[PATCH] sched: Avoid unnecessarily moving highest priority task move_tasks()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
198e2f18 37#include <linux/vmalloc.h>
1da177e4
LT
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
c6fd91f0 52#include <linux/kprobes.h>
1da177e4
LT
53#include <asm/tlb.h>
54
55#include <asm/unistd.h>
56
57/*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66/*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75/*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81/*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89#define DEF_TIMESLICE (100 * HZ / 1000)
90#define ON_RUNQUEUE_WEIGHT 30
91#define CHILD_PENALTY 95
92#define PARENT_PENALTY 100
93#define EXIT_WEIGHT 3
94#define PRIO_BONUS_RATIO 25
95#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96#define INTERACTIVE_DELTA 2
97#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98#define STARVATION_LIMIT (MAX_SLEEP_AVG)
99#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101/*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129#define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133#define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135#ifdef CONFIG_SMP
136#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139#else
140#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142#endif
143
144#define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147#define DELTA(p) \
013d3868
MA
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
1da177e4
LT
150
151#define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154#define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158#define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161/*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170#define SCALE_PRIO(x, prio) \
2dd73a4f 171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 172
2dd73a4f 173static unsigned int static_prio_timeslice(int static_prio)
1da177e4 174{
2dd73a4f
PW
175 if (static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 177 else
2dd73a4f 178 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 179}
2dd73a4f
PW
180
181static inline unsigned int task_timeslice(task_t *p)
182{
183 return static_prio_timeslice(p->static_prio);
184}
185
1da177e4
LT
186#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
187 < (long long) (sd)->cache_hot_time)
188
189/*
190 * These are the runqueue data structures:
191 */
192
1da177e4
LT
193typedef struct runqueue runqueue_t;
194
195struct prio_array {
196 unsigned int nr_active;
d444886e 197 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
198 struct list_head queue[MAX_PRIO];
199};
200
201/*
202 * This is the main, per-CPU runqueue data structure.
203 *
204 * Locking rule: those places that want to lock multiple runqueues
205 * (such as the load balancing or the thread migration code), lock
206 * acquire operations must be ordered by ascending &runqueue.
207 */
208struct runqueue {
209 spinlock_t lock;
210
211 /*
212 * nr_running and cpu_load should be in the same cacheline because
213 * remote CPUs use both these fields when doing load calculation.
214 */
215 unsigned long nr_running;
2dd73a4f 216 unsigned long raw_weighted_load;
1da177e4 217#ifdef CONFIG_SMP
7897986b 218 unsigned long cpu_load[3];
1da177e4
LT
219#endif
220 unsigned long long nr_switches;
221
222 /*
223 * This is part of a global counter where only the total sum
224 * over all CPUs matters. A task can increase this counter on
225 * one CPU and if it got migrated afterwards it may decrease
226 * it on another CPU. Always updated under the runqueue lock:
227 */
228 unsigned long nr_uninterruptible;
229
230 unsigned long expired_timestamp;
231 unsigned long long timestamp_last_tick;
232 task_t *curr, *idle;
233 struct mm_struct *prev_mm;
234 prio_array_t *active, *expired, arrays[2];
235 int best_expired_prio;
236 atomic_t nr_iowait;
237
238#ifdef CONFIG_SMP
239 struct sched_domain *sd;
240
241 /* For active balancing */
242 int active_balance;
243 int push_cpu;
244
245 task_t *migration_thread;
246 struct list_head migration_queue;
247#endif
248
249#ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
252
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
258
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
263
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267#endif
268};
269
270static DEFINE_PER_CPU(struct runqueue, runqueues);
271
674311d5
NP
272/*
273 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 274 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
275 *
276 * The domain tree of any CPU may only be accessed from within
277 * preempt-disabled sections.
278 */
1da177e4 279#define for_each_domain(cpu, domain) \
674311d5 280for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
281
282#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
283#define this_rq() (&__get_cpu_var(runqueues))
284#define task_rq(p) cpu_rq(task_cpu(p))
285#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
286
1da177e4 287#ifndef prepare_arch_switch
4866cde0
NP
288# define prepare_arch_switch(next) do { } while (0)
289#endif
290#ifndef finish_arch_switch
291# define finish_arch_switch(prev) do { } while (0)
292#endif
293
294#ifndef __ARCH_WANT_UNLOCKED_CTXSW
295static inline int task_running(runqueue_t *rq, task_t *p)
296{
297 return rq->curr == p;
298}
299
300static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
301{
302}
303
304static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
305{
da04c035
IM
306#ifdef CONFIG_DEBUG_SPINLOCK
307 /* this is a valid case when another task releases the spinlock */
308 rq->lock.owner = current;
309#endif
4866cde0
NP
310 spin_unlock_irq(&rq->lock);
311}
312
313#else /* __ARCH_WANT_UNLOCKED_CTXSW */
314static inline int task_running(runqueue_t *rq, task_t *p)
315{
316#ifdef CONFIG_SMP
317 return p->oncpu;
318#else
319 return rq->curr == p;
320#endif
321}
322
323static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
324{
325#ifdef CONFIG_SMP
326 /*
327 * We can optimise this out completely for !SMP, because the
328 * SMP rebalancing from interrupt is the only thing that cares
329 * here.
330 */
331 next->oncpu = 1;
332#endif
333#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
334 spin_unlock_irq(&rq->lock);
335#else
336 spin_unlock(&rq->lock);
337#endif
338}
339
340static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
341{
342#ifdef CONFIG_SMP
343 /*
344 * After ->oncpu is cleared, the task can be moved to a different CPU.
345 * We must ensure this doesn't happen until the switch is completely
346 * finished.
347 */
348 smp_wmb();
349 prev->oncpu = 0;
350#endif
351#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
352 local_irq_enable();
1da177e4 353#endif
4866cde0
NP
354}
355#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
356
357/*
358 * task_rq_lock - lock the runqueue a given task resides on and disable
359 * interrupts. Note the ordering: we can safely lookup the task_rq without
360 * explicitly disabling preemption.
361 */
362static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
363 __acquires(rq->lock)
364{
365 struct runqueue *rq;
366
367repeat_lock_task:
368 local_irq_save(*flags);
369 rq = task_rq(p);
370 spin_lock(&rq->lock);
371 if (unlikely(rq != task_rq(p))) {
372 spin_unlock_irqrestore(&rq->lock, *flags);
373 goto repeat_lock_task;
374 }
375 return rq;
376}
377
378static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
379 __releases(rq->lock)
380{
381 spin_unlock_irqrestore(&rq->lock, *flags);
382}
383
384#ifdef CONFIG_SCHEDSTATS
385/*
386 * bump this up when changing the output format or the meaning of an existing
387 * format, so that tools can adapt (or abort)
388 */
68767a0a 389#define SCHEDSTAT_VERSION 12
1da177e4
LT
390
391static int show_schedstat(struct seq_file *seq, void *v)
392{
393 int cpu;
394
395 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
396 seq_printf(seq, "timestamp %lu\n", jiffies);
397 for_each_online_cpu(cpu) {
398 runqueue_t *rq = cpu_rq(cpu);
399#ifdef CONFIG_SMP
400 struct sched_domain *sd;
401 int dcnt = 0;
402#endif
403
404 /* runqueue-specific stats */
405 seq_printf(seq,
406 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
407 cpu, rq->yld_both_empty,
408 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
409 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
410 rq->ttwu_cnt, rq->ttwu_local,
411 rq->rq_sched_info.cpu_time,
412 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
413
414 seq_printf(seq, "\n");
415
416#ifdef CONFIG_SMP
417 /* domain-specific stats */
674311d5 418 preempt_disable();
1da177e4
LT
419 for_each_domain(cpu, sd) {
420 enum idle_type itype;
421 char mask_str[NR_CPUS];
422
423 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
424 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
425 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
426 itype++) {
427 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
428 sd->lb_cnt[itype],
429 sd->lb_balanced[itype],
430 sd->lb_failed[itype],
431 sd->lb_imbalance[itype],
432 sd->lb_gained[itype],
433 sd->lb_hot_gained[itype],
434 sd->lb_nobusyq[itype],
435 sd->lb_nobusyg[itype]);
436 }
68767a0a 437 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 438 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
439 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
440 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
441 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
442 }
674311d5 443 preempt_enable();
1da177e4
LT
444#endif
445 }
446 return 0;
447}
448
449static int schedstat_open(struct inode *inode, struct file *file)
450{
451 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
452 char *buf = kmalloc(size, GFP_KERNEL);
453 struct seq_file *m;
454 int res;
455
456 if (!buf)
457 return -ENOMEM;
458 res = single_open(file, show_schedstat, NULL);
459 if (!res) {
460 m = file->private_data;
461 m->buf = buf;
462 m->size = size;
463 } else
464 kfree(buf);
465 return res;
466}
467
468struct file_operations proc_schedstat_operations = {
469 .open = schedstat_open,
470 .read = seq_read,
471 .llseek = seq_lseek,
472 .release = single_release,
473};
474
475# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
476# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
477#else /* !CONFIG_SCHEDSTATS */
478# define schedstat_inc(rq, field) do { } while (0)
479# define schedstat_add(rq, field, amt) do { } while (0)
480#endif
481
482/*
483 * rq_lock - lock a given runqueue and disable interrupts.
484 */
485static inline runqueue_t *this_rq_lock(void)
486 __acquires(rq->lock)
487{
488 runqueue_t *rq;
489
490 local_irq_disable();
491 rq = this_rq();
492 spin_lock(&rq->lock);
493
494 return rq;
495}
496
1da177e4
LT
497#ifdef CONFIG_SCHEDSTATS
498/*
499 * Called when a process is dequeued from the active array and given
500 * the cpu. We should note that with the exception of interactive
501 * tasks, the expired queue will become the active queue after the active
502 * queue is empty, without explicitly dequeuing and requeuing tasks in the
503 * expired queue. (Interactive tasks may be requeued directly to the
504 * active queue, thus delaying tasks in the expired queue from running;
505 * see scheduler_tick()).
506 *
507 * This function is only called from sched_info_arrive(), rather than
508 * dequeue_task(). Even though a task may be queued and dequeued multiple
509 * times as it is shuffled about, we're really interested in knowing how
510 * long it was from the *first* time it was queued to the time that it
511 * finally hit a cpu.
512 */
513static inline void sched_info_dequeued(task_t *t)
514{
515 t->sched_info.last_queued = 0;
516}
517
518/*
519 * Called when a task finally hits the cpu. We can now calculate how
520 * long it was waiting to run. We also note when it began so that we
521 * can keep stats on how long its timeslice is.
522 */
858119e1 523static void sched_info_arrive(task_t *t)
1da177e4
LT
524{
525 unsigned long now = jiffies, diff = 0;
526 struct runqueue *rq = task_rq(t);
527
528 if (t->sched_info.last_queued)
529 diff = now - t->sched_info.last_queued;
530 sched_info_dequeued(t);
531 t->sched_info.run_delay += diff;
532 t->sched_info.last_arrival = now;
533 t->sched_info.pcnt++;
534
535 if (!rq)
536 return;
537
538 rq->rq_sched_info.run_delay += diff;
539 rq->rq_sched_info.pcnt++;
540}
541
542/*
543 * Called when a process is queued into either the active or expired
544 * array. The time is noted and later used to determine how long we
545 * had to wait for us to reach the cpu. Since the expired queue will
546 * become the active queue after active queue is empty, without dequeuing
547 * and requeuing any tasks, we are interested in queuing to either. It
548 * is unusual but not impossible for tasks to be dequeued and immediately
549 * requeued in the same or another array: this can happen in sched_yield(),
550 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
551 * to runqueue.
552 *
553 * This function is only called from enqueue_task(), but also only updates
554 * the timestamp if it is already not set. It's assumed that
555 * sched_info_dequeued() will clear that stamp when appropriate.
556 */
557static inline void sched_info_queued(task_t *t)
558{
559 if (!t->sched_info.last_queued)
560 t->sched_info.last_queued = jiffies;
561}
562
563/*
564 * Called when a process ceases being the active-running process, either
565 * voluntarily or involuntarily. Now we can calculate how long we ran.
566 */
567static inline void sched_info_depart(task_t *t)
568{
569 struct runqueue *rq = task_rq(t);
570 unsigned long diff = jiffies - t->sched_info.last_arrival;
571
572 t->sched_info.cpu_time += diff;
573
574 if (rq)
575 rq->rq_sched_info.cpu_time += diff;
576}
577
578/*
579 * Called when tasks are switched involuntarily due, typically, to expiring
580 * their time slice. (This may also be called when switching to or from
581 * the idle task.) We are only called when prev != next.
582 */
583static inline void sched_info_switch(task_t *prev, task_t *next)
584{
585 struct runqueue *rq = task_rq(prev);
586
587 /*
588 * prev now departs the cpu. It's not interesting to record
589 * stats about how efficient we were at scheduling the idle
590 * process, however.
591 */
592 if (prev != rq->idle)
593 sched_info_depart(prev);
594
595 if (next != rq->idle)
596 sched_info_arrive(next);
597}
598#else
599#define sched_info_queued(t) do { } while (0)
600#define sched_info_switch(t, next) do { } while (0)
601#endif /* CONFIG_SCHEDSTATS */
602
603/*
604 * Adding/removing a task to/from a priority array:
605 */
606static void dequeue_task(struct task_struct *p, prio_array_t *array)
607{
608 array->nr_active--;
609 list_del(&p->run_list);
610 if (list_empty(array->queue + p->prio))
611 __clear_bit(p->prio, array->bitmap);
612}
613
614static void enqueue_task(struct task_struct *p, prio_array_t *array)
615{
616 sched_info_queued(p);
617 list_add_tail(&p->run_list, array->queue + p->prio);
618 __set_bit(p->prio, array->bitmap);
619 array->nr_active++;
620 p->array = array;
621}
622
623/*
624 * Put task to the end of the run list without the overhead of dequeue
625 * followed by enqueue.
626 */
627static void requeue_task(struct task_struct *p, prio_array_t *array)
628{
629 list_move_tail(&p->run_list, array->queue + p->prio);
630}
631
632static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
633{
634 list_add(&p->run_list, array->queue + p->prio);
635 __set_bit(p->prio, array->bitmap);
636 array->nr_active++;
637 p->array = array;
638}
639
640/*
641 * effective_prio - return the priority that is based on the static
642 * priority but is modified by bonuses/penalties.
643 *
644 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
645 * into the -5 ... 0 ... +5 bonus/penalty range.
646 *
647 * We use 25% of the full 0...39 priority range so that:
648 *
649 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
650 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
651 *
652 * Both properties are important to certain workloads.
653 */
654static int effective_prio(task_t *p)
655{
656 int bonus, prio;
657
658 if (rt_task(p))
659 return p->prio;
660
661 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
662
663 prio = p->static_prio - bonus;
664 if (prio < MAX_RT_PRIO)
665 prio = MAX_RT_PRIO;
666 if (prio > MAX_PRIO-1)
667 prio = MAX_PRIO-1;
668 return prio;
669}
670
2dd73a4f
PW
671/*
672 * To aid in avoiding the subversion of "niceness" due to uneven distribution
673 * of tasks with abnormal "nice" values across CPUs the contribution that
674 * each task makes to its run queue's load is weighted according to its
675 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
676 * scaled version of the new time slice allocation that they receive on time
677 * slice expiry etc.
678 */
679
680/*
681 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
682 * If static_prio_timeslice() is ever changed to break this assumption then
683 * this code will need modification
684 */
685#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
686#define LOAD_WEIGHT(lp) \
687 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
688#define PRIO_TO_LOAD_WEIGHT(prio) \
689 LOAD_WEIGHT(static_prio_timeslice(prio))
690#define RTPRIO_TO_LOAD_WEIGHT(rp) \
691 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
692
693static void set_load_weight(task_t *p)
694{
695 if (rt_task(p)) {
696#ifdef CONFIG_SMP
697 if (p == task_rq(p)->migration_thread)
698 /*
699 * The migration thread does the actual balancing.
700 * Giving its load any weight will skew balancing
701 * adversely.
702 */
703 p->load_weight = 0;
704 else
705#endif
706 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
707 } else
708 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
709}
710
711static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
712{
713 rq->raw_weighted_load += p->load_weight;
714}
715
716static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
717{
718 rq->raw_weighted_load -= p->load_weight;
719}
720
721static inline void inc_nr_running(task_t *p, runqueue_t *rq)
722{
723 rq->nr_running++;
724 inc_raw_weighted_load(rq, p);
725}
726
727static inline void dec_nr_running(task_t *p, runqueue_t *rq)
728{
729 rq->nr_running--;
730 dec_raw_weighted_load(rq, p);
731}
732
1da177e4
LT
733/*
734 * __activate_task - move a task to the runqueue.
735 */
d425b274 736static void __activate_task(task_t *p, runqueue_t *rq)
1da177e4 737{
d425b274
CK
738 prio_array_t *target = rq->active;
739
f1adad78 740 if (batch_task(p))
d425b274
CK
741 target = rq->expired;
742 enqueue_task(p, target);
2dd73a4f 743 inc_nr_running(p, rq);
1da177e4
LT
744}
745
746/*
747 * __activate_idle_task - move idle task to the _front_ of runqueue.
748 */
749static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
750{
751 enqueue_task_head(p, rq->active);
2dd73a4f 752 inc_nr_running(p, rq);
1da177e4
LT
753}
754
a3464a10 755static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
756{
757 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 758 unsigned long sleep_time = now - p->timestamp;
1da177e4 759
d425b274 760 if (batch_task(p))
b0a9499c 761 sleep_time = 0;
1da177e4
LT
762
763 if (likely(sleep_time > 0)) {
764 /*
72d2854d
CK
765 * This ceiling is set to the lowest priority that would allow
766 * a task to be reinserted into the active array on timeslice
767 * completion.
1da177e4 768 */
72d2854d 769 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 770
72d2854d
CK
771 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
772 /*
773 * Prevents user tasks from achieving best priority
774 * with one single large enough sleep.
775 */
776 p->sleep_avg = ceiling;
777 /*
778 * Using INTERACTIVE_SLEEP() as a ceiling places a
779 * nice(0) task 1ms sleep away from promotion, and
780 * gives it 700ms to round-robin with no chance of
781 * being demoted. This is more than generous, so
782 * mark this sleep as non-interactive to prevent the
783 * on-runqueue bonus logic from intervening should
784 * this task not receive cpu immediately.
785 */
786 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 787 } else {
1da177e4
LT
788 /*
789 * Tasks waking from uninterruptible sleep are
790 * limited in their sleep_avg rise as they
791 * are likely to be waiting on I/O
792 */
3dee386e 793 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 794 if (p->sleep_avg >= ceiling)
1da177e4
LT
795 sleep_time = 0;
796 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
797 ceiling) {
798 p->sleep_avg = ceiling;
799 sleep_time = 0;
1da177e4
LT
800 }
801 }
802
803 /*
804 * This code gives a bonus to interactive tasks.
805 *
806 * The boost works by updating the 'average sleep time'
807 * value here, based on ->timestamp. The more time a
808 * task spends sleeping, the higher the average gets -
809 * and the higher the priority boost gets as well.
810 */
811 p->sleep_avg += sleep_time;
812
1da177e4 813 }
72d2854d
CK
814 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
815 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
816 }
817
a3464a10 818 return effective_prio(p);
1da177e4
LT
819}
820
821/*
822 * activate_task - move a task to the runqueue and do priority recalculation
823 *
824 * Update all the scheduling statistics stuff. (sleep average
825 * calculation, priority modifiers, etc.)
826 */
827static void activate_task(task_t *p, runqueue_t *rq, int local)
828{
829 unsigned long long now;
830
831 now = sched_clock();
832#ifdef CONFIG_SMP
833 if (!local) {
834 /* Compensate for drifting sched_clock */
835 runqueue_t *this_rq = this_rq();
836 now = (now - this_rq->timestamp_last_tick)
837 + rq->timestamp_last_tick;
838 }
839#endif
840
a47ab937
KC
841 if (!rt_task(p))
842 p->prio = recalc_task_prio(p, now);
1da177e4
LT
843
844 /*
845 * This checks to make sure it's not an uninterruptible task
846 * that is now waking up.
847 */
3dee386e 848 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
849 /*
850 * Tasks which were woken up by interrupts (ie. hw events)
851 * are most likely of interactive nature. So we give them
852 * the credit of extending their sleep time to the period
853 * of time they spend on the runqueue, waiting for execution
854 * on a CPU, first time around:
855 */
856 if (in_interrupt())
3dee386e 857 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
858 else {
859 /*
860 * Normal first-time wakeups get a credit too for
861 * on-runqueue time, but it will be weighted down:
862 */
3dee386e 863 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
864 }
865 }
866 p->timestamp = now;
867
868 __activate_task(p, rq);
869}
870
871/*
872 * deactivate_task - remove a task from the runqueue.
873 */
874static void deactivate_task(struct task_struct *p, runqueue_t *rq)
875{
2dd73a4f 876 dec_nr_running(p, rq);
1da177e4
LT
877 dequeue_task(p, p->array);
878 p->array = NULL;
879}
880
881/*
882 * resched_task - mark a task 'to be rescheduled now'.
883 *
884 * On UP this means the setting of the need_resched flag, on SMP it
885 * might also involve a cross-CPU call to trigger the scheduler on
886 * the target CPU.
887 */
888#ifdef CONFIG_SMP
495ab9c0
AK
889
890#ifndef tsk_is_polling
891#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
892#endif
893
1da177e4
LT
894static void resched_task(task_t *p)
895{
64c7c8f8 896 int cpu;
1da177e4
LT
897
898 assert_spin_locked(&task_rq(p)->lock);
899
64c7c8f8
NP
900 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
901 return;
902
903 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 904
64c7c8f8
NP
905 cpu = task_cpu(p);
906 if (cpu == smp_processor_id())
907 return;
908
495ab9c0 909 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 910 smp_mb();
495ab9c0 911 if (!tsk_is_polling(p))
64c7c8f8 912 smp_send_reschedule(cpu);
1da177e4
LT
913}
914#else
915static inline void resched_task(task_t *p)
916{
64c7c8f8 917 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
918 set_tsk_need_resched(p);
919}
920#endif
921
922/**
923 * task_curr - is this task currently executing on a CPU?
924 * @p: the task in question.
925 */
926inline int task_curr(const task_t *p)
927{
928 return cpu_curr(task_cpu(p)) == p;
929}
930
2dd73a4f
PW
931/* Used instead of source_load when we know the type == 0 */
932unsigned long weighted_cpuload(const int cpu)
933{
934 return cpu_rq(cpu)->raw_weighted_load;
935}
936
1da177e4 937#ifdef CONFIG_SMP
1da177e4
LT
938typedef struct {
939 struct list_head list;
1da177e4 940
1da177e4
LT
941 task_t *task;
942 int dest_cpu;
943
1da177e4
LT
944 struct completion done;
945} migration_req_t;
946
947/*
948 * The task's runqueue lock must be held.
949 * Returns true if you have to wait for migration thread.
950 */
951static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
952{
953 runqueue_t *rq = task_rq(p);
954
955 /*
956 * If the task is not on a runqueue (and not running), then
957 * it is sufficient to simply update the task's cpu field.
958 */
959 if (!p->array && !task_running(rq, p)) {
960 set_task_cpu(p, dest_cpu);
961 return 0;
962 }
963
964 init_completion(&req->done);
1da177e4
LT
965 req->task = p;
966 req->dest_cpu = dest_cpu;
967 list_add(&req->list, &rq->migration_queue);
968 return 1;
969}
970
971/*
972 * wait_task_inactive - wait for a thread to unschedule.
973 *
974 * The caller must ensure that the task *will* unschedule sometime soon,
975 * else this function might spin for a *long* time. This function can't
976 * be called with interrupts off, or it may introduce deadlock with
977 * smp_call_function() if an IPI is sent by the same process we are
978 * waiting to become inactive.
979 */
95cdf3b7 980void wait_task_inactive(task_t *p)
1da177e4
LT
981{
982 unsigned long flags;
983 runqueue_t *rq;
984 int preempted;
985
986repeat:
987 rq = task_rq_lock(p, &flags);
988 /* Must be off runqueue entirely, not preempted. */
989 if (unlikely(p->array || task_running(rq, p))) {
990 /* If it's preempted, we yield. It could be a while. */
991 preempted = !task_running(rq, p);
992 task_rq_unlock(rq, &flags);
993 cpu_relax();
994 if (preempted)
995 yield();
996 goto repeat;
997 }
998 task_rq_unlock(rq, &flags);
999}
1000
1001/***
1002 * kick_process - kick a running thread to enter/exit the kernel
1003 * @p: the to-be-kicked thread
1004 *
1005 * Cause a process which is running on another CPU to enter
1006 * kernel-mode, without any delay. (to get signals handled.)
