sched: Make select_fallback_rq() cpuset friendly
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
7c941438 236#ifdef CONFIG_CGROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
68318b8e 246 struct cgroup_subsys_state css;
6c415b92 247
052f1dc7 248#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
052f1dc7
PZ
254#endif
255
256#ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
d0b27fa7 260 struct rt_bandwidth rt_bandwidth;
052f1dc7 261#endif
6b2d7700 262
ae8393e5 263 struct rcu_head rcu;
6f505b16 264 struct list_head list;
f473aa5e
PZ
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
29f59db3
SV
269};
270
eff766a6 271#define root_task_group init_task_group
6f505b16 272
8ed36996 273/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
274 * a task group's cpu shares.
275 */
8ed36996 276static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 277
e9036b36
CG
278#ifdef CONFIG_FAIR_GROUP_SCHED
279
57310a98
PZ
280#ifdef CONFIG_SMP
281static int root_task_group_empty(void)
282{
283 return list_empty(&root_task_group.children);
284}
285#endif
286
052f1dc7 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 288
cb4ad1ff 289/*
2e084786
LJ
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
cb4ad1ff
MX
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
18d95a28 297#define MIN_SHARES 2
2e084786 298#define MAX_SHARES (1UL << 18)
18d95a28 299
052f1dc7
PZ
300static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301#endif
302
29f59db3 303/* Default task group.
3a252015 304 * Every task in system belong to this group at bootup.
29f59db3 305 */
434d53b0 306struct task_group init_task_group;
29f59db3
SV
307
308/* return group to which a task belongs */
4cf86d77 309static inline struct task_group *task_group(struct task_struct *p)
29f59db3 310{
4cf86d77 311 struct task_group *tg;
9b5b7751 312
7c941438 313#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
24e377a8 316#else
41a2d6cf 317 tg = &init_task_group;
24e377a8 318#endif
9b5b7751 319 return tg;
29f59db3
SV
320}
321
322/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 323static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 324{
052f1dc7 325#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
052f1dc7 328#endif
6f505b16 329
052f1dc7 330#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 333#endif
29f59db3
SV
334}
335
336#else
337
6f505b16 338static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
339static inline struct task_group *task_group(struct task_struct *p)
340{
341 return NULL;
342}
29f59db3 343
7c941438 344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 345
6aa645ea
IM
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
6aa645ea 351 u64 exec_clock;
e9acbff6 352 u64 min_vruntime;
6aa645ea
IM
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
4a55bd5e
PZ
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
4793241b 364 struct sched_entity *curr, *next, *last;
ddc97297 365
5ac5c4d6 366 unsigned int nr_spread_over;
ddc97297 367
62160e3f 368#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
41a2d6cf
IM
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
41a2d6cf
IM
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
381
382#ifdef CONFIG_SMP
c09595f6 383 /*
c8cba857 384 * the part of load.weight contributed by tasks
c09595f6 385 */
c8cba857 386 unsigned long task_weight;
c09595f6 387
c8cba857
PZ
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
c09595f6 395
c8cba857
PZ
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
f1d239f7
PZ
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
c09595f6 405#endif
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
414 struct {
415 int curr; /* highest queued rt task prio */
398a153b 416#ifdef CONFIG_SMP
e864c499 417 int next; /* next highest */
398a153b 418#endif
e864c499 419 } highest_prio;
6f505b16 420#endif
fa85ae24 421#ifdef CONFIG_SMP
73fe6aae 422 unsigned long rt_nr_migratory;
a1ba4d8b 423 unsigned long rt_nr_total;
a22d7fc1 424 int overloaded;
917b627d 425 struct plist_head pushable_tasks;
fa85ae24 426#endif
6f505b16 427 int rt_throttled;
fa85ae24 428 u64 rt_time;
ac086bc2 429 u64 rt_runtime;
ea736ed5 430 /* Nests inside the rq lock: */
0986b11b 431 raw_spinlock_t rt_runtime_lock;
6f505b16 432
052f1dc7 433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
434 unsigned long rt_nr_boosted;
435
6f505b16
PZ
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
6f505b16 439#endif
6aa645ea
IM
440};
441
57d885fe
GH
442#ifdef CONFIG_SMP
443
444/*
445 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
57d885fe
GH
451 */
452struct root_domain {
453 atomic_t refcount;
c6c4927b
RR
454 cpumask_var_t span;
455 cpumask_var_t online;
637f5085 456
0eab9146 457 /*
637f5085
GH
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
c6c4927b 461 cpumask_var_t rto_mask;
0eab9146 462 atomic_t rto_count;
6e0534f2
GH
463#ifdef CONFIG_SMP
464 struct cpupri cpupri;
465#endif
57d885fe
GH
466};
467
dc938520
GH
468/*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
57d885fe
GH
472static struct root_domain def_root_domain;
473
474#endif
475
1da177e4
LT
476/*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
70b97a7f 483struct rq {
d8016491 484 /* runqueue lock: */
05fa785c 485 raw_spinlock_t lock;
1da177e4
LT
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
6aa645ea
IM
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 494#ifdef CONFIG_NO_HZ
39c0cbe2 495 u64 nohz_stamp;
46cb4b7c
SS
496 unsigned char in_nohz_recently;
497#endif
a64692a3
MG
498 unsigned int skip_clock_update;
499
d8016491
IM
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load;
6aa645ea
IM
502 unsigned long nr_load_updates;
503 u64 nr_switches;
504
505 struct cfs_rq cfs;
6f505b16 506 struct rt_rq rt;
6f505b16 507
6aa645ea 508#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
511#endif
512#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 513 struct list_head leaf_rt_rq_list;
1da177e4 514#endif
1da177e4
LT
515
516 /*
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
521 */
522 unsigned long nr_uninterruptible;
523
36c8b586 524 struct task_struct *curr, *idle;
c9819f45 525 unsigned long next_balance;
1da177e4 526 struct mm_struct *prev_mm;
6aa645ea 527
3e51f33f 528 u64 clock;
6aa645ea 529
1da177e4
LT
530 atomic_t nr_iowait;
531
532#ifdef CONFIG_SMP
0eab9146 533 struct root_domain *rd;
1da177e4
LT
534 struct sched_domain *sd;
535
a0a522ce 536 unsigned char idle_at_tick;
1da177e4 537 /* For active balancing */
3f029d3c 538 int post_schedule;
1da177e4
LT
539 int active_balance;
540 int push_cpu;
d8016491
IM
541 /* cpu of this runqueue: */
542 int cpu;
1f11eb6a 543 int online;
1da177e4 544
a8a51d5e 545 unsigned long avg_load_per_task;
1da177e4 546
36c8b586 547 struct task_struct *migration_thread;
1da177e4 548 struct list_head migration_queue;
e9e9250b
PZ
549
550 u64 rt_avg;
551 u64 age_stamp;
1b9508f6
MG
552 u64 idle_stamp;
553 u64 avg_idle;
1da177e4
LT
554#endif
555
dce48a84
TG
556 /* calc_load related fields */
557 unsigned long calc_load_update;
558 long calc_load_active;
559
8f4d37ec 560#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
561#ifdef CONFIG_SMP
562 int hrtick_csd_pending;
563 struct call_single_data hrtick_csd;
564#endif
8f4d37ec
PZ
565 struct hrtimer hrtick_timer;
566#endif
567
1da177e4
LT
568#ifdef CONFIG_SCHEDSTATS
569 /* latency stats */
570 struct sched_info rq_sched_info;
9c2c4802
KC
571 unsigned long long rq_cpu_time;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
573
574 /* sys_sched_yield() stats */
480b9434 575 unsigned int yld_count;
1da177e4
LT
576
577 /* schedule() stats */
480b9434
KC
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
1da177e4
LT
581
582 /* try_to_wake_up() stats */
480b9434
KC
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
b8efb561
IM
585
586 /* BKL stats */
480b9434 587 unsigned int bkl_count;
1da177e4
LT
588#endif
589};
590
f34e3b61 591static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 592
7d478721
PZ
593static inline
594void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 595{
7d478721 596 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
597
598 /*
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
601 */
602 if (test_tsk_need_resched(p))
603 rq->skip_clock_update = 1;
dd41f596
IM
604}
605
0a2966b4
CL
606static inline int cpu_of(struct rq *rq)
607{
608#ifdef CONFIG_SMP
609 return rq->cpu;
610#else
611 return 0;
612#endif
613}
614
497f0ab3 615#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
619
674311d5
NP
620/*
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 622 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
623 *
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
626 */
48f24c4d 627#define for_each_domain(cpu, __sd) \
497f0ab3 628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
629
630#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631#define this_rq() (&__get_cpu_var(runqueues))
632#define task_rq(p) cpu_rq(task_cpu(p))
633#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 634#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 635
aa9c4c0f 636inline void update_rq_clock(struct rq *rq)
3e51f33f 637{
a64692a3
MG
638 if (!rq->skip_clock_update)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
640}
641
bf5c91ba
IM
642/*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645#ifdef CONFIG_SCHED_DEBUG
646# define const_debug __read_mostly
647#else
648# define const_debug static const
649#endif
650
017730c1
IM
651/**
652 * runqueue_is_locked
e17b38bf 653 * @cpu: the processor in question.
017730c1
IM
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
89f19f04 659int runqueue_is_locked(int cpu)
017730c1 660{
05fa785c 661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
662}
663
bf5c91ba
IM
664/*
665 * Debugging: various feature bits
666 */
f00b45c1
PZ
667
668#define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
bf5c91ba 671enum {
f00b45c1 672#include "sched_features.h"
bf5c91ba
IM
673};
674
f00b45c1
PZ
675#undef SCHED_FEAT
676
677#define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
bf5c91ba 680const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
681#include "sched_features.h"
682 0;
683
684#undef SCHED_FEAT
685
686#ifdef CONFIG_SCHED_DEBUG
687#define SCHED_FEAT(name, enabled) \
688 #name ,
689
983ed7a6 690static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
691#include "sched_features.h"
692 NULL
693};
694
695#undef SCHED_FEAT
696
34f3a814 697static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 698{
f00b45c1
PZ
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 705 }
34f3a814 706 seq_puts(m, "\n");
f00b45c1 707
34f3a814 708 return 0;
f00b45c1
PZ
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
42994724 748 *ppos += cnt;
f00b45c1
PZ
749
750 return cnt;
751}
752
34f3a814
LZ
753static int sched_feat_open(struct inode *inode, struct file *filp)
754{
755 return single_open(filp, sched_feat_show, NULL);
756}
757
828c0950 758static const struct file_operations sched_feat_fops = {
34f3a814
LZ
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
f00b45c1
PZ
764};
765
766static __init int sched_init_debug(void)
767{
f00b45c1
PZ
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772}
773late_initcall(sched_init_debug);
774
775#endif
776
777#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 778
b82d9fdd
PZ
779/*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
2398f2c6
PZ
785/*
786 * ratelimit for updating the group shares.
55cd5340 787 * default: 0.25ms
2398f2c6 788 */
55cd5340 789unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 790unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 791
ffda12a1
PZ
792/*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797unsigned int sysctl_sched_shares_thresh = 4;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299
PZ
916/*
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
919 *
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
923 */
924static inline int task_is_waking(struct task_struct *p)
925{
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
927}
928
b29739f9
IM
929/*
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
932 */
70b97a7f 933static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
934 __acquires(rq->lock)
935{
0970d299
PZ
936 struct rq *rq;
937
3a5c359a 938 for (;;) {
0970d299
PZ
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
05fa785c 942 raw_spin_lock(&rq->lock);
0970d299 943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 944 return rq;
05fa785c 945 raw_spin_unlock(&rq->lock);
b29739f9 946 }
b29739f9
IM
947}
948
1da177e4
LT
949/*
950 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 951 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
952 * explicitly disabling preemption.
953 */
70b97a7f 954static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
955 __acquires(rq->lock)
956{
70b97a7f 957 struct rq *rq;
1da177e4 958
3a5c359a 959 for (;;) {
0970d299
PZ
960 while (task_is_waking(p))
961 cpu_relax();
3a5c359a
AK
962 local_irq_save(*flags);
963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
0970d299 965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 966 return rq;
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
ad474cac
ON
971void task_rq_unlock_wait(struct task_struct *p)
972{
973 struct rq *rq = task_rq(p);
974
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 976 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
977}
978
a9957449 979static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock(&rq->lock);
b29739f9
IM
983}
984
70b97a7f 985static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
986 __releases(rq->lock)
987{
05fa785c 988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
989}
990
1da177e4 991/*
cc2a73b5 992 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 993 */
a9957449 994static struct rq *this_rq_lock(void)
1da177e4
LT
995 __acquires(rq->lock)
996{
70b97a7f 997 struct rq *rq;
1da177e4
LT
998
999 local_irq_disable();
1000 rq = this_rq();
05fa785c 1001 raw_spin_lock(&rq->lock);
1da177e4
LT
1002
1003 return rq;
1004}
1005
8f4d37ec
PZ
1006#ifdef CONFIG_SCHED_HRTICK
1007/*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
8f4d37ec
PZ
1017
1018/*
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1022 */
1023static inline int hrtick_enabled(struct rq *rq)
1024{
1025 if (!sched_feat(HRTICK))
1026 return 0;
ba42059f 1027 if (!cpu_active(cpu_of(rq)))
b328ca18 1028 return 0;
8f4d37ec
PZ
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032static void hrtick_clear(struct rq *rq)
1033{
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038/*
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1041 */
1042static enum hrtimer_restart hrtick(struct hrtimer *timer)
1043{
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
05fa785c 1048 raw_spin_lock(&rq->lock);
3e51f33f 1049 update_rq_clock(rq);
8f4d37ec 1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1051 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1052
1053 return HRTIMER_NORESTART;
1054}
1055
95e904c7 1056#ifdef CONFIG_SMP
31656519
PZ
1057/*
1058 * called from hardirq (IPI) context
1059 */
1060static void __hrtick_start(void *arg)
b328ca18 1061{
31656519 1062 struct rq *rq = arg;
b328ca18 1063
05fa785c 1064 raw_spin_lock(&rq->lock);
31656519
PZ
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
05fa785c 1067 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1068}
1069
31656519
PZ
1070/*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1076{
31656519
PZ
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1079
cc584b21 1080 hrtimer_set_expires(timer, time);
31656519
PZ
1081
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
6e275637 1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1086 rq->hrtick_csd_pending = 1;
1087 }
b328ca18
PZ
1088}
1089
1090static int
1091hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1092{
1093 int cpu = (int)(long)hcpu;
1094
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
31656519 1102 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1103 return NOTIFY_OK;
1104 }
1105
1106 return NOTIFY_DONE;
1107}
1108
fa748203 1109static __init void init_hrtick(void)
b328ca18
PZ
1110{
1111 hotcpu_notifier(hotplug_hrtick, 0);
1112}
31656519
PZ
1113#else
1114/*
1115 * Called to set the hrtick timer state.
1116 *
1117 * called with rq->lock held and irqs disabled
1118 */
1119static void hrtick_start(struct rq *rq, u64 delay)
1120{
7f1e2ca9 1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1122 HRTIMER_MODE_REL_PINNED, 0);
31656519 1123}
b328ca18 1124
006c75f1 1125static inline void init_hrtick(void)
8f4d37ec 1126{
8f4d37ec 1127}
31656519 1128#endif /* CONFIG_SMP */
8f4d37ec 1129
31656519 1130static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1131{
31656519
PZ
1132#ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
8f4d37ec 1134
31656519
PZ
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138#endif
8f4d37ec 1139
31656519
PZ
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
8f4d37ec 1142}
006c75f1 1143#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1144static inline void hrtick_clear(struct rq *rq)
1145{
1146}
1147
8f4d37ec
PZ
1148static inline void init_rq_hrtick(struct rq *rq)
1149{
1150}
1151
b328ca18
PZ
1152static inline void init_hrtick(void)
1153{
1154}
006c75f1 1155#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1156
c24d20db
IM
1157/*
1158 * resched_task - mark a task 'to be rescheduled now'.
1159 *
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1163 */
1164#ifdef CONFIG_SMP
1165
1166#ifndef tsk_is_polling
1167#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168#endif
1169
31656519 1170static void resched_task(struct task_struct *p)
c24d20db
IM
1171{
1172 int cpu;
1173
05fa785c 1174 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1175
5ed0cec0 1176 if (test_tsk_need_resched(p))
c24d20db
IM
1177 return;
1178
5ed0cec0 1179 set_tsk_need_resched(p);
c24d20db
IM
1180
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1184
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1189}
1190
1191static void resched_cpu(int cpu)
1192{
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1195
05fa785c 1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1197 return;
1198 resched_task(cpu_curr(cpu));
05fa785c 1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1200}
06d8308c
TG
1201
1202#ifdef CONFIG_NO_HZ
1203/*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213void wake_up_idle_cpu(int cpu)
1214{
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
5ed0cec0 1235 set_tsk_need_resched(rq->idle);
06d8308c
TG
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241}
39c0cbe2
MG
1242
1243int nohz_ratelimit(int cpu)
1244{
1245 struct rq *rq = cpu_rq(cpu);
1246 u64 diff = rq->clock - rq->nohz_stamp;
1247
1248 rq->nohz_stamp = rq->clock;
1249
1250 return diff < (NSEC_PER_SEC / HZ) >> 1;
1251}
1252
6d6bc0ad 1253#endif /* CONFIG_NO_HZ */
06d8308c 1254
e9e9250b
PZ
1255static u64 sched_avg_period(void)
1256{
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258}
1259
1260static void sched_avg_update(struct rq *rq)
1261{
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 rq->age_stamp += period;
1266 rq->rt_avg /= 2;
1267 }
1268}
1269
1270static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271{
1272 rq->rt_avg += rt_delta;
1273 sched_avg_update(rq);
1274}
1275
6d6bc0ad 1276#else /* !CONFIG_SMP */
31656519 1277static void resched_task(struct task_struct *p)
c24d20db 1278{
05fa785c 1279 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1280 set_tsk_need_resched(p);
c24d20db 1281}
e9e9250b
PZ
1282
1283static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284{
1285}
6d6bc0ad 1286#endif /* CONFIG_SMP */
c24d20db 1287
45bf76df
IM
1288#if BITS_PER_LONG == 32
1289# define WMULT_CONST (~0UL)
1290#else
1291# define WMULT_CONST (1UL << 32)
1292#endif
1293
1294#define WMULT_SHIFT 32
1295
194081eb
IM
1296/*
1297 * Shift right and round:
1298 */
cf2ab469 1299#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1300
a7be37ac
PZ
1301/*
1302 * delta *= weight / lw
1303 */
cb1c4fc9 1304static unsigned long
45bf76df
IM
1305calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307{
1308 u64 tmp;
1309
7a232e03
LJ
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
45bf76df
IM
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
194081eb 1322 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1324 WMULT_SHIFT/2);
1325 else
cf2ab469 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1327
ecf691da 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1332{
1333 lw->weight += inc;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1338{
1339 lw->weight -= dec;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
2dd73a4f
PW
1343/*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
cce7ade8
PZ
1352#define WEIGHT_IDLEPRIO 3
1353#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1354
1355/*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
dd41f596
IM
1366 */
1367static const int prio_to_weight[40] = {
254753dc
IM
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1376};
1377
5714d2de
IM
1378/*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
dd41f596 1385static const u32 prio_to_wmult[40] = {
254753dc
IM
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1394};
2dd73a4f 1395
ef12fefa
BR
1396/* Time spent by the tasks of the cpu accounting group executing in ... */
1397enum cpuacct_stat_index {
1398 CPUACCT_STAT_USER, /* ... user mode */
1399 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1400
1401 CPUACCT_STAT_NSTATS,
1402};
1403
d842de87
SV
1404#ifdef CONFIG_CGROUP_CPUACCT
1405static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1406static void cpuacct_update_stats(struct task_struct *tsk,
1407 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1408#else
1409static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1410static inline void cpuacct_update_stats(struct task_struct *tsk,
1411 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1412#endif
1413
18d95a28
PZ
1414static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1415{
1416 update_load_add(&rq->load, load);
1417}
1418
1419static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_sub(&rq->load, load);
1422}
1423
7940ca36 1424#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1425typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1426
1427/*
1428 * Iterate the full tree, calling @down when first entering a node and @up when
1429 * leaving it for the final time.
1430 */
eb755805 1431static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1432{
1433 struct task_group *parent, *child;
eb755805 1434 int ret;
c09595f6
PZ
1435
1436 rcu_read_lock();
1437 parent = &root_task_group;
1438down:
eb755805
PZ
1439 ret = (*down)(parent, data);
1440 if (ret)
1441 goto out_unlock;
c09595f6
PZ
1442 list_for_each_entry_rcu(child, &parent->children, siblings) {
1443 parent = child;
1444 goto down;
1445
1446up:
1447 continue;
1448 }
eb755805
PZ
1449 ret = (*up)(parent, data);
1450 if (ret)
1451 goto out_unlock;
c09595f6
PZ
1452
1453 child = parent;
1454 parent = parent->parent;
1455 if (parent)
1456 goto up;
eb755805 1457out_unlock:
c09595f6 1458 rcu_read_unlock();
eb755805
PZ
1459
1460 return ret;
c09595f6
PZ
1461}
1462
eb755805
PZ
1463static int tg_nop(struct task_group *tg, void *data)
1464{
1465 return 0;
c09595f6 1466}
eb755805
PZ
1467#endif
1468
1469#ifdef CONFIG_SMP
f5f08f39
PZ
1470/* Used instead of source_load when we know the type == 0 */
1471static unsigned long weighted_cpuload(const int cpu)
1472{
1473 return cpu_rq(cpu)->load.weight;
1474}
1475
1476/*
1477 * Return a low guess at the load of a migration-source cpu weighted
1478 * according to the scheduling class and "nice" value.
1479 *
1480 * We want to under-estimate the load of migration sources, to
1481 * balance conservatively.
1482 */
1483static unsigned long source_load(int cpu, int type)
1484{
1485 struct rq *rq = cpu_rq(cpu);
1486 unsigned long total = weighted_cpuload(cpu);
1487
1488 if (type == 0 || !sched_feat(LB_BIAS))
1489 return total;
1490
1491 return min(rq->cpu_load[type-1], total);
1492}
1493
1494/*
1495 * Return a high guess at the load of a migration-target cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 */
1498static unsigned long target_load(int cpu, int type)
1499{
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1502
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1505
1506 return max(rq->cpu_load[type-1], total);
1507}
1508
ae154be1
PZ
1509static struct sched_group *group_of(int cpu)
1510{
d11c563d 1511 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1512
1513 if (!sd)
1514 return NULL;
1515
1516 return sd->groups;
1517}
1518
1519static unsigned long power_of(int cpu)
1520{
1521 struct sched_group *group = group_of(cpu);
1522
1523 if (!group)
1524 return SCHED_LOAD_SCALE;
1525
1526 return group->cpu_power;
1527}
1528
eb755805
PZ
1529static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1530
1531static unsigned long cpu_avg_load_per_task(int cpu)
1532{
1533 struct rq *rq = cpu_rq(cpu);
af6d596f 1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1535
4cd42620
SR
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1538 else
1539 rq->avg_load_per_task = 0;
eb755805
PZ
1540
1541 return rq->avg_load_per_task;
1542}
1543
1544#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1545
43cf38eb 1546static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1547
c09595f6
PZ
1548static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1549
1550/*
1551 * Calculate and set the cpu's group shares.
1552 */
34d76c41
PZ
1553static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
4a6cc4bd 1556 unsigned long *usd_rq_weight)
18d95a28 1557{
34d76c41 1558 unsigned long shares, rq_weight;
a5004278 1559 int boost = 0;
c09595f6 1560
4a6cc4bd 1561 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1565 }
c8cba857 1566
c09595f6 1567 /*
a8af7246
PZ
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
c09595f6 1571 */
ec4e0e2f 1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1574
ffda12a1
PZ
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
c09595f6 1579
05fa785c 1580 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1583 __set_se_shares(tg->se[cpu], shares);
05fa785c 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1585 }
18d95a28 1586}
c09595f6
PZ
1587
1588/*
c8cba857
PZ
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
c09595f6 1592 */
eb755805 1593static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1594{
cd8ad40d 1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1596 unsigned long *usd_rq_weight;
eb755805 1597 struct sched_domain *sd = data;
34d76c41 1598 unsigned long flags;
c8cba857 1599 int i;
c09595f6 1600
34d76c41
PZ
1601 if (!tg->se[0])
1602 return 0;
1603
1604 local_irq_save(flags);
4a6cc4bd 1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1606
758b2cdc 1607 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1608 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1609 usd_rq_weight[i] = weight;
34d76c41 1610
cd8ad40d 1611 rq_weight += weight;
ec4e0e2f
KC
1612 /*
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1616 */
ec4e0e2f
KC
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1619
cd8ad40d 1620 sum_weight += weight;
c8cba857 1621 shares += tg->cfs_rq[i]->shares;
c09595f6 1622 }
c09595f6 1623
cd8ad40d
PZ
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1626
c8cba857
PZ
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1629
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
c09595f6 1632
758b2cdc 1633 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1635
1636 local_irq_restore(flags);
eb755805
PZ
1637
1638 return 0;
c09595f6
PZ
1639}
1640
1641/*
c8cba857
PZ
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
c09595f6 1645 */
eb755805 1646static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1647{
c8cba857 1648 unsigned long load;
eb755805 1649 long cpu = (long)data;
c09595f6 1650
c8cba857
PZ
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1657 }
c09595f6 1658
c8cba857 1659 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1660
eb755805 1661 return 0;
c09595f6
PZ
1662}
1663
c8cba857 1664static void update_shares(struct sched_domain *sd)
4d8d595d 1665{
e7097159
PZ
1666 s64 elapsed;
1667 u64 now;
1668
1669 if (root_task_group_empty())
1670 return;
1671
1672 now = cpu_clock(raw_smp_processor_id());
1673 elapsed = now - sd->last_update;
2398f2c6
PZ
1674
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
eb755805 1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1678 }
4d8d595d
PZ
1679}
1680
eb755805 1681static void update_h_load(long cpu)
c09595f6 1682{
e7097159
PZ
1683 if (root_task_group_empty())
1684 return;
1685
eb755805 1686 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1687}
1688
c09595f6
PZ
1689#else
1690
c8cba857 1691static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1692{
1693}
1694
18d95a28
PZ
1695#endif
1696
8f45e2b5
GH
1697#ifdef CONFIG_PREEMPT
1698
b78bb868
PZ
1699static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1700
70574a99 1701/*
8f45e2b5
GH
1702 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1703 * way at the expense of forcing extra atomic operations in all
1704 * invocations. This assures that the double_lock is acquired using the
1705 * same underlying policy as the spinlock_t on this architecture, which
1706 * reduces latency compared to the unfair variant below. However, it
1707 * also adds more overhead and therefore may reduce throughput.
70574a99 1708 */
8f45e2b5
GH
1709static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1710 __releases(this_rq->lock)
1711 __acquires(busiest->lock)
1712 __acquires(this_rq->lock)
1713{
05fa785c 1714 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1715 double_rq_lock(this_rq, busiest);
1716
1717 return 1;
1718}
1719
1720#else
1721/*
1722 * Unfair double_lock_balance: Optimizes throughput at the expense of
1723 * latency by eliminating extra atomic operations when the locks are
1724 * already in proper order on entry. This favors lower cpu-ids and will
1725 * grant the double lock to lower cpus over higher ids under contention,
1726 * regardless of entry order into the function.
1727 */
1728static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1729 __releases(this_rq->lock)
1730 __acquires(busiest->lock)
1731 __acquires(this_rq->lock)
1732{
1733 int ret = 0;
1734
05fa785c 1735 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1736 if (busiest < this_rq) {
05fa785c
TG
1737 raw_spin_unlock(&this_rq->lock);
1738 raw_spin_lock(&busiest->lock);
1739 raw_spin_lock_nested(&this_rq->lock,
1740 SINGLE_DEPTH_NESTING);
70574a99
AD
1741 ret = 1;
1742 } else
05fa785c
TG
1743 raw_spin_lock_nested(&busiest->lock,
1744 SINGLE_DEPTH_NESTING);
70574a99
AD
1745 }
1746 return ret;
1747}
1748
8f45e2b5
GH
1749#endif /* CONFIG_PREEMPT */
1750
1751/*
1752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1753 */
1754static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1755{
1756 if (unlikely(!irqs_disabled())) {
1757 /* printk() doesn't work good under rq->lock */
05fa785c 1758 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1759 BUG_ON(1);
1760 }
1761
1762 return _double_lock_balance(this_rq, busiest);
1763}
1764
70574a99
AD
1765static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(busiest->lock)
1767{
05fa785c 1768 raw_spin_unlock(&busiest->lock);
70574a99
AD
1769 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1770}
1e3c88bd
PZ
1771
1772/*
1773 * double_rq_lock - safely lock two runqueues
1774 *
1775 * Note this does not disable interrupts like task_rq_lock,
1776 * you need to do so manually before calling.
1777 */
1778static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1779 __acquires(rq1->lock)
1780 __acquires(rq2->lock)
1781{
1782 BUG_ON(!irqs_disabled());
1783 if (rq1 == rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 __acquire(rq2->lock); /* Fake it out ;) */
1786 } else {
1787 if (rq1 < rq2) {
1788 raw_spin_lock(&rq1->lock);
1789 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1790 } else {
1791 raw_spin_lock(&rq2->lock);
1792 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1793 }
1794 }
1e3c88bd
PZ
1795}
1796
1797/*
1798 * double_rq_unlock - safely unlock two runqueues
1799 *
1800 * Note this does not restore interrupts like task_rq_unlock,
1801 * you need to do so manually after calling.
1802 */
1803static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1804 __releases(rq1->lock)
1805 __releases(rq2->lock)
1806{
1807 raw_spin_unlock(&rq1->lock);
1808 if (rq1 != rq2)
1809 raw_spin_unlock(&rq2->lock);
1810 else
1811 __release(rq2->lock);
1812}
1813
18d95a28
PZ
1814#endif
1815
30432094 1816#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1817static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1818{
30432094 1819#ifdef CONFIG_SMP
34e83e85
IM
1820 cfs_rq->shares = shares;
1821#endif
1822}
30432094 1823#endif
e7693a36 1824
dce48a84 1825static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1826static void update_sysctl(void);
acb4a848 1827static int get_update_sysctl_factor(void);
dce48a84 1828
cd29fe6f
PZ
1829static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1830{
1831 set_task_rq(p, cpu);
1832#ifdef CONFIG_SMP
1833 /*
1834 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1835 * successfuly executed on another CPU. We must ensure that updates of
1836 * per-task data have been completed by this moment.
1837 */
1838 smp_wmb();
1839 task_thread_info(p)->cpu = cpu;
1840#endif
1841}
dce48a84 1842
1e3c88bd 1843static const struct sched_class rt_sched_class;
dd41f596
IM
1844
1845#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1846#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
dd41f596 1848
1e3c88bd
PZ
1849#include "sched_stats.h"
1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
ea87bb78
TG
1888static void
1889enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1890{
a64692a3 1891 update_rq_clock(rq);
dd41f596 1892 sched_info_queued(p);
ea87bb78 1893 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1894 p->se.on_rq = 1;
71f8bd46
IM
1895}
1896
69be72c1 1897static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1898{
a64692a3 1899 update_rq_clock(rq);
46ac22ba 1900 sched_info_dequeued(p);
f02231e5 1901 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1902 p->se.on_rq = 0;
71f8bd46
IM
1903}
1904
1e3c88bd
PZ
1905/*
1906 * activate_task - move a task to the runqueue.
1907 */
1908static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1909{
1910 if (task_contributes_to_load(p))
1911 rq->nr_uninterruptible--;
1912
ea87bb78 1913 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1914 inc_nr_running(rq);
1915}
1916
1917/*
1918 * deactivate_task - remove a task from the runqueue.
