4487 * make sure no PI-waiters arrive (or leave) while we are
4488 * changing the priority of the task:
4489 */
1d615482 4490 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4491 /*
4492 * To be able to change p->policy safely, the apropriate
4493 * runqueue lock must be held.
4494 */
b29739f9 4495 rq = __task_rq_lock(p);
1da177e4
LT
4496 /* recheck policy now with rq lock held */
4497 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4498 policy = oldpolicy = -1;
b29739f9 4499 __task_rq_unlock(rq);
1d615482 4500 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4501 goto recheck;
4502 }
dd41f596 4503 on_rq = p->se.on_rq;
051a1d1a 4504 running = task_current(rq, p);
0e1f3483 4505 if (on_rq)
2e1cb74a 4506 deactivate_task(rq, p, 0);
0e1f3483
HS
4507 if (running)
4508 p->sched_class->put_prev_task(rq, p);
f6b53205 4509
ca94c442
LP
4510 p->sched_reset_on_fork = reset_on_fork;
4511
1da177e4 4512 oldprio = p->prio;
83ab0aa0 4513 prev_class = p->sched_class;
dd41f596 4514 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4515
0e1f3483
HS
4516 if (running)
4517 p->sched_class->set_curr_task(rq);
dd41f596
IM
4518 if (on_rq) {
4519 activate_task(rq, p, 0);
cb469845
SR
4520
4521 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4522 }
b29739f9 4523 __task_rq_unlock(rq);
1d615482 4524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4525
95e02ca9
TG
4526 rt_mutex_adjust_pi(p);
4527
1da177e4
LT
4528 return 0;
4529}
961ccddd
RR
4530
4531/**
4532 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4533 * @p: the task in question.
4534 * @policy: new policy.
4535 * @param: structure containing the new RT priority.
4536 *
4537 * NOTE that the task may be already dead.
4538 */
4539int sched_setscheduler(struct task_struct *p, int policy,
4540 struct sched_param *param)
4541{
4542 return __sched_setscheduler(p, policy, param, true);
4543}
1da177e4
LT
4544EXPORT_SYMBOL_GPL(sched_setscheduler);
4545
961ccddd
RR
4546/**
4547 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4548 * @p: the task in question.
4549 * @policy: new policy.
4550 * @param: structure containing the new RT priority.
4551 *
4552 * Just like sched_setscheduler, only don't bother checking if the
4553 * current context has permission. For example, this is needed in
4554 * stop_machine(): we create temporary high priority worker threads,
4555 * but our caller might not have that capability.
4556 */
4557int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4558 struct sched_param *param)
4559{
4560 return __sched_setscheduler(p, policy, param, false);
4561}
4562
95cdf3b7
IM
4563static int
4564do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4565{
1da177e4
LT
4566 struct sched_param lparam;
4567 struct task_struct *p;
36c8b586 4568 int retval;
1da177e4
LT
4569
4570 if (!param || pid < 0)
4571 return -EINVAL;
4572 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4573 return -EFAULT;
5fe1d75f
ON
4574
4575 rcu_read_lock();
4576 retval = -ESRCH;
1da177e4 4577 p = find_process_by_pid(pid);
5fe1d75f
ON
4578 if (p != NULL)
4579 retval = sched_setscheduler(p, policy, &lparam);
4580 rcu_read_unlock();
36c8b586 4581
1da177e4
LT
4582 return retval;
4583}
4584
4585/**
4586 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4587 * @pid: the pid in question.
4588 * @policy: new policy.
4589 * @param: structure containing the new RT priority.
4590 */
5add95d4
HC
4591SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4592 struct sched_param __user *, param)
1da177e4 4593{
c21761f1
JB
4594 /* negative values for policy are not valid */
4595 if (policy < 0)
4596 return -EINVAL;
4597
1da177e4
LT
4598 return do_sched_setscheduler(pid, policy, param);
4599}
4600
4601/**
4602 * sys_sched_setparam - set/change the RT priority of a thread
4603 * @pid: the pid in question.
4604 * @param: structure containing the new RT priority.
4605 */
5add95d4 4606SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4607{
4608 return do_sched_setscheduler(pid, -1, param);
4609}
4610
4611/**
4612 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4613 * @pid: the pid in question.
4614 */
5add95d4 4615SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4616{
36c8b586 4617 struct task_struct *p;
3a5c359a 4618 int retval;
1da177e4
LT
4619
4620 if (pid < 0)
3a5c359a 4621 return -EINVAL;
1da177e4
LT
4622
4623 retval = -ESRCH;
5fe85be0 4624 rcu_read_lock();
1da177e4
LT
4625 p = find_process_by_pid(pid);
4626 if (p) {
4627 retval = security_task_getscheduler(p);
4628 if (!retval)
ca94c442
LP
4629 retval = p->policy
4630 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4631 }
5fe85be0 4632 rcu_read_unlock();
1da177e4
LT
4633 return retval;
4634}
4635
4636/**
ca94c442 4637 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4638 * @pid: the pid in question.
4639 * @param: structure containing the RT priority.
4640 */
5add95d4 4641SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4642{
4643 struct sched_param lp;
36c8b586 4644 struct task_struct *p;
3a5c359a 4645 int retval;
1da177e4
LT
4646
4647 if (!param || pid < 0)
3a5c359a 4648 return -EINVAL;
1da177e4 4649
5fe85be0 4650 rcu_read_lock();
1da177e4
LT
4651 p = find_process_by_pid(pid);
4652 retval = -ESRCH;
4653 if (!p)
4654 goto out_unlock;
4655
4656 retval = security_task_getscheduler(p);
4657 if (retval)
4658 goto out_unlock;
4659
4660 lp.sched_priority = p->rt_priority;
5fe85be0 4661 rcu_read_unlock();
1da177e4
LT
4662
4663 /*
4664 * This one might sleep, we cannot do it with a spinlock held ...
4665 */
4666 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4667
1da177e4
LT
4668 return retval;
4669
4670out_unlock:
5fe85be0 4671 rcu_read_unlock();
1da177e4
LT
4672 return retval;
4673}
4674
96f874e2 4675long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4676{
5a16f3d3 4677 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4678 struct task_struct *p;
4679 int retval;
1da177e4 4680
95402b38 4681 get_online_cpus();
23f5d142 4682 rcu_read_lock();
1da177e4
LT
4683
4684 p = find_process_by_pid(pid);
4685 if (!p) {
23f5d142 4686 rcu_read_unlock();
95402b38 4687 put_online_cpus();
1da177e4
LT
4688 return -ESRCH;
4689 }
4690
23f5d142 4691 /* Prevent p going away */
1da177e4 4692 get_task_struct(p);
23f5d142 4693 rcu_read_unlock();
1da177e4 4694
5a16f3d3
RR
4695 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4696 retval = -ENOMEM;
4697 goto out_put_task;
4698 }
4699 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4700 retval = -ENOMEM;
4701 goto out_free_cpus_allowed;
4702 }
1da177e4 4703 retval = -EPERM;
c69e8d9c 4704 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4705 goto out_unlock;
4706
e7834f8f
DQ
4707 retval = security_task_setscheduler(p, 0, NULL);
4708 if (retval)
4709 goto out_unlock;
4710
5a16f3d3
RR
4711 cpuset_cpus_allowed(p, cpus_allowed);
4712 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4713 again:
5a16f3d3 4714 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4715
8707d8b8 4716 if (!retval) {
5a16f3d3
RR
4717 cpuset_cpus_allowed(p, cpus_allowed);
4718 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4719 /*
4720 * We must have raced with a concurrent cpuset
4721 * update. Just reset the cpus_allowed to the
4722 * cpuset's cpus_allowed
4723 */
5a16f3d3 4724 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4725 goto again;
4726 }
4727 }
1da177e4 4728out_unlock:
5a16f3d3
RR
4729 free_cpumask_var(new_mask);
4730out_free_cpus_allowed:
4731 free_cpumask_var(cpus_allowed);
4732out_put_task:
1da177e4 4733 put_task_struct(p);
95402b38 4734 put_online_cpus();
1da177e4
LT
4735 return retval;
4736}
4737
4738static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4739 struct cpumask *new_mask)
1da177e4 4740{
96f874e2
RR
4741 if (len < cpumask_size())
4742 cpumask_clear(new_mask);
4743 else if (len > cpumask_size())
4744 len = cpumask_size();
4745
1da177e4
LT
4746 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4747}
4748
4749/**
4750 * sys_sched_setaffinity - set the cpu affinity of a process
4751 * @pid: pid of the process
4752 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4753 * @user_mask_ptr: user-space pointer to the new cpu mask
4754 */
5add95d4
HC
4755SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4756 unsigned long __user *, user_mask_ptr)
1da177e4 4757{
5a16f3d3 4758 cpumask_var_t new_mask;
1da177e4
LT
4759 int retval;
4760
5a16f3d3
RR
4761 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4762 return -ENOMEM;
1da177e4 4763
5a16f3d3
RR
4764 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4765 if (retval == 0)
4766 retval = sched_setaffinity(pid, new_mask);
4767 free_cpumask_var(new_mask);
4768 return retval;
1da177e4
LT
4769}
4770
96f874e2 4771long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4772{
36c8b586 4773 struct task_struct *p;
31605683
TG
4774 unsigned long flags;
4775 struct rq *rq;
1da177e4 4776 int retval;
1da177e4 4777
95402b38 4778 get_online_cpus();
23f5d142 4779 rcu_read_lock();
1da177e4
LT
4780
4781 retval = -ESRCH;
4782 p = find_process_by_pid(pid);
4783 if (!p)
4784 goto out_unlock;
4785
e7834f8f
DQ
4786 retval = security_task_getscheduler(p);
4787 if (retval)
4788 goto out_unlock;
4789
31605683 4790 rq = task_rq_lock(p, &flags);
96f874e2 4791 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4792 task_rq_unlock(rq, &flags);
1da177e4
LT
4793
4794out_unlock:
23f5d142 4795 rcu_read_unlock();
95402b38 4796 put_online_cpus();
1da177e4 4797
9531b62f 4798 return retval;
1da177e4
LT
4799}
4800
4801/**
4802 * sys_sched_getaffinity - get the cpu affinity of a process
4803 * @pid: pid of the process
4804 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4805 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4806 */
5add95d4
HC
4807SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4808 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4809{
4810 int ret;
f17c8607 4811 cpumask_var_t mask;
1da177e4 4812
84fba5ec 4813 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4814 return -EINVAL;
4815 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4816 return -EINVAL;
4817
f17c8607
RR
4818 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4819 return -ENOMEM;
1da177e4 4820
f17c8607
RR
4821 ret = sched_getaffinity(pid, mask);
4822 if (ret == 0) {
8bc037fb 4823 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4824
4825 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4826 ret = -EFAULT;
4827 else
cd3d8031 4828 ret = retlen;
f17c8607
RR
4829 }
4830 free_cpumask_var(mask);
1da177e4 4831
f17c8607 4832 return ret;
1da177e4
LT
4833}
4834
4835/**
4836 * sys_sched_yield - yield the current processor to other threads.
4837 *
dd41f596
IM
4838 * This function yields the current CPU to other tasks. If there are no
4839 * other threads running on this CPU then this function will return.
1da177e4 4840 */
5add95d4 4841SYSCALL_DEFINE0(sched_yield)
1da177e4 4842{
70b97a7f 4843 struct rq *rq = this_rq_lock();
1da177e4 4844
2d72376b 4845 schedstat_inc(rq, yld_count);
4530d7ab 4846 current->sched_class->yield_task(rq);
1da177e4
LT
4847
4848 /*
4849 * Since we are going to call schedule() anyway, there's
4850 * no need to preempt or enable interrupts:
4851 */
4852 __release(rq->lock);
8a25d5de 4853 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4854 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4855 preempt_enable_no_resched();
4856
4857 schedule();
4858
4859 return 0;
4860}
4861
d86ee480
PZ
4862static inline int should_resched(void)
4863{
4864 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4865}
4866
e7b38404 4867static void __cond_resched(void)
1da177e4 4868{
e7aaaa69
FW
4869 add_preempt_count(PREEMPT_ACTIVE);
4870 schedule();
4871 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4872}
4873
02b67cc3 4874int __sched _cond_resched(void)
1da177e4 4875{
d86ee480 4876 if (should_resched()) {
1da177e4
LT
4877 __cond_resched();
4878 return 1;
4879 }
4880 return 0;
4881}
02b67cc3 4882EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4883
4884/*
613afbf8 4885 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4886 * call schedule, and on return reacquire the lock.
4887 *
41a2d6cf 4888 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4889 * operations here to prevent schedule() from being called twice (once via
4890 * spin_unlock(), once by hand).
4891 */
613afbf8 4892int __cond_resched_lock(spinlock_t *lock)
1da177e4 4893{
d86ee480 4894 int resched = should_resched();
6df3cecb
JK
4895 int ret = 0;
4896
f607c668
PZ
4897 lockdep_assert_held(lock);
4898
95c354fe 4899 if (spin_needbreak(lock) || resched) {
1da177e4 4900 spin_unlock(lock);
d86ee480 4901 if (resched)
95c354fe
NP
4902 __cond_resched();
4903 else
4904 cpu_relax();
6df3cecb 4905 ret = 1;
1da177e4 4906 spin_lock(lock);
1da177e4 4907 }
6df3cecb 4908 return ret;
1da177e4 4909}
613afbf8 4910EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4911
613afbf8 4912int __sched __cond_resched_softirq(void)
1da177e4
LT
4913{
4914 BUG_ON(!in_softirq());
4915
d86ee480 4916 if (should_resched()) {
98d82567 4917 local_bh_enable();
1da177e4
LT
4918 __cond_resched();
4919 local_bh_disable();
4920 return 1;
4921 }
4922 return 0;
4923}
613afbf8 4924EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4925
1da177e4
LT
4926/**
4927 * yield - yield the current processor to other threads.
4928 *
72fd4a35 4929 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4930 * thread runnable and calls sys_sched_yield().
4931 */
4932void __sched yield(void)
4933{
4934 set_current_state(TASK_RUNNING);
4935 sys_sched_yield();
4936}
1da177e4
LT
4937EXPORT_SYMBOL(yield);
4938
4939/*
41a2d6cf 4940 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4941 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4942 */
4943void __sched io_schedule(void)
4944{
54d35f29 4945 struct rq *rq = raw_rq();
1da177e4 4946
0ff92245 4947 delayacct_blkio_start();
1da177e4 4948 atomic_inc(&rq->nr_iowait);
8f0dfc34 4949 current->in_iowait = 1;
1da177e4 4950 schedule();
8f0dfc34 4951 current->in_iowait = 0;
1da177e4 4952 atomic_dec(&rq->nr_iowait);
0ff92245 4953 delayacct_blkio_end();
1da177e4 4954}
1da177e4
LT
4955EXPORT_SYMBOL(io_schedule);
4956
4957long __sched io_schedule_timeout(long timeout)
4958{
54d35f29 4959 struct rq *rq = raw_rq();
1da177e4
LT
4960 long ret;
4961
0ff92245 4962 delayacct_blkio_start();
1da177e4 4963 atomic_inc(&rq->nr_iowait);
8f0dfc34 4964 current->in_iowait = 1;
1da177e4 4965 ret = schedule_timeout(timeout);
8f0dfc34 4966 current->in_iowait = 0;
1da177e4 4967 atomic_dec(&rq->nr_iowait);
0ff92245 4968 delayacct_blkio_end();
1da177e4
LT
4969 return ret;
4970}
4971
4972/**
4973 * sys_sched_get_priority_max - return maximum RT priority.
4974 * @policy: scheduling class.
4975 *
4976 * this syscall returns the maximum rt_priority that can be used
4977 * by a given scheduling class.
4978 */
5add95d4 4979SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4980{
4981 int ret = -EINVAL;
4982
4983 switch (policy) {
4984 case SCHED_FIFO:
4985 case SCHED_RR:
4986 ret = MAX_USER_RT_PRIO-1;
4987 break;
4988 case SCHED_NORMAL:
b0a9499c 4989 case SCHED_BATCH:
dd41f596 4990 case SCHED_IDLE:
1da177e4
LT
4991 ret = 0;
4992 break;
4993 }
4994 return ret;
4995}
4996
4997/**
4998 * sys_sched_get_priority_min - return minimum RT priority.
4999 * @policy: scheduling class.
5000 *
5001 * this syscall returns the minimum rt_priority that can be used
5002 * by a given scheduling class.
5003 */
5add95d4 5004SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5005{
5006 int ret = -EINVAL;
5007
5008 switch (policy) {
5009 case SCHED_FIFO:
5010 case SCHED_RR:
5011 ret = 1;
5012 break;
5013 case SCHED_NORMAL:
b0a9499c 5014 case SCHED_BATCH:
dd41f596 5015 case SCHED_IDLE:
1da177e4
LT
5016 ret = 0;
5017 }
5018 return ret;
5019}
5020
5021/**
5022 * sys_sched_rr_get_interval - return the default timeslice of a process.
5023 * @pid: pid of the process.
5024 * @interval: userspace pointer to the timeslice value.
5025 *
5026 * this syscall writes the default timeslice value of a given process
5027 * into the user-space timespec buffer. A value of '0' means infinity.
