sched: fix fair preempt check
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
5517d86b
ED
121#ifdef CONFIG_SMP
122/*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127{
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129}
130
131/*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136{
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139}
140#endif
141
e05606d3
IM
142static inline int rt_policy(int policy)
143{
3f33a7ce 144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
145 return 1;
146 return 0;
147}
148
149static inline int task_has_rt_policy(struct task_struct *p)
150{
151 return rt_policy(p->policy);
152}
153
1da177e4 154/*
6aa645ea 155 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 156 */
6aa645ea
IM
157struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160};
161
d0b27fa7 162struct rt_bandwidth {
ea736ed5
IM
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
d0b27fa7
PZ
168};
169
170static struct rt_bandwidth def_rt_bandwidth;
171
172static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175{
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193}
194
195static
196void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197{
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
ac086bc2
PZ
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
d0b27fa7
PZ
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
207}
208
c8bfff6d
KH
209static inline int rt_bandwidth_enabled(void)
210{
211 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
0b148fa0 218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
d0b27fa7
PZ
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235}
236
237#ifdef CONFIG_RT_GROUP_SCHED
238static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239{
240 hrtimer_cancel(&rt_b->rt_period_timer);
241}
242#endif
243
712555ee
HC
244/*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248static DEFINE_MUTEX(sched_domains_mutex);
249
052f1dc7 250#ifdef CONFIG_GROUP_SCHED
29f59db3 251
68318b8e
SV
252#include <linux/cgroup.h>
253
29f59db3
SV
254struct cfs_rq;
255
6f505b16
PZ
256static LIST_HEAD(task_groups);
257
29f59db3 258/* task group related information */
4cf86d77 259struct task_group {
052f1dc7 260#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
261 struct cgroup_subsys_state css;
262#endif
052f1dc7
PZ
263
264#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
052f1dc7
PZ
270#endif
271
272#ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
d0b27fa7 276 struct rt_bandwidth rt_bandwidth;
052f1dc7 277#endif
6b2d7700 278
ae8393e5 279 struct rcu_head rcu;
6f505b16 280 struct list_head list;
f473aa5e
PZ
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
29f59db3
SV
285};
286
354d60c2 287#ifdef CONFIG_USER_SCHED
eff766a6
PZ
288
289/*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294struct task_group root_task_group;
295
052f1dc7 296#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
297/* Default task group's sched entity on each cpu */
298static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299/* Default task group's cfs_rq on each cpu */
300static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 301#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
302
303#ifdef CONFIG_RT_GROUP_SCHED
304static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 306#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 307#else /* !CONFIG_USER_SCHED */
eff766a6 308#define root_task_group init_task_group
9a7e0b18 309#endif /* CONFIG_USER_SCHED */
6f505b16 310
8ed36996 311/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
312 * a task group's cpu shares.
313 */
8ed36996 314static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 315
052f1dc7 316#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
317#ifdef CONFIG_USER_SCHED
318# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 319#else /* !CONFIG_USER_SCHED */
052f1dc7 320# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 321#endif /* CONFIG_USER_SCHED */
052f1dc7 322
cb4ad1ff 323/*
2e084786
LJ
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
cb4ad1ff
MX
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
18d95a28 331#define MIN_SHARES 2
2e084786 332#define MAX_SHARES (1UL << 18)
18d95a28 333
052f1dc7
PZ
334static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335#endif
336
29f59db3 337/* Default task group.
3a252015 338 * Every task in system belong to this group at bootup.
29f59db3 339 */
434d53b0 340struct task_group init_task_group;
29f59db3
SV
341
342/* return group to which a task belongs */
4cf86d77 343static inline struct task_group *task_group(struct task_struct *p)
29f59db3 344{
4cf86d77 345 struct task_group *tg;
9b5b7751 346
052f1dc7 347#ifdef CONFIG_USER_SCHED
24e377a8 348 tg = p->user->tg;
052f1dc7 349#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
24e377a8 352#else
41a2d6cf 353 tg = &init_task_group;
24e377a8 354#endif
9b5b7751 355 return tg;
29f59db3
SV
356}
357
358/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 359static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 360{
052f1dc7 361#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
052f1dc7 364#endif
6f505b16 365
052f1dc7 366#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 369#endif
29f59db3
SV
370}
371
372#else
373
6f505b16 374static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
375static inline struct task_group *task_group(struct task_struct *p)
376{
377 return NULL;
378}
29f59db3 379
052f1dc7 380#endif /* CONFIG_GROUP_SCHED */
29f59db3 381
6aa645ea
IM
382/* CFS-related fields in a runqueue */
383struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
6aa645ea 387 u64 exec_clock;
e9acbff6 388 u64 min_vruntime;
6aa645ea
IM
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
4a55bd5e
PZ
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
aa2ac252 400 struct sched_entity *curr, *next;
ddc97297
PZ
401
402 unsigned long nr_spread_over;
403
62160e3f 404#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
41a2d6cf
IM
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
41a2d6cf
IM
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
417
418#ifdef CONFIG_SMP
c09595f6 419 /*
c8cba857 420 * the part of load.weight contributed by tasks
c09595f6 421 */
c8cba857 422 unsigned long task_weight;
c09595f6 423
c8cba857
PZ
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
c09595f6 431
c8cba857
PZ
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
f1d239f7
PZ
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
c09595f6 441#endif
6aa645ea
IM
442#endif
443};
1da177e4 444
6aa645ea
IM
445/* Real-Time classes' related field in a runqueue: */
446struct rt_rq {
447 struct rt_prio_array active;
63489e45 448 unsigned long rt_nr_running;
052f1dc7 449#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
450 int highest_prio; /* highest queued rt task prio */
451#endif
fa85ae24 452#ifdef CONFIG_SMP
73fe6aae 453 unsigned long rt_nr_migratory;
a22d7fc1 454 int overloaded;
fa85ae24 455#endif
6f505b16 456 int rt_throttled;
fa85ae24 457 u64 rt_time;
ac086bc2 458 u64 rt_runtime;
ea736ed5 459 /* Nests inside the rq lock: */
ac086bc2 460 spinlock_t rt_runtime_lock;
6f505b16 461
052f1dc7 462#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
463 unsigned long rt_nr_boosted;
464
6f505b16
PZ
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469#endif
6aa645ea
IM
470};
471
57d885fe
GH
472#ifdef CONFIG_SMP
473
474/*
475 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
57d885fe
GH
481 */
482struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
637f5085 486
0eab9146 487 /*
637f5085
GH
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
0eab9146 492 atomic_t rto_count;
6e0534f2
GH
493#ifdef CONFIG_SMP
494 struct cpupri cpupri;
495#endif
57d885fe
GH
496};
497
dc938520
GH
498/*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
57d885fe
GH
502static struct root_domain def_root_domain;
503
504#endif
505
1da177e4
LT
506/*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
70b97a7f 513struct rq {
d8016491
IM
514 /* runqueue lock: */
515 spinlock_t lock;
1da177e4
LT
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
6aa645ea
IM
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 524 unsigned char idle_at_tick;
46cb4b7c 525#ifdef CONFIG_NO_HZ
15934a37 526 unsigned long last_tick_seen;
46cb4b7c
SS
527 unsigned char in_nohz_recently;
528#endif
d8016491
IM
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
6aa645ea
IM
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
6f505b16 535 struct rt_rq rt;
6f505b16 536
6aa645ea 537#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
540#endif
541#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 542 struct list_head leaf_rt_rq_list;
1da177e4 543#endif
1da177e4
LT
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
36c8b586 553 struct task_struct *curr, *idle;
c9819f45 554 unsigned long next_balance;
1da177e4 555 struct mm_struct *prev_mm;
6aa645ea 556
3e51f33f 557 u64 clock;
6aa645ea 558
1da177e4
LT
559 atomic_t nr_iowait;
560
561#ifdef CONFIG_SMP
0eab9146 562 struct root_domain *rd;
1da177e4
LT
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
d8016491
IM
568 /* cpu of this runqueue: */
569 int cpu;
1f11eb6a 570 int online;
1da177e4 571
a8a51d5e 572 unsigned long avg_load_per_task;
1da177e4 573
36c8b586 574 struct task_struct *migration_thread;
1da177e4
LT
575 struct list_head migration_queue;
576#endif
577
8f4d37ec 578#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
579#ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582#endif
8f4d37ec
PZ
583 struct hrtimer hrtick_timer;
584#endif
585
1da177e4
LT
586#ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
480b9434
KC
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
1da177e4
LT
595
596 /* schedule() stats */
480b9434
KC
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
1da177e4
LT
600
601 /* try_to_wake_up() stats */
480b9434
KC
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
b8efb561
IM
604
605 /* BKL stats */
480b9434 606 unsigned int bkl_count;
1da177e4
LT
607#endif
608};
609
f34e3b61 610static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 611
15afe09b 612static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 613{
15afe09b 614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
615}
616
0a2966b4
CL
617static inline int cpu_of(struct rq *rq)
618{
619#ifdef CONFIG_SMP
620 return rq->cpu;
621#else
622 return 0;
623#endif
624}
625
674311d5
NP
626/*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 628 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
48f24c4d
IM
633#define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
635
636#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637#define this_rq() (&__get_cpu_var(runqueues))
638#define task_rq(p) cpu_rq(task_cpu(p))
639#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
3e51f33f
PZ
641static inline void update_rq_clock(struct rq *rq)
642{
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644}
645
bf5c91ba
IM
646/*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649#ifdef CONFIG_SCHED_DEBUG
650# define const_debug __read_mostly
651#else
652# define const_debug static const
653#endif
654
017730c1
IM
655/**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662int runqueue_is_locked(void)
663{
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671}
672
bf5c91ba
IM
673/*
674 * Debugging: various feature bits
675 */
f00b45c1
PZ
676
677#define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
bf5c91ba 680enum {
f00b45c1 681#include "sched_features.h"
bf5c91ba
IM
682};
683
f00b45c1
PZ
684#undef SCHED_FEAT
685
686#define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
bf5c91ba 689const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
690#include "sched_features.h"
691 0;
692
693#undef SCHED_FEAT
694
695#ifdef CONFIG_SCHED_DEBUG
696#define SCHED_FEAT(name, enabled) \
697 #name ,
698
983ed7a6 699static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
700#include "sched_features.h"
701 NULL
702};
703
704#undef SCHED_FEAT
705
983ed7a6 706static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
707{
708 filp->private_data = inode->i_private;
709 return 0;
710}
711
712static ssize_t
713sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715{
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
724 }
725
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
c24b7c52 734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
735 }
736
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
739
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
741
742 kfree(buf);
743
744 return r;
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
789static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 819
ffda12a1
PZ
820/*
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
824 */
825unsigned int sysctl_sched_shares_thresh = 4;
826
fa85ae24 827/*
9f0c1e56 828 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
829 * default: 1s
830 */
9f0c1e56 831unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 832
6892b75e
IM
833static __read_mostly int scheduler_running;
834
9f0c1e56
PZ
835/*
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
838 */
839int sysctl_sched_rt_runtime = 950000;
fa85ae24 840
d0b27fa7
PZ
841static inline u64 global_rt_period(void)
842{
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
844}
845
846static inline u64 global_rt_runtime(void)
847{
e26873bb 848 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
849 return RUNTIME_INF;
850
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
852}
fa85ae24 853
1da177e4 854#ifndef prepare_arch_switch
4866cde0
NP
855# define prepare_arch_switch(next) do { } while (0)
856#endif
857#ifndef finish_arch_switch
858# define finish_arch_switch(prev) do { } while (0)
859#endif
860
051a1d1a
DA
861static inline int task_current(struct rq *rq, struct task_struct *p)
862{
863 return rq->curr == p;
864}
865
4866cde0 866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 867static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 868{
051a1d1a 869 return task_current(rq, p);
4866cde0
NP
870}
871
70b97a7f 872static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
873{
874}
875
70b97a7f 876static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 877{
da04c035
IM
878#ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881#endif
8a25d5de
IM
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
4866cde0
NP
889 spin_unlock_irq(&rq->lock);
890}
891
892#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 893static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
894{
895#ifdef CONFIG_SMP
896 return p->oncpu;
897#else
051a1d1a 898 return task_current(rq, p);
4866cde0
NP
899#endif
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911#endif
912#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914#else
915 spin_unlock(&rq->lock);
916#endif
917}
918
70b97a7f 919static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
920{
921#ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929#endif
930#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
1da177e4 932#endif
4866cde0
NP
933}
934#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 935
b29739f9
IM
936/*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
70b97a7f 940static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
941 __acquires(rq->lock)
942{
3a5c359a
AK
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
b29739f9 948 spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4
LT
952/*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 954 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
955 * explicitly disabling preemption.
956 */
70b97a7f 957static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a
AK
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
1da177e4 968 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
975 spin_unlock(&rq->lock);
976}
977
70b97a7f 978static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
979 __releases(rq->lock)
980{
981 spin_unlock_irqrestore(&rq->lock, *flags);
982}
983
1da177e4 984/*
cc2a73b5 985 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 986 */
a9957449 987static struct rq *this_rq_lock(void)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4
LT
991
992 local_irq_disable();
993 rq = this_rq();
994 spin_lock(&rq->lock);
995
996 return rq;
997}
998
8f4d37ec
PZ
999#ifdef CONFIG_SCHED_HRTICK
1000/*
1001 * Use HR-timers to deliver accurate preemption points.
1002 *
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1006 *
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1009 */
8f4d37ec
PZ
1010
1011/*
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1015 */
1016static inline int hrtick_enabled(struct rq *rq)
1017{
1018 if (!sched_feat(HRTICK))
1019 return 0;
ba42059f 1020 if (!cpu_active(cpu_of(rq)))
b328ca18 1021 return 0;
8f4d37ec
PZ
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023}
1024
8f4d37ec
PZ
1025static void hrtick_clear(struct rq *rq)
1026{
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1029}
1030
8f4d37ec
PZ
1031/*
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1034 */
1035static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036{
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040
1041 spin_lock(&rq->lock);
3e51f33f 1042 update_rq_clock(rq);
8f4d37ec
PZ
1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044 spin_unlock(&rq->lock);
1045
1046 return HRTIMER_NORESTART;
1047}
1048
95e904c7 1049#ifdef CONFIG_SMP
31656519
PZ
1050/*
1051 * called from hardirq (IPI) context
1052 */
1053static void __hrtick_start(void *arg)
b328ca18 1054{
31656519 1055 struct rq *rq = arg;
b328ca18 1056
31656519
PZ
1057 spin_lock(&rq->lock);
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
1060 spin_unlock(&rq->lock);
b328ca18
PZ
1061}
1062
31656519
PZ
1063/*
1064 * Called to set the hrtick timer state.
1065 *
1066 * called with rq->lock held and irqs disabled
1067 */
1068static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1069{
31656519
PZ
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1072
cc584b21 1073 hrtimer_set_expires(timer, time);
31656519
PZ
1074
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1079 rq->hrtick_csd_pending = 1;
1080 }
b328ca18
PZ
1081}
1082
1083static int
1084hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085{
1086 int cpu = (int)(long)hcpu;
1087
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
31656519 1095 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1096 return NOTIFY_OK;
1097 }
1098
1099 return NOTIFY_DONE;
1100}
1101
fa748203 1102static __init void init_hrtick(void)
b328ca18
PZ
1103{
1104 hotcpu_notifier(hotplug_hrtick, 0);
1105}
31656519
PZ
1106#else
1107/*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112static void hrtick_start(struct rq *rq, u64 delay)
1113{
1114 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1115}
b328ca18 1116
006c75f1 1117static inline void init_hrtick(void)
8f4d37ec 1118{
8f4d37ec 1119}
31656519 1120#endif /* CONFIG_SMP */
8f4d37ec 1121
31656519 1122static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1123{
31656519
PZ
1124#ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
8f4d37ec 1126
31656519
PZ
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130#endif
8f4d37ec 1131
31656519
PZ
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
ccc7dadf 1134 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1135}
006c75f1 1136#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1137static inline void hrtick_clear(struct rq *rq)
1138{
1139}
1140
8f4d37ec
PZ
1141static inline void init_rq_hrtick(struct rq *rq)
1142{
1143}
1144
b328ca18
PZ
1145static inline void init_hrtick(void)
1146{
1147}
006c75f1 1148#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1149
c24d20db
IM
1150/*
1151 * resched_task - mark a task 'to be rescheduled now'.