1919 */
1920static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1921{
1922 if (task_contributes_to_load(p))
1923 rq->nr_uninterruptible++;
1924
1925 dequeue_task(rq, p, sleep);
1926 dec_nr_running(rq);
1927}
1928
1929#include "sched_idletask.c"
1930#include "sched_fair.c"
1931#include "sched_rt.c"
1932#ifdef CONFIG_SCHED_DEBUG
1933# include "sched_debug.c"
1934#endif
1935
14531189 1936/*
dd41f596 1937 * __normal_prio - return the priority that is based on the static prio
14531189 1938 */
14531189
IM
1939static inline int __normal_prio(struct task_struct *p)
1940{
dd41f596 1941 return p->static_prio;
14531189
IM
1942}
1943
b29739f9
IM
1944/*
1945 * Calculate the expected normal priority: i.e. priority
1946 * without taking RT-inheritance into account. Might be
1947 * boosted by interactivity modifiers. Changes upon fork,
1948 * setprio syscalls, and whenever the interactivity
1949 * estimator recalculates.
1950 */
36c8b586 1951static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1952{
1953 int prio;
1954
e05606d3 1955 if (task_has_rt_policy(p))
b29739f9
IM
1956 prio = MAX_RT_PRIO-1 - p->rt_priority;
1957 else
1958 prio = __normal_prio(p);
1959 return prio;
1960}
1961
1962/*
1963 * Calculate the current priority, i.e. the priority
1964 * taken into account by the scheduler. This value might
1965 * be boosted by RT tasks, or might be boosted by
1966 * interactivity modifiers. Will be RT if the task got
1967 * RT-boosted. If not then it returns p->normal_prio.
1968 */
36c8b586 1969static int effective_prio(struct task_struct *p)
b29739f9
IM
1970{
1971 p->normal_prio = normal_prio(p);
1972 /*
1973 * If we are RT tasks or we were boosted to RT priority,
1974 * keep the priority unchanged. Otherwise, update priority
1975 * to the normal priority:
1976 */
1977 if (!rt_prio(p->prio))
1978 return p->normal_prio;
1979 return p->prio;
1980}
1981
1da177e4
LT
1982/**
1983 * task_curr - is this task currently executing on a CPU?
1984 * @p: the task in question.
1985 */
36c8b586 1986inline int task_curr(const struct task_struct *p)
1da177e4
LT
1987{
1988 return cpu_curr(task_cpu(p)) == p;
1989}
1990
cb469845
SR
1991static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994{
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001}
2002
1da177e4 2003#ifdef CONFIG_SMP
cc367732
IM
2004/*
2005 * Is this task likely cache-hot:
2006 */
e7693a36 2007static int
cc367732
IM
2008task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2009{
2010 s64 delta;
2011
e6c8fba7
PZ
2012 if (p->sched_class != &fair_sched_class)
2013 return 0;
2014
f540a608
IM
2015 /*
2016 * Buddy candidates are cache hot:
2017 */
f685ceac 2018 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2019 (&p->se == cfs_rq_of(&p->se)->next ||
2020 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2021 return 1;
2022
6bc1665b
IM
2023 if (sysctl_sched_migration_cost == -1)
2024 return 1;
2025 if (sysctl_sched_migration_cost == 0)
2026 return 0;
2027
cc367732
IM
2028 delta = now - p->se.exec_start;
2029
2030 return delta < (s64)sysctl_sched_migration_cost;
2031}
2032
dd41f596 2033void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2034{
e2912009
PZ
2035#ifdef CONFIG_SCHED_DEBUG
2036 /*
2037 * We should never call set_task_cpu() on a blocked task,
2038 * ttwu() will sort out the placement.
2039 */
077614ee
PZ
2040 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2041 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2042#endif
2043
de1d7286 2044 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2045
0c69774e
PZ
2046 if (task_cpu(p) != new_cpu) {
2047 p->se.nr_migrations++;
2048 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2049 }
dd41f596
IM
2050
2051 __set_task_cpu(p, new_cpu);
c65cc870
IM
2052}
2053
70b97a7f 2054struct migration_req {
1da177e4 2055 struct list_head list;
1da177e4 2056
36c8b586 2057 struct task_struct *task;
1da177e4
LT
2058 int dest_cpu;
2059
1da177e4 2060 struct completion done;
70b97a7f 2061};
1da177e4
LT
2062
2063/*
2064 * The task's runqueue lock must be held.
2065 * Returns true if you have to wait for migration thread.
2066 */
36c8b586 2067static int
70b97a7f 2068migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2069{
70b97a7f 2070 struct rq *rq = task_rq(p);
1da177e4
LT
2071
2072 /*
2073 * If the task is not on a runqueue (and not running), then
e2912009 2074 * the next wake-up will properly place the task.
1da177e4 2075 */
e2912009 2076 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2077 return 0;
1da177e4
LT
2078
2079 init_completion(&req->done);
1da177e4
LT
2080 req->task = p;
2081 req->dest_cpu = dest_cpu;
2082 list_add(&req->list, &rq->migration_queue);
48f24c4d 2083
1da177e4
LT
2084 return 1;
2085}
2086
a26b89f0
MM
2087/*
2088 * wait_task_context_switch - wait for a thread to complete at least one
2089 * context switch.
2090 *
2091 * @p must not be current.
2092 */
2093void wait_task_context_switch(struct task_struct *p)
2094{
2095 unsigned long nvcsw, nivcsw, flags;
2096 int running;
2097 struct rq *rq;
2098
2099 nvcsw = p->nvcsw;
2100 nivcsw = p->nivcsw;
2101 for (;;) {
2102 /*
2103 * The runqueue is assigned before the actual context
2104 * switch. We need to take the runqueue lock.
2105 *
2106 * We could check initially without the lock but it is
2107 * very likely that we need to take the lock in every
2108 * iteration.
2109 */
2110 rq = task_rq_lock(p, &flags);
2111 running = task_running(rq, p);
2112 task_rq_unlock(rq, &flags);
2113
2114 if (likely(!running))
2115 break;
2116 /*
2117 * The switch count is incremented before the actual
2118 * context switch. We thus wait for two switches to be
2119 * sure at least one completed.
2120 */
2121 if ((p->nvcsw - nvcsw) > 1)
2122 break;
2123 if ((p->nivcsw - nivcsw) > 1)
2124 break;
2125
2126 cpu_relax();
2127 }
2128}
2129
1da177e4
LT
2130/*
2131 * wait_task_inactive - wait for a thread to unschedule.
2132 *
85ba2d86
RM
2133 * If @match_state is nonzero, it's the @p->state value just checked and
2134 * not expected to change. If it changes, i.e. @p might have woken up,
2135 * then return zero. When we succeed in waiting for @p to be off its CPU,
2136 * we return a positive number (its total switch count). If a second call
2137 * a short while later returns the same number, the caller can be sure that
2138 * @p has remained unscheduled the whole time.
2139 *
1da177e4
LT
2140 * The caller must ensure that the task *will* unschedule sometime soon,
2141 * else this function might spin for a *long* time. This function can't
2142 * be called with interrupts off, or it may introduce deadlock with
2143 * smp_call_function() if an IPI is sent by the same process we are
2144 * waiting to become inactive.
2145 */
85ba2d86 2146unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2147{
2148 unsigned long flags;
dd41f596 2149 int running, on_rq;
85ba2d86 2150 unsigned long ncsw;
70b97a7f 2151 struct rq *rq;
1da177e4 2152
3a5c359a
AK
2153 for (;;) {
2154 /*
2155 * We do the initial early heuristics without holding
2156 * any task-queue locks at all. We'll only try to get
2157 * the runqueue lock when things look like they will
2158 * work out!
2159 */
2160 rq = task_rq(p);
fa490cfd 2161
3a5c359a
AK
2162 /*
2163 * If the task is actively running on another CPU
2164 * still, just relax and busy-wait without holding
2165 * any locks.
2166 *
2167 * NOTE! Since we don't hold any locks, it's not
2168 * even sure that "rq" stays as the right runqueue!
2169 * But we don't care, since "task_running()" will
2170 * return false if the runqueue has changed and p
2171 * is actually now running somewhere else!
2172 */
85ba2d86
RM
2173 while (task_running(rq, p)) {
2174 if (match_state && unlikely(p->state != match_state))
2175 return 0;
3a5c359a 2176 cpu_relax();
85ba2d86 2177 }
fa490cfd 2178
3a5c359a
AK
2179 /*
2180 * Ok, time to look more closely! We need the rq
2181 * lock now, to be *sure*. If we're wrong, we'll
2182 * just go back and repeat.
2183 */
2184 rq = task_rq_lock(p, &flags);
0a16b607 2185 trace_sched_wait_task(rq, p);
3a5c359a
AK
2186 running = task_running(rq, p);
2187 on_rq = p->se.on_rq;
85ba2d86 2188 ncsw = 0;
f31e11d8 2189 if (!match_state || p->state == match_state)
93dcf55f 2190 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2191 task_rq_unlock(rq, &flags);
fa490cfd 2192
85ba2d86
RM
2193 /*
2194 * If it changed from the expected state, bail out now.
2195 */
2196 if (unlikely(!ncsw))
2197 break;
2198
3a5c359a
AK
2199 /*
2200 * Was it really running after all now that we
2201 * checked with the proper locks actually held?
2202 *
2203 * Oops. Go back and try again..
2204 */
2205 if (unlikely(running)) {
2206 cpu_relax();
2207 continue;
2208 }
fa490cfd 2209
3a5c359a
AK
2210 /*
2211 * It's not enough that it's not actively running,
2212 * it must be off the runqueue _entirely_, and not
2213 * preempted!
2214 *
80dd99b3 2215 * So if it was still runnable (but just not actively
3a5c359a
AK
2216 * running right now), it's preempted, and we should
2217 * yield - it could be a while.
2218 */
2219 if (unlikely(on_rq)) {
2220 schedule_timeout_uninterruptible(1);
2221 continue;
2222 }
fa490cfd 2223
3a5c359a
AK
2224 /*
2225 * Ahh, all good. It wasn't running, and it wasn't
2226 * runnable, which means that it will never become
2227 * running in the future either. We're all done!
2228 */
2229 break;
2230 }
85ba2d86
RM
2231
2232 return ncsw;
1da177e4
LT
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesnt have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
36c8b586 2248void kick_process(struct task_struct *p)
1da177e4
LT
2249{
2250 int cpu;
2251
2252 preempt_disable();
2253 cpu = task_cpu(p);
2254 if ((cpu != smp_processor_id()) && task_curr(p))
2255 smp_send_reschedule(cpu);
2256 preempt_enable();
2257}
b43e3521 2258EXPORT_SYMBOL_GPL(kick_process);
476d139c 2259#endif /* CONFIG_SMP */
1da177e4 2260
0793a61d
TG
2261/**
2262 * task_oncpu_function_call - call a function on the cpu on which a task runs
2263 * @p: the task to evaluate
2264 * @func: the function to be called
2265 * @info: the function call argument
2266 *
2267 * Calls the function @func when the task is currently running. This might
2268 * be on the current CPU, which just calls the function directly
2269 */
2270void task_oncpu_function_call(struct task_struct *p,
2271 void (*func) (void *info), void *info)
2272{
2273 int cpu;
2274
2275 preempt_disable();
2276 cpu = task_cpu(p);
2277 if (task_curr(p))
2278 smp_call_function_single(cpu, func, info, 1);
2279 preempt_enable();
2280}
2281
970b13ba 2282#ifdef CONFIG_SMP
30da688e
ON
2283/*
2284 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2285 */
5da9a0fb
PZ
2286static int select_fallback_rq(int cpu, struct task_struct *p)
2287{
2288 int dest_cpu;
2289 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2290
2291 /* Look for allowed, online CPU in same node. */
2292 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2293 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2294 return dest_cpu;
2295
2296 /* Any allowed, online CPU? */
2297 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2298 if (dest_cpu < nr_cpu_ids)
2299 return dest_cpu;
2300
2301 /* No more Mr. Nice Guy. */
897f0b3c 2302 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2303 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2304 /*
2305 * Don't tell them about moving exiting tasks or
2306 * kernel threads (both mm NULL), since they never
2307 * leave kernel.
2308 */
2309 if (p->mm && printk_ratelimit()) {
2310 printk(KERN_INFO "process %d (%s) no "
2311 "longer affine to cpu%d\n",
2312 task_pid_nr(p), p->comm, cpu);
2313 }
2314 }
2315
2316 return dest_cpu;
2317}
2318
e2912009 2319/*
30da688e 2320 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2321 */
970b13ba
PZ
2322static inline
2323int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2324{
e2912009
PZ
2325 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2326
2327 /*
2328 * In order not to call set_task_cpu() on a blocking task we need
2329 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2330 * cpu.
2331 *
2332 * Since this is common to all placement strategies, this lives here.
2333 *
2334 * [ this allows ->select_task() to simply return task_cpu(p) and
2335 * not worry about this generic constraint ]
2336 */
2337 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2338 !cpu_online(cpu)))
5da9a0fb 2339 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2340
2341 return cpu;
970b13ba
PZ
2342}
2343#endif
2344
1da177e4
LT
2345/***
2346 * try_to_wake_up - wake up a thread
2347 * @p: the to-be-woken-up thread
2348 * @state: the mask of task states that can be woken
2349 * @sync: do a synchronous wakeup?
2350 *
2351 * Put it on the run-queue if it's not already there. The "current"
2352 * thread is always on the run-queue (except when the actual
2353 * re-schedule is in progress), and as such you're allowed to do
2354 * the simpler "current->state = TASK_RUNNING" to mark yourself
2355 * runnable without the overhead of this.
2356 *
2357 * returns failure only if the task is already active.
2358 */
7d478721
PZ
2359static int try_to_wake_up(struct task_struct *p, unsigned int state,
2360 int wake_flags)
1da177e4 2361{
cc367732 2362 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2363 unsigned long flags;
ab3b3aa5 2364 struct rq *rq;
1da177e4 2365
e9c84311 2366 this_cpu = get_cpu();
2398f2c6 2367
04e2f174 2368 smp_wmb();
ab3b3aa5 2369 rq = task_rq_lock(p, &flags);
e9c84311 2370 if (!(p->state & state))
1da177e4
LT
2371 goto out;
2372
dd41f596 2373 if (p->se.on_rq)
1da177e4
LT
2374 goto out_running;
2375
2376 cpu = task_cpu(p);
cc367732 2377 orig_cpu = cpu;
1da177e4
LT
2378
2379#ifdef CONFIG_SMP
2380 if (unlikely(task_running(rq, p)))
2381 goto out_activate;
2382
e9c84311
PZ
2383 /*
2384 * In order to handle concurrent wakeups and release the rq->lock
2385 * we put the task in TASK_WAKING state.
eb24073b
IM
2386 *
2387 * First fix up the nr_uninterruptible count:
e9c84311 2388 */
eb24073b
IM
2389 if (task_contributes_to_load(p))
2390 rq->nr_uninterruptible--;
e9c84311 2391 p->state = TASK_WAKING;
efbbd05a
PZ
2392
2393 if (p->sched_class->task_waking)
2394 p->sched_class->task_waking(rq, p);
2395
ab19cb23 2396 __task_rq_unlock(rq);
e9c84311 2397
970b13ba 2398 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0970d299
PZ
2399 if (cpu != orig_cpu) {
2400 /*
2401 * Since we migrate the task without holding any rq->lock,
2402 * we need to be careful with task_rq_lock(), since that
2403 * might end up locking an invalid rq.
2404 */
5d2f5a61 2405 set_task_cpu(p, cpu);
0970d299 2406 }
ab19cb23 2407
0970d299
PZ
2408 rq = cpu_rq(cpu);
2409 raw_spin_lock(&rq->lock);
f5dc3753 2410
0970d299
PZ
2411 /*
2412 * We migrated the task without holding either rq->lock, however
2413 * since the task is not on the task list itself, nobody else
2414 * will try and migrate the task, hence the rq should match the
2415 * cpu we just moved it to.
2416 */
2417 WARN_ON(task_cpu(p) != cpu);
e9c84311 2418 WARN_ON(p->state != TASK_WAKING);
1da177e4 2419
e7693a36
GH
2420#ifdef CONFIG_SCHEDSTATS
2421 schedstat_inc(rq, ttwu_count);
2422 if (cpu == this_cpu)
2423 schedstat_inc(rq, ttwu_local);
2424 else {
2425 struct sched_domain *sd;
2426 for_each_domain(this_cpu, sd) {
758b2cdc 2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2430 }
2431 }
2432 }
6d6bc0ad 2433#endif /* CONFIG_SCHEDSTATS */
e7693a36 2434
1da177e4
LT
2435out_activate:
2436#endif /* CONFIG_SMP */
41acab88 2437 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2438 if (wake_flags & WF_SYNC)
41acab88 2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2440 if (orig_cpu != cpu)
41acab88 2441 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2442 if (cpu == this_cpu)
41acab88 2443 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2444 else
41acab88 2445 schedstat_inc(p, se.statistics.nr_wakeups_remote);
dd41f596 2446 activate_task(rq, p, 1);
1da177e4
LT
2447 success = 1;
2448
2449out_running:
468a15bb 2450 trace_sched_wakeup(rq, p, success);
7d478721 2451 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2452
1da177e4 2453 p->state = TASK_RUNNING;
9a897c5a 2454#ifdef CONFIG_SMP
efbbd05a
PZ
2455 if (p->sched_class->task_woken)
2456 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2457
2458 if (unlikely(rq->idle_stamp)) {
2459 u64 delta = rq->clock - rq->idle_stamp;
2460 u64 max = 2*sysctl_sched_migration_cost;
2461
2462 if (delta > max)
2463 rq->avg_idle = max;
2464 else
2465 update_avg(&rq->avg_idle, delta);
2466 rq->idle_stamp = 0;
2467 }
9a897c5a 2468#endif
1da177e4
LT
2469out:
2470 task_rq_unlock(rq, &flags);
e9c84311 2471 put_cpu();
1da177e4
LT
2472
2473 return success;
2474}
2475
50fa610a
DH
2476/**
2477 * wake_up_process - Wake up a specific process
2478 * @p: The process to be woken up.
2479 *
2480 * Attempt to wake up the nominated process and move it to the set of runnable
2481 * processes. Returns 1 if the process was woken up, 0 if it was already
2482 * running.
2483 *
2484 * It may be assumed that this function implies a write memory barrier before
2485 * changing the task state if and only if any tasks are woken up.
2486 */
7ad5b3a5 2487int wake_up_process(struct task_struct *p)
1da177e4 2488{
d9514f6c 2489 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2490}
1da177e4
LT
2491EXPORT_SYMBOL(wake_up_process);
2492
7ad5b3a5 2493int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2494{
2495 return try_to_wake_up(p, state, 0);
2496}
2497
1da177e4
LT
2498/*
2499 * Perform scheduler related setup for a newly forked process p.
2500 * p is forked by current.
dd41f596
IM
2501 *
2502 * __sched_fork() is basic setup used by init_idle() too:
2503 */
2504static void __sched_fork(struct task_struct *p)
2505{
dd41f596
IM
2506 p->se.exec_start = 0;
2507 p->se.sum_exec_runtime = 0;
f6cf891c 2508 p->se.prev_sum_exec_runtime = 0;
6c594c21 2509 p->se.nr_migrations = 0;
6cfb0d5d
IM
2510
2511#ifdef CONFIG_SCHEDSTATS
41acab88 2512 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2513#endif
476d139c 2514
fa717060 2515 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2516 p->se.on_rq = 0;
4a55bd5e 2517 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2518
e107be36
AK
2519#ifdef CONFIG_PREEMPT_NOTIFIERS
2520 INIT_HLIST_HEAD(&p->preempt_notifiers);
2521#endif
dd41f596
IM
2522}
2523
2524/*
2525 * fork()/clone()-time setup:
2526 */
2527void sched_fork(struct task_struct *p, int clone_flags)
2528{
2529 int cpu = get_cpu();
2530
2531 __sched_fork(p);
06b83b5f
PZ
2532 /*
2533 * We mark the process as waking here. This guarantees that
2534 * nobody will actually run it, and a signal or other external
2535 * event cannot wake it up and insert it on the runqueue either.
2536 */
2537 p->state = TASK_WAKING;
dd41f596 2538
b9dc29e7
MG
2539 /*
2540 * Revert to default priority/policy on fork if requested.
2541 */
2542 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2543 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2544 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2545 p->normal_prio = p->static_prio;
2546 }
b9dc29e7 2547
6c697bdf
MG
2548 if (PRIO_TO_NICE(p->static_prio) < 0) {
2549 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2550 p->normal_prio = p->static_prio;
6c697bdf
MG
2551 set_load_weight(p);
2552 }
2553
b9dc29e7
MG
2554 /*
2555 * We don't need the reset flag anymore after the fork. It has
2556 * fulfilled its duty:
2557 */
2558 p->sched_reset_on_fork = 0;
2559 }
ca94c442 2560
f83f9ac2
PW
2561 /*
2562 * Make sure we do not leak PI boosting priority to the child.
2563 */
2564 p->prio = current->normal_prio;
2565
2ddbf952
HS
2566 if (!rt_prio(p->prio))
2567 p->sched_class = &fair_sched_class;
b29739f9 2568
cd29fe6f
PZ
2569 if (p->sched_class->task_fork)
2570 p->sched_class->task_fork(p);
2571
5f3edc1b
PZ
2572 set_task_cpu(p, cpu);
2573
52f17b6c 2574#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2575 if (likely(sched_info_on()))
52f17b6c 2576 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2577#endif
d6077cb8 2578#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2579 p->oncpu = 0;
2580#endif
1da177e4 2581#ifdef CONFIG_PREEMPT
4866cde0 2582 /* Want to start with kernel preemption disabled. */
a1261f54 2583 task_thread_info(p)->preempt_count = 1;
1da177e4 2584#endif
917b627d
GH
2585 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2586
476d139c 2587 put_cpu();
1da177e4
LT
2588}
2589
2590/*
2591 * wake_up_new_task - wake up a newly created task for the first time.
2592 *
2593 * This function will do some initial scheduler statistics housekeeping
2594 * that must be done for every newly created context, then puts the task
2595 * on the runqueue and wakes it.
2596 */
7ad5b3a5 2597void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2598{
2599 unsigned long flags;
dd41f596 2600 struct rq *rq;
c890692b 2601 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2602
2603#ifdef CONFIG_SMP
2604 /*
2605 * Fork balancing, do it here and not earlier because:
2606 * - cpus_allowed can change in the fork path
2607 * - any previously selected cpu might disappear through hotplug
2608 *
2609 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2610 * ->cpus_allowed is stable, we have preemption disabled, meaning
2611 * cpu_online_mask is stable.
2612 */
2613 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2614 set_task_cpu(p, cpu);
2615#endif
1da177e4 2616
0970d299
PZ
2617 /*
2618 * Since the task is not on the rq and we still have TASK_WAKING set
2619 * nobody else will migrate this task.
2620 */
2621 rq = cpu_rq(cpu);
2622 raw_spin_lock_irqsave(&rq->lock, flags);
2623
06b83b5f
PZ
2624 BUG_ON(p->state != TASK_WAKING);
2625 p->state = TASK_RUNNING;
cd29fe6f 2626 activate_task(rq, p, 0);
c71dd42d 2627 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2628 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2629#ifdef CONFIG_SMP
efbbd05a
PZ
2630 if (p->sched_class->task_woken)
2631 p->sched_class->task_woken(rq, p);
9a897c5a 2632#endif
dd41f596 2633 task_rq_unlock(rq, &flags);
fabf318e 2634 put_cpu();
1da177e4
LT
2635}
2636
e107be36
AK
2637#ifdef CONFIG_PREEMPT_NOTIFIERS
2638
2639/**
80dd99b3 2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2641 * @notifier: notifier struct to register
e107be36
AK
2642 */
2643void preempt_notifier_register(struct preempt_notifier *notifier)
2644{
2645 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2646}
2647EXPORT_SYMBOL_GPL(preempt_notifier_register);
2648
2649/**
2650 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2651 * @notifier: notifier struct to unregister
e107be36
AK
2652 *
2653 * This is safe to call from within a preemption notifier.
2654 */
2655void preempt_notifier_unregister(struct preempt_notifier *notifier)
2656{
2657 hlist_del(&notifier->link);
2658}
2659EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2660
2661static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2662{
2663 struct preempt_notifier *notifier;
2664 struct hlist_node *node;
2665
2666 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2668}
2669
2670static void
2671fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673{
2674 struct preempt_notifier *notifier;
2675 struct hlist_node *node;
2676
2677 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2678 notifier->ops->sched_out(notifier, next);
2679}
2680
6d6bc0ad 2681#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2682
2683static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2684{
2685}
2686
2687static void
2688fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689 struct task_struct *next)
2690{
2691}
2692
6d6bc0ad 2693#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2694
4866cde0
NP
2695/**
2696 * prepare_task_switch - prepare to switch tasks
2697 * @rq: the runqueue preparing to switch
421cee29 2698 * @prev: the current task that is being switched out
4866cde0
NP
2699 * @next: the task we are going to switch to.
2700 *
2701 * This is called with the rq lock held and interrupts off. It must
2702 * be paired with a subsequent finish_task_switch after the context
2703 * switch.
2704 *
2705 * prepare_task_switch sets up locking and calls architecture specific
2706 * hooks.
2707 */
e107be36
AK
2708static inline void
2709prepare_task_switch(struct rq *rq, struct task_struct *prev,
2710 struct task_struct *next)
4866cde0 2711{
e107be36 2712 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2713 prepare_lock_switch(rq, next);
2714 prepare_arch_switch(next);
2715}
2716
1da177e4
LT
2717/**
2718 * finish_task_switch - clean up after a task-switch
344babaa 2719 * @rq: runqueue associated with task-switch
1da177e4
LT
2720 * @prev: the thread we just switched away from.
2721 *
4866cde0
NP
2722 * finish_task_switch must be called after the context switch, paired
2723 * with a prepare_task_switch call before the context switch.
2724 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2725 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2726 *
2727 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2728 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2729 * with the lock held can cause deadlocks; see schedule() for
2730 * details.)
2731 */
a9957449 2732static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2733 __releases(rq->lock)
2734{
1da177e4 2735 struct mm_struct *mm = rq->prev_mm;
55a101f8 2736 long prev_state;
1da177e4
LT
2737
2738 rq->prev_mm = NULL;
2739
2740 /*
2741 * A task struct has one reference for the use as "current".
c394cc9f 2742 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2743 * schedule one last time. The schedule call will never return, and
2744 * the scheduled task must drop that reference.
c394cc9f 2745 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2746 * still held, otherwise prev could be scheduled on another cpu, die
2747 * there before we look at prev->state, and then the reference would
2748 * be dropped twice.
2749 * Manfred Spraul <manfred@colorfullife.com>
2750 */
55a101f8 2751 prev_state = prev->state;
4866cde0 2752 finish_arch_switch(prev);
8381f65d
JI
2753#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2754 local_irq_disable();
2755#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2756 perf_event_task_sched_in(current);
8381f65d
JI
2757#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2758 local_irq_enable();
2759#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2760 finish_lock_switch(rq, prev);
e8fa1362 2761
e107be36 2762 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2763 if (mm)
2764 mmdrop(mm);
c394cc9f 2765 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2766 /*
2767 * Remove function-return probe instances associated with this
2768 * task and put them back on the free list.
9761eea8 2769 */
c6fd91f0 2770 kprobe_flush_task(prev);
1da177e4 2771 put_task_struct(prev);
c6fd91f0 2772 }
1da177e4
LT
2773}
2774
3f029d3c
GH
2775#ifdef CONFIG_SMP
2776
2777/* assumes rq->lock is held */
2778static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2779{
2780 if (prev->sched_class->pre_schedule)
2781 prev->sched_class->pre_schedule(rq, prev);
2782}
2783
2784/* rq->lock is NOT held, but preemption is disabled */
2785static inline void post_schedule(struct rq *rq)
2786{
2787 if (rq->post_schedule) {
2788 unsigned long flags;
2789
05fa785c 2790 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2791 if (rq->curr->sched_class->post_schedule)
2792 rq->curr->sched_class->post_schedule(rq);
05fa785c 2793 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2794
2795 rq->post_schedule = 0;
2796 }
2797}
2798
2799#else
da19ab51 2800
3f029d3c
GH
2801static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2802{
2803}
2804
2805static inline void post_schedule(struct rq *rq)
2806{
1da177e4
LT
2807}
2808
3f029d3c
GH
2809#endif
2810
1da177e4
LT
2811/**
2812 * schedule_tail - first thing a freshly forked thread must call.
2813 * @prev: the thread we just switched away from.
2814 */
36c8b586 2815asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2816 __releases(rq->lock)
2817{
70b97a7f
IM
2818 struct rq *rq = this_rq();
2819
4866cde0 2820 finish_task_switch(rq, prev);
da19ab51 2821
3f029d3c
GH
2822 /*
2823 * FIXME: do we need to worry about rq being invalidated by the
2824 * task_switch?
2825 */
2826 post_schedule(rq);
70b97a7f 2827
4866cde0
NP
2828#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2829 /* In this case, finish_task_switch does not reenable preemption */
2830 preempt_enable();
2831#endif
1da177e4 2832 if (current->set_child_tid)
b488893a 2833 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2834}
2835
2836/*
2837 * context_switch - switch to the new MM and the new
2838 * thread's register state.
2839 */
dd41f596 2840static inline void
70b97a7f 2841context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2842 struct task_struct *next)
1da177e4 2843{
dd41f596 2844 struct mm_struct *mm, *oldmm;
1da177e4 2845
e107be36 2846 prepare_task_switch(rq, prev, next);
0a16b607 2847 trace_sched_switch(rq, prev, next);
dd41f596
IM
2848 mm = next->mm;
2849 oldmm = prev->active_mm;
9226d125
ZA
2850 /*
2851 * For paravirt, this is coupled with an exit in switch_to to
2852 * combine the page table reload and the switch backend into
2853 * one hypercall.
2854 */
224101ed 2855 arch_start_context_switch(prev);
9226d125 2856
710390d9 2857 if (likely(!mm)) {
1da177e4
LT
2858 next->active_mm = oldmm;
2859 atomic_inc(&oldmm->mm_count);
2860 enter_lazy_tlb(oldmm, next);
2861 } else
2862 switch_mm(oldmm, mm, next);
2863
710390d9 2864 if (likely(!prev->mm)) {
1da177e4 2865 prev->active_mm = NULL;
1da177e4
LT
2866 rq->prev_mm = oldmm;
2867 }
3a5f5e48
IM
2868 /*
2869 * Since the runqueue lock will be released by the next
2870 * task (which is an invalid locking op but in the case
2871 * of the scheduler it's an obvious special-case), so we
2872 * do an early lockdep release here:
2873 */
2874#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2876#endif
1da177e4
LT
2877
2878 /* Here we just switch the register state and the stack. */
2879 switch_to(prev, next, prev);
2880
dd41f596
IM
2881 barrier();
2882 /*
2883 * this_rq must be evaluated again because prev may have moved
2884 * CPUs since it called schedule(), thus the 'rq' on its stack
2885 * frame will be invalid.
2886 */
2887 finish_task_switch(this_rq(), prev);
1da177e4
LT
2888}
2889
2890/*
2891 * nr_running, nr_uninterruptible and nr_context_switches:
2892 *
2893 * externally visible scheduler statistics: current number of runnable
2894 * threads, current number of uninterruptible-sleeping threads, total
2895 * number of context switches performed since bootup.