5028 */
17da2bd9 5029SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5030 struct timespec __user *, interval)
1da177e4 5031{
36c8b586 5032 struct task_struct *p;
a4ec24b4 5033 unsigned int time_slice;
dba091b9
TG
5034 unsigned long flags;
5035 struct rq *rq;
3a5c359a 5036 int retval;
1da177e4 5037 struct timespec t;
1da177e4
LT
5038
5039 if (pid < 0)
3a5c359a 5040 return -EINVAL;
1da177e4
LT
5041
5042 retval = -ESRCH;
1a551ae7 5043 rcu_read_lock();
1da177e4
LT
5044 p = find_process_by_pid(pid);
5045 if (!p)
5046 goto out_unlock;
5047
5048 retval = security_task_getscheduler(p);
5049 if (retval)
5050 goto out_unlock;
5051
dba091b9
TG
5052 rq = task_rq_lock(p, &flags);
5053 time_slice = p->sched_class->get_rr_interval(rq, p);
5054 task_rq_unlock(rq, &flags);
a4ec24b4 5055
1a551ae7 5056 rcu_read_unlock();
a4ec24b4 5057 jiffies_to_timespec(time_slice, &t);
1da177e4 5058 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5059 return retval;
3a5c359a 5060
1da177e4 5061out_unlock:
1a551ae7 5062 rcu_read_unlock();
1da177e4
LT
5063 return retval;
5064}
5065
7c731e0a 5066static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5067
82a1fcb9 5068void sched_show_task(struct task_struct *p)
1da177e4 5069{
1da177e4 5070 unsigned long free = 0;
36c8b586 5071 unsigned state;
1da177e4 5072
1da177e4 5073 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5074 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5075 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5076#if BITS_PER_LONG == 32
1da177e4 5077 if (state == TASK_RUNNING)
3df0fc5b 5078 printk(KERN_CONT " running ");
1da177e4 5079 else
3df0fc5b 5080 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5081#else
5082 if (state == TASK_RUNNING)
3df0fc5b 5083 printk(KERN_CONT " running task ");
1da177e4 5084 else
3df0fc5b 5085 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5086#endif
5087#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5088 free = stack_not_used(p);
1da177e4 5089#endif
3df0fc5b 5090 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5091 task_pid_nr(p), task_pid_nr(p->real_parent),
5092 (unsigned long)task_thread_info(p)->flags);
1da177e4 5093
5fb5e6de 5094 show_stack(p, NULL);
1da177e4
LT
5095}
5096
e59e2ae2 5097void show_state_filter(unsigned long state_filter)
1da177e4 5098{
36c8b586 5099 struct task_struct *g, *p;
1da177e4 5100
4bd77321 5101#if BITS_PER_LONG == 32
3df0fc5b
PZ
5102 printk(KERN_INFO
5103 " task PC stack pid father\n");
1da177e4 5104#else
3df0fc5b
PZ
5105 printk(KERN_INFO
5106 " task PC stack pid father\n");
1da177e4
LT
5107#endif
5108 read_lock(&tasklist_lock);
5109 do_each_thread(g, p) {
5110 /*
5111 * reset the NMI-timeout, listing all files on a slow
5112 * console might take alot of time:
5113 */
5114 touch_nmi_watchdog();
39bc89fd 5115 if (!state_filter || (p->state & state_filter))
82a1fcb9 5116 sched_show_task(p);
1da177e4
LT
5117 } while_each_thread(g, p);
5118
04c9167f
JF
5119 touch_all_softlockup_watchdogs();
5120
dd41f596
IM
5121#ifdef CONFIG_SCHED_DEBUG
5122 sysrq_sched_debug_show();
5123#endif
1da177e4 5124 read_unlock(&tasklist_lock);
e59e2ae2
IM
5125 /*
5126 * Only show locks if all tasks are dumped:
5127 */
93335a21 5128 if (!state_filter)
e59e2ae2 5129 debug_show_all_locks();
1da177e4
LT
5130}
5131
1df21055
IM
5132void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5133{
dd41f596 5134 idle->sched_class = &idle_sched_class;
1df21055
IM
5135}
5136
f340c0d1
IM
5137/**
5138 * init_idle - set up an idle thread for a given CPU
5139 * @idle: task in question
5140 * @cpu: cpu the idle task belongs to
5141 *
5142 * NOTE: this function does not set the idle thread's NEED_RESCHED
5143 * flag, to make booting more robust.
5144 */
5c1e1767 5145void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5146{
70b97a7f 5147 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5148 unsigned long flags;
5149
05fa785c 5150 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5151
dd41f596 5152 __sched_fork(idle);
06b83b5f 5153 idle->state = TASK_RUNNING;
dd41f596
IM
5154 idle->se.exec_start = sched_clock();
5155
96f874e2 5156 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5157 __set_task_cpu(idle, cpu);
1da177e4 5158
1da177e4 5159 rq->curr = rq->idle = idle;
4866cde0
NP
5160#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5161 idle->oncpu = 1;
5162#endif
05fa785c 5163 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5164
5165 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5166#if defined(CONFIG_PREEMPT)
5167 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5168#else
a1261f54 5169 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5170#endif
dd41f596
IM
5171 /*
5172 * The idle tasks have their own, simple scheduling class:
5173 */
5174 idle->sched_class = &idle_sched_class;
fb52607a 5175 ftrace_graph_init_task(idle);
1da177e4
LT
5176}
5177
5178/*
5179 * In a system that switches off the HZ timer nohz_cpu_mask
5180 * indicates which cpus entered this state. This is used
5181 * in the rcu update to wait only for active cpus. For system
5182 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5183 * always be CPU_BITS_NONE.
1da177e4 5184 */
6a7b3dc3 5185cpumask_var_t nohz_cpu_mask;
1da177e4 5186
19978ca6
IM
5187/*
5188 * Increase the granularity value when there are more CPUs,
5189 * because with more CPUs the 'effective latency' as visible
5190 * to users decreases. But the relationship is not linear,
5191 * so pick a second-best guess by going with the log2 of the
5192 * number of CPUs.
5193 *
5194 * This idea comes from the SD scheduler of Con Kolivas:
5195 */
acb4a848 5196static int get_update_sysctl_factor(void)
19978ca6 5197{
4ca3ef71 5198 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5199 unsigned int factor;
5200
5201 switch (sysctl_sched_tunable_scaling) {
5202 case SCHED_TUNABLESCALING_NONE:
5203 factor = 1;
5204 break;
5205 case SCHED_TUNABLESCALING_LINEAR:
5206 factor = cpus;
5207 break;
5208 case SCHED_TUNABLESCALING_LOG:
5209 default:
5210 factor = 1 + ilog2(cpus);
5211 break;
5212 }
19978ca6 5213
acb4a848
CE
5214 return factor;
5215}
19978ca6 5216
acb4a848
CE
5217static void update_sysctl(void)
5218{
5219 unsigned int factor = get_update_sysctl_factor();
19978ca6 5220
0bcdcf28
CE
5221#define SET_SYSCTL(name) \
5222 (sysctl_##name = (factor) * normalized_sysctl_##name)
5223 SET_SYSCTL(sched_min_granularity);
5224 SET_SYSCTL(sched_latency);
5225 SET_SYSCTL(sched_wakeup_granularity);
5226 SET_SYSCTL(sched_shares_ratelimit);
5227#undef SET_SYSCTL
5228}
55cd5340 5229
0bcdcf28
CE
5230static inline void sched_init_granularity(void)
5231{
5232 update_sysctl();
19978ca6
IM
5233}
5234
1da177e4
LT
5235#ifdef CONFIG_SMP
5236/*
5237 * This is how migration works:
5238 *
70b97a7f 5239 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5240 * runqueue and wake up that CPU's migration thread.
5241 * 2) we down() the locked semaphore => thread blocks.
5242 * 3) migration thread wakes up (implicitly it forces the migrated
5243 * thread off the CPU)
5244 * 4) it gets the migration request and checks whether the migrated
5245 * task is still in the wrong runqueue.
5246 * 5) if it's in the wrong runqueue then the migration thread removes
5247 * it and puts it into the right queue.
5248 * 6) migration thread up()s the semaphore.
5249 * 7) we wake up and the migration is done.
5250 */
5251
5252/*
5253 * Change a given task's CPU affinity. Migrate the thread to a
5254 * proper CPU and schedule it away if the CPU it's executing on
5255 * is removed from the allowed bitmask.
5256 *
5257 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5258 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5259 * call is not atomic; no spinlocks may be held.
5260 */
96f874e2 5261int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5262{
70b97a7f 5263 struct migration_req req;
1da177e4 5264 unsigned long flags;
70b97a7f 5265 struct rq *rq;
48f24c4d 5266 int ret = 0;
1da177e4 5267
65cc8e48
PZ
5268 /*
5269 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5270 * drop the rq->lock and still rely on ->cpus_allowed.
5271 */
5272again:
5273 while (task_is_waking(p))
5274 cpu_relax();
1da177e4 5275 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5276 if (task_is_waking(p)) {
5277 task_rq_unlock(rq, &flags);
5278 goto again;
5279 }
e2912009 5280
6ad4c188 5281 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5282 ret = -EINVAL;
5283 goto out;
5284 }
5285
9985b0ba 5286 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5287 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5288 ret = -EINVAL;
5289 goto out;
5290 }
5291
73fe6aae 5292 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5293 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5294 else {
96f874e2
RR
5295 cpumask_copy(&p->cpus_allowed, new_mask);
5296 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5297 }
5298
1da177e4 5299 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5300 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5301 goto out;
5302
6ad4c188 5303 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5304 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5305 struct task_struct *mt = rq->migration_thread;
5306
5307 get_task_struct(mt);
1da177e4 5308 task_rq_unlock(rq, &flags);
47a70985 5309 wake_up_process(mt);
693525e3 5310 put_task_struct(mt);
1da177e4
LT
5311 wait_for_completion(&req.done);
5312 tlb_migrate_finish(p->mm);
5313 return 0;
5314 }
5315out:
5316 task_rq_unlock(rq, &flags);
48f24c4d 5317
1da177e4
LT
5318 return ret;
5319}
cd8ba7cd 5320EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5321
5322/*
41a2d6cf 5323 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5324 * this because either it can't run here any more (set_cpus_allowed()
5325 * away from this CPU, or CPU going down), or because we're
5326 * attempting to rebalance this task on exec (sched_exec).
5327 *
5328 * So we race with normal scheduler movements, but that's OK, as long
5329 * as the task is no longer on this CPU.
efc30814
KK
5330 *
5331 * Returns non-zero if task was successfully migrated.
1da177e4 5332 */
efc30814 5333static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5334{
70b97a7f 5335 struct rq *rq_dest, *rq_src;
e2912009 5336 int ret = 0;
1da177e4 5337
e761b772 5338 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5339 return ret;
1da177e4
LT
5340
5341 rq_src = cpu_rq(src_cpu);
5342 rq_dest = cpu_rq(dest_cpu);
5343
5344 double_rq_lock(rq_src, rq_dest);
5345 /* Already moved. */
5346 if (task_cpu(p) != src_cpu)
b1e38734 5347 goto done;
1da177e4 5348 /* Affinity changed (again). */
96f874e2 5349 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5350 goto fail;
1da177e4 5351
e2912009
PZ
5352 /*
5353 * If we're not on a rq, the next wake-up will ensure we're
5354 * placed properly.
5355 */
5356 if (p->se.on_rq) {
2e1cb74a 5357 deactivate_task(rq_src, p, 0);
e2912009 5358 set_task_cpu(p, dest_cpu);
dd41f596 5359 activate_task(rq_dest, p, 0);
15afe09b 5360 check_preempt_curr(rq_dest, p, 0);
1da177e4 5361 }
b1e38734 5362done:
efc30814 5363 ret = 1;
b1e38734 5364fail:
1da177e4 5365 double_rq_unlock(rq_src, rq_dest);
efc30814 5366 return ret;
1da177e4
LT
5367}
5368
03b042bf
PM
5369#define RCU_MIGRATION_IDLE 0
5370#define RCU_MIGRATION_NEED_QS 1
5371#define RCU_MIGRATION_GOT_QS 2
5372#define RCU_MIGRATION_MUST_SYNC 3
5373
1da177e4
LT
5374/*
5375 * migration_thread - this is a highprio system thread that performs
5376 * thread migration by bumping thread off CPU then 'pushing' onto
5377 * another runqueue.
5378 */
95cdf3b7 5379static int migration_thread(void *data)
1da177e4 5380{
03b042bf 5381 int badcpu;
1da177e4 5382 int cpu = (long)data;
70b97a7f 5383 struct rq *rq;
1da177e4
LT
5384
5385 rq = cpu_rq(cpu);
5386 BUG_ON(rq->migration_thread != current);
5387
5388 set_current_state(TASK_INTERRUPTIBLE);
5389 while (!kthread_should_stop()) {
70b97a7f 5390 struct migration_req *req;
1da177e4 5391 struct list_head *head;
1da177e4 5392
05fa785c 5393 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5394
5395 if (cpu_is_offline(cpu)) {
05fa785c 5396 raw_spin_unlock_irq(&rq->lock);
371cbb38 5397 break;
1da177e4
LT
5398 }
5399
5400 if (rq->active_balance) {
5401 active_load_balance(rq, cpu);
5402 rq->active_balance = 0;
5403 }
5404
5405 head = &rq->migration_queue;
5406
5407 if (list_empty(head)) {
05fa785c 5408 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5409 schedule();
5410 set_current_state(TASK_INTERRUPTIBLE);
5411 continue;
5412 }
70b97a7f 5413 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5414 list_del_init(head->next);
5415
03b042bf 5416 if (req->task != NULL) {
05fa785c 5417 raw_spin_unlock(&rq->lock);
03b042bf
PM
5418 __migrate_task(req->task, cpu, req->dest_cpu);
5419 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5420 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5421 raw_spin_unlock(&rq->lock);
03b042bf
PM
5422 } else {
5423 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5424 raw_spin_unlock(&rq->lock);
03b042bf
PM
5425 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5426 }
674311d5 5427 local_irq_enable();
1da177e4
LT
5428
5429 complete(&req->done);
5430 }
5431 __set_current_state(TASK_RUNNING);
1da177e4 5432
1da177e4
LT
5433 return 0;
5434}
5435
5436#ifdef CONFIG_HOTPLUG_CPU
054b9108 5437/*
3a4fa0a2 5438 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5439 */
6a1bdc1b 5440void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5441{
1445c08d
ON
5442 struct rq *rq = cpu_rq(dead_cpu);
5443 int needs_cpu, uninitialized_var(dest_cpu);
5444 unsigned long flags;
c1804d54 5445
1445c08d
ON
5446 local_irq_save(flags);
5447
5448 raw_spin_lock(&rq->lock);
5449 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5450 if (needs_cpu)
5451 dest_cpu = select_fallback_rq(dead_cpu, p);
5452 raw_spin_unlock(&rq->lock);
c1804d54
ON
5453 /*
5454 * It can only fail if we race with set_cpus_allowed(),
5455 * in the racer should migrate the task anyway.
5456 */
1445c08d 5457 if (needs_cpu)
c1804d54 5458 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5459 local_irq_restore(flags);
1da177e4
LT
5460}
5461
5462/*
5463 * While a dead CPU has no uninterruptible tasks queued at this point,
5464 * it might still have a nonzero ->nr_uninterruptible counter, because
5465 * for performance reasons the counter is not stricly tracking tasks to
5466 * their home CPUs. So we just add the counter to another CPU's counter,
5467 * to keep the global sum constant after CPU-down:
5468 */
70b97a7f 5469static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5470{
6ad4c188 5471 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5472 unsigned long flags;
5473
5474 local_irq_save(flags);
5475 double_rq_lock(rq_src, rq_dest);
5476 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5477 rq_src->nr_uninterruptible = 0;
5478 double_rq_unlock(rq_src, rq_dest);
5479 local_irq_restore(flags);
5480}
5481
5482/* Run through task list and migrate tasks from the dead cpu. */
5483static void migrate_live_tasks(int src_cpu)
5484{
48f24c4d 5485 struct task_struct *p, *t;
1da177e4 5486
f7b4cddc 5487 read_lock(&tasklist_lock);
1da177e4 5488
48f24c4d
IM
5489 do_each_thread(t, p) {
5490 if (p == current)
1da177e4
LT
5491 continue;
5492
48f24c4d
IM
5493 if (task_cpu(p) == src_cpu)
5494 move_task_off_dead_cpu(src_cpu, p);
5495 } while_each_thread(t, p);
1da177e4 5496
f7b4cddc 5497 read_unlock(&tasklist_lock);
1da177e4
LT
5498}
5499
dd41f596
IM
5500/*
5501 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5502 * It does so by boosting its priority to highest possible.
5503 * Used by CPU offline code.
1da177e4
LT
5504 */
5505void sched_idle_next(void)
5506{
48f24c4d 5507 int this_cpu = smp_processor_id();
70b97a7f 5508 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5509 struct task_struct *p = rq->idle;
5510 unsigned long flags;
5511
5512 /* cpu has to be offline */
48f24c4d 5513 BUG_ON(cpu_online(this_cpu));
1da177e4 5514
48f24c4d
IM
5515 /*
5516 * Strictly not necessary since rest of the CPUs are stopped by now
5517 * and interrupts disabled on the current cpu.
1da177e4 5518 */
05fa785c 5519 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5520
dd41f596 5521 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5522
94bc9a7b 5523 activate_task(rq, p, 0);
1da177e4 5524
05fa785c 5525 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5526}
5527
48f24c4d
IM
5528/*
5529 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5530 * offline.
5531 */
5532void idle_task_exit(void)
5533{
5534 struct mm_struct *mm = current->active_mm;
5535
5536 BUG_ON(cpu_online(smp_processor_id()));
5537
5538 if (mm != &init_mm)
5539 switch_mm(mm, &init_mm, current);
5540 mmdrop(mm);
5541}
5542
054b9108 5543/* called under rq->lock with disabled interrupts */
36c8b586 5544static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5545{
70b97a7f 5546 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5547
5548 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5549 BUG_ON(!p->exit_state);
1da177e4
LT
5550
5551 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5552 BUG_ON(p->state == TASK_DEAD);
1da177e4 5553
48f24c4d 5554 get_task_struct(p);
1da177e4
LT
5555
5556 /*
5557 * Drop lock around migration; if someone else moves it,
41a2d6cf 5558 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5559 * fine.