1152 *
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1156 */
1157#ifdef CONFIG_SMP
1158
1159#ifndef tsk_is_polling
1160#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161#endif
1162
31656519 1163static void resched_task(struct task_struct *p)
c24d20db
IM
1164{
1165 int cpu;
1166
1167 assert_spin_locked(&task_rq(p)->lock);
1168
31656519 1169 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1170 return;
1171
31656519 1172 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1173
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1177
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1182}
1183
1184static void resched_cpu(int cpu)
1185{
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1188
1189 if (!spin_trylock_irqsave(&rq->lock, flags))
1190 return;
1191 resched_task(cpu_curr(cpu));
1192 spin_unlock_irqrestore(&rq->lock, flags);
1193}
06d8308c
TG
1194
1195#ifdef CONFIG_NO_HZ
1196/*
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1205 */
1206void wake_up_idle_cpu(int cpu)
1207{
1208 struct rq *rq = cpu_rq(cpu);
1209
1210 if (cpu == smp_processor_id())
1211 return;
1212
1213 /*
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1219 */
1220 if (rq->curr != rq->idle)
1221 return;
1222
1223 /*
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1227 */
1228 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1229
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1234}
6d6bc0ad 1235#endif /* CONFIG_NO_HZ */
06d8308c 1236
6d6bc0ad 1237#else /* !CONFIG_SMP */
31656519 1238static void resched_task(struct task_struct *p)
c24d20db
IM
1239{
1240 assert_spin_locked(&task_rq(p)->lock);
31656519 1241 set_tsk_need_resched(p);
c24d20db 1242}
6d6bc0ad 1243#endif /* CONFIG_SMP */
c24d20db 1244
45bf76df
IM
1245#if BITS_PER_LONG == 32
1246# define WMULT_CONST (~0UL)
1247#else
1248# define WMULT_CONST (1UL << 32)
1249#endif
1250
1251#define WMULT_SHIFT 32
1252
194081eb
IM
1253/*
1254 * Shift right and round:
1255 */
cf2ab469 1256#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1257
a7be37ac
PZ
1258/*
1259 * delta *= weight / lw
1260 */
cb1c4fc9 1261static unsigned long
45bf76df
IM
1262calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1263 struct load_weight *lw)
1264{
1265 u64 tmp;
1266
7a232e03
LJ
1267 if (!lw->inv_weight) {
1268 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1269 lw->inv_weight = 1;
1270 else
1271 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1272 / (lw->weight+1);
1273 }
45bf76df
IM
1274
1275 tmp = (u64)delta_exec * weight;
1276 /*
1277 * Check whether we'd overflow the 64-bit multiplication:
1278 */
194081eb 1279 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1280 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1281 WMULT_SHIFT/2);
1282 else
cf2ab469 1283 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1284
ecf691da 1285 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1286}
1287
1091985b 1288static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1289{
1290 lw->weight += inc;
e89996ae 1291 lw->inv_weight = 0;
45bf76df
IM
1292}
1293
1091985b 1294static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1295{
1296 lw->weight -= dec;
e89996ae 1297 lw->inv_weight = 0;
45bf76df
IM
1298}
1299
2dd73a4f
PW
1300/*
1301 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1302 * of tasks with abnormal "nice" values across CPUs the contribution that
1303 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1304 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1305 * scaled version of the new time slice allocation that they receive on time
1306 * slice expiry etc.
1307 */
1308
dd41f596
IM
1309#define WEIGHT_IDLEPRIO 2
1310#define WMULT_IDLEPRIO (1 << 31)
1311
1312/*
1313 * Nice levels are multiplicative, with a gentle 10% change for every
1314 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1315 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1316 * that remained on nice 0.
1317 *
1318 * The "10% effect" is relative and cumulative: from _any_ nice level,
1319 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1320 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1321 * If a task goes up by ~10% and another task goes down by ~10% then
1322 * the relative distance between them is ~25%.)
dd41f596
IM
1323 */
1324static const int prio_to_weight[40] = {
254753dc
IM
1325 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1326 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1327 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1328 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1329 /* 0 */ 1024, 820, 655, 526, 423,
1330 /* 5 */ 335, 272, 215, 172, 137,
1331 /* 10 */ 110, 87, 70, 56, 45,
1332 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1333};
1334
5714d2de
IM
1335/*
1336 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1337 *
1338 * In cases where the weight does not change often, we can use the
1339 * precalculated inverse to speed up arithmetics by turning divisions
1340 * into multiplications:
1341 */
dd41f596 1342static const u32 prio_to_wmult[40] = {
254753dc
IM
1343 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1344 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1345 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1346 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1347 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1348 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1349 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1350 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1351};
2dd73a4f 1352
dd41f596
IM
1353static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1354
1355/*
1356 * runqueue iterator, to support SMP load-balancing between different
1357 * scheduling classes, without having to expose their internal data
1358 * structures to the load-balancing proper:
1359 */
1360struct rq_iterator {
1361 void *arg;
1362 struct task_struct *(*start)(void *);
1363 struct task_struct *(*next)(void *);
1364};
1365
e1d1484f
PW
1366#ifdef CONFIG_SMP
1367static unsigned long
1368balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1369 unsigned long max_load_move, struct sched_domain *sd,
1370 enum cpu_idle_type idle, int *all_pinned,
1371 int *this_best_prio, struct rq_iterator *iterator);
1372
1373static int
1374iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1375 struct sched_domain *sd, enum cpu_idle_type idle,
1376 struct rq_iterator *iterator);
e1d1484f 1377#endif
dd41f596 1378
d842de87
SV
1379#ifdef CONFIG_CGROUP_CPUACCT
1380static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1381#else
1382static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1383#endif
1384
18d95a28
PZ
1385static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1386{
1387 update_load_add(&rq->load, load);
1388}
1389
1390static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1391{
1392 update_load_sub(&rq->load, load);
1393}
1394
7940ca36 1395#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1396typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1397
1398/*
1399 * Iterate the full tree, calling @down when first entering a node and @up when
1400 * leaving it for the final time.
1401 */
eb755805 1402static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1403{
1404 struct task_group *parent, *child;
eb755805 1405 int ret;
c09595f6
PZ
1406
1407 rcu_read_lock();
1408 parent = &root_task_group;
1409down:
eb755805
PZ
1410 ret = (*down)(parent, data);
1411 if (ret)
1412 goto out_unlock;
c09595f6
PZ
1413 list_for_each_entry_rcu(child, &parent->children, siblings) {
1414 parent = child;
1415 goto down;
1416
1417up:
1418 continue;
1419 }
eb755805
PZ
1420 ret = (*up)(parent, data);
1421 if (ret)
1422 goto out_unlock;
c09595f6
PZ
1423
1424 child = parent;
1425 parent = parent->parent;
1426 if (parent)
1427 goto up;
eb755805 1428out_unlock:
c09595f6 1429 rcu_read_unlock();
eb755805
PZ
1430
1431 return ret;
c09595f6
PZ
1432}
1433
eb755805
PZ
1434static int tg_nop(struct task_group *tg, void *data)
1435{
1436 return 0;
c09595f6 1437}
eb755805
PZ
1438#endif
1439
1440#ifdef CONFIG_SMP
1441static unsigned long source_load(int cpu, int type);
1442static unsigned long target_load(int cpu, int type);
1443static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1444
1445static unsigned long cpu_avg_load_per_task(int cpu)
1446{
1447 struct rq *rq = cpu_rq(cpu);
1448
1449 if (rq->nr_running)
1450 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1451
1452 return rq->avg_load_per_task;
1453}
1454
1455#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1456
c09595f6
PZ
1457static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1458
1459/*
1460 * Calculate and set the cpu's group shares.
1461 */
1462static void
ffda12a1
PZ
1463update_group_shares_cpu(struct task_group *tg, int cpu,
1464 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1465{
c09595f6
PZ
1466 int boost = 0;
1467 unsigned long shares;
1468 unsigned long rq_weight;
1469
c8cba857 1470 if (!tg->se[cpu])
c09595f6
PZ
1471 return;
1472
c8cba857 1473 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1474
1475 /*
1476 * If there are currently no tasks on the cpu pretend there is one of
1477 * average load so that when a new task gets to run here it will not
1478 * get delayed by group starvation.
1479 */
1480 if (!rq_weight) {
1481 boost = 1;
1482 rq_weight = NICE_0_LOAD;
1483 }
1484
c8cba857
PZ
1485 if (unlikely(rq_weight > sd_rq_weight))
1486 rq_weight = sd_rq_weight;
1487
c09595f6
PZ
1488 /*
1489 * \Sum shares * rq_weight
1490 * shares = -----------------------
1491 * \Sum rq_weight
1492 *
1493 */
c8cba857 1494 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
ffda12a1 1495 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1496
ffda12a1
PZ
1497 if (abs(shares - tg->se[cpu]->load.weight) >
1498 sysctl_sched_shares_thresh) {
1499 struct rq *rq = cpu_rq(cpu);
1500 unsigned long flags;
c09595f6 1501
ffda12a1
PZ
1502 spin_lock_irqsave(&rq->lock, flags);
1503 /*
1504 * record the actual number of shares, not the boosted amount.
1505 */
1506 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1507 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6 1508
ffda12a1
PZ
1509 __set_se_shares(tg->se[cpu], shares);
1510 spin_unlock_irqrestore(&rq->lock, flags);
1511 }
18d95a28 1512}
c09595f6
PZ
1513
1514/*
c8cba857
PZ
1515 * Re-compute the task group their per cpu shares over the given domain.
1516 * This needs to be done in a bottom-up fashion because the rq weight of a
1517 * parent group depends on the shares of its child groups.
c09595f6 1518 */
eb755805 1519static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1520{
c8cba857
PZ
1521 unsigned long rq_weight = 0;
1522 unsigned long shares = 0;
eb755805 1523 struct sched_domain *sd = data;
c8cba857 1524 int i;
c09595f6 1525
c8cba857
PZ
1526 for_each_cpu_mask(i, sd->span) {
1527 rq_weight += tg->cfs_rq[i]->load.weight;
1528 shares += tg->cfs_rq[i]->shares;
c09595f6 1529 }
c09595f6 1530
c8cba857
PZ
1531 if ((!shares && rq_weight) || shares > tg->shares)
1532 shares = tg->shares;
1533
1534 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1535 shares = tg->shares;
c09595f6 1536
cd80917e
PZ
1537 if (!rq_weight)
1538 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1539
ffda12a1
PZ
1540 for_each_cpu_mask(i, sd->span)
1541 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1542
1543 return 0;
c09595f6
PZ
1544}
1545
1546/*
c8cba857
PZ
1547 * Compute the cpu's hierarchical load factor for each task group.
1548 * This needs to be done in a top-down fashion because the load of a child
1549 * group is a fraction of its parents load.
c09595f6 1550 */
eb755805 1551static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1552{
c8cba857 1553 unsigned long load;
eb755805 1554 long cpu = (long)data;
c09595f6 1555
c8cba857
PZ
1556 if (!tg->parent) {
1557 load = cpu_rq(cpu)->load.weight;
1558 } else {
1559 load = tg->parent->cfs_rq[cpu]->h_load;
1560 load *= tg->cfs_rq[cpu]->shares;
1561 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1562 }
c09595f6 1563
c8cba857 1564 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1565
eb755805 1566 return 0;
c09595f6
PZ
1567}
1568
c8cba857 1569static void update_shares(struct sched_domain *sd)
4d8d595d 1570{
2398f2c6
PZ
1571 u64 now = cpu_clock(raw_smp_processor_id());
1572 s64 elapsed = now - sd->last_update;
1573
1574 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1575 sd->last_update = now;
eb755805 1576 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1577 }
4d8d595d
PZ
1578}
1579
3e5459b4
PZ
1580static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1581{
1582 spin_unlock(&rq->lock);
1583 update_shares(sd);
1584 spin_lock(&rq->lock);
1585}
1586
eb755805 1587static void update_h_load(long cpu)
c09595f6 1588{
eb755805 1589 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1590}
1591
c09595f6
PZ
1592#else
1593
c8cba857 1594static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1595{
1596}
1597
3e5459b4
PZ
1598static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1599{
1600}
1601
18d95a28
PZ
1602#endif
1603
18d95a28
PZ
1604#endif
1605
30432094 1606#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1607static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1608{
30432094 1609#ifdef CONFIG_SMP
34e83e85
IM
1610 cfs_rq->shares = shares;
1611#endif
1612}
30432094 1613#endif
e7693a36 1614
dd41f596 1615#include "sched_stats.h"
dd41f596 1616#include "sched_idletask.c"
5522d5d5
IM
1617#include "sched_fair.c"
1618#include "sched_rt.c"
dd41f596
IM
1619#ifdef CONFIG_SCHED_DEBUG
1620# include "sched_debug.c"
1621#endif
1622
1623#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1624#define for_each_class(class) \
1625 for (class = sched_class_highest; class; class = class->next)
dd41f596 1626
c09595f6 1627static void inc_nr_running(struct rq *rq)
9c217245
IM
1628{
1629 rq->nr_running++;
9c217245
IM
1630}
1631
c09595f6 1632static void dec_nr_running(struct rq *rq)
9c217245
IM
1633{
1634 rq->nr_running--;
9c217245
IM
1635}
1636
45bf76df
IM
1637static void set_load_weight(struct task_struct *p)
1638{
1639 if (task_has_rt_policy(p)) {
dd41f596
IM
1640 p->se.load.weight = prio_to_weight[0] * 2;
1641 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1642 return;
1643 }
45bf76df 1644
dd41f596
IM
1645 /*
1646 * SCHED_IDLE tasks get minimal weight:
1647 */
1648 if (p->policy == SCHED_IDLE) {
1649 p->se.load.weight = WEIGHT_IDLEPRIO;
1650 p->se.load.inv_weight = WMULT_IDLEPRIO;
1651 return;
1652 }
71f8bd46 1653
dd41f596
IM
1654 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1655 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1656}
1657
2087a1ad
GH
1658static void update_avg(u64 *avg, u64 sample)
1659{
1660 s64 diff = sample - *avg;
1661 *avg += diff >> 3;
1662}
1663
8159f87e 1664static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1665{
dd41f596 1666 sched_info_queued(p);
fd390f6a 1667 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1668 p->se.on_rq = 1;
71f8bd46
IM
1669}
1670
69be72c1 1671static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1672{
2087a1ad
GH
1673 if (sleep && p->se.last_wakeup) {
1674 update_avg(&p->se.avg_overlap,
1675 p->se.sum_exec_runtime - p->se.last_wakeup);
1676 p->se.last_wakeup = 0;
1677 }
1678
46ac22ba 1679 sched_info_dequeued(p);
f02231e5 1680 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1681 p->se.on_rq = 0;
71f8bd46
IM
1682}
1683
14531189 1684/*
dd41f596 1685 * __normal_prio - return the priority that is based on the static prio
14531189 1686 */
14531189
IM
1687static inline int __normal_prio(struct task_struct *p)
1688{
dd41f596 1689 return p->static_prio;
14531189
IM
1690}
1691
b29739f9
IM
1692/*
1693 * Calculate the expected normal priority: i.e. priority
1694 * without taking RT-inheritance into account. Might be
1695 * boosted by interactivity modifiers. Changes upon fork,
1696 * setprio syscalls, and whenever the interactivity
1697 * estimator recalculates.
1698 */
36c8b586 1699static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1700{
1701 int prio;
1702
e05606d3 1703 if (task_has_rt_policy(p))
b29739f9
IM
1704 prio = MAX_RT_PRIO-1 - p->rt_priority;
1705 else
1706 prio = __normal_prio(p);
1707 return prio;
1708}
1709
1710/*
1711 * Calculate the current priority, i.e. the priority
1712 * taken into account by the scheduler. This value might
1713 * be boosted by RT tasks, or might be boosted by
1714 * interactivity modifiers. Will be RT if the task got
1715 * RT-boosted. If not then it returns p->normal_prio.
1716 */
36c8b586 1717static int effective_prio(struct task_struct *p)
b29739f9
IM
1718{
1719 p->normal_prio = normal_prio(p);
1720 /*
1721 * If we are RT tasks or we were boosted to RT priority,
1722 * keep the priority unchanged. Otherwise, update priority
1723 * to the normal priority:
1724 */
1725 if (!rt_prio(p->prio))
1726 return p->normal_prio;
1727 return p->prio;
1728}
1729
1da177e4 1730/*
dd41f596 1731 * activate_task - move a task to the runqueue.
1da177e4 1732 */
dd41f596 1733static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1734{
d9514f6c 1735 if (task_contributes_to_load(p))
dd41f596 1736 rq->nr_uninterruptible--;
1da177e4 1737
8159f87e 1738 enqueue_task(rq, p, wakeup);
c09595f6 1739 inc_nr_running(rq);
1da177e4
LT
1740}
1741
1da177e4
LT
1742/*
1743 * deactivate_task - remove a task from the runqueue.
1744 */
2e1cb74a 1745static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1746{
d9514f6c 1747 if (task_contributes_to_load(p))
dd41f596
IM
1748 rq->nr_uninterruptible++;
1749
69be72c1 1750 dequeue_task(rq, p, sleep);
c09595f6 1751 dec_nr_running(rq);
1da177e4
LT
1752}
1753
1da177e4
LT
1754/**
1755 * task_curr - is this task currently executing on a CPU?
1756 * @p: the task in question.
1757 */
36c8b586 1758inline int task_curr(const struct task_struct *p)
1da177e4
LT
1759{
1760 return cpu_curr(task_cpu(p)) == p;
1761}
1762
dd41f596
IM
1763static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1764{
6f505b16 1765 set_task_rq(p, cpu);
dd41f596 1766#ifdef CONFIG_SMP
ce96b5ac
DA
1767 /*
1768 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1769 * successfuly executed on another CPU. We must ensure that updates of
1770 * per-task data have been completed by this moment.
1771 */
1772 smp_wmb();
dd41f596 1773 task_thread_info(p)->cpu = cpu;
dd41f596 1774#endif
2dd73a4f
PW
1775}
1776
cb469845
SR
1777static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1778 const struct sched_class *prev_class,
1779 int oldprio, int running)
1780{
1781 if (prev_class != p->sched_class) {
1782 if (prev_class->switched_from)
1783 prev_class->switched_from(rq, p, running);
1784 p->sched_class->switched_to(rq, p, running);
1785 } else
1786 p->sched_class->prio_changed(rq, p, oldprio, running);
1787}
1788
1da177e4 1789#ifdef CONFIG_SMP
c65cc870 1790
e958b360
TG
1791/* Used instead of source_load when we know the type == 0 */
1792static unsigned long weighted_cpuload(const int cpu)
1793{
1794 return cpu_rq(cpu)->load.weight;
1795}
1796
cc367732
IM
1797/*
1798 * Is this task likely cache-hot:
1799 */
e7693a36 1800static int
cc367732
IM
1801task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1802{
1803 s64 delta;
1804
f540a608
IM
1805 /*
1806 * Buddy candidates are cache hot:
1807 */
d25ce4cd 1808 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1809 return 1;
1810
cc367732
IM
1811 if (p->sched_class != &fair_sched_class)
1812 return 0;
1813
6bc1665b
IM
1814 if (sysctl_sched_migration_cost == -1)
1815 return 1;
1816 if (sysctl_sched_migration_cost == 0)
1817 return 0;
1818
cc367732
IM
1819 delta = now - p->se.exec_start;
1820
1821 return delta < (s64)sysctl_sched_migration_cost;
1822}
1823
1824
dd41f596 1825void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1826{
dd41f596
IM
1827 int old_cpu = task_cpu(p);
1828 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1829 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1830 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1831 u64 clock_offset;
dd41f596
IM
1832
1833 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1834
1835#ifdef CONFIG_SCHEDSTATS
1836 if (p->se.wait_start)
1837 p->se.wait_start -= clock_offset;
dd41f596
IM
1838 if (p->se.sleep_start)
1839 p->se.sleep_start -= clock_offset;
1840 if (p->se.block_start)
1841 p->se.block_start -= clock_offset;
cc367732
IM
1842 if (old_cpu != new_cpu) {
1843 schedstat_inc(p, se.nr_migrations);
1844 if (task_hot(p, old_rq->clock, NULL))
1845 schedstat_inc(p, se.nr_forced2_migrations);
1846 }
6cfb0d5d 1847#endif
2830cf8c
SV
1848 p->se.vruntime -= old_cfsrq->min_vruntime -
1849 new_cfsrq->min_vruntime;
dd41f596
IM
1850
1851 __set_task_cpu(p, new_cpu);
c65cc870
IM
1852}
1853
70b97a7f 1854struct migration_req {
1da177e4 1855 struct list_head list;
1da177e4 1856
36c8b586 1857 struct task_struct *task;
1da177e4
LT
1858 int dest_cpu;
1859
1da177e4 1860 struct completion done;
70b97a7f 1861};
1da177e4
LT
1862
1863/*
1864 * The task's runqueue lock must be held.