2896 */
2897unsigned long nr_running(void)
2898{
2899 unsigned long i, sum = 0;
2900
2901 for_each_online_cpu(i)
2902 sum += cpu_rq(i)->nr_running;
2903
2904 return sum;
f711f609 2905}
1da177e4
LT
2906
2907unsigned long nr_uninterruptible(void)
f711f609 2908{
1da177e4 2909 unsigned long i, sum = 0;
f711f609 2910
0a945022 2911 for_each_possible_cpu(i)
1da177e4 2912 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2913
2914 /*
1da177e4
LT
2915 * Since we read the counters lockless, it might be slightly
2916 * inaccurate. Do not allow it to go below zero though:
f711f609 2917 */
1da177e4
LT
2918 if (unlikely((long)sum < 0))
2919 sum = 0;
f711f609 2920
1da177e4 2921 return sum;
f711f609 2922}
f711f609 2923
1da177e4 2924unsigned long long nr_context_switches(void)
46cb4b7c 2925{
cc94abfc
SR
2926 int i;
2927 unsigned long long sum = 0;
46cb4b7c 2928
0a945022 2929 for_each_possible_cpu(i)
1da177e4 2930 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2931
1da177e4
LT
2932 return sum;
2933}
483b4ee6 2934
1da177e4
LT
2935unsigned long nr_iowait(void)
2936{
2937 unsigned long i, sum = 0;
483b4ee6 2938
0a945022 2939 for_each_possible_cpu(i)
1da177e4 2940 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2941
1da177e4
LT
2942 return sum;
2943}
483b4ee6 2944
69d25870
AV
2945unsigned long nr_iowait_cpu(void)
2946{
2947 struct rq *this = this_rq();
2948 return atomic_read(&this->nr_iowait);
2949}
46cb4b7c 2950
69d25870
AV
2951unsigned long this_cpu_load(void)
2952{
2953 struct rq *this = this_rq();
2954 return this->cpu_load[0];
2955}
e790fb0b 2956
46cb4b7c 2957
dce48a84
TG
2958/* Variables and functions for calc_load */
2959static atomic_long_t calc_load_tasks;
2960static unsigned long calc_load_update;
2961unsigned long avenrun[3];
2962EXPORT_SYMBOL(avenrun);
46cb4b7c 2963
2d02494f
TG
2964/**
2965 * get_avenrun - get the load average array
2966 * @loads: pointer to dest load array
2967 * @offset: offset to add
2968 * @shift: shift count to shift the result left
2969 *
2970 * These values are estimates at best, so no need for locking.
2971 */
2972void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2973{
2974 loads[0] = (avenrun[0] + offset) << shift;
2975 loads[1] = (avenrun[1] + offset) << shift;
2976 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2977}
46cb4b7c 2978
dce48a84
TG
2979static unsigned long
2980calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2981{
dce48a84
TG
2982 load *= exp;
2983 load += active * (FIXED_1 - exp);
2984 return load >> FSHIFT;
2985}
46cb4b7c
SS
2986
2987/*
dce48a84
TG
2988 * calc_load - update the avenrun load estimates 10 ticks after the
2989 * CPUs have updated calc_load_tasks.
7835b98b 2990 */
dce48a84 2991void calc_global_load(void)
7835b98b 2992{
dce48a84
TG
2993 unsigned long upd = calc_load_update + 10;
2994 long active;
1da177e4 2995
dce48a84
TG
2996 if (time_before(jiffies, upd))
2997 return;
1da177e4 2998
dce48a84
TG
2999 active = atomic_long_read(&calc_load_tasks);
3000 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3001
dce48a84
TG
3002 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3003 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3004 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3005
dce48a84
TG
3006 calc_load_update += LOAD_FREQ;
3007}
1da177e4 3008
dce48a84
TG
3009/*
3010 * Either called from update_cpu_load() or from a cpu going idle
3011 */
3012static void calc_load_account_active(struct rq *this_rq)
3013{
3014 long nr_active, delta;
08c183f3 3015
dce48a84
TG
3016 nr_active = this_rq->nr_running;
3017 nr_active += (long) this_rq->nr_uninterruptible;
783609c6 3018
dce48a84
TG
3019 if (nr_active != this_rq->calc_load_active) {
3020 delta = nr_active - this_rq->calc_load_active;
3021 this_rq->calc_load_active = nr_active;
3022 atomic_long_add(delta, &calc_load_tasks);
1da177e4 3023 }
46cb4b7c
SS
3024}
3025
3026/*
dd41f596
IM
3027 * Update rq->cpu_load[] statistics. This function is usually called every
3028 * scheduler tick (TICK_NSEC).
46cb4b7c 3029 */
dd41f596 3030static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3031{
495eca49 3032 unsigned long this_load = this_rq->load.weight;
dd41f596 3033 int i, scale;
46cb4b7c 3034
dd41f596 3035 this_rq->nr_load_updates++;
46cb4b7c 3036
dd41f596
IM
3037 /* Update our load: */
3038 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3039 unsigned long old_load, new_load;
7d1e6a9b 3040
dd41f596 3041 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3042
dd41f596
IM
3043 old_load = this_rq->cpu_load[i];
3044 new_load = this_load;
a25707f3
IM
3045 /*
3046 * Round up the averaging division if load is increasing. This
3047 * prevents us from getting stuck on 9 if the load is 10, for
3048 * example.
3049 */
3050 if (new_load > old_load)
3051 new_load += scale-1;
dd41f596
IM
3052 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3053 }
46cb4b7c 3054
dce48a84
TG
3055 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3056 this_rq->calc_load_update += LOAD_FREQ;
3057 calc_load_account_active(this_rq);
46cb4b7c 3058 }
46cb4b7c
SS
3059}
3060
dd41f596 3061#ifdef CONFIG_SMP
8a0be9ef 3062
46cb4b7c 3063/*
38022906
PZ
3064 * sched_exec - execve() is a valuable balancing opportunity, because at
3065 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3066 */
38022906 3067void sched_exec(void)
46cb4b7c 3068{
38022906 3069 struct task_struct *p = current;
70b97a7f 3070 struct migration_req req;
38022906 3071 int dest_cpu, this_cpu;
1da177e4 3072 unsigned long flags;
70b97a7f 3073 struct rq *rq;
46cb4b7c 3074
38022906 3075 this_cpu = get_cpu();
30da688e 3076 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
38022906
PZ
3077 if (dest_cpu == this_cpu) {
3078 put_cpu();
3079 return;
46cb4b7c
SS
3080 }
3081
1da177e4 3082 rq = task_rq_lock(p, &flags);
38022906 3083 put_cpu();
46cb4b7c 3084 /*
38022906 3085 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3086 */
30da688e
ON
3087 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3088 likely(cpu_active(dest_cpu)) &&
3089 migrate_task(p, dest_cpu, &req)) {
1da177e4
LT
3090 /* Need to wait for migration thread (might exit: take ref). */
3091 struct task_struct *mt = rq->migration_thread;
dd41f596 3092
1da177e4
LT
3093 get_task_struct(mt);
3094 task_rq_unlock(rq, &flags);
3095 wake_up_process(mt);
3096 put_task_struct(mt);
3097 wait_for_completion(&req.done);
dd41f596 3098
1da177e4
LT
3099 return;
3100 }
1da177e4 3101 task_rq_unlock(rq, &flags);
1da177e4 3102}
dd41f596 3103
1da177e4
LT
3104#endif
3105
1da177e4
LT
3106DEFINE_PER_CPU(struct kernel_stat, kstat);
3107
3108EXPORT_PER_CPU_SYMBOL(kstat);
3109
3110/*
c5f8d995 3111 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3112 * @p in case that task is currently running.
c5f8d995
HS
3113 *
3114 * Called with task_rq_lock() held on @rq.
1da177e4 3115 */
c5f8d995
HS
3116static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3117{
3118 u64 ns = 0;
3119
3120 if (task_current(rq, p)) {
3121 update_rq_clock(rq);
3122 ns = rq->clock - p->se.exec_start;
3123 if ((s64)ns < 0)
3124 ns = 0;
3125 }
3126
3127 return ns;
3128}
3129
bb34d92f 3130unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3131{
1da177e4 3132 unsigned long flags;
41b86e9c 3133 struct rq *rq;
bb34d92f 3134 u64 ns = 0;
48f24c4d 3135
41b86e9c 3136 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3137 ns = do_task_delta_exec(p, rq);
3138 task_rq_unlock(rq, &flags);
1508487e 3139
c5f8d995
HS
3140 return ns;
3141}
f06febc9 3142
c5f8d995
HS
3143/*
3144 * Return accounted runtime for the task.
3145 * In case the task is currently running, return the runtime plus current's
3146 * pending runtime that have not been accounted yet.
3147 */
3148unsigned long long task_sched_runtime(struct task_struct *p)
3149{
3150 unsigned long flags;
3151 struct rq *rq;
3152 u64 ns = 0;
3153
3154 rq = task_rq_lock(p, &flags);
3155 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3156 task_rq_unlock(rq, &flags);
3157
3158 return ns;
3159}
48f24c4d 3160
c5f8d995
HS
3161/*
3162 * Return sum_exec_runtime for the thread group.
3163 * In case the task is currently running, return the sum plus current's
3164 * pending runtime that have not been accounted yet.
3165 *
3166 * Note that the thread group might have other running tasks as well,
3167 * so the return value not includes other pending runtime that other
3168 * running tasks might have.
3169 */
3170unsigned long long thread_group_sched_runtime(struct task_struct *p)
3171{
3172 struct task_cputime totals;
3173 unsigned long flags;
3174 struct rq *rq;
3175 u64 ns;
3176
3177 rq = task_rq_lock(p, &flags);
3178 thread_group_cputime(p, &totals);
3179 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3180 task_rq_unlock(rq, &flags);
48f24c4d 3181
1da177e4
LT
3182 return ns;
3183}
3184
1da177e4
LT
3185/*
3186 * Account user cpu time to a process.
3187 * @p: the process that the cpu time gets accounted to
1da177e4 3188 * @cputime: the cpu time spent in user space since the last update
457533a7 3189 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3190 */
457533a7
MS
3191void account_user_time(struct task_struct *p, cputime_t cputime,
3192 cputime_t cputime_scaled)
1da177e4
LT
3193{
3194 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3195 cputime64_t tmp;
3196
457533a7 3197 /* Add user time to process. */
1da177e4 3198 p->utime = cputime_add(p->utime, cputime);
457533a7 3199 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3200 account_group_user_time(p, cputime);
1da177e4
LT
3201
3202 /* Add user time to cpustat. */
3203 tmp = cputime_to_cputime64(cputime);
3204 if (TASK_NICE(p) > 0)
3205 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3206 else
3207 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3208
3209 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3210 /* Account for user time used */
3211 acct_update_integrals(p);
1da177e4
LT
3212}
3213
94886b84
LV
3214/*
3215 * Account guest cpu time to a process.
3216 * @p: the process that the cpu time gets accounted to
3217 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3218 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3219 */
457533a7
MS
3220static void account_guest_time(struct task_struct *p, cputime_t cputime,
3221 cputime_t cputime_scaled)
94886b84
LV
3222{
3223 cputime64_t tmp;
3224 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3225
3226 tmp = cputime_to_cputime64(cputime);
3227
457533a7 3228 /* Add guest time to process. */
94886b84 3229 p->utime = cputime_add(p->utime, cputime);
457533a7 3230 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3231 account_group_user_time(p, cputime);
94886b84
LV
3232 p->gtime = cputime_add(p->gtime, cputime);
3233
457533a7 3234 /* Add guest time to cpustat. */
ce0e7b28
RO
3235 if (TASK_NICE(p) > 0) {
3236 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3237 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3238 } else {
3239 cpustat->user = cputime64_add(cpustat->user, tmp);
3240 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3241 }
94886b84
LV
3242}
3243
1da177e4
LT
3244/*
3245 * Account system cpu time to a process.
3246 * @p: the process that the cpu time gets accounted to
3247 * @hardirq_offset: the offset to subtract from hardirq_count()
3248 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3249 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3250 */
3251void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3252 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3253{
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3255 cputime64_t tmp;
3256
983ed7a6 3257 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3258 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3259 return;
3260 }
94886b84 3261
457533a7 3262 /* Add system time to process. */
1da177e4 3263 p->stime = cputime_add(p->stime, cputime);
457533a7 3264 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3265 account_group_system_time(p, cputime);
1da177e4
LT
3266
3267 /* Add system time to cpustat. */
3268 tmp = cputime_to_cputime64(cputime);
3269 if (hardirq_count() - hardirq_offset)
3270 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3271 else if (softirq_count())
3272 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3273 else
79741dd3
MS
3274 cpustat->system = cputime64_add(cpustat->system, tmp);
3275
ef12fefa
BR
3276 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3277
1da177e4
LT
3278 /* Account for system time used */
3279 acct_update_integrals(p);
1da177e4
LT
3280}
3281
c66f08be 3282/*
1da177e4 3283 * Account for involuntary wait time.
1da177e4 3284 * @steal: the cpu time spent in involuntary wait
c66f08be 3285 */
79741dd3 3286void account_steal_time(cputime_t cputime)
c66f08be 3287{
79741dd3
MS
3288 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3289 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3290
3291 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3292}
3293
1da177e4 3294/*
79741dd3
MS
3295 * Account for idle time.
3296 * @cputime: the cpu time spent in idle wait
1da177e4 3297 */
79741dd3 3298void account_idle_time(cputime_t cputime)
1da177e4
LT
3299{
3300 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3301 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3302 struct rq *rq = this_rq();
1da177e4 3303
79741dd3
MS
3304 if (atomic_read(&rq->nr_iowait) > 0)
3305 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3306 else
3307 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3308}
3309
79741dd3
MS
3310#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3311
3312/*
3313 * Account a single tick of cpu time.
3314 * @p: the process that the cpu time gets accounted to
3315 * @user_tick: indicates if the tick is a user or a system tick
3316 */
3317void account_process_tick(struct task_struct *p, int user_tick)
3318{
a42548a1 3319 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3320 struct rq *rq = this_rq();
3321
3322 if (user_tick)
a42548a1 3323 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3324 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3325 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3326 one_jiffy_scaled);
3327 else
a42548a1 3328 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3329}
3330
3331/*
3332 * Account multiple ticks of steal time.
3333 * @p: the process from which the cpu time has been stolen
3334 * @ticks: number of stolen ticks
3335 */
3336void account_steal_ticks(unsigned long ticks)
3337{
3338 account_steal_time(jiffies_to_cputime(ticks));
3339}
3340
3341/*
3342 * Account multiple ticks of idle time.
3343 * @ticks: number of stolen ticks
3344 */
3345void account_idle_ticks(unsigned long ticks)
3346{
3347 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3348}
3349
79741dd3
MS
3350#endif
3351
49048622
BS
3352/*
3353 * Use precise platform statistics if available:
3354 */
3355#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3356void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3357{
d99ca3b9
HS
3358 *ut = p->utime;
3359 *st = p->stime;
49048622
BS
3360}
3361
0cf55e1e 3362void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3363{
0cf55e1e
HS
3364 struct task_cputime cputime;
3365
3366 thread_group_cputime(p, &cputime);
3367
3368 *ut = cputime.utime;
3369 *st = cputime.stime;
49048622
BS
3370}
3371#else
761b1d26
HS
3372
3373#ifndef nsecs_to_cputime
b7b20df9 3374# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3375#endif
3376
d180c5bc 3377void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3378{
d99ca3b9 3379 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3380
3381 /*
3382 * Use CFS's precise accounting:
3383 */
d180c5bc 3384 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3385
3386 if (total) {
d180c5bc
HS
3387 u64 temp;
3388
3389 temp = (u64)(rtime * utime);
49048622 3390 do_div(temp, total);
d180c5bc
HS
3391 utime = (cputime_t)temp;
3392 } else
3393 utime = rtime;
49048622 3394
d180c5bc
HS
3395 /*
3396 * Compare with previous values, to keep monotonicity:
3397 */
761b1d26 3398 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3399 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3400
d99ca3b9
HS
3401 *ut = p->prev_utime;
3402 *st = p->prev_stime;
49048622
BS
3403}
3404
0cf55e1e
HS
3405/*
3406 * Must be called with siglock held.
3407 */
3408void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3409{
0cf55e1e
HS
3410 struct signal_struct *sig = p->signal;
3411 struct task_cputime cputime;
3412 cputime_t rtime, utime, total;
49048622 3413
0cf55e1e 3414 thread_group_cputime(p, &cputime);
49048622 3415
0cf55e1e
HS
3416 total = cputime_add(cputime.utime, cputime.stime);
3417 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3418
0cf55e1e
HS
3419 if (total) {
3420 u64 temp;
49048622 3421
0cf55e1e
HS
3422 temp = (u64)(rtime * cputime.utime);
3423 do_div(temp, total);
3424 utime = (cputime_t)temp;
3425 } else
3426 utime = rtime;
3427
3428 sig->prev_utime = max(sig->prev_utime, utime);
3429 sig->prev_stime = max(sig->prev_stime,
3430 cputime_sub(rtime, sig->prev_utime));
3431
3432 *ut = sig->prev_utime;
3433 *st = sig->prev_stime;
49048622 3434}
49048622 3435#endif
49048622 3436
7835b98b
CL
3437/*
3438 * This function gets called by the timer code, with HZ frequency.
3439 * We call it with interrupts disabled.
3440 *
3441 * It also gets called by the fork code, when changing the parent's
3442 * timeslices.
3443 */
3444void scheduler_tick(void)
3445{
7835b98b
CL
3446 int cpu = smp_processor_id();
3447 struct rq *rq = cpu_rq(cpu);
dd41f596 3448 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3449
3450 sched_clock_tick();
dd41f596 3451
05fa785c 3452 raw_spin_lock(&rq->lock);
3e51f33f 3453 update_rq_clock(rq);
f1a438d8 3454 update_cpu_load(rq);
fa85ae24 3455 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3456 raw_spin_unlock(&rq->lock);
7835b98b 3457
49f47433 3458 perf_event_task_tick(curr);
e220d2dc 3459
e418e1c2 3460#ifdef CONFIG_SMP
dd41f596
IM
3461 rq->idle_at_tick = idle_cpu(cpu);
3462 trigger_load_balance(rq, cpu);
e418e1c2 3463#endif
1da177e4
LT
3464}
3465
132380a0 3466notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3467{
3468 if (in_lock_functions(addr)) {
3469 addr = CALLER_ADDR2;
3470 if (in_lock_functions(addr))
3471 addr = CALLER_ADDR3;
3472 }
3473 return addr;
3474}
1da177e4 3475
7e49fcce
SR
3476#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3477 defined(CONFIG_PREEMPT_TRACER))
3478
43627582 3479void __kprobes add_preempt_count(int val)
1da177e4 3480{
6cd8a4bb 3481#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3482 /*
3483 * Underflow?
3484 */
9a11b49a
IM
3485 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3486 return;
6cd8a4bb 3487#endif
1da177e4 3488 preempt_count() += val;
6cd8a4bb 3489#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3490 /*
3491 * Spinlock count overflowing soon?
3492 */
33859f7f
MOS
3493 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3494 PREEMPT_MASK - 10);
6cd8a4bb
SR
3495#endif
3496 if (preempt_count() == val)
3497 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3498}
3499EXPORT_SYMBOL(add_preempt_count);
3500
43627582 3501void __kprobes sub_preempt_count(int val)
1da177e4 3502{
6cd8a4bb 3503#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3504 /*
3505 * Underflow?
3506 */
01e3eb82 3507 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3508 return;
1da177e4
LT
3509 /*
3510 * Is the spinlock portion underflowing?
3511 */
9a11b49a
IM
3512 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3513 !(preempt_count() & PREEMPT_MASK)))
3514 return;
6cd8a4bb 3515#endif
9a11b49a 3516
6cd8a4bb
SR
3517 if (preempt_count() == val)
3518 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3519 preempt_count() -= val;
3520}
3521EXPORT_SYMBOL(sub_preempt_count);
3522
3523#endif
3524
3525/*
dd41f596 3526 * Print scheduling while atomic bug:
1da177e4 3527 */
dd41f596 3528static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3529{
838225b4
SS
3530 struct pt_regs *regs = get_irq_regs();
3531
3df0fc5b
PZ
3532 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3533 prev->comm, prev->pid, preempt_count());
838225b4 3534
dd41f596 3535 debug_show_held_locks(prev);
e21f5b15 3536 print_modules();
dd41f596
IM
3537 if (irqs_disabled())
3538 print_irqtrace_events(prev);
838225b4
SS
3539
3540 if (regs)
3541 show_regs(regs);
3542 else
3543 dump_stack();
dd41f596 3544}
1da177e4 3545
dd41f596
IM
3546/*
3547 * Various schedule()-time debugging checks and statistics:
3548 */
3549static inline void schedule_debug(struct task_struct *prev)
3550{
1da177e4 3551 /*
41a2d6cf 3552 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3553 * schedule() atomically, we ignore that path for now.
3554 * Otherwise, whine if we are scheduling when we should not be.
3555 */
3f33a7ce 3556 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3557 __schedule_bug(prev);
3558
1da177e4
LT
3559 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3560
2d72376b 3561 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3562#ifdef CONFIG_SCHEDSTATS
3563 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3564 schedstat_inc(this_rq(), bkl_count);
3565 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3566 }
3567#endif
dd41f596
IM
3568}
3569
6cecd084 3570static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3571{
a64692a3
MG
3572 if (prev->se.on_rq)
3573 update_rq_clock(rq);
3574 rq->skip_clock_update = 0;
6cecd084 3575 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3576}
3577
dd41f596
IM
3578/*
3579 * Pick up the highest-prio task:
3580 */
3581static inline struct task_struct *
b67802ea 3582pick_next_task(struct rq *rq)
dd41f596 3583{
5522d5d5 3584 const struct sched_class *class;
dd41f596 3585 struct task_struct *p;
1da177e4
LT
3586
3587 /*
dd41f596
IM
3588 * Optimization: we know that if all tasks are in
3589 * the fair class we can call that function directly:
1da177e4 3590 */
dd41f596 3591 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3592 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3593 if (likely(p))
3594 return p;
1da177e4
LT
3595 }
3596
dd41f596
IM
3597 class = sched_class_highest;
3598 for ( ; ; ) {
fb8d4724 3599 p = class->pick_next_task(rq);
dd41f596
IM
3600 if (p)
3601 return p;
3602 /*
3603 * Will never be NULL as the idle class always
3604 * returns a non-NULL p:
3605 */
3606 class = class->next;
3607 }
3608}
1da177e4 3609
dd41f596
IM
3610/*
3611 * schedule() is the main scheduler function.
3612 */
ff743345 3613asmlinkage void __sched schedule(void)
dd41f596
IM
3614{
3615 struct task_struct *prev, *next;
67ca7bde 3616 unsigned long *switch_count;
dd41f596 3617 struct rq *rq;
31656519 3618 int cpu;
dd41f596 3619
ff743345
PZ
3620need_resched:
3621 preempt_disable();
dd41f596
IM
3622 cpu = smp_processor_id();
3623 rq = cpu_rq(cpu);
d6714c22 3624 rcu_sched_qs(cpu);
dd41f596
IM
3625 prev = rq->curr;
3626 switch_count = &prev->nivcsw;
3627
3628 release_kernel_lock(prev);
3629need_resched_nonpreemptible:
3630
3631 schedule_debug(prev);
1da177e4 3632
31656519 3633 if (sched_feat(HRTICK))
f333fdc9 3634 hrtick_clear(rq);
8f4d37ec 3635
05fa785c 3636 raw_spin_lock_irq(&rq->lock);
1e819950 3637 clear_tsk_need_resched(prev);
1da177e4 3638
1da177e4 3639 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3640 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3641 prev->state = TASK_RUNNING;
16882c1e 3642 else
2e1cb74a 3643 deactivate_task(rq, prev, 1);
dd41f596 3644 switch_count = &prev->nvcsw;
1da177e4
LT
3645 }
3646
3f029d3c 3647 pre_schedule(rq, prev);
f65eda4f 3648
dd41f596 3649 if (unlikely(!rq->nr_running))
1da177e4 3650 idle_balance(cpu, rq);
1da177e4 3651
df1c99d4 3652 put_prev_task(rq, prev);
b67802ea 3653 next = pick_next_task(rq);
1da177e4 3654
1da177e4 3655 if (likely(prev != next)) {
673a90a1 3656 sched_info_switch(prev, next);
49f47433 3657 perf_event_task_sched_out(prev, next);
673a90a1 3658
1da177e4
LT
3659 rq->nr_switches++;
3660 rq->curr = next;
3661 ++*switch_count;
3662
dd41f596 3663 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3664 /*
3665 * the context switch might have flipped the stack from under
3666 * us, hence refresh the local variables.
3667 */
3668 cpu = smp_processor_id();
3669 rq = cpu_rq(cpu);
1da177e4 3670 } else
05fa785c 3671 raw_spin_unlock_irq(&rq->lock);
1da177e4 3672
3f029d3c 3673 post_schedule(rq);
1da177e4 3674
6d558c3a
YZ
3675 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3676 prev = rq->curr;
3677 switch_count = &prev->nivcsw;
1da177e4 3678 goto need_resched_nonpreemptible;
6d558c3a 3679 }
8f4d37ec 3680
1da177e4 3681 preempt_enable_no_resched();
ff743345 3682 if (need_resched())
1da177e4
LT
3683 goto need_resched;
3684}
1da177e4
LT
3685EXPORT_SYMBOL(schedule);
3686
c08f7829 3687#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3688/*
3689 * Look out! "owner" is an entirely speculative pointer
3690 * access and not reliable.
3691 */
3692int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3693{
3694 unsigned int cpu;
3695 struct rq *rq;
3696
3697 if (!sched_feat(OWNER_SPIN))
3698 return 0;
3699
3700#ifdef CONFIG_DEBUG_PAGEALLOC
3701 /*
3702 * Need to access the cpu field knowing that
3703 * DEBUG_PAGEALLOC could have unmapped it if
3704 * the mutex owner just released it and exited.
3705 */
3706 if (probe_kernel_address(&owner->cpu, cpu))
3707 goto out;
3708#else
3709 cpu = owner->cpu;
3710#endif
3711
3712 /*
3713 * Even if the access succeeded (likely case),
3714 * the cpu field may no longer be valid.
3715 */
3716 if (cpu >= nr_cpumask_bits)
3717 goto out;
3718
3719 /*
3720 * We need to validate that we can do a
3721 * get_cpu() and that we have the percpu area.
3722 */
3723 if (!cpu_online(cpu))
3724 goto out;
3725
3726 rq = cpu_rq(cpu);
3727
3728 for (;;) {
3729 /*
3730 * Owner changed, break to re-assess state.
3731 */
3732 if (lock->owner != owner)
3733 break;
3734
3735 /*
3736 * Is that owner really running on that cpu?
3737 */
3738 if (task_thread_info(rq->curr) != owner || need_resched())
3739 return 0;
3740
3741 cpu_relax();
3742 }
3743out:
3744 return 1;
3745}
3746#endif
3747
1da177e4
LT
3748#ifdef CONFIG_PREEMPT
3749/*
2ed6e34f 3750 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3751 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3752 * occur there and call schedule directly.
3753 */
3754asmlinkage void __sched preempt_schedule(void)
3755{
3756 struct thread_info *ti = current_thread_info();
6478d880 3757
1da177e4
LT
3758 /*
3759 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3760 * we do not want to preempt the current task. Just return..
1da177e4 3761 */
beed33a8 3762 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3763 return;
3764
3a5c359a
AK
3765 do {
3766 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3767 schedule();
3a5c359a 3768 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3769
3a5c359a
AK
3770 /*
3771 * Check again in case we missed a preemption opportunity
3772 * between schedule and now.
3773 */
3774 barrier();
5ed0cec0 3775 } while (need_resched());
1da177e4 3776}
1da177e4
LT
3777EXPORT_SYMBOL(preempt_schedule);
3778
3779/*
2ed6e34f 3780 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3781 * off of irq context.
3782 * Note, that this is called and return with irqs disabled. This will
3783 * protect us against recursive calling from irq.
3784 */
3785asmlinkage void __sched preempt_schedule_irq(void)
3786{
3787 struct thread_info *ti = current_thread_info();
6478d880 3788
2ed6e34f 3789 /* Catch callers which need to be fixed */
1da177e4
LT
3790 BUG_ON(ti->preempt_count || !irqs_disabled());
3791
3a5c359a
AK
3792 do {
3793 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3794 local_irq_enable();
3795 schedule();
3796 local_irq_disable();
3a5c359a 3797 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3798
3a5c359a
AK
3799 /*
3800 * Check again in case we missed a preemption opportunity
3801 * between schedule and now.
3802 */
3803 barrier();
5ed0cec0 3804 } while (need_resched());
1da177e4
LT
3805}
3806
3807#endif /* CONFIG_PREEMPT */
3808
63859d4f 3809int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3810 void *key)
1da177e4 3811{
63859d4f 3812 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3813}
1da177e4
LT
3814EXPORT_SYMBOL(default_wake_function);
3815
3816/*
41a2d6cf
IM
3817 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3818 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3819 * number) then we wake all the non-exclusive tasks and one exclusive task.
3820 *
3821 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3822 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3823 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3824 */
78ddb08f 3825static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3826 int nr_exclusive, int wake_flags, void *key)
1da177e4 3827{
2e45874c 3828 wait_queue_t *curr, *next;
1da177e4 3829
2e45874c 3830 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3831 unsigned flags = curr->flags;
3832
63859d4f 3833 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3834 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3835 break;
3836 }
3837}
3838
3839/**
3840 * __wake_up - wake up threads blocked on a waitqueue.
3841 * @q: the waitqueue
3842 * @mode: which threads
3843 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3844 * @key: is directly passed to the wakeup function
50fa610a
DH
3845 *
3846 * It may be assumed that this function implies a write memory barrier before
3847 * changing the task state if and only if any tasks are woken up.
1da177e4 3848 */
7ad5b3a5 3849void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3850 int nr_exclusive, void *key)
1da177e4
LT
3851{
3852 unsigned long flags;
3853
3854 spin_lock_irqsave(&q->lock, flags);
3855 __wake_up_common(q, mode, nr_exclusive, 0, key);
3856 spin_unlock_irqrestore(&q->lock, flags);
3857}
1da177e4
LT
3858EXPORT_SYMBOL(__wake_up);
3859
3860/*
3861 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3862 */
7ad5b3a5 3863void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3864{
3865 __wake_up_common(q, mode, 1, 0, NULL);
3866}
3867
4ede816a
DL
3868void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3869{
3870 __wake_up_common(q, mode, 1, 0, key);
3871}
3872
1da177e4 3873/**
4ede816a 3874 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3875 * @q: the waitqueue
3876 * @mode: which threads
3877 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3878 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3879 *
3880 * The sync wakeup differs that the waker knows that it will schedule
3881 * away soon, so while the target thread will be woken up, it will not
3882 * be migrated to another CPU - ie. the two threads are 'synchronized'
3883 * with each other. This can prevent needless bouncing between CPUs.
3884 *
3885 * On UP it can prevent extra preemption.
50fa610a
DH
3886 *
3887 * It may be assumed that this function implies a write memory barrier before
3888 * changing the task state if and only if any tasks are woken up.
1da177e4 3889 */
4ede816a
DL
3890void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3891 int nr_exclusive, void *key)
1da177e4
LT
3892{
3893 unsigned long flags;
7d478721 3894 int wake_flags = WF_SYNC;
1da177e4
LT
3895
3896 if (unlikely(!q))
3897 return;
3898
3899 if (unlikely(!nr_exclusive))
7d478721 3900 wake_flags = 0;
1da177e4
LT
3901
3902 spin_lock_irqsave(&q->lock, flags);
7d478721 3903 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3904 spin_unlock_irqrestore(&q->lock, flags);
3905}
4ede816a
DL
3906EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3907
3908/*
3909 * __wake_up_sync - see __wake_up_sync_key()
3910 */
3911void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3912{
3913 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3914}
1da177e4
LT
3915EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3916
65eb3dc6
KD
3917/**
3918 * complete: - signals a single thread waiting on this completion
3919 * @x: holds the state of this particular completion
3920 *
3921 * This will wake up a single thread waiting on this completion. Threads will be
3922 * awakened in the same order in which they were queued.