1007 *
1008 * NOTE: this function doesnt have to take the runqueue lock,
1009 * because all it wants to ensure is that the remote task enters
1010 * the kernel. If the IPI races and the task has been migrated
1011 * to another CPU then no harm is done and the purpose has been
1012 * achieved as well.
1013 */
1014void kick_process(task_t *p)
1015{
1016 int cpu;
1017
1018 preempt_disable();
1019 cpu = task_cpu(p);
1020 if ((cpu != smp_processor_id()) && task_curr(p))
1021 smp_send_reschedule(cpu);
1022 preempt_enable();
1023}
1024
1025/*
2dd73a4f
PW
1026 * Return a low guess at the load of a migration-source cpu weighted
1027 * according to the scheduling class and "nice" value.
1da177e4
LT
1028 *
1029 * We want to under-estimate the load of migration sources, to
1030 * balance conservatively.
1031 */
a2000572 1032static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
1033{
1034 runqueue_t *rq = cpu_rq(cpu);
2dd73a4f 1035
3b0bd9bc 1036 if (type == 0)
2dd73a4f 1037 return rq->raw_weighted_load;
b910472d 1038
2dd73a4f 1039 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1040}
1041
1042/*
2dd73a4f
PW
1043 * Return a high guess at the load of a migration-target cpu weighted
1044 * according to the scheduling class and "nice" value.
1da177e4 1045 */
a2000572 1046static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
1047{
1048 runqueue_t *rq = cpu_rq(cpu);
2dd73a4f 1049
7897986b 1050 if (type == 0)
2dd73a4f 1051 return rq->raw_weighted_load;
3b0bd9bc 1052
2dd73a4f
PW
1053 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1054}
1055
1056/*
1057 * Return the average load per task on the cpu's run queue
1058 */
1059static inline unsigned long cpu_avg_load_per_task(int cpu)
1060{
1061 runqueue_t *rq = cpu_rq(cpu);
1062 unsigned long n = rq->nr_running;
1063
1064 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1065}
1066
147cbb4b
NP
1067/*
1068 * find_idlest_group finds and returns the least busy CPU group within the
1069 * domain.
1070 */
1071static struct sched_group *
1072find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1073{
1074 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1075 unsigned long min_load = ULONG_MAX, this_load = 0;
1076 int load_idx = sd->forkexec_idx;
1077 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1078
1079 do {
1080 unsigned long load, avg_load;
1081 int local_group;
1082 int i;
1083
da5a5522
BD
1084 /* Skip over this group if it has no CPUs allowed */
1085 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1086 goto nextgroup;
1087
147cbb4b 1088 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1089
1090 /* Tally up the load of all CPUs in the group */
1091 avg_load = 0;
1092
1093 for_each_cpu_mask(i, group->cpumask) {
1094 /* Bias balancing toward cpus of our domain */
1095 if (local_group)
1096 load = source_load(i, load_idx);
1097 else
1098 load = target_load(i, load_idx);
1099
1100 avg_load += load;
1101 }
1102
1103 /* Adjust by relative CPU power of the group */
1104 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1105
1106 if (local_group) {
1107 this_load = avg_load;
1108 this = group;
1109 } else if (avg_load < min_load) {
1110 min_load = avg_load;
1111 idlest = group;
1112 }
da5a5522 1113nextgroup:
147cbb4b
NP
1114 group = group->next;
1115 } while (group != sd->groups);
1116
1117 if (!idlest || 100*this_load < imbalance*min_load)
1118 return NULL;
1119 return idlest;
1120}
1121
1122/*
1123 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1124 */
95cdf3b7
IM
1125static int
1126find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1127{
da5a5522 1128 cpumask_t tmp;
147cbb4b
NP
1129 unsigned long load, min_load = ULONG_MAX;
1130 int idlest = -1;
1131 int i;
1132
da5a5522
BD
1133 /* Traverse only the allowed CPUs */
1134 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1135
1136 for_each_cpu_mask(i, tmp) {
2dd73a4f 1137 load = weighted_cpuload(i);
147cbb4b
NP
1138
1139 if (load < min_load || (load == min_load && i == this_cpu)) {
1140 min_load = load;
1141 idlest = i;
1142 }
1143 }
1144
1145 return idlest;
1146}
1147
476d139c
NP
1148/*
1149 * sched_balance_self: balance the current task (running on cpu) in domains
1150 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1151 * SD_BALANCE_EXEC.
1152 *
1153 * Balance, ie. select the least loaded group.
1154 *
1155 * Returns the target CPU number, or the same CPU if no balancing is needed.
1156 *
1157 * preempt must be disabled.
1158 */
1159static int sched_balance_self(int cpu, int flag)
1160{
1161 struct task_struct *t = current;
1162 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1163
c96d145e 1164 for_each_domain(cpu, tmp) {
476d139c
NP
1165 if (tmp->flags & flag)
1166 sd = tmp;
c96d145e 1167 }
476d139c
NP
1168
1169 while (sd) {
1170 cpumask_t span;
1171 struct sched_group *group;
1172 int new_cpu;
1173 int weight;
1174
1175 span = sd->span;
1176 group = find_idlest_group(sd, t, cpu);
1177 if (!group)
1178 goto nextlevel;
1179
da5a5522 1180 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1181 if (new_cpu == -1 || new_cpu == cpu)
1182 goto nextlevel;
1183
1184 /* Now try balancing at a lower domain level */
1185 cpu = new_cpu;
1186nextlevel:
1187 sd = NULL;
1188 weight = cpus_weight(span);
1189 for_each_domain(cpu, tmp) {
1190 if (weight <= cpus_weight(tmp->span))
1191 break;
1192 if (tmp->flags & flag)
1193 sd = tmp;
1194 }
1195 /* while loop will break here if sd == NULL */
1196 }
1197
1198 return cpu;
1199}
1200
1201#endif /* CONFIG_SMP */
1da177e4
LT
1202
1203/*
1204 * wake_idle() will wake a task on an idle cpu if task->cpu is
1205 * not idle and an idle cpu is available. The span of cpus to
1206 * search starts with cpus closest then further out as needed,
1207 * so we always favor a closer, idle cpu.
1208 *
1209 * Returns the CPU we should wake onto.
1210 */
1211#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1212static int wake_idle(int cpu, task_t *p)
1213{
1214 cpumask_t tmp;
1215 struct sched_domain *sd;
1216 int i;
1217
1218 if (idle_cpu(cpu))
1219 return cpu;
1220
1221 for_each_domain(cpu, sd) {
1222 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1223 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1224 for_each_cpu_mask(i, tmp) {
1225 if (idle_cpu(i))
1226 return i;
1227 }
1228 }
e0f364f4
NP
1229 else
1230 break;
1da177e4
LT
1231 }
1232 return cpu;
1233}
1234#else
1235static inline int wake_idle(int cpu, task_t *p)
1236{
1237 return cpu;
1238}
1239#endif
1240
1241/***
1242 * try_to_wake_up - wake up a thread
1243 * @p: the to-be-woken-up thread
1244 * @state: the mask of task states that can be woken
1245 * @sync: do a synchronous wakeup?
1246 *
1247 * Put it on the run-queue if it's not already there. The "current"
1248 * thread is always on the run-queue (except when the actual
1249 * re-schedule is in progress), and as such you're allowed to do
1250 * the simpler "current->state = TASK_RUNNING" to mark yourself
1251 * runnable without the overhead of this.
1252 *
1253 * returns failure only if the task is already active.
1254 */
95cdf3b7 1255static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1256{
1257 int cpu, this_cpu, success = 0;
1258 unsigned long flags;
1259 long old_state;
1260 runqueue_t *rq;
1261#ifdef CONFIG_SMP
1262 unsigned long load, this_load;
7897986b 1263 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1264 int new_cpu;
1265#endif
1266
1267 rq = task_rq_lock(p, &flags);
1268 old_state = p->state;
1269 if (!(old_state & state))
1270 goto out;
1271
1272 if (p->array)
1273 goto out_running;
1274
1275 cpu = task_cpu(p);
1276 this_cpu = smp_processor_id();
1277
1278#ifdef CONFIG_SMP
1279 if (unlikely(task_running(rq, p)))
1280 goto out_activate;
1281
7897986b
NP
1282 new_cpu = cpu;
1283
1da177e4
LT
1284 schedstat_inc(rq, ttwu_cnt);
1285 if (cpu == this_cpu) {
1286 schedstat_inc(rq, ttwu_local);
7897986b
NP
1287 goto out_set_cpu;
1288 }
1289
1290 for_each_domain(this_cpu, sd) {
1291 if (cpu_isset(cpu, sd->span)) {
1292 schedstat_inc(sd, ttwu_wake_remote);
1293 this_sd = sd;
1294 break;
1da177e4
LT
1295 }
1296 }
1da177e4 1297
7897986b 1298 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1299 goto out_set_cpu;
1300
1da177e4 1301 /*
7897986b 1302 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1303 */
7897986b
NP
1304 if (this_sd) {
1305 int idx = this_sd->wake_idx;
1306 unsigned int imbalance;
1da177e4 1307
a3f21bce
NP
1308 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1309
7897986b
NP
1310 load = source_load(cpu, idx);
1311 this_load = target_load(this_cpu, idx);
1da177e4 1312
7897986b
NP
1313 new_cpu = this_cpu; /* Wake to this CPU if we can */
1314
a3f21bce
NP
1315 if (this_sd->flags & SD_WAKE_AFFINE) {
1316 unsigned long tl = this_load;
2dd73a4f
PW
1317 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1318
1da177e4 1319 /*
a3f21bce
NP
1320 * If sync wakeup then subtract the (maximum possible)
1321 * effect of the currently running task from the load
1322 * of the current CPU:
1da177e4 1323 */
a3f21bce 1324 if (sync)
2dd73a4f 1325 tl -= current->load_weight;
a3f21bce
NP
1326
1327 if ((tl <= load &&
2dd73a4f
PW
1328 tl + target_load(cpu, idx) <= tl_per_task) ||
1329 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1330 /*
1331 * This domain has SD_WAKE_AFFINE and
1332 * p is cache cold in this domain, and
1333 * there is no bad imbalance.
1334 */
1335 schedstat_inc(this_sd, ttwu_move_affine);
1336 goto out_set_cpu;
1337 }
1338 }
1339
1340 /*
1341 * Start passive balancing when half the imbalance_pct
1342 * limit is reached.
1343 */
1344 if (this_sd->flags & SD_WAKE_BALANCE) {
1345 if (imbalance*this_load <= 100*load) {
1346 schedstat_inc(this_sd, ttwu_move_balance);
1347 goto out_set_cpu;
1348 }
1da177e4
LT
1349 }
1350 }
1351
1352 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1353out_set_cpu:
1354 new_cpu = wake_idle(new_cpu, p);
1355 if (new_cpu != cpu) {
1356 set_task_cpu(p, new_cpu);
1357 task_rq_unlock(rq, &flags);
1358 /* might preempt at this point */
1359 rq = task_rq_lock(p, &flags);
1360 old_state = p->state;
1361 if (!(old_state & state))
1362 goto out;
1363 if (p->array)
1364 goto out_running;
1365
1366 this_cpu = smp_processor_id();
1367 cpu = task_cpu(p);
1368 }
1369
1370out_activate:
1371#endif /* CONFIG_SMP */
1372 if (old_state == TASK_UNINTERRUPTIBLE) {
1373 rq->nr_uninterruptible--;
1374 /*
1375 * Tasks on involuntary sleep don't earn
1376 * sleep_avg beyond just interactive state.
1377 */
3dee386e 1378 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1379 } else
1da177e4 1380
d79fc0fc
IM
1381 /*
1382 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1383 * woken up with their sleep average not weighted in an
1384 * interactive way.
d79fc0fc 1385 */
e7c38cb4
CK
1386 if (old_state & TASK_NONINTERACTIVE)
1387 p->sleep_type = SLEEP_NONINTERACTIVE;
1388
1389
1390 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1391 /*
1392 * Sync wakeups (i.e. those types of wakeups where the waker
1393 * has indicated that it will leave the CPU in short order)
1394 * don't trigger a preemption, if the woken up task will run on
1395 * this cpu. (in this case the 'I will reschedule' promise of
1396 * the waker guarantees that the freshly woken up task is going
1397 * to be considered on this CPU.)
1398 */
1da177e4
LT
1399 if (!sync || cpu != this_cpu) {
1400 if (TASK_PREEMPTS_CURR(p, rq))
1401 resched_task(rq->curr);
1402 }
1403 success = 1;
1404
1405out_running:
1406 p->state = TASK_RUNNING;
1407out:
1408 task_rq_unlock(rq, &flags);
1409
1410 return success;
1411}
1412
95cdf3b7 1413int fastcall wake_up_process(task_t *p)
1da177e4
LT
1414{
1415 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1416 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1417}
1418
1419EXPORT_SYMBOL(wake_up_process);
1420
1421int fastcall wake_up_state(task_t *p, unsigned int state)
1422{
1423 return try_to_wake_up(p, state, 0);
1424}
1425
1da177e4
LT
1426/*
1427 * Perform scheduler related setup for a newly forked process p.
1428 * p is forked by current.
1429 */
476d139c 1430void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1431{
476d139c
NP
1432 int cpu = get_cpu();
1433
1434#ifdef CONFIG_SMP
1435 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1436#endif
1437 set_task_cpu(p, cpu);
1438
1da177e4
LT
1439 /*
1440 * We mark the process as running here, but have not actually
1441 * inserted it onto the runqueue yet. This guarantees that
1442 * nobody will actually run it, and a signal or other external
1443 * event cannot wake it up and insert it on the runqueue either.
1444 */
1445 p->state = TASK_RUNNING;
1446 INIT_LIST_HEAD(&p->run_list);
1447 p->array = NULL;
1da177e4
LT
1448#ifdef CONFIG_SCHEDSTATS
1449 memset(&p->sched_info, 0, sizeof(p->sched_info));
1450#endif
d6077cb8 1451#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1452 p->oncpu = 0;
1453#endif
1da177e4 1454#ifdef CONFIG_PREEMPT
4866cde0 1455 /* Want to start with kernel preemption disabled. */
a1261f54 1456 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1457#endif
1458 /*
1459 * Share the timeslice between parent and child, thus the
1460 * total amount of pending timeslices in the system doesn't change,
1461 * resulting in more scheduling fairness.
1462 */
1463 local_irq_disable();
1464 p->time_slice = (current->time_slice + 1) >> 1;
1465 /*
1466 * The remainder of the first timeslice might be recovered by
1467 * the parent if the child exits early enough.
1468 */
1469 p->first_time_slice = 1;
1470 current->time_slice >>= 1;
1471 p->timestamp = sched_clock();
1472 if (unlikely(!current->time_slice)) {
1473 /*
1474 * This case is rare, it happens when the parent has only
1475 * a single jiffy left from its timeslice. Taking the
1476 * runqueue lock is not a problem.
1477 */
1478 current->time_slice = 1;
1da177e4 1479 scheduler_tick();
476d139c
NP
1480 }
1481 local_irq_enable();
1482 put_cpu();
1da177e4
LT
1483}
1484
1485/*
1486 * wake_up_new_task - wake up a newly created task for the first time.
1487 *
1488 * This function will do some initial scheduler statistics housekeeping
1489 * that must be done for every newly created context, then puts the task
1490 * on the runqueue and wakes it.
1491 */
95cdf3b7 1492void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1493{
1494 unsigned long flags;
1495 int this_cpu, cpu;
1496 runqueue_t *rq, *this_rq;
1497
1498 rq = task_rq_lock(p, &flags);
147cbb4b 1499 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1500 this_cpu = smp_processor_id();
147cbb4b 1501 cpu = task_cpu(p);
1da177e4 1502
1da177e4
LT
1503 /*
1504 * We decrease the sleep average of forking parents
1505 * and children as well, to keep max-interactive tasks
1506 * from forking tasks that are max-interactive. The parent
1507 * (current) is done further down, under its lock.
1508 */
1509 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1510 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1511
1512 p->prio = effective_prio(p);
1513
1514 if (likely(cpu == this_cpu)) {
1515 if (!(clone_flags & CLONE_VM)) {
1516 /*
1517 * The VM isn't cloned, so we're in a good position to
1518 * do child-runs-first in anticipation of an exec. This
1519 * usually avoids a lot of COW overhead.
1520 */
1521 if (unlikely(!current->array))
1522 __activate_task(p, rq);
1523 else {
1524 p->prio = current->prio;
1525 list_add_tail(&p->run_list, &current->run_list);
1526 p->array = current->array;
1527 p->array->nr_active++;
2dd73a4f 1528 inc_nr_running(p, rq);
1da177e4
LT
1529 }
1530 set_need_resched();
1531 } else
1532 /* Run child last */
1533 __activate_task(p, rq);
1534 /*
1535 * We skip the following code due to cpu == this_cpu
1536 *
1537 * task_rq_unlock(rq, &flags);
1538 * this_rq = task_rq_lock(current, &flags);
1539 */
1540 this_rq = rq;
1541 } else {
1542 this_rq = cpu_rq(this_cpu);
1543
1544 /*
1545 * Not the local CPU - must adjust timestamp. This should
1546 * get optimised away in the !CONFIG_SMP case.
1547 */
1548 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1549 + rq->timestamp_last_tick;
1550 __activate_task(p, rq);
1551 if (TASK_PREEMPTS_CURR(p, rq))
1552 resched_task(rq->curr);
1553
1554 /*
1555 * Parent and child are on different CPUs, now get the
1556 * parent runqueue to update the parent's ->sleep_avg:
1557 */
1558 task_rq_unlock(rq, &flags);
1559 this_rq = task_rq_lock(current, &flags);
1560 }
1561 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1562 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1563 task_rq_unlock(this_rq, &flags);
1564}
1565
1566/*
1567 * Potentially available exiting-child timeslices are
1568 * retrieved here - this way the parent does not get
1569 * penalized for creating too many threads.
1570 *
1571 * (this cannot be used to 'generate' timeslices
1572 * artificially, because any timeslice recovered here
1573 * was given away by the parent in the first place.)
1574 */
95cdf3b7 1575void fastcall sched_exit(task_t *p)
1da177e4
LT
1576{
1577 unsigned long flags;
1578 runqueue_t *rq;
1579
1580 /*
1581 * If the child was a (relative-) CPU hog then decrease
1582 * the sleep_avg of the parent as well.
1583 */
1584 rq = task_rq_lock(p->parent, &flags);
889dfafe 1585 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1586 p->parent->time_slice += p->time_slice;
1587 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1588 p->parent->time_slice = task_timeslice(p);
1589 }
1590 if (p->sleep_avg < p->parent->sleep_avg)
1591 p->parent->sleep_avg = p->parent->sleep_avg /
1592 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1593 (EXIT_WEIGHT + 1);
1594 task_rq_unlock(rq, &flags);
1595}
1596
4866cde0
NP
1597/**
1598 * prepare_task_switch - prepare to switch tasks
1599 * @rq: the runqueue preparing to switch
1600 * @next: the task we are going to switch to.
1601 *
1602 * This is called with the rq lock held and interrupts off. It must
1603 * be paired with a subsequent finish_task_switch after the context
1604 * switch.
1605 *
1606 * prepare_task_switch sets up locking and calls architecture specific
1607 * hooks.
1608 */
1609static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1610{
1611 prepare_lock_switch(rq, next);
1612 prepare_arch_switch(next);
1613}
1614
1da177e4
LT
1615/**
1616 * finish_task_switch - clean up after a task-switch
344babaa 1617 * @rq: runqueue associated with task-switch
1da177e4
LT
1618 * @prev: the thread we just switched away from.
1619 *
4866cde0
NP
1620 * finish_task_switch must be called after the context switch, paired
1621 * with a prepare_task_switch call before the context switch.
1622 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1623 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1624 *
1625 * Note that we may have delayed dropping an mm in context_switch(). If
1626 * so, we finish that here outside of the runqueue lock. (Doing it
1627 * with the lock held can cause deadlocks; see schedule() for
1628 * details.)
1629 */
4866cde0 1630static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1631 __releases(rq->lock)
1632{
1da177e4
LT
1633 struct mm_struct *mm = rq->prev_mm;
1634 unsigned long prev_task_flags;
1635
1636 rq->prev_mm = NULL;
1637
1638 /*
1639 * A task struct has one reference for the use as "current".
1640 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1641 * calls schedule one last time. The schedule call will never return,
1642 * and the scheduled task must drop that reference.
1643 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1644 * still held, otherwise prev could be scheduled on another cpu, die
1645 * there before we look at prev->state, and then the reference would
1646 * be dropped twice.
1647 * Manfred Spraul <manfred@colorfullife.com>
1648 */
1649 prev_task_flags = prev->flags;
4866cde0
NP
1650 finish_arch_switch(prev);
1651 finish_lock_switch(rq, prev);
1da177e4
LT
1652 if (mm)
1653 mmdrop(mm);
c6fd91f0 1654 if (unlikely(prev_task_flags & PF_DEAD)) {
1655 /*
1656 * Remove function-return probe instances associated with this
1657 * task and put them back on the free list.
1658 */
1659 kprobe_flush_task(prev);
1da177e4 1660 put_task_struct(prev);
c6fd91f0 1661 }
1da177e4
LT
1662}
1663
1664/**
1665 * schedule_tail - first thing a freshly forked thread must call.
1666 * @prev: the thread we just switched away from.
1667 */
1668asmlinkage void schedule_tail(task_t *prev)
1669 __releases(rq->lock)
1670{
4866cde0
NP
1671 runqueue_t *rq = this_rq();
1672 finish_task_switch(rq, prev);
1673#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1674 /* In this case, finish_task_switch does not reenable preemption */
1675 preempt_enable();
1676#endif
1da177e4
LT
1677 if (current->set_child_tid)
1678 put_user(current->pid, current->set_child_tid);
1679}
1680
1681/*
1682 * context_switch - switch to the new MM and the new
1683 * thread's register state.
1684 */
1685static inline
1686task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1687{
1688 struct mm_struct *mm = next->mm;
1689 struct mm_struct *oldmm = prev->active_mm;
1690
1691 if (unlikely(!mm)) {
1692 next->active_mm = oldmm;
1693 atomic_inc(&oldmm->mm_count);
1694 enter_lazy_tlb(oldmm, next);
1695 } else
1696 switch_mm(oldmm, mm, next);
1697
1698 if (unlikely(!prev->mm)) {
1699 prev->active_mm = NULL;
1700 WARN_ON(rq->prev_mm);
1701 rq->prev_mm = oldmm;
1702 }
1703
1704 /* Here we just switch the register state and the stack. */
1705 switch_to(prev, next, prev);
1706
1707 return prev;
1708}
1709
1710/*
1711 * nr_running, nr_uninterruptible and nr_context_switches:
1712 *
1713 * externally visible scheduler statistics: current number of runnable
1714 * threads, current number of uninterruptible-sleeping threads, total
1715 * number of context switches performed since bootup.
1716 */
1717unsigned long nr_running(void)
1718{
1719 unsigned long i, sum = 0;
1720
1721 for_each_online_cpu(i)
1722 sum += cpu_rq(i)->nr_running;
1723
1724 return sum;
1725}
1726
1727unsigned long nr_uninterruptible(void)
1728{
1729 unsigned long i, sum = 0;
1730
0a945022 1731 for_each_possible_cpu(i)
1da177e4
LT
1732 sum += cpu_rq(i)->nr_uninterruptible;
1733
1734 /*
1735 * Since we read the counters lockless, it might be slightly
1736 * inaccurate. Do not allow it to go below zero though:
1737 */
1738 if (unlikely((long)sum < 0))
1739 sum = 0;
1740
1741 return sum;
1742}
1743
1744unsigned long long nr_context_switches(void)
1745{
cc94abfc
SR
1746 int i;
1747 unsigned long long sum = 0;
1da177e4 1748
0a945022 1749 for_each_possible_cpu(i)
1da177e4
LT
1750 sum += cpu_rq(i)->nr_switches;
1751
1752 return sum;
1753}
1754
1755unsigned long nr_iowait(void)
1756{
1757 unsigned long i, sum = 0;
1758
0a945022 1759 for_each_possible_cpu(i)
1da177e4
LT
1760 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1761
1762 return sum;
1763}
1764
db1b1fef
JS
1765unsigned long nr_active(void)
1766{
1767 unsigned long i, running = 0, uninterruptible = 0;
1768
1769 for_each_online_cpu(i) {
1770 running += cpu_rq(i)->nr_running;
1771 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1772 }
1773
1774 if (unlikely((long)uninterruptible < 0))
1775 uninterruptible = 0;
1776
1777 return running + uninterruptible;
1778}
1779
1da177e4
LT
1780#ifdef CONFIG_SMP
1781
1782/*
1783 * double_rq_lock - safely lock two runqueues
1784 *
1785 * Note this does not disable interrupts like task_rq_lock,
1786 * you need to do so manually before calling.