1865 * Returns true if you have to wait for migration thread.
1866 */
36c8b586 1867static int
70b97a7f 1868migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1869{
70b97a7f 1870 struct rq *rq = task_rq(p);
1da177e4
LT
1871
1872 /*
1873 * If the task is not on a runqueue (and not running), then
1874 * it is sufficient to simply update the task's cpu field.
1875 */
dd41f596 1876 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1877 set_task_cpu(p, dest_cpu);
1878 return 0;
1879 }
1880
1881 init_completion(&req->done);
1da177e4
LT
1882 req->task = p;
1883 req->dest_cpu = dest_cpu;
1884 list_add(&req->list, &rq->migration_queue);
48f24c4d 1885
1da177e4
LT
1886 return 1;
1887}
1888
1889/*
1890 * wait_task_inactive - wait for a thread to unschedule.
1891 *
85ba2d86
RM
1892 * If @match_state is nonzero, it's the @p->state value just checked and
1893 * not expected to change. If it changes, i.e. @p might have woken up,
1894 * then return zero. When we succeed in waiting for @p to be off its CPU,
1895 * we return a positive number (its total switch count). If a second call
1896 * a short while later returns the same number, the caller can be sure that
1897 * @p has remained unscheduled the whole time.
1898 *
1da177e4
LT
1899 * The caller must ensure that the task *will* unschedule sometime soon,
1900 * else this function might spin for a *long* time. This function can't
1901 * be called with interrupts off, or it may introduce deadlock with
1902 * smp_call_function() if an IPI is sent by the same process we are
1903 * waiting to become inactive.
1904 */
85ba2d86 1905unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1906{
1907 unsigned long flags;
dd41f596 1908 int running, on_rq;
85ba2d86 1909 unsigned long ncsw;
70b97a7f 1910 struct rq *rq;
1da177e4 1911
3a5c359a
AK
1912 for (;;) {
1913 /*
1914 * We do the initial early heuristics without holding
1915 * any task-queue locks at all. We'll only try to get
1916 * the runqueue lock when things look like they will
1917 * work out!
1918 */
1919 rq = task_rq(p);
fa490cfd 1920
3a5c359a
AK
1921 /*
1922 * If the task is actively running on another CPU
1923 * still, just relax and busy-wait without holding
1924 * any locks.
1925 *
1926 * NOTE! Since we don't hold any locks, it's not
1927 * even sure that "rq" stays as the right runqueue!
1928 * But we don't care, since "task_running()" will
1929 * return false if the runqueue has changed and p
1930 * is actually now running somewhere else!
1931 */
85ba2d86
RM
1932 while (task_running(rq, p)) {
1933 if (match_state && unlikely(p->state != match_state))
1934 return 0;
3a5c359a 1935 cpu_relax();
85ba2d86 1936 }
fa490cfd 1937
3a5c359a
AK
1938 /*
1939 * Ok, time to look more closely! We need the rq
1940 * lock now, to be *sure*. If we're wrong, we'll
1941 * just go back and repeat.
1942 */
1943 rq = task_rq_lock(p, &flags);
0a16b607 1944 trace_sched_wait_task(rq, p);
3a5c359a
AK
1945 running = task_running(rq, p);
1946 on_rq = p->se.on_rq;
85ba2d86 1947 ncsw = 0;
f31e11d8 1948 if (!match_state || p->state == match_state)
93dcf55f 1949 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1950 task_rq_unlock(rq, &flags);
fa490cfd 1951
85ba2d86
RM
1952 /*
1953 * If it changed from the expected state, bail out now.
1954 */
1955 if (unlikely(!ncsw))
1956 break;
1957
3a5c359a
AK
1958 /*
1959 * Was it really running after all now that we
1960 * checked with the proper locks actually held?
1961 *
1962 * Oops. Go back and try again..
1963 */
1964 if (unlikely(running)) {
1965 cpu_relax();
1966 continue;
1967 }
fa490cfd 1968
3a5c359a
AK
1969 /*
1970 * It's not enough that it's not actively running,
1971 * it must be off the runqueue _entirely_, and not
1972 * preempted!
1973 *
1974 * So if it wa still runnable (but just not actively
1975 * running right now), it's preempted, and we should
1976 * yield - it could be a while.
1977 */
1978 if (unlikely(on_rq)) {
1979 schedule_timeout_uninterruptible(1);
1980 continue;
1981 }
fa490cfd 1982
3a5c359a
AK
1983 /*
1984 * Ahh, all good. It wasn't running, and it wasn't
1985 * runnable, which means that it will never become
1986 * running in the future either. We're all done!
1987 */
1988 break;
1989 }
85ba2d86
RM
1990
1991 return ncsw;
1da177e4
LT
1992}
1993
1994/***
1995 * kick_process - kick a running thread to enter/exit the kernel
1996 * @p: the to-be-kicked thread
1997 *
1998 * Cause a process which is running on another CPU to enter
1999 * kernel-mode, without any delay. (to get signals handled.)
2000 *
2001 * NOTE: this function doesnt have to take the runqueue lock,
2002 * because all it wants to ensure is that the remote task enters
2003 * the kernel. If the IPI races and the task has been migrated
2004 * to another CPU then no harm is done and the purpose has been
2005 * achieved as well.
2006 */
36c8b586 2007void kick_process(struct task_struct *p)
1da177e4
LT
2008{
2009 int cpu;
2010
2011 preempt_disable();
2012 cpu = task_cpu(p);
2013 if ((cpu != smp_processor_id()) && task_curr(p))
2014 smp_send_reschedule(cpu);
2015 preempt_enable();
2016}
2017
2018/*
2dd73a4f
PW
2019 * Return a low guess at the load of a migration-source cpu weighted
2020 * according to the scheduling class and "nice" value.
1da177e4
LT
2021 *
2022 * We want to under-estimate the load of migration sources, to
2023 * balance conservatively.
2024 */
a9957449 2025static unsigned long source_load(int cpu, int type)
1da177e4 2026{
70b97a7f 2027 struct rq *rq = cpu_rq(cpu);
dd41f596 2028 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2029
93b75217 2030 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2031 return total;
b910472d 2032
dd41f596 2033 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2034}
2035
2036/*
2dd73a4f
PW
2037 * Return a high guess at the load of a migration-target cpu weighted
2038 * according to the scheduling class and "nice" value.
1da177e4 2039 */
a9957449 2040static unsigned long target_load(int cpu, int type)
1da177e4 2041{
70b97a7f 2042 struct rq *rq = cpu_rq(cpu);
dd41f596 2043 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2044
93b75217 2045 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2046 return total;
3b0bd9bc 2047
dd41f596 2048 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2049}
2050
147cbb4b
NP
2051/*
2052 * find_idlest_group finds and returns the least busy CPU group within the
2053 * domain.
2054 */
2055static struct sched_group *
2056find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2057{
2058 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2059 unsigned long min_load = ULONG_MAX, this_load = 0;
2060 int load_idx = sd->forkexec_idx;
2061 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2062
2063 do {
2064 unsigned long load, avg_load;
2065 int local_group;
2066 int i;
2067
da5a5522
BD
2068 /* Skip over this group if it has no CPUs allowed */
2069 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2070 continue;
da5a5522 2071
147cbb4b 2072 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2073
2074 /* Tally up the load of all CPUs in the group */
2075 avg_load = 0;
2076
363ab6f1 2077 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2078 /* Bias balancing toward cpus of our domain */
2079 if (local_group)
2080 load = source_load(i, load_idx);
2081 else
2082 load = target_load(i, load_idx);
2083
2084 avg_load += load;
2085 }
2086
2087 /* Adjust by relative CPU power of the group */
5517d86b
ED
2088 avg_load = sg_div_cpu_power(group,
2089 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2090
2091 if (local_group) {
2092 this_load = avg_load;
2093 this = group;
2094 } else if (avg_load < min_load) {
2095 min_load = avg_load;
2096 idlest = group;
2097 }
3a5c359a 2098 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2099
2100 if (!idlest || 100*this_load < imbalance*min_load)
2101 return NULL;
2102 return idlest;
2103}
2104
2105/*
0feaece9 2106 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2107 */
95cdf3b7 2108static int
7c16ec58
MT
2109find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2110 cpumask_t *tmp)
147cbb4b
NP
2111{
2112 unsigned long load, min_load = ULONG_MAX;
2113 int idlest = -1;
2114 int i;
2115
da5a5522 2116 /* Traverse only the allowed CPUs */
7c16ec58 2117 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2118
363ab6f1 2119 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2120 load = weighted_cpuload(i);
147cbb4b
NP
2121
2122 if (load < min_load || (load == min_load && i == this_cpu)) {
2123 min_load = load;
2124 idlest = i;
2125 }
2126 }
2127
2128 return idlest;
2129}
2130
476d139c
NP
2131/*
2132 * sched_balance_self: balance the current task (running on cpu) in domains
2133 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2134 * SD_BALANCE_EXEC.
2135 *
2136 * Balance, ie. select the least loaded group.
2137 *
2138 * Returns the target CPU number, or the same CPU if no balancing is needed.
2139 *
2140 * preempt must be disabled.
2141 */
2142static int sched_balance_self(int cpu, int flag)
2143{
2144 struct task_struct *t = current;
2145 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2146
c96d145e 2147 for_each_domain(cpu, tmp) {
9761eea8
IM
2148 /*
2149 * If power savings logic is enabled for a domain, stop there.
2150 */
5c45bf27
SS
2151 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2152 break;
476d139c
NP
2153 if (tmp->flags & flag)
2154 sd = tmp;
c96d145e 2155 }
476d139c 2156
039a1c41
PZ
2157 if (sd)
2158 update_shares(sd);
2159
476d139c 2160 while (sd) {
7c16ec58 2161 cpumask_t span, tmpmask;
476d139c 2162 struct sched_group *group;
1a848870
SS
2163 int new_cpu, weight;
2164
2165 if (!(sd->flags & flag)) {
2166 sd = sd->child;
2167 continue;
2168 }
476d139c
NP
2169
2170 span = sd->span;
2171 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2172 if (!group) {
2173 sd = sd->child;
2174 continue;
2175 }
476d139c 2176
7c16ec58 2177 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2178 if (new_cpu == -1 || new_cpu == cpu) {
2179 /* Now try balancing at a lower domain level of cpu */
2180 sd = sd->child;
2181 continue;
2182 }
476d139c 2183
1a848870 2184 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2185 cpu = new_cpu;
476d139c
NP
2186 sd = NULL;
2187 weight = cpus_weight(span);
2188 for_each_domain(cpu, tmp) {
2189 if (weight <= cpus_weight(tmp->span))
2190 break;
2191 if (tmp->flags & flag)
2192 sd = tmp;
2193 }
2194 /* while loop will break here if sd == NULL */
2195 }
2196
2197 return cpu;
2198}
2199
2200#endif /* CONFIG_SMP */
1da177e4 2201
1da177e4
LT
2202/***
2203 * try_to_wake_up - wake up a thread
2204 * @p: the to-be-woken-up thread
2205 * @state: the mask of task states that can be woken
2206 * @sync: do a synchronous wakeup?
2207 *
2208 * Put it on the run-queue if it's not already there. The "current"
2209 * thread is always on the run-queue (except when the actual
2210 * re-schedule is in progress), and as such you're allowed to do
2211 * the simpler "current->state = TASK_RUNNING" to mark yourself
2212 * runnable without the overhead of this.
2213 *
2214 * returns failure only if the task is already active.
2215 */
36c8b586 2216static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2217{
cc367732 2218 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2219 unsigned long flags;
2220 long old_state;
70b97a7f 2221 struct rq *rq;
1da177e4 2222
b85d0667
IM
2223 if (!sched_feat(SYNC_WAKEUPS))
2224 sync = 0;
2225
2398f2c6
PZ
2226#ifdef CONFIG_SMP
2227 if (sched_feat(LB_WAKEUP_UPDATE)) {
2228 struct sched_domain *sd;
2229
2230 this_cpu = raw_smp_processor_id();
2231 cpu = task_cpu(p);
2232
2233 for_each_domain(this_cpu, sd) {
2234 if (cpu_isset(cpu, sd->span)) {
2235 update_shares(sd);
2236 break;
2237 }
2238 }
2239 }
2240#endif
2241
04e2f174 2242 smp_wmb();
1da177e4
LT
2243 rq = task_rq_lock(p, &flags);
2244 old_state = p->state;
2245 if (!(old_state & state))
2246 goto out;
2247
dd41f596 2248 if (p->se.on_rq)
1da177e4
LT
2249 goto out_running;
2250
2251 cpu = task_cpu(p);
cc367732 2252 orig_cpu = cpu;
1da177e4
LT
2253 this_cpu = smp_processor_id();
2254
2255#ifdef CONFIG_SMP
2256 if (unlikely(task_running(rq, p)))
2257 goto out_activate;
2258
5d2f5a61
DA
2259 cpu = p->sched_class->select_task_rq(p, sync);
2260 if (cpu != orig_cpu) {
2261 set_task_cpu(p, cpu);
1da177e4
LT
2262 task_rq_unlock(rq, &flags);
2263 /* might preempt at this point */
2264 rq = task_rq_lock(p, &flags);
2265 old_state = p->state;
2266 if (!(old_state & state))
2267 goto out;
dd41f596 2268 if (p->se.on_rq)
1da177e4
LT
2269 goto out_running;
2270
2271 this_cpu = smp_processor_id();
2272 cpu = task_cpu(p);
2273 }
2274
e7693a36
GH
2275#ifdef CONFIG_SCHEDSTATS
2276 schedstat_inc(rq, ttwu_count);
2277 if (cpu == this_cpu)
2278 schedstat_inc(rq, ttwu_local);
2279 else {
2280 struct sched_domain *sd;
2281 for_each_domain(this_cpu, sd) {
2282 if (cpu_isset(cpu, sd->span)) {
2283 schedstat_inc(sd, ttwu_wake_remote);
2284 break;
2285 }
2286 }
2287 }
6d6bc0ad 2288#endif /* CONFIG_SCHEDSTATS */
e7693a36 2289
1da177e4
LT
2290out_activate:
2291#endif /* CONFIG_SMP */
cc367732
IM
2292 schedstat_inc(p, se.nr_wakeups);
2293 if (sync)
2294 schedstat_inc(p, se.nr_wakeups_sync);
2295 if (orig_cpu != cpu)
2296 schedstat_inc(p, se.nr_wakeups_migrate);
2297 if (cpu == this_cpu)
2298 schedstat_inc(p, se.nr_wakeups_local);
2299 else
2300 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2301 update_rq_clock(rq);
dd41f596 2302 activate_task(rq, p, 1);
1da177e4
LT
2303 success = 1;
2304
2305out_running:
0a16b607 2306 trace_sched_wakeup(rq, p);
15afe09b 2307 check_preempt_curr(rq, p, sync);
4ae7d5ce 2308
1da177e4 2309 p->state = TASK_RUNNING;
9a897c5a
SR
2310#ifdef CONFIG_SMP
2311 if (p->sched_class->task_wake_up)
2312 p->sched_class->task_wake_up(rq, p);
2313#endif
1da177e4 2314out:
2087a1ad
GH
2315 current->se.last_wakeup = current->se.sum_exec_runtime;
2316
1da177e4
LT
2317 task_rq_unlock(rq, &flags);
2318
2319 return success;
2320}
2321
7ad5b3a5 2322int wake_up_process(struct task_struct *p)
1da177e4 2323{
d9514f6c 2324 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2325}
1da177e4
LT
2326EXPORT_SYMBOL(wake_up_process);
2327
7ad5b3a5 2328int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2329{
2330 return try_to_wake_up(p, state, 0);
2331}
2332
1da177e4
LT
2333/*
2334 * Perform scheduler related setup for a newly forked process p.
2335 * p is forked by current.
dd41f596
IM
2336 *
2337 * __sched_fork() is basic setup used by init_idle() too:
2338 */
2339static void __sched_fork(struct task_struct *p)
2340{
dd41f596
IM
2341 p->se.exec_start = 0;
2342 p->se.sum_exec_runtime = 0;
f6cf891c 2343 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2344 p->se.last_wakeup = 0;
2345 p->se.avg_overlap = 0;
6cfb0d5d
IM
2346
2347#ifdef CONFIG_SCHEDSTATS
2348 p->se.wait_start = 0;
dd41f596
IM
2349 p->se.sum_sleep_runtime = 0;
2350 p->se.sleep_start = 0;
dd41f596
IM
2351 p->se.block_start = 0;
2352 p->se.sleep_max = 0;
2353 p->se.block_max = 0;
2354 p->se.exec_max = 0;
eba1ed4b 2355 p->se.slice_max = 0;
dd41f596 2356 p->se.wait_max = 0;
6cfb0d5d 2357#endif
476d139c 2358
fa717060 2359 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2360 p->se.on_rq = 0;
4a55bd5e 2361 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2362
e107be36
AK
2363#ifdef CONFIG_PREEMPT_NOTIFIERS
2364 INIT_HLIST_HEAD(&p->preempt_notifiers);
2365#endif
2366
1da177e4
LT
2367 /*
2368 * We mark the process as running here, but have not actually
2369 * inserted it onto the runqueue yet. This guarantees that
2370 * nobody will actually run it, and a signal or other external
2371 * event cannot wake it up and insert it on the runqueue either.