3923 *
3924 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3925 *
3926 * It may be assumed that this function implies a write memory barrier before
3927 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3928 */
b15136e9 3929void complete(struct completion *x)
1da177e4
LT
3930{
3931 unsigned long flags;
3932
3933 spin_lock_irqsave(&x->wait.lock, flags);
3934 x->done++;
d9514f6c 3935 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3936 spin_unlock_irqrestore(&x->wait.lock, flags);
3937}
3938EXPORT_SYMBOL(complete);
3939
65eb3dc6
KD
3940/**
3941 * complete_all: - signals all threads waiting on this completion
3942 * @x: holds the state of this particular completion
3943 *
3944 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3945 *
3946 * It may be assumed that this function implies a write memory barrier before
3947 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3948 */
b15136e9 3949void complete_all(struct completion *x)
1da177e4
LT
3950{
3951 unsigned long flags;
3952
3953 spin_lock_irqsave(&x->wait.lock, flags);
3954 x->done += UINT_MAX/2;
d9514f6c 3955 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3956 spin_unlock_irqrestore(&x->wait.lock, flags);
3957}
3958EXPORT_SYMBOL(complete_all);
3959
8cbbe86d
AK
3960static inline long __sched
3961do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3962{
1da177e4
LT
3963 if (!x->done) {
3964 DECLARE_WAITQUEUE(wait, current);
3965
3966 wait.flags |= WQ_FLAG_EXCLUSIVE;
3967 __add_wait_queue_tail(&x->wait, &wait);
3968 do {
94d3d824 3969 if (signal_pending_state(state, current)) {
ea71a546
ON
3970 timeout = -ERESTARTSYS;
3971 break;
8cbbe86d
AK
3972 }
3973 __set_current_state(state);
1da177e4
LT
3974 spin_unlock_irq(&x->wait.lock);
3975 timeout = schedule_timeout(timeout);
3976 spin_lock_irq(&x->wait.lock);
ea71a546 3977 } while (!x->done && timeout);
1da177e4 3978 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3979 if (!x->done)
3980 return timeout;
1da177e4
LT
3981 }
3982 x->done--;
ea71a546 3983 return timeout ?: 1;
1da177e4 3984}
1da177e4 3985
8cbbe86d
AK
3986static long __sched
3987wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3988{
1da177e4
LT
3989 might_sleep();
3990
3991 spin_lock_irq(&x->wait.lock);
8cbbe86d 3992 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3993 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3994 return timeout;
3995}
1da177e4 3996
65eb3dc6
KD
3997/**
3998 * wait_for_completion: - waits for completion of a task
3999 * @x: holds the state of this particular completion
4000 *
4001 * This waits to be signaled for completion of a specific task. It is NOT
4002 * interruptible and there is no timeout.
4003 *
4004 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4005 * and interrupt capability. Also see complete().
4006 */
b15136e9 4007void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4008{
4009 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4010}
8cbbe86d 4011EXPORT_SYMBOL(wait_for_completion);
1da177e4 4012
65eb3dc6
KD
4013/**
4014 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4015 * @x: holds the state of this particular completion
4016 * @timeout: timeout value in jiffies
4017 *
4018 * This waits for either a completion of a specific task to be signaled or for a
4019 * specified timeout to expire. The timeout is in jiffies. It is not
4020 * interruptible.
4021 */
b15136e9 4022unsigned long __sched
8cbbe86d 4023wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4024{
8cbbe86d 4025 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4026}
8cbbe86d 4027EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4028
65eb3dc6
KD
4029/**
4030 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4031 * @x: holds the state of this particular completion
4032 *
4033 * This waits for completion of a specific task to be signaled. It is
4034 * interruptible.
4035 */
8cbbe86d 4036int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4037{
51e97990
AK
4038 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4039 if (t == -ERESTARTSYS)
4040 return t;
4041 return 0;
0fec171c 4042}
8cbbe86d 4043EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4044
65eb3dc6
KD
4045/**
4046 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4047 * @x: holds the state of this particular completion
4048 * @timeout: timeout value in jiffies
4049 *
4050 * This waits for either a completion of a specific task to be signaled or for a
4051 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4052 */
b15136e9 4053unsigned long __sched
8cbbe86d
AK
4054wait_for_completion_interruptible_timeout(struct completion *x,
4055 unsigned long timeout)
0fec171c 4056{
8cbbe86d 4057 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4058}
8cbbe86d 4059EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4060
65eb3dc6
KD
4061/**
4062 * wait_for_completion_killable: - waits for completion of a task (killable)
4063 * @x: holds the state of this particular completion
4064 *
4065 * This waits to be signaled for completion of a specific task. It can be
4066 * interrupted by a kill signal.
4067 */
009e577e
MW
4068int __sched wait_for_completion_killable(struct completion *x)
4069{
4070 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4071 if (t == -ERESTARTSYS)
4072 return t;
4073 return 0;
4074}
4075EXPORT_SYMBOL(wait_for_completion_killable);
4076
be4de352
DC
4077/**
4078 * try_wait_for_completion - try to decrement a completion without blocking
4079 * @x: completion structure
4080 *
4081 * Returns: 0 if a decrement cannot be done without blocking
4082 * 1 if a decrement succeeded.
4083 *
4084 * If a completion is being used as a counting completion,
4085 * attempt to decrement the counter without blocking. This
4086 * enables us to avoid waiting if the resource the completion
4087 * is protecting is not available.
4088 */
4089bool try_wait_for_completion(struct completion *x)
4090{
7539a3b3 4091 unsigned long flags;
be4de352
DC
4092 int ret = 1;
4093
7539a3b3 4094 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4095 if (!x->done)
4096 ret = 0;
4097 else
4098 x->done--;
7539a3b3 4099 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4100 return ret;
4101}
4102EXPORT_SYMBOL(try_wait_for_completion);
4103
4104/**
4105 * completion_done - Test to see if a completion has any waiters
4106 * @x: completion structure
4107 *
4108 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4109 * 1 if there are no waiters.
4110 *
4111 */
4112bool completion_done(struct completion *x)
4113{
7539a3b3 4114 unsigned long flags;
be4de352
DC
4115 int ret = 1;
4116
7539a3b3 4117 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4118 if (!x->done)
4119 ret = 0;
7539a3b3 4120 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4121 return ret;
4122}
4123EXPORT_SYMBOL(completion_done);
4124
8cbbe86d
AK
4125static long __sched
4126sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4127{
0fec171c
IM
4128 unsigned long flags;
4129 wait_queue_t wait;
4130
4131 init_waitqueue_entry(&wait, current);
1da177e4 4132
8cbbe86d 4133 __set_current_state(state);
1da177e4 4134
8cbbe86d
AK
4135 spin_lock_irqsave(&q->lock, flags);
4136 __add_wait_queue(q, &wait);
4137 spin_unlock(&q->lock);
4138 timeout = schedule_timeout(timeout);
4139 spin_lock_irq(&q->lock);
4140 __remove_wait_queue(q, &wait);
4141 spin_unlock_irqrestore(&q->lock, flags);
4142
4143 return timeout;
4144}
4145
4146void __sched interruptible_sleep_on(wait_queue_head_t *q)
4147{
4148 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4149}
1da177e4
LT
4150EXPORT_SYMBOL(interruptible_sleep_on);
4151
0fec171c 4152long __sched
95cdf3b7 4153interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4154{
8cbbe86d 4155 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4156}
1da177e4
LT
4157EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4158
0fec171c 4159void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4160{
8cbbe86d 4161 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4162}
1da177e4
LT
4163EXPORT_SYMBOL(sleep_on);
4164
0fec171c 4165long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4166{
8cbbe86d 4167 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4168}
1da177e4
LT
4169EXPORT_SYMBOL(sleep_on_timeout);
4170
b29739f9
IM
4171#ifdef CONFIG_RT_MUTEXES
4172
4173/*
4174 * rt_mutex_setprio - set the current priority of a task
4175 * @p: task
4176 * @prio: prio value (kernel-internal form)
4177 *
4178 * This function changes the 'effective' priority of a task. It does
4179 * not touch ->normal_prio like __setscheduler().
4180 *
4181 * Used by the rt_mutex code to implement priority inheritance logic.
4182 */
36c8b586 4183void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4184{
4185 unsigned long flags;
83b699ed 4186 int oldprio, on_rq, running;
70b97a7f 4187 struct rq *rq;
83ab0aa0 4188 const struct sched_class *prev_class;
b29739f9
IM
4189
4190 BUG_ON(prio < 0 || prio > MAX_PRIO);
4191
4192 rq = task_rq_lock(p, &flags);
4193
d5f9f942 4194 oldprio = p->prio;
83ab0aa0 4195 prev_class = p->sched_class;
dd41f596 4196 on_rq = p->se.on_rq;
051a1d1a 4197 running = task_current(rq, p);
0e1f3483 4198 if (on_rq)
69be72c1 4199 dequeue_task(rq, p, 0);
0e1f3483
HS
4200 if (running)
4201 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4202
4203 if (rt_prio(prio))
4204 p->sched_class = &rt_sched_class;
4205 else
4206 p->sched_class = &fair_sched_class;
4207
b29739f9
IM
4208 p->prio = prio;
4209
0e1f3483
HS
4210 if (running)
4211 p->sched_class->set_curr_task(rq);
dd41f596 4212 if (on_rq) {
60db48ca 4213 enqueue_task(rq, p, 0, oldprio < prio);
cb469845
SR
4214
4215 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4216 }
4217 task_rq_unlock(rq, &flags);
4218}
4219
4220#endif
4221
36c8b586 4222void set_user_nice(struct task_struct *p, long nice)
1da177e4 4223{
dd41f596 4224 int old_prio, delta, on_rq;
1da177e4 4225 unsigned long flags;
70b97a7f 4226 struct rq *rq;
1da177e4
LT
4227
4228 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4229 return;
4230 /*
4231 * We have to be careful, if called from sys_setpriority(),
4232 * the task might be in the middle of scheduling on another CPU.
4233 */
4234 rq = task_rq_lock(p, &flags);
4235 /*
4236 * The RT priorities are set via sched_setscheduler(), but we still
4237 * allow the 'normal' nice value to be set - but as expected
4238 * it wont have any effect on scheduling until the task is
dd41f596 4239 * SCHED_FIFO/SCHED_RR:
1da177e4 4240 */
e05606d3 4241 if (task_has_rt_policy(p)) {
1da177e4
LT
4242 p->static_prio = NICE_TO_PRIO(nice);
4243 goto out_unlock;
4244 }
dd41f596 4245 on_rq = p->se.on_rq;
c09595f6 4246 if (on_rq)
69be72c1 4247 dequeue_task(rq, p, 0);
1da177e4 4248
1da177e4 4249 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4250 set_load_weight(p);
b29739f9
IM
4251 old_prio = p->prio;
4252 p->prio = effective_prio(p);
4253 delta = p->prio - old_prio;
1da177e4 4254
dd41f596 4255 if (on_rq) {
ea87bb78 4256 enqueue_task(rq, p, 0, false);
1da177e4 4257 /*
d5f9f942
AM
4258 * If the task increased its priority or is running and
4259 * lowered its priority, then reschedule its CPU:
1da177e4 4260 */
d5f9f942 4261 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4262 resched_task(rq->curr);
4263 }
4264out_unlock:
4265 task_rq_unlock(rq, &flags);
4266}
1da177e4
LT
4267EXPORT_SYMBOL(set_user_nice);
4268
e43379f1
MM
4269/*
4270 * can_nice - check if a task can reduce its nice value
4271 * @p: task
4272 * @nice: nice value
4273 */
36c8b586 4274int can_nice(const struct task_struct *p, const int nice)
e43379f1 4275{
024f4747
MM
4276 /* convert nice value [19,-20] to rlimit style value [1,40] */
4277 int nice_rlim = 20 - nice;
48f24c4d 4278
78d7d407 4279 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4280 capable(CAP_SYS_NICE));
4281}
4282
1da177e4
LT
4283#ifdef __ARCH_WANT_SYS_NICE
4284
4285/*
4286 * sys_nice - change the priority of the current process.
4287 * @increment: priority increment
4288 *
4289 * sys_setpriority is a more generic, but much slower function that
4290 * does similar things.
4291 */
5add95d4 4292SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4293{
48f24c4d 4294 long nice, retval;
1da177e4
LT
4295
4296 /*
4297 * Setpriority might change our priority at the same moment.
4298 * We don't have to worry. Conceptually one call occurs first
4299 * and we have a single winner.
4300 */
e43379f1
MM
4301 if (increment < -40)
4302 increment = -40;
1da177e4
LT
4303 if (increment > 40)
4304 increment = 40;
4305
2b8f836f 4306 nice = TASK_NICE(current) + increment;
1da177e4
LT
4307 if (nice < -20)
4308 nice = -20;
4309 if (nice > 19)
4310 nice = 19;
4311
e43379f1
MM
4312 if (increment < 0 && !can_nice(current, nice))
4313 return -EPERM;
4314
1da177e4
LT
4315 retval = security_task_setnice(current, nice);
4316 if (retval)
4317 return retval;
4318
4319 set_user_nice(current, nice);
4320 return 0;
4321}
4322
4323#endif
4324
4325/**
4326 * task_prio - return the priority value of a given task.
4327 * @p: the task in question.
4328 *
4329 * This is the priority value as seen by users in /proc.
4330 * RT tasks are offset by -200. Normal tasks are centered
4331 * around 0, value goes from -16 to +15.
4332 */
36c8b586 4333int task_prio(const struct task_struct *p)
1da177e4
LT
4334{
4335 return p->prio - MAX_RT_PRIO;
4336}
4337
4338/**
4339 * task_nice - return the nice value of a given task.
4340 * @p: the task in question.
4341 */
36c8b586 4342int task_nice(const struct task_struct *p)
1da177e4
LT
4343{
4344 return TASK_NICE(p);
4345}
150d8bed 4346EXPORT_SYMBOL(task_nice);
1da177e4
LT
4347
4348/**
4349 * idle_cpu - is a given cpu idle currently?
4350 * @cpu: the processor in question.
4351 */
4352int idle_cpu(int cpu)
4353{
4354 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4355}
4356
1da177e4
LT
4357/**
4358 * idle_task - return the idle task for a given cpu.
4359 * @cpu: the processor in question.
4360 */
36c8b586 4361struct task_struct *idle_task(int cpu)
1da177e4
LT
4362{
4363 return cpu_rq(cpu)->idle;
4364}
4365
4366/**
4367 * find_process_by_pid - find a process with a matching PID value.
4368 * @pid: the pid in question.
4369 */
a9957449 4370static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4371{
228ebcbe 4372 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4373}
4374
4375/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4376static void
4377__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4378{
dd41f596 4379 BUG_ON(p->se.on_rq);
48f24c4d 4380
1da177e4
LT
4381 p->policy = policy;
4382 p->rt_priority = prio;
b29739f9
IM
4383 p->normal_prio = normal_prio(p);
4384 /* we are holding p->pi_lock already */
4385 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4386 if (rt_prio(p->prio))
4387 p->sched_class = &rt_sched_class;
4388 else
4389 p->sched_class = &fair_sched_class;
2dd73a4f 4390 set_load_weight(p);
1da177e4
LT
4391}
4392
c69e8d9c
DH
4393/*
4394 * check the target process has a UID that matches the current process's
4395 */
4396static bool check_same_owner(struct task_struct *p)
4397{
4398 const struct cred *cred = current_cred(), *pcred;
4399 bool match;
4400
4401 rcu_read_lock();
4402 pcred = __task_cred(p);
4403 match = (cred->euid == pcred->euid ||
4404 cred->euid == pcred->uid);
4405 rcu_read_unlock();
4406 return match;
4407}
4408
961ccddd
RR
4409static int __sched_setscheduler(struct task_struct *p, int policy,
4410 struct sched_param *param, bool user)
1da177e4 4411{
83b699ed 4412 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4413 unsigned long flags;
83ab0aa0 4414 const struct sched_class *prev_class;
70b97a7f 4415 struct rq *rq;
ca94c442 4416 int reset_on_fork;
1da177e4 4417
66e5393a
SR
4418 /* may grab non-irq protected spin_locks */
4419 BUG_ON(in_interrupt());
1da177e4
LT
4420recheck:
4421 /* double check policy once rq lock held */
ca94c442
LP
4422 if (policy < 0) {
4423 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4424 policy = oldpolicy = p->policy;
ca94c442
LP
4425 } else {
4426 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4427 policy &= ~SCHED_RESET_ON_FORK;
4428
4429 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4430 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4431 policy != SCHED_IDLE)
4432 return -EINVAL;
4433 }
4434
1da177e4
LT
4435 /*
4436 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4437 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4438 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4439 */
4440 if (param->sched_priority < 0 ||
95cdf3b7 4441 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4442 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4443 return -EINVAL;
e05606d3 4444 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4445 return -EINVAL;
4446
37e4ab3f
OC
4447 /*
4448 * Allow unprivileged RT tasks to decrease priority:
4449 */
961ccddd 4450 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4451 if (rt_policy(policy)) {
8dc3e909 4452 unsigned long rlim_rtprio;
8dc3e909
ON
4453
4454 if (!lock_task_sighand(p, &flags))
4455 return -ESRCH;
78d7d407 4456 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4457 unlock_task_sighand(p, &flags);
4458
4459 /* can't set/change the rt policy */
4460 if (policy != p->policy && !rlim_rtprio)
4461 return -EPERM;
4462
4463 /* can't increase priority */
4464 if (param->sched_priority > p->rt_priority &&
4465 param->sched_priority > rlim_rtprio)
4466 return -EPERM;
4467 }
dd41f596
IM
4468 /*
4469 * Like positive nice levels, dont allow tasks to
4470 * move out of SCHED_IDLE either:
4471 */
4472 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4473 return -EPERM;
5fe1d75f 4474
37e4ab3f 4475 /* can't change other user's priorities */
c69e8d9c 4476 if (!check_same_owner(p))
37e4ab3f 4477 return -EPERM;
ca94c442
LP
4478
4479 /* Normal users shall not reset the sched_reset_on_fork flag */
4480 if (p->sched_reset_on_fork && !reset_on_fork)
4481 return -EPERM;
37e4ab3f 4482 }
1da177e4 4483
725aad24 4484 if (user) {
b68aa230 4485#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4486 /*
4487 * Do not allow realtime tasks into groups that have no runtime
4488 * assigned.
4489 */
9a7e0b18
PZ
4490 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4491 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4492 return -EPERM;
b68aa230
PZ
4493#endif
4494
725aad24
JF
4495 retval = security_task_setscheduler(p, policy, param);
4496 if (retval)
4497 return retval;
4498 }
4499
b29739f9
IM
4500 /*
4501 * make sure no PI-waiters arrive (or leave) while we are
4502 * changing the priority of the task:
4503 */
1d615482 4504 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4505 /*
4506 * To be able to change p->policy safely, the apropriate
4507 * runqueue lock must be held.
4508 */
b29739f9 4509 rq = __task_rq_lock(p);
1da177e4
LT
4510 /* recheck policy now with rq lock held */
4511 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4512 policy = oldpolicy = -1;
b29739f9 4513 __task_rq_unlock(rq);
1d615482 4514 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4515 goto recheck;
4516 }
dd41f596 4517 on_rq = p->se.on_rq;
051a1d1a 4518 running = task_current(rq, p);
0e1f3483 4519 if (on_rq)
2e1cb74a 4520 deactivate_task(rq, p, 0);
0e1f3483
HS
4521 if (running)
4522 p->sched_class->put_prev_task(rq, p);
f6b53205 4523
ca94c442
LP
4524 p->sched_reset_on_fork = reset_on_fork;
4525
1da177e4 4526 oldprio = p->prio;
83ab0aa0 4527 prev_class = p->sched_class;
dd41f596 4528 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4529
0e1f3483
HS
4530 if (running)
4531 p->sched_class->set_curr_task(rq);
dd41f596
IM
4532 if (on_rq) {
4533 activate_task(rq, p, 0);
cb469845
SR
4534
4535 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4536 }
b29739f9 4537 __task_rq_unlock(rq);
1d615482 4538 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4539
95e02ca9
TG
4540 rt_mutex_adjust_pi(p);
4541
1da177e4
LT
4542 return 0;
4543}
961ccddd
RR
4544
4545/**
4546 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4547 * @p: the task in question.
4548 * @policy: new policy.
4549 * @param: structure containing the new RT priority.
4550 *
4551 * NOTE that the task may be already dead.
4552 */
4553int sched_setscheduler(struct task_struct *p, int policy,
4554 struct sched_param *param)
4555{
4556 return __sched_setscheduler(p, policy, param, true);
4557}
1da177e4
LT
4558EXPORT_SYMBOL_GPL(sched_setscheduler);
4559
961ccddd
RR
4560/**
4561 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4562 * @p: the task in question.
4563 * @policy: new policy.
4564 * @param: structure containing the new RT priority.
4565 *
4566 * Just like sched_setscheduler, only don't bother checking if the
4567 * current context has permission. For example, this is needed in
4568 * stop_machine(): we create temporary high priority worker threads,
4569 * but our caller might not have that capability.
4570 */
4571int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4572 struct sched_param *param)
4573{
4574 return __sched_setscheduler(p, policy, param, false);
4575}
4576
95cdf3b7
IM
4577static int
4578do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4579{
1da177e4
LT
4580 struct sched_param lparam;
4581 struct task_struct *p;
36c8b586 4582 int retval;
1da177e4
LT
4583
4584 if (!param || pid < 0)
4585 return -EINVAL;
4586 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4587 return -EFAULT;
5fe1d75f
ON
4588
4589 rcu_read_lock();
4590 retval = -ESRCH;
1da177e4 4591 p = find_process_by_pid(pid);
5fe1d75f
ON
4592 if (p != NULL)
4593 retval = sched_setscheduler(p, policy, &lparam);
4594 rcu_read_unlock();
36c8b586 4595
1da177e4
LT
4596 return retval;
4597}
4598
4599/**
4600 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4601 * @pid: the pid in question.
4602 * @policy: new policy.
4603 * @param: structure containing the new RT priority.
4604 */
5add95d4
HC
4605SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4606 struct sched_param __user *, param)
1da177e4 4607{
c21761f1
JB
4608 /* negative values for policy are not valid */
4609 if (policy < 0)
4610 return -EINVAL;
4611
1da177e4
LT
4612 return do_sched_setscheduler(pid, policy, param);
4613}
4614
4615/**
4616 * sys_sched_setparam - set/change the RT priority of a thread
4617 * @pid: the pid in question.
4618 * @param: structure containing the new RT priority.
4619 */
5add95d4 4620SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4621{
4622 return do_sched_setscheduler(pid, -1, param);
4623}
4624
4625/**
4626 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4627 * @pid: the pid in question.
4628 */
5add95d4 4629SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4630{
36c8b586 4631 struct task_struct *p;
3a5c359a 4632 int retval;
1da177e4
LT
4633
4634 if (pid < 0)
3a5c359a 4635 return -EINVAL;
1da177e4
LT
4636
4637 retval = -ESRCH;
5fe85be0 4638 rcu_read_lock();
1da177e4
LT
4639 p = find_process_by_pid(pid);
4640 if (p) {
4641 retval = security_task_getscheduler(p);
4642 if (!retval)
ca94c442
LP
4643 retval = p->policy
4644 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4645 }
5fe85be0 4646 rcu_read_unlock();
1da177e4
LT
4647 return retval;
4648}
4649
4650/**
ca94c442 4651 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4652 * @pid: the pid in question.
4653 * @param: structure containing the RT priority.
4654 */
5add95d4 4655SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4656{
4657 struct sched_param lp;
36c8b586 4658 struct task_struct *p;
3a5c359a 4659 int retval;
1da177e4
LT
4660
4661 if (!param || pid < 0)
3a5c359a 4662 return -EINVAL;
1da177e4 4663
5fe85be0 4664 rcu_read_lock();
1da177e4
LT
4665 p = find_process_by_pid(pid);
4666 retval = -ESRCH;
4667 if (!p)
4668 goto out_unlock;
4669
4670 retval = security_task_getscheduler(p);
4671 if (retval)
4672 goto out_unlock;
4673
4674 lp.sched_priority = p->rt_priority;
5fe85be0 4675 rcu_read_unlock();
1da177e4
LT
4676
4677 /*
4678 * This one might sleep, we cannot do it with a spinlock held ...
4679 */
4680 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4681
1da177e4
LT
4682 return retval;
4683
4684out_unlock:
5fe85be0 4685 rcu_read_unlock();
1da177e4
LT
4686 return retval;
4687}
4688
96f874e2 4689long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4690{
5a16f3d3 4691 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4692 struct task_struct *p;
4693 int retval;
1da177e4 4694
95402b38 4695 get_online_cpus();
23f5d142 4696 rcu_read_lock();
1da177e4
LT
4697
4698 p = find_process_by_pid(pid);
4699 if (!p) {
23f5d142 4700 rcu_read_unlock();
95402b38 4701 put_online_cpus();
1da177e4
LT
4702 return -ESRCH;
4703 }
4704
23f5d142 4705 /* Prevent p going away */
1da177e4 4706 get_task_struct(p);
23f5d142 4707 rcu_read_unlock();
1da177e4 4708
5a16f3d3
RR
4709 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4710 retval = -ENOMEM;
4711 goto out_put_task;
4712 }
4713 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4714 retval = -ENOMEM;
4715 goto out_free_cpus_allowed;
4716 }
1da177e4 4717 retval = -EPERM;
c69e8d9c 4718 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4719 goto out_unlock;
4720
e7834f8f
DQ
4721 retval = security_task_setscheduler(p, 0, NULL);
4722 if (retval)
4723 goto out_unlock;
4724
5a16f3d3
RR
4725 cpuset_cpus_allowed(p, cpus_allowed);
4726 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4727 again:
5a16f3d3 4728 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4729
8707d8b8 4730 if (!retval) {
5a16f3d3
RR
4731 cpuset_cpus_allowed(p, cpus_allowed);
4732 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4733 /*
4734 * We must have raced with a concurrent cpuset
4735 * update. Just reset the cpus_allowed to the
4736 * cpuset's cpus_allowed
4737 */
5a16f3d3 4738 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4739 goto again;
4740 }
4741 }
1da177e4 4742out_unlock:
5a16f3d3
RR
4743 free_cpumask_var(new_mask);
4744out_free_cpus_allowed:
4745 free_cpumask_var(cpus_allowed);
4746out_put_task:
1da177e4 4747 put_task_struct(p);
95402b38 4748 put_online_cpus();
1da177e4
LT
4749 return retval;
4750}
4751
4752static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4753 struct cpumask *new_mask)
1da177e4 4754{
96f874e2
RR
4755 if (len < cpumask_size())
4756 cpumask_clear(new_mask);
4757 else if (len > cpumask_size())
4758 len = cpumask_size();
4759
1da177e4
LT
4760 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4761}
4762
4763/**
4764 * sys_sched_setaffinity - set the cpu affinity of a process
4765 * @pid: pid of the process
4766 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4767 * @user_mask_ptr: user-space pointer to the new cpu mask
4768 */
5add95d4
HC
4769SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4770 unsigned long __user *, user_mask_ptr)
1da177e4 4771{
5a16f3d3 4772 cpumask_var_t new_mask;
1da177e4
LT
4773 int retval;
4774
5a16f3d3
RR
4775 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4776 return -ENOMEM;
1da177e4 4777
5a16f3d3
RR
4778 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4779 if (retval == 0)
4780 retval = sched_setaffinity(pid, new_mask);
4781 free_cpumask_var(new_mask);
4782 return retval;
1da177e4
LT
4783}
4784
96f874e2 4785long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4786{
36c8b586 4787 struct task_struct *p;
31605683
TG
4788 unsigned long flags;
4789 struct rq *rq;
1da177e4 4790 int retval;
1da177e4 4791
95402b38 4792 get_online_cpus();
23f5d142 4793 rcu_read_lock();
1da177e4
LT
4794
4795 retval = -ESRCH;
4796 p = find_process_by_pid(pid);
4797 if (!p)
4798 goto out_unlock;
4799
e7834f8f
DQ
4800 retval = security_task_getscheduler(p);
4801 if (retval)
4802 goto out_unlock;
4803
31605683 4804 rq = task_rq_lock(p, &flags);
96f874e2 4805 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4806 task_rq_unlock(rq, &flags);
1da177e4
LT
4807
4808out_unlock:
23f5d142 4809 rcu_read_unlock();
95402b38 4810 put_online_cpus();
1da177e4 4811
9531b62f 4812 return retval;
1da177e4
LT
4813}
4814
4815/**
4816 * sys_sched_getaffinity - get the cpu affinity of a process
4817 * @pid: pid of the process
4818 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4819 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4820 */
5add95d4
HC
4821SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4822 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4823{
4824 int ret;
f17c8607 4825 cpumask_var_t mask;
1da177e4 4826
cd3d8031
KM
4827 if (len < nr_cpu_ids)
4828 return -EINVAL;
4829 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4830 return -EINVAL;
4831
f17c8607
RR
4832 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4833 return -ENOMEM;
1da177e4 4834
f17c8607
RR
4835 ret = sched_getaffinity(pid, mask);
4836 if (ret == 0) {
8bc037fb 4837 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4838
4839 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4840 ret = -EFAULT;
4841 else
cd3d8031 4842 ret = retlen;
f17c8607
RR
4843 }
4844 free_cpumask_var(mask);
1da177e4 4845
f17c8607 4846 return ret;
1da177e4
LT
4847}
4848
4849/**
4850 * sys_sched_yield - yield the current processor to other threads.
4851 *
dd41f596
IM
4852 * This function yields the current CPU to other tasks. If there are no
4853 * other threads running on this CPU then this function will return.
1da177e4 4854 */
5add95d4 4855SYSCALL_DEFINE0(sched_yield)
1da177e4 4856{
70b97a7f 4857 struct rq *rq = this_rq_lock();
1da177e4 4858
2d72376b 4859 schedstat_inc(rq, yld_count);
4530d7ab 4860 current->sched_class->yield_task(rq);
1da177e4
LT
4861
4862 /*
4863 * Since we are going to call schedule() anyway, there's
4864 * no need to preempt or enable interrupts:
4865 */
4866 __release(rq->lock);
8a25d5de 4867 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4868 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4869 preempt_enable_no_resched();
4870
4871 schedule();
4872
4873 return 0;
4874}
4875
d86ee480
PZ
4876static inline int should_resched(void)
4877{
4878 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4879}
4880
e7b38404 4881static void __cond_resched(void)
1da177e4 4882{
e7aaaa69
FW
4883 add_preempt_count(PREEMPT_ACTIVE);
4884 schedule();
4885 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4886}
4887
02b67cc3 4888int __sched _cond_resched(void)
1da177e4 4889{
d86ee480 4890 if (should_resched()) {
1da177e4
LT
4891 __cond_resched();
4892 return 1;
4893 }
4894 return 0;
4895}
02b67cc3 4896EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4897
4898/*
613afbf8 4899 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4900 * call schedule, and on return reacquire the lock.
4901 *
41a2d6cf 4902 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4903 * operations here to prevent schedule() from being called twice (once via
4904 * spin_unlock(), once by hand).
4905 */
613afbf8 4906int __cond_resched_lock(spinlock_t *lock)
1da177e4 4907{
d86ee480 4908 int resched = should_resched();
6df3cecb
JK
4909 int ret = 0;
4910
f607c668
PZ
4911 lockdep_assert_held(lock);
4912
95c354fe 4913 if (spin_needbreak(lock) || resched) {
1da177e4 4914 spin_unlock(lock);
d86ee480 4915 if (resched)
95c354fe
NP
4916 __cond_resched();
4917 else
4918 cpu_relax();
6df3cecb 4919 ret = 1;
1da177e4 4920 spin_lock(lock);
1da177e4 4921 }
6df3cecb 4922 return ret;
1da177e4 4923}
613afbf8 4924EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4925
613afbf8 4926int __sched __cond_resched_softirq(void)
1da177e4
LT
4927{
4928 BUG_ON(!in_softirq());
4929
d86ee480 4930 if (should_resched()) {
98d82567 4931 local_bh_enable();
1da177e4
LT
4932 __cond_resched();
4933 local_bh_disable();
4934 return 1;
4935 }
4936 return 0;
4937}
613afbf8 4938EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4939
1da177e4
LT
4940/**
4941 * yield - yield the current processor to other threads.
4942 *
72fd4a35 4943 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4944 * thread runnable and calls sys_sched_yield().