5560 */
05fa785c 5561 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5562 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5563 raw_spin_lock_irq(&rq->lock);
1da177e4 5564
48f24c4d 5565 put_task_struct(p);
1da177e4
LT
5566}
5567
5568/* release_task() removes task from tasklist, so we won't find dead tasks. */
5569static void migrate_dead_tasks(unsigned int dead_cpu)
5570{
70b97a7f 5571 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5572 struct task_struct *next;
48f24c4d 5573
dd41f596
IM
5574 for ( ; ; ) {
5575 if (!rq->nr_running)
5576 break;
b67802ea 5577 next = pick_next_task(rq);
dd41f596
IM
5578 if (!next)
5579 break;
79c53799 5580 next->sched_class->put_prev_task(rq, next);
dd41f596 5581 migrate_dead(dead_cpu, next);
e692ab53 5582
1da177e4
LT
5583 }
5584}
dce48a84
TG
5585
5586/*
5587 * remove the tasks which were accounted by rq from calc_load_tasks.
5588 */
5589static void calc_global_load_remove(struct rq *rq)
5590{
5591 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5592 rq->calc_load_active = 0;
dce48a84 5593}
1da177e4
LT
5594#endif /* CONFIG_HOTPLUG_CPU */
5595
e692ab53
NP
5596#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5597
5598static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5599 {
5600 .procname = "sched_domain",
c57baf1e 5601 .mode = 0555,
e0361851 5602 },
56992309 5603 {}
e692ab53
NP
5604};
5605
5606static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5607 {
5608 .procname = "kernel",
c57baf1e 5609 .mode = 0555,
e0361851
AD
5610 .child = sd_ctl_dir,
5611 },
56992309 5612 {}
e692ab53
NP
5613};
5614
5615static struct ctl_table *sd_alloc_ctl_entry(int n)
5616{
5617 struct ctl_table *entry =
5cf9f062 5618 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5619
e692ab53
NP
5620 return entry;
5621}
5622
6382bc90
MM
5623static void sd_free_ctl_entry(struct ctl_table **tablep)
5624{
cd790076 5625 struct ctl_table *entry;
6382bc90 5626
cd790076
MM
5627 /*
5628 * In the intermediate directories, both the child directory and
5629 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5630 * will always be set. In the lowest directory the names are
cd790076
MM
5631 * static strings and all have proc handlers.
5632 */
5633 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5634 if (entry->child)
5635 sd_free_ctl_entry(&entry->child);
cd790076
MM
5636 if (entry->proc_handler == NULL)
5637 kfree(entry->procname);
5638 }
6382bc90
MM
5639
5640 kfree(*tablep);
5641 *tablep = NULL;
5642}
5643
e692ab53 5644static void
e0361851 5645set_table_entry(struct ctl_table *entry,
e692ab53
NP
5646 const char *procname, void *data, int maxlen,
5647 mode_t mode, proc_handler *proc_handler)
5648{
e692ab53
NP
5649 entry->procname = procname;
5650 entry->data = data;
5651 entry->maxlen = maxlen;
5652 entry->mode = mode;
5653 entry->proc_handler = proc_handler;
5654}
5655
5656static struct ctl_table *
5657sd_alloc_ctl_domain_table(struct sched_domain *sd)
5658{
a5d8c348 5659 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5660
ad1cdc1d
MM
5661 if (table == NULL)
5662 return NULL;
5663
e0361851 5664 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5665 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5666 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5667 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5668 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5669 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5670 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5671 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5672 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5673 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5674 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5675 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5676 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5677 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5678 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5679 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5680 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5681 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5682 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5683 &sd->cache_nice_tries,
5684 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5685 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5686 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5687 set_table_entry(&table[11], "name", sd->name,
5688 CORENAME_MAX_SIZE, 0444, proc_dostring);
5689 /* &table[12] is terminator */
e692ab53
NP
5690
5691 return table;
5692}
5693
9a4e7159 5694static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5695{
5696 struct ctl_table *entry, *table;
5697 struct sched_domain *sd;
5698 int domain_num = 0, i;
5699 char buf[32];
5700
5701 for_each_domain(cpu, sd)
5702 domain_num++;
5703 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5704 if (table == NULL)
5705 return NULL;
e692ab53
NP
5706
5707 i = 0;
5708 for_each_domain(cpu, sd) {
5709 snprintf(buf, 32, "domain%d", i);
e692ab53 5710 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5711 entry->mode = 0555;
e692ab53
NP
5712 entry->child = sd_alloc_ctl_domain_table(sd);
5713 entry++;
5714 i++;
5715 }
5716 return table;
5717}
5718
5719static struct ctl_table_header *sd_sysctl_header;
6382bc90 5720static void register_sched_domain_sysctl(void)
e692ab53 5721{
6ad4c188 5722 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5723 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5724 char buf[32];
5725
7378547f
MM
5726 WARN_ON(sd_ctl_dir[0].child);
5727 sd_ctl_dir[0].child = entry;
5728
ad1cdc1d
MM
5729 if (entry == NULL)
5730 return;
5731
6ad4c188 5732 for_each_possible_cpu(i) {
e692ab53 5733 snprintf(buf, 32, "cpu%d", i);
e692ab53 5734 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5735 entry->mode = 0555;
e692ab53 5736 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5737 entry++;
e692ab53 5738 }
7378547f
MM
5739
5740 WARN_ON(sd_sysctl_header);
e692ab53
NP
5741 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5742}
6382bc90 5743
7378547f 5744/* may be called multiple times per register */
6382bc90
MM
5745static void unregister_sched_domain_sysctl(void)
5746{
7378547f
MM
5747 if (sd_sysctl_header)
5748 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5749 sd_sysctl_header = NULL;
7378547f
MM
5750 if (sd_ctl_dir[0].child)
5751 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5752}
e692ab53 5753#else
6382bc90
MM
5754static void register_sched_domain_sysctl(void)
5755{
5756}
5757static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5758{
5759}
5760#endif
5761
1f11eb6a
GH
5762static void set_rq_online(struct rq *rq)
5763{
5764 if (!rq->online) {
5765 const struct sched_class *class;
5766
c6c4927b 5767 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5768 rq->online = 1;
5769
5770 for_each_class(class) {
5771 if (class->rq_online)
5772 class->rq_online(rq);
5773 }
5774 }
5775}
5776
5777static void set_rq_offline(struct rq *rq)
5778{
5779 if (rq->online) {
5780 const struct sched_class *class;
5781
5782 for_each_class(class) {
5783 if (class->rq_offline)
5784 class->rq_offline(rq);
5785 }
5786
c6c4927b 5787 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5788 rq->online = 0;
5789 }
5790}
5791
1da177e4
LT
5792/*
5793 * migration_call - callback that gets triggered when a CPU is added.
5794 * Here we can start up the necessary migration thread for the new CPU.
5795 */
48f24c4d
IM
5796static int __cpuinit
5797migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5798{
1da177e4 5799 struct task_struct *p;
48f24c4d 5800 int cpu = (long)hcpu;
1da177e4 5801 unsigned long flags;
70b97a7f 5802 struct rq *rq;
1da177e4
LT
5803
5804 switch (action) {
5be9361c 5805
1da177e4 5806 case CPU_UP_PREPARE:
8bb78442 5807 case CPU_UP_PREPARE_FROZEN:
dd41f596 5808 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5809 if (IS_ERR(p))
5810 return NOTIFY_BAD;
1da177e4
LT
5811 kthread_bind(p, cpu);
5812 /* Must be high prio: stop_machine expects to yield to it. */
5813 rq = task_rq_lock(p, &flags);
dd41f596 5814 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5815 task_rq_unlock(rq, &flags);
371cbb38 5816 get_task_struct(p);
1da177e4 5817 cpu_rq(cpu)->migration_thread = p;
a468d389 5818 rq->calc_load_update = calc_load_update;
1da177e4 5819 break;
48f24c4d 5820
1da177e4 5821 case CPU_ONLINE:
8bb78442 5822 case CPU_ONLINE_FROZEN:
3a4fa0a2 5823 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5824 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5825
5826 /* Update our root-domain */
5827 rq = cpu_rq(cpu);
05fa785c 5828 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5829 if (rq->rd) {
c6c4927b 5830 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5831
5832 set_rq_online(rq);
1f94ef59 5833 }
05fa785c 5834 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5835 break;
48f24c4d 5836
1da177e4
LT
5837#ifdef CONFIG_HOTPLUG_CPU
5838 case CPU_UP_CANCELED:
8bb78442 5839 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5840 if (!cpu_rq(cpu)->migration_thread)
5841 break;
41a2d6cf 5842 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5843 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5844 cpumask_any(cpu_online_mask));
1da177e4 5845 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5846 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5847 cpu_rq(cpu)->migration_thread = NULL;
5848 break;
48f24c4d 5849
1da177e4 5850 case CPU_DEAD:
8bb78442 5851 case CPU_DEAD_FROZEN:
1da177e4
LT
5852 migrate_live_tasks(cpu);
5853 rq = cpu_rq(cpu);
5854 kthread_stop(rq->migration_thread);
371cbb38 5855 put_task_struct(rq->migration_thread);
1da177e4
LT
5856 rq->migration_thread = NULL;
5857 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5858 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5859 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5860 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5861 rq->idle->sched_class = &idle_sched_class;
1da177e4 5862 migrate_dead_tasks(cpu);
05fa785c 5863 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5864 migrate_nr_uninterruptible(rq);
5865 BUG_ON(rq->nr_running != 0);
dce48a84 5866 calc_global_load_remove(rq);
41a2d6cf
IM
5867 /*
5868 * No need to migrate the tasks: it was best-effort if
5869 * they didn't take sched_hotcpu_mutex. Just wake up
5870 * the requestors.
5871 */
05fa785c 5872 raw_spin_lock_irq(&rq->lock);
1da177e4 5873 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5874 struct migration_req *req;
5875
1da177e4 5876 req = list_entry(rq->migration_queue.next,
70b97a7f 5877 struct migration_req, list);
1da177e4 5878 list_del_init(&req->list);
05fa785c 5879 raw_spin_unlock_irq(&rq->lock);
1da177e4 5880 complete(&req->done);
05fa785c 5881 raw_spin_lock_irq(&rq->lock);
1da177e4 5882 }
05fa785c 5883 raw_spin_unlock_irq(&rq->lock);
1da177e4 5884 break;
57d885fe 5885
08f503b0
GH
5886 case CPU_DYING:
5887 case CPU_DYING_FROZEN:
57d885fe
GH
5888 /* Update our root-domain */
5889 rq = cpu_rq(cpu);
05fa785c 5890 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5891 if (rq->rd) {
c6c4927b 5892 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5893 set_rq_offline(rq);
57d885fe 5894 }
05fa785c 5895 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5896 break;
1da177e4
LT
5897#endif
5898 }
5899 return NOTIFY_OK;
5900}
5901
f38b0820
PM
5902/*
5903 * Register at high priority so that task migration (migrate_all_tasks)
5904 * happens before everything else. This has to be lower priority than
cdd6c482 5905 * the notifier in the perf_event subsystem, though.
1da177e4 5906 */
26c2143b 5907static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5908 .notifier_call = migration_call,
5909 .priority = 10
5910};
5911
7babe8db 5912static int __init migration_init(void)
1da177e4
LT
5913{
5914 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5915 int err;
48f24c4d
IM
5916
5917 /* Start one for the boot CPU: */
07dccf33
AM
5918 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5919 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5920 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5921 register_cpu_notifier(&migration_notifier);
7babe8db 5922
a004cd42 5923 return 0;
1da177e4 5924}
7babe8db 5925early_initcall(migration_init);
1da177e4
LT
5926#endif
5927
5928#ifdef CONFIG_SMP
476f3534 5929
3e9830dc 5930#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5931
f6630114
MT
5932static __read_mostly int sched_domain_debug_enabled;
5933
5934static int __init sched_domain_debug_setup(char *str)
5935{
5936 sched_domain_debug_enabled = 1;
5937
5938 return 0;
5939}
5940early_param("sched_debug", sched_domain_debug_setup);
5941
7c16ec58 5942static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5943 struct cpumask *groupmask)
1da177e4 5944{
4dcf6aff 5945 struct sched_group *group = sd->groups;
434d53b0 5946 char str[256];
1da177e4 5947
968ea6d8 5948 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5949 cpumask_clear(groupmask);
4dcf6aff
IM
5950
5951 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5952
5953 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5954 printk("does not load-balance\n");
4dcf6aff 5955 if (sd->parent)
3df0fc5b
PZ
5956 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5957 " has parent");
4dcf6aff 5958 return -1;
41c7ce9a
NP
5959 }
5960
3df0fc5b 5961 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5962
758b2cdc 5963 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5964 printk(KERN_ERR "ERROR: domain->span does not contain "
5965 "CPU%d\n", cpu);
4dcf6aff 5966 }
758b2cdc 5967 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5968 printk(KERN_ERR "ERROR: domain->groups does not contain"
5969 " CPU%d\n", cpu);
4dcf6aff 5970 }
1da177e4 5971
4dcf6aff 5972 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5973 do {
4dcf6aff 5974 if (!group) {
3df0fc5b
PZ
5975 printk("\n");
5976 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5977 break;
5978 }
5979
18a3885f 5980 if (!group->cpu_power) {
3df0fc5b
PZ
5981 printk(KERN_CONT "\n");
5982 printk(KERN_ERR "ERROR: domain->cpu_power not "
5983 "set\n");
4dcf6aff
IM
5984 break;
5985 }
1da177e4 5986
758b2cdc 5987 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5988 printk(KERN_CONT "\n");
5989 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5990 break;
5991 }
1da177e4 5992
758b2cdc 5993 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5994 printk(KERN_CONT "\n");
5995 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5996 break;
5997 }
1da177e4 5998
758b2cdc 5999 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6000
968ea6d8 6001 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6002
3df0fc5b 6003 printk(KERN_CONT " %s", str);
18a3885f 6004 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6005 printk(KERN_CONT " (cpu_power = %d)",
6006 group->cpu_power);
381512cf 6007 }
1da177e4 6008
4dcf6aff
IM
6009 group = group->next;
6010 } while (group != sd->groups);
3df0fc5b 6011 printk(KERN_CONT "\n");
1da177e4 6012
758b2cdc 6013 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6014 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6015
758b2cdc
RR
6016 if (sd->parent &&
6017 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6018 printk(KERN_ERR "ERROR: parent span is not a superset "
6019 "of domain->span\n");
4dcf6aff
IM
6020 return 0;
6021}
1da177e4 6022
4dcf6aff
IM
6023static void sched_domain_debug(struct sched_domain *sd, int cpu)
6024{
d5dd3db1 6025 cpumask_var_t groupmask;
4dcf6aff 6026 int level = 0;
1da177e4 6027
f6630114
MT
6028 if (!sched_domain_debug_enabled)
6029 return;
6030
4dcf6aff
IM
6031 if (!sd) {
6032 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6033 return;
6034 }
1da177e4 6035
4dcf6aff
IM
6036 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6037
d5dd3db1 6038 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6039 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6040 return;
6041 }
6042
4dcf6aff 6043 for (;;) {
7c16ec58 6044 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6045 break;
1da177e4
LT
6046 level++;
6047 sd = sd->parent;
33859f7f 6048 if (!sd)
4dcf6aff
IM
6049 break;
6050 }
d5dd3db1 6051 free_cpumask_var(groupmask);
1da177e4 6052}
6d6bc0ad 6053#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6054# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6055#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6056
1a20ff27 6057static int sd_degenerate(struct sched_domain *sd)
245af2c7 6058{
758b2cdc 6059 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6060 return 1;
6061
6062 /* Following flags need at least 2 groups */
6063 if (sd->flags & (SD_LOAD_BALANCE |
6064 SD_BALANCE_NEWIDLE |
6065 SD_BALANCE_FORK |
89c4710e
SS
6066 SD_BALANCE_EXEC |
6067 SD_SHARE_CPUPOWER |
6068 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6069 if (sd->groups != sd->groups->next)
6070 return 0;
6071 }
6072
6073 /* Following flags don't use groups */
c88d5910 6074 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6075 return 0;
6076
6077 return 1;
6078}
6079
48f24c4d
IM
6080static int
6081sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6082{
6083 unsigned long cflags = sd->flags, pflags = parent->flags;
6084
6085 if (sd_degenerate(parent))
6086 return 1;
6087
758b2cdc 6088 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6089 return 0;
6090
245af2c7
SS
6091 /* Flags needing groups don't count if only 1 group in parent */
6092 if (parent->groups == parent->groups->next) {
6093 pflags &= ~(SD_LOAD_BALANCE |
6094 SD_BALANCE_NEWIDLE |
6095 SD_BALANCE_FORK |
89c4710e
SS
6096 SD_BALANCE_EXEC |
6097 SD_SHARE_CPUPOWER |
6098 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6099 if (nr_node_ids == 1)
6100 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6101 }
6102 if (~cflags & pflags)
6103 return 0;
6104
6105 return 1;
6106}
6107
c6c4927b
RR
6108static void free_rootdomain(struct root_domain *rd)
6109{
047106ad
PZ
6110 synchronize_sched();
6111
68e74568
RR
6112 cpupri_cleanup(&rd->cpupri);
6113
c6c4927b
RR
6114 free_cpumask_var(rd->rto_mask);
6115 free_cpumask_var(rd->online);
6116 free_cpumask_var(rd->span);
6117 kfree(rd);
6118}
6119
57d885fe
GH
6120static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6121{
a0490fa3 6122 struct root_domain *old_rd = NULL;
57d885fe 6123 unsigned long flags;
57d885fe 6124
05fa785c 6125 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6126
6127 if (rq->rd) {
a0490fa3 6128 old_rd = rq->rd;
57d885fe 6129
c6c4927b 6130 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6131 set_rq_offline(rq);
57d885fe 6132
c6c4927b 6133 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6134
a0490fa3
IM
6135 /*
6136 * If we dont want to free the old_rt yet then
6137 * set old_rd to NULL to skip the freeing later
6138 * in this function:
6139 */
6140 if (!atomic_dec_and_test(&old_rd->refcount))
6141 old_rd = NULL;
57d885fe
GH
6142 }
6143
6144 atomic_inc(&rd->refcount);
6145 rq->rd = rd;
6146
c6c4927b 6147 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6148 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6149 set_rq_online(rq);
57d885fe 6150
05fa785c 6151 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6152
6153 if (old_rd)
6154 free_rootdomain(old_rd);
57d885fe
GH
6155}
6156
fd5e1b5d 6157static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6158{
36b7b6d4
PE
6159 gfp_t gfp = GFP_KERNEL;
6160
57d885fe
GH
6161 memset(rd, 0, sizeof(*rd));
6162
36b7b6d4
PE
6163 if (bootmem)
6164 gfp = GFP_NOWAIT;
c6c4927b 6165
36b7b6d4 6166 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6167 goto out;
36b7b6d4 6168 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6169 goto free_span;
36b7b6d4 6170 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6171 goto free_online;
6e0534f2 6172
0fb53029 6173 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6174 goto free_rto_mask;
c6c4927b 6175 return 0;
6e0534f2 6176
68e74568
RR
6177free_rto_mask:
6178 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6179free_online:
6180 free_cpumask_var(rd->online);
6181free_span:
6182 free_cpumask_var(rd->span);
0c910d28 6183out:
c6c4927b 6184 return -ENOMEM;
57d885fe
GH
6185}
6186
6187static void init_defrootdomain(void)
6188{
c6c4927b
RR
6189 init_rootdomain(&def_root_domain, true);
6190
57d885fe
GH
6191 atomic_set(&def_root_domain.refcount, 1);
6192}
6193
dc938520 6194static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6195{
6196 struct root_domain *rd;
6197
6198 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6199 if (!rd)
6200 return NULL;
6201
c6c4927b
RR
6202 if (init_rootdomain(rd, false) != 0) {
6203 kfree(rd);
6204 return NULL;
6205 }
57d885fe
GH
6206
6207 return rd;
6208}
6209
1da177e4 6210/*
0eab9146 6211 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6212 * hold the hotplug lock.