2372 */
2373 p->state = TASK_RUNNING;
dd41f596
IM
2374}
2375
2376/*
2377 * fork()/clone()-time setup:
2378 */
2379void sched_fork(struct task_struct *p, int clone_flags)
2380{
2381 int cpu = get_cpu();
2382
2383 __sched_fork(p);
2384
2385#ifdef CONFIG_SMP
2386 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2387#endif
02e4bac2 2388 set_task_cpu(p, cpu);
b29739f9
IM
2389
2390 /*
2391 * Make sure we do not leak PI boosting priority to the child:
2392 */
2393 p->prio = current->normal_prio;
2ddbf952
HS
2394 if (!rt_prio(p->prio))
2395 p->sched_class = &fair_sched_class;
b29739f9 2396
52f17b6c 2397#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2398 if (likely(sched_info_on()))
52f17b6c 2399 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2400#endif
d6077cb8 2401#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2402 p->oncpu = 0;
2403#endif
1da177e4 2404#ifdef CONFIG_PREEMPT
4866cde0 2405 /* Want to start with kernel preemption disabled. */
a1261f54 2406 task_thread_info(p)->preempt_count = 1;
1da177e4 2407#endif
476d139c 2408 put_cpu();
1da177e4
LT
2409}
2410
2411/*
2412 * wake_up_new_task - wake up a newly created task for the first time.
2413 *
2414 * This function will do some initial scheduler statistics housekeeping
2415 * that must be done for every newly created context, then puts the task
2416 * on the runqueue and wakes it.
2417 */
7ad5b3a5 2418void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2419{
2420 unsigned long flags;
dd41f596 2421 struct rq *rq;
1da177e4
LT
2422
2423 rq = task_rq_lock(p, &flags);
147cbb4b 2424 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2425 update_rq_clock(rq);
1da177e4
LT
2426
2427 p->prio = effective_prio(p);
2428
b9dca1e0 2429 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2430 activate_task(rq, p, 0);
1da177e4 2431 } else {
1da177e4 2432 /*
dd41f596
IM
2433 * Let the scheduling class do new task startup
2434 * management (if any):
1da177e4 2435 */
ee0827d8 2436 p->sched_class->task_new(rq, p);
c09595f6 2437 inc_nr_running(rq);
1da177e4 2438 }
0a16b607 2439 trace_sched_wakeup_new(rq, p);
15afe09b 2440 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2441#ifdef CONFIG_SMP
2442 if (p->sched_class->task_wake_up)
2443 p->sched_class->task_wake_up(rq, p);
2444#endif
dd41f596 2445 task_rq_unlock(rq, &flags);
1da177e4
LT
2446}
2447
e107be36
AK
2448#ifdef CONFIG_PREEMPT_NOTIFIERS
2449
2450/**
421cee29
RD
2451 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2452 * @notifier: notifier struct to register
e107be36
AK
2453 */
2454void preempt_notifier_register(struct preempt_notifier *notifier)
2455{
2456 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2457}
2458EXPORT_SYMBOL_GPL(preempt_notifier_register);
2459
2460/**
2461 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2462 * @notifier: notifier struct to unregister
e107be36
AK
2463 *
2464 * This is safe to call from within a preemption notifier.
2465 */
2466void preempt_notifier_unregister(struct preempt_notifier *notifier)
2467{
2468 hlist_del(&notifier->link);
2469}
2470EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2471
2472static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2473{
2474 struct preempt_notifier *notifier;
2475 struct hlist_node *node;
2476
2477 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2478 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2479}
2480
2481static void
2482fire_sched_out_preempt_notifiers(struct task_struct *curr,
2483 struct task_struct *next)
2484{
2485 struct preempt_notifier *notifier;
2486 struct hlist_node *node;
2487
2488 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2489 notifier->ops->sched_out(notifier, next);
2490}
2491
6d6bc0ad 2492#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2493
2494static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2495{
2496}
2497
2498static void
2499fire_sched_out_preempt_notifiers(struct task_struct *curr,
2500 struct task_struct *next)
2501{
2502}
2503
6d6bc0ad 2504#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2505
4866cde0
NP
2506/**
2507 * prepare_task_switch - prepare to switch tasks
2508 * @rq: the runqueue preparing to switch
421cee29 2509 * @prev: the current task that is being switched out
4866cde0
NP
2510 * @next: the task we are going to switch to.
2511 *
2512 * This is called with the rq lock held and interrupts off. It must
2513 * be paired with a subsequent finish_task_switch after the context
2514 * switch.
2515 *
2516 * prepare_task_switch sets up locking and calls architecture specific
2517 * hooks.
2518 */
e107be36
AK
2519static inline void
2520prepare_task_switch(struct rq *rq, struct task_struct *prev,
2521 struct task_struct *next)
4866cde0 2522{
e107be36 2523 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2524 prepare_lock_switch(rq, next);
2525 prepare_arch_switch(next);
2526}
2527
1da177e4
LT
2528/**
2529 * finish_task_switch - clean up after a task-switch
344babaa 2530 * @rq: runqueue associated with task-switch
1da177e4
LT
2531 * @prev: the thread we just switched away from.
2532 *
4866cde0
NP
2533 * finish_task_switch must be called after the context switch, paired
2534 * with a prepare_task_switch call before the context switch.
2535 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2536 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2537 *
2538 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2539 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2540 * with the lock held can cause deadlocks; see schedule() for
2541 * details.)
2542 */
a9957449 2543static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2544 __releases(rq->lock)
2545{
1da177e4 2546 struct mm_struct *mm = rq->prev_mm;
55a101f8 2547 long prev_state;
1da177e4
LT
2548
2549 rq->prev_mm = NULL;
2550
2551 /*
2552 * A task struct has one reference for the use as "current".
c394cc9f 2553 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2554 * schedule one last time. The schedule call will never return, and
2555 * the scheduled task must drop that reference.
c394cc9f 2556 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2557 * still held, otherwise prev could be scheduled on another cpu, die
2558 * there before we look at prev->state, and then the reference would
2559 * be dropped twice.
2560 * Manfred Spraul <manfred@colorfullife.com>
2561 */
55a101f8 2562 prev_state = prev->state;
4866cde0
NP
2563 finish_arch_switch(prev);
2564 finish_lock_switch(rq, prev);
9a897c5a
SR
2565#ifdef CONFIG_SMP
2566 if (current->sched_class->post_schedule)
2567 current->sched_class->post_schedule(rq);
2568#endif
e8fa1362 2569
e107be36 2570 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2571 if (mm)
2572 mmdrop(mm);
c394cc9f 2573 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2574 /*
2575 * Remove function-return probe instances associated with this
2576 * task and put them back on the free list.
9761eea8 2577 */
c6fd91f0 2578 kprobe_flush_task(prev);
1da177e4 2579 put_task_struct(prev);
c6fd91f0 2580 }
1da177e4
LT
2581}
2582
2583/**
2584 * schedule_tail - first thing a freshly forked thread must call.
2585 * @prev: the thread we just switched away from.
2586 */
36c8b586 2587asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2588 __releases(rq->lock)
2589{
70b97a7f
IM
2590 struct rq *rq = this_rq();
2591
4866cde0
NP
2592 finish_task_switch(rq, prev);
2593#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2594 /* In this case, finish_task_switch does not reenable preemption */
2595 preempt_enable();
2596#endif
1da177e4 2597 if (current->set_child_tid)
b488893a 2598 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2599}
2600
2601/*
2602 * context_switch - switch to the new MM and the new
2603 * thread's register state.
2604 */
dd41f596 2605static inline void
70b97a7f 2606context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2607 struct task_struct *next)
1da177e4 2608{
dd41f596 2609 struct mm_struct *mm, *oldmm;
1da177e4 2610
e107be36 2611 prepare_task_switch(rq, prev, next);
0a16b607 2612 trace_sched_switch(rq, prev, next);
dd41f596
IM
2613 mm = next->mm;
2614 oldmm = prev->active_mm;
9226d125
ZA
2615 /*
2616 * For paravirt, this is coupled with an exit in switch_to to
2617 * combine the page table reload and the switch backend into
2618 * one hypercall.
2619 */
2620 arch_enter_lazy_cpu_mode();
2621
dd41f596 2622 if (unlikely(!mm)) {
1da177e4
LT
2623 next->active_mm = oldmm;
2624 atomic_inc(&oldmm->mm_count);
2625 enter_lazy_tlb(oldmm, next);
2626 } else
2627 switch_mm(oldmm, mm, next);
2628
dd41f596 2629 if (unlikely(!prev->mm)) {
1da177e4 2630 prev->active_mm = NULL;
1da177e4
LT
2631 rq->prev_mm = oldmm;
2632 }
3a5f5e48
IM
2633 /*
2634 * Since the runqueue lock will be released by the next
2635 * task (which is an invalid locking op but in the case
2636 * of the scheduler it's an obvious special-case), so we
2637 * do an early lockdep release here:
2638 */
2639#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2640 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2641#endif
1da177e4
LT
2642
2643 /* Here we just switch the register state and the stack. */
2644 switch_to(prev, next, prev);
2645
dd41f596
IM
2646 barrier();
2647 /*
2648 * this_rq must be evaluated again because prev may have moved
2649 * CPUs since it called schedule(), thus the 'rq' on its stack
2650 * frame will be invalid.
2651 */
2652 finish_task_switch(this_rq(), prev);
1da177e4
LT
2653}
2654
2655/*
2656 * nr_running, nr_uninterruptible and nr_context_switches:
2657 *
2658 * externally visible scheduler statistics: current number of runnable
2659 * threads, current number of uninterruptible-sleeping threads, total
2660 * number of context switches performed since bootup.
2661 */
2662unsigned long nr_running(void)
2663{
2664 unsigned long i, sum = 0;
2665
2666 for_each_online_cpu(i)
2667 sum += cpu_rq(i)->nr_running;
2668
2669 return sum;
2670}
2671
2672unsigned long nr_uninterruptible(void)
2673{
2674 unsigned long i, sum = 0;
2675
0a945022 2676 for_each_possible_cpu(i)
1da177e4
LT
2677 sum += cpu_rq(i)->nr_uninterruptible;
2678
2679 /*
2680 * Since we read the counters lockless, it might be slightly
2681 * inaccurate. Do not allow it to go below zero though:
2682 */
2683 if (unlikely((long)sum < 0))
2684 sum = 0;
2685
2686 return sum;
2687}
2688
2689unsigned long long nr_context_switches(void)
2690{
cc94abfc
SR
2691 int i;
2692 unsigned long long sum = 0;
1da177e4 2693
0a945022 2694 for_each_possible_cpu(i)
1da177e4
LT
2695 sum += cpu_rq(i)->nr_switches;
2696
2697 return sum;
2698}
2699
2700unsigned long nr_iowait(void)
2701{
2702 unsigned long i, sum = 0;
2703
0a945022 2704 for_each_possible_cpu(i)
1da177e4
LT
2705 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2706
2707 return sum;
2708}
2709
db1b1fef
JS
2710unsigned long nr_active(void)
2711{
2712 unsigned long i, running = 0, uninterruptible = 0;
2713
2714 for_each_online_cpu(i) {
2715 running += cpu_rq(i)->nr_running;
2716 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2717 }
2718
2719 if (unlikely((long)uninterruptible < 0))
2720 uninterruptible = 0;
2721
2722 return running + uninterruptible;
2723}
2724
48f24c4d 2725/*
dd41f596
IM
2726 * Update rq->cpu_load[] statistics. This function is usually called every
2727 * scheduler tick (TICK_NSEC).
48f24c4d 2728 */
dd41f596 2729static void update_cpu_load(struct rq *this_rq)
48f24c4d 2730{
495eca49 2731 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2732 int i, scale;
2733
2734 this_rq->nr_load_updates++;
dd41f596
IM
2735
2736 /* Update our load: */
2737 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2738 unsigned long old_load, new_load;
2739
2740 /* scale is effectively 1 << i now, and >> i divides by scale */
2741
2742 old_load = this_rq->cpu_load[i];
2743 new_load = this_load;
a25707f3
IM
2744 /*
2745 * Round up the averaging division if load is increasing. This
2746 * prevents us from getting stuck on 9 if the load is 10, for
2747 * example.
2748 */
2749 if (new_load > old_load)
2750 new_load += scale-1;
dd41f596
IM
2751 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2752 }
48f24c4d
IM
2753}
2754
dd41f596
IM
2755#ifdef CONFIG_SMP
2756
1da177e4
LT
2757/*
2758 * double_rq_lock - safely lock two runqueues
2759 *
2760 * Note this does not disable interrupts like task_rq_lock,
2761 * you need to do so manually before calling.
2762 */
70b97a7f 2763static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2764 __acquires(rq1->lock)
2765 __acquires(rq2->lock)
2766{
054b9108 2767 BUG_ON(!irqs_disabled());
1da177e4
LT
2768 if (rq1 == rq2) {
2769 spin_lock(&rq1->lock);
2770 __acquire(rq2->lock); /* Fake it out ;) */
2771 } else {
c96d145e 2772 if (rq1 < rq2) {
1da177e4 2773 spin_lock(&rq1->lock);
5e710e37 2774 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2775 } else {
2776 spin_lock(&rq2->lock);
5e710e37 2777 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2778 }
2779 }
6e82a3be
IM
2780 update_rq_clock(rq1);
2781 update_rq_clock(rq2);
1da177e4
LT
2782}
2783
2784/*
2785 * double_rq_unlock - safely unlock two runqueues
2786 *
2787 * Note this does not restore interrupts like task_rq_unlock,
2788 * you need to do so manually after calling.
2789 */
70b97a7f 2790static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2791 __releases(rq1->lock)
2792 __releases(rq2->lock)
2793{
2794 spin_unlock(&rq1->lock);
2795 if (rq1 != rq2)
2796 spin_unlock(&rq2->lock);
2797 else
2798 __release(rq2->lock);
2799}
2800
2801/*
2802 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2803 */
e8fa1362 2804static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2805 __releases(this_rq->lock)
2806 __acquires(busiest->lock)
2807 __acquires(this_rq->lock)
2808{
e8fa1362
SR
2809 int ret = 0;
2810
054b9108
KK
2811 if (unlikely(!irqs_disabled())) {
2812 /* printk() doesn't work good under rq->lock */
2813 spin_unlock(&this_rq->lock);
2814 BUG_ON(1);
2815 }
1da177e4 2816 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2817 if (busiest < this_rq) {
1da177e4
LT
2818 spin_unlock(&this_rq->lock);
2819 spin_lock(&busiest->lock);
5e710e37 2820 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2821 ret = 1;
1da177e4 2822 } else
5e710e37 2823 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2824 }
e8fa1362 2825 return ret;
1da177e4
LT
2826}
2827
1b12bbc7
PZ
2828static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2829 __releases(busiest->lock)
2830{
2831 spin_unlock(&busiest->lock);
2832 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2833}
2834
1da177e4
LT
2835/*
2836 * If dest_cpu is allowed for this process, migrate the task to it.
2837 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2838 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2839 * the cpu_allowed mask is restored.
2840 */
36c8b586 2841static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2842{
70b97a7f 2843 struct migration_req req;
1da177e4 2844 unsigned long flags;
70b97a7f 2845 struct rq *rq;
1da177e4
LT
2846
2847 rq = task_rq_lock(p, &flags);
2848 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2849 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2850 goto out;
2851
0a16b607 2852 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2853 /* force the process onto the specified CPU */
2854 if (migrate_task(p, dest_cpu, &req)) {
2855 /* Need to wait for migration thread (might exit: take ref). */
2856 struct task_struct *mt = rq->migration_thread;
36c8b586 2857
1da177e4
LT
2858 get_task_struct(mt);
2859 task_rq_unlock(rq, &flags);
2860 wake_up_process(mt);
2861 put_task_struct(mt);
2862 wait_for_completion(&req.done);
36c8b586 2863
1da177e4
LT
2864 return;
2865 }
2866out:
2867 task_rq_unlock(rq, &flags);
2868}
2869
2870/*
476d139c
NP
2871 * sched_exec - execve() is a valuable balancing opportunity, because at
2872 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2873 */
2874void sched_exec(void)
2875{
1da177e4 2876 int new_cpu, this_cpu = get_cpu();
476d139c 2877 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2878 put_cpu();
476d139c
NP
2879 if (new_cpu != this_cpu)
2880 sched_migrate_task(current, new_cpu);
1da177e4
LT
2881}
2882
2883/*
2884 * pull_task - move a task from a remote runqueue to the local runqueue.
2885 * Both runqueues must be locked.
2886 */
dd41f596
IM
2887static void pull_task(struct rq *src_rq, struct task_struct *p,
2888 struct rq *this_rq, int this_cpu)
1da177e4 2889{
2e1cb74a 2890 deactivate_task(src_rq, p, 0);
1da177e4 2891 set_task_cpu(p, this_cpu);
dd41f596 2892 activate_task(this_rq, p, 0);
1da177e4
LT
2893 /*
2894 * Note that idle threads have a prio of MAX_PRIO, for this test
2895 * to be always true for them.
2896 */
15afe09b 2897 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2898}
2899
2900/*
2901 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2902 */
858119e1 2903static
70b97a7f 2904int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2905 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2906 int *all_pinned)
1da177e4
LT
2907{
2908 /*
2909 * We do not migrate tasks that are:
2910 * 1) running (obviously), or
2911 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2912 * 3) are cache-hot on their current CPU.