4945 */
4946void __sched yield(void)
4947{
4948 set_current_state(TASK_RUNNING);
4949 sys_sched_yield();
4950}
1da177e4
LT
4951EXPORT_SYMBOL(yield);
4952
4953/*
41a2d6cf 4954 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4955 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4956 */
4957void __sched io_schedule(void)
4958{
54d35f29 4959 struct rq *rq = raw_rq();
1da177e4 4960
0ff92245 4961 delayacct_blkio_start();
1da177e4 4962 atomic_inc(&rq->nr_iowait);
8f0dfc34 4963 current->in_iowait = 1;
1da177e4 4964 schedule();
8f0dfc34 4965 current->in_iowait = 0;
1da177e4 4966 atomic_dec(&rq->nr_iowait);
0ff92245 4967 delayacct_blkio_end();
1da177e4 4968}
1da177e4
LT
4969EXPORT_SYMBOL(io_schedule);
4970
4971long __sched io_schedule_timeout(long timeout)
4972{
54d35f29 4973 struct rq *rq = raw_rq();
1da177e4
LT
4974 long ret;
4975
0ff92245 4976 delayacct_blkio_start();
1da177e4 4977 atomic_inc(&rq->nr_iowait);
8f0dfc34 4978 current->in_iowait = 1;
1da177e4 4979 ret = schedule_timeout(timeout);
8f0dfc34 4980 current->in_iowait = 0;
1da177e4 4981 atomic_dec(&rq->nr_iowait);
0ff92245 4982 delayacct_blkio_end();
1da177e4
LT
4983 return ret;
4984}
4985
4986/**
4987 * sys_sched_get_priority_max - return maximum RT priority.
4988 * @policy: scheduling class.
4989 *
4990 * this syscall returns the maximum rt_priority that can be used
4991 * by a given scheduling class.
4992 */
5add95d4 4993SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4994{
4995 int ret = -EINVAL;
4996
4997 switch (policy) {
4998 case SCHED_FIFO:
4999 case SCHED_RR:
5000 ret = MAX_USER_RT_PRIO-1;
5001 break;
5002 case SCHED_NORMAL:
b0a9499c 5003 case SCHED_BATCH:
dd41f596 5004 case SCHED_IDLE:
1da177e4
LT
5005 ret = 0;
5006 break;
5007 }
5008 return ret;
5009}
5010
5011/**
5012 * sys_sched_get_priority_min - return minimum RT priority.
5013 * @policy: scheduling class.
5014 *
5015 * this syscall returns the minimum rt_priority that can be used
5016 * by a given scheduling class.
5017 */
5add95d4 5018SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5019{
5020 int ret = -EINVAL;
5021
5022 switch (policy) {
5023 case SCHED_FIFO:
5024 case SCHED_RR:
5025 ret = 1;
5026 break;
5027 case SCHED_NORMAL:
b0a9499c 5028 case SCHED_BATCH:
dd41f596 5029 case SCHED_IDLE:
1da177e4
LT
5030 ret = 0;
5031 }
5032 return ret;
5033}
5034
5035/**
5036 * sys_sched_rr_get_interval - return the default timeslice of a process.
5037 * @pid: pid of the process.
5038 * @interval: userspace pointer to the timeslice value.
5039 *
5040 * this syscall writes the default timeslice value of a given process
5041 * into the user-space timespec buffer. A value of '0' means infinity.
5042 */
17da2bd9 5043SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5044 struct timespec __user *, interval)
1da177e4 5045{
36c8b586 5046 struct task_struct *p;
a4ec24b4 5047 unsigned int time_slice;
dba091b9
TG
5048 unsigned long flags;
5049 struct rq *rq;
3a5c359a 5050 int retval;
1da177e4 5051 struct timespec t;
1da177e4
LT
5052
5053 if (pid < 0)
3a5c359a 5054 return -EINVAL;
1da177e4
LT
5055
5056 retval = -ESRCH;
1a551ae7 5057 rcu_read_lock();
1da177e4
LT
5058 p = find_process_by_pid(pid);
5059 if (!p)
5060 goto out_unlock;
5061
5062 retval = security_task_getscheduler(p);
5063 if (retval)
5064 goto out_unlock;
5065
dba091b9
TG
5066 rq = task_rq_lock(p, &flags);
5067 time_slice = p->sched_class->get_rr_interval(rq, p);
5068 task_rq_unlock(rq, &flags);
a4ec24b4 5069
1a551ae7 5070 rcu_read_unlock();
a4ec24b4 5071 jiffies_to_timespec(time_slice, &t);
1da177e4 5072 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5073 return retval;
3a5c359a 5074
1da177e4 5075out_unlock:
1a551ae7 5076 rcu_read_unlock();
1da177e4
LT
5077 return retval;
5078}
5079
7c731e0a 5080static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5081
82a1fcb9 5082void sched_show_task(struct task_struct *p)
1da177e4 5083{
1da177e4 5084 unsigned long free = 0;
36c8b586 5085 unsigned state;
1da177e4 5086
1da177e4 5087 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5088 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5089 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5090#if BITS_PER_LONG == 32
1da177e4 5091 if (state == TASK_RUNNING)
3df0fc5b 5092 printk(KERN_CONT " running ");
1da177e4 5093 else
3df0fc5b 5094 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5095#else
5096 if (state == TASK_RUNNING)
3df0fc5b 5097 printk(KERN_CONT " running task ");
1da177e4 5098 else
3df0fc5b 5099 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5100#endif
5101#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5102 free = stack_not_used(p);
1da177e4 5103#endif
3df0fc5b 5104 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5105 task_pid_nr(p), task_pid_nr(p->real_parent),
5106 (unsigned long)task_thread_info(p)->flags);
1da177e4 5107
5fb5e6de 5108 show_stack(p, NULL);
1da177e4
LT
5109}
5110
e59e2ae2 5111void show_state_filter(unsigned long state_filter)
1da177e4 5112{
36c8b586 5113 struct task_struct *g, *p;
1da177e4 5114
4bd77321 5115#if BITS_PER_LONG == 32
3df0fc5b
PZ
5116 printk(KERN_INFO
5117 " task PC stack pid father\n");
1da177e4 5118#else
3df0fc5b
PZ
5119 printk(KERN_INFO
5120 " task PC stack pid father\n");
1da177e4
LT
5121#endif
5122 read_lock(&tasklist_lock);
5123 do_each_thread(g, p) {
5124 /*
5125 * reset the NMI-timeout, listing all files on a slow
5126 * console might take alot of time:
5127 */
5128 touch_nmi_watchdog();
39bc89fd 5129 if (!state_filter || (p->state & state_filter))
82a1fcb9 5130 sched_show_task(p);
1da177e4
LT
5131 } while_each_thread(g, p);
5132
04c9167f
JF
5133 touch_all_softlockup_watchdogs();
5134
dd41f596
IM
5135#ifdef CONFIG_SCHED_DEBUG
5136 sysrq_sched_debug_show();
5137#endif
1da177e4 5138 read_unlock(&tasklist_lock);
e59e2ae2
IM
5139 /*
5140 * Only show locks if all tasks are dumped:
5141 */
93335a21 5142 if (!state_filter)
e59e2ae2 5143 debug_show_all_locks();
1da177e4
LT
5144}
5145
1df21055
IM
5146void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5147{
dd41f596 5148 idle->sched_class = &idle_sched_class;
1df21055
IM
5149}
5150
f340c0d1
IM
5151/**
5152 * init_idle - set up an idle thread for a given CPU
5153 * @idle: task in question
5154 * @cpu: cpu the idle task belongs to
5155 *
5156 * NOTE: this function does not set the idle thread's NEED_RESCHED
5157 * flag, to make booting more robust.
5158 */
5c1e1767 5159void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5160{
70b97a7f 5161 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5162 unsigned long flags;
5163
05fa785c 5164 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5165
dd41f596 5166 __sched_fork(idle);
06b83b5f 5167 idle->state = TASK_RUNNING;
dd41f596
IM
5168 idle->se.exec_start = sched_clock();
5169
96f874e2 5170 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5171 __set_task_cpu(idle, cpu);
1da177e4 5172
1da177e4 5173 rq->curr = rq->idle = idle;
4866cde0
NP
5174#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5175 idle->oncpu = 1;
5176#endif
05fa785c 5177 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5178
5179 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5180#if defined(CONFIG_PREEMPT)
5181 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5182#else
a1261f54 5183 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5184#endif
dd41f596
IM
5185 /*
5186 * The idle tasks have their own, simple scheduling class:
5187 */
5188 idle->sched_class = &idle_sched_class;
fb52607a 5189 ftrace_graph_init_task(idle);
1da177e4
LT
5190}
5191
5192/*
5193 * In a system that switches off the HZ timer nohz_cpu_mask
5194 * indicates which cpus entered this state. This is used
5195 * in the rcu update to wait only for active cpus. For system
5196 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5197 * always be CPU_BITS_NONE.
1da177e4 5198 */
6a7b3dc3 5199cpumask_var_t nohz_cpu_mask;
1da177e4 5200
19978ca6
IM
5201/*
5202 * Increase the granularity value when there are more CPUs,
5203 * because with more CPUs the 'effective latency' as visible
5204 * to users decreases. But the relationship is not linear,
5205 * so pick a second-best guess by going with the log2 of the
5206 * number of CPUs.
5207 *
5208 * This idea comes from the SD scheduler of Con Kolivas:
5209 */
acb4a848 5210static int get_update_sysctl_factor(void)
19978ca6 5211{
4ca3ef71 5212 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5213 unsigned int factor;
5214
5215 switch (sysctl_sched_tunable_scaling) {
5216 case SCHED_TUNABLESCALING_NONE:
5217 factor = 1;
5218 break;
5219 case SCHED_TUNABLESCALING_LINEAR:
5220 factor = cpus;
5221 break;
5222 case SCHED_TUNABLESCALING_LOG:
5223 default:
5224 factor = 1 + ilog2(cpus);
5225 break;
5226 }
19978ca6 5227
acb4a848
CE
5228 return factor;
5229}
19978ca6 5230
acb4a848
CE
5231static void update_sysctl(void)
5232{
5233 unsigned int factor = get_update_sysctl_factor();
19978ca6 5234
0bcdcf28
CE
5235#define SET_SYSCTL(name) \
5236 (sysctl_##name = (factor) * normalized_sysctl_##name)
5237 SET_SYSCTL(sched_min_granularity);
5238 SET_SYSCTL(sched_latency);
5239 SET_SYSCTL(sched_wakeup_granularity);
5240 SET_SYSCTL(sched_shares_ratelimit);
5241#undef SET_SYSCTL
5242}
55cd5340 5243
0bcdcf28
CE
5244static inline void sched_init_granularity(void)
5245{
5246 update_sysctl();
19978ca6
IM
5247}
5248
1da177e4
LT
5249#ifdef CONFIG_SMP
5250/*
5251 * This is how migration works:
5252 *
70b97a7f 5253 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5254 * runqueue and wake up that CPU's migration thread.
5255 * 2) we down() the locked semaphore => thread blocks.
5256 * 3) migration thread wakes up (implicitly it forces the migrated
5257 * thread off the CPU)
5258 * 4) it gets the migration request and checks whether the migrated
5259 * task is still in the wrong runqueue.
5260 * 5) if it's in the wrong runqueue then the migration thread removes
5261 * it and puts it into the right queue.
5262 * 6) migration thread up()s the semaphore.
5263 * 7) we wake up and the migration is done.
5264 */
5265
5266/*
5267 * Change a given task's CPU affinity. Migrate the thread to a
5268 * proper CPU and schedule it away if the CPU it's executing on
5269 * is removed from the allowed bitmask.
5270 *
5271 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5272 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5273 * call is not atomic; no spinlocks may be held.
5274 */
96f874e2 5275int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5276{
70b97a7f 5277 struct migration_req req;
1da177e4 5278 unsigned long flags;
70b97a7f 5279 struct rq *rq;
48f24c4d 5280 int ret = 0;
1da177e4
LT
5281
5282 rq = task_rq_lock(p, &flags);
e2912009 5283
6ad4c188 5284 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5285 ret = -EINVAL;
5286 goto out;
5287 }
5288
9985b0ba 5289 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5290 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5291 ret = -EINVAL;
5292 goto out;
5293 }
5294
73fe6aae 5295 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5296 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5297 else {
96f874e2
RR
5298 cpumask_copy(&p->cpus_allowed, new_mask);
5299 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5300 }
5301
1da177e4 5302 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5303 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5304 goto out;
5305
6ad4c188 5306 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5307 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5308 struct task_struct *mt = rq->migration_thread;
5309
5310 get_task_struct(mt);
1da177e4
LT
5311 task_rq_unlock(rq, &flags);
5312 wake_up_process(rq->migration_thread);
693525e3 5313 put_task_struct(mt);
1da177e4
LT
5314 wait_for_completion(&req.done);
5315 tlb_migrate_finish(p->mm);
5316 return 0;
5317 }
5318out:
5319 task_rq_unlock(rq, &flags);
48f24c4d 5320
1da177e4
LT
5321 return ret;
5322}
cd8ba7cd 5323EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5324
5325/*
41a2d6cf 5326 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5327 * this because either it can't run here any more (set_cpus_allowed()
5328 * away from this CPU, or CPU going down), or because we're
5329 * attempting to rebalance this task on exec (sched_exec).
5330 *
5331 * So we race with normal scheduler movements, but that's OK, as long
5332 * as the task is no longer on this CPU.
efc30814
KK
5333 *
5334 * Returns non-zero if task was successfully migrated.
1da177e4 5335 */
efc30814 5336static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5337{
70b97a7f 5338 struct rq *rq_dest, *rq_src;
e2912009 5339 int ret = 0;
1da177e4 5340
e761b772 5341 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5342 return ret;
1da177e4
LT
5343
5344 rq_src = cpu_rq(src_cpu);
5345 rq_dest = cpu_rq(dest_cpu);
5346
5347 double_rq_lock(rq_src, rq_dest);
5348 /* Already moved. */
5349 if (task_cpu(p) != src_cpu)
b1e38734 5350 goto done;
1da177e4 5351 /* Affinity changed (again). */
96f874e2 5352 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5353 goto fail;
1da177e4 5354
e2912009
PZ
5355 /*
5356 * If we're not on a rq, the next wake-up will ensure we're
5357 * placed properly.
5358 */
5359 if (p->se.on_rq) {
2e1cb74a 5360 deactivate_task(rq_src, p, 0);
e2912009 5361 set_task_cpu(p, dest_cpu);
dd41f596 5362 activate_task(rq_dest, p, 0);
15afe09b 5363 check_preempt_curr(rq_dest, p, 0);
1da177e4 5364 }
b1e38734 5365done:
efc30814 5366 ret = 1;
b1e38734 5367fail:
1da177e4 5368 double_rq_unlock(rq_src, rq_dest);
efc30814 5369 return ret;
1da177e4
LT
5370}
5371
03b042bf
PM
5372#define RCU_MIGRATION_IDLE 0
5373#define RCU_MIGRATION_NEED_QS 1
5374#define RCU_MIGRATION_GOT_QS 2
5375#define RCU_MIGRATION_MUST_SYNC 3
5376
1da177e4
LT
5377/*
5378 * migration_thread - this is a highprio system thread that performs
5379 * thread migration by bumping thread off CPU then 'pushing' onto
5380 * another runqueue.
5381 */
95cdf3b7 5382static int migration_thread(void *data)
1da177e4 5383{
03b042bf 5384 int badcpu;
1da177e4 5385 int cpu = (long)data;
70b97a7f 5386 struct rq *rq;
1da177e4
LT
5387
5388 rq = cpu_rq(cpu);
5389 BUG_ON(rq->migration_thread != current);
5390
5391 set_current_state(TASK_INTERRUPTIBLE);
5392 while (!kthread_should_stop()) {
70b97a7f 5393 struct migration_req *req;
1da177e4 5394 struct list_head *head;
1da177e4 5395
05fa785c 5396 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5397
5398 if (cpu_is_offline(cpu)) {
05fa785c 5399 raw_spin_unlock_irq(&rq->lock);
371cbb38 5400 break;
1da177e4
LT
5401 }
5402
5403 if (rq->active_balance) {
5404 active_load_balance(rq, cpu);
5405 rq->active_balance = 0;
5406 }
5407
5408 head = &rq->migration_queue;
5409
5410 if (list_empty(head)) {
05fa785c 5411 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5412 schedule();
5413 set_current_state(TASK_INTERRUPTIBLE);
5414 continue;
5415 }
70b97a7f 5416 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5417 list_del_init(head->next);
5418
03b042bf 5419 if (req->task != NULL) {
05fa785c 5420 raw_spin_unlock(&rq->lock);
03b042bf
PM
5421 __migrate_task(req->task, cpu, req->dest_cpu);
5422 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5423 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5424 raw_spin_unlock(&rq->lock);
03b042bf
PM
5425 } else {
5426 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5427 raw_spin_unlock(&rq->lock);
03b042bf
PM
5428 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5429 }
674311d5 5430 local_irq_enable();
1da177e4
LT
5431
5432 complete(&req->done);
5433 }
5434 __set_current_state(TASK_RUNNING);
1da177e4 5435
1da177e4
LT
5436 return 0;
5437}
5438
5439#ifdef CONFIG_HOTPLUG_CPU
054b9108 5440/*
3a4fa0a2 5441 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5442 */
6a1bdc1b 5443void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5444{
1445c08d
ON
5445 struct rq *rq = cpu_rq(dead_cpu);
5446 int needs_cpu, uninitialized_var(dest_cpu);
5447 unsigned long flags;
c1804d54 5448
1445c08d
ON
5449 local_irq_save(flags);
5450
5451 raw_spin_lock(&rq->lock);
5452 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5453 if (needs_cpu)
5454 dest_cpu = select_fallback_rq(dead_cpu, p);
5455 raw_spin_unlock(&rq->lock);
c1804d54
ON
5456 /*
5457 * It can only fail if we race with set_cpus_allowed(),
5458 * in the racer should migrate the task anyway.
5459 */
1445c08d 5460 if (needs_cpu)
c1804d54 5461 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5462 local_irq_restore(flags);
1da177e4
LT
5463}
5464
5465/*
5466 * While a dead CPU has no uninterruptible tasks queued at this point,
5467 * it might still have a nonzero ->nr_uninterruptible counter, because
5468 * for performance reasons the counter is not stricly tracking tasks to
5469 * their home CPUs. So we just add the counter to another CPU's counter,
5470 * to keep the global sum constant after CPU-down:
5471 */
70b97a7f 5472static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5473{
6ad4c188 5474 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5475 unsigned long flags;
5476
5477 local_irq_save(flags);
5478 double_rq_lock(rq_src, rq_dest);
5479 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5480 rq_src->nr_uninterruptible = 0;
5481 double_rq_unlock(rq_src, rq_dest);
5482 local_irq_restore(flags);
5483}
5484
5485/* Run through task list and migrate tasks from the dead cpu. */
5486static void migrate_live_tasks(int src_cpu)
5487{
48f24c4d 5488 struct task_struct *p, *t;
1da177e4 5489
f7b4cddc 5490 read_lock(&tasklist_lock);
1da177e4 5491
48f24c4d
IM
5492 do_each_thread(t, p) {
5493 if (p == current)
1da177e4
LT
5494 continue;
5495
48f24c4d
IM
5496 if (task_cpu(p) == src_cpu)
5497 move_task_off_dead_cpu(src_cpu, p);
5498 } while_each_thread(t, p);
1da177e4 5499
f7b4cddc 5500 read_unlock(&tasklist_lock);
1da177e4
LT
5501}
5502
dd41f596
IM
5503/*
5504 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5505 * It does so by boosting its priority to highest possible.
5506 * Used by CPU offline code.
1da177e4
LT
5507 */
5508void sched_idle_next(void)
5509{
48f24c4d 5510 int this_cpu = smp_processor_id();
70b97a7f 5511 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5512 struct task_struct *p = rq->idle;
5513 unsigned long flags;
5514
5515 /* cpu has to be offline */
48f24c4d 5516 BUG_ON(cpu_online(this_cpu));
1da177e4 5517
48f24c4d
IM
5518 /*
5519 * Strictly not necessary since rest of the CPUs are stopped by now
5520 * and interrupts disabled on the current cpu.
1da177e4 5521 */
05fa785c 5522 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5523
dd41f596 5524 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5525
94bc9a7b 5526 activate_task(rq, p, 0);
1da177e4 5527
05fa785c 5528 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5529}
5530
48f24c4d
IM
5531/*
5532 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5533 * offline.
5534 */
5535void idle_task_exit(void)
5536{
5537 struct mm_struct *mm = current->active_mm;
5538
5539 BUG_ON(cpu_online(smp_processor_id()));
5540
5541 if (mm != &init_mm)
5542 switch_mm(mm, &init_mm, current);
5543 mmdrop(mm);
5544}
5545
054b9108 5546/* called under rq->lock with disabled interrupts */
36c8b586 5547static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5548{
70b97a7f 5549 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5550
5551 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5552 BUG_ON(!p->exit_state);
1da177e4
LT
5553
5554 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5555 BUG_ON(p->state == TASK_DEAD);
1da177e4 5556
48f24c4d 5557 get_task_struct(p);
1da177e4
LT
5558
5559 /*
5560 * Drop lock around migration; if someone else moves it,
41a2d6cf 5561 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5562 * fine.
5563 */
05fa785c 5564 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5565 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5566 raw_spin_lock_irq(&rq->lock);
1da177e4 5567
48f24c4d 5568 put_task_struct(p);
1da177e4
LT
5569}
5570
5571/* release_task() removes task from tasklist, so we won't find dead tasks. */
5572static void migrate_dead_tasks(unsigned int dead_cpu)
5573{
70b97a7f 5574 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5575 struct task_struct *next;
48f24c4d 5576
dd41f596
IM
5577 for ( ; ; ) {
5578 if (!rq->nr_running)
5579 break;
b67802ea 5580 next = pick_next_task(rq);
dd41f596
IM
5581 if (!next)
5582 break;
79c53799 5583 next->sched_class->put_prev_task(rq, next);
dd41f596 5584 migrate_dead(dead_cpu, next);
e692ab53 5585
1da177e4
LT
5586 }
5587}
dce48a84
TG
5588
5589/*
5590 * remove the tasks which were accounted by rq from calc_load_tasks.
5591 */
5592static void calc_global_load_remove(struct rq *rq)
5593{
5594 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5595 rq->calc_load_active = 0;
dce48a84 5596}
1da177e4
LT
5597#endif /* CONFIG_HOTPLUG_CPU */
5598
e692ab53
NP
5599#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5600
5601static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5602 {
5603 .procname = "sched_domain",
c57baf1e 5604 .mode = 0555,
e0361851 5605 },
56992309 5606 {}
e692ab53
NP
5607};
5608
5609static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5610 {
5611 .procname = "kernel",
c57baf1e 5612 .mode = 0555,
e0361851
AD
5613 .child = sd_ctl_dir,
5614 },
56992309 5615 {}
e692ab53
NP
5616};
5617
5618static struct ctl_table *sd_alloc_ctl_entry(int n)
5619{
5620 struct ctl_table *entry =
5cf9f062 5621 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5622
e692ab53
NP
5623 return entry;
5624}
5625
6382bc90
MM
5626static void sd_free_ctl_entry(struct ctl_table **tablep)
5627{
cd790076 5628 struct ctl_table *entry;
6382bc90 5629
cd790076
MM
5630 /*
5631 * In the intermediate directories, both the child directory and
5632 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5633 * will always be set. In the lowest directory the names are
cd790076
MM
5634 * static strings and all have proc handlers.
5635 */
5636 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5637 if (entry->child)
5638 sd_free_ctl_entry(&entry->child);
cd790076
MM
5639 if (entry->proc_handler == NULL)
5640 kfree(entry->procname);
5641 }
6382bc90
MM
5642
5643 kfree(*tablep);
5644 *tablep = NULL;
5645}
5646
e692ab53 5647static void
e0361851 5648set_table_entry(struct ctl_table *entry,
e692ab53
NP
5649 const char *procname, void *data, int maxlen,
5650 mode_t mode, proc_handler *proc_handler)
5651{
e692ab53
NP
5652 entry->procname = procname;
5653 entry->data = data;
5654 entry->maxlen = maxlen;
5655 entry->mode = mode;
5656 entry->proc_handler = proc_handler;
5657}
5658
5659static struct ctl_table *
5660sd_alloc_ctl_domain_table(struct sched_domain *sd)
5661{
a5d8c348 5662 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5663
ad1cdc1d
MM
5664 if (table == NULL)
5665 return NULL;
5666
e0361851 5667 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5668 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5669 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5670 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5671 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5672 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5673 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5674 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5675 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5676 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5677 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5678 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5679 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5680 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5681 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5682 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5683 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5684 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5685 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5686 &sd->cache_nice_tries,
5687 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5688 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5689 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5690 set_table_entry(&table[11], "name", sd->name,
5691 CORENAME_MAX_SIZE, 0444, proc_dostring);
5692 /* &table[12] is terminator */
e692ab53
NP
5693
5694 return table;
5695}
5696
9a4e7159 5697static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5698{
5699 struct ctl_table *entry, *table;
5700 struct sched_domain *sd;
5701 int domain_num = 0, i;
5702 char buf[32];
5703
5704 for_each_domain(cpu, sd)
5705 domain_num++;
5706 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5707 if (table == NULL)
5708 return NULL;
e692ab53
NP
5709
5710 i = 0;
5711 for_each_domain(cpu, sd) {
5712 snprintf(buf, 32, "domain%d", i);
e692ab53 5713 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5714 entry->mode = 0555;
e692ab53
NP
5715 entry->child = sd_alloc_ctl_domain_table(sd);
5716 entry++;
5717 i++;
5718 }
5719 return table;
5720}
5721
5722static struct ctl_table_header *sd_sysctl_header;
6382bc90 5723static void register_sched_domain_sysctl(void)
e692ab53 5724{
6ad4c188 5725 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5726 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5727 char buf[32];
5728
7378547f
MM
5729 WARN_ON(sd_ctl_dir[0].child);
5730 sd_ctl_dir[0].child = entry;
5731
ad1cdc1d
MM
5732 if (entry == NULL)
5733 return;
5734
6ad4c188 5735 for_each_possible_cpu(i) {
e692ab53 5736 snprintf(buf, 32, "cpu%d", i);
e692ab53 5737 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5738 entry->mode = 0555;
e692ab53 5739 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5740 entry++;
e692ab53 5741 }
7378547f
MM
5742
5743 WARN_ON(sd_sysctl_header);
e692ab53
NP
5744 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5745}
6382bc90 5746
7378547f 5747/* may be called multiple times per register */
6382bc90
MM
5748static void unregister_sched_domain_sysctl(void)
5749{
7378547f
MM
5750 if (sd_sysctl_header)
5751 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5752 sd_sysctl_header = NULL;
7378547f
MM
5753 if (sd_ctl_dir[0].child)
5754 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5755}
e692ab53 5756#else
6382bc90
MM
5757static void register_sched_domain_sysctl(void)
5758{
5759}
5760static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5761{
5762}
5763#endif
5764
1f11eb6a
GH
5765static void set_rq_online(struct rq *rq)
5766{
5767 if (!rq->online) {
5768 const struct sched_class *class;
5769
c6c4927b 5770 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5771 rq->online = 1;
5772
5773 for_each_class(class) {
5774 if (class->rq_online)
5775 class->rq_online(rq);
5776 }
5777 }
5778}
5779
5780static void set_rq_offline(struct rq *rq)
5781{
5782 if (rq->online) {
5783 const struct sched_class *class;
5784
5785 for_each_class(class) {
5786 if (class->rq_offline)
5787 class->rq_offline(rq);
5788 }
5789
c6c4927b 5790 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5791 rq->online = 0;
5792 }
5793}
5794
1da177e4
LT
5795/*
5796 * migration_call - callback that gets triggered when a CPU is added.
5797 * Here we can start up the necessary migration thread for the new CPU.
5798 */
48f24c4d
IM
5799static int __cpuinit
5800migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5801{
1da177e4 5802 struct task_struct *p;
48f24c4d 5803 int cpu = (long)hcpu;
1da177e4 5804 unsigned long flags;
70b97a7f 5805 struct rq *rq;
1da177e4
LT
5806
5807 switch (action) {
5be9361c 5808
1da177e4 5809 case CPU_UP_PREPARE:
8bb78442 5810 case CPU_UP_PREPARE_FROZEN:
dd41f596 5811 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5812 if (IS_ERR(p))
5813 return NOTIFY_BAD;
1da177e4
LT
5814 kthread_bind(p, cpu);
5815 /* Must be high prio: stop_machine expects to yield to it. */
5816 rq = task_rq_lock(p, &flags);
dd41f596 5817 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5818 task_rq_unlock(rq, &flags);
371cbb38 5819 get_task_struct(p);
1da177e4 5820 cpu_rq(cpu)->migration_thread = p;
a468d389 5821 rq->calc_load_update = calc_load_update;
1da177e4 5822 break;
48f24c4d 5823
1da177e4 5824 case CPU_ONLINE:
8bb78442 5825 case CPU_ONLINE_FROZEN:
3a4fa0a2 5826 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5827 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5828
5829 /* Update our root-domain */
5830 rq = cpu_rq(cpu);
05fa785c 5831 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5832 if (rq->rd) {
c6c4927b 5833 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5834
5835 set_rq_online(rq);
1f94ef59 5836 }
05fa785c 5837 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5838 break;
48f24c4d 5839
1da177e4
LT
5840#ifdef CONFIG_HOTPLUG_CPU
5841 case CPU_UP_CANCELED:
8bb78442 5842 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5843 if (!cpu_rq(cpu)->migration_thread)
5844 break;
41a2d6cf 5845 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5846 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5847 cpumask_any(cpu_online_mask));
1da177e4 5848 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5849 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5850 cpu_rq(cpu)->migration_thread = NULL;
5851 break;
48f24c4d 5852
1da177e4 5853 case CPU_DEAD:
8bb78442 5854 case CPU_DEAD_FROZEN:
1da177e4
LT
5855 migrate_live_tasks(cpu);
5856 rq = cpu_rq(cpu);
5857 kthread_stop(rq->migration_thread);
371cbb38 5858 put_task_struct(rq->migration_thread);
1da177e4
LT
5859 rq->migration_thread = NULL;
5860 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5861 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5862 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5863 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5864 rq->idle->sched_class = &idle_sched_class;
1da177e4 5865 migrate_dead_tasks(cpu);
05fa785c 5866 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5867 migrate_nr_uninterruptible(rq);
5868 BUG_ON(rq->nr_running != 0);
dce48a84 5869 calc_global_load_remove(rq);
41a2d6cf
IM
5870 /*
5871 * No need to migrate the tasks: it was best-effort if
5872 * they didn't take sched_hotcpu_mutex. Just wake up
5873 * the requestors.
5874 */
05fa785c 5875 raw_spin_lock_irq(&rq->lock);
1da177e4 5876 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5877 struct migration_req *req;
5878
1da177e4 5879 req = list_entry(rq->migration_queue.next,
70b97a7f 5880 struct migration_req, list);
1da177e4 5881 list_del_init(&req->list);
05fa785c 5882 raw_spin_unlock_irq(&rq->lock);
1da177e4 5883 complete(&req->done);
05fa785c 5884 raw_spin_lock_irq(&rq->lock);
1da177e4 5885 }
05fa785c 5886 raw_spin_unlock_irq(&rq->lock);
1da177e4 5887 break;
57d885fe 5888
08f503b0
GH
5889 case CPU_DYING:
5890 case CPU_DYING_FROZEN:
57d885fe
GH
5891 /* Update our root-domain */
5892 rq = cpu_rq(cpu);
05fa785c 5893 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5894 if (rq->rd) {
c6c4927b 5895 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5896 set_rq_offline(rq);
57d885fe 5897 }
05fa785c 5898 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5899 break;
1da177e4
LT
5900#endif
5901 }
5902 return NOTIFY_OK;
5903}
5904
f38b0820
PM
5905/*
5906 * Register at high priority so that task migration (migrate_all_tasks)
5907 * happens before everything else. This has to be lower priority than
cdd6c482 5908 * the notifier in the perf_event subsystem, though.