6213 */
0eab9146
IM
6214static void
6215cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6216{
70b97a7f 6217 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6218 struct sched_domain *tmp;
6219
6220 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6221 for (tmp = sd; tmp; ) {
245af2c7
SS
6222 struct sched_domain *parent = tmp->parent;
6223 if (!parent)
6224 break;
f29c9b1c 6225
1a848870 6226 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6227 tmp->parent = parent->parent;
1a848870
SS
6228 if (parent->parent)
6229 parent->parent->child = tmp;
f29c9b1c
LZ
6230 } else
6231 tmp = tmp->parent;
245af2c7
SS
6232 }
6233
1a848870 6234 if (sd && sd_degenerate(sd)) {
245af2c7 6235 sd = sd->parent;
1a848870
SS
6236 if (sd)
6237 sd->child = NULL;
6238 }
1da177e4
LT
6239
6240 sched_domain_debug(sd, cpu);
6241
57d885fe 6242 rq_attach_root(rq, rd);
674311d5 6243 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6244}
6245
6246/* cpus with isolated domains */
dcc30a35 6247static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6248
6249/* Setup the mask of cpus configured for isolated domains */
6250static int __init isolated_cpu_setup(char *str)
6251{
bdddd296 6252 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6253 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6254 return 1;
6255}
6256
8927f494 6257__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6258
6259/*
6711cab4
SS
6260 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6261 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6262 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6263 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6264 *
6265 * init_sched_build_groups will build a circular linked list of the groups
6266 * covered by the given span, and will set each group's ->cpumask correctly,
6267 * and ->cpu_power to 0.
6268 */
a616058b 6269static void
96f874e2
RR
6270init_sched_build_groups(const struct cpumask *span,
6271 const struct cpumask *cpu_map,
6272 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6273 struct sched_group **sg,
96f874e2
RR
6274 struct cpumask *tmpmask),
6275 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6276{
6277 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6278 int i;
6279
96f874e2 6280 cpumask_clear(covered);
7c16ec58 6281
abcd083a 6282 for_each_cpu(i, span) {
6711cab4 6283 struct sched_group *sg;
7c16ec58 6284 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6285 int j;
6286
758b2cdc 6287 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6288 continue;
6289
758b2cdc 6290 cpumask_clear(sched_group_cpus(sg));
18a3885f 6291 sg->cpu_power = 0;
1da177e4 6292
abcd083a 6293 for_each_cpu(j, span) {
7c16ec58 6294 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6295 continue;
6296
96f874e2 6297 cpumask_set_cpu(j, covered);
758b2cdc 6298 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6299 }
6300 if (!first)
6301 first = sg;
6302 if (last)
6303 last->next = sg;
6304 last = sg;
6305 }
6306 last->next = first;
6307}
6308
9c1cfda2 6309#define SD_NODES_PER_DOMAIN 16
1da177e4 6310
9c1cfda2 6311#ifdef CONFIG_NUMA
198e2f18 6312
9c1cfda2
JH
6313/**
6314 * find_next_best_node - find the next node to include in a sched_domain
6315 * @node: node whose sched_domain we're building
6316 * @used_nodes: nodes already in the sched_domain
6317 *
41a2d6cf 6318 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6319 * finds the closest node not already in the @used_nodes map.
6320 *
6321 * Should use nodemask_t.
6322 */
c5f59f08 6323static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6324{
6325 int i, n, val, min_val, best_node = 0;
6326
6327 min_val = INT_MAX;
6328
076ac2af 6329 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6330 /* Start at @node */
076ac2af 6331 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6332
6333 if (!nr_cpus_node(n))
6334 continue;
6335
6336 /* Skip already used nodes */
c5f59f08 6337 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6338 continue;
6339
6340 /* Simple min distance search */
6341 val = node_distance(node, n);
6342
6343 if (val < min_val) {
6344 min_val = val;
6345 best_node = n;
6346 }
6347 }
6348
c5f59f08 6349 node_set(best_node, *used_nodes);
9c1cfda2
JH
6350 return best_node;
6351}
6352
6353/**
6354 * sched_domain_node_span - get a cpumask for a node's sched_domain
6355 * @node: node whose cpumask we're constructing
73486722 6356 * @span: resulting cpumask
9c1cfda2 6357 *
41a2d6cf 6358 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6359 * should be one that prevents unnecessary balancing, but also spreads tasks
6360 * out optimally.
6361 */
96f874e2 6362static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6363{
c5f59f08 6364 nodemask_t used_nodes;
48f24c4d 6365 int i;
9c1cfda2 6366
6ca09dfc 6367 cpumask_clear(span);
c5f59f08 6368 nodes_clear(used_nodes);
9c1cfda2 6369
6ca09dfc 6370 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6371 node_set(node, used_nodes);
9c1cfda2
JH
6372
6373 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6374 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6375
6ca09dfc 6376 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6377 }
9c1cfda2 6378}
6d6bc0ad 6379#endif /* CONFIG_NUMA */
9c1cfda2 6380
5c45bf27 6381int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6382
6c99e9ad
RR
6383/*
6384 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6385 *
6386 * ( See the the comments in include/linux/sched.h:struct sched_group
6387 * and struct sched_domain. )
6c99e9ad
RR
6388 */
6389struct static_sched_group {
6390 struct sched_group sg;
6391 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6392};
6393
6394struct static_sched_domain {
6395 struct sched_domain sd;
6396 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6397};
6398
49a02c51
AH
6399struct s_data {
6400#ifdef CONFIG_NUMA
6401 int sd_allnodes;
6402 cpumask_var_t domainspan;
6403 cpumask_var_t covered;
6404 cpumask_var_t notcovered;
6405#endif
6406 cpumask_var_t nodemask;
6407 cpumask_var_t this_sibling_map;
6408 cpumask_var_t this_core_map;
6409 cpumask_var_t send_covered;
6410 cpumask_var_t tmpmask;
6411 struct sched_group **sched_group_nodes;
6412 struct root_domain *rd;
6413};
6414
2109b99e
AH
6415enum s_alloc {
6416 sa_sched_groups = 0,
6417 sa_rootdomain,
6418 sa_tmpmask,
6419 sa_send_covered,
6420 sa_this_core_map,
6421 sa_this_sibling_map,
6422 sa_nodemask,
6423 sa_sched_group_nodes,
6424#ifdef CONFIG_NUMA
6425 sa_notcovered,
6426 sa_covered,
6427 sa_domainspan,
6428#endif
6429 sa_none,
6430};
6431
9c1cfda2 6432/*
48f24c4d 6433 * SMT sched-domains:
9c1cfda2 6434 */
1da177e4 6435#ifdef CONFIG_SCHED_SMT
6c99e9ad 6436static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6437static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6438
41a2d6cf 6439static int
96f874e2
RR
6440cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6441 struct sched_group **sg, struct cpumask *unused)
1da177e4 6442{
6711cab4 6443 if (sg)
1871e52c 6444 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6445 return cpu;
6446}
6d6bc0ad 6447#endif /* CONFIG_SCHED_SMT */
1da177e4 6448
48f24c4d
IM
6449/*
6450 * multi-core sched-domains:
6451 */
1e9f28fa 6452#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6453static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6454static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6455#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6456
6457#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6458static int
96f874e2
RR
6459cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6460 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6461{
6711cab4 6462 int group;
7c16ec58 6463
c69fc56d 6464 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6465 group = cpumask_first(mask);
6711cab4 6466 if (sg)
6c99e9ad 6467 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6468 return group;
1e9f28fa
SS
6469}
6470#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6471static int
96f874e2
RR
6472cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6473 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6474{
6711cab4 6475 if (sg)
6c99e9ad 6476 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6477 return cpu;
6478}
6479#endif
6480
6c99e9ad
RR
6481static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6482static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6483
41a2d6cf 6484static int
96f874e2
RR
6485cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6486 struct sched_group **sg, struct cpumask *mask)
1da177e4 6487{
6711cab4 6488 int group;
48f24c4d 6489#ifdef CONFIG_SCHED_MC
6ca09dfc 6490 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6491 group = cpumask_first(mask);
1e9f28fa 6492#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6493 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6494 group = cpumask_first(mask);
1da177e4 6495#else
6711cab4 6496 group = cpu;
1da177e4 6497#endif
6711cab4 6498 if (sg)
6c99e9ad 6499 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6500 return group;
1da177e4
LT
6501}
6502
6503#ifdef CONFIG_NUMA
1da177e4 6504/*
9c1cfda2
JH
6505 * The init_sched_build_groups can't handle what we want to do with node
6506 * groups, so roll our own. Now each node has its own list of groups which
6507 * gets dynamically allocated.
1da177e4 6508 */
62ea9ceb 6509static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6510static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6511
62ea9ceb 6512static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6513static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6514
96f874e2
RR
6515static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6516 struct sched_group **sg,
6517 struct cpumask *nodemask)
9c1cfda2 6518{
6711cab4
SS
6519 int group;
6520
6ca09dfc 6521 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6522 group = cpumask_first(nodemask);
6711cab4
SS
6523
6524 if (sg)
6c99e9ad 6525 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6526 return group;
1da177e4 6527}
6711cab4 6528
08069033
SS
6529static void init_numa_sched_groups_power(struct sched_group *group_head)
6530{
6531 struct sched_group *sg = group_head;
6532 int j;
6533
6534 if (!sg)
6535 return;
3a5c359a 6536 do {
758b2cdc 6537 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6538 struct sched_domain *sd;
08069033 6539
6c99e9ad 6540 sd = &per_cpu(phys_domains, j).sd;
13318a71 6541 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6542 /*
6543 * Only add "power" once for each
6544 * physical package.
6545 */
6546 continue;
6547 }
08069033 6548
18a3885f 6549 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6550 }
6551 sg = sg->next;
6552 } while (sg != group_head);
08069033 6553}
0601a88d
AH
6554
6555static int build_numa_sched_groups(struct s_data *d,
6556 const struct cpumask *cpu_map, int num)
6557{
6558 struct sched_domain *sd;
6559 struct sched_group *sg, *prev;
6560 int n, j;
6561
6562 cpumask_clear(d->covered);
6563 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6564 if (cpumask_empty(d->nodemask)) {
6565 d->sched_group_nodes[num] = NULL;
6566 goto out;
6567 }
6568
6569 sched_domain_node_span(num, d->domainspan);
6570 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6571
6572 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6573 GFP_KERNEL, num);
6574 if (!sg) {
3df0fc5b
PZ
6575 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6576 num);
0601a88d
AH
6577 return -ENOMEM;
6578 }
6579 d->sched_group_nodes[num] = sg;
6580
6581 for_each_cpu(j, d->nodemask) {
6582 sd = &per_cpu(node_domains, j).sd;
6583 sd->groups = sg;
6584 }
6585
18a3885f 6586 sg->cpu_power = 0;
0601a88d
AH
6587 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6588 sg->next = sg;
6589 cpumask_or(d->covered, d->covered, d->nodemask);
6590
6591 prev = sg;
6592 for (j = 0; j < nr_node_ids; j++) {
6593 n = (num + j) % nr_node_ids;
6594 cpumask_complement(d->notcovered, d->covered);
6595 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6596 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6597 if (cpumask_empty(d->tmpmask))
6598 break;
6599 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6600 if (cpumask_empty(d->tmpmask))
6601 continue;
6602 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6603 GFP_KERNEL, num);
6604 if (!sg) {
3df0fc5b
PZ
6605 printk(KERN_WARNING
6606 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6607 return -ENOMEM;
6608 }
18a3885f 6609 sg->cpu_power = 0;
0601a88d
AH
6610 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6611 sg->next = prev->next;
6612 cpumask_or(d->covered, d->covered, d->tmpmask);
6613 prev->next = sg;
6614 prev = sg;
6615 }
6616out:
6617 return 0;
6618}
6d6bc0ad 6619#endif /* CONFIG_NUMA */
1da177e4 6620
a616058b 6621#ifdef CONFIG_NUMA
51888ca2 6622/* Free memory allocated for various sched_group structures */
96f874e2
RR
6623static void free_sched_groups(const struct cpumask *cpu_map,
6624 struct cpumask *nodemask)
51888ca2 6625{
a616058b 6626 int cpu, i;
51888ca2 6627
abcd083a 6628 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6629 struct sched_group **sched_group_nodes
6630 = sched_group_nodes_bycpu[cpu];
6631
51888ca2
SV
6632 if (!sched_group_nodes)
6633 continue;
6634
076ac2af 6635 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6636 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6637
6ca09dfc 6638 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6639 if (cpumask_empty(nodemask))
51888ca2
SV
6640 continue;
6641
6642 if (sg == NULL)
6643 continue;
6644 sg = sg->next;
6645next_sg:
6646 oldsg = sg;
6647 sg = sg->next;
6648 kfree(oldsg);
6649 if (oldsg != sched_group_nodes[i])
6650 goto next_sg;
6651 }
6652 kfree(sched_group_nodes);
6653 sched_group_nodes_bycpu[cpu] = NULL;
6654 }
51888ca2 6655}
6d6bc0ad 6656#else /* !CONFIG_NUMA */
96f874e2
RR
6657static void free_sched_groups(const struct cpumask *cpu_map,
6658 struct cpumask *nodemask)
a616058b
SS
6659{
6660}
6d6bc0ad 6661#endif /* CONFIG_NUMA */
51888ca2 6662
89c4710e
SS
6663/*
6664 * Initialize sched groups cpu_power.
6665 *
6666 * cpu_power indicates the capacity of sched group, which is used while
6667 * distributing the load between different sched groups in a sched domain.
6668 * Typically cpu_power for all the groups in a sched domain will be same unless
6669 * there are asymmetries in the topology. If there are asymmetries, group
6670 * having more cpu_power will pickup more load compared to the group having
6671 * less cpu_power.