1787 */
1788static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1789 __acquires(rq1->lock)
1790 __acquires(rq2->lock)
1791{
1792 if (rq1 == rq2) {
1793 spin_lock(&rq1->lock);
1794 __acquire(rq2->lock); /* Fake it out ;) */
1795 } else {
c96d145e 1796 if (rq1 < rq2) {
1da177e4
LT
1797 spin_lock(&rq1->lock);
1798 spin_lock(&rq2->lock);
1799 } else {
1800 spin_lock(&rq2->lock);
1801 spin_lock(&rq1->lock);
1802 }
1803 }
1804}
1805
1806/*
1807 * double_rq_unlock - safely unlock two runqueues
1808 *
1809 * Note this does not restore interrupts like task_rq_unlock,
1810 * you need to do so manually after calling.
1811 */
1812static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1813 __releases(rq1->lock)
1814 __releases(rq2->lock)
1815{
1816 spin_unlock(&rq1->lock);
1817 if (rq1 != rq2)
1818 spin_unlock(&rq2->lock);
1819 else
1820 __release(rq2->lock);
1821}
1822
1823/*
1824 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1825 */
1826static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1827 __releases(this_rq->lock)
1828 __acquires(busiest->lock)
1829 __acquires(this_rq->lock)
1830{
1831 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 1832 if (busiest < this_rq) {
1da177e4
LT
1833 spin_unlock(&this_rq->lock);
1834 spin_lock(&busiest->lock);
1835 spin_lock(&this_rq->lock);
1836 } else
1837 spin_lock(&busiest->lock);
1838 }
1839}
1840
1da177e4
LT
1841/*
1842 * If dest_cpu is allowed for this process, migrate the task to it.
1843 * This is accomplished by forcing the cpu_allowed mask to only
1844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1845 * the cpu_allowed mask is restored.
1846 */
1847static void sched_migrate_task(task_t *p, int dest_cpu)
1848{
1849 migration_req_t req;
1850 runqueue_t *rq;
1851 unsigned long flags;
1852
1853 rq = task_rq_lock(p, &flags);
1854 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1855 || unlikely(cpu_is_offline(dest_cpu)))
1856 goto out;
1857
1858 /* force the process onto the specified CPU */
1859 if (migrate_task(p, dest_cpu, &req)) {
1860 /* Need to wait for migration thread (might exit: take ref). */
1861 struct task_struct *mt = rq->migration_thread;
1862 get_task_struct(mt);
1863 task_rq_unlock(rq, &flags);
1864 wake_up_process(mt);
1865 put_task_struct(mt);
1866 wait_for_completion(&req.done);
1867 return;
1868 }
1869out:
1870 task_rq_unlock(rq, &flags);
1871}
1872
1873/*
476d139c
NP
1874 * sched_exec - execve() is a valuable balancing opportunity, because at
1875 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1876 */
1877void sched_exec(void)
1878{
1da177e4 1879 int new_cpu, this_cpu = get_cpu();
476d139c 1880 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1881 put_cpu();
476d139c
NP
1882 if (new_cpu != this_cpu)
1883 sched_migrate_task(current, new_cpu);
1da177e4
LT
1884}
1885
1886/*
1887 * pull_task - move a task from a remote runqueue to the local runqueue.
1888 * Both runqueues must be locked.
1889 */
858119e1 1890static
1da177e4
LT
1891void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1892 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1893{
1894 dequeue_task(p, src_array);
2dd73a4f 1895 dec_nr_running(p, src_rq);
1da177e4 1896 set_task_cpu(p, this_cpu);
2dd73a4f 1897 inc_nr_running(p, this_rq);
1da177e4
LT
1898 enqueue_task(p, this_array);
1899 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1900 + this_rq->timestamp_last_tick;
1901 /*
1902 * Note that idle threads have a prio of MAX_PRIO, for this test
1903 * to be always true for them.
1904 */
1905 if (TASK_PREEMPTS_CURR(p, this_rq))
1906 resched_task(this_rq->curr);
1907}
1908
1909/*
1910 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1911 */
858119e1 1912static
1da177e4 1913int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1914 struct sched_domain *sd, enum idle_type idle,
1915 int *all_pinned)
1da177e4
LT
1916{
1917 /*
1918 * We do not migrate tasks that are:
1919 * 1) running (obviously), or
1920 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1921 * 3) are cache-hot on their current CPU.
1922 */
1da177e4
LT
1923 if (!cpu_isset(this_cpu, p->cpus_allowed))
1924 return 0;
81026794
NP
1925 *all_pinned = 0;
1926
1927 if (task_running(rq, p))
1928 return 0;
1da177e4
LT
1929
1930 /*
1931 * Aggressive migration if:
cafb20c1 1932 * 1) task is cache cold, or
1da177e4
LT
1933 * 2) too many balance attempts have failed.
1934 */
1935
cafb20c1 1936 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1937 return 1;
1938
1939 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1940 return 0;
1da177e4
LT
1941 return 1;
1942}
1943
615052dc 1944#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
1da177e4 1945/*
2dd73a4f
PW
1946 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
1947 * load from busiest to this_rq, as part of a balancing operation within
1948 * "domain". Returns the number of tasks moved.
1da177e4
LT
1949 *
1950 * Called with both runqueues locked.
1951 */
1952static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
2dd73a4f
PW
1953 unsigned long max_nr_move, unsigned long max_load_move,
1954 struct sched_domain *sd, enum idle_type idle,
1955 int *all_pinned)
1da177e4
LT
1956{
1957 prio_array_t *array, *dst_array;
1958 struct list_head *head, *curr;
615052dc
PW
1959 int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
1960 int busiest_best_prio_seen;
1961 int skip_for_load; /* skip the task based on weighted load issues */
2dd73a4f 1962 long rem_load_move;
1da177e4
LT
1963 task_t *tmp;
1964
2dd73a4f 1965 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
1966 goto out;
1967
2dd73a4f 1968 rem_load_move = max_load_move;
81026794 1969 pinned = 1;
615052dc
PW
1970 this_best_prio = rq_best_prio(this_rq);
1971 busiest_best_prio = rq_best_prio(busiest);
1972 /*
1973 * Enable handling of the case where there is more than one task
1974 * with the best priority. If the current running task is one
1975 * of those with prio==busiest_best_prio we know it won't be moved
1976 * and therefore it's safe to override the skip (based on load) of
1977 * any task we find with that prio.
1978 */
1979 busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
81026794 1980
1da177e4
LT
1981 /*
1982 * We first consider expired tasks. Those will likely not be
1983 * executed in the near future, and they are most likely to
1984 * be cache-cold, thus switching CPUs has the least effect
1985 * on them.
1986 */
1987 if (busiest->expired->nr_active) {
1988 array = busiest->expired;
1989 dst_array = this_rq->expired;
1990 } else {
1991 array = busiest->active;
1992 dst_array = this_rq->active;
1993 }
1994
1995new_array:
1996 /* Start searching at priority 0: */
1997 idx = 0;
1998skip_bitmap:
1999 if (!idx)
2000 idx = sched_find_first_bit(array->bitmap);
2001 else
2002 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2003 if (idx >= MAX_PRIO) {
2004 if (array == busiest->expired && busiest->active->nr_active) {
2005 array = busiest->active;
2006 dst_array = this_rq->active;
2007 goto new_array;
2008 }
2009 goto out;
2010 }
2011
2012 head = array->queue + idx;
2013 curr = head->prev;
2014skip_queue:
2015 tmp = list_entry(curr, task_t, run_list);
2016
2017 curr = curr->prev;
2018
50ddd969
PW
2019 /*
2020 * To help distribute high priority tasks accross CPUs we don't
2021 * skip a task if it will be the highest priority task (i.e. smallest
2022 * prio value) on its new queue regardless of its load weight
2023 */
615052dc
PW
2024 skip_for_load = tmp->load_weight > rem_load_move;
2025 if (skip_for_load && idx < this_best_prio)
2026 skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
2027 if (skip_for_load ||
2dd73a4f 2028 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
615052dc 2029 busiest_best_prio_seen |= idx == busiest_best_prio;
1da177e4
LT
2030 if (curr != head)
2031 goto skip_queue;
2032 idx++;
2033 goto skip_bitmap;
2034 }
2035
2036#ifdef CONFIG_SCHEDSTATS
2037 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2038 schedstat_inc(sd, lb_hot_gained[idle]);
2039#endif
2040
2041 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2042 pulled++;
2dd73a4f 2043 rem_load_move -= tmp->load_weight;
1da177e4 2044
2dd73a4f
PW
2045 /*
2046 * We only want to steal up to the prescribed number of tasks
2047 * and the prescribed amount of weighted load.
2048 */
2049 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2050 if (idx < this_best_prio)
2051 this_best_prio = idx;
1da177e4
LT
2052 if (curr != head)
2053 goto skip_queue;
2054 idx++;
2055 goto skip_bitmap;
2056 }
2057out:
2058 /*
2059 * Right now, this is the only place pull_task() is called,
2060 * so we can safely collect pull_task() stats here rather than
2061 * inside pull_task().
2062 */
2063 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2064
2065 if (all_pinned)
2066 *all_pinned = pinned;
1da177e4
LT
2067 return pulled;
2068}
2069
2070/*
2071 * find_busiest_group finds and returns the busiest CPU group within the
2dd73a4f 2072 * domain. It calculates and returns the amount of weighted load which should be
1da177e4
LT
2073 * moved to restore balance via the imbalance parameter.
2074 */
2075static struct sched_group *
2076find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 2077 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
2078{
2079 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2080 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2081 unsigned long max_pull;
2dd73a4f
PW
2082 unsigned long busiest_load_per_task, busiest_nr_running;
2083 unsigned long this_load_per_task, this_nr_running;
7897986b 2084 int load_idx;
1da177e4
LT
2085
2086 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2087 busiest_load_per_task = busiest_nr_running = 0;
2088 this_load_per_task = this_nr_running = 0;
7897986b
NP
2089 if (idle == NOT_IDLE)
2090 load_idx = sd->busy_idx;
2091 else if (idle == NEWLY_IDLE)
2092 load_idx = sd->newidle_idx;
2093 else
2094 load_idx = sd->idle_idx;
1da177e4
LT
2095
2096 do {
2097 unsigned long load;
2098 int local_group;
2099 int i;
2dd73a4f 2100 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2101
2102 local_group = cpu_isset(this_cpu, group->cpumask);
2103
2104 /* Tally up the load of all CPUs in the group */
2dd73a4f 2105 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2106
2107 for_each_cpu_mask(i, group->cpumask) {
2dd73a4f
PW
2108 runqueue_t *rq = cpu_rq(i);
2109
5969fe06
NP
2110 if (*sd_idle && !idle_cpu(i))
2111 *sd_idle = 0;
2112
1da177e4
LT
2113 /* Bias balancing toward cpus of our domain */
2114 if (local_group)
a2000572 2115 load = target_load(i, load_idx);
1da177e4 2116 else
a2000572 2117 load = source_load(i, load_idx);
1da177e4
LT
2118
2119 avg_load += load;
2dd73a4f
PW
2120 sum_nr_running += rq->nr_running;
2121 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2122 }
2123
2124 total_load += avg_load;
2125 total_pwr += group->cpu_power;
2126
2127 /* Adjust by relative CPU power of the group */
2128 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2129
2130 if (local_group) {
2131 this_load = avg_load;
2132 this = group;
2dd73a4f
PW
2133 this_nr_running = sum_nr_running;
2134 this_load_per_task = sum_weighted_load;
2135 } else if (avg_load > max_load &&
2136 sum_nr_running > group->cpu_power / SCHED_LOAD_SCALE) {
1da177e4
LT
2137 max_load = avg_load;
2138 busiest = group;
2dd73a4f
PW
2139 busiest_nr_running = sum_nr_running;
2140 busiest_load_per_task = sum_weighted_load;
1da177e4 2141 }
1da177e4
LT
2142 group = group->next;
2143 } while (group != sd->groups);
2144
2dd73a4f 2145 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2146 goto out_balanced;
2147
2148 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2149
2150 if (this_load >= avg_load ||
2151 100*max_load <= sd->imbalance_pct*this_load)
2152 goto out_balanced;
2153
2dd73a4f 2154 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2155 /*
2156 * We're trying to get all the cpus to the average_load, so we don't
2157 * want to push ourselves above the average load, nor do we wish to
2158 * reduce the max loaded cpu below the average load, as either of these
2159 * actions would just result in more rebalancing later, and ping-pong
2160 * tasks around. Thus we look for the minimum possible imbalance.
2161 * Negative imbalances (*we* are more loaded than anyone else) will
2162 * be counted as no imbalance for these purposes -- we can't fix that
2163 * by pulling tasks to us. Be careful of negative numbers as they'll
2164 * appear as very large values with unsigned longs.
2165 */
2dd73a4f
PW
2166 if (max_load <= busiest_load_per_task)
2167 goto out_balanced;
2168
2169 /*
2170 * In the presence of smp nice balancing, certain scenarios can have
2171 * max load less than avg load(as we skip the groups at or below
2172 * its cpu_power, while calculating max_load..)
2173 */
2174 if (max_load < avg_load) {
2175 *imbalance = 0;
2176 goto small_imbalance;
2177 }
0c117f1b
SS
2178
2179 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2180 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2181
1da177e4 2182 /* How much load to actually move to equalise the imbalance */
0c117f1b 2183 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2184 (avg_load - this_load) * this->cpu_power)
2185 / SCHED_LOAD_SCALE;
2186
2dd73a4f
PW
2187 /*
2188 * if *imbalance is less than the average load per runnable task
2189 * there is no gaurantee that any tasks will be moved so we'll have
2190 * a think about bumping its value to force at least one task to be
2191 * moved
2192 */
2193 if (*imbalance < busiest_load_per_task) {
2194 unsigned long pwr_now, pwr_move;
1da177e4 2195 unsigned long tmp;
2dd73a4f
PW
2196 unsigned int imbn;
2197
2198small_imbalance:
2199 pwr_move = pwr_now = 0;
2200 imbn = 2;
2201 if (this_nr_running) {
2202 this_load_per_task /= this_nr_running;
2203 if (busiest_load_per_task > this_load_per_task)
2204 imbn = 1;
2205 } else
2206 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2207
2dd73a4f
PW
2208 if (max_load - this_load >= busiest_load_per_task * imbn) {
2209 *imbalance = busiest_load_per_task;
1da177e4
LT
2210 return busiest;
2211 }
2212
2213 /*
2214 * OK, we don't have enough imbalance to justify moving tasks,
2215 * however we may be able to increase total CPU power used by
2216 * moving them.
2217 */
2218
2dd73a4f
PW
2219 pwr_now += busiest->cpu_power *
2220 min(busiest_load_per_task, max_load);
2221 pwr_now += this->cpu_power *
2222 min(this_load_per_task, this_load);
1da177e4
LT
2223 pwr_now /= SCHED_LOAD_SCALE;
2224
2225 /* Amount of load we'd subtract */
2dd73a4f 2226 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
1da177e4 2227 if (max_load > tmp)
2dd73a4f
PW
2228 pwr_move += busiest->cpu_power *
2229 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2230
2231 /* Amount of load we'd add */
2232 if (max_load*busiest->cpu_power <
2dd73a4f 2233 busiest_load_per_task*SCHED_LOAD_SCALE)
1da177e4
LT
2234 tmp = max_load*busiest->cpu_power/this->cpu_power;
2235 else
2dd73a4f
PW
2236 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2237 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
1da177e4
LT
2238 pwr_move /= SCHED_LOAD_SCALE;
2239
2240 /* Move if we gain throughput */
2241 if (pwr_move <= pwr_now)
2242 goto out_balanced;
2243
2dd73a4f 2244 *imbalance = busiest_load_per_task;
1da177e4
LT
2245 }
2246
1da177e4
LT
2247 return busiest;
2248
2249out_balanced:
1da177e4
LT
2250
2251 *imbalance = 0;
2252 return NULL;
2253}
2254
2255/*
2256 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2257 */
b910472d 2258static runqueue_t *find_busiest_queue(struct sched_group *group,
2dd73a4f 2259 enum idle_type idle, unsigned long imbalance)
1da177e4 2260{
2dd73a4f
PW
2261 unsigned long max_load = 0;
2262 runqueue_t *busiest = NULL, *rqi;
1da177e4
LT
2263 int i;
2264
2265 for_each_cpu_mask(i, group->cpumask) {
2dd73a4f
PW
2266 rqi = cpu_rq(i);
2267
2268 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2269 continue;
1da177e4 2270
2dd73a4f
PW
2271 if (rqi->raw_weighted_load > max_load) {
2272 max_load = rqi->raw_weighted_load;
2273 busiest = rqi;
1da177e4
LT
2274 }
2275 }
2276
2277 return busiest;
2278}
2279
77391d71
NP
2280/*
2281 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2282 * so long as it is large enough.
2283 */
2284#define MAX_PINNED_INTERVAL 512
2285
2dd73a4f 2286#define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
1da177e4
LT
2287/*
2288 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2289 * tasks if there is an imbalance.
2290 *
2291 * Called with this_rq unlocked.
2292 */
2293static int load_balance(int this_cpu, runqueue_t *this_rq,
2294 struct sched_domain *sd, enum idle_type idle)
2295{
2296 struct sched_group *group;
2297 runqueue_t *busiest;
2298 unsigned long imbalance;
77391d71 2299 int nr_moved, all_pinned = 0;
81026794 2300 int active_balance = 0;
5969fe06
NP
2301 int sd_idle = 0;
2302
2303 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2304 sd_idle = 1;
1da177e4 2305
1da177e4
LT
2306 schedstat_inc(sd, lb_cnt[idle]);
2307
5969fe06 2308 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2309 if (!group) {
2310 schedstat_inc(sd, lb_nobusyg[idle]);
2311 goto out_balanced;
2312 }
2313
2dd73a4f 2314 busiest = find_busiest_queue(group, idle, imbalance);
1da177e4
LT
2315 if (!busiest) {
2316 schedstat_inc(sd, lb_nobusyq[idle]);
2317 goto out_balanced;
2318 }
2319
db935dbd 2320 BUG_ON(busiest == this_rq);
1da177e4
LT
2321
2322 schedstat_add(sd, lb_imbalance[idle], imbalance);
2323
2324 nr_moved = 0;
2325 if (busiest->nr_running > 1) {
2326 /*
2327 * Attempt to move tasks. If find_busiest_group has found
2328 * an imbalance but busiest->nr_running <= 1, the group is
2329 * still unbalanced. nr_moved simply stays zero, so it is
2330 * correctly treated as an imbalance.
2331 */
e17224bf 2332 double_rq_lock(this_rq, busiest);
1da177e4 2333 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2334 minus_1_or_zero(busiest->nr_running),
d6d5cfaf 2335 imbalance, sd, idle, &all_pinned);
e17224bf 2336 double_rq_unlock(this_rq, busiest);
81026794
NP
2337
2338 /* All tasks on this runqueue were pinned by CPU affinity */
2339 if (unlikely(all_pinned))
2340 goto out_balanced;
1da177e4 2341 }
81026794 2342
1da177e4
LT
2343 if (!nr_moved) {
2344 schedstat_inc(sd, lb_failed[idle]);
2345 sd->nr_balance_failed++;
2346
2347 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2348
2349 spin_lock(&busiest->lock);
fa3b6ddc
SS
2350
2351 /* don't kick the migration_thread, if the curr
2352 * task on busiest cpu can't be moved to this_cpu
2353 */
2354 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2355 spin_unlock(&busiest->lock);
2356 all_pinned = 1;
2357 goto out_one_pinned;
2358 }
2359
1da177e4
LT
2360 if (!busiest->active_balance) {
2361 busiest->active_balance = 1;
2362 busiest->push_cpu = this_cpu;
81026794 2363 active_balance = 1;
1da177e4
LT
2364 }
2365 spin_unlock(&busiest->lock);
81026794 2366 if (active_balance)
1da177e4
LT
2367 wake_up_process(busiest->migration_thread);
2368
2369 /*
2370 * We've kicked active balancing, reset the failure
2371 * counter.
2372 */
39507451 2373 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2374 }
81026794 2375 } else
1da177e4
LT
2376 sd->nr_balance_failed = 0;
2377
81026794 2378 if (likely(!active_balance)) {
1da177e4
LT
2379 /* We were unbalanced, so reset the balancing interval */
2380 sd->balance_interval = sd->min_interval;
81026794
NP
2381 } else {
2382 /*
2383 * If we've begun active balancing, start to back off. This
2384 * case may not be covered by the all_pinned logic if there
2385 * is only 1 task on the busy runqueue (because we don't call
2386 * move_tasks).
2387 */
2388 if (sd->balance_interval < sd->max_interval)
2389 sd->balance_interval *= 2;
1da177e4
LT
2390 }
2391
5969fe06
NP
2392 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2393 return -1;
1da177e4
LT
2394 return nr_moved;
2395
2396out_balanced:
1da177e4
LT
2397 schedstat_inc(sd, lb_balanced[idle]);
2398
16cfb1c0 2399 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2400
2401out_one_pinned:
1da177e4 2402 /* tune up the balancing interval */
77391d71
NP
2403 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2404 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2405 sd->balance_interval *= 2;
2406
5969fe06
NP
2407 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2408 return -1;
1da177e4
LT
2409 return 0;
2410}
2411
2412/*
2413 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2414 * tasks if there is an imbalance.
2415 *
2416 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2417 * this_rq is locked.
2418 */
2419static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2420 struct sched_domain *sd)
2421{
2422 struct sched_group *group;
2423 runqueue_t *busiest = NULL;
2424 unsigned long imbalance;
2425 int nr_moved = 0;
5969fe06
NP
2426 int sd_idle = 0;
2427
2428 if (sd->flags & SD_SHARE_CPUPOWER)
2429 sd_idle = 1;
1da177e4
LT
2430
2431 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2432 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2433 if (!group) {
1da177e4 2434 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2435 goto out_balanced;
1da177e4
LT
2436 }
2437
2dd73a4f 2438 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
db935dbd 2439 if (!busiest) {
1da177e4 2440 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2441 goto out_balanced;
1da177e4
LT
2442 }
2443
db935dbd
NP
2444 BUG_ON(busiest == this_rq);
2445
1da177e4 2446 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2447
2448 nr_moved = 0;
2449 if (busiest->nr_running > 1) {
2450 /* Attempt to move tasks */
2451 double_lock_balance(this_rq, busiest);
2452 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2453 minus_1_or_zero(busiest->nr_running),
81026794 2454 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2455 spin_unlock(&busiest->lock);
2456 }
2457
5969fe06 2458 if (!nr_moved) {
1da177e4 2459 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2460 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2461 return -1;
2462 } else
16cfb1c0 2463 sd->nr_balance_failed = 0;
1da177e4 2464
1da177e4 2465 return nr_moved;
16cfb1c0
NP
2466
2467out_balanced:
2468 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5969fe06
NP
2469 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2470 return -1;
16cfb1c0
NP
2471 sd->nr_balance_failed = 0;
2472 return 0;
1da177e4
LT
2473}
2474
2475/*
2476 * idle_balance is called by schedule() if this_cpu is about to become
2477 * idle. Attempts to pull tasks from other CPUs.
2478 */
858119e1 2479static void idle_balance(int this_cpu, runqueue_t *this_rq)
1da177e4
LT
2480{
2481 struct sched_domain *sd;
2482
2483 for_each_domain(this_cpu, sd) {
2484 if (sd->flags & SD_BALANCE_NEWIDLE) {
2485 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2486 /* We've pulled tasks over so stop searching */
2487 break;
2488 }
2489 }
2490 }
2491}
2492
2493/*
2494 * active_load_balance is run by migration threads. It pushes running tasks
2495 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2496 * running on each physical CPU where possible, and avoids physical /
2497 * logical imbalances.
2498 *
2499 * Called with busiest_rq locked.