1da177e4 5909 */
26c2143b 5910static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5911 .notifier_call = migration_call,
5912 .priority = 10
5913};
5914
7babe8db 5915static int __init migration_init(void)
1da177e4
LT
5916{
5917 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5918 int err;
48f24c4d
IM
5919
5920 /* Start one for the boot CPU: */
07dccf33
AM
5921 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5922 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5923 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5924 register_cpu_notifier(&migration_notifier);
7babe8db 5925
a004cd42 5926 return 0;
1da177e4 5927}
7babe8db 5928early_initcall(migration_init);
1da177e4
LT
5929#endif
5930
5931#ifdef CONFIG_SMP
476f3534 5932
3e9830dc 5933#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5934
f6630114
MT
5935static __read_mostly int sched_domain_debug_enabled;
5936
5937static int __init sched_domain_debug_setup(char *str)
5938{
5939 sched_domain_debug_enabled = 1;
5940
5941 return 0;
5942}
5943early_param("sched_debug", sched_domain_debug_setup);
5944
7c16ec58 5945static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5946 struct cpumask *groupmask)
1da177e4 5947{
4dcf6aff 5948 struct sched_group *group = sd->groups;
434d53b0 5949 char str[256];
1da177e4 5950
968ea6d8 5951 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5952 cpumask_clear(groupmask);
4dcf6aff
IM
5953
5954 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5955
5956 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5957 printk("does not load-balance\n");
4dcf6aff 5958 if (sd->parent)
3df0fc5b
PZ
5959 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5960 " has parent");
4dcf6aff 5961 return -1;
41c7ce9a
NP
5962 }
5963
3df0fc5b 5964 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5965
758b2cdc 5966 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5967 printk(KERN_ERR "ERROR: domain->span does not contain "
5968 "CPU%d\n", cpu);
4dcf6aff 5969 }
758b2cdc 5970 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5971 printk(KERN_ERR "ERROR: domain->groups does not contain"
5972 " CPU%d\n", cpu);
4dcf6aff 5973 }
1da177e4 5974
4dcf6aff 5975 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5976 do {
4dcf6aff 5977 if (!group) {
3df0fc5b
PZ
5978 printk("\n");
5979 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5980 break;
5981 }
5982
18a3885f 5983 if (!group->cpu_power) {
3df0fc5b
PZ
5984 printk(KERN_CONT "\n");
5985 printk(KERN_ERR "ERROR: domain->cpu_power not "
5986 "set\n");
4dcf6aff
IM
5987 break;
5988 }
1da177e4 5989
758b2cdc 5990 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5991 printk(KERN_CONT "\n");
5992 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5993 break;
5994 }
1da177e4 5995
758b2cdc 5996 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5997 printk(KERN_CONT "\n");
5998 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5999 break;
6000 }
1da177e4 6001
758b2cdc 6002 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6003
968ea6d8 6004 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6005
3df0fc5b 6006 printk(KERN_CONT " %s", str);
18a3885f 6007 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6008 printk(KERN_CONT " (cpu_power = %d)",
6009 group->cpu_power);
381512cf 6010 }
1da177e4 6011
4dcf6aff
IM
6012 group = group->next;
6013 } while (group != sd->groups);
3df0fc5b 6014 printk(KERN_CONT "\n");
1da177e4 6015
758b2cdc 6016 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6017 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6018
758b2cdc
RR
6019 if (sd->parent &&
6020 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6021 printk(KERN_ERR "ERROR: parent span is not a superset "
6022 "of domain->span\n");
4dcf6aff
IM
6023 return 0;
6024}
1da177e4 6025
4dcf6aff
IM
6026static void sched_domain_debug(struct sched_domain *sd, int cpu)
6027{
d5dd3db1 6028 cpumask_var_t groupmask;
4dcf6aff 6029 int level = 0;
1da177e4 6030
f6630114
MT
6031 if (!sched_domain_debug_enabled)
6032 return;
6033
4dcf6aff
IM
6034 if (!sd) {
6035 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6036 return;
6037 }
1da177e4 6038
4dcf6aff
IM
6039 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6040
d5dd3db1 6041 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6042 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6043 return;
6044 }
6045
4dcf6aff 6046 for (;;) {
7c16ec58 6047 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6048 break;
1da177e4
LT
6049 level++;
6050 sd = sd->parent;
33859f7f 6051 if (!sd)
4dcf6aff
IM
6052 break;
6053 }
d5dd3db1 6054 free_cpumask_var(groupmask);
1da177e4 6055}
6d6bc0ad 6056#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6057# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6058#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6059
1a20ff27 6060static int sd_degenerate(struct sched_domain *sd)
245af2c7 6061{
758b2cdc 6062 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6063 return 1;
6064
6065 /* Following flags need at least 2 groups */
6066 if (sd->flags & (SD_LOAD_BALANCE |
6067 SD_BALANCE_NEWIDLE |
6068 SD_BALANCE_FORK |
89c4710e
SS
6069 SD_BALANCE_EXEC |
6070 SD_SHARE_CPUPOWER |
6071 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6072 if (sd->groups != sd->groups->next)
6073 return 0;
6074 }
6075
6076 /* Following flags don't use groups */
c88d5910 6077 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6078 return 0;
6079
6080 return 1;
6081}
6082
48f24c4d
IM
6083static int
6084sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6085{
6086 unsigned long cflags = sd->flags, pflags = parent->flags;
6087
6088 if (sd_degenerate(parent))
6089 return 1;
6090
758b2cdc 6091 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6092 return 0;
6093
245af2c7
SS
6094 /* Flags needing groups don't count if only 1 group in parent */
6095 if (parent->groups == parent->groups->next) {
6096 pflags &= ~(SD_LOAD_BALANCE |
6097 SD_BALANCE_NEWIDLE |
6098 SD_BALANCE_FORK |
89c4710e
SS
6099 SD_BALANCE_EXEC |
6100 SD_SHARE_CPUPOWER |
6101 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6102 if (nr_node_ids == 1)
6103 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6104 }
6105 if (~cflags & pflags)
6106 return 0;
6107
6108 return 1;
6109}
6110
c6c4927b
RR
6111static void free_rootdomain(struct root_domain *rd)
6112{
047106ad
PZ
6113 synchronize_sched();
6114
68e74568
RR
6115 cpupri_cleanup(&rd->cpupri);
6116
c6c4927b
RR
6117 free_cpumask_var(rd->rto_mask);
6118 free_cpumask_var(rd->online);
6119 free_cpumask_var(rd->span);
6120 kfree(rd);
6121}
6122
57d885fe
GH
6123static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6124{
a0490fa3 6125 struct root_domain *old_rd = NULL;
57d885fe 6126 unsigned long flags;
57d885fe 6127
05fa785c 6128 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6129
6130 if (rq->rd) {
a0490fa3 6131 old_rd = rq->rd;
57d885fe 6132
c6c4927b 6133 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6134 set_rq_offline(rq);
57d885fe 6135
c6c4927b 6136 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6137
a0490fa3
IM
6138 /*
6139 * If we dont want to free the old_rt yet then
6140 * set old_rd to NULL to skip the freeing later
6141 * in this function:
6142 */
6143 if (!atomic_dec_and_test(&old_rd->refcount))
6144 old_rd = NULL;
57d885fe
GH
6145 }
6146
6147 atomic_inc(&rd->refcount);
6148 rq->rd = rd;
6149
c6c4927b 6150 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6151 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6152 set_rq_online(rq);
57d885fe 6153
05fa785c 6154 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6155
6156 if (old_rd)
6157 free_rootdomain(old_rd);
57d885fe
GH
6158}
6159
fd5e1b5d 6160static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6161{
36b7b6d4
PE
6162 gfp_t gfp = GFP_KERNEL;
6163
57d885fe
GH
6164 memset(rd, 0, sizeof(*rd));
6165
36b7b6d4
PE
6166 if (bootmem)
6167 gfp = GFP_NOWAIT;
c6c4927b 6168
36b7b6d4 6169 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6170 goto out;
36b7b6d4 6171 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6172 goto free_span;
36b7b6d4 6173 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6174 goto free_online;
6e0534f2 6175
0fb53029 6176 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6177 goto free_rto_mask;
c6c4927b 6178 return 0;
6e0534f2 6179
68e74568
RR
6180free_rto_mask:
6181 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6182free_online:
6183 free_cpumask_var(rd->online);
6184free_span:
6185 free_cpumask_var(rd->span);
0c910d28 6186out:
c6c4927b 6187 return -ENOMEM;
57d885fe
GH
6188}
6189
6190static void init_defrootdomain(void)
6191{
c6c4927b
RR
6192 init_rootdomain(&def_root_domain, true);
6193
57d885fe
GH
6194 atomic_set(&def_root_domain.refcount, 1);
6195}
6196
dc938520 6197static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6198{
6199 struct root_domain *rd;
6200
6201 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6202 if (!rd)
6203 return NULL;
6204
c6c4927b
RR
6205 if (init_rootdomain(rd, false) != 0) {
6206 kfree(rd);
6207 return NULL;
6208 }
57d885fe
GH
6209
6210 return rd;
6211}
6212
1da177e4 6213/*
0eab9146 6214 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6215 * hold the hotplug lock.
6216 */
0eab9146
IM
6217static void
6218cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6219{
70b97a7f 6220 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6221 struct sched_domain *tmp;
6222
6223 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6224 for (tmp = sd; tmp; ) {
245af2c7
SS
6225 struct sched_domain *parent = tmp->parent;
6226 if (!parent)
6227 break;
f29c9b1c 6228
1a848870 6229 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6230 tmp->parent = parent->parent;
1a848870
SS
6231 if (parent->parent)
6232 parent->parent->child = tmp;
f29c9b1c
LZ
6233 } else
6234 tmp = tmp->parent;
245af2c7
SS
6235 }
6236
1a848870 6237 if (sd && sd_degenerate(sd)) {
245af2c7 6238 sd = sd->parent;
1a848870
SS
6239 if (sd)
6240 sd->child = NULL;
6241 }
1da177e4
LT
6242
6243 sched_domain_debug(sd, cpu);
6244
57d885fe 6245 rq_attach_root(rq, rd);
674311d5 6246 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6247}
6248
6249/* cpus with isolated domains */
dcc30a35 6250static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6251
6252/* Setup the mask of cpus configured for isolated domains */
6253static int __init isolated_cpu_setup(char *str)
6254{
bdddd296 6255 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6256 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6257 return 1;
6258}
6259
8927f494 6260__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6261
6262/*
6711cab4
SS
6263 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6264 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6265 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6266 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6267 *
6268 * init_sched_build_groups will build a circular linked list of the groups
6269 * covered by the given span, and will set each group's ->cpumask correctly,
6270 * and ->cpu_power to 0.
6271 */
a616058b 6272static void
96f874e2
RR
6273init_sched_build_groups(const struct cpumask *span,
6274 const struct cpumask *cpu_map,
6275 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6276 struct sched_group **sg,
96f874e2
RR
6277 struct cpumask *tmpmask),
6278 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6279{
6280 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6281 int i;
6282
96f874e2 6283 cpumask_clear(covered);
7c16ec58 6284
abcd083a 6285 for_each_cpu(i, span) {
6711cab4 6286 struct sched_group *sg;
7c16ec58 6287 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6288 int j;
6289
758b2cdc 6290 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6291 continue;
6292
758b2cdc 6293 cpumask_clear(sched_group_cpus(sg));
18a3885f 6294 sg->cpu_power = 0;
1da177e4 6295
abcd083a 6296 for_each_cpu(j, span) {
7c16ec58 6297 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6298 continue;
6299
96f874e2 6300 cpumask_set_cpu(j, covered);
758b2cdc 6301 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6302 }
6303 if (!first)
6304 first = sg;
6305 if (last)
6306 last->next = sg;
6307 last = sg;
6308 }
6309 last->next = first;
6310}
6311
9c1cfda2 6312#define SD_NODES_PER_DOMAIN 16
1da177e4 6313
9c1cfda2 6314#ifdef CONFIG_NUMA
198e2f18 6315
9c1cfda2
JH
6316/**
6317 * find_next_best_node - find the next node to include in a sched_domain
6318 * @node: node whose sched_domain we're building
6319 * @used_nodes: nodes already in the sched_domain
6320 *
41a2d6cf 6321 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6322 * finds the closest node not already in the @used_nodes map.
6323 *
6324 * Should use nodemask_t.
6325 */
c5f59f08 6326static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6327{
6328 int i, n, val, min_val, best_node = 0;
6329
6330 min_val = INT_MAX;
6331
076ac2af 6332 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6333 /* Start at @node */
076ac2af 6334 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6335
6336 if (!nr_cpus_node(n))
6337 continue;
6338
6339 /* Skip already used nodes */
c5f59f08 6340 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6341 continue;
6342
6343 /* Simple min distance search */
6344 val = node_distance(node, n);
6345
6346 if (val < min_val) {
6347 min_val = val;
6348 best_node = n;
6349 }
6350 }
6351
c5f59f08 6352 node_set(best_node, *used_nodes);
9c1cfda2
JH
6353 return best_node;
6354}
6355
6356/**
6357 * sched_domain_node_span - get a cpumask for a node's sched_domain
6358 * @node: node whose cpumask we're constructing
73486722 6359 * @span: resulting cpumask
9c1cfda2 6360 *
41a2d6cf 6361 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6362 * should be one that prevents unnecessary balancing, but also spreads tasks
6363 * out optimally.
6364 */
96f874e2 6365static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6366{
c5f59f08 6367 nodemask_t used_nodes;
48f24c4d 6368 int i;
9c1cfda2 6369
6ca09dfc 6370 cpumask_clear(span);
c5f59f08 6371 nodes_clear(used_nodes);
9c1cfda2 6372
6ca09dfc 6373 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6374 node_set(node, used_nodes);
9c1cfda2
JH
6375
6376 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6377 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6378
6ca09dfc 6379 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6380 }
9c1cfda2 6381}
6d6bc0ad 6382#endif /* CONFIG_NUMA */
9c1cfda2 6383
5c45bf27 6384int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6385
6c99e9ad
RR
6386/*
6387 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6388 *
6389 * ( See the the comments in include/linux/sched.h:struct sched_group
6390 * and struct sched_domain. )
6c99e9ad
RR
6391 */
6392struct static_sched_group {
6393 struct sched_group sg;
6394 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6395};
6396
6397struct static_sched_domain {
6398 struct sched_domain sd;
6399 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6400};
6401
49a02c51
AH
6402struct s_data {
6403#ifdef CONFIG_NUMA
6404 int sd_allnodes;
6405 cpumask_var_t domainspan;
6406 cpumask_var_t covered;
6407 cpumask_var_t notcovered;
6408#endif
6409 cpumask_var_t nodemask;
6410 cpumask_var_t this_sibling_map;
6411 cpumask_var_t this_core_map;
6412 cpumask_var_t send_covered;
6413 cpumask_var_t tmpmask;
6414 struct sched_group **sched_group_nodes;
6415 struct root_domain *rd;
6416};
6417
2109b99e
AH
6418enum s_alloc {
6419 sa_sched_groups = 0,
6420 sa_rootdomain,
6421 sa_tmpmask,
6422 sa_send_covered,
6423 sa_this_core_map,
6424 sa_this_sibling_map,
6425 sa_nodemask,
6426 sa_sched_group_nodes,
6427#ifdef CONFIG_NUMA
6428 sa_notcovered,
6429 sa_covered,
6430 sa_domainspan,
6431#endif
6432 sa_none,
6433};
6434
9c1cfda2 6435/*
48f24c4d 6436 * SMT sched-domains:
9c1cfda2 6437 */
1da177e4 6438#ifdef CONFIG_SCHED_SMT
6c99e9ad 6439static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6440static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6441
41a2d6cf 6442static int
96f874e2
RR
6443cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6444 struct sched_group **sg, struct cpumask *unused)
1da177e4 6445{
6711cab4 6446 if (sg)
1871e52c 6447 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6448 return cpu;
6449}
6d6bc0ad 6450#endif /* CONFIG_SCHED_SMT */
1da177e4 6451
48f24c4d
IM
6452/*
6453 * multi-core sched-domains:
6454 */
1e9f28fa 6455#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6456static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6457static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6458#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6459
6460#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6461static int
96f874e2
RR
6462cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6463 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6464{
6711cab4 6465 int group;
7c16ec58 6466
c69fc56d 6467 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6468 group = cpumask_first(mask);
6711cab4 6469 if (sg)
6c99e9ad 6470 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6471 return group;
1e9f28fa
SS
6472}
6473#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6474static int
96f874e2
RR
6475cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6476 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6477{
6711cab4 6478 if (sg)
6c99e9ad 6479 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6480 return cpu;
6481}
6482#endif
6483
6c99e9ad
RR
6484static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6485static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6486
41a2d6cf 6487static int
96f874e2
RR
6488cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6489 struct sched_group **sg, struct cpumask *mask)
1da177e4 6490{
6711cab4 6491 int group;
48f24c4d 6492#ifdef CONFIG_SCHED_MC
6ca09dfc 6493 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6494 group = cpumask_first(mask);
1e9f28fa 6495#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6496 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6497 group = cpumask_first(mask);
1da177e4 6498#else
6711cab4 6499 group = cpu;
1da177e4 6500#endif
6711cab4 6501 if (sg)
6c99e9ad 6502 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6503 return group;
1da177e4
LT
6504}
6505
6506#ifdef CONFIG_NUMA
1da177e4 6507/*
9c1cfda2
JH
6508 * The init_sched_build_groups can't handle what we want to do with node
6509 * groups, so roll our own. Now each node has its own list of groups which
6510 * gets dynamically allocated.
1da177e4 6511 */
62ea9ceb 6512static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6513static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6514
62ea9ceb 6515static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6516static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6517
96f874e2
RR
6518static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6519 struct sched_group **sg,
6520 struct cpumask *nodemask)
9c1cfda2 6521{
6711cab4
SS
6522 int group;
6523
6ca09dfc 6524 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6525 group = cpumask_first(nodemask);
6711cab4
SS
6526
6527 if (sg)
6c99e9ad 6528 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6529 return group;
1da177e4 6530}
6711cab4 6531
08069033
SS
6532static void init_numa_sched_groups_power(struct sched_group *group_head)
6533{
6534 struct sched_group *sg = group_head;
6535 int j;
6536
6537 if (!sg)
6538 return;
3a5c359a 6539 do {
758b2cdc 6540 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6541 struct sched_domain *sd;
08069033 6542
6c99e9ad 6543 sd = &per_cpu(phys_domains, j).sd;
13318a71 6544 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6545 /*
6546 * Only add "power" once for each
6547 * physical package.
6548 */
6549 continue;
6550 }
08069033 6551
18a3885f 6552 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6553 }
6554 sg = sg->next;
6555 } while (sg != group_head);
08069033 6556}
0601a88d
AH
6557
6558static int build_numa_sched_groups(struct s_data *d,
6559 const struct cpumask *cpu_map, int num)
6560{
6561 struct sched_domain *sd;
6562 struct sched_group *sg, *prev;
6563 int n, j;
6564
6565 cpumask_clear(d->covered);
6566 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6567 if (cpumask_empty(d->nodemask)) {
6568 d->sched_group_nodes[num] = NULL;
6569 goto out;
6570 }
6571
6572 sched_domain_node_span(num, d->domainspan);
6573 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6574
6575 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6576 GFP_KERNEL, num);
6577 if (!sg) {
3df0fc5b
PZ
6578 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6579 num);
0601a88d
AH
6580 return -ENOMEM;
6581 }
6582 d->sched_group_nodes[num] = sg;
6583
6584 for_each_cpu(j, d->nodemask) {
6585 sd = &per_cpu(node_domains, j).sd;
6586 sd->groups = sg;
6587 }
6588
18a3885f 6589 sg->cpu_power = 0;
0601a88d
AH
6590 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6591 sg->next = sg;
6592 cpumask_or(d->covered, d->covered, d->nodemask);
6593
6594 prev = sg;
6595 for (j = 0; j < nr_node_ids; j++) {
6596 n = (num + j) % nr_node_ids;
6597 cpumask_complement(d->notcovered, d->covered);
6598 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6599 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6600 if (cpumask_empty(d->tmpmask))
6601 break;
6602 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6603 if (cpumask_empty(d->tmpmask))
6604 continue;
6605 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6606 GFP_KERNEL, num);
6607 if (!sg) {
3df0fc5b
PZ
6608 printk(KERN_WARNING
6609 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6610 return -ENOMEM;
6611 }
18a3885f 6612 sg->cpu_power = 0;
0601a88d
AH
6613 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6614 sg->next = prev->next;
6615 cpumask_or(d->covered, d->covered, d->tmpmask);
6616 prev->next = sg;
6617 prev = sg;
6618 }
6619out:
6620 return 0;
6621}
6d6bc0ad 6622#endif /* CONFIG_NUMA */
1da177e4 6623
a616058b 6624#ifdef CONFIG_NUMA
51888ca2 6625/* Free memory allocated for various sched_group structures */
96f874e2
RR
6626static void free_sched_groups(const struct cpumask *cpu_map,
6627 struct cpumask *nodemask)
51888ca2 6628{
a616058b 6629 int cpu, i;
51888ca2 6630
abcd083a 6631 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6632 struct sched_group **sched_group_nodes
6633 = sched_group_nodes_bycpu[cpu];
6634
51888ca2
SV
6635 if (!sched_group_nodes)
6636 continue;
6637
076ac2af 6638 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6639 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6640
6ca09dfc 6641 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6642 if (cpumask_empty(nodemask))
51888ca2
SV
6643 continue;
6644
6645 if (sg == NULL)
6646 continue;
6647 sg = sg->next;
6648next_sg:
6649 oldsg = sg;
6650 sg = sg->next;
6651 kfree(oldsg);
6652 if (oldsg != sched_group_nodes[i])
6653 goto next_sg;
6654 }
6655 kfree(sched_group_nodes);
6656 sched_group_nodes_bycpu[cpu] = NULL;
6657 }
51888ca2 6658}
6d6bc0ad 6659#else /* !CONFIG_NUMA */
96f874e2
RR
6660static void free_sched_groups(const struct cpumask *cpu_map,
6661 struct cpumask *nodemask)
a616058b
SS
6662{
6663}
6d6bc0ad 6664#endif /* CONFIG_NUMA */
51888ca2 6665
89c4710e
SS
6666/*
6667 * Initialize sched groups cpu_power.
6668 *
6669 * cpu_power indicates the capacity of sched group, which is used while
6670 * distributing the load between different sched groups in a sched domain.
6671 * Typically cpu_power for all the groups in a sched domain will be same unless
6672 * there are asymmetries in the topology. If there are asymmetries, group
6673 * having more cpu_power will pickup more load compared to the group having
6674 * less cpu_power.
89c4710e
SS
6675 */
6676static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6677{
6678 struct sched_domain *child;
6679 struct sched_group *group;
f93e65c1
PZ
6680 long power;
6681 int weight;
89c4710e
SS
6682
6683 WARN_ON(!sd || !sd->groups);
6684
13318a71 6685 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6686 return;
6687
6688 child = sd->child;
6689
18a3885f 6690 sd->groups->cpu_power = 0;
5517d86b 6691
f93e65c1
PZ
6692 if (!child) {
6693 power = SCHED_LOAD_SCALE;
6694 weight = cpumask_weight(sched_domain_span(sd));
6695 /*
6696 * SMT siblings share the power of a single core.
a52bfd73
PZ
6697 * Usually multiple threads get a better yield out of
6698 * that one core than a single thread would have,
6699 * reflect that in sd->smt_gain.
f93e65c1 6700 */
a52bfd73
PZ
6701 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6702 power *= sd->smt_gain;
f93e65c1 6703 power /= weight;
a52bfd73
PZ
6704 power >>= SCHED_LOAD_SHIFT;
6705 }
18a3885f 6706 sd->groups->cpu_power += power;
89c4710e
SS
6707 return;
6708 }
6709
89c4710e 6710 /*
f93e65c1 6711 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6712 */
6713 group = child->groups;
6714 do {
18a3885f 6715 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6716 group = group->next;
6717 } while (group != child->groups);
6718}
6719
7c16ec58
MT
6720/*
6721 * Initializers for schedule domains
6722 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6723 */
6724
a5d8c348
IM
6725#ifdef CONFIG_SCHED_DEBUG
6726# define SD_INIT_NAME(sd, type) sd->name = #type
6727#else
6728# define SD_INIT_NAME(sd, type) do { } while (0)
6729#endif
6730
7c16ec58 6731#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6732
7c16ec58
MT
6733#define SD_INIT_FUNC(type) \
6734static noinline void sd_init_##type(struct sched_domain *sd) \
6735{ \
6736 memset(sd, 0, sizeof(*sd)); \
6737 *sd = SD_##type##_INIT; \
1d3504fc 6738 sd->level = SD_LV_##type; \
a5d8c348 6739 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6740}
6741
6742SD_INIT_FUNC(CPU)
6743#ifdef CONFIG_NUMA
6744 SD_INIT_FUNC(ALLNODES)
6745 SD_INIT_FUNC(NODE)
6746#endif
6747#ifdef CONFIG_SCHED_SMT
6748 SD_INIT_FUNC(SIBLING)
6749#endif
6750#ifdef CONFIG_SCHED_MC
6751 SD_INIT_FUNC(MC)
6752#endif
6753
1d3504fc
HS
6754static int default_relax_domain_level = -1;
6755
6756static int __init setup_relax_domain_level(char *str)
6757{
30e0e178
LZ
6758 unsigned long val;
6759
6760 val = simple_strtoul(str, NULL, 0);
6761 if (val < SD_LV_MAX)
6762 default_relax_domain_level = val;
6763
1d3504fc
HS
6764 return 1;
6765}
6766__setup("relax_domain_level=", setup_relax_domain_level);
6767
6768static void set_domain_attribute(struct sched_domain *sd,
6769 struct sched_domain_attr *attr)
6770{
6771 int request;
6772
6773 if (!attr || attr->relax_domain_level < 0) {
6774 if (default_relax_domain_level < 0)
6775 return;
6776 else
6777 request = default_relax_domain_level;
6778 } else
6779 request = attr->relax_domain_level;
6780 if (request < sd->level) {
6781 /* turn off idle balance on this domain */
c88d5910 6782 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6783 } else {
6784 /* turn on idle balance on this domain */
c88d5910 6785 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6786 }
6787}
6788
2109b99e
AH
6789static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6790 const struct cpumask *cpu_map)
6791{
6792 switch (what) {
6793 case sa_sched_groups:
6794 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6795 d->sched_group_nodes = NULL;
6796 case sa_rootdomain:
6797 free_rootdomain(d->rd); /* fall through */
6798 case sa_tmpmask:
6799 free_cpumask_var(d->tmpmask); /* fall through */
6800 case sa_send_covered:
6801 free_cpumask_var(d->send_covered); /* fall through */
6802 case sa_this_core_map:
6803 free_cpumask_var(d->this_core_map); /* fall through */
6804 case sa_this_sibling_map:
6805 free_cpumask_var(d->this_sibling_map); /* fall through */
6806 case sa_nodemask:
6807 free_cpumask_var(d->nodemask); /* fall through */
6808 case sa_sched_group_nodes:
d1b55138 6809#ifdef CONFIG_NUMA
2109b99e
AH
6810 kfree(d->sched_group_nodes); /* fall through */
6811 case sa_notcovered:
6812 free_cpumask_var(d->notcovered); /* fall through */
6813 case sa_covered:
6814 free_cpumask_var(d->covered); /* fall through */
6815 case sa_domainspan:
6816 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6817#endif
2109b99e
AH
6818 case sa_none:
6819 break;
6820 }
6821}
3404c8d9 6822
2109b99e
AH
6823static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6824 const struct cpumask *cpu_map)
6825{
3404c8d9 6826#ifdef CONFIG_NUMA
2109b99e
AH
6827 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6828 return sa_none;
6829 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6830 return sa_domainspan;
6831 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6832 return sa_covered;
6833 /* Allocate the per-node list of sched groups */
6834 d->sched_group_nodes = kcalloc(nr_node_ids,
6835 sizeof(struct sched_group *), GFP_KERNEL);
6836 if (!d->sched_group_nodes) {
3df0fc5b 6837 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6838 return sa_notcovered;
d1b55138 6839 }
2109b99e 6840 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6841#endif
2109b99e
AH
6842 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6843 return sa_sched_group_nodes;
6844 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6845 return sa_nodemask;
6846 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6847 return sa_this_sibling_map;
6848 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6849 return sa_this_core_map;
6850 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6851 return sa_send_covered;
6852 d->rd = alloc_rootdomain();
6853 if (!d->rd) {
3df0fc5b 6854 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6855 return sa_tmpmask;
57d885fe 6856 }
2109b99e
AH
6857 return sa_rootdomain;
6858}
57d885fe 6859
7f4588f3
AH
6860static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6861 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6862{
6863 struct sched_domain *sd = NULL;
7c16ec58 6864#ifdef CONFIG_NUMA
7f4588f3 6865 struct sched_domain *parent;
1da177e4 6866
7f4588f3
AH
6867 d->sd_allnodes = 0;
6868 if (cpumask_weight(cpu_map) >
6869 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6870 sd = &per_cpu(allnodes_domains, i).sd;
6871 SD_INIT(sd, ALLNODES);
1d3504fc 6872 set_domain_attribute(sd, attr);
7f4588f3
AH
6873 cpumask_copy(sched_domain_span(sd), cpu_map);
6874 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6875 d->sd_allnodes = 1;
6876 }
6877 parent = sd;
6878
6879 sd = &per_cpu(node_domains, i).sd;
6880 SD_INIT(sd, NODE);
6881 set_domain_attribute(sd, attr);
6882 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6883 sd->parent = parent;
6884 if (parent)
6885 parent->child = sd;
6886 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6887#endif
7f4588f3
AH
6888 return sd;
6889}
1da177e4 6890
87cce662
AH
6891static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6892 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6893 struct sched_domain *parent, int i)
6894{
6895 struct sched_domain *sd;
6896 sd = &per_cpu(phys_domains, i).sd;
6897 SD_INIT(sd, CPU);
6898 set_domain_attribute(sd, attr);
6899 cpumask_copy(sched_domain_span(sd), d->nodemask);
6900 sd->parent = parent;
6901 if (parent)
6902 parent->child = sd;
6903 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6904 return sd;
6905}
1da177e4 6906
410c4081
AH
6907static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6908 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6909 struct sched_domain *parent, int i)
6910{
6911 struct sched_domain *sd = parent;
1e9f28fa 6912#ifdef CONFIG_SCHED_MC
410c4081
AH
6913 sd = &per_cpu(core_domains, i).sd;
6914 SD_INIT(sd, MC);
6915 set_domain_attribute(sd, attr);
6916 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6917 sd->parent = parent;
6918 parent->child = sd;
6919 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6920#endif
410c4081
AH
6921 return sd;
6922}
1e9f28fa 6923
d8173535
AH
6924static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6925 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6926 struct sched_domain *parent, int i)
6927{
6928 struct sched_domain *sd = parent;
1da177e4 6929#ifdef CONFIG_SCHED_SMT
d8173535
AH
6930 sd = &per_cpu(cpu_domains, i).sd;
6931 SD_INIT(sd, SIBLING);
6932 set_domain_attribute(sd, attr);
6933 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6934 sd->parent = parent;
6935 parent->child = sd;
6936 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6937#endif
d8173535
AH
6938 return sd;
6939}
1da177e4 6940
0e8e85c9
AH
6941static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6942 const struct cpumask *cpu_map, int cpu)
6943{
6944 switch (l) {
1da177e4 6945#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6946 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6947 cpumask_and(d->this_sibling_map, cpu_map,
6948 topology_thread_cpumask(cpu));
6949 if (cpu == cpumask_first(d->this_sibling_map))
6950 init_sched_build_groups(d->this_sibling_map, cpu_map,
6951 &cpu_to_cpu_group,
6952 d->send_covered, d->tmpmask);
6953 break;
1da177e4 6954#endif
1e9f28fa 6955#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6956 case SD_LV_MC: /* set up multi-core groups */
6957 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6958 if (cpu == cpumask_first(d->this_core_map))
6959 init_sched_build_groups(d->this_core_map, cpu_map,
6960 &cpu_to_core_group,
6961 d->send_covered, d->tmpmask);
6962 break;
1e9f28fa 6963#endif
86548096
AH
6964 case SD_LV_CPU: /* set up physical groups */
6965 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6966 if (!cpumask_empty(d->nodemask))
6967 init_sched_build_groups(d->nodemask, cpu_map,
6968 &cpu_to_phys_group,
6969 d->send_covered, d->tmpmask);
6970 break;
1da177e4 6971#ifdef CONFIG_NUMA
de616e36
AH
6972 case SD_LV_ALLNODES:
6973 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6974 d->send_covered, d->tmpmask);
6975 break;
6976#endif
0e8e85c9
AH
6977 default:
6978 break;
7c16ec58 6979 }
0e8e85c9 6980}
9c1cfda2 6981
2109b99e
AH
6982/*
6983 * Build sched domains for a given set of cpus and attach the sched domains
6984 * to the individual cpus
6985 */
6986static int __build_sched_domains(const struct cpumask *cpu_map,
6987 struct sched_domain_attr *attr)
6988{
6989 enum s_alloc alloc_state = sa_none;
6990 struct s_data d;
294b0c96 6991 struct sched_domain *sd;
2109b99e 6992 int i;
7c16ec58 6993#ifdef CONFIG_NUMA
2109b99e 6994 d.sd_allnodes = 0;
7c16ec58 6995#endif
9c1cfda2 6996
2109b99e
AH
6997 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6998 if (alloc_state != sa_rootdomain)
6999 goto error;
7000 alloc_state = sa_sched_groups;
9c1cfda2 7001
1da177e4 7002 /*
1a20ff27 7003 * Set up domains for cpus specified by the cpu_map.