89c4710e
SS
6672 */
6673static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6674{
6675 struct sched_domain *child;
6676 struct sched_group *group;
f93e65c1
PZ
6677 long power;
6678 int weight;
89c4710e
SS
6679
6680 WARN_ON(!sd || !sd->groups);
6681
13318a71 6682 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6683 return;
6684
6685 child = sd->child;
6686
18a3885f 6687 sd->groups->cpu_power = 0;
5517d86b 6688
f93e65c1
PZ
6689 if (!child) {
6690 power = SCHED_LOAD_SCALE;
6691 weight = cpumask_weight(sched_domain_span(sd));
6692 /*
6693 * SMT siblings share the power of a single core.
a52bfd73
PZ
6694 * Usually multiple threads get a better yield out of
6695 * that one core than a single thread would have,
6696 * reflect that in sd->smt_gain.
f93e65c1 6697 */
a52bfd73
PZ
6698 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6699 power *= sd->smt_gain;
f93e65c1 6700 power /= weight;
a52bfd73
PZ
6701 power >>= SCHED_LOAD_SHIFT;
6702 }
18a3885f 6703 sd->groups->cpu_power += power;
89c4710e
SS
6704 return;
6705 }
6706
89c4710e 6707 /*
f93e65c1 6708 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6709 */
6710 group = child->groups;
6711 do {
18a3885f 6712 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6713 group = group->next;
6714 } while (group != child->groups);
6715}
6716
7c16ec58
MT
6717/*
6718 * Initializers for schedule domains
6719 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6720 */
6721
a5d8c348
IM
6722#ifdef CONFIG_SCHED_DEBUG
6723# define SD_INIT_NAME(sd, type) sd->name = #type
6724#else
6725# define SD_INIT_NAME(sd, type) do { } while (0)
6726#endif
6727
7c16ec58 6728#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6729
7c16ec58
MT
6730#define SD_INIT_FUNC(type) \
6731static noinline void sd_init_##type(struct sched_domain *sd) \
6732{ \
6733 memset(sd, 0, sizeof(*sd)); \
6734 *sd = SD_##type##_INIT; \
1d3504fc 6735 sd->level = SD_LV_##type; \
a5d8c348 6736 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6737}
6738
6739SD_INIT_FUNC(CPU)
6740#ifdef CONFIG_NUMA
6741 SD_INIT_FUNC(ALLNODES)
6742 SD_INIT_FUNC(NODE)
6743#endif
6744#ifdef CONFIG_SCHED_SMT
6745 SD_INIT_FUNC(SIBLING)
6746#endif
6747#ifdef CONFIG_SCHED_MC
6748 SD_INIT_FUNC(MC)
6749#endif
6750
1d3504fc
HS
6751static int default_relax_domain_level = -1;
6752
6753static int __init setup_relax_domain_level(char *str)
6754{
30e0e178
LZ
6755 unsigned long val;
6756
6757 val = simple_strtoul(str, NULL, 0);
6758 if (val < SD_LV_MAX)
6759 default_relax_domain_level = val;
6760
1d3504fc
HS
6761 return 1;
6762}
6763__setup("relax_domain_level=", setup_relax_domain_level);
6764
6765static void set_domain_attribute(struct sched_domain *sd,
6766 struct sched_domain_attr *attr)
6767{
6768 int request;
6769
6770 if (!attr || attr->relax_domain_level < 0) {
6771 if (default_relax_domain_level < 0)
6772 return;
6773 else
6774 request = default_relax_domain_level;
6775 } else
6776 request = attr->relax_domain_level;
6777 if (request < sd->level) {
6778 /* turn off idle balance on this domain */
c88d5910 6779 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6780 } else {
6781 /* turn on idle balance on this domain */
c88d5910 6782 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6783 }
6784}
6785
2109b99e
AH
6786static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6787 const struct cpumask *cpu_map)
6788{
6789 switch (what) {
6790 case sa_sched_groups:
6791 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6792 d->sched_group_nodes = NULL;
6793 case sa_rootdomain:
6794 free_rootdomain(d->rd); /* fall through */
6795 case sa_tmpmask:
6796 free_cpumask_var(d->tmpmask); /* fall through */
6797 case sa_send_covered:
6798 free_cpumask_var(d->send_covered); /* fall through */
6799 case sa_this_core_map:
6800 free_cpumask_var(d->this_core_map); /* fall through */
6801 case sa_this_sibling_map:
6802 free_cpumask_var(d->this_sibling_map); /* fall through */
6803 case sa_nodemask:
6804 free_cpumask_var(d->nodemask); /* fall through */
6805 case sa_sched_group_nodes:
d1b55138 6806#ifdef CONFIG_NUMA
2109b99e
AH
6807 kfree(d->sched_group_nodes); /* fall through */
6808 case sa_notcovered:
6809 free_cpumask_var(d->notcovered); /* fall through */
6810 case sa_covered:
6811 free_cpumask_var(d->covered); /* fall through */
6812 case sa_domainspan:
6813 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6814#endif
2109b99e
AH
6815 case sa_none:
6816 break;
6817 }
6818}
3404c8d9 6819
2109b99e
AH
6820static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6821 const struct cpumask *cpu_map)
6822{
3404c8d9 6823#ifdef CONFIG_NUMA
2109b99e
AH
6824 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6825 return sa_none;
6826 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6827 return sa_domainspan;
6828 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6829 return sa_covered;
6830 /* Allocate the per-node list of sched groups */
6831 d->sched_group_nodes = kcalloc(nr_node_ids,
6832 sizeof(struct sched_group *), GFP_KERNEL);
6833 if (!d->sched_group_nodes) {
3df0fc5b 6834 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6835 return sa_notcovered;
d1b55138 6836 }
2109b99e 6837 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6838#endif
2109b99e
AH
6839 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6840 return sa_sched_group_nodes;
6841 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6842 return sa_nodemask;
6843 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6844 return sa_this_sibling_map;
6845 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6846 return sa_this_core_map;
6847 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6848 return sa_send_covered;
6849 d->rd = alloc_rootdomain();
6850 if (!d->rd) {
3df0fc5b 6851 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6852 return sa_tmpmask;
57d885fe 6853 }
2109b99e
AH
6854 return sa_rootdomain;
6855}
57d885fe 6856
7f4588f3
AH
6857static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6858 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6859{
6860 struct sched_domain *sd = NULL;
7c16ec58 6861#ifdef CONFIG_NUMA
7f4588f3 6862 struct sched_domain *parent;
1da177e4 6863
7f4588f3
AH
6864 d->sd_allnodes = 0;
6865 if (cpumask_weight(cpu_map) >
6866 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6867 sd = &per_cpu(allnodes_domains, i).sd;
6868 SD_INIT(sd, ALLNODES);
1d3504fc 6869 set_domain_attribute(sd, attr);
7f4588f3
AH
6870 cpumask_copy(sched_domain_span(sd), cpu_map);
6871 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6872 d->sd_allnodes = 1;
6873 }
6874 parent = sd;
6875
6876 sd = &per_cpu(node_domains, i).sd;
6877 SD_INIT(sd, NODE);
6878 set_domain_attribute(sd, attr);
6879 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6880 sd->parent = parent;
6881 if (parent)
6882 parent->child = sd;
6883 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6884#endif
7f4588f3
AH
6885 return sd;
6886}
1da177e4 6887
87cce662
AH
6888static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6889 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6890 struct sched_domain *parent, int i)
6891{
6892 struct sched_domain *sd;
6893 sd = &per_cpu(phys_domains, i).sd;
6894 SD_INIT(sd, CPU);
6895 set_domain_attribute(sd, attr);
6896 cpumask_copy(sched_domain_span(sd), d->nodemask);
6897 sd->parent = parent;
6898 if (parent)
6899 parent->child = sd;
6900 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6901 return sd;
6902}
1da177e4 6903
410c4081
AH
6904static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6905 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6906 struct sched_domain *parent, int i)
6907{
6908 struct sched_domain *sd = parent;
1e9f28fa 6909#ifdef CONFIG_SCHED_MC
410c4081
AH
6910 sd = &per_cpu(core_domains, i).sd;
6911 SD_INIT(sd, MC);
6912 set_domain_attribute(sd, attr);
6913 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6914 sd->parent = parent;
6915 parent->child = sd;
6916 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6917#endif
410c4081
AH
6918 return sd;
6919}
1e9f28fa 6920
d8173535
AH
6921static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6922 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6923 struct sched_domain *parent, int i)
6924{
6925 struct sched_domain *sd = parent;
1da177e4 6926#ifdef CONFIG_SCHED_SMT
d8173535
AH
6927 sd = &per_cpu(cpu_domains, i).sd;
6928 SD_INIT(sd, SIBLING);
6929 set_domain_attribute(sd, attr);
6930 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6931 sd->parent = parent;
6932 parent->child = sd;
6933 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6934#endif
d8173535
AH
6935 return sd;
6936}
1da177e4 6937
0e8e85c9
AH
6938static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6939 const struct cpumask *cpu_map, int cpu)
6940{
6941 switch (l) {
1da177e4 6942#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6943 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6944 cpumask_and(d->this_sibling_map, cpu_map,
6945 topology_thread_cpumask(cpu));
6946 if (cpu == cpumask_first(d->this_sibling_map))
6947 init_sched_build_groups(d->this_sibling_map, cpu_map,
6948 &cpu_to_cpu_group,
6949 d->send_covered, d->tmpmask);
6950 break;
1da177e4 6951#endif
1e9f28fa 6952#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6953 case SD_LV_MC: /* set up multi-core groups */
6954 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6955 if (cpu == cpumask_first(d->this_core_map))
6956 init_sched_build_groups(d->this_core_map, cpu_map,
6957 &cpu_to_core_group,
6958 d->send_covered, d->tmpmask);
6959 break;
1e9f28fa 6960#endif
86548096
AH
6961 case SD_LV_CPU: /* set up physical groups */
6962 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6963 if (!cpumask_empty(d->nodemask))
6964 init_sched_build_groups(d->nodemask, cpu_map,
6965 &cpu_to_phys_group,
6966 d->send_covered, d->tmpmask);
6967 break;
1da177e4 6968#ifdef CONFIG_NUMA
de616e36
AH
6969 case SD_LV_ALLNODES:
6970 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6971 d->send_covered, d->tmpmask);
6972 break;
6973#endif
0e8e85c9
AH
6974 default:
6975 break;
7c16ec58 6976 }
0e8e85c9 6977}
9c1cfda2 6978
2109b99e
AH
6979/*
6980 * Build sched domains for a given set of cpus and attach the sched domains
6981 * to the individual cpus
6982 */
6983static int __build_sched_domains(const struct cpumask *cpu_map,
6984 struct sched_domain_attr *attr)
6985{
6986 enum s_alloc alloc_state = sa_none;
6987 struct s_data d;
294b0c96 6988 struct sched_domain *sd;
2109b99e 6989 int i;
7c16ec58 6990#ifdef CONFIG_NUMA
2109b99e 6991 d.sd_allnodes = 0;
7c16ec58 6992#endif
9c1cfda2 6993
2109b99e
AH
6994 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6995 if (alloc_state != sa_rootdomain)
6996 goto error;
6997 alloc_state = sa_sched_groups;
9c1cfda2 6998
1da177e4 6999 /*
1a20ff27 7000 * Set up domains for cpus specified by the cpu_map.
1da177e4 7001 */
abcd083a 7002 for_each_cpu(i, cpu_map) {
49a02c51
AH
7003 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7004 cpu_map);
9761eea8 7005
7f4588f3 7006 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7007 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7008 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7009 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7010 }
9c1cfda2 7011
abcd083a 7012 for_each_cpu(i, cpu_map) {
0e8e85c9 7013 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7014 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7015 }
9c1cfda2 7016
1da177e4 7017 /* Set up physical groups */
86548096
AH
7018 for (i = 0; i < nr_node_ids; i++)
7019 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7020
1da177e4
LT
7021#ifdef CONFIG_NUMA
7022 /* Set up node groups */
de616e36
AH
7023 if (d.sd_allnodes)
7024 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7025
0601a88d
AH
7026 for (i = 0; i < nr_node_ids; i++)
7027 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7028 goto error;
1da177e4
LT
7029#endif
7030
7031 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7032#ifdef CONFIG_SCHED_SMT
abcd083a 7033 for_each_cpu(i, cpu_map) {
294b0c96 7034 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7035 init_sched_groups_power(i, sd);
5c45bf27 7036 }
1da177e4 7037#endif
1e9f28fa 7038#ifdef CONFIG_SCHED_MC
abcd083a 7039 for_each_cpu(i, cpu_map) {
294b0c96 7040 sd = &per_cpu(core_domains, i).sd;
89c4710e 7041 init_sched_groups_power(i, sd);
5c45bf27
SS
7042 }
7043#endif
1e9f28fa 7044
abcd083a 7045 for_each_cpu(i, cpu_map) {
294b0c96 7046 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7047 init_sched_groups_power(i, sd);
1da177e4
LT
7048 }
7049
9c1cfda2 7050#ifdef CONFIG_NUMA
076ac2af 7051 for (i = 0; i < nr_node_ids; i++)
49a02c51 7052 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7053
49a02c51 7054 if (d.sd_allnodes) {
6711cab4 7055 struct sched_group *sg;
f712c0c7 7056
96f874e2 7057 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7058 d.tmpmask);
f712c0c7
SS
7059 init_numa_sched_groups_power(sg);
7060 }
9c1cfda2
JH
7061#endif
7062
1da177e4 7063 /* Attach the domains */
abcd083a 7064 for_each_cpu(i, cpu_map) {
1da177e4 7065#ifdef CONFIG_SCHED_SMT
6c99e9ad 7066 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7067#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7068 sd = &per_cpu(core_domains, i).sd;
1da177e4 7069#else
6c99e9ad 7070 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7071#endif
49a02c51 7072 cpu_attach_domain(sd, d.rd, i);
1da177e4 7073 }
51888ca2 7074
2109b99e
AH
7075 d.sched_group_nodes = NULL; /* don't free this we still need it */
7076 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7077 return 0;
51888ca2 7078
51888ca2 7079error:
2109b99e
AH
7080 __free_domain_allocs(&d, alloc_state, cpu_map);
7081 return -ENOMEM;
1da177e4 7082}
029190c5 7083
96f874e2 7084static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7085{
7086 return __build_sched_domains(cpu_map, NULL);
7087}
7088
acc3f5d7 7089static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7090static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7091static struct sched_domain_attr *dattr_cur;
7092 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7093
7094/*
7095 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7096 * cpumask) fails, then fallback to a single sched domain,
7097 * as determined by the single cpumask fallback_doms.
029190c5 7098 */
4212823f 7099static cpumask_var_t fallback_doms;
029190c5 7100
ee79d1bd
HC
7101/*
7102 * arch_update_cpu_topology lets virtualized architectures update the
7103 * cpu core maps. It is supposed to return 1 if the topology changed
7104 * or 0 if it stayed the same.
7105 */
7106int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7107{
ee79d1bd 7108 return 0;
22e52b07
HC
7109}
7110
acc3f5d7
RR
7111cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7112{
7113 int i;
7114 cpumask_var_t *doms;
7115
7116 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7117 if (!doms)
7118 return NULL;
7119 for (i = 0; i < ndoms; i++) {
7120 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7121 free_sched_domains(doms, i);
7122 return NULL;
7123 }
7124 }
7125 return doms;
7126}
7127
7128void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7129{
7130 unsigned int i;
7131 for (i = 0; i < ndoms; i++)
7132 free_cpumask_var(doms[i]);
7133 kfree(doms);
7134}
7135
1a20ff27 7136/*
41a2d6cf 7137 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7138 * For now this just excludes isolated cpus, but could be used to
7139 * exclude other special cases in the future.
1a20ff27 7140 */
96f874e2 7141static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7142{
7378547f
MM
7143 int err;
7144
22e52b07 7145 arch_update_cpu_topology();
029190c5 7146 ndoms_cur = 1;
acc3f5d7 7147 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7148 if (!doms_cur)
acc3f5d7
RR
7149 doms_cur = &fallback_doms;
7150 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7151 dattr_cur = NULL;
acc3f5d7 7152 err = build_sched_domains(doms_cur[0]);
6382bc90 7153 register_sched_domain_sysctl();
7378547f
MM
7154
7155 return err;
1a20ff27
DG
7156}
7157
96f874e2
RR
7158static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7159 struct cpumask *tmpmask)
1da177e4 7160{
7c16ec58 7161 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7162}
1da177e4 7163
1a20ff27
DG
7164/*
7165 * Detach sched domains from a group of cpus specified in cpu_map
7166 * These cpus will now be attached to the NULL domain
7167 */
96f874e2 7168static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7169{
96f874e2
RR
7170 /* Save because hotplug lock held. */
7171 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7172 int i;
7173
abcd083a 7174 for_each_cpu(i, cpu_map)
57d885fe 7175 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7176 synchronize_sched();
96f874e2 7177 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7178}
7179
1d3504fc
HS
7180/* handle null as "default" */
7181static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7182 struct sched_domain_attr *new, int idx_new)
7183{
7184 struct sched_domain_attr tmp;
7185
7186 /* fast path */
7187 if (!new && !cur)
7188 return 1;
7189
7190 tmp = SD_ATTR_INIT;
7191 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7192 new ? (new + idx_new) : &tmp,
7193 sizeof(struct sched_domain_attr));
7194}
7195
029190c5
PJ
7196/*
7197 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7198 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7199 * doms_new[] to the current sched domain partitioning, doms_cur[].
7200 * It destroys each deleted domain and builds each new domain.
7201 *
acc3f5d7 7202 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7203 * The masks don't intersect (don't overlap.) We should setup one
7204 * sched domain for each mask. CPUs not in any of the cpumasks will
7205 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7206 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7207 * it as it is.
7208 *
acc3f5d7
RR
7209 * The passed in 'doms_new' should be allocated using
7210 * alloc_sched_domains. This routine takes ownership of it and will
7211 * free_sched_domains it when done with it. If the caller failed the
7212 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7213 * and partition_sched_domains() will fallback to the single partition
7214 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7215 *
96f874e2 7216 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7217 * ndoms_new == 0 is a special case for destroying existing domains,
7218 * and it will not create the default domain.
dfb512ec 7219 *
029190c5
PJ
7220 * Call with hotplug lock held
7221 */
acc3f5d7 7222void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7223 struct sched_domain_attr *dattr_new)
029190c5 7224{
dfb512ec 7225 int i, j, n;
d65bd5ec 7226 int new_topology;
029190c5 7227
712555ee 7228 mutex_lock(&sched_domains_mutex);
a1835615 7229
7378547f
MM
7230 /* always unregister in case we don't destroy any domains */
7231 unregister_sched_domain_sysctl();
7232
d65bd5ec
HC
7233 /* Let architecture update cpu core mappings. */
7234 new_topology = arch_update_cpu_topology();
7235
dfb512ec 7236 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7237
7238 /* Destroy deleted domains */
7239 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7240 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7241 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7242 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7243 goto match1;
7244 }
7245 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7246 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7247match1:
7248 ;
7249 }
7250
e761b772
MK
7251 if (doms_new == NULL) {
7252 ndoms_cur = 0;
acc3f5d7 7253 doms_new = &fallback_doms;
6ad4c188 7254 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7255 WARN_ON_ONCE(dattr_new);
e761b772
MK
7256 }
7257
029190c5
PJ
7258 /* Build new domains */
7259 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7260 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7261 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7262 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7263 goto match2;
7264 }
7265 /* no match - add a new doms_new */
acc3f5d7 7266 __build_sched_domains(doms_new[i],
1d3504fc 7267 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7268match2:
7269 ;
7270 }
7271
7272 /* Remember the new sched domains */
acc3f5d7
RR
7273 if (doms_cur != &fallback_doms)
7274 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7275 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7276 doms_cur = doms_new;
1d3504fc 7277 dattr_cur = dattr_new;
029190c5 7278 ndoms_cur = ndoms_new;
7378547f
MM
7279
7280 register_sched_domain_sysctl();
a1835615 7281
712555ee 7282 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7283}
7284
5c45bf27 7285#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7286static void arch_reinit_sched_domains(void)
5c45bf27 7287{
95402b38 7288 get_online_cpus();
dfb512ec
MK
7289
7290 /* Destroy domains first to force the rebuild */
7291 partition_sched_domains(0, NULL, NULL);
7292
e761b772 7293 rebuild_sched_domains();
95402b38 7294 put_online_cpus();
5c45bf27
SS
7295}
7296
7297static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7298{
afb8a9b7 7299 unsigned int level = 0;
5c45bf27 7300
afb8a9b7
GS
7301 if (sscanf(buf, "%u", &level) != 1)
7302 return -EINVAL;
7303
7304 /*
7305 * level is always be positive so don't check for
7306 * level < POWERSAVINGS_BALANCE_NONE which is 0
7307 * What happens on 0 or 1 byte write,
7308 * need to check for count as well?