2500 */
2501static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2502{
2503 struct sched_domain *sd;
1da177e4 2504 runqueue_t *target_rq;
39507451
NP
2505 int target_cpu = busiest_rq->push_cpu;
2506
2507 if (busiest_rq->nr_running <= 1)
2508 /* no task to move */
2509 return;
2510
2511 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2512
2513 /*
39507451
NP
2514 * This condition is "impossible", if it occurs
2515 * we need to fix it. Originally reported by
2516 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2517 */
39507451 2518 BUG_ON(busiest_rq == target_rq);
1da177e4 2519
39507451
NP
2520 /* move a task from busiest_rq to target_rq */
2521 double_lock_balance(busiest_rq, target_rq);
2522
2523 /* Search for an sd spanning us and the target CPU. */
c96d145e 2524 for_each_domain(target_cpu, sd) {
39507451
NP
2525 if ((sd->flags & SD_LOAD_BALANCE) &&
2526 cpu_isset(busiest_cpu, sd->span))
2527 break;
c96d145e 2528 }
39507451
NP
2529
2530 if (unlikely(sd == NULL))
2531 goto out;
2532
2533 schedstat_inc(sd, alb_cnt);
2534
2dd73a4f
PW
2535 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2536 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
39507451
NP
2537 schedstat_inc(sd, alb_pushed);
2538 else
2539 schedstat_inc(sd, alb_failed);
2540out:
2541 spin_unlock(&target_rq->lock);
1da177e4
LT
2542}
2543
2544/*
2545 * rebalance_tick will get called every timer tick, on every CPU.
2546 *
2547 * It checks each scheduling domain to see if it is due to be balanced,
2548 * and initiates a balancing operation if so.
2549 *
2550 * Balancing parameters are set up in arch_init_sched_domains.
2551 */
2552
2553/* Don't have all balancing operations going off at once */
2554#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2555
2556static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2557 enum idle_type idle)
2558{
2559 unsigned long old_load, this_load;
2560 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2561 struct sched_domain *sd;
7897986b 2562 int i;
1da177e4 2563
2dd73a4f 2564 this_load = this_rq->raw_weighted_load;
7897986b
NP
2565 /* Update our load */
2566 for (i = 0; i < 3; i++) {
2567 unsigned long new_load = this_load;
2568 int scale = 1 << i;
2569 old_load = this_rq->cpu_load[i];
2570 /*
2571 * Round up the averaging division if load is increasing. This
2572 * prevents us from getting stuck on 9 if the load is 10, for
2573 * example.
2574 */
2575 if (new_load > old_load)
2576 new_load += scale-1;
2577 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2578 }
1da177e4
LT
2579
2580 for_each_domain(this_cpu, sd) {
2581 unsigned long interval;
2582
2583 if (!(sd->flags & SD_LOAD_BALANCE))
2584 continue;
2585
2586 interval = sd->balance_interval;
2587 if (idle != SCHED_IDLE)
2588 interval *= sd->busy_factor;
2589
2590 /* scale ms to jiffies */
2591 interval = msecs_to_jiffies(interval);
2592 if (unlikely(!interval))
2593 interval = 1;
2594
2595 if (j - sd->last_balance >= interval) {
2596 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2597 /*
2598 * We've pulled tasks over so either we're no
5969fe06
NP
2599 * longer idle, or one of our SMT siblings is
2600 * not idle.
2601 */
1da177e4
LT
2602 idle = NOT_IDLE;
2603 }
2604 sd->last_balance += interval;
2605 }
2606 }
2607}
2608#else
2609/*
2610 * on UP we do not need to balance between CPUs:
2611 */
2612static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2613{
2614}
2615static inline void idle_balance(int cpu, runqueue_t *rq)
2616{
2617}
2618#endif
2619
2620static inline int wake_priority_sleeper(runqueue_t *rq)
2621{
2622 int ret = 0;
2623#ifdef CONFIG_SCHED_SMT
2624 spin_lock(&rq->lock);
2625 /*
2626 * If an SMT sibling task has been put to sleep for priority
2627 * reasons reschedule the idle task to see if it can now run.
2628 */
2629 if (rq->nr_running) {
2630 resched_task(rq->idle);
2631 ret = 1;
2632 }
2633 spin_unlock(&rq->lock);
2634#endif
2635 return ret;
2636}
2637
2638DEFINE_PER_CPU(struct kernel_stat, kstat);
2639
2640EXPORT_PER_CPU_SYMBOL(kstat);
2641
2642/*
2643 * This is called on clock ticks and on context switches.
2644 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2645 */
2646static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2647 unsigned long long now)
2648{
2649 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2650 p->sched_time += now - last;
2651}
2652
2653/*
2654 * Return current->sched_time plus any more ns on the sched_clock
2655 * that have not yet been banked.
2656 */
2657unsigned long long current_sched_time(const task_t *tsk)
2658{
2659 unsigned long long ns;
2660 unsigned long flags;
2661 local_irq_save(flags);
2662 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2663 ns = tsk->sched_time + (sched_clock() - ns);
2664 local_irq_restore(flags);
2665 return ns;
2666}
2667
f1adad78
LT
2668/*
2669 * We place interactive tasks back into the active array, if possible.
2670 *
2671 * To guarantee that this does not starve expired tasks we ignore the
2672 * interactivity of a task if the first expired task had to wait more
2673 * than a 'reasonable' amount of time. This deadline timeout is
2674 * load-dependent, as the frequency of array switched decreases with
2675 * increasing number of running tasks. We also ignore the interactivity
2676 * if a better static_prio task has expired:
2677 */
2678#define EXPIRED_STARVING(rq) \
2679 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2680 (jiffies - (rq)->expired_timestamp >= \
2681 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2682 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2683
1da177e4
LT
2684/*
2685 * Account user cpu time to a process.
2686 * @p: the process that the cpu time gets accounted to
2687 * @hardirq_offset: the offset to subtract from hardirq_count()
2688 * @cputime: the cpu time spent in user space since the last update
2689 */
2690void account_user_time(struct task_struct *p, cputime_t cputime)
2691{
2692 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2693 cputime64_t tmp;
2694
2695 p->utime = cputime_add(p->utime, cputime);
2696
2697 /* Add user time to cpustat. */
2698 tmp = cputime_to_cputime64(cputime);
2699 if (TASK_NICE(p) > 0)
2700 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2701 else
2702 cpustat->user = cputime64_add(cpustat->user, tmp);
2703}
2704
2705/*
2706 * Account system cpu time to a process.
2707 * @p: the process that the cpu time gets accounted to
2708 * @hardirq_offset: the offset to subtract from hardirq_count()
2709 * @cputime: the cpu time spent in kernel space since the last update
2710 */
2711void account_system_time(struct task_struct *p, int hardirq_offset,
2712 cputime_t cputime)
2713{
2714 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2715 runqueue_t *rq = this_rq();
2716 cputime64_t tmp;
2717
2718 p->stime = cputime_add(p->stime, cputime);
2719
2720 /* Add system time to cpustat. */
2721 tmp = cputime_to_cputime64(cputime);
2722 if (hardirq_count() - hardirq_offset)
2723 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2724 else if (softirq_count())
2725 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2726 else if (p != rq->idle)
2727 cpustat->system = cputime64_add(cpustat->system, tmp);
2728 else if (atomic_read(&rq->nr_iowait) > 0)
2729 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2730 else
2731 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2732 /* Account for system time used */
2733 acct_update_integrals(p);
1da177e4
LT
2734}
2735
2736/*
2737 * Account for involuntary wait time.
2738 * @p: the process from which the cpu time has been stolen
2739 * @steal: the cpu time spent in involuntary wait
2740 */
2741void account_steal_time(struct task_struct *p, cputime_t steal)
2742{
2743 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2744 cputime64_t tmp = cputime_to_cputime64(steal);
2745 runqueue_t *rq = this_rq();
2746
2747 if (p == rq->idle) {
2748 p->stime = cputime_add(p->stime, steal);
2749 if (atomic_read(&rq->nr_iowait) > 0)
2750 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2751 else
2752 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2753 } else
2754 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2755}
2756
2757/*
2758 * This function gets called by the timer code, with HZ frequency.
2759 * We call it with interrupts disabled.
2760 *
2761 * It also gets called by the fork code, when changing the parent's
2762 * timeslices.
2763 */
2764void scheduler_tick(void)
2765{
2766 int cpu = smp_processor_id();
2767 runqueue_t *rq = this_rq();
2768 task_t *p = current;
2769 unsigned long long now = sched_clock();
2770
2771 update_cpu_clock(p, rq, now);
2772
2773 rq->timestamp_last_tick = now;
2774
2775 if (p == rq->idle) {
2776 if (wake_priority_sleeper(rq))
2777 goto out;
2778 rebalance_tick(cpu, rq, SCHED_IDLE);
2779 return;
2780 }
2781
2782 /* Task might have expired already, but not scheduled off yet */
2783 if (p->array != rq->active) {
2784 set_tsk_need_resched(p);
2785 goto out;
2786 }
2787 spin_lock(&rq->lock);
2788 /*
2789 * The task was running during this tick - update the
2790 * time slice counter. Note: we do not update a thread's
2791 * priority until it either goes to sleep or uses up its
2792 * timeslice. This makes it possible for interactive tasks
2793 * to use up their timeslices at their highest priority levels.
2794 */
2795 if (rt_task(p)) {
2796 /*
2797 * RR tasks need a special form of timeslice management.
2798 * FIFO tasks have no timeslices.
2799 */
2800 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2801 p->time_slice = task_timeslice(p);
2802 p->first_time_slice = 0;
2803 set_tsk_need_resched(p);
2804
2805 /* put it at the end of the queue: */
2806 requeue_task(p, rq->active);
2807 }
2808 goto out_unlock;
2809 }
2810 if (!--p->time_slice) {
2811 dequeue_task(p, rq->active);
2812 set_tsk_need_resched(p);
2813 p->prio = effective_prio(p);
2814 p->time_slice = task_timeslice(p);
2815 p->first_time_slice = 0;
2816
2817 if (!rq->expired_timestamp)
2818 rq->expired_timestamp = jiffies;
f1adad78 2819 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
1da177e4
LT
2820 enqueue_task(p, rq->expired);
2821 if (p->static_prio < rq->best_expired_prio)
2822 rq->best_expired_prio = p->static_prio;
2823 } else
2824 enqueue_task(p, rq->active);
2825 } else {
2826 /*
2827 * Prevent a too long timeslice allowing a task to monopolize
2828 * the CPU. We do this by splitting up the timeslice into
2829 * smaller pieces.
2830 *
2831 * Note: this does not mean the task's timeslices expire or
2832 * get lost in any way, they just might be preempted by
2833 * another task of equal priority. (one with higher
2834 * priority would have preempted this task already.) We
2835 * requeue this task to the end of the list on this priority
2836 * level, which is in essence a round-robin of tasks with
2837 * equal priority.
2838 *
2839 * This only applies to tasks in the interactive
2840 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2841 */
2842 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2843 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2844 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2845 (p->array == rq->active)) {
2846
2847 requeue_task(p, rq->active);
2848 set_tsk_need_resched(p);
2849 }
2850 }
2851out_unlock:
2852 spin_unlock(&rq->lock);
2853out:
2854 rebalance_tick(cpu, rq, NOT_IDLE);
2855}
2856
2857#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2858static inline void wakeup_busy_runqueue(runqueue_t *rq)
2859{
2860 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2861 if (rq->curr == rq->idle && rq->nr_running)
2862 resched_task(rq->idle);
2863}
2864
c96d145e
KC
2865/*
2866 * Called with interrupt disabled and this_rq's runqueue locked.
2867 */
2868static void wake_sleeping_dependent(int this_cpu)
1da177e4 2869{
41c7ce9a 2870 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2871 int i;
2872
c96d145e
KC
2873 for_each_domain(this_cpu, tmp) {
2874 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 2875 sd = tmp;
c96d145e
KC
2876 break;
2877 }
2878 }
41c7ce9a
NP
2879
2880 if (!sd)
1da177e4
LT
2881 return;
2882
c96d145e 2883 for_each_cpu_mask(i, sd->span) {
1da177e4
LT
2884 runqueue_t *smt_rq = cpu_rq(i);
2885
c96d145e
KC
2886 if (i == this_cpu)
2887 continue;
2888 if (unlikely(!spin_trylock(&smt_rq->lock)))
2889 continue;
2890
fc38ed75 2891 wakeup_busy_runqueue(smt_rq);
c96d145e 2892 spin_unlock(&smt_rq->lock);
1da177e4 2893 }
1da177e4
LT
2894}
2895
67f9a619
IM
2896/*
2897 * number of 'lost' timeslices this task wont be able to fully
2898 * utilize, if another task runs on a sibling. This models the
2899 * slowdown effect of other tasks running on siblings:
2900 */
2901static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2902{
2903 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2904}
2905
c96d145e
KC
2906/*
2907 * To minimise lock contention and not have to drop this_rq's runlock we only
2908 * trylock the sibling runqueues and bypass those runqueues if we fail to
2909 * acquire their lock. As we only trylock the normal locking order does not
2910 * need to be obeyed.
2911 */
2912static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
1da177e4 2913{
41c7ce9a 2914 struct sched_domain *tmp, *sd = NULL;
1da177e4 2915 int ret = 0, i;
1da177e4 2916
c96d145e
KC
2917 /* kernel/rt threads do not participate in dependent sleeping */
2918 if (!p->mm || rt_task(p))
2919 return 0;
2920
2921 for_each_domain(this_cpu, tmp) {
2922 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 2923 sd = tmp;
c96d145e
KC
2924 break;
2925 }
2926 }
41c7ce9a
NP
2927
2928 if (!sd)
1da177e4
LT
2929 return 0;
2930
c96d145e
KC
2931 for_each_cpu_mask(i, sd->span) {
2932 runqueue_t *smt_rq;
2933 task_t *smt_curr;
1da177e4 2934
c96d145e
KC
2935 if (i == this_cpu)
2936 continue;
1da177e4 2937
c96d145e
KC
2938 smt_rq = cpu_rq(i);
2939 if (unlikely(!spin_trylock(&smt_rq->lock)))
2940 continue;
1da177e4 2941
c96d145e 2942 smt_curr = smt_rq->curr;
1da177e4 2943
c96d145e
KC
2944 if (!smt_curr->mm)
2945 goto unlock;
fc38ed75 2946
1da177e4
LT
2947 /*
2948 * If a user task with lower static priority than the
2949 * running task on the SMT sibling is trying to schedule,
2950 * delay it till there is proportionately less timeslice
2951 * left of the sibling task to prevent a lower priority
2952 * task from using an unfair proportion of the
2953 * physical cpu's resources. -ck
2954 */
fc38ed75
CK
2955 if (rt_task(smt_curr)) {
2956 /*
2957 * With real time tasks we run non-rt tasks only
2958 * per_cpu_gain% of the time.
2959 */
2960 if ((jiffies % DEF_TIMESLICE) >
2961 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2962 ret = 1;
c96d145e 2963 } else {
67f9a619
IM
2964 if (smt_curr->static_prio < p->static_prio &&
2965 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2966 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 2967 ret = 1;
fc38ed75 2968 }
c96d145e
KC
2969unlock:
2970 spin_unlock(&smt_rq->lock);
1da177e4 2971 }
1da177e4
LT
2972 return ret;
2973}
2974#else
c96d145e 2975static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
2976{
2977}
2978
c96d145e
KC
2979static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
2980 task_t *p)
1da177e4
LT
2981{
2982 return 0;
2983}
2984#endif
2985
2986#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2987
2988void fastcall add_preempt_count(int val)
2989{
2990 /*
2991 * Underflow?
2992 */
be5b4fbd 2993 BUG_ON((preempt_count() < 0));
1da177e4
LT
2994 preempt_count() += val;
2995 /*
2996 * Spinlock count overflowing soon?
2997 */
2998 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2999}
3000EXPORT_SYMBOL(add_preempt_count);
3001
3002void fastcall sub_preempt_count(int val)
3003{
3004 /*
3005 * Underflow?
3006 */
3007 BUG_ON(val > preempt_count());
3008 /*
3009 * Is the spinlock portion underflowing?
3010 */
3011 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
3012 preempt_count() -= val;
3013}
3014EXPORT_SYMBOL(sub_preempt_count);
3015
3016#endif
3017
3dee386e
CK
3018static inline int interactive_sleep(enum sleep_type sleep_type)
3019{
3020 return (sleep_type == SLEEP_INTERACTIVE ||
3021 sleep_type == SLEEP_INTERRUPTED);
3022}
3023
1da177e4
LT
3024/*
3025 * schedule() is the main scheduler function.
3026 */
3027asmlinkage void __sched schedule(void)
3028{
3029 long *switch_count;
3030 task_t *prev, *next;
3031 runqueue_t *rq;
3032 prio_array_t *array;
3033 struct list_head *queue;
3034 unsigned long long now;
3035 unsigned long run_time;
a3464a10 3036 int cpu, idx, new_prio;
1da177e4
LT
3037
3038 /*
3039 * Test if we are atomic. Since do_exit() needs to call into
3040 * schedule() atomically, we ignore that path for now.
3041 * Otherwise, whine if we are scheduling when we should not be.
3042 */
77e4bfbc
AM
3043 if (unlikely(in_atomic() && !current->exit_state)) {
3044 printk(KERN_ERR "BUG: scheduling while atomic: "
3045 "%s/0x%08x/%d\n",
3046 current->comm, preempt_count(), current->pid);
3047 dump_stack();
1da177e4
LT
3048 }
3049 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3050
3051need_resched:
3052 preempt_disable();
3053 prev = current;
3054 release_kernel_lock(prev);
3055need_resched_nonpreemptible:
3056 rq = this_rq();
3057
3058 /*
3059 * The idle thread is not allowed to schedule!
3060 * Remove this check after it has been exercised a bit.
3061 */
3062 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3063 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3064 dump_stack();
3065 }
3066
3067 schedstat_inc(rq, sched_cnt);
3068 now = sched_clock();
238628ed 3069 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3070 run_time = now - prev->timestamp;
238628ed 3071 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3072 run_time = 0;
3073 } else
3074 run_time = NS_MAX_SLEEP_AVG;
3075
3076 /*
3077 * Tasks charged proportionately less run_time at high sleep_avg to
3078 * delay them losing their interactive status
3079 */
3080 run_time /= (CURRENT_BONUS(prev) ? : 1);
3081
3082 spin_lock_irq(&rq->lock);
3083
3084 if (unlikely(prev->flags & PF_DEAD))
3085 prev->state = EXIT_DEAD;
3086
3087 switch_count = &prev->nivcsw;
3088 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3089 switch_count = &prev->nvcsw;
3090 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3091 unlikely(signal_pending(prev))))
3092 prev->state = TASK_RUNNING;
3093 else {
3094 if (prev->state == TASK_UNINTERRUPTIBLE)
3095 rq->nr_uninterruptible++;
3096 deactivate_task(prev, rq);
3097 }
3098 }
3099
3100 cpu = smp_processor_id();
3101 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3102 idle_balance(cpu, rq);
3103 if (!rq->nr_running) {
3104 next = rq->idle;
3105 rq->expired_timestamp = 0;
c96d145e 3106 wake_sleeping_dependent(cpu);
1da177e4
LT
3107 goto switch_tasks;
3108 }
1da177e4
LT
3109 }
3110
3111 array = rq->active;
3112 if (unlikely(!array->nr_active)) {
3113 /*
3114 * Switch the active and expired arrays.
3115 */
3116 schedstat_inc(rq, sched_switch);
3117 rq->active = rq->expired;
3118 rq->expired = array;
3119 array = rq->active;
3120 rq->expired_timestamp = 0;
3121 rq->best_expired_prio = MAX_PRIO;
3122 }
3123
3124 idx = sched_find_first_bit(array->bitmap);
3125 queue = array->queue + idx;
3126 next = list_entry(queue->next, task_t, run_list);
3127
3dee386e 3128 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3129 unsigned long long delta = now - next->timestamp;
238628ed 3130 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3131 delta = 0;
3132
3dee386e 3133 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3134 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3135
3136 array = next->array;
a3464a10
CS
3137 new_prio = recalc_task_prio(next, next->timestamp + delta);
3138
3139 if (unlikely(next->prio != new_prio)) {
3140 dequeue_task(next, array);
3141 next->prio = new_prio;
3142 enqueue_task(next, array);
7c4bb1f9 3143 }
1da177e4 3144 }
3dee386e 3145 next->sleep_type = SLEEP_NORMAL;
c96d145e
KC
3146 if (dependent_sleeper(cpu, rq, next))
3147 next = rq->idle;
1da177e4
LT
3148switch_tasks:
3149 if (next == rq->idle)
3150 schedstat_inc(rq, sched_goidle);
3151 prefetch(next);
383f2835 3152 prefetch_stack(next);
1da177e4
LT
3153 clear_tsk_need_resched(prev);
3154 rcu_qsctr_inc(task_cpu(prev));
3155
3156 update_cpu_clock(prev, rq, now);
3157
3158 prev->sleep_avg -= run_time;
3159 if ((long)prev->sleep_avg <= 0)
3160 prev->sleep_avg = 0;
3161 prev->timestamp = prev->last_ran = now;
3162
3163 sched_info_switch(prev, next);
3164 if (likely(prev != next)) {
3165 next->timestamp = now;
3166 rq->nr_switches++;
3167 rq->curr = next;
3168 ++*switch_count;
3169
4866cde0 3170 prepare_task_switch(rq, next);
1da177e4
LT
3171 prev = context_switch(rq, prev, next);
3172 barrier();
4866cde0
NP
3173 /*
3174 * this_rq must be evaluated again because prev may have moved
3175 * CPUs since it called schedule(), thus the 'rq' on its stack
3176 * frame will be invalid.
3177 */
3178 finish_task_switch(this_rq(), prev);
1da177e4
LT
3179 } else
3180 spin_unlock_irq(&rq->lock);
3181
3182 prev = current;
3183 if (unlikely(reacquire_kernel_lock(prev) < 0))
3184 goto need_resched_nonpreemptible;
3185 preempt_enable_no_resched();
3186 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3187 goto need_resched;
3188}
3189
3190EXPORT_SYMBOL(schedule);
3191
3192#ifdef CONFIG_PREEMPT
3193/*
3194 * this is is the entry point to schedule() from in-kernel preemption
3195 * off of preempt_enable. Kernel preemptions off return from interrupt
3196 * occur there and call schedule directly.
3197 */
3198asmlinkage void __sched preempt_schedule(void)
3199{
3200 struct thread_info *ti = current_thread_info();
3201#ifdef CONFIG_PREEMPT_BKL
3202 struct task_struct *task = current;
3203 int saved_lock_depth;
3204#endif
3205 /*
3206 * If there is a non-zero preempt_count or interrupts are disabled,
3207 * we do not want to preempt the current task. Just return..
3208 */
3209 if (unlikely(ti->preempt_count || irqs_disabled()))
3210 return;
3211
3212need_resched:
3213 add_preempt_count(PREEMPT_ACTIVE);
3214 /*
3215 * We keep the big kernel semaphore locked, but we
3216 * clear ->lock_depth so that schedule() doesnt
3217 * auto-release the semaphore:
3218 */
3219#ifdef CONFIG_PREEMPT_BKL
3220 saved_lock_depth = task->lock_depth;
3221 task->lock_depth = -1;
3222#endif
3223 schedule();
3224#ifdef CONFIG_PREEMPT_BKL
3225 task->lock_depth = saved_lock_depth;
3226#endif
3227 sub_preempt_count(PREEMPT_ACTIVE);
3228
3229 /* we could miss a preemption opportunity between schedule and now */
3230 barrier();
3231 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3232 goto need_resched;
3233}
3234
3235EXPORT_SYMBOL(preempt_schedule);
3236
3237/*
3238 * this is is the entry point to schedule() from kernel preemption
3239 * off of irq context.
3240 * Note, that this is called and return with irqs disabled. This will
3241 * protect us against recursive calling from irq.
3242 */
3243asmlinkage void __sched preempt_schedule_irq(void)
3244{
3245 struct thread_info *ti = current_thread_info();
3246#ifdef CONFIG_PREEMPT_BKL
3247 struct task_struct *task = current;
3248 int saved_lock_depth;
3249#endif
3250 /* Catch callers which need to be fixed*/
3251 BUG_ON(ti->preempt_count || !irqs_disabled());
3252
3253need_resched:
3254 add_preempt_count(PREEMPT_ACTIVE);
3255 /*
3256 * We keep the big kernel semaphore locked, but we
3257 * clear ->lock_depth so that schedule() doesnt
3258 * auto-release the semaphore:
3259 */
3260#ifdef CONFIG_PREEMPT_BKL
3261 saved_lock_depth = task->lock_depth;
3262 task->lock_depth = -1;
3263#endif
3264 local_irq_enable();
3265 schedule();
3266 local_irq_disable();
3267#ifdef CONFIG_PREEMPT_BKL
3268 task->lock_depth = saved_lock_depth;
3269#endif
3270 sub_preempt_count(PREEMPT_ACTIVE);
3271
3272 /* we could miss a preemption opportunity between schedule and now */
3273 barrier();
3274 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3275 goto need_resched;
3276}
3277
3278#endif /* CONFIG_PREEMPT */
3279
95cdf3b7
IM
3280int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3281 void *key)
1da177e4 3282{
c43dc2fd 3283 task_t *p = curr->private;
1da177e4
LT
3284 return try_to_wake_up(p, mode, sync);
3285}
3286
3287EXPORT_SYMBOL(default_wake_function);
3288
3289/*
3290 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3291 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3292 * number) then we wake all the non-exclusive tasks and one exclusive task.