1da177e4 7004 */
abcd083a 7005 for_each_cpu(i, cpu_map) {
49a02c51
AH
7006 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7007 cpu_map);
9761eea8 7008
7f4588f3 7009 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7010 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7011 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7012 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7013 }
9c1cfda2 7014
abcd083a 7015 for_each_cpu(i, cpu_map) {
0e8e85c9 7016 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7017 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7018 }
9c1cfda2 7019
1da177e4 7020 /* Set up physical groups */
86548096
AH
7021 for (i = 0; i < nr_node_ids; i++)
7022 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7023
1da177e4
LT
7024#ifdef CONFIG_NUMA
7025 /* Set up node groups */
de616e36
AH
7026 if (d.sd_allnodes)
7027 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7028
0601a88d
AH
7029 for (i = 0; i < nr_node_ids; i++)
7030 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7031 goto error;
1da177e4
LT
7032#endif
7033
7034 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7035#ifdef CONFIG_SCHED_SMT
abcd083a 7036 for_each_cpu(i, cpu_map) {
294b0c96 7037 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7038 init_sched_groups_power(i, sd);
5c45bf27 7039 }
1da177e4 7040#endif
1e9f28fa 7041#ifdef CONFIG_SCHED_MC
abcd083a 7042 for_each_cpu(i, cpu_map) {
294b0c96 7043 sd = &per_cpu(core_domains, i).sd;
89c4710e 7044 init_sched_groups_power(i, sd);
5c45bf27
SS
7045 }
7046#endif
1e9f28fa 7047
abcd083a 7048 for_each_cpu(i, cpu_map) {
294b0c96 7049 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7050 init_sched_groups_power(i, sd);
1da177e4
LT
7051 }
7052
9c1cfda2 7053#ifdef CONFIG_NUMA
076ac2af 7054 for (i = 0; i < nr_node_ids; i++)
49a02c51 7055 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7056
49a02c51 7057 if (d.sd_allnodes) {
6711cab4 7058 struct sched_group *sg;
f712c0c7 7059
96f874e2 7060 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7061 d.tmpmask);
f712c0c7
SS
7062 init_numa_sched_groups_power(sg);
7063 }
9c1cfda2
JH
7064#endif
7065
1da177e4 7066 /* Attach the domains */
abcd083a 7067 for_each_cpu(i, cpu_map) {
1da177e4 7068#ifdef CONFIG_SCHED_SMT
6c99e9ad 7069 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7070#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7071 sd = &per_cpu(core_domains, i).sd;
1da177e4 7072#else
6c99e9ad 7073 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7074#endif
49a02c51 7075 cpu_attach_domain(sd, d.rd, i);
1da177e4 7076 }
51888ca2 7077
2109b99e
AH
7078 d.sched_group_nodes = NULL; /* don't free this we still need it */
7079 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7080 return 0;
51888ca2 7081
51888ca2 7082error:
2109b99e
AH
7083 __free_domain_allocs(&d, alloc_state, cpu_map);
7084 return -ENOMEM;
1da177e4 7085}
029190c5 7086
96f874e2 7087static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7088{
7089 return __build_sched_domains(cpu_map, NULL);
7090}
7091
acc3f5d7 7092static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7093static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7094static struct sched_domain_attr *dattr_cur;
7095 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7096
7097/*
7098 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7099 * cpumask) fails, then fallback to a single sched domain,
7100 * as determined by the single cpumask fallback_doms.
029190c5 7101 */
4212823f 7102static cpumask_var_t fallback_doms;
029190c5 7103
ee79d1bd
HC
7104/*
7105 * arch_update_cpu_topology lets virtualized architectures update the
7106 * cpu core maps. It is supposed to return 1 if the topology changed
7107 * or 0 if it stayed the same.
7108 */
7109int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7110{
ee79d1bd 7111 return 0;
22e52b07
HC
7112}
7113
acc3f5d7
RR
7114cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7115{
7116 int i;
7117 cpumask_var_t *doms;
7118
7119 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7120 if (!doms)
7121 return NULL;
7122 for (i = 0; i < ndoms; i++) {
7123 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7124 free_sched_domains(doms, i);
7125 return NULL;
7126 }
7127 }
7128 return doms;
7129}
7130
7131void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7132{
7133 unsigned int i;
7134 for (i = 0; i < ndoms; i++)
7135 free_cpumask_var(doms[i]);
7136 kfree(doms);
7137}
7138
1a20ff27 7139/*
41a2d6cf 7140 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7141 * For now this just excludes isolated cpus, but could be used to
7142 * exclude other special cases in the future.
1a20ff27 7143 */
96f874e2 7144static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7145{
7378547f
MM
7146 int err;
7147
22e52b07 7148 arch_update_cpu_topology();
029190c5 7149 ndoms_cur = 1;
acc3f5d7 7150 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7151 if (!doms_cur)
acc3f5d7
RR
7152 doms_cur = &fallback_doms;
7153 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7154 dattr_cur = NULL;
acc3f5d7 7155 err = build_sched_domains(doms_cur[0]);
6382bc90 7156 register_sched_domain_sysctl();
7378547f
MM
7157
7158 return err;
1a20ff27
DG
7159}
7160
96f874e2
RR
7161static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7162 struct cpumask *tmpmask)
1da177e4 7163{
7c16ec58 7164 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7165}
1da177e4 7166
1a20ff27
DG
7167/*
7168 * Detach sched domains from a group of cpus specified in cpu_map
7169 * These cpus will now be attached to the NULL domain
7170 */
96f874e2 7171static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7172{
96f874e2
RR
7173 /* Save because hotplug lock held. */
7174 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7175 int i;
7176
abcd083a 7177 for_each_cpu(i, cpu_map)
57d885fe 7178 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7179 synchronize_sched();
96f874e2 7180 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7181}
7182
1d3504fc
HS
7183/* handle null as "default" */
7184static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7185 struct sched_domain_attr *new, int idx_new)
7186{
7187 struct sched_domain_attr tmp;
7188
7189 /* fast path */
7190 if (!new && !cur)
7191 return 1;
7192
7193 tmp = SD_ATTR_INIT;
7194 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7195 new ? (new + idx_new) : &tmp,
7196 sizeof(struct sched_domain_attr));
7197}
7198
029190c5
PJ
7199/*
7200 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7201 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7202 * doms_new[] to the current sched domain partitioning, doms_cur[].
7203 * It destroys each deleted domain and builds each new domain.
7204 *
acc3f5d7 7205 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7206 * The masks don't intersect (don't overlap.) We should setup one
7207 * sched domain for each mask. CPUs not in any of the cpumasks will
7208 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7209 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7210 * it as it is.
7211 *
acc3f5d7
RR
7212 * The passed in 'doms_new' should be allocated using
7213 * alloc_sched_domains. This routine takes ownership of it and will
7214 * free_sched_domains it when done with it. If the caller failed the
7215 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7216 * and partition_sched_domains() will fallback to the single partition
7217 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7218 *
96f874e2 7219 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7220 * ndoms_new == 0 is a special case for destroying existing domains,
7221 * and it will not create the default domain.
dfb512ec 7222 *
029190c5
PJ
7223 * Call with hotplug lock held
7224 */
acc3f5d7 7225void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7226 struct sched_domain_attr *dattr_new)
029190c5 7227{
dfb512ec 7228 int i, j, n;
d65bd5ec 7229 int new_topology;
029190c5 7230
712555ee 7231 mutex_lock(&sched_domains_mutex);
a1835615 7232
7378547f
MM
7233 /* always unregister in case we don't destroy any domains */
7234 unregister_sched_domain_sysctl();
7235
d65bd5ec
HC
7236 /* Let architecture update cpu core mappings. */
7237 new_topology = arch_update_cpu_topology();
7238
dfb512ec 7239 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7240
7241 /* Destroy deleted domains */
7242 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7243 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7244 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7245 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7246 goto match1;
7247 }
7248 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7249 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7250match1:
7251 ;
7252 }
7253
e761b772
MK
7254 if (doms_new == NULL) {
7255 ndoms_cur = 0;
acc3f5d7 7256 doms_new = &fallback_doms;
6ad4c188 7257 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7258 WARN_ON_ONCE(dattr_new);
e761b772
MK
7259 }
7260
029190c5
PJ
7261 /* Build new domains */
7262 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7263 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7264 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7265 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7266 goto match2;
7267 }
7268 /* no match - add a new doms_new */
acc3f5d7 7269 __build_sched_domains(doms_new[i],
1d3504fc 7270 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7271match2:
7272 ;
7273 }
7274
7275 /* Remember the new sched domains */
acc3f5d7
RR
7276 if (doms_cur != &fallback_doms)
7277 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7278 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7279 doms_cur = doms_new;
1d3504fc 7280 dattr_cur = dattr_new;
029190c5 7281 ndoms_cur = ndoms_new;
7378547f
MM
7282
7283 register_sched_domain_sysctl();
a1835615 7284
712555ee 7285 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7286}
7287
5c45bf27 7288#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7289static void arch_reinit_sched_domains(void)
5c45bf27 7290{
95402b38 7291 get_online_cpus();
dfb512ec
MK
7292
7293 /* Destroy domains first to force the rebuild */
7294 partition_sched_domains(0, NULL, NULL);
7295
e761b772 7296 rebuild_sched_domains();
95402b38 7297 put_online_cpus();
5c45bf27
SS
7298}
7299
7300static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7301{
afb8a9b7 7302 unsigned int level = 0;
5c45bf27 7303
afb8a9b7
GS
7304 if (sscanf(buf, "%u", &level) != 1)
7305 return -EINVAL;
7306
7307 /*
7308 * level is always be positive so don't check for
7309 * level < POWERSAVINGS_BALANCE_NONE which is 0
7310 * What happens on 0 or 1 byte write,
7311 * need to check for count as well?
7312 */
7313
7314 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7315 return -EINVAL;
7316
7317 if (smt)
afb8a9b7 7318 sched_smt_power_savings = level;
5c45bf27 7319 else
afb8a9b7 7320 sched_mc_power_savings = level;
5c45bf27 7321
c70f22d2 7322 arch_reinit_sched_domains();
5c45bf27 7323
c70f22d2 7324 return count;
5c45bf27
SS
7325}
7326
5c45bf27 7327#ifdef CONFIG_SCHED_MC
f718cd4a 7328static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7329 struct sysdev_class_attribute *attr,
f718cd4a 7330 char *page)
5c45bf27
SS
7331{
7332 return sprintf(page, "%u\n", sched_mc_power_savings);
7333}
f718cd4a 7334static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7335 struct sysdev_class_attribute *attr,
48f24c4d 7336 const char *buf, size_t count)
5c45bf27
SS
7337{
7338 return sched_power_savings_store(buf, count, 0);
7339}
f718cd4a
AK
7340static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7341 sched_mc_power_savings_show,
7342 sched_mc_power_savings_store);
5c45bf27
SS
7343#endif
7344
7345#ifdef CONFIG_SCHED_SMT
f718cd4a 7346static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7347 struct sysdev_class_attribute *attr,
f718cd4a 7348 char *page)
5c45bf27
SS
7349{
7350 return sprintf(page, "%u\n", sched_smt_power_savings);
7351}
f718cd4a 7352static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7353 struct sysdev_class_attribute *attr,
48f24c4d 7354 const char *buf, size_t count)
5c45bf27
SS
7355{
7356 return sched_power_savings_store(buf, count, 1);
7357}
f718cd4a
AK
7358static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7359 sched_smt_power_savings_show,
6707de00
AB
7360 sched_smt_power_savings_store);
7361#endif
7362
39aac648 7363int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7364{
7365 int err = 0;
7366
7367#ifdef CONFIG_SCHED_SMT
7368 if (smt_capable())
7369 err = sysfs_create_file(&cls->kset.kobj,
7370 &attr_sched_smt_power_savings.attr);
7371#endif
7372#ifdef CONFIG_SCHED_MC
7373 if (!err && mc_capable())
7374 err = sysfs_create_file(&cls->kset.kobj,
7375 &attr_sched_mc_power_savings.attr);
7376#endif
7377 return err;
7378}
6d6bc0ad 7379#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7380
e761b772 7381#ifndef CONFIG_CPUSETS
1da177e4 7382/*
e761b772
MK
7383 * Add online and remove offline CPUs from the scheduler domains.
7384 * When cpusets are enabled they take over this function.
1da177e4
LT
7385 */
7386static int update_sched_domains(struct notifier_block *nfb,
7387 unsigned long action, void *hcpu)
e761b772
MK
7388{
7389 switch (action) {
7390 case CPU_ONLINE:
7391 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7392 case CPU_DOWN_PREPARE:
7393 case CPU_DOWN_PREPARE_FROZEN:
7394 case CPU_DOWN_FAILED:
7395 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7396 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7397 return NOTIFY_OK;
7398
7399 default:
7400 return NOTIFY_DONE;
7401 }
7402}
7403#endif
7404
7405static int update_runtime(struct notifier_block *nfb,
7406 unsigned long action, void *hcpu)
1da177e4 7407{
7def2be1
PZ
7408 int cpu = (int)(long)hcpu;
7409
1da177e4 7410 switch (action) {
1da177e4 7411 case CPU_DOWN_PREPARE:
8bb78442 7412 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7413 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7414 return NOTIFY_OK;
7415
1da177e4 7416 case CPU_DOWN_FAILED:
8bb78442 7417 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7418 case CPU_ONLINE:
8bb78442 7419 case CPU_ONLINE_FROZEN:
7def2be1 7420 enable_runtime(cpu_rq(cpu));
e761b772
MK
7421 return NOTIFY_OK;
7422
1da177e4
LT
7423 default:
7424 return NOTIFY_DONE;
7425 }
1da177e4 7426}
1da177e4
LT
7427
7428void __init sched_init_smp(void)
7429{
dcc30a35
RR
7430 cpumask_var_t non_isolated_cpus;
7431
7432 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7433 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7434
434d53b0
MT
7435#if defined(CONFIG_NUMA)
7436 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7437 GFP_KERNEL);
7438 BUG_ON(sched_group_nodes_bycpu == NULL);
7439#endif
95402b38 7440 get_online_cpus();
712555ee 7441 mutex_lock(&sched_domains_mutex);
6ad4c188 7442 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7443 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7444 if (cpumask_empty(non_isolated_cpus))
7445 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7446 mutex_unlock(&sched_domains_mutex);
95402b38 7447 put_online_cpus();
e761b772
MK
7448
7449#ifndef CONFIG_CPUSETS
1da177e4
LT
7450 /* XXX: Theoretical race here - CPU may be hotplugged now */
7451 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7452#endif
7453
7454 /* RT runtime code needs to handle some hotplug events */
7455 hotcpu_notifier(update_runtime, 0);
7456
b328ca18 7457 init_hrtick();
5c1e1767
NP
7458
7459 /* Move init over to a non-isolated CPU */
dcc30a35 7460 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7461 BUG();
19978ca6 7462 sched_init_granularity();
dcc30a35 7463 free_cpumask_var(non_isolated_cpus);
4212823f 7464
0e3900e6 7465 init_sched_rt_class();
1da177e4
LT
7466}
7467#else
7468void __init sched_init_smp(void)
7469{
19978ca6 7470 sched_init_granularity();
1da177e4
LT
7471}
7472#endif /* CONFIG_SMP */
7473
cd1bb94b
AB
7474const_debug unsigned int sysctl_timer_migration = 1;
7475
1da177e4
LT
7476int in_sched_functions(unsigned long addr)
7477{
1da177e4
LT
7478 return in_lock_functions(addr) ||
7479 (addr >= (unsigned long)__sched_text_start
7480 && addr < (unsigned long)__sched_text_end);
7481}
7482
a9957449 7483static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7484{
7485 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7486 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7487#ifdef CONFIG_FAIR_GROUP_SCHED
7488 cfs_rq->rq = rq;
7489#endif
67e9fb2a 7490 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7491}
7492
fa85ae24
PZ
7493static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7494{
7495 struct rt_prio_array *array;
7496 int i;
7497
7498 array = &rt_rq->active;
7499 for (i = 0; i < MAX_RT_PRIO; i++) {
7500 INIT_LIST_HEAD(array->queue + i);
7501 __clear_bit(i, array->bitmap);
7502 }
7503 /* delimiter for bitsearch: */
7504 __set_bit(MAX_RT_PRIO, array->bitmap);
7505
052f1dc7 7506#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7507 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7508#ifdef CONFIG_SMP
e864c499 7509 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7510#endif
48d5e258 7511#endif
fa85ae24
PZ
7512#ifdef CONFIG_SMP
7513 rt_rq->rt_nr_migratory = 0;
fa85ae24 7514 rt_rq->overloaded = 0;
05fa785c 7515 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7516#endif
7517
7518 rt_rq->rt_time = 0;
7519 rt_rq->rt_throttled = 0;
ac086bc2 7520 rt_rq->rt_runtime = 0;
0986b11b 7521 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7522
052f1dc7 7523#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7524 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7525 rt_rq->rq = rq;
7526#endif
fa85ae24
PZ
7527}
7528
6f505b16 7529#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7530static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7531 struct sched_entity *se, int cpu, int add,
7532 struct sched_entity *parent)
6f505b16 7533{
ec7dc8ac 7534 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7535 tg->cfs_rq[cpu] = cfs_rq;
7536 init_cfs_rq(cfs_rq, rq);
7537 cfs_rq->tg = tg;
7538 if (add)
7539 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7540
7541 tg->se[cpu] = se;
354d60c2
DG
7542 /* se could be NULL for init_task_group */
7543 if (!se)
7544 return;
7545
ec7dc8ac
DG
7546 if (!parent)
7547 se->cfs_rq = &rq->cfs;
7548 else
7549 se->cfs_rq = parent->my_q;
7550
6f505b16
PZ
7551 se->my_q = cfs_rq;
7552 se->load.weight = tg->shares;
e05510d0 7553 se->load.inv_weight = 0;
ec7dc8ac 7554 se->parent = parent;
6f505b16 7555}
052f1dc7 7556#endif
6f505b16 7557
052f1dc7 7558#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7559static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7560 struct sched_rt_entity *rt_se, int cpu, int add,
7561 struct sched_rt_entity *parent)
6f505b16 7562{
ec7dc8ac
DG
7563 struct rq *rq = cpu_rq(cpu);
7564
6f505b16
PZ
7565 tg->rt_rq[cpu] = rt_rq;
7566 init_rt_rq(rt_rq, rq);
7567 rt_rq->tg = tg;
ac086bc2 7568 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7569 if (add)
7570 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7571
7572 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7573 if (!rt_se)
7574 return;
7575
ec7dc8ac
DG
7576 if (!parent)
7577 rt_se->rt_rq = &rq->rt;
7578 else
7579 rt_se->rt_rq = parent->my_q;
7580
6f505b16 7581 rt_se->my_q = rt_rq;
ec7dc8ac 7582 rt_se->parent = parent;
6f505b16
PZ
7583 INIT_LIST_HEAD(&rt_se->run_list);
7584}
7585#endif
7586
1da177e4
LT
7587void __init sched_init(void)
7588{
dd41f596 7589 int i, j;
434d53b0
MT
7590 unsigned long alloc_size = 0, ptr;
7591
7592#ifdef CONFIG_FAIR_GROUP_SCHED
7593 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7594#endif
7595#ifdef CONFIG_RT_GROUP_SCHED
7596 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7597#endif
df7c8e84 7598#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7599 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7600#endif
434d53b0 7601 if (alloc_size) {
36b7b6d4 7602 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7603
7604#ifdef CONFIG_FAIR_GROUP_SCHED
7605 init_task_group.se = (struct sched_entity **)ptr;
7606 ptr += nr_cpu_ids * sizeof(void **);
7607
7608 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7609 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7610
6d6bc0ad 7611#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7612#ifdef CONFIG_RT_GROUP_SCHED
7613 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7614 ptr += nr_cpu_ids * sizeof(void **);
7615
7616 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7617 ptr += nr_cpu_ids * sizeof(void **);
7618
6d6bc0ad 7619#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7620#ifdef CONFIG_CPUMASK_OFFSTACK
7621 for_each_possible_cpu(i) {
7622 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7623 ptr += cpumask_size();
7624 }
7625#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7626 }
dd41f596 7627
57d885fe
GH
7628#ifdef CONFIG_SMP
7629 init_defrootdomain();
7630#endif
7631
d0b27fa7
PZ
7632 init_rt_bandwidth(&def_rt_bandwidth,
7633 global_rt_period(), global_rt_runtime());
7634
7635#ifdef CONFIG_RT_GROUP_SCHED
7636 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7637 global_rt_period(), global_rt_runtime());
6d6bc0ad 7638#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7639
7c941438 7640#ifdef CONFIG_CGROUP_SCHED
6f505b16 7641 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7642 INIT_LIST_HEAD(&init_task_group.children);
7643
7c941438 7644#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7645
4a6cc4bd
JK
7646#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7647 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7648 __alignof__(unsigned long));
7649#endif
0a945022 7650 for_each_possible_cpu(i) {
70b97a7f 7651 struct rq *rq;
1da177e4
LT
7652
7653 rq = cpu_rq(i);
05fa785c 7654 raw_spin_lock_init(&rq->lock);
7897986b 7655 rq->nr_running = 0;
dce48a84
TG
7656 rq->calc_load_active = 0;
7657 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7658 init_cfs_rq(&rq->cfs, rq);
6f505b16 7659 init_rt_rq(&rq->rt, rq);
dd41f596 7660#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7661 init_task_group.shares = init_task_group_load;
6f505b16 7662 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7663#ifdef CONFIG_CGROUP_SCHED
7664 /*
7665 * How much cpu bandwidth does init_task_group get?
7666 *
7667 * In case of task-groups formed thr' the cgroup filesystem, it
7668 * gets 100% of the cpu resources in the system. This overall
7669 * system cpu resource is divided among the tasks of
7670 * init_task_group and its child task-groups in a fair manner,
7671 * based on each entity's (task or task-group's) weight
7672 * (se->load.weight).
7673 *
7674 * In other words, if init_task_group has 10 tasks of weight
7675 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7676 * then A0's share of the cpu resource is:
7677 *
0d905bca 7678 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7679 *
7680 * We achieve this by letting init_task_group's tasks sit
7681 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7682 */
ec7dc8ac 7683 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7684#endif
354d60c2
DG
7685#endif /* CONFIG_FAIR_GROUP_SCHED */
7686
7687 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7688#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7689 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7690#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7691 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7692#endif
dd41f596 7693#endif
1da177e4 7694
dd41f596
IM
7695 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7696 rq->cpu_load[j] = 0;
1da177e4 7697#ifdef CONFIG_SMP
41c7ce9a 7698 rq->sd = NULL;
57d885fe 7699 rq->rd = NULL;
3f029d3c 7700 rq->post_schedule = 0;
1da177e4 7701 rq->active_balance = 0;
dd41f596 7702 rq->next_balance = jiffies;
1da177e4 7703 rq->push_cpu = 0;
0a2966b4 7704 rq->cpu = i;
1f11eb6a 7705 rq->online = 0;
1da177e4 7706 rq->migration_thread = NULL;
eae0c9df
MG
7707 rq->idle_stamp = 0;
7708 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7709 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7710 rq_attach_root(rq, &def_root_domain);
1da177e4 7711#endif
8f4d37ec 7712 init_rq_hrtick(rq);
1da177e4 7713 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7714 }
7715
2dd73a4f 7716 set_load_weight(&init_task);
b50f60ce 7717
e107be36
AK
7718#ifdef CONFIG_PREEMPT_NOTIFIERS
7719 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7720#endif
7721
c9819f45 7722#ifdef CONFIG_SMP
962cf36c 7723 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7724#endif
7725
b50f60ce 7726#ifdef CONFIG_RT_MUTEXES
1d615482 7727 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7728#endif
7729
1da177e4
LT
7730 /*
7731 * The boot idle thread does lazy MMU switching as well:
7732 */
7733 atomic_inc(&init_mm.mm_count);
7734 enter_lazy_tlb(&init_mm, current);
7735
7736 /*
7737 * Make us the idle thread. Technically, schedule() should not be
7738 * called from this thread, however somewhere below it might be,
7739 * but because we are the idle thread, we just pick up running again
7740 * when this runqueue becomes "idle".
7741 */
7742 init_idle(current, smp_processor_id());
dce48a84
TG
7743
7744 calc_load_update = jiffies + LOAD_FREQ;
7745
dd41f596
IM
7746 /*
7747 * During early bootup we pretend to be a normal task:
7748 */
7749 current->sched_class = &fair_sched_class;
6892b75e 7750
6a7b3dc3 7751 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7752 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7753#ifdef CONFIG_SMP
7d1e6a9b 7754#ifdef CONFIG_NO_HZ
49557e62 7755 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7756 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7757#endif
bdddd296
RR
7758 /* May be allocated at isolcpus cmdline parse time */
7759 if (cpu_isolated_map == NULL)
7760 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7761#endif /* SMP */
6a7b3dc3 7762
cdd6c482 7763 perf_event_init();
0d905bca 7764
6892b75e 7765 scheduler_running = 1;
1da177e4
LT
7766}
7767
7768#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7769static inline int preempt_count_equals(int preempt_offset)
7770{
234da7bc 7771 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7772
7773 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7774}
7775
d894837f 7776void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7777{
48f24c4d 7778#ifdef in_atomic
1da177e4
LT
7779 static unsigned long prev_jiffy; /* ratelimiting */
7780
e4aafea2
FW
7781 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7782 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7783 return;
7784 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7785 return;
7786 prev_jiffy = jiffies;
7787
3df0fc5b
PZ
7788 printk(KERN_ERR
7789 "BUG: sleeping function called from invalid context at %s:%d\n",
7790 file, line);
7791 printk(KERN_ERR
7792 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7793 in_atomic(), irqs_disabled(),
7794 current->pid, current->comm);
aef745fc
IM
7795
7796 debug_show_held_locks(current);
7797 if (irqs_disabled())
7798 print_irqtrace_events(current);
7799 dump_stack();
1da177e4
LT
7800#endif
7801}
7802EXPORT_SYMBOL(__might_sleep);
7803#endif
7804
7805#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7806static void normalize_task(struct rq *rq, struct task_struct *p)
7807{
7808 int on_rq;
3e51f33f 7809
3a5e4dc1
AK
7810 on_rq = p->se.on_rq;
7811 if (on_rq)
7812 deactivate_task(rq, p, 0);
7813 __setscheduler(rq, p, SCHED_NORMAL, 0);
7814 if (on_rq) {
7815 activate_task(rq, p, 0);
7816 resched_task(rq->curr);
7817 }
7818}
7819
1da177e4
LT
7820void normalize_rt_tasks(void)
7821{
a0f98a1c 7822 struct task_struct *g, *p;
1da177e4 7823 unsigned long flags;
70b97a7f 7824 struct rq *rq;
1da177e4 7825
4cf5d77a 7826 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7827 do_each_thread(g, p) {
178be793
IM
7828 /*
7829 * Only normalize user tasks:
7830 */
7831 if (!p->mm)
7832 continue;
7833
6cfb0d5d 7834 p->se.exec_start = 0;
6cfb0d5d 7835#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7836 p->se.statistics.wait_start = 0;
7837 p->se.statistics.sleep_start = 0;
7838 p->se.statistics.block_start = 0;
6cfb0d5d 7839#endif
dd41f596
IM
7840
7841 if (!rt_task(p)) {
7842 /*
7843 * Renice negative nice level userspace
7844 * tasks back to 0:
7845 */
7846 if (TASK_NICE(p) < 0 && p->mm)
7847 set_user_nice(p, 0);
1da177e4 7848 continue;
dd41f596 7849 }
1da177e4 7850
1d615482 7851 raw_spin_lock(&p->pi_lock);
b29739f9 7852 rq = __task_rq_lock(p);
1da177e4 7853
178be793 7854 normalize_task(rq, p);
3a5e4dc1 7855
b29739f9 7856 __task_rq_unlock(rq);
1d615482 7857 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7858 } while_each_thread(g, p);
7859
4cf5d77a 7860 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7861}
7862
7863#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7864
7865#ifdef CONFIG_IA64
7866/*
7867 * These functions are only useful for the IA64 MCA handling.
7868 *
7869 * They can only be called when the whole system has been
7870 * stopped - every CPU needs to be quiescent, and no scheduling
7871 * activity can take place. Using them for anything else would
7872 * be a serious bug, and as a result, they aren't even visible
7873 * under any other configuration.
7874 */
7875
7876/**
7877 * curr_task - return the current task for a given cpu.
7878 * @cpu: the processor in question.
7879 *
7880 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7881 */
36c8b586 7882struct task_struct *curr_task(int cpu)
1df5c10a
LT
7883{
7884 return cpu_curr(cpu);
7885}
7886
7887/**
7888 * set_curr_task - set the current task for a given cpu.
7889 * @cpu: the processor in question.
7890 * @p: the task pointer to set.
7891 *
7892 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7893 * are serviced on a separate stack. It allows the architecture to switch the
7894 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7895 * must be called with all CPU's synchronized, and interrupts disabled, the
7896 * and caller must save the original value of the current task (see
7897 * curr_task() above) and restore that value before reenabling interrupts and
7898 * re-starting the system.