2913 */
cc367732
IM
2914 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2915 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2916 return 0;
cc367732 2917 }
81026794
NP
2918 *all_pinned = 0;
2919
cc367732
IM
2920 if (task_running(rq, p)) {
2921 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2922 return 0;
cc367732 2923 }
1da177e4 2924
da84d961
IM
2925 /*
2926 * Aggressive migration if:
2927 * 1) task is cache cold, or
2928 * 2) too many balance attempts have failed.
2929 */
2930
6bc1665b
IM
2931 if (!task_hot(p, rq->clock, sd) ||
2932 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2933#ifdef CONFIG_SCHEDSTATS
cc367732 2934 if (task_hot(p, rq->clock, sd)) {
da84d961 2935 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2936 schedstat_inc(p, se.nr_forced_migrations);
2937 }
da84d961
IM
2938#endif
2939 return 1;
2940 }
2941
cc367732
IM
2942 if (task_hot(p, rq->clock, sd)) {
2943 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2944 return 0;
cc367732 2945 }
1da177e4
LT
2946 return 1;
2947}
2948
e1d1484f
PW
2949static unsigned long
2950balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2951 unsigned long max_load_move, struct sched_domain *sd,
2952 enum cpu_idle_type idle, int *all_pinned,
2953 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2954{
051c6764 2955 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2956 struct task_struct *p;
2957 long rem_load_move = max_load_move;
1da177e4 2958
e1d1484f 2959 if (max_load_move == 0)
1da177e4
LT
2960 goto out;
2961
81026794
NP
2962 pinned = 1;
2963
1da177e4 2964 /*
dd41f596 2965 * Start the load-balancing iterator:
1da177e4 2966 */
dd41f596
IM
2967 p = iterator->start(iterator->arg);
2968next:
b82d9fdd 2969 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2970 goto out;
051c6764
PZ
2971
2972 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2973 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2974 p = iterator->next(iterator->arg);
2975 goto next;
1da177e4
LT
2976 }
2977
dd41f596 2978 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2979 pulled++;
dd41f596 2980 rem_load_move -= p->se.load.weight;
1da177e4 2981
2dd73a4f 2982 /*
b82d9fdd 2983 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2984 */
e1d1484f 2985 if (rem_load_move > 0) {
a4ac01c3
PW
2986 if (p->prio < *this_best_prio)
2987 *this_best_prio = p->prio;
dd41f596
IM
2988 p = iterator->next(iterator->arg);
2989 goto next;
1da177e4
LT
2990 }
2991out:
2992 /*
e1d1484f 2993 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2994 * so we can safely collect pull_task() stats here rather than
2995 * inside pull_task().
2996 */
2997 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2998
2999 if (all_pinned)
3000 *all_pinned = pinned;
e1d1484f
PW
3001
3002 return max_load_move - rem_load_move;
1da177e4
LT
3003}
3004
dd41f596 3005/*
43010659
PW
3006 * move_tasks tries to move up to max_load_move weighted load from busiest to
3007 * this_rq, as part of a balancing operation within domain "sd".
3008 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3009 *
3010 * Called with both runqueues locked.
3011 */
3012static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3013 unsigned long max_load_move,
dd41f596
IM
3014 struct sched_domain *sd, enum cpu_idle_type idle,
3015 int *all_pinned)
3016{
5522d5d5 3017 const struct sched_class *class = sched_class_highest;
43010659 3018 unsigned long total_load_moved = 0;
a4ac01c3 3019 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3020
3021 do {
43010659
PW
3022 total_load_moved +=
3023 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3024 max_load_move - total_load_moved,
a4ac01c3 3025 sd, idle, all_pinned, &this_best_prio);
dd41f596 3026 class = class->next;
c4acb2c0
GH
3027
3028 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3029 break;
3030
43010659 3031 } while (class && max_load_move > total_load_moved);
dd41f596 3032
43010659
PW
3033 return total_load_moved > 0;
3034}
3035
e1d1484f
PW
3036static int
3037iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3038 struct sched_domain *sd, enum cpu_idle_type idle,
3039 struct rq_iterator *iterator)
3040{
3041 struct task_struct *p = iterator->start(iterator->arg);
3042 int pinned = 0;
3043
3044 while (p) {
3045 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3046 pull_task(busiest, p, this_rq, this_cpu);
3047 /*
3048 * Right now, this is only the second place pull_task()
3049 * is called, so we can safely collect pull_task()
3050 * stats here rather than inside pull_task().
3051 */
3052 schedstat_inc(sd, lb_gained[idle]);
3053
3054 return 1;
3055 }
3056 p = iterator->next(iterator->arg);
3057 }
3058
3059 return 0;
3060}
3061
43010659
PW
3062/*
3063 * move_one_task tries to move exactly one task from busiest to this_rq, as
3064 * part of active balancing operations within "domain".
3065 * Returns 1 if successful and 0 otherwise.
3066 *
3067 * Called with both runqueues locked.
3068 */
3069static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3070 struct sched_domain *sd, enum cpu_idle_type idle)
3071{
5522d5d5 3072 const struct sched_class *class;
43010659
PW
3073
3074 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3075 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3076 return 1;
3077
3078 return 0;
dd41f596
IM
3079}
3080
1da177e4
LT
3081/*
3082 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3083 * domain. It calculates and returns the amount of weighted load which
3084 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3085 */
3086static struct sched_group *
3087find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3088 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3089 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3090{
3091 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3092 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3093 unsigned long max_pull;
2dd73a4f
PW
3094 unsigned long busiest_load_per_task, busiest_nr_running;
3095 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3096 int load_idx, group_imb = 0;
5c45bf27
SS
3097#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3098 int power_savings_balance = 1;
3099 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3100 unsigned long min_nr_running = ULONG_MAX;
3101 struct sched_group *group_min = NULL, *group_leader = NULL;
3102#endif
1da177e4
LT
3103
3104 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3105 busiest_load_per_task = busiest_nr_running = 0;
3106 this_load_per_task = this_nr_running = 0;
408ed066 3107
d15bcfdb 3108 if (idle == CPU_NOT_IDLE)
7897986b 3109 load_idx = sd->busy_idx;
d15bcfdb 3110 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3111 load_idx = sd->newidle_idx;
3112 else
3113 load_idx = sd->idle_idx;
1da177e4
LT
3114
3115 do {
908a7c1b 3116 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3117 int local_group;
3118 int i;
908a7c1b 3119 int __group_imb = 0;
783609c6 3120 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3121 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3122 unsigned long sum_avg_load_per_task;
3123 unsigned long avg_load_per_task;
1da177e4
LT
3124
3125 local_group = cpu_isset(this_cpu, group->cpumask);
3126
783609c6
SS
3127 if (local_group)
3128 balance_cpu = first_cpu(group->cpumask);
3129
1da177e4 3130 /* Tally up the load of all CPUs in the group */
2dd73a4f 3131 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3132 sum_avg_load_per_task = avg_load_per_task = 0;
3133
908a7c1b
KC
3134 max_cpu_load = 0;
3135 min_cpu_load = ~0UL;
1da177e4 3136
363ab6f1 3137 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3138 struct rq *rq;
3139
3140 if (!cpu_isset(i, *cpus))
3141 continue;
3142
3143 rq = cpu_rq(i);
2dd73a4f 3144
9439aab8 3145 if (*sd_idle && rq->nr_running)
5969fe06
NP
3146 *sd_idle = 0;
3147
1da177e4 3148 /* Bias balancing toward cpus of our domain */
783609c6
SS
3149 if (local_group) {
3150 if (idle_cpu(i) && !first_idle_cpu) {
3151 first_idle_cpu = 1;
3152 balance_cpu = i;
3153 }
3154
a2000572 3155 load = target_load(i, load_idx);
908a7c1b 3156 } else {
a2000572 3157 load = source_load(i, load_idx);
908a7c1b
KC
3158 if (load > max_cpu_load)
3159 max_cpu_load = load;
3160 if (min_cpu_load > load)
3161 min_cpu_load = load;
3162 }
1da177e4
LT
3163
3164 avg_load += load;
2dd73a4f 3165 sum_nr_running += rq->nr_running;
dd41f596 3166 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3167
3168 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3169 }
3170
783609c6
SS
3171 /*
3172 * First idle cpu or the first cpu(busiest) in this sched group
3173 * is eligible for doing load balancing at this and above
9439aab8
SS
3174 * domains. In the newly idle case, we will allow all the cpu's
3175 * to do the newly idle load balance.
783609c6 3176 */
9439aab8
SS
3177 if (idle != CPU_NEWLY_IDLE && local_group &&
3178 balance_cpu != this_cpu && balance) {
783609c6
SS
3179 *balance = 0;
3180 goto ret;
3181 }
3182
1da177e4 3183 total_load += avg_load;
5517d86b 3184 total_pwr += group->__cpu_power;
1da177e4
LT
3185
3186 /* Adjust by relative CPU power of the group */
5517d86b
ED
3187 avg_load = sg_div_cpu_power(group,
3188 avg_load * SCHED_LOAD_SCALE);
1da177e4 3189
408ed066
PZ
3190
3191 /*
3192 * Consider the group unbalanced when the imbalance is larger
3193 * than the average weight of two tasks.
3194 *
3195 * APZ: with cgroup the avg task weight can vary wildly and
3196 * might not be a suitable number - should we keep a
3197 * normalized nr_running number somewhere that negates
3198 * the hierarchy?
3199 */
3200 avg_load_per_task = sg_div_cpu_power(group,
3201 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3202
3203 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3204 __group_imb = 1;
3205
5517d86b 3206 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3207
1da177e4
LT
3208 if (local_group) {
3209 this_load = avg_load;
3210 this = group;
2dd73a4f
PW
3211 this_nr_running = sum_nr_running;
3212 this_load_per_task = sum_weighted_load;
3213 } else if (avg_load > max_load &&
908a7c1b 3214 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3215 max_load = avg_load;
3216 busiest = group;
2dd73a4f
PW
3217 busiest_nr_running = sum_nr_running;
3218 busiest_load_per_task = sum_weighted_load;
908a7c1b 3219 group_imb = __group_imb;
1da177e4 3220 }
5c45bf27
SS
3221
3222#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3223 /*
3224 * Busy processors will not participate in power savings
3225 * balance.
3226 */
dd41f596
IM
3227 if (idle == CPU_NOT_IDLE ||
3228 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3229 goto group_next;
5c45bf27
SS
3230
3231 /*
3232 * If the local group is idle or completely loaded
3233 * no need to do power savings balance at this domain
3234 */
3235 if (local_group && (this_nr_running >= group_capacity ||
3236 !this_nr_running))
3237 power_savings_balance = 0;
3238
dd41f596 3239 /*
5c45bf27
SS
3240 * If a group is already running at full capacity or idle,
3241 * don't include that group in power savings calculations
dd41f596
IM
3242 */
3243 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3244 || !sum_nr_running)
dd41f596 3245 goto group_next;
5c45bf27 3246
dd41f596 3247 /*
5c45bf27 3248 * Calculate the group which has the least non-idle load.
dd41f596
IM
3249 * This is the group from where we need to pick up the load
3250 * for saving power
3251 */
3252 if ((sum_nr_running < min_nr_running) ||
3253 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3254 first_cpu(group->cpumask) <
3255 first_cpu(group_min->cpumask))) {
dd41f596
IM
3256 group_min = group;
3257 min_nr_running = sum_nr_running;
5c45bf27
SS
3258 min_load_per_task = sum_weighted_load /
3259 sum_nr_running;
dd41f596 3260 }
5c45bf27 3261
dd41f596 3262 /*
5c45bf27 3263 * Calculate the group which is almost near its
dd41f596
IM
3264 * capacity but still has some space to pick up some load
3265 * from other group and save more power
3266 */
3267 if (sum_nr_running <= group_capacity - 1) {
3268 if (sum_nr_running > leader_nr_running ||
3269 (sum_nr_running == leader_nr_running &&
3270 first_cpu(group->cpumask) >
3271 first_cpu(group_leader->cpumask))) {
3272 group_leader = group;
3273 leader_nr_running = sum_nr_running;
3274 }
48f24c4d 3275 }
5c45bf27
SS
3276group_next:
3277#endif
1da177e4
LT
3278 group = group->next;
3279 } while (group != sd->groups);
3280
2dd73a4f 3281 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3282 goto out_balanced;
3283
3284 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3285
3286 if (this_load >= avg_load ||
3287 100*max_load <= sd->imbalance_pct*this_load)
3288 goto out_balanced;
3289
2dd73a4f 3290 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3291 if (group_imb)
3292 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3293
1da177e4
LT
3294 /*
3295 * We're trying to get all the cpus to the average_load, so we don't
3296 * want to push ourselves above the average load, nor do we wish to
3297 * reduce the max loaded cpu below the average load, as either of these
3298 * actions would just result in more rebalancing later, and ping-pong
3299 * tasks around. Thus we look for the minimum possible imbalance.
3300 * Negative imbalances (*we* are more loaded than anyone else) will
3301 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3302 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3303 * appear as very large values with unsigned longs.
3304 */
2dd73a4f
PW
3305 if (max_load <= busiest_load_per_task)
3306 goto out_balanced;
3307
3308 /*
3309 * In the presence of smp nice balancing, certain scenarios can have
3310 * max load less than avg load(as we skip the groups at or below
3311 * its cpu_power, while calculating max_load..)
3312 */
3313 if (max_load < avg_load) {
3314 *imbalance = 0;
3315 goto small_imbalance;
3316 }
0c117f1b
SS
3317
3318 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3319 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3320
1da177e4 3321 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3322 *imbalance = min(max_pull * busiest->__cpu_power,
3323 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3324 / SCHED_LOAD_SCALE;
3325
2dd73a4f
PW
3326 /*
3327 * if *imbalance is less than the average load per runnable task
3328 * there is no gaurantee that any tasks will be moved so we'll have
3329 * a think about bumping its value to force at least one task to be
3330 * moved
3331 */
7fd0d2dd 3332 if (*imbalance < busiest_load_per_task) {
48f24c4d 3333 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3334 unsigned int imbn;
3335
3336small_imbalance:
3337 pwr_move = pwr_now = 0;
3338 imbn = 2;
3339 if (this_nr_running) {
3340 this_load_per_task /= this_nr_running;
3341 if (busiest_load_per_task > this_load_per_task)
3342 imbn = 1;
3343 } else
408ed066 3344 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3345
01c8c57d 3346 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3347 busiest_load_per_task * imbn) {
2dd73a4f 3348 *imbalance = busiest_load_per_task;
1da177e4
LT
3349 return busiest;
3350 }
3351
3352 /*
3353 * OK, we don't have enough imbalance to justify moving tasks,
3354 * however we may be able to increase total CPU power used by
3355 * moving them.
3356 */
3357
5517d86b
ED
3358 pwr_now += busiest->__cpu_power *
3359 min(busiest_load_per_task, max_load);
3360 pwr_now += this->__cpu_power *
3361 min(this_load_per_task, this_load);
1da177e4
LT
3362 pwr_now /= SCHED_LOAD_SCALE;
3363
3364 /* Amount of load we'd subtract */
5517d86b
ED
3365 tmp = sg_div_cpu_power(busiest,
3366 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3367 if (max_load > tmp)
5517d86b 3368 pwr_move += busiest->__cpu_power *
2dd73a4f 3369 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3370
3371 /* Amount of load we'd add */
5517d86b 3372 if (max_load * busiest->__cpu_power <
33859f7f 3373 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3374 tmp = sg_div_cpu_power(this,
3375 max_load * busiest->__cpu_power);
1da177e4 3376 else
5517d86b
ED
3377 tmp = sg_div_cpu_power(this,
3378 busiest_load_per_task * SCHED_LOAD_SCALE);
3379 pwr_move += this->__cpu_power *
3380 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3381 pwr_move /= SCHED_LOAD_SCALE;
3382
3383 /* Move if we gain throughput */
7fd0d2dd
SS
3384 if (pwr_move > pwr_now)
3385 *imbalance = busiest_load_per_task;
1da177e4
LT
3386 }
3387
1da177e4
LT
3388 return busiest;
3389
3390out_balanced:
5c45bf27 3391#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3392 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3393 goto ret;
1da177e4 3394
5c45bf27
SS
3395 if (this == group_leader && group_leader != group_min) {
3396 *imbalance = min_load_per_task;
3397 return group_min;
3398 }
5c45bf27 3399#endif
783609c6 3400ret:
1da177e4
LT
3401 *imbalance = 0;
3402 return NULL;
3403}
3404
3405/*
3406 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3407 */
70b97a7f 3408static struct rq *
d15bcfdb 3409find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3410 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3411{
70b97a7f 3412 struct rq *busiest = NULL, *rq;
2dd73a4f 3413 unsigned long max_load = 0;
1da177e4
LT
3414 int i;
3415
363ab6f1 3416 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3417 unsigned long wl;
0a2966b4
CL
3418
3419 if (!cpu_isset(i, *cpus))
3420 continue;
3421
48f24c4d 3422 rq = cpu_rq(i);
dd41f596 3423 wl = weighted_cpuload(i);
2dd73a4f 3424
dd41f596 3425 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3426 continue;
1da177e4 3427
dd41f596
IM
3428 if (wl > max_load) {
3429 max_load = wl;
48f24c4d 3430 busiest = rq;
1da177e4
LT
3431 }
3432 }
3433
3434 return busiest;
3435}
3436
77391d71
NP
3437/*
3438 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3439 * so long as it is large enough.
3440 */
3441#define MAX_PINNED_INTERVAL 512
3442
1da177e4
LT
3443/*
3444 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3445 * tasks if there is an imbalance.