7309 */
7310
7311 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7312 return -EINVAL;
7313
7314 if (smt)
afb8a9b7 7315 sched_smt_power_savings = level;
5c45bf27 7316 else
afb8a9b7 7317 sched_mc_power_savings = level;
5c45bf27 7318
c70f22d2 7319 arch_reinit_sched_domains();
5c45bf27 7320
c70f22d2 7321 return count;
5c45bf27
SS
7322}
7323
5c45bf27 7324#ifdef CONFIG_SCHED_MC
f718cd4a 7325static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7326 struct sysdev_class_attribute *attr,
f718cd4a 7327 char *page)
5c45bf27
SS
7328{
7329 return sprintf(page, "%u\n", sched_mc_power_savings);
7330}
f718cd4a 7331static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7332 struct sysdev_class_attribute *attr,
48f24c4d 7333 const char *buf, size_t count)
5c45bf27
SS
7334{
7335 return sched_power_savings_store(buf, count, 0);
7336}
f718cd4a
AK
7337static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7338 sched_mc_power_savings_show,
7339 sched_mc_power_savings_store);
5c45bf27
SS
7340#endif
7341
7342#ifdef CONFIG_SCHED_SMT
f718cd4a 7343static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7344 struct sysdev_class_attribute *attr,
f718cd4a 7345 char *page)
5c45bf27
SS
7346{
7347 return sprintf(page, "%u\n", sched_smt_power_savings);
7348}
f718cd4a 7349static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7350 struct sysdev_class_attribute *attr,
48f24c4d 7351 const char *buf, size_t count)
5c45bf27
SS
7352{
7353 return sched_power_savings_store(buf, count, 1);
7354}
f718cd4a
AK
7355static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7356 sched_smt_power_savings_show,
6707de00
AB
7357 sched_smt_power_savings_store);
7358#endif
7359
39aac648 7360int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7361{
7362 int err = 0;
7363
7364#ifdef CONFIG_SCHED_SMT
7365 if (smt_capable())
7366 err = sysfs_create_file(&cls->kset.kobj,
7367 &attr_sched_smt_power_savings.attr);
7368#endif
7369#ifdef CONFIG_SCHED_MC
7370 if (!err && mc_capable())
7371 err = sysfs_create_file(&cls->kset.kobj,
7372 &attr_sched_mc_power_savings.attr);
7373#endif
7374 return err;
7375}
6d6bc0ad 7376#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7377
e761b772 7378#ifndef CONFIG_CPUSETS
1da177e4 7379/*
e761b772
MK
7380 * Add online and remove offline CPUs from the scheduler domains.
7381 * When cpusets are enabled they take over this function.
1da177e4
LT
7382 */
7383static int update_sched_domains(struct notifier_block *nfb,
7384 unsigned long action, void *hcpu)
e761b772
MK
7385{
7386 switch (action) {
7387 case CPU_ONLINE:
7388 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7389 case CPU_DOWN_PREPARE:
7390 case CPU_DOWN_PREPARE_FROZEN:
7391 case CPU_DOWN_FAILED:
7392 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7393 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7394 return NOTIFY_OK;
7395
7396 default:
7397 return NOTIFY_DONE;
7398 }
7399}
7400#endif
7401
7402static int update_runtime(struct notifier_block *nfb,
7403 unsigned long action, void *hcpu)
1da177e4 7404{
7def2be1
PZ
7405 int cpu = (int)(long)hcpu;
7406
1da177e4 7407 switch (action) {
1da177e4 7408 case CPU_DOWN_PREPARE:
8bb78442 7409 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7410 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7411 return NOTIFY_OK;
7412
1da177e4 7413 case CPU_DOWN_FAILED:
8bb78442 7414 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7415 case CPU_ONLINE:
8bb78442 7416 case CPU_ONLINE_FROZEN:
7def2be1 7417 enable_runtime(cpu_rq(cpu));
e761b772
MK
7418 return NOTIFY_OK;
7419
1da177e4
LT
7420 default:
7421 return NOTIFY_DONE;
7422 }
1da177e4 7423}
1da177e4
LT
7424
7425void __init sched_init_smp(void)
7426{
dcc30a35
RR
7427 cpumask_var_t non_isolated_cpus;
7428
7429 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7430 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7431
434d53b0
MT
7432#if defined(CONFIG_NUMA)
7433 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7434 GFP_KERNEL);
7435 BUG_ON(sched_group_nodes_bycpu == NULL);
7436#endif
95402b38 7437 get_online_cpus();
712555ee 7438 mutex_lock(&sched_domains_mutex);
6ad4c188 7439 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7440 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7441 if (cpumask_empty(non_isolated_cpus))
7442 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7443 mutex_unlock(&sched_domains_mutex);
95402b38 7444 put_online_cpus();
e761b772
MK
7445
7446#ifndef CONFIG_CPUSETS
1da177e4
LT
7447 /* XXX: Theoretical race here - CPU may be hotplugged now */
7448 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7449#endif
7450
7451 /* RT runtime code needs to handle some hotplug events */
7452 hotcpu_notifier(update_runtime, 0);
7453
b328ca18 7454 init_hrtick();
5c1e1767
NP
7455
7456 /* Move init over to a non-isolated CPU */
dcc30a35 7457 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7458 BUG();
19978ca6 7459 sched_init_granularity();
dcc30a35 7460 free_cpumask_var(non_isolated_cpus);
4212823f 7461
0e3900e6 7462 init_sched_rt_class();
1da177e4
LT
7463}
7464#else
7465void __init sched_init_smp(void)
7466{
19978ca6 7467 sched_init_granularity();
1da177e4
LT
7468}
7469#endif /* CONFIG_SMP */
7470
cd1bb94b
AB
7471const_debug unsigned int sysctl_timer_migration = 1;
7472
1da177e4
LT
7473int in_sched_functions(unsigned long addr)
7474{
1da177e4
LT
7475 return in_lock_functions(addr) ||
7476 (addr >= (unsigned long)__sched_text_start
7477 && addr < (unsigned long)__sched_text_end);
7478}
7479
a9957449 7480static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7481{
7482 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7483 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7484#ifdef CONFIG_FAIR_GROUP_SCHED
7485 cfs_rq->rq = rq;
7486#endif
67e9fb2a 7487 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7488}
7489
fa85ae24
PZ
7490static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7491{
7492 struct rt_prio_array *array;
7493 int i;
7494
7495 array = &rt_rq->active;
7496 for (i = 0; i < MAX_RT_PRIO; i++) {
7497 INIT_LIST_HEAD(array->queue + i);
7498 __clear_bit(i, array->bitmap);
7499 }
7500 /* delimiter for bitsearch: */
7501 __set_bit(MAX_RT_PRIO, array->bitmap);
7502
052f1dc7 7503#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7504 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7505#ifdef CONFIG_SMP
e864c499 7506 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7507#endif
48d5e258 7508#endif
fa85ae24
PZ
7509#ifdef CONFIG_SMP
7510 rt_rq->rt_nr_migratory = 0;
fa85ae24 7511 rt_rq->overloaded = 0;
05fa785c 7512 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7513#endif
7514
7515 rt_rq->rt_time = 0;
7516 rt_rq->rt_throttled = 0;
ac086bc2 7517 rt_rq->rt_runtime = 0;
0986b11b 7518 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7519
052f1dc7 7520#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7521 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7522 rt_rq->rq = rq;
7523#endif
fa85ae24
PZ
7524}
7525
6f505b16 7526#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7527static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7528 struct sched_entity *se, int cpu, int add,
7529 struct sched_entity *parent)
6f505b16 7530{
ec7dc8ac 7531 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7532 tg->cfs_rq[cpu] = cfs_rq;
7533 init_cfs_rq(cfs_rq, rq);
7534 cfs_rq->tg = tg;
7535 if (add)
7536 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7537
7538 tg->se[cpu] = se;
354d60c2
DG
7539 /* se could be NULL for init_task_group */
7540 if (!se)
7541 return;
7542
ec7dc8ac
DG
7543 if (!parent)
7544 se->cfs_rq = &rq->cfs;
7545 else
7546 se->cfs_rq = parent->my_q;
7547
6f505b16
PZ
7548 se->my_q = cfs_rq;
7549 se->load.weight = tg->shares;
e05510d0 7550 se->load.inv_weight = 0;
ec7dc8ac 7551 se->parent = parent;
6f505b16 7552}
052f1dc7 7553#endif
6f505b16 7554
052f1dc7 7555#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7556static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7557 struct sched_rt_entity *rt_se, int cpu, int add,
7558 struct sched_rt_entity *parent)
6f505b16 7559{
ec7dc8ac
DG
7560 struct rq *rq = cpu_rq(cpu);
7561
6f505b16
PZ
7562 tg->rt_rq[cpu] = rt_rq;
7563 init_rt_rq(rt_rq, rq);
7564 rt_rq->tg = tg;
ac086bc2 7565 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7566 if (add)
7567 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7568
7569 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7570 if (!rt_se)
7571 return;
7572
ec7dc8ac
DG
7573 if (!parent)
7574 rt_se->rt_rq = &rq->rt;
7575 else
7576 rt_se->rt_rq = parent->my_q;
7577
6f505b16 7578 rt_se->my_q = rt_rq;
ec7dc8ac 7579 rt_se->parent = parent;
6f505b16
PZ
7580 INIT_LIST_HEAD(&rt_se->run_list);
7581}
7582#endif
7583
1da177e4
LT
7584void __init sched_init(void)
7585{
dd41f596 7586 int i, j;
434d53b0
MT
7587 unsigned long alloc_size = 0, ptr;
7588
7589#ifdef CONFIG_FAIR_GROUP_SCHED
7590 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7591#endif
7592#ifdef CONFIG_RT_GROUP_SCHED
7593 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7594#endif
df7c8e84 7595#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7596 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7597#endif
434d53b0 7598 if (alloc_size) {
36b7b6d4 7599 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7600
7601#ifdef CONFIG_FAIR_GROUP_SCHED
7602 init_task_group.se = (struct sched_entity **)ptr;
7603 ptr += nr_cpu_ids * sizeof(void **);
7604
7605 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7606 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7607
6d6bc0ad 7608#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7609#ifdef CONFIG_RT_GROUP_SCHED
7610 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7611 ptr += nr_cpu_ids * sizeof(void **);
7612
7613 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7614 ptr += nr_cpu_ids * sizeof(void **);
7615
6d6bc0ad 7616#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7617#ifdef CONFIG_CPUMASK_OFFSTACK
7618 for_each_possible_cpu(i) {
7619 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7620 ptr += cpumask_size();
7621 }
7622#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7623 }
dd41f596 7624
57d885fe
GH
7625#ifdef CONFIG_SMP
7626 init_defrootdomain();
7627#endif
7628
d0b27fa7
PZ
7629 init_rt_bandwidth(&def_rt_bandwidth,
7630 global_rt_period(), global_rt_runtime());
7631
7632#ifdef CONFIG_RT_GROUP_SCHED
7633 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7634 global_rt_period(), global_rt_runtime());
6d6bc0ad 7635#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7636
7c941438 7637#ifdef CONFIG_CGROUP_SCHED
6f505b16 7638 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7639 INIT_LIST_HEAD(&init_task_group.children);
7640
7c941438 7641#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7642
4a6cc4bd
JK
7643#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7644 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7645 __alignof__(unsigned long));
7646#endif
0a945022 7647 for_each_possible_cpu(i) {
70b97a7f 7648 struct rq *rq;
1da177e4
LT
7649
7650 rq = cpu_rq(i);
05fa785c 7651 raw_spin_lock_init(&rq->lock);
7897986b 7652 rq->nr_running = 0;
dce48a84
TG
7653 rq->calc_load_active = 0;
7654 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7655 init_cfs_rq(&rq->cfs, rq);
6f505b16 7656 init_rt_rq(&rq->rt, rq);
dd41f596 7657#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7658 init_task_group.shares = init_task_group_load;
6f505b16 7659 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7660#ifdef CONFIG_CGROUP_SCHED
7661 /*
7662 * How much cpu bandwidth does init_task_group get?
7663 *
7664 * In case of task-groups formed thr' the cgroup filesystem, it
7665 * gets 100% of the cpu resources in the system. This overall
7666 * system cpu resource is divided among the tasks of
7667 * init_task_group and its child task-groups in a fair manner,
7668 * based on each entity's (task or task-group's) weight
7669 * (se->load.weight).
7670 *
7671 * In other words, if init_task_group has 10 tasks of weight
7672 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7673 * then A0's share of the cpu resource is:
7674 *
0d905bca 7675 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7676 *
7677 * We achieve this by letting init_task_group's tasks sit
7678 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7679 */
ec7dc8ac 7680 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7681#endif
354d60c2
DG
7682#endif /* CONFIG_FAIR_GROUP_SCHED */
7683
7684 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7685#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7686 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7687#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7688 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7689#endif
dd41f596 7690#endif
1da177e4 7691
dd41f596
IM
7692 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7693 rq->cpu_load[j] = 0;
1da177e4 7694#ifdef CONFIG_SMP
41c7ce9a 7695 rq->sd = NULL;
57d885fe 7696 rq->rd = NULL;
3f029d3c 7697 rq->post_schedule = 0;
1da177e4 7698 rq->active_balance = 0;
dd41f596 7699 rq->next_balance = jiffies;
1da177e4 7700 rq->push_cpu = 0;
0a2966b4 7701 rq->cpu = i;
1f11eb6a 7702 rq->online = 0;
1da177e4 7703 rq->migration_thread = NULL;
eae0c9df
MG
7704 rq->idle_stamp = 0;
7705 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7706 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7707 rq_attach_root(rq, &def_root_domain);
1da177e4 7708#endif
8f4d37ec 7709 init_rq_hrtick(rq);
1da177e4 7710 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7711 }
7712
2dd73a4f 7713 set_load_weight(&init_task);
b50f60ce 7714
e107be36
AK
7715#ifdef CONFIG_PREEMPT_NOTIFIERS
7716 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7717#endif
7718
c9819f45 7719#ifdef CONFIG_SMP
962cf36c 7720 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7721#endif
7722
b50f60ce 7723#ifdef CONFIG_RT_MUTEXES
1d615482 7724 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7725#endif
7726
1da177e4
LT
7727 /*
7728 * The boot idle thread does lazy MMU switching as well:
7729 */
7730 atomic_inc(&init_mm.mm_count);
7731 enter_lazy_tlb(&init_mm, current);
7732
7733 /*
7734 * Make us the idle thread. Technically, schedule() should not be
7735 * called from this thread, however somewhere below it might be,
7736 * but because we are the idle thread, we just pick up running again
7737 * when this runqueue becomes "idle".
7738 */
7739 init_idle(current, smp_processor_id());
dce48a84
TG
7740
7741 calc_load_update = jiffies + LOAD_FREQ;
7742
dd41f596
IM
7743 /*
7744 * During early bootup we pretend to be a normal task:
7745 */
7746 current->sched_class = &fair_sched_class;
6892b75e 7747
6a7b3dc3 7748 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7749 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7750#ifdef CONFIG_SMP
7d1e6a9b 7751#ifdef CONFIG_NO_HZ
49557e62 7752 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7753 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7754#endif
bdddd296
RR
7755 /* May be allocated at isolcpus cmdline parse time */
7756 if (cpu_isolated_map == NULL)
7757 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7758#endif /* SMP */
6a7b3dc3 7759
cdd6c482 7760 perf_event_init();
0d905bca 7761
6892b75e 7762 scheduler_running = 1;
1da177e4
LT
7763}
7764
7765#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7766static inline int preempt_count_equals(int preempt_offset)
7767{
234da7bc 7768 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7769
7770 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7771}
7772
d894837f 7773void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7774{
48f24c4d 7775#ifdef in_atomic
1da177e4
LT
7776 static unsigned long prev_jiffy; /* ratelimiting */
7777
e4aafea2
FW
7778 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7779 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7780 return;
7781 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7782 return;
7783 prev_jiffy = jiffies;
7784
3df0fc5b
PZ
7785 printk(KERN_ERR
7786 "BUG: sleeping function called from invalid context at %s:%d\n",
7787 file, line);
7788 printk(KERN_ERR
7789 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7790 in_atomic(), irqs_disabled(),
7791 current->pid, current->comm);
aef745fc
IM
7792
7793 debug_show_held_locks(current);
7794 if (irqs_disabled())
7795 print_irqtrace_events(current);
7796 dump_stack();
1da177e4
LT
7797#endif
7798}
7799EXPORT_SYMBOL(__might_sleep);
7800#endif
7801
7802#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7803static void normalize_task(struct rq *rq, struct task_struct *p)
7804{
7805 int on_rq;
3e51f33f 7806
3a5e4dc1
AK
7807 on_rq = p->se.on_rq;
7808 if (on_rq)
7809 deactivate_task(rq, p, 0);
7810 __setscheduler(rq, p, SCHED_NORMAL, 0);
7811 if (on_rq) {
7812 activate_task(rq, p, 0);
7813 resched_task(rq->curr);
7814 }
7815}
7816
1da177e4
LT
7817void normalize_rt_tasks(void)
7818{
a0f98a1c 7819 struct task_struct *g, *p;
1da177e4 7820 unsigned long flags;
70b97a7f 7821 struct rq *rq;
1da177e4 7822
4cf5d77a 7823 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7824 do_each_thread(g, p) {
178be793
IM
7825 /*
7826 * Only normalize user tasks:
7827 */
7828 if (!p->mm)
7829 continue;
7830
6cfb0d5d 7831 p->se.exec_start = 0;
6cfb0d5d 7832#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7833 p->se.statistics.wait_start = 0;
7834 p->se.statistics.sleep_start = 0;
7835 p->se.statistics.block_start = 0;
6cfb0d5d 7836#endif
dd41f596
IM
7837
7838 if (!rt_task(p)) {
7839 /*
7840 * Renice negative nice level userspace
7841 * tasks back to 0:
7842 */
7843 if (TASK_NICE(p) < 0 && p->mm)
7844 set_user_nice(p, 0);
1da177e4 7845 continue;
dd41f596 7846 }
1da177e4 7847
1d615482 7848 raw_spin_lock(&p->pi_lock);
b29739f9 7849 rq = __task_rq_lock(p);
1da177e4 7850
178be793 7851 normalize_task(rq, p);
3a5e4dc1 7852
b29739f9 7853 __task_rq_unlock(rq);
1d615482 7854 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7855 } while_each_thread(g, p);
7856
4cf5d77a 7857 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7858}
7859
7860#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7861
7862#ifdef CONFIG_IA64
7863/*
7864 * These functions are only useful for the IA64 MCA handling.