3293 *
3294 * There are circumstances in which we can try to wake a task which has already
3295 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3296 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3297 */
3298static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3299 int nr_exclusive, int sync, void *key)
3300{
3301 struct list_head *tmp, *next;
3302
3303 list_for_each_safe(tmp, next, &q->task_list) {
3304 wait_queue_t *curr;
3305 unsigned flags;
3306 curr = list_entry(tmp, wait_queue_t, task_list);
3307 flags = curr->flags;
3308 if (curr->func(curr, mode, sync, key) &&
3309 (flags & WQ_FLAG_EXCLUSIVE) &&
3310 !--nr_exclusive)
3311 break;
3312 }
3313}
3314
3315/**
3316 * __wake_up - wake up threads blocked on a waitqueue.
3317 * @q: the waitqueue
3318 * @mode: which threads
3319 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3320 * @key: is directly passed to the wakeup function
1da177e4
LT
3321 */
3322void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3323 int nr_exclusive, void *key)
1da177e4
LT
3324{
3325 unsigned long flags;
3326
3327 spin_lock_irqsave(&q->lock, flags);
3328 __wake_up_common(q, mode, nr_exclusive, 0, key);
3329 spin_unlock_irqrestore(&q->lock, flags);
3330}
3331
3332EXPORT_SYMBOL(__wake_up);
3333
3334/*
3335 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3336 */
3337void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3338{
3339 __wake_up_common(q, mode, 1, 0, NULL);
3340}
3341
3342/**
67be2dd1 3343 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3344 * @q: the waitqueue
3345 * @mode: which threads
3346 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3347 *
3348 * The sync wakeup differs that the waker knows that it will schedule
3349 * away soon, so while the target thread will be woken up, it will not
3350 * be migrated to another CPU - ie. the two threads are 'synchronized'
3351 * with each other. This can prevent needless bouncing between CPUs.
3352 *
3353 * On UP it can prevent extra preemption.
3354 */
95cdf3b7
IM
3355void fastcall
3356__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3357{
3358 unsigned long flags;
3359 int sync = 1;
3360
3361 if (unlikely(!q))
3362 return;
3363
3364 if (unlikely(!nr_exclusive))
3365 sync = 0;
3366
3367 spin_lock_irqsave(&q->lock, flags);
3368 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3369 spin_unlock_irqrestore(&q->lock, flags);
3370}
3371EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3372
3373void fastcall complete(struct completion *x)
3374{
3375 unsigned long flags;
3376
3377 spin_lock_irqsave(&x->wait.lock, flags);
3378 x->done++;
3379 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3380 1, 0, NULL);
3381 spin_unlock_irqrestore(&x->wait.lock, flags);
3382}
3383EXPORT_SYMBOL(complete);
3384
3385void fastcall complete_all(struct completion *x)
3386{
3387 unsigned long flags;
3388
3389 spin_lock_irqsave(&x->wait.lock, flags);
3390 x->done += UINT_MAX/2;
3391 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3392 0, 0, NULL);
3393 spin_unlock_irqrestore(&x->wait.lock, flags);
3394}
3395EXPORT_SYMBOL(complete_all);
3396
3397void fastcall __sched wait_for_completion(struct completion *x)
3398{
3399 might_sleep();
3400 spin_lock_irq(&x->wait.lock);
3401 if (!x->done) {
3402 DECLARE_WAITQUEUE(wait, current);
3403
3404 wait.flags |= WQ_FLAG_EXCLUSIVE;
3405 __add_wait_queue_tail(&x->wait, &wait);
3406 do {
3407 __set_current_state(TASK_UNINTERRUPTIBLE);
3408 spin_unlock_irq(&x->wait.lock);
3409 schedule();
3410 spin_lock_irq(&x->wait.lock);
3411 } while (!x->done);
3412 __remove_wait_queue(&x->wait, &wait);
3413 }
3414 x->done--;
3415 spin_unlock_irq(&x->wait.lock);
3416}
3417EXPORT_SYMBOL(wait_for_completion);
3418
3419unsigned long fastcall __sched
3420wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3421{
3422 might_sleep();
3423
3424 spin_lock_irq(&x->wait.lock);
3425 if (!x->done) {
3426 DECLARE_WAITQUEUE(wait, current);
3427
3428 wait.flags |= WQ_FLAG_EXCLUSIVE;
3429 __add_wait_queue_tail(&x->wait, &wait);
3430 do {
3431 __set_current_state(TASK_UNINTERRUPTIBLE);
3432 spin_unlock_irq(&x->wait.lock);
3433 timeout = schedule_timeout(timeout);
3434 spin_lock_irq(&x->wait.lock);
3435 if (!timeout) {
3436 __remove_wait_queue(&x->wait, &wait);
3437 goto out;
3438 }
3439 } while (!x->done);
3440 __remove_wait_queue(&x->wait, &wait);
3441 }
3442 x->done--;
3443out:
3444 spin_unlock_irq(&x->wait.lock);
3445 return timeout;
3446}
3447EXPORT_SYMBOL(wait_for_completion_timeout);
3448
3449int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3450{
3451 int ret = 0;
3452
3453 might_sleep();
3454
3455 spin_lock_irq(&x->wait.lock);
3456 if (!x->done) {
3457 DECLARE_WAITQUEUE(wait, current);
3458
3459 wait.flags |= WQ_FLAG_EXCLUSIVE;
3460 __add_wait_queue_tail(&x->wait, &wait);
3461 do {
3462 if (signal_pending(current)) {
3463 ret = -ERESTARTSYS;
3464 __remove_wait_queue(&x->wait, &wait);
3465 goto out;
3466 }
3467 __set_current_state(TASK_INTERRUPTIBLE);
3468 spin_unlock_irq(&x->wait.lock);
3469 schedule();
3470 spin_lock_irq(&x->wait.lock);
3471 } while (!x->done);
3472 __remove_wait_queue(&x->wait, &wait);
3473 }
3474 x->done--;
3475out:
3476 spin_unlock_irq(&x->wait.lock);
3477
3478 return ret;
3479}
3480EXPORT_SYMBOL(wait_for_completion_interruptible);
3481
3482unsigned long fastcall __sched
3483wait_for_completion_interruptible_timeout(struct completion *x,
3484 unsigned long timeout)
3485{
3486 might_sleep();
3487
3488 spin_lock_irq(&x->wait.lock);
3489 if (!x->done) {
3490 DECLARE_WAITQUEUE(wait, current);
3491
3492 wait.flags |= WQ_FLAG_EXCLUSIVE;
3493 __add_wait_queue_tail(&x->wait, &wait);
3494 do {
3495 if (signal_pending(current)) {
3496 timeout = -ERESTARTSYS;
3497 __remove_wait_queue(&x->wait, &wait);
3498 goto out;
3499 }
3500 __set_current_state(TASK_INTERRUPTIBLE);
3501 spin_unlock_irq(&x->wait.lock);
3502 timeout = schedule_timeout(timeout);
3503 spin_lock_irq(&x->wait.lock);
3504 if (!timeout) {
3505 __remove_wait_queue(&x->wait, &wait);
3506 goto out;
3507 }
3508 } while (!x->done);
3509 __remove_wait_queue(&x->wait, &wait);
3510 }
3511 x->done--;
3512out:
3513 spin_unlock_irq(&x->wait.lock);
3514 return timeout;
3515}
3516EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3517
3518
3519#define SLEEP_ON_VAR \
3520 unsigned long flags; \
3521 wait_queue_t wait; \
3522 init_waitqueue_entry(&wait, current);
3523
3524#define SLEEP_ON_HEAD \
3525 spin_lock_irqsave(&q->lock,flags); \
3526 __add_wait_queue(q, &wait); \
3527 spin_unlock(&q->lock);
3528
3529#define SLEEP_ON_TAIL \
3530 spin_lock_irq(&q->lock); \
3531 __remove_wait_queue(q, &wait); \
3532 spin_unlock_irqrestore(&q->lock, flags);
3533
3534void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3535{
3536 SLEEP_ON_VAR
3537
3538 current->state = TASK_INTERRUPTIBLE;
3539
3540 SLEEP_ON_HEAD
3541 schedule();
3542 SLEEP_ON_TAIL
3543}
3544
3545EXPORT_SYMBOL(interruptible_sleep_on);
3546
95cdf3b7
IM
3547long fastcall __sched
3548interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3549{
3550 SLEEP_ON_VAR
3551
3552 current->state = TASK_INTERRUPTIBLE;
3553
3554 SLEEP_ON_HEAD
3555 timeout = schedule_timeout(timeout);
3556 SLEEP_ON_TAIL
3557
3558 return timeout;
3559}
3560
3561EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3562
3563void fastcall __sched sleep_on(wait_queue_head_t *q)
3564{
3565 SLEEP_ON_VAR
3566
3567 current->state = TASK_UNINTERRUPTIBLE;
3568
3569 SLEEP_ON_HEAD
3570 schedule();
3571 SLEEP_ON_TAIL
3572}
3573
3574EXPORT_SYMBOL(sleep_on);
3575
3576long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3577{
3578 SLEEP_ON_VAR
3579
3580 current->state = TASK_UNINTERRUPTIBLE;
3581
3582 SLEEP_ON_HEAD
3583 timeout = schedule_timeout(timeout);
3584 SLEEP_ON_TAIL
3585
3586 return timeout;
3587}
3588
3589EXPORT_SYMBOL(sleep_on_timeout);
3590
3591void set_user_nice(task_t *p, long nice)
3592{
3593 unsigned long flags;
3594 prio_array_t *array;
3595 runqueue_t *rq;
3596 int old_prio, new_prio, delta;
3597
3598 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3599 return;
3600 /*
3601 * We have to be careful, if called from sys_setpriority(),
3602 * the task might be in the middle of scheduling on another CPU.
3603 */
3604 rq = task_rq_lock(p, &flags);
3605 /*
3606 * The RT priorities are set via sched_setscheduler(), but we still
3607 * allow the 'normal' nice value to be set - but as expected
3608 * it wont have any effect on scheduling until the task is
b0a9499c 3609 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4
LT
3610 */
3611 if (rt_task(p)) {
3612 p->static_prio = NICE_TO_PRIO(nice);
3613 goto out_unlock;
3614 }
3615 array = p->array;
2dd73a4f 3616 if (array) {
1da177e4 3617 dequeue_task(p, array);
2dd73a4f
PW
3618 dec_raw_weighted_load(rq, p);
3619 }
1da177e4
LT
3620
3621 old_prio = p->prio;
3622 new_prio = NICE_TO_PRIO(nice);
3623 delta = new_prio - old_prio;
3624 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3625 set_load_weight(p);
1da177e4
LT
3626 p->prio += delta;
3627
3628 if (array) {
3629 enqueue_task(p, array);
2dd73a4f 3630 inc_raw_weighted_load(rq, p);
1da177e4
LT
3631 /*
3632 * If the task increased its priority or is running and
3633 * lowered its priority, then reschedule its CPU:
3634 */
3635 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3636 resched_task(rq->curr);
3637 }
3638out_unlock:
3639 task_rq_unlock(rq, &flags);
3640}
3641
3642EXPORT_SYMBOL(set_user_nice);
3643
e43379f1
MM
3644/*
3645 * can_nice - check if a task can reduce its nice value
3646 * @p: task
3647 * @nice: nice value
3648 */
3649int can_nice(const task_t *p, const int nice)
3650{
024f4747
MM
3651 /* convert nice value [19,-20] to rlimit style value [1,40] */
3652 int nice_rlim = 20 - nice;
e43379f1
MM
3653 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3654 capable(CAP_SYS_NICE));
3655}
3656
1da177e4
LT
3657#ifdef __ARCH_WANT_SYS_NICE
3658
3659/*
3660 * sys_nice - change the priority of the current process.
3661 * @increment: priority increment
3662 *
3663 * sys_setpriority is a more generic, but much slower function that
3664 * does similar things.
3665 */
3666asmlinkage long sys_nice(int increment)
3667{
3668 int retval;
3669 long nice;
3670
3671 /*
3672 * Setpriority might change our priority at the same moment.
3673 * We don't have to worry. Conceptually one call occurs first
3674 * and we have a single winner.
3675 */
e43379f1
MM
3676 if (increment < -40)
3677 increment = -40;
1da177e4
LT
3678 if (increment > 40)
3679 increment = 40;
3680
3681 nice = PRIO_TO_NICE(current->static_prio) + increment;
3682 if (nice < -20)
3683 nice = -20;
3684 if (nice > 19)
3685 nice = 19;
3686
e43379f1
MM
3687 if (increment < 0 && !can_nice(current, nice))
3688 return -EPERM;
3689
1da177e4
LT
3690 retval = security_task_setnice(current, nice);
3691 if (retval)
3692 return retval;
3693
3694 set_user_nice(current, nice);
3695 return 0;
3696}
3697
3698#endif
3699
3700/**
3701 * task_prio - return the priority value of a given task.
3702 * @p: the task in question.
3703 *
3704 * This is the priority value as seen by users in /proc.
3705 * RT tasks are offset by -200. Normal tasks are centered
3706 * around 0, value goes from -16 to +15.
3707 */
3708int task_prio(const task_t *p)
3709{
3710 return p->prio - MAX_RT_PRIO;
3711}
3712
3713/**
3714 * task_nice - return the nice value of a given task.
3715 * @p: the task in question.
3716 */
3717int task_nice(const task_t *p)
3718{
3719 return TASK_NICE(p);
3720}
1da177e4 3721EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3722
3723/**
3724 * idle_cpu - is a given cpu idle currently?
3725 * @cpu: the processor in question.
3726 */
3727int idle_cpu(int cpu)
3728{
3729 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3730}
3731
1da177e4
LT
3732/**
3733 * idle_task - return the idle task for a given cpu.
3734 * @cpu: the processor in question.
3735 */
3736task_t *idle_task(int cpu)
3737{
3738 return cpu_rq(cpu)->idle;
3739}
3740
3741/**
3742 * find_process_by_pid - find a process with a matching PID value.
3743 * @pid: the pid in question.
3744 */
3745static inline task_t *find_process_by_pid(pid_t pid)
3746{
3747 return pid ? find_task_by_pid(pid) : current;
3748}
3749
3750/* Actually do priority change: must hold rq lock. */
3751static void __setscheduler(struct task_struct *p, int policy, int prio)
3752{
3753 BUG_ON(p->array);
3754 p->policy = policy;
3755 p->rt_priority = prio;
b0a9499c 3756 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
d46523ea 3757 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
b0a9499c 3758 } else {
1da177e4 3759 p->prio = p->static_prio;
b0a9499c
IM
3760 /*
3761 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3762 */
3763 if (policy == SCHED_BATCH)
3764 p->sleep_avg = 0;
3765 }
2dd73a4f 3766 set_load_weight(p);
1da177e4
LT
3767}
3768
3769/**
3770 * sched_setscheduler - change the scheduling policy and/or RT priority of
3771 * a thread.
3772 * @p: the task in question.
3773 * @policy: new policy.
3774 * @param: structure containing the new RT priority.
3775 */
95cdf3b7
IM
3776int sched_setscheduler(struct task_struct *p, int policy,
3777 struct sched_param *param)
1da177e4
LT
3778{
3779 int retval;
3780 int oldprio, oldpolicy = -1;
3781 prio_array_t *array;
3782 unsigned long flags;
3783 runqueue_t *rq;
3784
3785recheck:
3786 /* double check policy once rq lock held */
3787 if (policy < 0)
3788 policy = oldpolicy = p->policy;
3789 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
3790 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3791 return -EINVAL;
1da177e4
LT
3792 /*
3793 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
3794 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3795 * SCHED_BATCH is 0.
1da177e4
LT
3796 */
3797 if (param->sched_priority < 0 ||
95cdf3b7 3798 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3799 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3800 return -EINVAL;
b0a9499c
IM
3801 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3802 != (param->sched_priority == 0))
1da177e4
LT
3803 return -EINVAL;
3804
37e4ab3f
OC
3805 /*
3806 * Allow unprivileged RT tasks to decrease priority:
3807 */
3808 if (!capable(CAP_SYS_NICE)) {
b0a9499c
IM
3809 /*
3810 * can't change policy, except between SCHED_NORMAL
3811 * and SCHED_BATCH:
3812 */
3813 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3814 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3815 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3816 return -EPERM;
3817 /* can't increase priority */
b0a9499c 3818 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
37e4ab3f
OC
3819 param->sched_priority > p->rt_priority &&
3820 param->sched_priority >
3821 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3822 return -EPERM;
3823 /* can't change other user's priorities */
3824 if ((current->euid != p->euid) &&
3825 (current->euid != p->uid))
3826 return -EPERM;
3827 }
1da177e4
LT
3828
3829 retval = security_task_setscheduler(p, policy, param);
3830 if (retval)
3831 return retval;
3832 /*
3833 * To be able to change p->policy safely, the apropriate
3834 * runqueue lock must be held.
3835 */
3836 rq = task_rq_lock(p, &flags);
3837 /* recheck policy now with rq lock held */
3838 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3839 policy = oldpolicy = -1;
3840 task_rq_unlock(rq, &flags);
3841 goto recheck;
3842 }
3843 array = p->array;
3844 if (array)
3845 deactivate_task(p, rq);
3846 oldprio = p->prio;
3847 __setscheduler(p, policy, param->sched_priority);
3848 if (array) {
3849 __activate_task(p, rq);
3850 /*
3851 * Reschedule if we are currently running on this runqueue and
3852 * our priority decreased, or if we are not currently running on
3853 * this runqueue and our priority is higher than the current's
3854 */
3855 if (task_running(rq, p)) {
3856 if (p->prio > oldprio)
3857 resched_task(rq->curr);
3858 } else if (TASK_PREEMPTS_CURR(p, rq))
3859 resched_task(rq->curr);
3860 }
3861 task_rq_unlock(rq, &flags);
3862 return 0;
3863}
3864EXPORT_SYMBOL_GPL(sched_setscheduler);
3865
95cdf3b7
IM
3866static int
3867do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3868{
3869 int retval;
3870 struct sched_param lparam;
3871 struct task_struct *p;
3872
3873 if (!param || pid < 0)
3874 return -EINVAL;
3875 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3876 return -EFAULT;
3877 read_lock_irq(&tasklist_lock);
3878 p = find_process_by_pid(pid);
3879 if (!p) {
3880 read_unlock_irq(&tasklist_lock);
3881 return -ESRCH;
3882 }
3883 retval = sched_setscheduler(p, policy, &lparam);
3884 read_unlock_irq(&tasklist_lock);
3885 return retval;
3886}
3887
3888/**
3889 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3890 * @pid: the pid in question.
3891 * @policy: new policy.
3892 * @param: structure containing the new RT priority.
3893 */
3894asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3895 struct sched_param __user *param)
3896{
c21761f1
JB
3897 /* negative values for policy are not valid */
3898 if (policy < 0)
3899 return -EINVAL;
3900
1da177e4
LT
3901 return do_sched_setscheduler(pid, policy, param);
3902}
3903
3904/**
3905 * sys_sched_setparam - set/change the RT priority of a thread
3906 * @pid: the pid in question.
3907 * @param: structure containing the new RT priority.
3908 */
3909asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3910{
3911 return do_sched_setscheduler(pid, -1, param);
3912}
3913
3914/**
3915 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3916 * @pid: the pid in question.
3917 */
3918asmlinkage long sys_sched_getscheduler(pid_t pid)
3919{
3920 int retval = -EINVAL;
3921 task_t *p;
3922
3923 if (pid < 0)
3924 goto out_nounlock;
3925
3926 retval = -ESRCH;
3927 read_lock(&tasklist_lock);
3928 p = find_process_by_pid(pid);
3929 if (p) {
3930 retval = security_task_getscheduler(p);
3931 if (!retval)
3932 retval = p->policy;
3933 }
3934 read_unlock(&tasklist_lock);
3935
3936out_nounlock:
3937 return retval;
3938}
3939
3940/**
3941 * sys_sched_getscheduler - get the RT priority of a thread
3942 * @pid: the pid in question.
3943 * @param: structure containing the RT priority.
3944 */
3945asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3946{
3947 struct sched_param lp;
3948 int retval = -EINVAL;
3949 task_t *p;
3950
3951 if (!param || pid < 0)
3952 goto out_nounlock;
3953
3954 read_lock(&tasklist_lock);
3955 p = find_process_by_pid(pid);
3956 retval = -ESRCH;
3957 if (!p)
3958 goto out_unlock;
3959
3960 retval = security_task_getscheduler(p);
3961 if (retval)
3962 goto out_unlock;
3963
3964 lp.sched_priority = p->rt_priority;
3965 read_unlock(&tasklist_lock);
3966
3967 /*
3968 * This one might sleep, we cannot do it with a spinlock held ...
3969 */
3970 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3971
3972out_nounlock:
3973 return retval;
3974
3975out_unlock:
3976 read_unlock(&tasklist_lock);
3977 return retval;
3978}
3979
3980long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3981{
3982 task_t *p;
3983 int retval;
3984 cpumask_t cpus_allowed;
3985
3986 lock_cpu_hotplug();
3987 read_lock(&tasklist_lock);
3988
3989 p = find_process_by_pid(pid);
3990 if (!p) {
3991 read_unlock(&tasklist_lock);
3992 unlock_cpu_hotplug();
3993 return -ESRCH;
3994 }
3995
3996 /*
3997 * It is not safe to call set_cpus_allowed with the
3998 * tasklist_lock held. We will bump the task_struct's
3999 * usage count and then drop tasklist_lock.
4000 */
4001 get_task_struct(p);
4002 read_unlock(&tasklist_lock);
4003
4004 retval = -EPERM;
4005 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4006 !capable(CAP_SYS_NICE))
4007 goto out_unlock;
4008
e7834f8f
DQ
4009 retval = security_task_setscheduler(p, 0, NULL);
4010 if (retval)
4011 goto out_unlock;
4012
1da177e4
LT
4013 cpus_allowed = cpuset_cpus_allowed(p);
4014 cpus_and(new_mask, new_mask, cpus_allowed);
4015 retval = set_cpus_allowed(p, new_mask);
4016
4017out_unlock:
4018 put_task_struct(p);
4019 unlock_cpu_hotplug();
4020 return retval;
4021}
4022
4023static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4024 cpumask_t *new_mask)
4025{
4026 if (len < sizeof(cpumask_t)) {
4027 memset(new_mask, 0, sizeof(cpumask_t));
4028 } else if (len > sizeof(cpumask_t)) {
4029 len = sizeof(cpumask_t);
4030 }
4031 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4032}
4033
4034/**
4035 * sys_sched_setaffinity - set the cpu affinity of a process
4036 * @pid: pid of the process
4037 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4038 * @user_mask_ptr: user-space pointer to the new cpu mask
4039 */
4040asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4041 unsigned long __user *user_mask_ptr)
4042{
4043 cpumask_t new_mask;
4044 int retval;
4045
4046 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4047 if (retval)
4048 return retval;
4049
4050 return sched_setaffinity(pid, new_mask);
4051}
4052
4053/*
4054 * Represents all cpu's present in the system
4055 * In systems capable of hotplug, this map could dynamically grow
4056 * as new cpu's are detected in the system via any platform specific
4057 * method, such as ACPI for e.g.
4058 */
4059
4cef0c61 4060cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4061EXPORT_SYMBOL(cpu_present_map);
4062
4063#ifndef CONFIG_SMP
4cef0c61
AK
4064cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4065cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
4066#endif
4067
4068long sched_getaffinity(pid_t pid, cpumask_t *mask)
4069{
4070 int retval;
4071 task_t *p;
4072
4073 lock_cpu_hotplug();
4074 read_lock(&tasklist_lock);
4075
4076 retval = -ESRCH;
4077 p = find_process_by_pid(pid);
4078 if (!p)
4079 goto out_unlock;
4080
e7834f8f
DQ
4081 retval = security_task_getscheduler(p);
4082 if (retval)
4083 goto out_unlock;
4084
2f7016d9 4085 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4086
4087out_unlock:
4088 read_unlock(&tasklist_lock);
4089 unlock_cpu_hotplug();
4090 if (retval)
4091 return retval;
4092
4093 return 0;
4094}
4095
4096/**
4097 * sys_sched_getaffinity - get the cpu affinity of a process
4098 * @pid: pid of the process
4099 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4100 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4101 */
4102asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4103 unsigned long __user *user_mask_ptr)
4104{
4105 int ret;
4106 cpumask_t mask;
4107
4108 if (len < sizeof(cpumask_t))
4109 return -EINVAL;
4110
4111 ret = sched_getaffinity(pid, &mask);
4112 if (ret < 0)
4113 return ret;
4114
4115 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4116 return -EFAULT;
4117
4118 return sizeof(cpumask_t);
4119}
4120
4121/**
4122 * sys_sched_yield - yield the current processor to other threads.