1da177e4 3446 */
70b97a7f 3447static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3448 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3449 int *balance, cpumask_t *cpus)
1da177e4 3450{
43010659 3451 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3452 struct sched_group *group;
1da177e4 3453 unsigned long imbalance;
70b97a7f 3454 struct rq *busiest;
fe2eea3f 3455 unsigned long flags;
5969fe06 3456
7c16ec58
MT
3457 cpus_setall(*cpus);
3458
89c4710e
SS
3459 /*
3460 * When power savings policy is enabled for the parent domain, idle
3461 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3462 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3463 * portraying it as CPU_NOT_IDLE.
89c4710e 3464 */
d15bcfdb 3465 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3466 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3467 sd_idle = 1;
1da177e4 3468
2d72376b 3469 schedstat_inc(sd, lb_count[idle]);
1da177e4 3470
0a2966b4 3471redo:
c8cba857 3472 update_shares(sd);
0a2966b4 3473 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3474 cpus, balance);
783609c6 3475
06066714 3476 if (*balance == 0)
783609c6 3477 goto out_balanced;
783609c6 3478
1da177e4
LT
3479 if (!group) {
3480 schedstat_inc(sd, lb_nobusyg[idle]);
3481 goto out_balanced;
3482 }
3483
7c16ec58 3484 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3485 if (!busiest) {
3486 schedstat_inc(sd, lb_nobusyq[idle]);
3487 goto out_balanced;
3488 }
3489
db935dbd 3490 BUG_ON(busiest == this_rq);
1da177e4
LT
3491
3492 schedstat_add(sd, lb_imbalance[idle], imbalance);
3493
43010659 3494 ld_moved = 0;
1da177e4
LT
3495 if (busiest->nr_running > 1) {
3496 /*
3497 * Attempt to move tasks. If find_busiest_group has found
3498 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3499 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3500 * correctly treated as an imbalance.
3501 */
fe2eea3f 3502 local_irq_save(flags);
e17224bf 3503 double_rq_lock(this_rq, busiest);
43010659 3504 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3505 imbalance, sd, idle, &all_pinned);
e17224bf 3506 double_rq_unlock(this_rq, busiest);
fe2eea3f 3507 local_irq_restore(flags);
81026794 3508
46cb4b7c
SS
3509 /*
3510 * some other cpu did the load balance for us.
3511 */
43010659 3512 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3513 resched_cpu(this_cpu);
3514
81026794 3515 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3516 if (unlikely(all_pinned)) {
7c16ec58
MT
3517 cpu_clear(cpu_of(busiest), *cpus);
3518 if (!cpus_empty(*cpus))
0a2966b4 3519 goto redo;
81026794 3520 goto out_balanced;
0a2966b4 3521 }
1da177e4 3522 }
81026794 3523
43010659 3524 if (!ld_moved) {
1da177e4
LT
3525 schedstat_inc(sd, lb_failed[idle]);
3526 sd->nr_balance_failed++;
3527
3528 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3529
fe2eea3f 3530 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3531
3532 /* don't kick the migration_thread, if the curr
3533 * task on busiest cpu can't be moved to this_cpu
3534 */
3535 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3536 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3537 all_pinned = 1;
3538 goto out_one_pinned;
3539 }
3540
1da177e4
LT
3541 if (!busiest->active_balance) {
3542 busiest->active_balance = 1;
3543 busiest->push_cpu = this_cpu;
81026794 3544 active_balance = 1;
1da177e4 3545 }
fe2eea3f 3546 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3547 if (active_balance)
1da177e4
LT
3548 wake_up_process(busiest->migration_thread);
3549
3550 /*
3551 * We've kicked active balancing, reset the failure
3552 * counter.
3553 */
39507451 3554 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3555 }
81026794 3556 } else
1da177e4
LT
3557 sd->nr_balance_failed = 0;
3558
81026794 3559 if (likely(!active_balance)) {
1da177e4
LT
3560 /* We were unbalanced, so reset the balancing interval */
3561 sd->balance_interval = sd->min_interval;
81026794
NP
3562 } else {
3563 /*
3564 * If we've begun active balancing, start to back off. This
3565 * case may not be covered by the all_pinned logic if there
3566 * is only 1 task on the busy runqueue (because we don't call
3567 * move_tasks).
3568 */
3569 if (sd->balance_interval < sd->max_interval)
3570 sd->balance_interval *= 2;
1da177e4
LT
3571 }
3572
43010659 3573 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3574 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3575 ld_moved = -1;
3576
3577 goto out;
1da177e4
LT
3578
3579out_balanced:
1da177e4
LT
3580 schedstat_inc(sd, lb_balanced[idle]);
3581
16cfb1c0 3582 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3583
3584out_one_pinned:
1da177e4 3585 /* tune up the balancing interval */
77391d71
NP
3586 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3587 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3588 sd->balance_interval *= 2;
3589
48f24c4d 3590 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3591 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3592 ld_moved = -1;
3593 else
3594 ld_moved = 0;
3595out:
c8cba857
PZ
3596 if (ld_moved)
3597 update_shares(sd);
c09595f6 3598 return ld_moved;
1da177e4
LT
3599}
3600
3601/*
3602 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3603 * tasks if there is an imbalance.
3604 *
d15bcfdb 3605 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3606 * this_rq is locked.
3607 */
48f24c4d 3608static int
7c16ec58
MT
3609load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3610 cpumask_t *cpus)
1da177e4
LT
3611{
3612 struct sched_group *group;
70b97a7f 3613 struct rq *busiest = NULL;
1da177e4 3614 unsigned long imbalance;
43010659 3615 int ld_moved = 0;
5969fe06 3616 int sd_idle = 0;
969bb4e4 3617 int all_pinned = 0;
7c16ec58
MT
3618
3619 cpus_setall(*cpus);
5969fe06 3620
89c4710e
SS
3621 /*
3622 * When power savings policy is enabled for the parent domain, idle
3623 * sibling can pick up load irrespective of busy siblings. In this case,
3624 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3625 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3626 */
3627 if (sd->flags & SD_SHARE_CPUPOWER &&
3628 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3629 sd_idle = 1;
1da177e4 3630
2d72376b 3631 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3632redo:
3e5459b4 3633 update_shares_locked(this_rq, sd);
d15bcfdb 3634 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3635 &sd_idle, cpus, NULL);
1da177e4 3636 if (!group) {
d15bcfdb 3637 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3638 goto out_balanced;
1da177e4
LT
3639 }
3640
7c16ec58 3641 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3642 if (!busiest) {
d15bcfdb 3643 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3644 goto out_balanced;
1da177e4
LT
3645 }
3646
db935dbd
NP
3647 BUG_ON(busiest == this_rq);
3648
d15bcfdb 3649 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3650
43010659 3651 ld_moved = 0;
d6d5cfaf
NP
3652 if (busiest->nr_running > 1) {
3653 /* Attempt to move tasks */
3654 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3655 /* this_rq->clock is already updated */
3656 update_rq_clock(busiest);
43010659 3657 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3658 imbalance, sd, CPU_NEWLY_IDLE,
3659 &all_pinned);
1b12bbc7 3660 double_unlock_balance(this_rq, busiest);
0a2966b4 3661
969bb4e4 3662 if (unlikely(all_pinned)) {
7c16ec58
MT
3663 cpu_clear(cpu_of(busiest), *cpus);
3664 if (!cpus_empty(*cpus))
0a2966b4
CL
3665 goto redo;
3666 }
d6d5cfaf
NP
3667 }
3668
43010659 3669 if (!ld_moved) {
d15bcfdb 3670 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3671 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3672 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3673 return -1;
3674 } else
16cfb1c0 3675 sd->nr_balance_failed = 0;
1da177e4 3676
3e5459b4 3677 update_shares_locked(this_rq, sd);
43010659 3678 return ld_moved;
16cfb1c0
NP
3679
3680out_balanced:
d15bcfdb 3681 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3684 return -1;
16cfb1c0 3685 sd->nr_balance_failed = 0;
48f24c4d 3686
16cfb1c0 3687 return 0;
1da177e4
LT
3688}
3689
3690/*
3691 * idle_balance is called by schedule() if this_cpu is about to become
3692 * idle. Attempts to pull tasks from other CPUs.
3693 */
70b97a7f 3694static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3695{
3696 struct sched_domain *sd;
dd41f596
IM
3697 int pulled_task = -1;
3698 unsigned long next_balance = jiffies + HZ;
7c16ec58 3699 cpumask_t tmpmask;
1da177e4
LT
3700
3701 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3702 unsigned long interval;
3703
3704 if (!(sd->flags & SD_LOAD_BALANCE))
3705 continue;
3706
3707 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3708 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3709 pulled_task = load_balance_newidle(this_cpu, this_rq,
3710 sd, &tmpmask);
92c4ca5c
CL
3711
3712 interval = msecs_to_jiffies(sd->balance_interval);
3713 if (time_after(next_balance, sd->last_balance + interval))
3714 next_balance = sd->last_balance + interval;
3715 if (pulled_task)
3716 break;
1da177e4 3717 }
dd41f596 3718 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3719 /*
3720 * We are going idle. next_balance may be set based on
3721 * a busy processor. So reset next_balance.
3722 */
3723 this_rq->next_balance = next_balance;
dd41f596 3724 }
1da177e4
LT
3725}
3726
3727/*
3728 * active_load_balance is run by migration threads. It pushes running tasks
3729 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3730 * running on each physical CPU where possible, and avoids physical /
3731 * logical imbalances.
3732 *
3733 * Called with busiest_rq locked.
3734 */
70b97a7f 3735static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3736{
39507451 3737 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3738 struct sched_domain *sd;
3739 struct rq *target_rq;
39507451 3740
48f24c4d 3741 /* Is there any task to move? */
39507451 3742 if (busiest_rq->nr_running <= 1)
39507451
NP
3743 return;
3744
3745 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3746
3747 /*
39507451 3748 * This condition is "impossible", if it occurs
41a2d6cf 3749 * we need to fix it. Originally reported by
39507451 3750 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3751 */
39507451 3752 BUG_ON(busiest_rq == target_rq);
1da177e4 3753
39507451
NP
3754 /* move a task from busiest_rq to target_rq */
3755 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3756 update_rq_clock(busiest_rq);
3757 update_rq_clock(target_rq);
39507451
NP
3758
3759 /* Search for an sd spanning us and the target CPU. */
c96d145e 3760 for_each_domain(target_cpu, sd) {
39507451 3761 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3762 cpu_isset(busiest_cpu, sd->span))
39507451 3763 break;
c96d145e 3764 }
39507451 3765
48f24c4d 3766 if (likely(sd)) {
2d72376b 3767 schedstat_inc(sd, alb_count);
39507451 3768
43010659
PW
3769 if (move_one_task(target_rq, target_cpu, busiest_rq,
3770 sd, CPU_IDLE))
48f24c4d
IM
3771 schedstat_inc(sd, alb_pushed);
3772 else
3773 schedstat_inc(sd, alb_failed);
3774 }
1b12bbc7 3775 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3776}
3777
46cb4b7c
SS
3778#ifdef CONFIG_NO_HZ
3779static struct {
3780 atomic_t load_balancer;
41a2d6cf 3781 cpumask_t cpu_mask;
46cb4b7c
SS
3782} nohz ____cacheline_aligned = {
3783 .load_balancer = ATOMIC_INIT(-1),
3784 .cpu_mask = CPU_MASK_NONE,
3785};
3786
7835b98b 3787/*
46cb4b7c
SS
3788 * This routine will try to nominate the ilb (idle load balancing)
3789 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3790 * load balancing on behalf of all those cpus. If all the cpus in the system
3791 * go into this tickless mode, then there will be no ilb owner (as there is
3792 * no need for one) and all the cpus will sleep till the next wakeup event
3793 * arrives...
3794 *
3795 * For the ilb owner, tick is not stopped. And this tick will be used
3796 * for idle load balancing. ilb owner will still be part of
3797 * nohz.cpu_mask..
7835b98b 3798 *
46cb4b7c
SS
3799 * While stopping the tick, this cpu will become the ilb owner if there
3800 * is no other owner. And will be the owner till that cpu becomes busy
3801 * or if all cpus in the system stop their ticks at which point
3802 * there is no need for ilb owner.
3803 *
3804 * When the ilb owner becomes busy, it nominates another owner, during the
3805 * next busy scheduler_tick()
3806 */
3807int select_nohz_load_balancer(int stop_tick)
3808{
3809 int cpu = smp_processor_id();
3810
3811 if (stop_tick) {
3812 cpu_set(cpu, nohz.cpu_mask);
3813 cpu_rq(cpu)->in_nohz_recently = 1;
3814
3815 /*
3816 * If we are going offline and still the leader, give up!
3817 */
e761b772 3818 if (!cpu_active(cpu) &&
46cb4b7c
SS
3819 atomic_read(&nohz.load_balancer) == cpu) {
3820 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3821 BUG();
3822 return 0;
3823 }
3824
3825 /* time for ilb owner also to sleep */
3826 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3827 if (atomic_read(&nohz.load_balancer) == cpu)
3828 atomic_set(&nohz.load_balancer, -1);
3829 return 0;
3830 }
3831
3832 if (atomic_read(&nohz.load_balancer) == -1) {
3833 /* make me the ilb owner */
3834 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3835 return 1;
3836 } else if (atomic_read(&nohz.load_balancer) == cpu)
3837 return 1;
3838 } else {
3839 if (!cpu_isset(cpu, nohz.cpu_mask))
3840 return 0;
3841
3842 cpu_clear(cpu, nohz.cpu_mask);
3843
3844 if (atomic_read(&nohz.load_balancer) == cpu)
3845 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3846 BUG();
3847 }
3848 return 0;
3849}
3850#endif
3851
3852static DEFINE_SPINLOCK(balancing);
3853
3854/*
7835b98b
CL
3855 * It checks each scheduling domain to see if it is due to be balanced,
3856 * and initiates a balancing operation if so.
3857 *
3858 * Balancing parameters are set up in arch_init_sched_domains.
3859 */
a9957449 3860static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3861{
46cb4b7c
SS
3862 int balance = 1;
3863 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3864 unsigned long interval;
3865 struct sched_domain *sd;
46cb4b7c 3866 /* Earliest time when we have to do rebalance again */
c9819f45 3867 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3868 int update_next_balance = 0;
d07355f5 3869 int need_serialize;
7c16ec58 3870 cpumask_t tmp;
1da177e4 3871
46cb4b7c 3872 for_each_domain(cpu, sd) {
1da177e4
LT
3873 if (!(sd->flags & SD_LOAD_BALANCE))
3874 continue;
3875
3876 interval = sd->balance_interval;
d15bcfdb 3877 if (idle != CPU_IDLE)
1da177e4
LT
3878 interval *= sd->busy_factor;
3879
3880 /* scale ms to jiffies */
3881 interval = msecs_to_jiffies(interval);
3882 if (unlikely(!interval))
3883 interval = 1;
dd41f596
IM
3884 if (interval > HZ*NR_CPUS/10)
3885 interval = HZ*NR_CPUS/10;
3886
d07355f5 3887 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3888
d07355f5 3889 if (need_serialize) {
08c183f3
CL
3890 if (!spin_trylock(&balancing))
3891 goto out;
3892 }
3893
c9819f45 3894 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3895 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3896 /*
3897 * We've pulled tasks over so either we're no
5969fe06
NP
3898 * longer idle, or one of our SMT siblings is
3899 * not idle.
3900 */
d15bcfdb 3901 idle = CPU_NOT_IDLE;
1da177e4 3902 }
1bd77f2d 3903 sd->last_balance = jiffies;
1da177e4 3904 }
d07355f5 3905 if (need_serialize)
08c183f3
CL
3906 spin_unlock(&balancing);
3907out:
f549da84 3908 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3909 next_balance = sd->last_balance + interval;
f549da84
SS
3910 update_next_balance = 1;
3911 }
783609c6
SS
3912
3913 /*
3914 * Stop the load balance at this level. There is another
3915 * CPU in our sched group which is doing load balancing more
3916 * actively.
3917 */
3918 if (!balance)
3919 break;
1da177e4 3920 }
f549da84
SS
3921
3922 /*
3923 * next_balance will be updated only when there is a need.
3924 * When the cpu is attached to null domain for ex, it will not be
3925 * updated.
3926 */
3927 if (likely(update_next_balance))
3928 rq->next_balance = next_balance;
46cb4b7c
SS
3929}
3930
3931/*
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3934 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3935 */
3936static void run_rebalance_domains(struct softirq_action *h)
3937{
dd41f596
IM
3938 int this_cpu = smp_processor_id();
3939 struct rq *this_rq = cpu_rq(this_cpu);
3940 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3941 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3942
dd41f596 3943 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3944
3945#ifdef CONFIG_NO_HZ
3946 /*
3947 * If this cpu is the owner for idle load balancing, then do the
3948 * balancing on behalf of the other idle cpus whose ticks are
3949 * stopped.
3950 */
dd41f596
IM
3951 if (this_rq->idle_at_tick &&
3952 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3953 cpumask_t cpus = nohz.cpu_mask;
3954 struct rq *rq;
3955 int balance_cpu;
3956
dd41f596 3957 cpu_clear(this_cpu, cpus);
363ab6f1 3958 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3959 /*
3960 * If this cpu gets work to do, stop the load balancing
3961 * work being done for other cpus. Next load
3962 * balancing owner will pick it up.
3963 */
3964 if (need_resched())
3965 break;
3966
de0cf899 3967 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3968
3969 rq = cpu_rq(balance_cpu);
dd41f596
IM
3970 if (time_after(this_rq->next_balance, rq->next_balance))
3971 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3972 }
3973 }
3974#endif
3975}
3976
3977/*
3978 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3979 *
3980 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3981 * idle load balancing owner or decide to stop the periodic load balancing,
3982 * if the whole system is idle.
3983 */
dd41f596 3984static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3985{
46cb4b7c
SS
3986#ifdef CONFIG_NO_HZ
3987 /*
3988 * If we were in the nohz mode recently and busy at the current
3989 * scheduler tick, then check if we need to nominate new idle
3990 * load balancer.