7899 *
7900 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7901 */
36c8b586 7902void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7903{
7904 cpu_curr(cpu) = p;
7905}
7906
7907#endif
29f59db3 7908
bccbe08a
PZ
7909#ifdef CONFIG_FAIR_GROUP_SCHED
7910static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7911{
7912 int i;
7913
7914 for_each_possible_cpu(i) {
7915 if (tg->cfs_rq)
7916 kfree(tg->cfs_rq[i]);
7917 if (tg->se)
7918 kfree(tg->se[i]);
6f505b16
PZ
7919 }
7920
7921 kfree(tg->cfs_rq);
7922 kfree(tg->se);
6f505b16
PZ
7923}
7924
ec7dc8ac
DG
7925static
7926int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7927{
29f59db3 7928 struct cfs_rq *cfs_rq;
eab17229 7929 struct sched_entity *se;
9b5b7751 7930 struct rq *rq;
29f59db3
SV
7931 int i;
7932
434d53b0 7933 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7934 if (!tg->cfs_rq)
7935 goto err;
434d53b0 7936 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7937 if (!tg->se)
7938 goto err;
052f1dc7
PZ
7939
7940 tg->shares = NICE_0_LOAD;
29f59db3
SV
7941
7942 for_each_possible_cpu(i) {
9b5b7751 7943 rq = cpu_rq(i);
29f59db3 7944
eab17229
LZ
7945 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7946 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7947 if (!cfs_rq)
7948 goto err;
7949
eab17229
LZ
7950 se = kzalloc_node(sizeof(struct sched_entity),
7951 GFP_KERNEL, cpu_to_node(i));
29f59db3 7952 if (!se)
dfc12eb2 7953 goto err_free_rq;
29f59db3 7954
eab17229 7955 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7956 }
7957
7958 return 1;
7959
dfc12eb2
PC
7960 err_free_rq:
7961 kfree(cfs_rq);
bccbe08a
PZ
7962 err:
7963 return 0;
7964}
7965
7966static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7967{
7968 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7969 &cpu_rq(cpu)->leaf_cfs_rq_list);
7970}
7971
7972static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7973{
7974 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7975}
6d6bc0ad 7976#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7977static inline void free_fair_sched_group(struct task_group *tg)
7978{
7979}
7980
ec7dc8ac
DG
7981static inline
7982int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7983{
7984 return 1;
7985}
7986
7987static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7988{
7989}
7990
7991static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7992{
7993}
6d6bc0ad 7994#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7995
7996#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7997static void free_rt_sched_group(struct task_group *tg)
7998{
7999 int i;
8000
d0b27fa7
PZ
8001 destroy_rt_bandwidth(&tg->rt_bandwidth);
8002
bccbe08a
PZ
8003 for_each_possible_cpu(i) {
8004 if (tg->rt_rq)
8005 kfree(tg->rt_rq[i]);
8006 if (tg->rt_se)
8007 kfree(tg->rt_se[i]);
8008 }
8009
8010 kfree(tg->rt_rq);
8011 kfree(tg->rt_se);
8012}
8013
ec7dc8ac
DG
8014static
8015int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8016{
8017 struct rt_rq *rt_rq;
eab17229 8018 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8019 struct rq *rq;
8020 int i;
8021
434d53b0 8022 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8023 if (!tg->rt_rq)
8024 goto err;
434d53b0 8025 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8026 if (!tg->rt_se)
8027 goto err;
8028
d0b27fa7
PZ
8029 init_rt_bandwidth(&tg->rt_bandwidth,
8030 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8031
8032 for_each_possible_cpu(i) {
8033 rq = cpu_rq(i);
8034
eab17229
LZ
8035 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8036 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8037 if (!rt_rq)
8038 goto err;
29f59db3 8039
eab17229
LZ
8040 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8041 GFP_KERNEL, cpu_to_node(i));
6f505b16 8042 if (!rt_se)
dfc12eb2 8043 goto err_free_rq;
29f59db3 8044
eab17229 8045 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8046 }
8047
bccbe08a
PZ
8048 return 1;
8049
dfc12eb2
PC
8050 err_free_rq:
8051 kfree(rt_rq);
bccbe08a
PZ
8052 err:
8053 return 0;
8054}
8055
8056static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8057{
8058 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8059 &cpu_rq(cpu)->leaf_rt_rq_list);
8060}
8061
8062static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8063{
8064 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8065}
6d6bc0ad 8066#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8067static inline void free_rt_sched_group(struct task_group *tg)
8068{
8069}
8070
ec7dc8ac
DG
8071static inline
8072int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8073{
8074 return 1;
8075}
8076
8077static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8078{
8079}
8080
8081static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8082{
8083}
6d6bc0ad 8084#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8085
7c941438 8086#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8087static void free_sched_group(struct task_group *tg)
8088{
8089 free_fair_sched_group(tg);
8090 free_rt_sched_group(tg);
8091 kfree(tg);
8092}
8093
8094/* allocate runqueue etc for a new task group */
ec7dc8ac 8095struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8096{
8097 struct task_group *tg;
8098 unsigned long flags;
8099 int i;
8100
8101 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8102 if (!tg)
8103 return ERR_PTR(-ENOMEM);
8104
ec7dc8ac 8105 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8106 goto err;
8107
ec7dc8ac 8108 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8109 goto err;
8110
8ed36996 8111 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8112 for_each_possible_cpu(i) {
bccbe08a
PZ
8113 register_fair_sched_group(tg, i);
8114 register_rt_sched_group(tg, i);
9b5b7751 8115 }
6f505b16 8116 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8117
8118 WARN_ON(!parent); /* root should already exist */
8119
8120 tg->parent = parent;
f473aa5e 8121 INIT_LIST_HEAD(&tg->children);
09f2724a 8122 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8123 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8124
9b5b7751 8125 return tg;
29f59db3
SV
8126
8127err:
6f505b16 8128 free_sched_group(tg);
29f59db3
SV
8129 return ERR_PTR(-ENOMEM);
8130}
8131
9b5b7751 8132/* rcu callback to free various structures associated with a task group */
6f505b16 8133static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8134{
29f59db3 8135 /* now it should be safe to free those cfs_rqs */
6f505b16 8136 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8137}
8138
9b5b7751 8139/* Destroy runqueue etc associated with a task group */
4cf86d77 8140void sched_destroy_group(struct task_group *tg)
29f59db3 8141{
8ed36996 8142 unsigned long flags;
9b5b7751 8143 int i;
29f59db3 8144
8ed36996 8145 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8146 for_each_possible_cpu(i) {
bccbe08a
PZ
8147 unregister_fair_sched_group(tg, i);
8148 unregister_rt_sched_group(tg, i);
9b5b7751 8149 }
6f505b16 8150 list_del_rcu(&tg->list);
f473aa5e 8151 list_del_rcu(&tg->siblings);
8ed36996 8152 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8153
9b5b7751 8154 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8155 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8156}
8157
9b5b7751 8158/* change task's runqueue when it moves between groups.
3a252015
IM
8159 * The caller of this function should have put the task in its new group
8160 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8161 * reflect its new group.
9b5b7751
SV
8162 */
8163void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8164{
8165 int on_rq, running;
8166 unsigned long flags;
8167 struct rq *rq;
8168
8169 rq = task_rq_lock(tsk, &flags);
8170
051a1d1a 8171 running = task_current(rq, tsk);
29f59db3
SV
8172 on_rq = tsk->se.on_rq;
8173
0e1f3483 8174 if (on_rq)
29f59db3 8175 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8176 if (unlikely(running))
8177 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8178
6f505b16 8179 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8180
810b3817
PZ
8181#ifdef CONFIG_FAIR_GROUP_SCHED
8182 if (tsk->sched_class->moved_group)
88ec22d3 8183 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8184#endif
8185
0e1f3483
HS
8186 if (unlikely(running))
8187 tsk->sched_class->set_curr_task(rq);
8188 if (on_rq)
ea87bb78 8189 enqueue_task(rq, tsk, 0, false);
29f59db3 8190
29f59db3
SV
8191 task_rq_unlock(rq, &flags);
8192}
7c941438 8193#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8194
052f1dc7 8195#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8196static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8197{
8198 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8199 int on_rq;
8200
29f59db3 8201 on_rq = se->on_rq;
62fb1851 8202 if (on_rq)
29f59db3
SV
8203 dequeue_entity(cfs_rq, se, 0);
8204
8205 se->load.weight = shares;
e05510d0 8206 se->load.inv_weight = 0;
29f59db3 8207
62fb1851 8208 if (on_rq)
29f59db3 8209 enqueue_entity(cfs_rq, se, 0);
c09595f6 8210}
62fb1851 8211
c09595f6
PZ
8212static void set_se_shares(struct sched_entity *se, unsigned long shares)
8213{
8214 struct cfs_rq *cfs_rq = se->cfs_rq;
8215 struct rq *rq = cfs_rq->rq;
8216 unsigned long flags;
8217
05fa785c 8218 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8219 __set_se_shares(se, shares);
05fa785c 8220 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8221}
8222
8ed36996
PZ
8223static DEFINE_MUTEX(shares_mutex);
8224
4cf86d77 8225int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8226{
8227 int i;
8ed36996 8228 unsigned long flags;
c61935fd 8229
ec7dc8ac
DG
8230 /*
8231 * We can't change the weight of the root cgroup.
8232 */
8233 if (!tg->se[0])
8234 return -EINVAL;
8235
18d95a28
PZ
8236 if (shares < MIN_SHARES)
8237 shares = MIN_SHARES;
cb4ad1ff
MX
8238 else if (shares > MAX_SHARES)
8239 shares = MAX_SHARES;
62fb1851 8240
8ed36996 8241 mutex_lock(&shares_mutex);
9b5b7751 8242 if (tg->shares == shares)
5cb350ba 8243 goto done;
29f59db3 8244
8ed36996 8245 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8246 for_each_possible_cpu(i)
8247 unregister_fair_sched_group(tg, i);
f473aa5e 8248 list_del_rcu(&tg->siblings);
8ed36996 8249 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8250
8251 /* wait for any ongoing reference to this group to finish */
8252 synchronize_sched();
8253
8254 /*
8255 * Now we are free to modify the group's share on each cpu
8256 * w/o tripping rebalance_share or load_balance_fair.
8257 */
9b5b7751 8258 tg->shares = shares;
c09595f6
PZ
8259 for_each_possible_cpu(i) {
8260 /*
8261 * force a rebalance
8262 */
8263 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8264 set_se_shares(tg->se[i], shares);
c09595f6 8265 }
29f59db3 8266
6b2d7700
SV
8267 /*
8268 * Enable load balance activity on this group, by inserting it back on
8269 * each cpu's rq->leaf_cfs_rq_list.
8270 */
8ed36996 8271 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8272 for_each_possible_cpu(i)
8273 register_fair_sched_group(tg, i);
f473aa5e 8274 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8275 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8276done:
8ed36996 8277 mutex_unlock(&shares_mutex);
9b5b7751 8278 return 0;
29f59db3
SV
8279}
8280
5cb350ba
DG
8281unsigned long sched_group_shares(struct task_group *tg)
8282{
8283 return tg->shares;
8284}
052f1dc7 8285#endif
5cb350ba 8286
052f1dc7 8287#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8288/*
9f0c1e56 8289 * Ensure that the real time constraints are schedulable.
6f505b16 8290 */
9f0c1e56
PZ
8291static DEFINE_MUTEX(rt_constraints_mutex);
8292
8293static unsigned long to_ratio(u64 period, u64 runtime)
8294{
8295 if (runtime == RUNTIME_INF)
9a7e0b18 8296 return 1ULL << 20;
9f0c1e56 8297
9a7e0b18 8298 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8299}
8300
9a7e0b18
PZ
8301/* Must be called with tasklist_lock held */
8302static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8303{
9a7e0b18 8304 struct task_struct *g, *p;
b40b2e8e 8305
9a7e0b18
PZ
8306 do_each_thread(g, p) {
8307 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8308 return 1;
8309 } while_each_thread(g, p);
b40b2e8e 8310
9a7e0b18
PZ
8311 return 0;
8312}
b40b2e8e 8313
9a7e0b18
PZ
8314struct rt_schedulable_data {
8315 struct task_group *tg;
8316 u64 rt_period;
8317 u64 rt_runtime;
8318};
b40b2e8e 8319
9a7e0b18
PZ
8320static int tg_schedulable(struct task_group *tg, void *data)
8321{
8322 struct rt_schedulable_data *d = data;
8323 struct task_group *child;
8324 unsigned long total, sum = 0;
8325 u64 period, runtime;
b40b2e8e 8326
9a7e0b18
PZ
8327 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8328 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8329
9a7e0b18
PZ
8330 if (tg == d->tg) {
8331 period = d->rt_period;
8332 runtime = d->rt_runtime;
b40b2e8e 8333 }
b40b2e8e 8334
4653f803
PZ
8335 /*
8336 * Cannot have more runtime than the period.
8337 */
8338 if (runtime > period && runtime != RUNTIME_INF)
8339 return -EINVAL;
6f505b16 8340
4653f803
PZ
8341 /*
8342 * Ensure we don't starve existing RT tasks.
8343 */
9a7e0b18
PZ
8344 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8345 return -EBUSY;
6f505b16 8346
9a7e0b18 8347 total = to_ratio(period, runtime);
6f505b16 8348
4653f803
PZ
8349 /*
8350 * Nobody can have more than the global setting allows.
8351 */
8352 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8353 return -EINVAL;
6f505b16 8354
4653f803
PZ
8355 /*
8356 * The sum of our children's runtime should not exceed our own.
8357 */
9a7e0b18
PZ
8358 list_for_each_entry_rcu(child, &tg->children, siblings) {
8359 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8360 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8361
9a7e0b18
PZ
8362 if (child == d->tg) {
8363 period = d->rt_period;
8364 runtime = d->rt_runtime;
8365 }
6f505b16 8366
9a7e0b18 8367 sum += to_ratio(period, runtime);
9f0c1e56 8368 }
6f505b16 8369
9a7e0b18
PZ
8370 if (sum > total)
8371 return -EINVAL;
8372
8373 return 0;
6f505b16
PZ
8374}
8375
9a7e0b18 8376static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8377{
9a7e0b18
PZ
8378 struct rt_schedulable_data data = {
8379 .tg = tg,
8380 .rt_period = period,
8381 .rt_runtime = runtime,
8382 };
8383
8384 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8385}
8386
d0b27fa7
PZ
8387static int tg_set_bandwidth(struct task_group *tg,
8388 u64 rt_period, u64 rt_runtime)
6f505b16 8389{
ac086bc2 8390 int i, err = 0;
9f0c1e56 8391
9f0c1e56 8392 mutex_lock(&rt_constraints_mutex);
521f1a24 8393 read_lock(&tasklist_lock);
9a7e0b18
PZ
8394 err = __rt_schedulable(tg, rt_period, rt_runtime);
8395 if (err)
9f0c1e56 8396 goto unlock;
ac086bc2 8397
0986b11b 8398 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8399 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8400 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8401
8402 for_each_possible_cpu(i) {
8403 struct rt_rq *rt_rq = tg->rt_rq[i];
8404
0986b11b 8405 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8406 rt_rq->rt_runtime = rt_runtime;
0986b11b 8407 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8408 }
0986b11b 8409 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8410 unlock:
521f1a24 8411 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8412 mutex_unlock(&rt_constraints_mutex);
8413
8414 return err;
6f505b16
PZ
8415}
8416
d0b27fa7
PZ
8417int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8418{
8419 u64 rt_runtime, rt_period;
8420
8421 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8422 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8423 if (rt_runtime_us < 0)
8424 rt_runtime = RUNTIME_INF;
8425
8426 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8427}
8428
9f0c1e56
PZ
8429long sched_group_rt_runtime(struct task_group *tg)
8430{
8431 u64 rt_runtime_us;
8432
d0b27fa7 8433 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8434 return -1;
8435
d0b27fa7 8436 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8437 do_div(rt_runtime_us, NSEC_PER_USEC);
8438 return rt_runtime_us;
8439}
d0b27fa7
PZ
8440
8441int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8442{
8443 u64 rt_runtime, rt_period;
8444
8445 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8446 rt_runtime = tg->rt_bandwidth.rt_runtime;
8447
619b0488
R
8448 if (rt_period == 0)
8449 return -EINVAL;
8450
d0b27fa7
PZ
8451 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8452}
8453
8454long sched_group_rt_period(struct task_group *tg)
8455{
8456 u64 rt_period_us;
8457
8458 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8459 do_div(rt_period_us, NSEC_PER_USEC);
8460 return rt_period_us;
8461}
8462
8463static int sched_rt_global_constraints(void)
8464{
4653f803 8465 u64 runtime, period;
d0b27fa7
PZ
8466 int ret = 0;
8467
ec5d4989
HS
8468 if (sysctl_sched_rt_period <= 0)
8469 return -EINVAL;
8470
4653f803
PZ
8471 runtime = global_rt_runtime();
8472 period = global_rt_period();
8473
8474 /*
8475 * Sanity check on the sysctl variables.
8476 */
8477 if (runtime > period && runtime != RUNTIME_INF)
8478 return -EINVAL;
10b612f4 8479
d0b27fa7 8480 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8481 read_lock(&tasklist_lock);
4653f803 8482 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8483 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8484 mutex_unlock(&rt_constraints_mutex);
8485
8486 return ret;
8487}
54e99124
DG
8488
8489int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8490{
8491 /* Don't accept realtime tasks when there is no way for them to run */
8492 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8493 return 0;
8494
8495 return 1;
8496}
8497
6d6bc0ad 8498#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8499static int sched_rt_global_constraints(void)
8500{
ac086bc2
PZ
8501 unsigned long flags;
8502 int i;
8503
ec5d4989
HS
8504 if (sysctl_sched_rt_period <= 0)
8505 return -EINVAL;
8506
60aa605d
PZ
8507 /*
8508 * There's always some RT tasks in the root group
8509 * -- migration, kstopmachine etc..
8510 */
8511 if (sysctl_sched_rt_runtime == 0)
8512 return -EBUSY;
8513
0986b11b 8514 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8515 for_each_possible_cpu(i) {
8516 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8517
0986b11b 8518 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8519 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8520 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8521 }
0986b11b 8522 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8523
d0b27fa7
PZ
8524 return 0;
8525}
6d6bc0ad 8526#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8527
8528int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8529 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8530 loff_t *ppos)
8531{
8532 int ret;
8533 int old_period, old_runtime;
8534 static DEFINE_MUTEX(mutex);
8535
8536 mutex_lock(&mutex);
8537 old_period = sysctl_sched_rt_period;
8538 old_runtime = sysctl_sched_rt_runtime;
8539
8d65af78 8540 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8541
8542 if (!ret && write) {
8543 ret = sched_rt_global_constraints();
8544 if (ret) {
8545 sysctl_sched_rt_period = old_period;
8546 sysctl_sched_rt_runtime = old_runtime;
8547 } else {
8548 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8549 def_rt_bandwidth.rt_period =
8550 ns_to_ktime(global_rt_period());
8551 }
8552 }
8553 mutex_unlock(&mutex);
8554
8555 return ret;
8556}
68318b8e 8557
052f1dc7 8558#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8559
8560/* return corresponding task_group object of a cgroup */
2b01dfe3 8561static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8562{
2b01dfe3
PM
8563 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8564 struct task_group, css);
68318b8e
SV
8565}
8566
8567static struct cgroup_subsys_state *
2b01dfe3 8568cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8569{
ec7dc8ac 8570 struct task_group *tg, *parent;
68318b8e 8571
2b01dfe3 8572 if (!cgrp->parent) {
68318b8e 8573 /* This is early initialization for the top cgroup */
68318b8e
SV
8574 return &init_task_group.css;
8575 }
8576
ec7dc8ac
DG
8577 parent = cgroup_tg(cgrp->parent);
8578 tg = sched_create_group(parent);
68318b8e
SV
8579 if (IS_ERR(tg))
8580 return ERR_PTR(-ENOMEM);
8581
68318b8e
SV
8582 return &tg->css;
8583}
8584
41a2d6cf
IM
8585static void
8586cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8587{
2b01dfe3 8588 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8589
8590 sched_destroy_group(tg);
8591}
8592
41a2d6cf 8593static int
be367d09 8594cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8595{
b68aa230 8596#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8597 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8598 return -EINVAL;
8599#else
68318b8e
SV
8600 /* We don't support RT-tasks being in separate groups */
8601 if (tsk->sched_class != &fair_sched_class)
8602 return -EINVAL;
b68aa230 8603#endif
be367d09
BB
8604 return 0;
8605}
68318b8e 8606
be367d09
BB
8607static int
8608cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8609 struct task_struct *tsk, bool threadgroup)
8610{
8611 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8612 if (retval)
8613 return retval;
8614 if (threadgroup) {
8615 struct task_struct *c;
8616 rcu_read_lock();
8617 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8618 retval = cpu_cgroup_can_attach_task(cgrp, c);
8619 if (retval) {
8620 rcu_read_unlock();
8621 return retval;
8622 }
8623 }
8624 rcu_read_unlock();
8625 }
68318b8e
SV
8626 return 0;
8627}
8628
8629static void
2b01dfe3 8630cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8631 struct cgroup *old_cont, struct task_struct *tsk,
8632 bool threadgroup)
68318b8e
SV
8633{
8634 sched_move_task(tsk);
be367d09
BB
8635 if (threadgroup) {
8636 struct task_struct *c;
8637 rcu_read_lock();
8638 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8639 sched_move_task(c);
8640 }
8641 rcu_read_unlock();
8642 }
68318b8e
SV
8643}
8644
052f1dc7 8645#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8646static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8647 u64 shareval)
68318b8e 8648{
2b01dfe3 8649 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8650}
8651
f4c753b7 8652static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8653{
2b01dfe3 8654 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8655
8656 return (u64) tg->shares;
8657}
6d6bc0ad 8658#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8659
052f1dc7 8660#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8661static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8662 s64 val)
6f505b16 8663{
06ecb27c 8664 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8665}
8666
06ecb27c 8667static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8668{
06ecb27c 8669 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8670}
d0b27fa7
PZ
8671
8672static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8673 u64 rt_period_us)
8674{
8675 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8676}
8677
8678static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8679{
8680 return sched_group_rt_period(cgroup_tg(cgrp));
8681}
6d6bc0ad 8682#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8683
fe5c7cc2 8684static struct cftype cpu_files[] = {
052f1dc7 8685#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8686 {
8687 .name = "shares",
f4c753b7
PM
8688 .read_u64 = cpu_shares_read_u64,
8689 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8690 },
052f1dc7
PZ
8691#endif
8692#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8693 {
9f0c1e56 8694 .name = "rt_runtime_us",
06ecb27c
PM
8695 .read_s64 = cpu_rt_runtime_read,
8696 .write_s64 = cpu_rt_runtime_write,
6f505b16 8697 },
d0b27fa7
PZ
8698 {
8699 .name = "rt_period_us",
f4c753b7
PM
8700 .read_u64 = cpu_rt_period_read_uint,
8701 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8702 },
052f1dc7 8703#endif
68318b8e
SV
8704};
8705
8706static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8707{
fe5c7cc2 8708 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8709}
8710
8711struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8712 .name = "cpu",
8713 .create = cpu_cgroup_create,
8714 .destroy = cpu_cgroup_destroy,
8715 .can_attach = cpu_cgroup_can_attach,
8716 .attach = cpu_cgroup_attach,
8717 .populate = cpu_cgroup_populate,
8718 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8719 .early_init = 1,
8720};
8721
052f1dc7 8722#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8723
8724#ifdef CONFIG_CGROUP_CPUACCT
8725
8726/*
8727 * CPU accounting code for task groups.
8728 *
8729 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8730 * (balbir@in.ibm.com).
8731 */
8732
934352f2 8733/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8734struct cpuacct {
8735 struct cgroup_subsys_state css;
8736 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8737 u64 __percpu *cpuusage;
ef12fefa 8738 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8739 struct cpuacct *parent;
d842de87
SV
8740};
8741
8742struct cgroup_subsys cpuacct_subsys;
8743
8744/* return cpu accounting group corresponding to this container */
32cd756a 8745static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8746{
32cd756a 8747 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8748 struct cpuacct, css);
8749}
8750
8751/* return cpu accounting group to which this task belongs */
8752static inline struct cpuacct *task_ca(struct task_struct *tsk)
8753{
8754 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8755 struct cpuacct, css);
8756}
8757
8758/* create a new cpu accounting group */
8759static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8760 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8761{
8762 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8763 int i;
d842de87
SV
8764
8765 if (!ca)
ef12fefa 8766 goto out;
d842de87
SV
8767
8768 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8769 if (!ca->cpuusage)
8770 goto out_free_ca;
8771
8772 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8773 if (percpu_counter_init(&ca->cpustat[i], 0))
8774 goto out_free_counters;
d842de87 8775
934352f2
BR
8776 if (cgrp->parent)
8777 ca->parent = cgroup_ca(cgrp->parent);
8778
d842de87 8779 return &ca->css;
ef12fefa
BR
8780
8781out_free_counters:
8782 while (--i >= 0)
8783 percpu_counter_destroy(&ca->cpustat[i]);
8784 free_percpu(ca->cpuusage);
8785out_free_ca:
8786 kfree(ca);
8787out:
8788 return ERR_PTR(-ENOMEM);
d842de87
SV
8789}
8790
8791/* destroy an existing cpu accounting group */
41a2d6cf 8792static void
32cd756a 8793cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8794{
32cd756a 8795 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8796 int i;
d842de87 8797
ef12fefa
BR
8798 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8799 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8800 free_percpu(ca->cpuusage);
8801 kfree(ca);
8802}
8803
720f5498
KC
8804static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8805{
b36128c8 8806 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8807 u64 data;
8808
8809#ifndef CONFIG_64BIT
8810 /*
8811 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8812 */
05fa785c 8813 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8814 data = *cpuusage;
05fa785c 8815 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8816#else
8817 data = *cpuusage;
8818#endif
8819
8820 return data;
8821}
8822
8823static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8824{
b36128c8 8825 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8826
8827#ifndef CONFIG_64BIT
8828 /*
8829 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8830 */
05fa785c 8831 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8832 *cpuusage = val;
05fa785c 8833 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8834#else
8835 *cpuusage = val;
8836#endif
8837}
8838
d842de87 8839/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8840static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8841{
32cd756a 8842 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8843 u64 totalcpuusage = 0;
8844 int i;
8845
720f5498
KC
8846 for_each_present_cpu(i)
8847 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8848
8849 return totalcpuusage;
8850}
8851
0297b803
DG
8852static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8853 u64 reset)
8854{
8855 struct cpuacct *ca = cgroup_ca(cgrp);
8856 int err = 0;
8857 int i;
8858
8859 if (reset) {
8860 err = -EINVAL;
8861 goto out;
8862 }
8863
720f5498
KC
8864 for_each_present_cpu(i)
8865 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8866
0297b803
DG
8867out:
8868 return err;
8869}
8870
e9515c3c
KC
8871static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8872 struct seq_file *m)
8873{
8874 struct cpuacct *ca = cgroup_ca(cgroup);
8875 u64 percpu;
8876 int i;
8877
8878 for_each_present_cpu(i) {
8879 percpu = cpuacct_cpuusage_read(ca, i);
8880 seq_printf(m, "%llu ", (unsigned long long) percpu);
8881 }
8882 seq_printf(m, "\n");
8883 return 0;
8884}
8885
ef12fefa
BR
8886static const char *cpuacct_stat_desc[] = {
8887 [CPUACCT_STAT_USER] = "user",
8888 [CPUACCT_STAT_SYSTEM] = "system",
8889};
8890
8891static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8892 struct cgroup_map_cb *cb)
8893{
8894 struct cpuacct *ca = cgroup_ca(cgrp);
8895 int i;
8896
8897 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8898 s64 val = percpu_counter_read(&ca->cpustat[i]);
8899 val = cputime64_to_clock_t(val);
8900 cb->fill(cb, cpuacct_stat_desc[i], val);
8901 }
8902 return 0;
8903}
8904
d842de87
SV
8905static struct cftype files[] = {
8906 {
8907 .name = "usage",
f4c753b7
PM
8908 .read_u64 = cpuusage_read,
8909 .write_u64 = cpuusage_write,
d842de87 8910 },
e9515c3c
KC
8911 {
8912 .name = "usage_percpu",
8913 .read_seq_string = cpuacct_percpu_seq_read,
8914 },
ef12fefa
BR
8915 {
8916 .name = "stat",
8917 .read_map = cpuacct_stats_show,
8918 },
d842de87
SV
8919};
8920
32cd756a 8921static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8922{
32cd756a 8923 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8924}
8925
8926/*
8927 * charge this task's execution time to its accounting group.
8928 *
8929 * called with rq->lock held.
8930 */
8931static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8932{
8933 struct cpuacct *ca;
934352f2 8934 int cpu;
d842de87 8935
c40c6f85 8936 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8937 return;
8938
934352f2 8939 cpu = task_cpu(tsk);
a18b83b7
BR
8940
8941 rcu_read_lock();
8942
d842de87 8943 ca = task_ca(tsk);
d842de87 8944
934352f2 8945 for (; ca; ca = ca->parent) {
b36128c8 8946 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8947 *cpuusage += cputime;
8948 }
a18b83b7
BR
8949
8950 rcu_read_unlock();
d842de87
SV
8951}
8952
fa535a77
AB
8953/*
8954 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8955 * in cputime_t units. As a result, cpuacct_update_stats calls
8956 * percpu_counter_add with values large enough to always overflow the
8957 * per cpu batch limit causing bad SMP scalability.
8958 *
8959 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8960 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8961 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8962 */
8963#ifdef CONFIG_SMP
8964#define CPUACCT_BATCH \
8965 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8966#else
8967#define CPUACCT_BATCH 0
8968#endif
8969
ef12fefa
BR
8970/*
8971 * Charge the system/user time to the task's accounting group.
8972 */
8973static void cpuacct_update_stats(struct task_struct *tsk,
8974 enum cpuacct_stat_index idx, cputime_t val)
8975{
8976 struct cpuacct *ca;
fa535a77 8977 int batch = CPUACCT_BATCH;
ef12fefa
BR
8978
8979 if (unlikely(!cpuacct_subsys.active))
8980 return;
8981
8982 rcu_read_lock();
8983 ca = task_ca(tsk);
8984
8985 do {
fa535a77 8986 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8987 ca = ca->parent;
8988 } while (ca);
8989 rcu_read_unlock();
8990}
8991
d842de87
SV
8992struct cgroup_subsys cpuacct_subsys = {
8993 .name = "cpuacct",
8994 .create = cpuacct_create,
8995 .destroy = cpuacct_destroy,
8996 .populate = cpuacct_populate,
8997 .subsys_id = cpuacct_subsys_id,
8998};
8999#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9000
9001#ifndef CONFIG_SMP
9002
9003int rcu_expedited_torture_stats(char *page)
9004{
9005 return 0;
9006}
9007EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9008
9009void synchronize_sched_expedited(void)
9010{
9011}
9012EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9013
9014#else /* #ifndef CONFIG_SMP */
9015
9016static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9017static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9018
9019#define RCU_EXPEDITED_STATE_POST -2
9020#define RCU_EXPEDITED_STATE_IDLE -1
9021
9022static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9023
9024int rcu_expedited_torture_stats(char *page)
9025{
9026 int cnt = 0;
9027 int cpu;
9028
9029 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9030 for_each_online_cpu(cpu) {
9031 cnt += sprintf(&page[cnt], " %d:%d",
9032 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9033 }
9034 cnt += sprintf(&page[cnt], "\n");
9035 return cnt;
9036}
9037EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9038
9039static long synchronize_sched_expedited_count;
9040
9041/*
9042 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9043 * approach to force grace period to end quickly. This consumes
9044 * significant time on all CPUs, and is thus not recommended for
9045 * any sort of common-case code.
9046 *
9047 * Note that it is illegal to call this function while holding any
9048 * lock that is acquired by a CPU-hotplug notifier. Failing to
9049 * observe this restriction will result in deadlock.
9050 */
9051void synchronize_sched_expedited(void)
9052{
9053 int cpu;
9054 unsigned long flags;
9055 bool need_full_sync = 0;
9056 struct rq *rq;
9057 struct migration_req *req;
9058 long snap;
9059 int trycount = 0;
9060
9061 smp_mb(); /* ensure prior mod happens before capturing snap. */
9062 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9063 get_online_cpus();
9064 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9065 put_online_cpus();
9066 if (trycount++ < 10)
9067 udelay(trycount * num_online_cpus());
9068 else {
9069 synchronize_sched();
9070 return;
9071 }
9072 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9073 smp_mb(); /* ensure test happens before caller kfree */
9074 return;
9075 }
9076 get_online_cpus();
9077 }
9078 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9079 for_each_online_cpu(cpu) {
9080 rq = cpu_rq(cpu);
9081 req = &per_cpu(rcu_migration_req, cpu);
9082 init_completion(&req->done);
9083 req->task = NULL;
9084 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9085 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9086 list_add(&req->list, &rq->migration_queue);
05fa785c 9087 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9088 wake_up_process(rq->migration_thread);
9089 }
9090 for_each_online_cpu(cpu) {
9091 rcu_expedited_state = cpu;
9092 req = &per_cpu(rcu_migration_req, cpu);
9093 rq = cpu_rq(cpu);
9094 wait_for_completion(&req->done);
05fa785c 9095 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9096 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9097 need_full_sync = 1;
9098 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9099 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9100 }
9101 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9102 synchronize_sched_expedited_count++;
03b042bf
PM
9103 mutex_unlock(&rcu_sched_expedited_mutex);
9104 put_online_cpus();
9105 if (need_full_sync)
9106 synchronize_sched();
9107}
9108EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9109
9110#endif /* #else #ifndef CONFIG_SMP */