4123 *
4124 * this function yields the current CPU by moving the calling thread
4125 * to the expired array. If there are no other threads running on this
4126 * CPU then this function will return.
4127 */
4128asmlinkage long sys_sched_yield(void)
4129{
4130 runqueue_t *rq = this_rq_lock();
4131 prio_array_t *array = current->array;
4132 prio_array_t *target = rq->expired;
4133
4134 schedstat_inc(rq, yld_cnt);
4135 /*
4136 * We implement yielding by moving the task into the expired
4137 * queue.
4138 *
4139 * (special rule: RT tasks will just roundrobin in the active
4140 * array.)
4141 */
4142 if (rt_task(current))
4143 target = rq->active;
4144
5927ad78 4145 if (array->nr_active == 1) {
1da177e4
LT
4146 schedstat_inc(rq, yld_act_empty);
4147 if (!rq->expired->nr_active)
4148 schedstat_inc(rq, yld_both_empty);
4149 } else if (!rq->expired->nr_active)
4150 schedstat_inc(rq, yld_exp_empty);
4151
4152 if (array != target) {
4153 dequeue_task(current, array);
4154 enqueue_task(current, target);
4155 } else
4156 /*
4157 * requeue_task is cheaper so perform that if possible.
4158 */
4159 requeue_task(current, array);
4160
4161 /*
4162 * Since we are going to call schedule() anyway, there's
4163 * no need to preempt or enable interrupts:
4164 */
4165 __release(rq->lock);
4166 _raw_spin_unlock(&rq->lock);
4167 preempt_enable_no_resched();
4168
4169 schedule();
4170
4171 return 0;
4172}
4173
4174static inline void __cond_resched(void)
4175{
8e0a43d8
IM
4176#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4177 __might_sleep(__FILE__, __LINE__);
4178#endif
5bbcfd90
IM
4179 /*
4180 * The BKS might be reacquired before we have dropped
4181 * PREEMPT_ACTIVE, which could trigger a second
4182 * cond_resched() call.
4183 */
4184 if (unlikely(preempt_count()))
4185 return;
8ba7b0a1
LT
4186 if (unlikely(system_state != SYSTEM_RUNNING))
4187 return;
1da177e4
LT
4188 do {
4189 add_preempt_count(PREEMPT_ACTIVE);
4190 schedule();
4191 sub_preempt_count(PREEMPT_ACTIVE);
4192 } while (need_resched());
4193}
4194
4195int __sched cond_resched(void)
4196{
4197 if (need_resched()) {
4198 __cond_resched();
4199 return 1;
4200 }
4201 return 0;
4202}
4203
4204EXPORT_SYMBOL(cond_resched);
4205
4206/*
4207 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4208 * call schedule, and on return reacquire the lock.
4209 *
4210 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4211 * operations here to prevent schedule() from being called twice (once via
4212 * spin_unlock(), once by hand).
4213 */
95cdf3b7 4214int cond_resched_lock(spinlock_t *lock)
1da177e4 4215{
6df3cecb
JK
4216 int ret = 0;
4217
1da177e4
LT
4218 if (need_lockbreak(lock)) {
4219 spin_unlock(lock);
4220 cpu_relax();
6df3cecb 4221 ret = 1;
1da177e4
LT
4222 spin_lock(lock);
4223 }
4224 if (need_resched()) {
4225 _raw_spin_unlock(lock);
4226 preempt_enable_no_resched();
4227 __cond_resched();
6df3cecb 4228 ret = 1;
1da177e4 4229 spin_lock(lock);
1da177e4 4230 }
6df3cecb 4231 return ret;
1da177e4
LT
4232}
4233
4234EXPORT_SYMBOL(cond_resched_lock);
4235
4236int __sched cond_resched_softirq(void)
4237{
4238 BUG_ON(!in_softirq());
4239
4240 if (need_resched()) {
4241 __local_bh_enable();
4242 __cond_resched();
4243 local_bh_disable();
4244 return 1;
4245 }
4246 return 0;
4247}
4248
4249EXPORT_SYMBOL(cond_resched_softirq);
4250
4251
4252/**
4253 * yield - yield the current processor to other threads.
4254 *
4255 * this is a shortcut for kernel-space yielding - it marks the
4256 * thread runnable and calls sys_sched_yield().
4257 */
4258void __sched yield(void)
4259{
4260 set_current_state(TASK_RUNNING);
4261 sys_sched_yield();
4262}
4263
4264EXPORT_SYMBOL(yield);
4265
4266/*
4267 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4268 * that process accounting knows that this is a task in IO wait state.
4269 *
4270 * But don't do that if it is a deliberate, throttling IO wait (this task
4271 * has set its backing_dev_info: the queue against which it should throttle)
4272 */
4273void __sched io_schedule(void)
4274{
bfe5d834 4275 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4276
4277 atomic_inc(&rq->nr_iowait);
4278 schedule();
4279 atomic_dec(&rq->nr_iowait);
4280}
4281
4282EXPORT_SYMBOL(io_schedule);
4283
4284long __sched io_schedule_timeout(long timeout)
4285{
bfe5d834 4286 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4287 long ret;
4288
4289 atomic_inc(&rq->nr_iowait);
4290 ret = schedule_timeout(timeout);
4291 atomic_dec(&rq->nr_iowait);
4292 return ret;
4293}
4294
4295/**
4296 * sys_sched_get_priority_max - return maximum RT priority.
4297 * @policy: scheduling class.
4298 *
4299 * this syscall returns the maximum rt_priority that can be used
4300 * by a given scheduling class.
4301 */
4302asmlinkage long sys_sched_get_priority_max(int policy)
4303{
4304 int ret = -EINVAL;
4305
4306 switch (policy) {
4307 case SCHED_FIFO:
4308 case SCHED_RR:
4309 ret = MAX_USER_RT_PRIO-1;
4310 break;
4311 case SCHED_NORMAL:
b0a9499c 4312 case SCHED_BATCH:
1da177e4
LT
4313 ret = 0;
4314 break;
4315 }
4316 return ret;
4317}
4318
4319/**
4320 * sys_sched_get_priority_min - return minimum RT priority.
4321 * @policy: scheduling class.
4322 *
4323 * this syscall returns the minimum rt_priority that can be used
4324 * by a given scheduling class.
4325 */
4326asmlinkage long sys_sched_get_priority_min(int policy)
4327{
4328 int ret = -EINVAL;
4329
4330 switch (policy) {
4331 case SCHED_FIFO:
4332 case SCHED_RR:
4333 ret = 1;
4334 break;
4335 case SCHED_NORMAL:
b0a9499c 4336 case SCHED_BATCH:
1da177e4
LT
4337 ret = 0;
4338 }
4339 return ret;
4340}
4341
4342/**
4343 * sys_sched_rr_get_interval - return the default timeslice of a process.
4344 * @pid: pid of the process.
4345 * @interval: userspace pointer to the timeslice value.
4346 *
4347 * this syscall writes the default timeslice value of a given process
4348 * into the user-space timespec buffer. A value of '0' means infinity.
4349 */
4350asmlinkage
4351long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4352{
4353 int retval = -EINVAL;
4354 struct timespec t;
4355 task_t *p;
4356
4357 if (pid < 0)
4358 goto out_nounlock;
4359
4360 retval = -ESRCH;
4361 read_lock(&tasklist_lock);
4362 p = find_process_by_pid(pid);
4363 if (!p)
4364 goto out_unlock;
4365
4366 retval = security_task_getscheduler(p);
4367 if (retval)
4368 goto out_unlock;
4369
b78709cf 4370 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4371 0 : task_timeslice(p), &t);
4372 read_unlock(&tasklist_lock);
4373 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4374out_nounlock:
4375 return retval;
4376out_unlock:
4377 read_unlock(&tasklist_lock);
4378 return retval;
4379}
4380
4381static inline struct task_struct *eldest_child(struct task_struct *p)
4382{
4383 if (list_empty(&p->children)) return NULL;
4384 return list_entry(p->children.next,struct task_struct,sibling);
4385}
4386
4387static inline struct task_struct *older_sibling(struct task_struct *p)
4388{
4389 if (p->sibling.prev==&p->parent->children) return NULL;
4390 return list_entry(p->sibling.prev,struct task_struct,sibling);
4391}
4392
4393static inline struct task_struct *younger_sibling(struct task_struct *p)
4394{
4395 if (p->sibling.next==&p->parent->children) return NULL;
4396 return list_entry(p->sibling.next,struct task_struct,sibling);
4397}
4398
95cdf3b7 4399static void show_task(task_t *p)
1da177e4
LT
4400{
4401 task_t *relative;
4402 unsigned state;
4403 unsigned long free = 0;
4404 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4405
4406 printk("%-13.13s ", p->comm);
4407 state = p->state ? __ffs(p->state) + 1 : 0;
4408 if (state < ARRAY_SIZE(stat_nam))
4409 printk(stat_nam[state]);
4410 else
4411 printk("?");
4412#if (BITS_PER_LONG == 32)
4413 if (state == TASK_RUNNING)
4414 printk(" running ");
4415 else
4416 printk(" %08lX ", thread_saved_pc(p));
4417#else
4418 if (state == TASK_RUNNING)
4419 printk(" running task ");
4420 else
4421 printk(" %016lx ", thread_saved_pc(p));
4422#endif
4423#ifdef CONFIG_DEBUG_STACK_USAGE
4424 {
10ebffde 4425 unsigned long *n = end_of_stack(p);
1da177e4
LT
4426 while (!*n)
4427 n++;
10ebffde 4428 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4429 }
4430#endif
4431 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4432 if ((relative = eldest_child(p)))
4433 printk("%5d ", relative->pid);
4434 else
4435 printk(" ");
4436 if ((relative = younger_sibling(p)))
4437 printk("%7d", relative->pid);
4438 else
4439 printk(" ");
4440 if ((relative = older_sibling(p)))
4441 printk(" %5d", relative->pid);
4442 else
4443 printk(" ");
4444 if (!p->mm)
4445 printk(" (L-TLB)\n");
4446 else
4447 printk(" (NOTLB)\n");
4448
4449 if (state != TASK_RUNNING)
4450 show_stack(p, NULL);
4451}
4452
4453void show_state(void)
4454{
4455 task_t *g, *p;
4456
4457#if (BITS_PER_LONG == 32)
4458 printk("\n"
4459 " sibling\n");
4460 printk(" task PC pid father child younger older\n");
4461#else
4462 printk("\n"
4463 " sibling\n");
4464 printk(" task PC pid father child younger older\n");
4465#endif
4466 read_lock(&tasklist_lock);
4467 do_each_thread(g, p) {
4468 /*
4469 * reset the NMI-timeout, listing all files on a slow
4470 * console might take alot of time:
4471 */
4472 touch_nmi_watchdog();
4473 show_task(p);
4474 } while_each_thread(g, p);
4475
4476 read_unlock(&tasklist_lock);
de5097c2 4477 mutex_debug_show_all_locks();
1da177e4
LT
4478}
4479
f340c0d1
IM
4480/**
4481 * init_idle - set up an idle thread for a given CPU
4482 * @idle: task in question
4483 * @cpu: cpu the idle task belongs to
4484 *
4485 * NOTE: this function does not set the idle thread's NEED_RESCHED
4486 * flag, to make booting more robust.
4487 */
1da177e4
LT
4488void __devinit init_idle(task_t *idle, int cpu)
4489{
4490 runqueue_t *rq = cpu_rq(cpu);
4491 unsigned long flags;
4492
81c29a85 4493 idle->timestamp = sched_clock();
1da177e4
LT
4494 idle->sleep_avg = 0;
4495 idle->array = NULL;
4496 idle->prio = MAX_PRIO;
4497 idle->state = TASK_RUNNING;
4498 idle->cpus_allowed = cpumask_of_cpu(cpu);
4499 set_task_cpu(idle, cpu);
4500
4501 spin_lock_irqsave(&rq->lock, flags);
4502 rq->curr = rq->idle = idle;
4866cde0
NP
4503#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4504 idle->oncpu = 1;
4505#endif
1da177e4
LT
4506 spin_unlock_irqrestore(&rq->lock, flags);
4507
4508 /* Set the preempt count _outside_ the spinlocks! */
4509#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4510 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4511#else
a1261f54 4512 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4513#endif
4514}
4515
4516/*
4517 * In a system that switches off the HZ timer nohz_cpu_mask
4518 * indicates which cpus entered this state. This is used
4519 * in the rcu update to wait only for active cpus. For system
4520 * which do not switch off the HZ timer nohz_cpu_mask should
4521 * always be CPU_MASK_NONE.
4522 */
4523cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4524
4525#ifdef CONFIG_SMP
4526/*
4527 * This is how migration works:
4528 *
4529 * 1) we queue a migration_req_t structure in the source CPU's
4530 * runqueue and wake up that CPU's migration thread.
4531 * 2) we down() the locked semaphore => thread blocks.
4532 * 3) migration thread wakes up (implicitly it forces the migrated
4533 * thread off the CPU)
4534 * 4) it gets the migration request and checks whether the migrated
4535 * task is still in the wrong runqueue.
4536 * 5) if it's in the wrong runqueue then the migration thread removes
4537 * it and puts it into the right queue.
4538 * 6) migration thread up()s the semaphore.
4539 * 7) we wake up and the migration is done.
4540 */
4541
4542/*
4543 * Change a given task's CPU affinity. Migrate the thread to a
4544 * proper CPU and schedule it away if the CPU it's executing on
4545 * is removed from the allowed bitmask.
4546 *
4547 * NOTE: the caller must have a valid reference to the task, the
4548 * task must not exit() & deallocate itself prematurely. The
4549 * call is not atomic; no spinlocks may be held.
4550 */
4551int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4552{
4553 unsigned long flags;
4554 int ret = 0;
4555 migration_req_t req;
4556 runqueue_t *rq;
4557
4558 rq = task_rq_lock(p, &flags);
4559 if (!cpus_intersects(new_mask, cpu_online_map)) {
4560 ret = -EINVAL;
4561 goto out;
4562 }
4563
4564 p->cpus_allowed = new_mask;
4565 /* Can the task run on the task's current CPU? If so, we're done */
4566 if (cpu_isset(task_cpu(p), new_mask))
4567 goto out;
4568
4569 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4570 /* Need help from migration thread: drop lock and wait. */
4571 task_rq_unlock(rq, &flags);
4572 wake_up_process(rq->migration_thread);
4573 wait_for_completion(&req.done);
4574 tlb_migrate_finish(p->mm);
4575 return 0;
4576 }
4577out:
4578 task_rq_unlock(rq, &flags);
4579 return ret;
4580}
4581
4582EXPORT_SYMBOL_GPL(set_cpus_allowed);
4583
4584/*
4585 * Move (not current) task off this cpu, onto dest cpu. We're doing
4586 * this because either it can't run here any more (set_cpus_allowed()
4587 * away from this CPU, or CPU going down), or because we're
4588 * attempting to rebalance this task on exec (sched_exec).
4589 *
4590 * So we race with normal scheduler movements, but that's OK, as long
4591 * as the task is no longer on this CPU.
efc30814
KK
4592 *
4593 * Returns non-zero if task was successfully migrated.
1da177e4 4594 */
efc30814 4595static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4
LT
4596{
4597 runqueue_t *rq_dest, *rq_src;
efc30814 4598 int ret = 0;
1da177e4
LT
4599
4600 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4601 return ret;
1da177e4
LT
4602
4603 rq_src = cpu_rq(src_cpu);
4604 rq_dest = cpu_rq(dest_cpu);
4605
4606 double_rq_lock(rq_src, rq_dest);
4607 /* Already moved. */
4608 if (task_cpu(p) != src_cpu)
4609 goto out;
4610 /* Affinity changed (again). */
4611 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4612 goto out;
4613
4614 set_task_cpu(p, dest_cpu);
4615 if (p->array) {
4616 /*
4617 * Sync timestamp with rq_dest's before activating.
4618 * The same thing could be achieved by doing this step
4619 * afterwards, and pretending it was a local activate.
4620 * This way is cleaner and logically correct.
4621 */
4622 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4623 + rq_dest->timestamp_last_tick;
4624 deactivate_task(p, rq_src);
4625 activate_task(p, rq_dest, 0);
4626 if (TASK_PREEMPTS_CURR(p, rq_dest))
4627 resched_task(rq_dest->curr);
4628 }
efc30814 4629 ret = 1;
1da177e4
LT
4630out:
4631 double_rq_unlock(rq_src, rq_dest);
efc30814 4632 return ret;
1da177e4
LT
4633}
4634
4635/*
4636 * migration_thread - this is a highprio system thread that performs
4637 * thread migration by bumping thread off CPU then 'pushing' onto
4638 * another runqueue.
4639 */
95cdf3b7 4640static int migration_thread(void *data)
1da177e4
LT
4641{
4642 runqueue_t *rq;
4643 int cpu = (long)data;
4644
4645 rq = cpu_rq(cpu);
4646 BUG_ON(rq->migration_thread != current);
4647
4648 set_current_state(TASK_INTERRUPTIBLE);
4649 while (!kthread_should_stop()) {
4650 struct list_head *head;
4651 migration_req_t *req;
4652
3e1d1d28 4653 try_to_freeze();
1da177e4
LT
4654
4655 spin_lock_irq(&rq->lock);
4656
4657 if (cpu_is_offline(cpu)) {
4658 spin_unlock_irq(&rq->lock);
4659 goto wait_to_die;
4660 }
4661
4662 if (rq->active_balance) {
4663 active_load_balance(rq, cpu);
4664 rq->active_balance = 0;
4665 }
4666
4667 head = &rq->migration_queue;
4668
4669 if (list_empty(head)) {
4670 spin_unlock_irq(&rq->lock);
4671 schedule();
4672 set_current_state(TASK_INTERRUPTIBLE);
4673 continue;
4674 }
4675 req = list_entry(head->next, migration_req_t, list);
4676 list_del_init(head->next);
4677
674311d5
NP
4678 spin_unlock(&rq->lock);
4679 __migrate_task(req->task, cpu, req->dest_cpu);
4680 local_irq_enable();
1da177e4
LT
4681
4682 complete(&req->done);
4683 }
4684 __set_current_state(TASK_RUNNING);
4685 return 0;
4686
4687wait_to_die:
4688 /* Wait for kthread_stop */
4689 set_current_state(TASK_INTERRUPTIBLE);
4690 while (!kthread_should_stop()) {
4691 schedule();
4692 set_current_state(TASK_INTERRUPTIBLE);
4693 }
4694 __set_current_state(TASK_RUNNING);
4695 return 0;
4696}
4697
4698#ifdef CONFIG_HOTPLUG_CPU
4699/* Figure out where task on dead CPU should go, use force if neccessary. */
4700static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4701{
efc30814
KK
4702 runqueue_t *rq;
4703 unsigned long flags;
1da177e4
LT
4704 int dest_cpu;
4705 cpumask_t mask;
4706
efc30814 4707restart:
1da177e4
LT
4708 /* On same node? */
4709 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4710 cpus_and(mask, mask, tsk->cpus_allowed);
4711 dest_cpu = any_online_cpu(mask);
4712
4713 /* On any allowed CPU? */
4714 if (dest_cpu == NR_CPUS)
4715 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4716
4717 /* No more Mr. Nice Guy. */
4718 if (dest_cpu == NR_CPUS) {
efc30814 4719 rq = task_rq_lock(tsk, &flags);
b39c4fab 4720 cpus_setall(tsk->cpus_allowed);
1da177e4 4721 dest_cpu = any_online_cpu(tsk->cpus_allowed);
efc30814 4722 task_rq_unlock(rq, &flags);
1da177e4
LT
4723
4724 /*
4725 * Don't tell them about moving exiting tasks or
4726 * kernel threads (both mm NULL), since they never
4727 * leave kernel.
4728 */
4729 if (tsk->mm && printk_ratelimit())
4730 printk(KERN_INFO "process %d (%s) no "
4731 "longer affine to cpu%d\n",
4732 tsk->pid, tsk->comm, dead_cpu);
4733 }
efc30814
KK
4734 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4735 goto restart;
1da177e4
LT
4736}
4737
4738/*
4739 * While a dead CPU has no uninterruptible tasks queued at this point,
4740 * it might still have a nonzero ->nr_uninterruptible counter, because
4741 * for performance reasons the counter is not stricly tracking tasks to
4742 * their home CPUs. So we just add the counter to another CPU's counter,
4743 * to keep the global sum constant after CPU-down:
4744 */
4745static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4746{
4747 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4748 unsigned long flags;
4749
4750 local_irq_save(flags);
4751 double_rq_lock(rq_src, rq_dest);
4752 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4753 rq_src->nr_uninterruptible = 0;
4754 double_rq_unlock(rq_src, rq_dest);
4755 local_irq_restore(flags);
4756}
4757
4758/* Run through task list and migrate tasks from the dead cpu. */
4759static void migrate_live_tasks(int src_cpu)
4760{
4761 struct task_struct *tsk, *t;
4762
4763 write_lock_irq(&tasklist_lock);
4764
4765 do_each_thread(t, tsk) {
4766 if (tsk == current)
4767 continue;
4768
4769 if (task_cpu(tsk) == src_cpu)
4770 move_task_off_dead_cpu(src_cpu, tsk);
4771 } while_each_thread(t, tsk);
4772
4773 write_unlock_irq(&tasklist_lock);
4774}
4775
4776/* Schedules idle task to be the next runnable task on current CPU.
4777 * It does so by boosting its priority to highest possible and adding it to
4778 * the _front_ of runqueue. Used by CPU offline code.
4779 */
4780void sched_idle_next(void)
4781{
4782 int cpu = smp_processor_id();
4783 runqueue_t *rq = this_rq();
4784 struct task_struct *p = rq->idle;
4785 unsigned long flags;
4786
4787 /* cpu has to be offline */
4788 BUG_ON(cpu_online(cpu));
4789
4790 /* Strictly not necessary since rest of the CPUs are stopped by now
4791 * and interrupts disabled on current cpu.
4792 */
4793 spin_lock_irqsave(&rq->lock, flags);
4794
4795 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4796 /* Add idle task to _front_ of it's priority queue */
4797 __activate_idle_task(p, rq);
4798
4799 spin_unlock_irqrestore(&rq->lock, flags);
4800}
4801
4802/* Ensures that the idle task is using init_mm right before its cpu goes
4803 * offline.
4804 */
4805void idle_task_exit(void)
4806{
4807 struct mm_struct *mm = current->active_mm;
4808
4809 BUG_ON(cpu_online(smp_processor_id()));
4810
4811 if (mm != &init_mm)
4812 switch_mm(mm, &init_mm, current);
4813 mmdrop(mm);
4814}
4815
4816static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4817{
4818 struct runqueue *rq = cpu_rq(dead_cpu);
4819
4820 /* Must be exiting, otherwise would be on tasklist. */
4821 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4822
4823 /* Cannot have done final schedule yet: would have vanished. */
4824 BUG_ON(tsk->flags & PF_DEAD);
4825
4826 get_task_struct(tsk);
4827
4828 /*
4829 * Drop lock around migration; if someone else moves it,
4830 * that's OK. No task can be added to this CPU, so iteration is
4831 * fine.
4832 */
4833 spin_unlock_irq(&rq->lock);
4834 move_task_off_dead_cpu(dead_cpu, tsk);
4835 spin_lock_irq(&rq->lock);
4836
4837 put_task_struct(tsk);
4838}
4839
4840/* release_task() removes task from tasklist, so we won't find dead tasks. */
4841static void migrate_dead_tasks(unsigned int dead_cpu)
4842{
4843 unsigned arr, i;
4844 struct runqueue *rq = cpu_rq(dead_cpu);
4845
4846 for (arr = 0; arr < 2; arr++) {
4847 for (i = 0; i < MAX_PRIO; i++) {
4848 struct list_head *list = &rq->arrays[arr].queue[i];
4849 while (!list_empty(list))
4850 migrate_dead(dead_cpu,
4851 list_entry(list->next, task_t,
4852 run_list));
4853 }
4854 }
4855}
4856#endif /* CONFIG_HOTPLUG_CPU */
4857
4858/*
4859 * migration_call - callback that gets triggered when a CPU is added.