3991 */
3992 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3993 rq->in_nohz_recently = 0;
3994
3995 if (atomic_read(&nohz.load_balancer) == cpu) {
3996 cpu_clear(cpu, nohz.cpu_mask);
3997 atomic_set(&nohz.load_balancer, -1);
3998 }
3999
4000 if (atomic_read(&nohz.load_balancer) == -1) {
4001 /*
4002 * simple selection for now: Nominate the
4003 * first cpu in the nohz list to be the next
4004 * ilb owner.
4005 *
4006 * TBD: Traverse the sched domains and nominate
4007 * the nearest cpu in the nohz.cpu_mask.
4008 */
4009 int ilb = first_cpu(nohz.cpu_mask);
4010
434d53b0 4011 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4012 resched_cpu(ilb);
4013 }
4014 }
4015
4016 /*
4017 * If this cpu is idle and doing idle load balancing for all the
4018 * cpus with ticks stopped, is it time for that to stop?
4019 */
4020 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4021 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4022 resched_cpu(cpu);
4023 return;
4024 }
4025
4026 /*
4027 * If this cpu is idle and the idle load balancing is done by
4028 * someone else, then no need raise the SCHED_SOFTIRQ
4029 */
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4031 cpu_isset(cpu, nohz.cpu_mask))
4032 return;
4033#endif
4034 if (time_after_eq(jiffies, rq->next_balance))
4035 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4036}
dd41f596
IM
4037
4038#else /* CONFIG_SMP */
4039
1da177e4
LT
4040/*
4041 * on UP we do not need to balance between CPUs:
4042 */
70b97a7f 4043static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4044{
4045}
dd41f596 4046
1da177e4
LT
4047#endif
4048
1da177e4
LT
4049DEFINE_PER_CPU(struct kernel_stat, kstat);
4050
4051EXPORT_PER_CPU_SYMBOL(kstat);
4052
4053/*
f06febc9
FM
4054 * Return any ns on the sched_clock that have not yet been banked in
4055 * @p in case that task is currently running.
1da177e4 4056 */
bb34d92f 4057unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4058{
1da177e4 4059 unsigned long flags;
41b86e9c 4060 struct rq *rq;
bb34d92f 4061 u64 ns = 0;
48f24c4d 4062
41b86e9c 4063 rq = task_rq_lock(p, &flags);
1508487e 4064
051a1d1a 4065 if (task_current(rq, p)) {
f06febc9
FM
4066 u64 delta_exec;
4067
a8e504d2
IM
4068 update_rq_clock(rq);
4069 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4070 if ((s64)delta_exec > 0)
bb34d92f 4071 ns = delta_exec;
41b86e9c 4072 }
48f24c4d 4073
41b86e9c 4074 task_rq_unlock(rq, &flags);
48f24c4d 4075
1da177e4
LT
4076 return ns;
4077}
4078
1da177e4
LT
4079/*
4080 * Account user cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4082 * @cputime: the cpu time spent in user space since the last update
4083 */
4084void account_user_time(struct task_struct *p, cputime_t cputime)
4085{
4086 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4087 cputime64_t tmp;
4088
4089 p->utime = cputime_add(p->utime, cputime);
f06febc9 4090 account_group_user_time(p, cputime);
1da177e4
LT
4091
4092 /* Add user time to cpustat. */
4093 tmp = cputime_to_cputime64(cputime);
4094 if (TASK_NICE(p) > 0)
4095 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4096 else
4097 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4098 /* Account for user time used */
4099 acct_update_integrals(p);
1da177e4
LT
4100}
4101
94886b84
LV
4102/*
4103 * Account guest cpu time to a process.
4104 * @p: the process that the cpu time gets accounted to
4105 * @cputime: the cpu time spent in virtual machine since the last update
4106 */
f7402e03 4107static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4108{
4109 cputime64_t tmp;
4110 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4111
4112 tmp = cputime_to_cputime64(cputime);
4113
4114 p->utime = cputime_add(p->utime, cputime);
f06febc9 4115 account_group_user_time(p, cputime);
94886b84
LV
4116 p->gtime = cputime_add(p->gtime, cputime);
4117
4118 cpustat->user = cputime64_add(cpustat->user, tmp);
4119 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4120}
4121
c66f08be
MN
4122/*
4123 * Account scaled user cpu time to a process.
4124 * @p: the process that the cpu time gets accounted to
4125 * @cputime: the cpu time spent in user space since the last update
4126 */
4127void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4128{
4129 p->utimescaled = cputime_add(p->utimescaled, cputime);
4130}
4131
1da177e4
LT
4132/*
4133 * Account system cpu time to a process.
4134 * @p: the process that the cpu time gets accounted to
4135 * @hardirq_offset: the offset to subtract from hardirq_count()
4136 * @cputime: the cpu time spent in kernel space since the last update
4137 */
4138void account_system_time(struct task_struct *p, int hardirq_offset,
4139 cputime_t cputime)
4140{
4141 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4142 struct rq *rq = this_rq();
1da177e4
LT
4143 cputime64_t tmp;
4144
983ed7a6
HH
4145 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4146 account_guest_time(p, cputime);
4147 return;
4148 }
94886b84 4149
1da177e4 4150 p->stime = cputime_add(p->stime, cputime);
f06febc9 4151 account_group_system_time(p, cputime);
1da177e4
LT
4152
4153 /* Add system time to cpustat. */
4154 tmp = cputime_to_cputime64(cputime);
4155 if (hardirq_count() - hardirq_offset)
4156 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4157 else if (softirq_count())
4158 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4159 else if (p != rq->idle)
1da177e4 4160 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4161 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4162 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4163 else
4164 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4165 /* Account for system time used */
4166 acct_update_integrals(p);
1da177e4
LT
4167}
4168
c66f08be
MN
4169/*
4170 * Account scaled system cpu time to a process.
4171 * @p: the process that the cpu time gets accounted to
4172 * @hardirq_offset: the offset to subtract from hardirq_count()
4173 * @cputime: the cpu time spent in kernel space since the last update
4174 */
4175void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4176{
4177 p->stimescaled = cputime_add(p->stimescaled, cputime);
4178}
4179
1da177e4
LT
4180/*
4181 * Account for involuntary wait time.
4182 * @p: the process from which the cpu time has been stolen
4183 * @steal: the cpu time spent in involuntary wait
4184 */
4185void account_steal_time(struct task_struct *p, cputime_t steal)
4186{
4187 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4188 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4189 struct rq *rq = this_rq();
1da177e4
LT
4190
4191 if (p == rq->idle) {
4192 p->stime = cputime_add(p->stime, steal);
f06febc9 4193 account_group_system_time(p, steal);
1da177e4
LT
4194 if (atomic_read(&rq->nr_iowait) > 0)
4195 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4196 else
4197 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4198 } else
1da177e4
LT
4199 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4200}
4201
49048622
BS
4202/*
4203 * Use precise platform statistics if available:
4204 */
4205#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4206cputime_t task_utime(struct task_struct *p)
4207{
4208 return p->utime;
4209}
4210
4211cputime_t task_stime(struct task_struct *p)
4212{
4213 return p->stime;
4214}
4215#else
4216cputime_t task_utime(struct task_struct *p)
4217{
4218 clock_t utime = cputime_to_clock_t(p->utime),
4219 total = utime + cputime_to_clock_t(p->stime);
4220 u64 temp;
4221
4222 /*
4223 * Use CFS's precise accounting:
4224 */
4225 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4226
4227 if (total) {
4228 temp *= utime;
4229 do_div(temp, total);
4230 }
4231 utime = (clock_t)temp;
4232
4233 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4234 return p->prev_utime;
4235}
4236
4237cputime_t task_stime(struct task_struct *p)
4238{
4239 clock_t stime;
4240
4241 /*
4242 * Use CFS's precise accounting. (we subtract utime from
4243 * the total, to make sure the total observed by userspace
4244 * grows monotonically - apps rely on that):
4245 */
4246 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4247 cputime_to_clock_t(task_utime(p));
4248
4249 if (stime >= 0)
4250 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4251
4252 return p->prev_stime;
4253}
4254#endif
4255
4256inline cputime_t task_gtime(struct task_struct *p)
4257{
4258 return p->gtime;
4259}
4260
7835b98b
CL
4261/*
4262 * This function gets called by the timer code, with HZ frequency.
4263 * We call it with interrupts disabled.
4264 *
4265 * It also gets called by the fork code, when changing the parent's
4266 * timeslices.
4267 */
4268void scheduler_tick(void)
4269{
7835b98b
CL
4270 int cpu = smp_processor_id();
4271 struct rq *rq = cpu_rq(cpu);
dd41f596 4272 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4273
4274 sched_clock_tick();
dd41f596
IM
4275
4276 spin_lock(&rq->lock);
3e51f33f 4277 update_rq_clock(rq);
f1a438d8 4278 update_cpu_load(rq);
fa85ae24 4279 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4280 spin_unlock(&rq->lock);
7835b98b 4281
e418e1c2 4282#ifdef CONFIG_SMP
dd41f596
IM
4283 rq->idle_at_tick = idle_cpu(cpu);
4284 trigger_load_balance(rq, cpu);
e418e1c2 4285#endif
1da177e4
LT
4286}
4287
6cd8a4bb
SR
4288#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4289 defined(CONFIG_PREEMPT_TRACER))
4290
4291static inline unsigned long get_parent_ip(unsigned long addr)
4292{
4293 if (in_lock_functions(addr)) {
4294 addr = CALLER_ADDR2;
4295 if (in_lock_functions(addr))
4296 addr = CALLER_ADDR3;
4297 }
4298 return addr;
4299}
1da177e4 4300
43627582 4301void __kprobes add_preempt_count(int val)
1da177e4 4302{
6cd8a4bb 4303#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4304 /*
4305 * Underflow?
4306 */
9a11b49a
IM
4307 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4308 return;
6cd8a4bb 4309#endif
1da177e4 4310 preempt_count() += val;
6cd8a4bb 4311#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4312 /*
4313 * Spinlock count overflowing soon?
4314 */
33859f7f
MOS
4315 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4316 PREEMPT_MASK - 10);
6cd8a4bb
SR
4317#endif
4318 if (preempt_count() == val)
4319 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4320}
4321EXPORT_SYMBOL(add_preempt_count);
4322
43627582 4323void __kprobes sub_preempt_count(int val)
1da177e4 4324{
6cd8a4bb 4325#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4326 /*
4327 * Underflow?
4328 */
9a11b49a
IM
4329 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4330 return;
1da177e4
LT
4331 /*
4332 * Is the spinlock portion underflowing?
4333 */
9a11b49a
IM
4334 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4335 !(preempt_count() & PREEMPT_MASK)))
4336 return;
6cd8a4bb 4337#endif
9a11b49a 4338
6cd8a4bb
SR
4339 if (preempt_count() == val)
4340 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4341 preempt_count() -= val;
4342}
4343EXPORT_SYMBOL(sub_preempt_count);
4344
4345#endif
4346
4347/*
dd41f596 4348 * Print scheduling while atomic bug:
1da177e4 4349 */
dd41f596 4350static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4351{
838225b4
SS
4352 struct pt_regs *regs = get_irq_regs();
4353
4354 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4355 prev->comm, prev->pid, preempt_count());
4356
dd41f596 4357 debug_show_held_locks(prev);
e21f5b15 4358 print_modules();
dd41f596
IM
4359 if (irqs_disabled())
4360 print_irqtrace_events(prev);
838225b4
SS
4361
4362 if (regs)
4363 show_regs(regs);
4364 else
4365 dump_stack();
dd41f596 4366}
1da177e4 4367
dd41f596
IM
4368/*
4369 * Various schedule()-time debugging checks and statistics:
4370 */
4371static inline void schedule_debug(struct task_struct *prev)
4372{
1da177e4 4373 /*
41a2d6cf 4374 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4375 * schedule() atomically, we ignore that path for now.
4376 * Otherwise, whine if we are scheduling when we should not be.
4377 */
3f33a7ce 4378 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4379 __schedule_bug(prev);
4380
1da177e4
LT
4381 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4382
2d72376b 4383 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4384#ifdef CONFIG_SCHEDSTATS
4385 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4386 schedstat_inc(this_rq(), bkl_count);
4387 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4388 }
4389#endif
dd41f596
IM
4390}
4391
4392/*
4393 * Pick up the highest-prio task:
4394 */
4395static inline struct task_struct *
ff95f3df 4396pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4397{
5522d5d5 4398 const struct sched_class *class;
dd41f596 4399 struct task_struct *p;
1da177e4
LT
4400
4401 /*
dd41f596
IM
4402 * Optimization: we know that if all tasks are in
4403 * the fair class we can call that function directly:
1da177e4 4404 */
dd41f596 4405 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4406 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4407 if (likely(p))
4408 return p;
1da177e4
LT
4409 }
4410
dd41f596
IM
4411 class = sched_class_highest;
4412 for ( ; ; ) {
fb8d4724 4413 p = class->pick_next_task(rq);
dd41f596
IM
4414 if (p)
4415 return p;
4416 /*
4417 * Will never be NULL as the idle class always
4418 * returns a non-NULL p:
4419 */
4420 class = class->next;
4421 }
4422}
1da177e4 4423
dd41f596
IM
4424/*
4425 * schedule() is the main scheduler function.
4426 */
4427asmlinkage void __sched schedule(void)
4428{
4429 struct task_struct *prev, *next;
67ca7bde 4430 unsigned long *switch_count;
dd41f596 4431 struct rq *rq;
31656519 4432 int cpu;
dd41f596
IM
4433
4434need_resched:
4435 preempt_disable();
4436 cpu = smp_processor_id();
4437 rq = cpu_rq(cpu);
4438 rcu_qsctr_inc(cpu);
4439 prev = rq->curr;
4440 switch_count = &prev->nivcsw;
4441
4442 release_kernel_lock(prev);
4443need_resched_nonpreemptible:
4444
4445 schedule_debug(prev);
1da177e4 4446
31656519 4447 if (sched_feat(HRTICK))
f333fdc9 4448 hrtick_clear(rq);
8f4d37ec 4449
8cd162ce 4450 spin_lock_irq(&rq->lock);
3e51f33f 4451 update_rq_clock(rq);
1e819950 4452 clear_tsk_need_resched(prev);
1da177e4 4453
1da177e4 4454 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4455 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4456 prev->state = TASK_RUNNING;
16882c1e 4457 else
2e1cb74a 4458 deactivate_task(rq, prev, 1);
dd41f596 4459 switch_count = &prev->nvcsw;
1da177e4
LT
4460 }
4461
9a897c5a
SR
4462#ifdef CONFIG_SMP
4463 if (prev->sched_class->pre_schedule)
4464 prev->sched_class->pre_schedule(rq, prev);
4465#endif
f65eda4f 4466
dd41f596 4467 if (unlikely(!rq->nr_running))
1da177e4 4468 idle_balance(cpu, rq);
1da177e4 4469
31ee529c 4470 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4471 next = pick_next_task(rq, prev);
1da177e4 4472
1da177e4 4473 if (likely(prev != next)) {
673a90a1
DS
4474 sched_info_switch(prev, next);
4475
1da177e4
LT
4476 rq->nr_switches++;
4477 rq->curr = next;
4478 ++*switch_count;
4479
dd41f596 4480 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4481 /*
4482 * the context switch might have flipped the stack from under
4483 * us, hence refresh the local variables.
4484 */
4485 cpu = smp_processor_id();
4486 rq = cpu_rq(cpu);
1da177e4
LT
4487 } else
4488 spin_unlock_irq(&rq->lock);
4489
8f4d37ec 4490 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4491 goto need_resched_nonpreemptible;
8f4d37ec 4492
1da177e4
LT
4493 preempt_enable_no_resched();
4494 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4495 goto need_resched;
4496}
1da177e4
LT
4497EXPORT_SYMBOL(schedule);
4498
4499#ifdef CONFIG_PREEMPT
4500/*
2ed6e34f 4501 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4502 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4503 * occur there and call schedule directly.
4504 */
4505asmlinkage void __sched preempt_schedule(void)
4506{
4507 struct thread_info *ti = current_thread_info();
6478d880 4508
1da177e4
LT
4509 /*
4510 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4511 * we do not want to preempt the current task. Just return..
1da177e4 4512 */
beed33a8 4513 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4514 return;
4515
3a5c359a
AK
4516 do {
4517 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4518 schedule();
3a5c359a 4519 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4520
3a5c359a
AK
4521 /*
4522 * Check again in case we missed a preemption opportunity
4523 * between schedule and now.
4524 */
4525 barrier();
4526 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4527}
1da177e4
LT
4528EXPORT_SYMBOL(preempt_schedule);
4529
4530/*
2ed6e34f 4531 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4532 * off of irq context.
4533 * Note, that this is called and return with irqs disabled. This will
4534 * protect us against recursive calling from irq.
4535 */
4536asmlinkage void __sched preempt_schedule_irq(void)
4537{
4538 struct thread_info *ti = current_thread_info();
6478d880 4539
2ed6e34f 4540 /* Catch callers which need to be fixed */
1da177e4
LT
4541 BUG_ON(ti->preempt_count || !irqs_disabled());
4542
3a5c359a
AK
4543 do {
4544 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4545 local_irq_enable();
4546 schedule();
4547 local_irq_disable();
3a5c359a 4548 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4549
3a5c359a
AK
4550 /*
4551 * Check again in case we missed a preemption opportunity
4552 * between schedule and now.
4553 */
4554 barrier();
4555 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4556}
4557
4558#endif /* CONFIG_PREEMPT */
4559
95cdf3b7
IM
4560int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4561 void *key)
1da177e4 4562{
48f24c4d 4563 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4564}
1da177e4
LT
4565EXPORT_SYMBOL(default_wake_function);
4566
4567/*
41a2d6cf
IM
4568 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4569 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4570 * number) then we wake all the non-exclusive tasks and one exclusive task.