7865 *
7866 * They can only be called when the whole system has been
7867 * stopped - every CPU needs to be quiescent, and no scheduling
7868 * activity can take place. Using them for anything else would
7869 * be a serious bug, and as a result, they aren't even visible
7870 * under any other configuration.
7871 */
7872
7873/**
7874 * curr_task - return the current task for a given cpu.
7875 * @cpu: the processor in question.
7876 *
7877 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7878 */
36c8b586 7879struct task_struct *curr_task(int cpu)
1df5c10a
LT
7880{
7881 return cpu_curr(cpu);
7882}
7883
7884/**
7885 * set_curr_task - set the current task for a given cpu.
7886 * @cpu: the processor in question.
7887 * @p: the task pointer to set.
7888 *
7889 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7890 * are serviced on a separate stack. It allows the architecture to switch the
7891 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7892 * must be called with all CPU's synchronized, and interrupts disabled, the
7893 * and caller must save the original value of the current task (see
7894 * curr_task() above) and restore that value before reenabling interrupts and
7895 * re-starting the system.
7896 *
7897 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7898 */
36c8b586 7899void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7900{
7901 cpu_curr(cpu) = p;
7902}
7903
7904#endif
29f59db3 7905
bccbe08a
PZ
7906#ifdef CONFIG_FAIR_GROUP_SCHED
7907static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7908{
7909 int i;
7910
7911 for_each_possible_cpu(i) {
7912 if (tg->cfs_rq)
7913 kfree(tg->cfs_rq[i]);
7914 if (tg->se)
7915 kfree(tg->se[i]);
6f505b16
PZ
7916 }
7917
7918 kfree(tg->cfs_rq);
7919 kfree(tg->se);
6f505b16
PZ
7920}
7921
ec7dc8ac
DG
7922static
7923int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7924{
29f59db3 7925 struct cfs_rq *cfs_rq;
eab17229 7926 struct sched_entity *se;
9b5b7751 7927 struct rq *rq;
29f59db3
SV
7928 int i;
7929
434d53b0 7930 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7931 if (!tg->cfs_rq)
7932 goto err;
434d53b0 7933 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7934 if (!tg->se)
7935 goto err;
052f1dc7
PZ
7936
7937 tg->shares = NICE_0_LOAD;
29f59db3
SV
7938
7939 for_each_possible_cpu(i) {
9b5b7751 7940 rq = cpu_rq(i);
29f59db3 7941
eab17229
LZ
7942 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7943 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7944 if (!cfs_rq)
7945 goto err;
7946
eab17229
LZ
7947 se = kzalloc_node(sizeof(struct sched_entity),
7948 GFP_KERNEL, cpu_to_node(i));
29f59db3 7949 if (!se)
dfc12eb2 7950 goto err_free_rq;
29f59db3 7951
eab17229 7952 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7953 }
7954
7955 return 1;
7956
dfc12eb2
PC
7957 err_free_rq:
7958 kfree(cfs_rq);
bccbe08a
PZ
7959 err:
7960 return 0;
7961}
7962
7963static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7964{
7965 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7966 &cpu_rq(cpu)->leaf_cfs_rq_list);
7967}
7968
7969static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7970{
7971 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7972}
6d6bc0ad 7973#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7974static inline void free_fair_sched_group(struct task_group *tg)
7975{
7976}
7977
ec7dc8ac
DG
7978static inline
7979int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7980{
7981 return 1;
7982}
7983
7984static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7985{
7986}
7987
7988static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7989{
7990}
6d6bc0ad 7991#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7992
7993#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7994static void free_rt_sched_group(struct task_group *tg)
7995{
7996 int i;
7997
d0b27fa7
PZ
7998 destroy_rt_bandwidth(&tg->rt_bandwidth);
7999
bccbe08a
PZ
8000 for_each_possible_cpu(i) {
8001 if (tg->rt_rq)
8002 kfree(tg->rt_rq[i]);
8003 if (tg->rt_se)
8004 kfree(tg->rt_se[i]);
8005 }
8006
8007 kfree(tg->rt_rq);
8008 kfree(tg->rt_se);
8009}
8010
ec7dc8ac
DG
8011static
8012int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8013{
8014 struct rt_rq *rt_rq;
eab17229 8015 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8016 struct rq *rq;
8017 int i;
8018
434d53b0 8019 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8020 if (!tg->rt_rq)
8021 goto err;
434d53b0 8022 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8023 if (!tg->rt_se)
8024 goto err;
8025
d0b27fa7
PZ
8026 init_rt_bandwidth(&tg->rt_bandwidth,
8027 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8028
8029 for_each_possible_cpu(i) {
8030 rq = cpu_rq(i);
8031
eab17229
LZ
8032 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8033 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8034 if (!rt_rq)
8035 goto err;
29f59db3 8036
eab17229
LZ
8037 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8038 GFP_KERNEL, cpu_to_node(i));
6f505b16 8039 if (!rt_se)
dfc12eb2 8040 goto err_free_rq;
29f59db3 8041
eab17229 8042 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8043 }
8044
bccbe08a
PZ
8045 return 1;
8046
dfc12eb2
PC
8047 err_free_rq:
8048 kfree(rt_rq);
bccbe08a
PZ
8049 err:
8050 return 0;
8051}
8052
8053static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8054{
8055 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8056 &cpu_rq(cpu)->leaf_rt_rq_list);
8057}
8058
8059static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8060{
8061 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8062}
6d6bc0ad 8063#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8064static inline void free_rt_sched_group(struct task_group *tg)
8065{
8066}
8067
ec7dc8ac
DG
8068static inline
8069int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8070{
8071 return 1;
8072}
8073
8074static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8075{
8076}
8077
8078static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8079{
8080}
6d6bc0ad 8081#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8082
7c941438 8083#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8084static void free_sched_group(struct task_group *tg)
8085{
8086 free_fair_sched_group(tg);
8087 free_rt_sched_group(tg);
8088 kfree(tg);
8089}
8090
8091/* allocate runqueue etc for a new task group */
ec7dc8ac 8092struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8093{
8094 struct task_group *tg;
8095 unsigned long flags;
8096 int i;
8097
8098 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8099 if (!tg)
8100 return ERR_PTR(-ENOMEM);
8101
ec7dc8ac 8102 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8103 goto err;
8104
ec7dc8ac 8105 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8106 goto err;
8107
8ed36996 8108 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8109 for_each_possible_cpu(i) {
bccbe08a
PZ
8110 register_fair_sched_group(tg, i);
8111 register_rt_sched_group(tg, i);
9b5b7751 8112 }
6f505b16 8113 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8114
8115 WARN_ON(!parent); /* root should already exist */
8116
8117 tg->parent = parent;
f473aa5e 8118 INIT_LIST_HEAD(&tg->children);
09f2724a 8119 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8120 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8121
9b5b7751 8122 return tg;
29f59db3
SV
8123
8124err:
6f505b16 8125 free_sched_group(tg);
29f59db3
SV
8126 return ERR_PTR(-ENOMEM);
8127}
8128
9b5b7751 8129/* rcu callback to free various structures associated with a task group */
6f505b16 8130static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8131{
29f59db3 8132 /* now it should be safe to free those cfs_rqs */
6f505b16 8133 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8134}
8135
9b5b7751 8136/* Destroy runqueue etc associated with a task group */
4cf86d77 8137void sched_destroy_group(struct task_group *tg)
29f59db3 8138{
8ed36996 8139 unsigned long flags;
9b5b7751 8140 int i;
29f59db3 8141
8ed36996 8142 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8143 for_each_possible_cpu(i) {
bccbe08a
PZ
8144 unregister_fair_sched_group(tg, i);
8145 unregister_rt_sched_group(tg, i);
9b5b7751 8146 }
6f505b16 8147 list_del_rcu(&tg->list);
f473aa5e 8148 list_del_rcu(&tg->siblings);
8ed36996 8149 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8150
9b5b7751 8151 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8152 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8153}
8154
9b5b7751 8155/* change task's runqueue when it moves between groups.
3a252015
IM
8156 * The caller of this function should have put the task in its new group
8157 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8158 * reflect its new group.
9b5b7751
SV
8159 */
8160void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8161{
8162 int on_rq, running;
8163 unsigned long flags;
8164 struct rq *rq;
8165
8166 rq = task_rq_lock(tsk, &flags);
8167
051a1d1a 8168 running = task_current(rq, tsk);
29f59db3
SV
8169 on_rq = tsk->se.on_rq;
8170
0e1f3483 8171 if (on_rq)
29f59db3 8172 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8173 if (unlikely(running))
8174 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8175
6f505b16 8176 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8177
810b3817
PZ
8178#ifdef CONFIG_FAIR_GROUP_SCHED
8179 if (tsk->sched_class->moved_group)
88ec22d3 8180 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8181#endif
8182
0e1f3483
HS
8183 if (unlikely(running))
8184 tsk->sched_class->set_curr_task(rq);
8185 if (on_rq)
371fd7e7 8186 enqueue_task(rq, tsk, 0);
29f59db3 8187
29f59db3
SV
8188 task_rq_unlock(rq, &flags);
8189}
7c941438 8190#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8191
052f1dc7 8192#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8193static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8194{
8195 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8196 int on_rq;
8197
29f59db3 8198 on_rq = se->on_rq;
62fb1851 8199 if (on_rq)
29f59db3
SV
8200 dequeue_entity(cfs_rq, se, 0);
8201
8202 se->load.weight = shares;
e05510d0 8203 se->load.inv_weight = 0;
29f59db3 8204
62fb1851 8205 if (on_rq)
29f59db3 8206 enqueue_entity(cfs_rq, se, 0);
c09595f6 8207}
62fb1851 8208
c09595f6
PZ
8209static void set_se_shares(struct sched_entity *se, unsigned long shares)
8210{
8211 struct cfs_rq *cfs_rq = se->cfs_rq;
8212 struct rq *rq = cfs_rq->rq;
8213 unsigned long flags;
8214
05fa785c 8215 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8216 __set_se_shares(se, shares);
05fa785c 8217 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8218}
8219
8ed36996
PZ
8220static DEFINE_MUTEX(shares_mutex);
8221
4cf86d77 8222int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8223{
8224 int i;
8ed36996 8225 unsigned long flags;
c61935fd 8226
ec7dc8ac
DG
8227 /*
8228 * We can't change the weight of the root cgroup.
8229 */
8230 if (!tg->se[0])
8231 return -EINVAL;
8232
18d95a28
PZ
8233 if (shares < MIN_SHARES)
8234 shares = MIN_SHARES;
cb4ad1ff
MX
8235 else if (shares > MAX_SHARES)
8236 shares = MAX_SHARES;
62fb1851 8237
8ed36996 8238 mutex_lock(&shares_mutex);
9b5b7751 8239 if (tg->shares == shares)
5cb350ba 8240 goto done;
29f59db3 8241
8ed36996 8242 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8243 for_each_possible_cpu(i)
8244 unregister_fair_sched_group(tg, i);
f473aa5e 8245 list_del_rcu(&tg->siblings);
8ed36996 8246 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8247
8248 /* wait for any ongoing reference to this group to finish */
8249 synchronize_sched();
8250
8251 /*
8252 * Now we are free to modify the group's share on each cpu
8253 * w/o tripping rebalance_share or load_balance_fair.
8254 */
9b5b7751 8255 tg->shares = shares;
c09595f6
PZ
8256 for_each_possible_cpu(i) {
8257 /*
8258 * force a rebalance
8259 */
8260 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8261 set_se_shares(tg->se[i], shares);
c09595f6 8262 }
29f59db3 8263
6b2d7700
SV
8264 /*
8265 * Enable load balance activity on this group, by inserting it back on
8266 * each cpu's rq->leaf_cfs_rq_list.
8267 */
8ed36996 8268 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8269 for_each_possible_cpu(i)
8270 register_fair_sched_group(tg, i);
f473aa5e 8271 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8272 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8273done:
8ed36996 8274 mutex_unlock(&shares_mutex);
9b5b7751 8275 return 0;
29f59db3
SV
8276}
8277
5cb350ba
DG
8278unsigned long sched_group_shares(struct task_group *tg)
8279{
8280 return tg->shares;
8281}
052f1dc7 8282#endif
5cb350ba 8283
052f1dc7 8284#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8285/*
9f0c1e56 8286 * Ensure that the real time constraints are schedulable.
6f505b16 8287 */
9f0c1e56
PZ
8288static DEFINE_MUTEX(rt_constraints_mutex);
8289
8290static unsigned long to_ratio(u64 period, u64 runtime)
8291{
8292 if (runtime == RUNTIME_INF)
9a7e0b18 8293 return 1ULL << 20;
9f0c1e56 8294
9a7e0b18 8295 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8296}
8297
9a7e0b18
PZ
8298/* Must be called with tasklist_lock held */
8299static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8300{
9a7e0b18 8301 struct task_struct *g, *p;
b40b2e8e 8302
9a7e0b18
PZ
8303 do_each_thread(g, p) {
8304 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8305 return 1;
8306 } while_each_thread(g, p);
b40b2e8e 8307
9a7e0b18
PZ
8308 return 0;
8309}
b40b2e8e 8310
9a7e0b18
PZ
8311struct rt_schedulable_data {
8312 struct task_group *tg;
8313 u64 rt_period;
8314 u64 rt_runtime;
8315};
b40b2e8e 8316
9a7e0b18
PZ
8317static int tg_schedulable(struct task_group *tg, void *data)
8318{
8319 struct rt_schedulable_data *d = data;
8320 struct task_group *child;
8321 unsigned long total, sum = 0;
8322 u64 period, runtime;
b40b2e8e 8323
9a7e0b18
PZ
8324 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8325 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8326
9a7e0b18
PZ
8327 if (tg == d->tg) {
8328 period = d->rt_period;
8329 runtime = d->rt_runtime;
b40b2e8e 8330 }
b40b2e8e 8331
4653f803
PZ
8332 /*
8333 * Cannot have more runtime than the period.
8334 */
8335 if (runtime > period && runtime != RUNTIME_INF)
8336 return -EINVAL;
6f505b16 8337
4653f803
PZ
8338 /*
8339 * Ensure we don't starve existing RT tasks.
8340 */
9a7e0b18
PZ
8341 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8342 return -EBUSY;
6f505b16 8343
9a7e0b18 8344 total = to_ratio(period, runtime);
6f505b16 8345
4653f803
PZ
8346 /*
8347 * Nobody can have more than the global setting allows.
8348 */
8349 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8350 return -EINVAL;
6f505b16 8351
4653f803
PZ
8352 /*
8353 * The sum of our children's runtime should not exceed our own.
8354 */
9a7e0b18
PZ
8355 list_for_each_entry_rcu(child, &tg->children, siblings) {
8356 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8357 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8358
9a7e0b18
PZ
8359 if (child == d->tg) {
8360 period = d->rt_period;
8361 runtime = d->rt_runtime;
8362 }
6f505b16 8363
9a7e0b18 8364 sum += to_ratio(period, runtime);
9f0c1e56 8365 }
6f505b16 8366
9a7e0b18
PZ
8367 if (sum > total)
8368 return -EINVAL;
8369
8370 return 0;
6f505b16
PZ
8371}
8372
9a7e0b18 8373static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8374{
9a7e0b18
PZ
8375 struct rt_schedulable_data data = {
8376 .tg = tg,
8377 .rt_period = period,
8378 .rt_runtime = runtime,
8379 };
8380
8381 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8382}
8383
d0b27fa7
PZ
8384static int tg_set_bandwidth(struct task_group *tg,
8385 u64 rt_period, u64 rt_runtime)
6f505b16 8386{
ac086bc2 8387 int i, err = 0;
9f0c1e56 8388
9f0c1e56 8389 mutex_lock(&rt_constraints_mutex);
521f1a24 8390 read_lock(&tasklist_lock);
9a7e0b18
PZ
8391 err = __rt_schedulable(tg, rt_period, rt_runtime);
8392 if (err)
9f0c1e56 8393 goto unlock;
ac086bc2 8394
0986b11b 8395 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8396 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8397 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8398
8399 for_each_possible_cpu(i) {
8400 struct rt_rq *rt_rq = tg->rt_rq[i];
8401
0986b11b 8402 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8403 rt_rq->rt_runtime = rt_runtime;
0986b11b 8404 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8405 }
0986b11b 8406 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8407 unlock:
521f1a24 8408 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8409 mutex_unlock(&rt_constraints_mutex);
8410
8411 return err;
6f505b16
PZ
8412}
8413
d0b27fa7
PZ
8414int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8415{
8416 u64 rt_runtime, rt_period;
8417
8418 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8419 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8420 if (rt_runtime_us < 0)
8421 rt_runtime = RUNTIME_INF;
8422
8423 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8424}
8425
9f0c1e56
PZ
8426long sched_group_rt_runtime(struct task_group *tg)
8427{
8428 u64 rt_runtime_us;
8429
d0b27fa7 8430 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8431 return -1;
8432
d0b27fa7 8433 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8434 do_div(rt_runtime_us, NSEC_PER_USEC);
8435 return rt_runtime_us;
8436}
d0b27fa7
PZ
8437
8438int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8439{
8440 u64 rt_runtime, rt_period;
8441
8442 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8443 rt_runtime = tg->rt_bandwidth.rt_runtime;
8444
619b0488
R
8445 if (rt_period == 0)
8446 return -EINVAL;
8447
d0b27fa7
PZ
8448 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8449}
8450
8451long sched_group_rt_period(struct task_group *tg)
8452{
8453 u64 rt_period_us;
8454
8455 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8456 do_div(rt_period_us, NSEC_PER_USEC);
8457 return rt_period_us;
8458}
8459
8460static int sched_rt_global_constraints(void)
8461{
4653f803 8462 u64 runtime, period;
d0b27fa7
PZ
8463 int ret = 0;
8464
ec5d4989
HS
8465 if (sysctl_sched_rt_period <= 0)
8466 return -EINVAL;
8467
4653f803
PZ
8468 runtime = global_rt_runtime();
8469 period = global_rt_period();
8470
8471 /*
8472 * Sanity check on the sysctl variables.