4860 * Here we can start up the necessary migration thread for the new CPU.
4861 */
26c2143b
CS
4862static int __cpuinit migration_call(struct notifier_block *nfb,
4863 unsigned long action,
4864 void *hcpu)
1da177e4
LT
4865{
4866 int cpu = (long)hcpu;
4867 struct task_struct *p;
4868 struct runqueue *rq;
4869 unsigned long flags;
4870
4871 switch (action) {
4872 case CPU_UP_PREPARE:
4873 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4874 if (IS_ERR(p))
4875 return NOTIFY_BAD;
4876 p->flags |= PF_NOFREEZE;
4877 kthread_bind(p, cpu);
4878 /* Must be high prio: stop_machine expects to yield to it. */
4879 rq = task_rq_lock(p, &flags);
4880 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4881 task_rq_unlock(rq, &flags);
4882 cpu_rq(cpu)->migration_thread = p;
4883 break;
4884 case CPU_ONLINE:
4885 /* Strictly unneccessary, as first user will wake it. */
4886 wake_up_process(cpu_rq(cpu)->migration_thread);
4887 break;
4888#ifdef CONFIG_HOTPLUG_CPU
4889 case CPU_UP_CANCELED:
fc75cdfa
HC
4890 if (!cpu_rq(cpu)->migration_thread)
4891 break;
1da177e4 4892 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
4893 kthread_bind(cpu_rq(cpu)->migration_thread,
4894 any_online_cpu(cpu_online_map));
1da177e4
LT
4895 kthread_stop(cpu_rq(cpu)->migration_thread);
4896 cpu_rq(cpu)->migration_thread = NULL;
4897 break;
4898 case CPU_DEAD:
4899 migrate_live_tasks(cpu);
4900 rq = cpu_rq(cpu);
4901 kthread_stop(rq->migration_thread);
4902 rq->migration_thread = NULL;
4903 /* Idle task back to normal (off runqueue, low prio) */
4904 rq = task_rq_lock(rq->idle, &flags);
4905 deactivate_task(rq->idle, rq);
4906 rq->idle->static_prio = MAX_PRIO;
4907 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4908 migrate_dead_tasks(cpu);
4909 task_rq_unlock(rq, &flags);
4910 migrate_nr_uninterruptible(rq);
4911 BUG_ON(rq->nr_running != 0);
4912
4913 /* No need to migrate the tasks: it was best-effort if
4914 * they didn't do lock_cpu_hotplug(). Just wake up
4915 * the requestors. */
4916 spin_lock_irq(&rq->lock);
4917 while (!list_empty(&rq->migration_queue)) {
4918 migration_req_t *req;
4919 req = list_entry(rq->migration_queue.next,
4920 migration_req_t, list);
1da177e4
LT
4921 list_del_init(&req->list);
4922 complete(&req->done);
4923 }
4924 spin_unlock_irq(&rq->lock);
4925 break;
4926#endif
4927 }
4928 return NOTIFY_OK;
4929}
4930
4931/* Register at highest priority so that task migration (migrate_all_tasks)
4932 * happens before everything else.
4933 */
26c2143b 4934static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
4935 .notifier_call = migration_call,
4936 .priority = 10
4937};
4938
4939int __init migration_init(void)
4940{
4941 void *cpu = (void *)(long)smp_processor_id();
4942 /* Start one for boot CPU. */
4943 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4944 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4945 register_cpu_notifier(&migration_notifier);
4946 return 0;
4947}
4948#endif
4949
4950#ifdef CONFIG_SMP
1a20ff27 4951#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4952#ifdef SCHED_DOMAIN_DEBUG
4953static void sched_domain_debug(struct sched_domain *sd, int cpu)
4954{
4955 int level = 0;
4956
41c7ce9a
NP
4957 if (!sd) {
4958 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4959 return;
4960 }
4961
1da177e4
LT
4962 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4963
4964 do {
4965 int i;
4966 char str[NR_CPUS];
4967 struct sched_group *group = sd->groups;
4968 cpumask_t groupmask;
4969
4970 cpumask_scnprintf(str, NR_CPUS, sd->span);
4971 cpus_clear(groupmask);
4972
4973 printk(KERN_DEBUG);
4974 for (i = 0; i < level + 1; i++)
4975 printk(" ");
4976 printk("domain %d: ", level);
4977
4978 if (!(sd->flags & SD_LOAD_BALANCE)) {
4979 printk("does not load-balance\n");
4980 if (sd->parent)
4981 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4982 break;
4983 }
4984
4985 printk("span %s\n", str);
4986
4987 if (!cpu_isset(cpu, sd->span))
4988 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4989 if (!cpu_isset(cpu, group->cpumask))
4990 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4991
4992 printk(KERN_DEBUG);
4993 for (i = 0; i < level + 2; i++)
4994 printk(" ");
4995 printk("groups:");
4996 do {
4997 if (!group) {
4998 printk("\n");
4999 printk(KERN_ERR "ERROR: group is NULL\n");
5000 break;
5001 }
5002
5003 if (!group->cpu_power) {
5004 printk("\n");
5005 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5006 }
5007
5008 if (!cpus_weight(group->cpumask)) {
5009 printk("\n");
5010 printk(KERN_ERR "ERROR: empty group\n");
5011 }
5012
5013 if (cpus_intersects(groupmask, group->cpumask)) {
5014 printk("\n");
5015 printk(KERN_ERR "ERROR: repeated CPUs\n");
5016 }
5017
5018 cpus_or(groupmask, groupmask, group->cpumask);
5019
5020 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5021 printk(" %s", str);
5022
5023 group = group->next;
5024 } while (group != sd->groups);
5025 printk("\n");
5026
5027 if (!cpus_equal(sd->span, groupmask))
5028 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5029
5030 level++;
5031 sd = sd->parent;
5032
5033 if (sd) {
5034 if (!cpus_subset(groupmask, sd->span))
5035 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5036 }
5037
5038 } while (sd);
5039}
5040#else
5041#define sched_domain_debug(sd, cpu) {}
5042#endif
5043
1a20ff27 5044static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5045{
5046 if (cpus_weight(sd->span) == 1)
5047 return 1;
5048
5049 /* Following flags need at least 2 groups */
5050 if (sd->flags & (SD_LOAD_BALANCE |
5051 SD_BALANCE_NEWIDLE |
5052 SD_BALANCE_FORK |
5053 SD_BALANCE_EXEC)) {
5054 if (sd->groups != sd->groups->next)
5055 return 0;
5056 }
5057
5058 /* Following flags don't use groups */
5059 if (sd->flags & (SD_WAKE_IDLE |
5060 SD_WAKE_AFFINE |
5061 SD_WAKE_BALANCE))
5062 return 0;
5063
5064 return 1;
5065}
5066
1a20ff27 5067static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
5068 struct sched_domain *parent)
5069{
5070 unsigned long cflags = sd->flags, pflags = parent->flags;
5071
5072 if (sd_degenerate(parent))
5073 return 1;
5074
5075 if (!cpus_equal(sd->span, parent->span))
5076 return 0;
5077
5078 /* Does parent contain flags not in child? */
5079 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5080 if (cflags & SD_WAKE_AFFINE)
5081 pflags &= ~SD_WAKE_BALANCE;
5082 /* Flags needing groups don't count if only 1 group in parent */
5083 if (parent->groups == parent->groups->next) {
5084 pflags &= ~(SD_LOAD_BALANCE |
5085 SD_BALANCE_NEWIDLE |
5086 SD_BALANCE_FORK |
5087 SD_BALANCE_EXEC);
5088 }
5089 if (~cflags & pflags)
5090 return 0;
5091
5092 return 1;
5093}
5094
1da177e4
LT
5095/*
5096 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5097 * hold the hotplug lock.
5098 */
9c1cfda2 5099static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5100{
1da177e4 5101 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
5102 struct sched_domain *tmp;
5103
5104 /* Remove the sched domains which do not contribute to scheduling. */
5105 for (tmp = sd; tmp; tmp = tmp->parent) {
5106 struct sched_domain *parent = tmp->parent;
5107 if (!parent)
5108 break;
5109 if (sd_parent_degenerate(tmp, parent))
5110 tmp->parent = parent->parent;
5111 }
5112
5113 if (sd && sd_degenerate(sd))
5114 sd = sd->parent;
1da177e4
LT
5115
5116 sched_domain_debug(sd, cpu);
5117
674311d5 5118 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5119}
5120
5121/* cpus with isolated domains */
9c1cfda2 5122static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5123
5124/* Setup the mask of cpus configured for isolated domains */
5125static int __init isolated_cpu_setup(char *str)
5126{
5127 int ints[NR_CPUS], i;
5128
5129 str = get_options(str, ARRAY_SIZE(ints), ints);
5130 cpus_clear(cpu_isolated_map);
5131 for (i = 1; i <= ints[0]; i++)
5132 if (ints[i] < NR_CPUS)
5133 cpu_set(ints[i], cpu_isolated_map);
5134 return 1;
5135}
5136
5137__setup ("isolcpus=", isolated_cpu_setup);
5138
5139/*
5140 * init_sched_build_groups takes an array of groups, the cpumask we wish
5141 * to span, and a pointer to a function which identifies what group a CPU
5142 * belongs to. The return value of group_fn must be a valid index into the
5143 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5144 * keep track of groups covered with a cpumask_t).
5145 *
5146 * init_sched_build_groups will build a circular linked list of the groups
5147 * covered by the given span, and will set each group's ->cpumask correctly,
5148 * and ->cpu_power to 0.
5149 */
9c1cfda2
JH
5150static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5151 int (*group_fn)(int cpu))
1da177e4
LT
5152{
5153 struct sched_group *first = NULL, *last = NULL;
5154 cpumask_t covered = CPU_MASK_NONE;
5155 int i;
5156
5157 for_each_cpu_mask(i, span) {
5158 int group = group_fn(i);
5159 struct sched_group *sg = &groups[group];
5160 int j;
5161
5162 if (cpu_isset(i, covered))
5163 continue;
5164
5165 sg->cpumask = CPU_MASK_NONE;
5166 sg->cpu_power = 0;
5167
5168 for_each_cpu_mask(j, span) {
5169 if (group_fn(j) != group)
5170 continue;
5171
5172 cpu_set(j, covered);
5173 cpu_set(j, sg->cpumask);
5174 }
5175 if (!first)
5176 first = sg;
5177 if (last)
5178 last->next = sg;
5179 last = sg;
5180 }
5181 last->next = first;
5182}
5183
9c1cfda2 5184#define SD_NODES_PER_DOMAIN 16
1da177e4 5185
198e2f18
AM
5186/*
5187 * Self-tuning task migration cost measurement between source and target CPUs.
5188 *
5189 * This is done by measuring the cost of manipulating buffers of varying
5190 * sizes. For a given buffer-size here are the steps that are taken:
5191 *
5192 * 1) the source CPU reads+dirties a shared buffer
5193 * 2) the target CPU reads+dirties the same shared buffer
5194 *
5195 * We measure how long they take, in the following 4 scenarios:
5196 *
5197 * - source: CPU1, target: CPU2 | cost1
5198 * - source: CPU2, target: CPU1 | cost2
5199 * - source: CPU1, target: CPU1 | cost3
5200 * - source: CPU2, target: CPU2 | cost4
5201 *
5202 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5203 * the cost of migration.
5204 *
5205 * We then start off from a small buffer-size and iterate up to larger
5206 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5207 * doing a maximum search for the cost. (The maximum cost for a migration
5208 * normally occurs when the working set size is around the effective cache
5209 * size.)
5210 */
5211#define SEARCH_SCOPE 2
5212#define MIN_CACHE_SIZE (64*1024U)
5213#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5214#define ITERATIONS 1
198e2f18
AM
5215#define SIZE_THRESH 130
5216#define COST_THRESH 130
5217
5218/*
5219 * The migration cost is a function of 'domain distance'. Domain
5220 * distance is the number of steps a CPU has to iterate down its
5221 * domain tree to share a domain with the other CPU. The farther
5222 * two CPUs are from each other, the larger the distance gets.
5223 *
5224 * Note that we use the distance only to cache measurement results,
5225 * the distance value is not used numerically otherwise. When two
5226 * CPUs have the same distance it is assumed that the migration
5227 * cost is the same. (this is a simplification but quite practical)
5228 */
5229#define MAX_DOMAIN_DISTANCE 32
5230
5231static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5232 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5233/*
5234 * Architectures may override the migration cost and thus avoid
5235 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5236 * virtualized hardware:
5237 */
5238#ifdef CONFIG_DEFAULT_MIGRATION_COST
5239 CONFIG_DEFAULT_MIGRATION_COST
5240#else
5241 -1LL
5242#endif
5243};
198e2f18
AM
5244
5245/*
5246 * Allow override of migration cost - in units of microseconds.
5247 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5248 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5249 */
5250static int __init migration_cost_setup(char *str)
5251{
5252 int ints[MAX_DOMAIN_DISTANCE+1], i;
5253
5254 str = get_options(str, ARRAY_SIZE(ints), ints);
5255
5256 printk("#ints: %d\n", ints[0]);
5257 for (i = 1; i <= ints[0]; i++) {
5258 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5259 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5260 }
5261 return 1;
5262}
5263
5264__setup ("migration_cost=", migration_cost_setup);
5265
5266/*
5267 * Global multiplier (divisor) for migration-cutoff values,
5268 * in percentiles. E.g. use a value of 150 to get 1.5 times
5269 * longer cache-hot cutoff times.
5270 *
5271 * (We scale it from 100 to 128 to long long handling easier.)
5272 */
5273
5274#define MIGRATION_FACTOR_SCALE 128
5275
5276static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5277
5278static int __init setup_migration_factor(char *str)
5279{
5280 get_option(&str, &migration_factor);
5281 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5282 return 1;
5283}
5284
5285__setup("migration_factor=", setup_migration_factor);
5286
5287/*
5288 * Estimated distance of two CPUs, measured via the number of domains
5289 * we have to pass for the two CPUs to be in the same span:
5290 */
5291static unsigned long domain_distance(int cpu1, int cpu2)
5292{
5293 unsigned long distance = 0;
5294 struct sched_domain *sd;
5295
5296 for_each_domain(cpu1, sd) {
5297 WARN_ON(!cpu_isset(cpu1, sd->span));
5298 if (cpu_isset(cpu2, sd->span))
5299 return distance;
5300 distance++;
5301 }
5302 if (distance >= MAX_DOMAIN_DISTANCE) {
5303 WARN_ON(1);
5304 distance = MAX_DOMAIN_DISTANCE-1;
5305 }
5306
5307 return distance;
5308}
5309
5310static unsigned int migration_debug;
5311
5312static int __init setup_migration_debug(char *str)
5313{
5314 get_option(&str, &migration_debug);
5315 return 1;
5316}
5317
5318__setup("migration_debug=", setup_migration_debug);
5319
5320/*
5321 * Maximum cache-size that the scheduler should try to measure.
5322 * Architectures with larger caches should tune this up during
5323 * bootup. Gets used in the domain-setup code (i.e. during SMP
5324 * bootup).
5325 */
5326unsigned int max_cache_size;
5327
5328static int __init setup_max_cache_size(char *str)
5329{
5330 get_option(&str, &max_cache_size);
5331 return 1;
5332}
5333
5334__setup("max_cache_size=", setup_max_cache_size);
5335
5336/*
5337 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5338 * is the operation that is timed, so we try to generate unpredictable
5339 * cachemisses that still end up filling the L2 cache:
5340 */
5341static void touch_cache(void *__cache, unsigned long __size)
5342{
5343 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5344 chunk2 = 2*size/3;
5345 unsigned long *cache = __cache;
5346 int i;
5347
5348 for (i = 0; i < size/6; i += 8) {
5349 switch (i % 6) {
5350 case 0: cache[i]++;
5351 case 1: cache[size-1-i]++;
5352 case 2: cache[chunk1-i]++;
5353 case 3: cache[chunk1+i]++;
5354 case 4: cache[chunk2-i]++;
5355 case 5: cache[chunk2+i]++;
5356 }
5357 }
5358}
5359
5360/*
5361 * Measure the cache-cost of one task migration. Returns in units of nsec.
5362 */
5363static unsigned long long measure_one(void *cache, unsigned long size,
5364 int source, int target)
5365{
5366 cpumask_t mask, saved_mask;
5367 unsigned long long t0, t1, t2, t3, cost;
5368
5369 saved_mask = current->cpus_allowed;
5370
5371 /*
5372 * Flush source caches to RAM and invalidate them:
5373 */
5374 sched_cacheflush();
5375
5376 /*
5377 * Migrate to the source CPU:
5378 */
5379 mask = cpumask_of_cpu(source);
5380 set_cpus_allowed(current, mask);
5381 WARN_ON(smp_processor_id() != source);
5382
5383 /*
5384 * Dirty the working set:
5385 */
5386 t0 = sched_clock();
5387 touch_cache(cache, size);
5388 t1 = sched_clock();
5389
5390 /*
5391 * Migrate to the target CPU, dirty the L2 cache and access
5392 * the shared buffer. (which represents the working set
5393 * of a migrated task.)
5394 */
5395 mask = cpumask_of_cpu(target);
5396 set_cpus_allowed(current, mask);
5397 WARN_ON(smp_processor_id() != target);
5398
5399 t2 = sched_clock();
5400 touch_cache(cache, size);
5401 t3 = sched_clock();
5402
5403 cost = t1-t0 + t3-t2;
5404
5405 if (migration_debug >= 2)
5406 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5407 source, target, t1-t0, t1-t0, t3-t2, cost);
5408 /*
5409 * Flush target caches to RAM and invalidate them:
5410 */
5411 sched_cacheflush();
5412
5413 set_cpus_allowed(current, saved_mask);
5414
5415 return cost;
5416}
5417
5418/*
5419 * Measure a series of task migrations and return the average
5420 * result. Since this code runs early during bootup the system
5421 * is 'undisturbed' and the average latency makes sense.
5422 *
5423 * The algorithm in essence auto-detects the relevant cache-size,
5424 * so it will properly detect different cachesizes for different
5425 * cache-hierarchies, depending on how the CPUs are connected.
5426 *
5427 * Architectures can prime the upper limit of the search range via
5428 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5429 */
5430static unsigned long long
5431measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5432{
5433 unsigned long long cost1, cost2;
5434 int i;
5435
5436 /*
5437 * Measure the migration cost of 'size' bytes, over an
5438 * average of 10 runs:
5439 *
5440 * (We perturb the cache size by a small (0..4k)
5441 * value to compensate size/alignment related artifacts.
5442 * We also subtract the cost of the operation done on
5443 * the same CPU.)
5444 */
5445 cost1 = 0;
5446
5447 /*
5448 * dry run, to make sure we start off cache-cold on cpu1,
5449 * and to get any vmalloc pagefaults in advance:
5450 */
5451 measure_one(cache, size, cpu1, cpu2);
5452 for (i = 0; i < ITERATIONS; i++)
5453 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5454
5455 measure_one(cache, size, cpu2, cpu1);
5456 for (i = 0; i < ITERATIONS; i++)
5457 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5458
5459 /*
5460 * (We measure the non-migrating [cached] cost on both
5461 * cpu1 and cpu2, to handle CPUs with different speeds)
5462 */
5463 cost2 = 0;
5464
5465 measure_one(cache, size, cpu1, cpu1);
5466 for (i = 0; i < ITERATIONS; i++)
5467 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5468
5469 measure_one(cache, size, cpu2, cpu2);
5470 for (i = 0; i < ITERATIONS; i++)
5471 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5472
5473 /*
5474 * Get the per-iteration migration cost:
5475 */
5476 do_div(cost1, 2*ITERATIONS);
5477 do_div(cost2, 2*ITERATIONS);
5478
5479 return cost1 - cost2;
5480}
5481
5482static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5483{
5484 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5485 unsigned int max_size, size, size_found = 0;
5486 long long cost = 0, prev_cost;
5487 void *cache;
5488
5489 /*
5490 * Search from max_cache_size*5 down to 64K - the real relevant
5491 * cachesize has to lie somewhere inbetween.
5492 */
5493 if (max_cache_size) {
5494 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5495 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5496 } else {
5497 /*
5498 * Since we have no estimation about the relevant
5499 * search range
5500 */
5501 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5502 size = MIN_CACHE_SIZE;
5503 }
5504
5505 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5506 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5507 return 0;
5508 }
5509
5510 /*
5511 * Allocate the working set:
5512 */
5513 cache = vmalloc(max_size);
5514 if (!cache) {
5515 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5516 return 1000000; // return 1 msec on very small boxen
5517 }
5518
5519 while (size <= max_size) {
5520 prev_cost = cost;
5521 cost = measure_cost(cpu1, cpu2, cache, size);
5522
5523 /*
5524 * Update the max:
5525 */
5526 if (cost > 0) {
5527 if (max_cost < cost) {
5528 max_cost = cost;
5529 size_found = size;
5530 }
5531 }
5532 /*
5533 * Calculate average fluctuation, we use this to prevent
5534 * noise from triggering an early break out of the loop:
5535 */
5536 fluct = abs(cost - prev_cost);
5537 avg_fluct = (avg_fluct + fluct)/2;
5538
5539 if (migration_debug)
5540 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5541 cpu1, cpu2, size,
5542 (long)cost / 1000000,
5543 ((long)cost / 100000) % 10,
5544 (long)max_cost / 1000000,
5545 ((long)max_cost / 100000) % 10,
5546 domain_distance(cpu1, cpu2),
5547 cost, avg_fluct);
5548
5549 /*
5550 * If we iterated at least 20% past the previous maximum,
5551 * and the cost has dropped by more than 20% already,
5552 * (taking fluctuations into account) then we assume to
5553 * have found the maximum and break out of the loop early:
5554 */
5555 if (size_found && (size*100 > size_found*SIZE_THRESH))
5556 if (cost+avg_fluct <= 0 ||
5557 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5558
5559 if (migration_debug)
5560 printk("-> found max.\n");
5561 break;
5562 }
5563 /*
70b4d63e 5564 * Increase the cachesize in 10% steps:
198e2f18 5565 */
70b4d63e 5566 size = size * 10 / 9;
198e2f18
AM
5567 }
5568
5569 if (migration_debug)
5570 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5571 cpu1, cpu2, size_found, max_cost);
5572
5573 vfree(cache);
5574
5575 /*
5576 * A task is considered 'cache cold' if at least 2 times
5577 * the worst-case cost of migration has passed.
5578 *
5579 * (this limit is only listened to if the load-balancing
5580 * situation is 'nice' - if there is a large imbalance we
5581 * ignore it for the sake of CPU utilization and
5582 * processing fairness.)
5583 */
5584 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5585}
5586
5587static void calibrate_migration_costs(const cpumask_t *cpu_map)
5588{
5589 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5590 unsigned long j0, j1, distance, max_distance = 0;
5591 struct sched_domain *sd;
5592
5593 j0 = jiffies;
5594
5595 /*
5596 * First pass - calculate the cacheflush times:
5597 */
5598 for_each_cpu_mask(cpu1, *cpu_map) {
5599 for_each_cpu_mask(cpu2, *cpu_map) {
5600 if (cpu1 == cpu2)
5601 continue;
5602 distance = domain_distance(cpu1, cpu2);
5603 max_distance = max(max_distance, distance);
5604 /*
5605 * No result cached yet?
5606 */
5607 if (migration_cost[distance] == -1LL)
5608 migration_cost[distance] =
5609 measure_migration_cost(cpu1, cpu2);
5610 }
5611 }
5612 /*
5613 * Second pass - update the sched domain hierarchy with
5614 * the new cache-hot-time estimations:
5615 */
5616 for_each_cpu_mask(cpu, *cpu_map) {
5617 distance = 0;
5618 for_each_domain(cpu, sd) {
5619 sd->cache_hot_time = migration_cost[distance];
5620 distance++;
5621 }
5622 }
5623 /*
5624 * Print the matrix:
5625 */
5626 if (migration_debug)
5627 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5628 max_cache_size,
5629#ifdef CONFIG_X86
5630 cpu_khz/1000
5631#else
5632 -1
5633#endif
5634 );
bd576c95
CE
5635 if (system_state == SYSTEM_BOOTING) {
5636 printk("migration_cost=");
5637 for (distance = 0; distance <= max_distance; distance++) {
5638 if (distance)
5639 printk(",");
5640 printk("%ld", (long)migration_cost[distance] / 1000);
5641 }
5642 printk("\n");
198e2f18 5643 }
198e2f18
AM
5644 j1 = jiffies;
5645 if (migration_debug)
5646 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5647
5648 /*
5649 * Move back to the original CPU. NUMA-Q gets confused
5650 * if we migrate to another quad during bootup.
5651 */
5652 if (raw_smp_processor_id() != orig_cpu) {
5653 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5654 saved_mask = current->cpus_allowed;
5655
5656 set_cpus_allowed(current, mask);
5657 set_cpus_allowed(current, saved_mask);
5658 }
5659}
5660
9c1cfda2 5661#ifdef CONFIG_NUMA
198e2f18 5662
9c1cfda2
JH
5663/**
5664 * find_next_best_node - find the next node to include in a sched_domain
5665 * @node: node whose sched_domain we're building
5666 * @used_nodes: nodes already in the sched_domain
5667 *
5668 * Find the next node to include in a given scheduling domain. Simply
5669 * finds the closest node not already in the @used_nodes map.
5670 *
5671 * Should use nodemask_t.
5672 */
5673static int find_next_best_node(int node, unsigned long *used_nodes)
5674{
5675 int i, n, val, min_val, best_node = 0;
5676
5677 min_val = INT_MAX;
5678
5679 for (i = 0; i < MAX_NUMNODES; i++) {
5680 /* Start at @node */
5681 n = (node + i) % MAX_NUMNODES;
5682
5683 if (!nr_cpus_node(n))
5684 continue;
5685
5686 /* Skip already used nodes */
5687 if (test_bit(n, used_nodes))
5688 continue;
5689
5690 /* Simple min distance search */
5691 val = node_distance(node, n);
5692
5693 if (val < min_val) {
5694 min_val = val;
5695 best_node = n;
5696 }
5697 }
5698
5699 set_bit(best_node, used_nodes);
5700 return best_node;
5701}
5702
5703/**
5704 * sched_domain_node_span - get a cpumask for a node's sched_domain
5705 * @node: node whose cpumask we're constructing
5706 * @size: number of nodes to include in this span
5707 *
5708 * Given a node, construct a good cpumask for its sched_domain to span. It
5709 * should be one that prevents unnecessary balancing, but also spreads tasks
5710 * out optimally.
5711 */
5712static cpumask_t sched_domain_node_span(int node)
5713{
5714 int i;
5715 cpumask_t span, nodemask;
5716 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5717
5718 cpus_clear(span);
5719 bitmap_zero(used_nodes, MAX_NUMNODES);
5720
5721 nodemask = node_to_cpumask(node);
5722 cpus_or(span, span, nodemask);
5723 set_bit(node, used_nodes);
5724
5725 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5726 int next_node = find_next_best_node(node, used_nodes);
5727 nodemask = node_to_cpumask(next_node);
5728 cpus_or(span, span, nodemask);
5729 }
5730
5731 return span;
5732}
5733#endif
5734
5735/*
5736 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5737 * can switch it on easily if needed.
5738 */
1da177e4
LT
5739#ifdef CONFIG_SCHED_SMT
5740static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5741static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5742static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5743{
5744 return cpu;
5745}
5746#endif
5747
1e9f28fa
SS
5748#ifdef CONFIG_SCHED_MC
5749static DEFINE_PER_CPU(struct sched_domain, core_domains);
5750static struct sched_group sched_group_core[NR_CPUS];
5751#endif
5752
5753#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5754static int cpu_to_core_group(int cpu)
5755{
5756 return first_cpu(cpu_sibling_map[cpu]);
5757}
5758#elif defined(CONFIG_SCHED_MC)
5759static int cpu_to_core_group(int cpu)
5760{
5761 return cpu;
5762}
5763#endif
5764
1da177e4
LT
5765static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5766static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5767static int cpu_to_phys_group(int cpu)
1da177e4 5768{
1e9f28fa
SS
5769#if defined(CONFIG_SCHED_MC)
5770 cpumask_t mask = cpu_coregroup_map(cpu);
5771 return first_cpu(mask);
5772#elif defined(CONFIG_SCHED_SMT)
1da177e4
LT
5773 return first_cpu(cpu_sibling_map[cpu]);
5774#else
5775 return cpu;
5776#endif
5777}
5778
5779#ifdef CONFIG_NUMA
1da177e4 5780/*
9c1cfda2
JH
5781 * The init_sched_build_groups can't handle what we want to do with node
5782 * groups, so roll our own. Now each node has its own list of groups which
5783 * gets dynamically allocated.
1da177e4 5784 */
9c1cfda2 5785static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5786static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5787
9c1cfda2 5788static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5789static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5790
5791static int cpu_to_allnodes_group(int cpu)
5792{
5793 return cpu_to_node(cpu);
1da177e4 5794}
08069033
SS
5795static void init_numa_sched_groups_power(struct sched_group *group_head)
5796{
5797 struct sched_group *sg = group_head;
5798 int j;
5799
5800 if (!sg)
5801 return;
5802next_sg:
5803 for_each_cpu_mask(j, sg->cpumask) {
5804 struct sched_domain *sd;
5805
5806 sd = &per_cpu(phys_domains, j);
5807 if (j != first_cpu(sd->groups->cpumask)) {
5808 /*
5809 * Only add "power" once for each
5810 * physical package.
5811 */
5812 continue;
5813 }
5814
5815 sg->cpu_power += sd->groups->cpu_power;
5816 }
5817 sg = sg->next;
5818 if (sg != group_head)
5819 goto next_sg;
5820}
1da177e4
LT
5821#endif
5822
5823/*
1a20ff27
DG
5824 * Build sched domains for a given set of cpus and attach the sched domains
5825 * to the individual cpus
1da177e4 5826 */
9c1cfda2 5827void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5828{
5829 int i;
d1b55138
JH
5830#ifdef CONFIG_NUMA
5831 struct sched_group **sched_group_nodes = NULL;
5832 struct sched_group *sched_group_allnodes = NULL;
5833
5834 /*
5835 * Allocate the per-node list of sched groups
5836 */
5837 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5838 GFP_ATOMIC);
5839 if (!sched_group_nodes) {
5840 printk(KERN_WARNING "Can not alloc sched group node list\n");
5841 return;
5842 }
5843 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5844#endif
1da177e4
LT
5845
5846 /*
1a20ff27 5847 * Set up domains for cpus specified by the cpu_map.
1da177e4 5848 */
1a20ff27 5849 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5850 int group;
5851 struct sched_domain *sd = NULL, *p;
5852 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5853
1a20ff27 5854 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5855
5856#ifdef CONFIG_NUMA
d1b55138 5857 if (cpus_weight(*cpu_map)
9c1cfda2 5858 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5859 if (!sched_group_allnodes) {
5860 sched_group_allnodes
5861 = kmalloc(sizeof(struct sched_group)
5862 * MAX_NUMNODES,
5863 GFP_KERNEL);
5864 if (!sched_group_allnodes) {
5865 printk(KERN_WARNING
5866 "Can not alloc allnodes sched group\n");
5867 break;
5868 }
5869 sched_group_allnodes_bycpu[i]
5870 = sched_group_allnodes;
5871 }
9c1cfda2
JH
5872 sd = &per_cpu(allnodes_domains, i);
5873 *sd = SD_ALLNODES_INIT;
5874 sd->span = *cpu_map;
5875 group = cpu_to_allnodes_group(i);
5876 sd->groups = &sched_group_allnodes[group];
5877 p = sd;
5878 } else
5879 p = NULL;
5880
1da177e4 5881 sd = &per_cpu(node_domains, i);
1da177e4 5882 *sd = SD_NODE_INIT;
9c1cfda2
JH
5883 sd->span = sched_domain_node_span(cpu_to_node(i));
5884 sd->parent = p;
5885 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5886#endif
5887
5888 p = sd;
5889 sd = &per_cpu(phys_domains, i);
5890 group = cpu_to_phys_group(i);
5891 *sd = SD_CPU_INIT;
5892 sd->span = nodemask;
5893 sd->parent = p;
5894 sd->groups = &sched_group_phys[group];
5895
1e9f28fa
SS
5896#ifdef CONFIG_SCHED_MC
5897 p = sd;
5898 sd = &per_cpu(core_domains, i);
5899 group = cpu_to_core_group(i);
5900 *sd = SD_MC_INIT;
5901 sd->span = cpu_coregroup_map(i);
5902 cpus_and(sd->span, sd->span, *cpu_map);
5903 sd->parent = p;
5904 sd->groups = &sched_group_core[group];
5905#endif
5906
1da177e4
LT
5907#ifdef CONFIG_SCHED_SMT
5908 p = sd;
5909 sd = &per_cpu(cpu_domains, i);
5910 group = cpu_to_cpu_group(i);
5911 *sd = SD_SIBLING_INIT;
5912 sd->span = cpu_sibling_map[i];
1a20ff27 5913 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5914 sd->parent = p;
5915 sd->groups = &sched_group_cpus[group];
5916#endif
5917 }
5918
5919#ifdef CONFIG_SCHED_SMT
5920 /* Set up CPU (sibling) groups */
9c1cfda2 5921 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5922 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5923 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5924 if (i != first_cpu(this_sibling_map))
5925 continue;
5926
5927 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5928 &cpu_to_cpu_group);
5929 }
5930#endif
5931
1e9f28fa
SS
5932#ifdef CONFIG_SCHED_MC
5933 /* Set up multi-core groups */
5934 for_each_cpu_mask(i, *cpu_map) {
5935 cpumask_t this_core_map = cpu_coregroup_map(i);
5936 cpus_and(this_core_map, this_core_map, *cpu_map);
5937 if (i != first_cpu(this_core_map))
5938 continue;
5939 init_sched_build_groups(sched_group_core, this_core_map,
5940 &cpu_to_core_group);
5941 }
5942#endif
5943
5944
1da177e4
LT
5945 /* Set up physical groups */
5946 for (i = 0; i < MAX_NUMNODES; i++) {
5947 cpumask_t nodemask = node_to_cpumask(i);
5948
1a20ff27 5949 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5950 if (cpus_empty(nodemask))
5951 continue;
5952
5953 init_sched_build_groups(sched_group_phys, nodemask,
5954 &cpu_to_phys_group);
5955 }
5956
5957#ifdef CONFIG_NUMA
5958 /* Set up node groups */
d1b55138
JH
5959 if (sched_group_allnodes)
5960 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5961 &cpu_to_allnodes_group);
9c1cfda2
JH
5962
5963 for (i = 0; i < MAX_NUMNODES; i++) {
5964 /* Set up node groups */
5965 struct sched_group *sg, *prev;
5966 cpumask_t nodemask = node_to_cpumask(i);
5967 cpumask_t domainspan;
5968 cpumask_t covered = CPU_MASK_NONE;
5969 int j;
5970
5971 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5972 if (cpus_empty(nodemask)) {
5973 sched_group_nodes[i] = NULL;
9c1cfda2 5974 continue;
d1b55138 5975 }
9c1cfda2
JH
5976
5977 domainspan = sched_domain_node_span(i);
5978 cpus_and(domainspan, domainspan, *cpu_map);
5979
5980 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5981 sched_group_nodes[i] = sg;
5982 for_each_cpu_mask(j, nodemask) {
5983 struct sched_domain *sd;
5984 sd = &per_cpu(node_domains, j);
5985 sd->groups = sg;
5986 if (sd->groups == NULL) {
5987 /* Turn off balancing if we have no groups */
5988 sd->flags = 0;
5989 }
5990 }
5991 if (!sg) {
5992 printk(KERN_WARNING
5993 "Can not alloc domain group for node %d\n", i);
5994 continue;
5995 }
5996 sg->cpu_power = 0;
5997 sg->cpumask = nodemask;
5998 cpus_or(covered, covered, nodemask);
5999 prev = sg;
6000
6001 for (j = 0; j < MAX_NUMNODES; j++) {
6002 cpumask_t tmp, notcovered;
6003 int n = (i + j) % MAX_NUMNODES;
6004
6005 cpus_complement(notcovered, covered);
6006 cpus_and(tmp, notcovered, *cpu_map);
6007 cpus_and(tmp, tmp, domainspan);
6008 if (cpus_empty(tmp))
6009 break;
6010
6011 nodemask = node_to_cpumask(n);
6012 cpus_and(tmp, tmp, nodemask);
6013 if (cpus_empty(tmp))
6014 continue;
6015
6016 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
6017 if (!sg) {
6018 printk(KERN_WARNING
6019 "Can not alloc domain group for node %d\n", j);
6020 break;
6021 }
6022 sg->cpu_power = 0;
6023 sg->cpumask = tmp;
6024 cpus_or(covered, covered, tmp);
6025 prev->next = sg;
6026 prev = sg;
6027 }
6028 prev->next = sched_group_nodes[i];
6029 }
1da177e4
LT
6030#endif
6031
6032 /* Calculate CPU power for physical packages and nodes */
1a20ff27 6033 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6034 int power;
6035 struct sched_domain *sd;
6036#ifdef CONFIG_SCHED_SMT
6037 sd = &per_cpu(cpu_domains, i);
6038 power = SCHED_LOAD_SCALE;
6039 sd->groups->cpu_power = power;
6040#endif
1e9f28fa
SS
6041#ifdef CONFIG_SCHED_MC
6042 sd = &per_cpu(core_domains, i);
6043 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
6044 * SCHED_LOAD_SCALE / 10;
6045 sd->groups->cpu_power = power;
6046
6047 sd = &per_cpu(phys_domains, i);
1da177e4 6048
1e9f28fa
SS
6049 /*
6050 * This has to be < 2 * SCHED_LOAD_SCALE
6051 * Lets keep it SCHED_LOAD_SCALE, so that
6052 * while calculating NUMA group's cpu_power
6053 * we can simply do
6054 * numa_group->cpu_power += phys_group->cpu_power;
6055 *
6056 * See "only add power once for each physical pkg"
6057 * comment below
6058 */
6059 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6060#else
1da177e4
LT
6061 sd = &per_cpu(phys_domains, i);
6062 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
6063 (cpus_weight(sd->groups->cpumask)-1) / 10;
6064 sd->groups->cpu_power = power;
1e9f28fa 6065#endif
1da177e4
LT
6066 }
6067
9c1cfda2 6068#ifdef CONFIG_NUMA
08069033
SS
6069 for (i = 0; i < MAX_NUMNODES; i++)
6070 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6071
08069033 6072 init_numa_sched_groups_power(sched_group_allnodes);
9c1cfda2
JH
6073#endif
6074
1da177e4 6075 /* Attach the domains */
1a20ff27 6076 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6077 struct sched_domain *sd;
6078#ifdef CONFIG_SCHED_SMT
6079 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6080#elif defined(CONFIG_SCHED_MC)
6081 sd = &per_cpu(core_domains, i);
1da177e4
LT
6082#else
6083 sd = &per_cpu(phys_domains, i);
6084#endif
6085 cpu_attach_domain(sd, i);
6086 }
198e2f18
AM
6087 /*
6088 * Tune cache-hot values:
6089 */
6090 calibrate_migration_costs(cpu_map);
1da177e4 6091}
1a20ff27
DG
6092/*
6093 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6094 */
9c1cfda2 6095static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6096{
6097 cpumask_t cpu_default_map;
1da177e4 6098
1a20ff27
DG
6099 /*
6100 * Setup mask for cpus without special case scheduling requirements.
6101 * For now this just excludes isolated cpus, but could be used to
6102 * exclude other special cases in the future.
6103 */
6104 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6105
6106 build_sched_domains(&cpu_default_map);
6107}
6108
6109static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6110{
9c1cfda2
JH
6111#ifdef CONFIG_NUMA
6112 int i;
d1b55138 6113 int cpu;
1da177e4 6114
d1b55138
JH
6115 for_each_cpu_mask(cpu, *cpu_map) {
6116 struct sched_group *sched_group_allnodes
6117 = sched_group_allnodes_bycpu[cpu];
6118 struct sched_group **sched_group_nodes
6119 = sched_group_nodes_bycpu[cpu];
9c1cfda2 6120
d1b55138
JH
6121 if (sched_group_allnodes) {
6122 kfree(sched_group_allnodes);
6123 sched_group_allnodes_bycpu[cpu] = NULL;
6124 }
6125
6126 if (!sched_group_nodes)
9c1cfda2 6127 continue;
d1b55138
JH
6128
6129 for (i = 0; i < MAX_NUMNODES; i++) {
6130 cpumask_t nodemask = node_to_cpumask(i);
6131 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6132
6133 cpus_and(nodemask, nodemask, *cpu_map);
6134 if (cpus_empty(nodemask))
6135 continue;
6136
6137 if (sg == NULL)
6138 continue;
6139 sg = sg->next;
9c1cfda2 6140next_sg:
d1b55138
JH
6141 oldsg = sg;
6142 sg = sg->next;
6143 kfree(oldsg);
6144 if (oldsg != sched_group_nodes[i])
6145 goto next_sg;
6146 }
6147 kfree(sched_group_nodes);
6148 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
6149 }
6150#endif
6151}
1da177e4 6152
1a20ff27
DG
6153/*
6154 * Detach sched domains from a group of cpus specified in cpu_map
6155 * These cpus will now be attached to the NULL domain
6156 */
858119e1 6157static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6158{
6159 int i;
6160
6161 for_each_cpu_mask(i, *cpu_map)
6162 cpu_attach_domain(NULL, i);
6163 synchronize_sched();
6164 arch_destroy_sched_domains(cpu_map);
6165}
6166
6167/*
6168 * Partition sched domains as specified by the cpumasks below.
6169 * This attaches all cpus from the cpumasks to the NULL domain,
6170 * waits for a RCU quiescent period, recalculates sched
6171 * domain information and then attaches them back to the
6172 * correct sched domains
6173 * Call with hotplug lock held
6174 */
6175void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6176{
6177 cpumask_t change_map;
6178
6179 cpus_and(*partition1, *partition1, cpu_online_map);
6180 cpus_and(*partition2, *partition2, cpu_online_map);
6181 cpus_or(change_map, *partition1, *partition2);
6182
6183 /* Detach sched domains from all of the affected cpus */
6184 detach_destroy_domains(&change_map);
6185 if (!cpus_empty(*partition1))
6186 build_sched_domains(partition1);
6187 if (!cpus_empty(*partition2))
6188 build_sched_domains(partition2);
6189}
6190
1da177e4
LT
6191#ifdef CONFIG_HOTPLUG_CPU
6192/*
6193 * Force a reinitialization of the sched domains hierarchy. The domains
6194 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6195 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6196 * which will prevent rebalancing while the sched domains are recalculated.
6197 */
6198static int update_sched_domains(struct notifier_block *nfb,
6199 unsigned long action, void *hcpu)
6200{
1da177e4
LT
6201 switch (action) {
6202 case CPU_UP_PREPARE:
6203 case CPU_DOWN_PREPARE:
1a20ff27 6204 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6205 return NOTIFY_OK;
6206
6207 case CPU_UP_CANCELED:
6208 case CPU_DOWN_FAILED:
6209 case CPU_ONLINE:
6210 case CPU_DEAD:
6211 /*
6212 * Fall through and re-initialise the domains.
6213 */
6214 break;
6215 default:
6216 return NOTIFY_DONE;
6217 }
6218
6219 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6220 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6221
6222 return NOTIFY_OK;
6223}
6224#endif
6225
6226void __init sched_init_smp(void)
6227{
6228 lock_cpu_hotplug();
1a20ff27 6229 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6230 unlock_cpu_hotplug();
6231 /* XXX: Theoretical race here - CPU may be hotplugged now */
6232 hotcpu_notifier(update_sched_domains, 0);
6233}
6234#else
6235void __init sched_init_smp(void)
6236{
6237}
6238#endif /* CONFIG_SMP */
6239
6240int in_sched_functions(unsigned long addr)
6241{
6242 /* Linker adds these: start and end of __sched functions */
6243 extern char __sched_text_start[], __sched_text_end[];
6244 return in_lock_functions(addr) ||
6245 (addr >= (unsigned long)__sched_text_start
6246 && addr < (unsigned long)__sched_text_end);
6247}
6248
6249void __init sched_init(void)
6250{
6251 runqueue_t *rq;
6252 int i, j, k;
6253
0a945022 6254 for_each_possible_cpu(i) {
1da177e4
LT
6255 prio_array_t *array;
6256
6257 rq = cpu_rq(i);
6258 spin_lock_init(&rq->lock);
7897986b 6259 rq->nr_running = 0;
1da177e4
LT
6260 rq->active = rq->arrays;
6261 rq->expired = rq->arrays + 1;
6262 rq->best_expired_prio = MAX_PRIO;
6263
6264#ifdef CONFIG_SMP
41c7ce9a 6265 rq->sd = NULL;
7897986b
NP
6266 for (j = 1; j < 3; j++)
6267 rq->cpu_load[j] = 0;
1da177e4
LT
6268 rq->active_balance = 0;
6269 rq->push_cpu = 0;
6270 rq->migration_thread = NULL;
6271 INIT_LIST_HEAD(&rq->migration_queue);
6272#endif
6273 atomic_set(&rq->nr_iowait, 0);
6274
6275 for (j = 0; j < 2; j++) {
6276 array = rq->arrays + j;
6277 for (k = 0; k < MAX_PRIO; k++) {
6278 INIT_LIST_HEAD(array->queue + k);
6279 __clear_bit(k, array->bitmap);
6280 }
6281 // delimiter for bitsearch
6282 __set_bit(MAX_PRIO, array->bitmap);
6283 }
6284 }
6285
2dd73a4f 6286 set_load_weight(&init_task);
1da177e4
LT
6287 /*
6288 * The boot idle thread does lazy MMU switching as well:
6289 */
6290 atomic_inc(&init_mm.mm_count);
6291 enter_lazy_tlb(&init_mm, current);
6292
6293 /*
6294 * Make us the idle thread. Technically, schedule() should not be
6295 * called from this thread, however somewhere below it might be,
6296 * but because we are the idle thread, we just pick up running again
6297 * when this runqueue becomes "idle".
6298 */
6299 init_idle(current, smp_processor_id());
6300}
6301
6302#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6303void __might_sleep(char *file, int line)
6304{
6305#if defined(in_atomic)
6306 static unsigned long prev_jiffy; /* ratelimiting */
6307
6308 if ((in_atomic() || irqs_disabled()) &&
6309 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6310 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6311 return;
6312 prev_jiffy = jiffies;
91368d73 6313 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6314 " context at %s:%d\n", file, line);
6315 printk("in_atomic():%d, irqs_disabled():%d\n",
6316 in_atomic(), irqs_disabled());
6317 dump_stack();
6318 }
6319#endif
6320}
6321EXPORT_SYMBOL(__might_sleep);
6322#endif
6323
6324#ifdef CONFIG_MAGIC_SYSRQ
6325void normalize_rt_tasks(void)
6326{
6327 struct task_struct *p;
6328 prio_array_t *array;
6329 unsigned long flags;
6330 runqueue_t *rq;
6331
6332 read_lock_irq(&tasklist_lock);
c96d145e 6333 for_each_process(p) {
1da177e4
LT
6334 if (!rt_task(p))
6335 continue;
6336
6337 rq = task_rq_lock(p, &flags);
6338
6339 array = p->array;
6340 if (array)
6341 deactivate_task(p, task_rq(p));
6342 __setscheduler(p, SCHED_NORMAL, 0);
6343 if (array) {
6344 __activate_task(p, task_rq(p));
6345 resched_task(rq->curr);
6346 }
6347
6348 task_rq_unlock(rq, &flags);
6349 }
6350 read_unlock_irq(&tasklist_lock);
6351}
6352
6353#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6354
6355#ifdef CONFIG_IA64
6356/*
6357 * These functions are only useful for the IA64 MCA handling.
6358 *
6359 * They can only be called when the whole system has been
6360 * stopped - every CPU needs to be quiescent, and no scheduling
6361 * activity can take place. Using them for anything else would
6362 * be a serious bug, and as a result, they aren't even visible
6363 * under any other configuration.
6364 */
6365
6366/**
6367 * curr_task - return the current task for a given cpu.
6368 * @cpu: the processor in question.
6369 *
6370 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6371 */
6372task_t *curr_task(int cpu)
6373{
6374 return cpu_curr(cpu);
6375}
6376
6377/**
6378 * set_curr_task - set the current task for a given cpu.
6379 * @cpu: the processor in question.
6380 * @p: the task pointer to set.
6381 *
6382 * Description: This function must only be used when non-maskable interrupts
6383 * are serviced on a separate stack. It allows the architecture to switch the
6384 * notion of the current task on a cpu in a non-blocking manner. This function
6385 * must be called with all CPU's synchronized, and interrupts disabled, the
6386 * and caller must save the original value of the current task (see
6387 * curr_task() above) and restore that value before reenabling interrupts and
6388 * re-starting the system.
6389 *
6390 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6391 */
6392void set_curr_task(int cpu, task_t *p)
6393{
6394 cpu_curr(cpu) = p;
6395}
6396
6397#endif