8473 */
8474 if (runtime > period && runtime != RUNTIME_INF)
8475 return -EINVAL;
10b612f4 8476
d0b27fa7 8477 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8478 read_lock(&tasklist_lock);
4653f803 8479 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8480 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8481 mutex_unlock(&rt_constraints_mutex);
8482
8483 return ret;
8484}
54e99124
DG
8485
8486int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8487{
8488 /* Don't accept realtime tasks when there is no way for them to run */
8489 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8490 return 0;
8491
8492 return 1;
8493}
8494
6d6bc0ad 8495#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8496static int sched_rt_global_constraints(void)
8497{
ac086bc2
PZ
8498 unsigned long flags;
8499 int i;
8500
ec5d4989
HS
8501 if (sysctl_sched_rt_period <= 0)
8502 return -EINVAL;
8503
60aa605d
PZ
8504 /*
8505 * There's always some RT tasks in the root group
8506 * -- migration, kstopmachine etc..
8507 */
8508 if (sysctl_sched_rt_runtime == 0)
8509 return -EBUSY;
8510
0986b11b 8511 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8512 for_each_possible_cpu(i) {
8513 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8514
0986b11b 8515 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8516 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8517 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8518 }
0986b11b 8519 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8520
d0b27fa7
PZ
8521 return 0;
8522}
6d6bc0ad 8523#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8524
8525int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8526 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8527 loff_t *ppos)
8528{
8529 int ret;
8530 int old_period, old_runtime;
8531 static DEFINE_MUTEX(mutex);
8532
8533 mutex_lock(&mutex);
8534 old_period = sysctl_sched_rt_period;
8535 old_runtime = sysctl_sched_rt_runtime;
8536
8d65af78 8537 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8538
8539 if (!ret && write) {
8540 ret = sched_rt_global_constraints();
8541 if (ret) {
8542 sysctl_sched_rt_period = old_period;
8543 sysctl_sched_rt_runtime = old_runtime;
8544 } else {
8545 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8546 def_rt_bandwidth.rt_period =
8547 ns_to_ktime(global_rt_period());
8548 }
8549 }
8550 mutex_unlock(&mutex);
8551
8552 return ret;
8553}
68318b8e 8554
052f1dc7 8555#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8556
8557/* return corresponding task_group object of a cgroup */
2b01dfe3 8558static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8559{
2b01dfe3
PM
8560 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8561 struct task_group, css);
68318b8e
SV
8562}
8563
8564static struct cgroup_subsys_state *
2b01dfe3 8565cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8566{
ec7dc8ac 8567 struct task_group *tg, *parent;
68318b8e 8568
2b01dfe3 8569 if (!cgrp->parent) {
68318b8e 8570 /* This is early initialization for the top cgroup */
68318b8e
SV
8571 return &init_task_group.css;
8572 }
8573
ec7dc8ac
DG
8574 parent = cgroup_tg(cgrp->parent);
8575 tg = sched_create_group(parent);
68318b8e
SV
8576 if (IS_ERR(tg))
8577 return ERR_PTR(-ENOMEM);
8578
68318b8e
SV
8579 return &tg->css;
8580}
8581
41a2d6cf
IM
8582static void
8583cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8584{
2b01dfe3 8585 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8586
8587 sched_destroy_group(tg);
8588}
8589
41a2d6cf 8590static int
be367d09 8591cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8592{
b68aa230 8593#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8594 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8595 return -EINVAL;
8596#else
68318b8e
SV
8597 /* We don't support RT-tasks being in separate groups */
8598 if (tsk->sched_class != &fair_sched_class)
8599 return -EINVAL;
b68aa230 8600#endif
be367d09
BB
8601 return 0;
8602}
68318b8e 8603
be367d09
BB
8604static int
8605cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8606 struct task_struct *tsk, bool threadgroup)
8607{
8608 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8609 if (retval)
8610 return retval;
8611 if (threadgroup) {
8612 struct task_struct *c;
8613 rcu_read_lock();
8614 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8615 retval = cpu_cgroup_can_attach_task(cgrp, c);
8616 if (retval) {
8617 rcu_read_unlock();
8618 return retval;
8619 }
8620 }
8621 rcu_read_unlock();
8622 }
68318b8e
SV
8623 return 0;
8624}
8625
8626static void
2b01dfe3 8627cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8628 struct cgroup *old_cont, struct task_struct *tsk,
8629 bool threadgroup)
68318b8e
SV
8630{
8631 sched_move_task(tsk);
be367d09
BB
8632 if (threadgroup) {
8633 struct task_struct *c;
8634 rcu_read_lock();
8635 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8636 sched_move_task(c);
8637 }
8638 rcu_read_unlock();
8639 }
68318b8e
SV
8640}
8641
052f1dc7 8642#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8643static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8644 u64 shareval)
68318b8e 8645{
2b01dfe3 8646 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8647}
8648
f4c753b7 8649static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8650{
2b01dfe3 8651 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8652
8653 return (u64) tg->shares;
8654}
6d6bc0ad 8655#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8656
052f1dc7 8657#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8658static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8659 s64 val)
6f505b16 8660{
06ecb27c 8661 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8662}
8663
06ecb27c 8664static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8665{
06ecb27c 8666 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8667}
d0b27fa7
PZ
8668
8669static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8670 u64 rt_period_us)
8671{
8672 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8673}
8674
8675static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8676{
8677 return sched_group_rt_period(cgroup_tg(cgrp));
8678}
6d6bc0ad 8679#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8680
fe5c7cc2 8681static struct cftype cpu_files[] = {
052f1dc7 8682#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8683 {
8684 .name = "shares",
f4c753b7
PM
8685 .read_u64 = cpu_shares_read_u64,
8686 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8687 },
052f1dc7
PZ
8688#endif
8689#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8690 {
9f0c1e56 8691 .name = "rt_runtime_us",
06ecb27c
PM
8692 .read_s64 = cpu_rt_runtime_read,
8693 .write_s64 = cpu_rt_runtime_write,
6f505b16 8694 },
d0b27fa7
PZ
8695 {
8696 .name = "rt_period_us",
f4c753b7
PM
8697 .read_u64 = cpu_rt_period_read_uint,
8698 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8699 },
052f1dc7 8700#endif
68318b8e
SV
8701};
8702
8703static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8704{
fe5c7cc2 8705 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8706}
8707
8708struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8709 .name = "cpu",
8710 .create = cpu_cgroup_create,
8711 .destroy = cpu_cgroup_destroy,
8712 .can_attach = cpu_cgroup_can_attach,
8713 .attach = cpu_cgroup_attach,
8714 .populate = cpu_cgroup_populate,
8715 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8716 .early_init = 1,
8717};
8718
052f1dc7 8719#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8720
8721#ifdef CONFIG_CGROUP_CPUACCT
8722
8723/*
8724 * CPU accounting code for task groups.
8725 *
8726 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8727 * (balbir@in.ibm.com).
8728 */
8729
934352f2 8730/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8731struct cpuacct {
8732 struct cgroup_subsys_state css;
8733 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8734 u64 __percpu *cpuusage;
ef12fefa 8735 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8736 struct cpuacct *parent;
d842de87
SV
8737};
8738
8739struct cgroup_subsys cpuacct_subsys;
8740
8741/* return cpu accounting group corresponding to this container */
32cd756a 8742static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8743{
32cd756a 8744 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8745 struct cpuacct, css);
8746}
8747
8748/* return cpu accounting group to which this task belongs */
8749static inline struct cpuacct *task_ca(struct task_struct *tsk)
8750{
8751 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8752 struct cpuacct, css);
8753}
8754
8755/* create a new cpu accounting group */
8756static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8757 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8758{
8759 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8760 int i;
d842de87
SV
8761
8762 if (!ca)
ef12fefa 8763 goto out;
d842de87
SV
8764
8765 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8766 if (!ca->cpuusage)
8767 goto out_free_ca;
8768
8769 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8770 if (percpu_counter_init(&ca->cpustat[i], 0))
8771 goto out_free_counters;
d842de87 8772
934352f2
BR
8773 if (cgrp->parent)
8774 ca->parent = cgroup_ca(cgrp->parent);
8775
d842de87 8776 return &ca->css;
ef12fefa
BR
8777
8778out_free_counters:
8779 while (--i >= 0)
8780 percpu_counter_destroy(&ca->cpustat[i]);
8781 free_percpu(ca->cpuusage);
8782out_free_ca:
8783 kfree(ca);
8784out:
8785 return ERR_PTR(-ENOMEM);
d842de87
SV
8786}
8787
8788/* destroy an existing cpu accounting group */
41a2d6cf 8789static void
32cd756a 8790cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8791{
32cd756a 8792 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8793 int i;
d842de87 8794
ef12fefa
BR
8795 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8796 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8797 free_percpu(ca->cpuusage);
8798 kfree(ca);
8799}
8800
720f5498
KC
8801static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8802{
b36128c8 8803 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8804 u64 data;
8805
8806#ifndef CONFIG_64BIT
8807 /*
8808 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8809 */
05fa785c 8810 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8811 data = *cpuusage;
05fa785c 8812 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8813#else
8814 data = *cpuusage;
8815#endif
8816
8817 return data;
8818}
8819
8820static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8821{
b36128c8 8822 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8823
8824#ifndef CONFIG_64BIT
8825 /*
8826 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8827 */
05fa785c 8828 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8829 *cpuusage = val;
05fa785c 8830 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8831#else
8832 *cpuusage = val;
8833#endif
8834}
8835
d842de87 8836/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8837static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8838{
32cd756a 8839 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8840 u64 totalcpuusage = 0;
8841 int i;
8842
720f5498
KC
8843 for_each_present_cpu(i)
8844 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8845
8846 return totalcpuusage;
8847}
8848
0297b803
DG
8849static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8850 u64 reset)
8851{
8852 struct cpuacct *ca = cgroup_ca(cgrp);
8853 int err = 0;
8854 int i;
8855
8856 if (reset) {
8857 err = -EINVAL;
8858 goto out;
8859 }
8860
720f5498
KC
8861 for_each_present_cpu(i)
8862 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8863
0297b803
DG
8864out:
8865 return err;
8866}
8867
e9515c3c
KC
8868static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8869 struct seq_file *m)
8870{
8871 struct cpuacct *ca = cgroup_ca(cgroup);
8872 u64 percpu;
8873 int i;
8874
8875 for_each_present_cpu(i) {
8876 percpu = cpuacct_cpuusage_read(ca, i);
8877 seq_printf(m, "%llu ", (unsigned long long) percpu);
8878 }
8879 seq_printf(m, "\n");
8880 return 0;
8881}
8882
ef12fefa
BR
8883static const char *cpuacct_stat_desc[] = {
8884 [CPUACCT_STAT_USER] = "user",
8885 [CPUACCT_STAT_SYSTEM] = "system",
8886};
8887
8888static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8889 struct cgroup_map_cb *cb)
8890{
8891 struct cpuacct *ca = cgroup_ca(cgrp);
8892 int i;
8893
8894 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8895 s64 val = percpu_counter_read(&ca->cpustat[i]);
8896 val = cputime64_to_clock_t(val);
8897 cb->fill(cb, cpuacct_stat_desc[i], val);
8898 }
8899 return 0;
8900}
8901
d842de87
SV
8902static struct cftype files[] = {
8903 {
8904 .name = "usage",
f4c753b7
PM
8905 .read_u64 = cpuusage_read,
8906 .write_u64 = cpuusage_write,
d842de87 8907 },
e9515c3c
KC
8908 {
8909 .name = "usage_percpu",
8910 .read_seq_string = cpuacct_percpu_seq_read,
8911 },
ef12fefa
BR
8912 {
8913 .name = "stat",
8914 .read_map = cpuacct_stats_show,
8915 },
d842de87
SV
8916};
8917
32cd756a 8918static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8919{
32cd756a 8920 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8921}
8922
8923/*
8924 * charge this task's execution time to its accounting group.
8925 *
8926 * called with rq->lock held.
8927 */
8928static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8929{
8930 struct cpuacct *ca;
934352f2 8931 int cpu;
d842de87 8932
c40c6f85 8933 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8934 return;
8935
934352f2 8936 cpu = task_cpu(tsk);
a18b83b7
BR
8937
8938 rcu_read_lock();
8939
d842de87 8940 ca = task_ca(tsk);
d842de87 8941
934352f2 8942 for (; ca; ca = ca->parent) {
b36128c8 8943 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8944 *cpuusage += cputime;
8945 }
a18b83b7
BR
8946
8947 rcu_read_unlock();
d842de87
SV
8948}
8949
fa535a77
AB
8950/*
8951 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8952 * in cputime_t units. As a result, cpuacct_update_stats calls
8953 * percpu_counter_add with values large enough to always overflow the
8954 * per cpu batch limit causing bad SMP scalability.
8955 *
8956 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8957 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8958 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8959 */
8960#ifdef CONFIG_SMP
8961#define CPUACCT_BATCH \
8962 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8963#else
8964#define CPUACCT_BATCH 0
8965#endif
8966
ef12fefa
BR
8967/*
8968 * Charge the system/user time to the task's accounting group.
8969 */
8970static void cpuacct_update_stats(struct task_struct *tsk,
8971 enum cpuacct_stat_index idx, cputime_t val)
8972{
8973 struct cpuacct *ca;
fa535a77 8974 int batch = CPUACCT_BATCH;
ef12fefa
BR
8975
8976 if (unlikely(!cpuacct_subsys.active))
8977 return;
8978
8979 rcu_read_lock();
8980 ca = task_ca(tsk);
8981
8982 do {
fa535a77 8983 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8984 ca = ca->parent;
8985 } while (ca);
8986 rcu_read_unlock();
8987}
8988
d842de87
SV
8989struct cgroup_subsys cpuacct_subsys = {
8990 .name = "cpuacct",
8991 .create = cpuacct_create,
8992 .destroy = cpuacct_destroy,
8993 .populate = cpuacct_populate,
8994 .subsys_id = cpuacct_subsys_id,
8995};
8996#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8997
8998#ifndef CONFIG_SMP
8999
9000int rcu_expedited_torture_stats(char *page)
9001{
9002 return 0;
9003}
9004EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9005
9006void synchronize_sched_expedited(void)
9007{
9008}
9009EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9010
9011#else /* #ifndef CONFIG_SMP */
9012
9013static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9014static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9015
9016#define RCU_EXPEDITED_STATE_POST -2
9017#define RCU_EXPEDITED_STATE_IDLE -1
9018
9019static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9020
9021int rcu_expedited_torture_stats(char *page)
9022{
9023 int cnt = 0;
9024 int cpu;
9025
9026 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9027 for_each_online_cpu(cpu) {
9028 cnt += sprintf(&page[cnt], " %d:%d",
9029 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9030 }
9031 cnt += sprintf(&page[cnt], "\n");
9032 return cnt;
9033}
9034EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9035
9036static long synchronize_sched_expedited_count;
9037
9038/*
9039 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9040 * approach to force grace period to end quickly. This consumes
9041 * significant time on all CPUs, and is thus not recommended for
9042 * any sort of common-case code.
9043 *
9044 * Note that it is illegal to call this function while holding any
9045 * lock that is acquired by a CPU-hotplug notifier. Failing to
9046 * observe this restriction will result in deadlock.
9047 */
9048void synchronize_sched_expedited(void)
9049{
9050 int cpu;
9051 unsigned long flags;
9052 bool need_full_sync = 0;
9053 struct rq *rq;
9054 struct migration_req *req;
9055 long snap;
9056 int trycount = 0;
9057
9058 smp_mb(); /* ensure prior mod happens before capturing snap. */
9059 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9060 get_online_cpus();
9061 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9062 put_online_cpus();
9063 if (trycount++ < 10)
9064 udelay(trycount * num_online_cpus());
9065 else {
9066 synchronize_sched();
9067 return;
9068 }
9069 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9070 smp_mb(); /* ensure test happens before caller kfree */
9071 return;
9072 }
9073 get_online_cpus();
9074 }
9075 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9076 for_each_online_cpu(cpu) {
9077 rq = cpu_rq(cpu);
9078 req = &per_cpu(rcu_migration_req, cpu);
9079 init_completion(&req->done);
9080 req->task = NULL;
9081 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9082 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9083 list_add(&req->list, &rq->migration_queue);
05fa785c 9084 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9085 wake_up_process(rq->migration_thread);
9086 }
9087 for_each_online_cpu(cpu) {
9088 rcu_expedited_state = cpu;
9089 req = &per_cpu(rcu_migration_req, cpu);
9090 rq = cpu_rq(cpu);
9091 wait_for_completion(&req->done);
05fa785c 9092 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9093 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9094 need_full_sync = 1;
9095 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9096 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9097 }
9098 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9099 synchronize_sched_expedited_count++;
03b042bf
PM
9100 mutex_unlock(&rcu_sched_expedited_mutex);
9101 put_online_cpus();
9102 if (need_full_sync)
9103 synchronize_sched();
9104}
9105EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9106
9107#endif /* #else #ifndef CONFIG_SMP */