4571 *
4572 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4573 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4574 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4575 */
4576static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4577 int nr_exclusive, int sync, void *key)
4578{
2e45874c 4579 wait_queue_t *curr, *next;
1da177e4 4580
2e45874c 4581 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4582 unsigned flags = curr->flags;
4583
1da177e4 4584 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4585 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4586 break;
4587 }
4588}
4589
4590/**
4591 * __wake_up - wake up threads blocked on a waitqueue.
4592 * @q: the waitqueue
4593 * @mode: which threads
4594 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4595 * @key: is directly passed to the wakeup function
1da177e4 4596 */
7ad5b3a5 4597void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4598 int nr_exclusive, void *key)
1da177e4
LT
4599{
4600 unsigned long flags;
4601
4602 spin_lock_irqsave(&q->lock, flags);
4603 __wake_up_common(q, mode, nr_exclusive, 0, key);
4604 spin_unlock_irqrestore(&q->lock, flags);
4605}
1da177e4
LT
4606EXPORT_SYMBOL(__wake_up);
4607
4608/*
4609 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4610 */
7ad5b3a5 4611void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4612{
4613 __wake_up_common(q, mode, 1, 0, NULL);
4614}
4615
4616/**
67be2dd1 4617 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4618 * @q: the waitqueue
4619 * @mode: which threads
4620 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4621 *
4622 * The sync wakeup differs that the waker knows that it will schedule
4623 * away soon, so while the target thread will be woken up, it will not
4624 * be migrated to another CPU - ie. the two threads are 'synchronized'
4625 * with each other. This can prevent needless bouncing between CPUs.
4626 *
4627 * On UP it can prevent extra preemption.
4628 */
7ad5b3a5 4629void
95cdf3b7 4630__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4631{
4632 unsigned long flags;
4633 int sync = 1;
4634
4635 if (unlikely(!q))
4636 return;
4637
4638 if (unlikely(!nr_exclusive))
4639 sync = 0;
4640
4641 spin_lock_irqsave(&q->lock, flags);
4642 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4643 spin_unlock_irqrestore(&q->lock, flags);
4644}
4645EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4646
65eb3dc6
KD
4647/**
4648 * complete: - signals a single thread waiting on this completion
4649 * @x: holds the state of this particular completion
4650 *
4651 * This will wake up a single thread waiting on this completion. Threads will be
4652 * awakened in the same order in which they were queued.
4653 *
4654 * See also complete_all(), wait_for_completion() and related routines.
4655 */
b15136e9 4656void complete(struct completion *x)
1da177e4
LT
4657{
4658 unsigned long flags;
4659
4660 spin_lock_irqsave(&x->wait.lock, flags);
4661 x->done++;
d9514f6c 4662 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4663 spin_unlock_irqrestore(&x->wait.lock, flags);
4664}
4665EXPORT_SYMBOL(complete);
4666
65eb3dc6
KD
4667/**
4668 * complete_all: - signals all threads waiting on this completion
4669 * @x: holds the state of this particular completion
4670 *
4671 * This will wake up all threads waiting on this particular completion event.
4672 */
b15136e9 4673void complete_all(struct completion *x)
1da177e4
LT
4674{
4675 unsigned long flags;
4676
4677 spin_lock_irqsave(&x->wait.lock, flags);
4678 x->done += UINT_MAX/2;
d9514f6c 4679 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4680 spin_unlock_irqrestore(&x->wait.lock, flags);
4681}
4682EXPORT_SYMBOL(complete_all);
4683
8cbbe86d
AK
4684static inline long __sched
4685do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4686{
1da177e4
LT
4687 if (!x->done) {
4688 DECLARE_WAITQUEUE(wait, current);
4689
4690 wait.flags |= WQ_FLAG_EXCLUSIVE;
4691 __add_wait_queue_tail(&x->wait, &wait);
4692 do {
94d3d824 4693 if (signal_pending_state(state, current)) {
ea71a546
ON
4694 timeout = -ERESTARTSYS;
4695 break;
8cbbe86d
AK
4696 }
4697 __set_current_state(state);
1da177e4
LT
4698 spin_unlock_irq(&x->wait.lock);
4699 timeout = schedule_timeout(timeout);
4700 spin_lock_irq(&x->wait.lock);
ea71a546 4701 } while (!x->done && timeout);
1da177e4 4702 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4703 if (!x->done)
4704 return timeout;
1da177e4
LT
4705 }
4706 x->done--;
ea71a546 4707 return timeout ?: 1;
1da177e4 4708}
1da177e4 4709
8cbbe86d
AK
4710static long __sched
4711wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4712{
1da177e4
LT
4713 might_sleep();
4714
4715 spin_lock_irq(&x->wait.lock);
8cbbe86d 4716 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4717 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4718 return timeout;
4719}
1da177e4 4720
65eb3dc6
KD
4721/**
4722 * wait_for_completion: - waits for completion of a task
4723 * @x: holds the state of this particular completion
4724 *
4725 * This waits to be signaled for completion of a specific task. It is NOT
4726 * interruptible and there is no timeout.
4727 *
4728 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4729 * and interrupt capability. Also see complete().
4730 */
b15136e9 4731void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4732{
4733 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4734}
8cbbe86d 4735EXPORT_SYMBOL(wait_for_completion);
1da177e4 4736
65eb3dc6
KD
4737/**
4738 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4739 * @x: holds the state of this particular completion
4740 * @timeout: timeout value in jiffies
4741 *
4742 * This waits for either a completion of a specific task to be signaled or for a
4743 * specified timeout to expire. The timeout is in jiffies. It is not
4744 * interruptible.
4745 */
b15136e9 4746unsigned long __sched
8cbbe86d 4747wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4748{
8cbbe86d 4749 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4750}
8cbbe86d 4751EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4752
65eb3dc6
KD
4753/**
4754 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4755 * @x: holds the state of this particular completion
4756 *
4757 * This waits for completion of a specific task to be signaled. It is
4758 * interruptible.
4759 */
8cbbe86d 4760int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4761{
51e97990
AK
4762 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4763 if (t == -ERESTARTSYS)
4764 return t;
4765 return 0;
0fec171c 4766}
8cbbe86d 4767EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4768
65eb3dc6
KD
4769/**
4770 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4771 * @x: holds the state of this particular completion
4772 * @timeout: timeout value in jiffies
4773 *
4774 * This waits for either a completion of a specific task to be signaled or for a
4775 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4776 */
b15136e9 4777unsigned long __sched
8cbbe86d
AK
4778wait_for_completion_interruptible_timeout(struct completion *x,
4779 unsigned long timeout)
0fec171c 4780{
8cbbe86d 4781 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4782}
8cbbe86d 4783EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4784
65eb3dc6
KD
4785/**
4786 * wait_for_completion_killable: - waits for completion of a task (killable)
4787 * @x: holds the state of this particular completion
4788 *
4789 * This waits to be signaled for completion of a specific task. It can be
4790 * interrupted by a kill signal.
4791 */
009e577e
MW
4792int __sched wait_for_completion_killable(struct completion *x)
4793{
4794 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4795 if (t == -ERESTARTSYS)
4796 return t;
4797 return 0;
4798}
4799EXPORT_SYMBOL(wait_for_completion_killable);
4800
be4de352
DC
4801/**
4802 * try_wait_for_completion - try to decrement a completion without blocking
4803 * @x: completion structure
4804 *
4805 * Returns: 0 if a decrement cannot be done without blocking
4806 * 1 if a decrement succeeded.
4807 *
4808 * If a completion is being used as a counting completion,
4809 * attempt to decrement the counter without blocking. This
4810 * enables us to avoid waiting if the resource the completion
4811 * is protecting is not available.
4812 */
4813bool try_wait_for_completion(struct completion *x)
4814{
4815 int ret = 1;
4816
4817 spin_lock_irq(&x->wait.lock);
4818 if (!x->done)
4819 ret = 0;
4820 else
4821 x->done--;
4822 spin_unlock_irq(&x->wait.lock);
4823 return ret;
4824}
4825EXPORT_SYMBOL(try_wait_for_completion);
4826
4827/**
4828 * completion_done - Test to see if a completion has any waiters
4829 * @x: completion structure
4830 *
4831 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4832 * 1 if there are no waiters.
4833 *
4834 */
4835bool completion_done(struct completion *x)
4836{
4837 int ret = 1;
4838
4839 spin_lock_irq(&x->wait.lock);
4840 if (!x->done)
4841 ret = 0;
4842 spin_unlock_irq(&x->wait.lock);
4843 return ret;
4844}
4845EXPORT_SYMBOL(completion_done);
4846
8cbbe86d
AK
4847static long __sched
4848sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4849{
0fec171c
IM
4850 unsigned long flags;
4851 wait_queue_t wait;
4852
4853 init_waitqueue_entry(&wait, current);
1da177e4 4854
8cbbe86d 4855 __set_current_state(state);
1da177e4 4856
8cbbe86d
AK
4857 spin_lock_irqsave(&q->lock, flags);
4858 __add_wait_queue(q, &wait);
4859 spin_unlock(&q->lock);
4860 timeout = schedule_timeout(timeout);
4861 spin_lock_irq(&q->lock);
4862 __remove_wait_queue(q, &wait);
4863 spin_unlock_irqrestore(&q->lock, flags);
4864
4865 return timeout;
4866}
4867
4868void __sched interruptible_sleep_on(wait_queue_head_t *q)
4869{
4870 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4871}
1da177e4
LT
4872EXPORT_SYMBOL(interruptible_sleep_on);
4873
0fec171c 4874long __sched
95cdf3b7 4875interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4876{
8cbbe86d 4877 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4878}
1da177e4
LT
4879EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4880
0fec171c 4881void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4882{
8cbbe86d 4883 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4884}
1da177e4
LT
4885EXPORT_SYMBOL(sleep_on);
4886
0fec171c 4887long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4888{
8cbbe86d 4889 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4890}
1da177e4
LT
4891EXPORT_SYMBOL(sleep_on_timeout);
4892
b29739f9
IM
4893#ifdef CONFIG_RT_MUTEXES
4894
4895/*
4896 * rt_mutex_setprio - set the current priority of a task
4897 * @p: task
4898 * @prio: prio value (kernel-internal form)
4899 *
4900 * This function changes the 'effective' priority of a task. It does
4901 * not touch ->normal_prio like __setscheduler().
4902 *
4903 * Used by the rt_mutex code to implement priority inheritance logic.
4904 */
36c8b586 4905void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4906{
4907 unsigned long flags;
83b699ed 4908 int oldprio, on_rq, running;
70b97a7f 4909 struct rq *rq;
cb469845 4910 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4911
4912 BUG_ON(prio < 0 || prio > MAX_PRIO);
4913
4914 rq = task_rq_lock(p, &flags);
a8e504d2 4915 update_rq_clock(rq);
b29739f9 4916
d5f9f942 4917 oldprio = p->prio;
dd41f596 4918 on_rq = p->se.on_rq;
051a1d1a 4919 running = task_current(rq, p);
0e1f3483 4920 if (on_rq)
69be72c1 4921 dequeue_task(rq, p, 0);
0e1f3483
HS
4922 if (running)
4923 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4924
4925 if (rt_prio(prio))
4926 p->sched_class = &rt_sched_class;
4927 else
4928 p->sched_class = &fair_sched_class;
4929
b29739f9
IM
4930 p->prio = prio;
4931
0e1f3483
HS
4932 if (running)
4933 p->sched_class->set_curr_task(rq);
dd41f596 4934 if (on_rq) {
8159f87e 4935 enqueue_task(rq, p, 0);
cb469845
SR
4936
4937 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4938 }
4939 task_rq_unlock(rq, &flags);
4940}
4941
4942#endif
4943
36c8b586 4944void set_user_nice(struct task_struct *p, long nice)
1da177e4 4945{
dd41f596 4946 int old_prio, delta, on_rq;
1da177e4 4947 unsigned long flags;
70b97a7f 4948 struct rq *rq;
1da177e4
LT
4949
4950 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4951 return;
4952 /*
4953 * We have to be careful, if called from sys_setpriority(),
4954 * the task might be in the middle of scheduling on another CPU.
4955 */
4956 rq = task_rq_lock(p, &flags);
a8e504d2 4957 update_rq_clock(rq);
1da177e4
LT
4958 /*
4959 * The RT priorities are set via sched_setscheduler(), but we still
4960 * allow the 'normal' nice value to be set - but as expected
4961 * it wont have any effect on scheduling until the task is
dd41f596 4962 * SCHED_FIFO/SCHED_RR:
1da177e4 4963 */
e05606d3 4964 if (task_has_rt_policy(p)) {
1da177e4
LT
4965 p->static_prio = NICE_TO_PRIO(nice);
4966 goto out_unlock;
4967 }
dd41f596 4968 on_rq = p->se.on_rq;
c09595f6 4969 if (on_rq)
69be72c1 4970 dequeue_task(rq, p, 0);
1da177e4 4971
1da177e4 4972 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4973 set_load_weight(p);
b29739f9
IM
4974 old_prio = p->prio;
4975 p->prio = effective_prio(p);
4976 delta = p->prio - old_prio;
1da177e4 4977
dd41f596 4978 if (on_rq) {
8159f87e 4979 enqueue_task(rq, p, 0);
1da177e4 4980 /*
d5f9f942
AM
4981 * If the task increased its priority or is running and
4982 * lowered its priority, then reschedule its CPU:
1da177e4 4983 */
d5f9f942 4984 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4985 resched_task(rq->curr);
4986 }
4987out_unlock:
4988 task_rq_unlock(rq, &flags);
4989}
1da177e4
LT
4990EXPORT_SYMBOL(set_user_nice);
4991
e43379f1
MM
4992/*
4993 * can_nice - check if a task can reduce its nice value
4994 * @p: task
4995 * @nice: nice value
4996 */
36c8b586 4997int can_nice(const struct task_struct *p, const int nice)
e43379f1 4998{
024f4747
MM
4999 /* convert nice value [19,-20] to rlimit style value [1,40] */
5000 int nice_rlim = 20 - nice;
48f24c4d 5001
e43379f1
MM
5002 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5003 capable(CAP_SYS_NICE));
5004}
5005
1da177e4
LT
5006#ifdef __ARCH_WANT_SYS_NICE
5007
5008/*
5009 * sys_nice - change the priority of the current process.
5010 * @increment: priority increment
5011 *
5012 * sys_setpriority is a more generic, but much slower function that
5013 * does similar things.
5014 */
5015asmlinkage long sys_nice(int increment)
5016{
48f24c4d 5017 long nice, retval;
1da177e4
LT
5018
5019 /*
5020 * Setpriority might change our priority at the same moment.
5021 * We don't have to worry. Conceptually one call occurs first
5022 * and we have a single winner.
5023 */
e43379f1
MM
5024 if (increment < -40)
5025 increment = -40;
1da177e4
LT
5026 if (increment > 40)
5027 increment = 40;
5028
5029 nice = PRIO_TO_NICE(current->static_prio) + increment;
5030 if (nice < -20)
5031 nice = -20;
5032 if (nice > 19)
5033 nice = 19;
5034
e43379f1
MM
5035 if (increment < 0 && !can_nice(current, nice))
5036 return -EPERM;
5037
1da177e4
LT
5038 retval = security_task_setnice(current, nice);
5039 if (retval)
5040 return retval;
5041
5042 set_user_nice(current, nice);
5043 return 0;
5044}
5045
5046#endif
5047
5048/**
5049 * task_prio - return the priority value of a given task.
5050 * @p: the task in question.
5051 *
5052 * This is the priority value as seen by users in /proc.
5053 * RT tasks are offset by -200. Normal tasks are centered
5054 * around 0, value goes from -16 to +15.
5055 */
36c8b586 5056int task_prio(const struct task_struct *p)
1da177e4
LT
5057{
5058 return p->prio - MAX_RT_PRIO;
5059}
5060
5061/**
5062 * task_nice - return the nice value of a given task.
5063 * @p: the task in question.
5064 */
36c8b586 5065int task_nice(const struct task_struct *p)
1da177e4
LT
5066{
5067 return TASK_NICE(p);
5068}
150d8bed 5069EXPORT_SYMBOL(task_nice);
1da177e4
LT
5070
5071/**
5072 * idle_cpu - is a given cpu idle currently?
5073 * @cpu: the processor in question.
5074 */
5075int idle_cpu(int cpu)
5076{
5077 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5078}
5079
1da177e4
LT
5080/**
5081 * idle_task - return the idle task for a given cpu.
5082 * @cpu: the processor in question.
5083 */
36c8b586 5084struct task_struct *idle_task(int cpu)
1da177e4
LT
5085{
5086 return cpu_rq(cpu)->idle;
5087}
5088
5089/**
5090 * find_process_by_pid - find a process with a matching PID value.
5091 * @pid: the pid in question.
5092 */
a9957449 5093static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5094{
228ebcbe 5095 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5096}
5097
5098/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5099static void
5100__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5101{
dd41f596 5102 BUG_ON(p->se.on_rq);
48f24c4d 5103
1da177e4 5104 p->policy = policy;
dd41f596
IM
5105 switch (p->policy) {
5106 case SCHED_NORMAL:
5107 case SCHED_BATCH:
5108 case SCHED_IDLE:
5109 p->sched_class = &fair_sched_class;
5110 break;
5111 case SCHED_FIFO:
5112 case SCHED_RR:
5113 p->sched_class = &rt_sched_class;
5114 break;
5115 }
5116
1da177e4 5117 p->rt_priority = prio;
b29739f9
IM
5118 p->normal_prio = normal_prio(p);
5119 /* we are holding p->pi_lock already */
5120 p->prio = rt_mutex_getprio(p);
2dd73a4f 5121 set_load_weight(p);
1da177e4
LT
5122}
5123
961ccddd
RR
5124static int __sched_setscheduler(struct task_struct *p, int policy,
5125 struct sched_param *param, bool user)
1da177e4 5126{
83b699ed 5127 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5128 unsigned long flags;
cb469845 5129 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5130 struct rq *rq;
1da177e4 5131
66e5393a
SR
5132 /* may grab non-irq protected spin_locks */
5133 BUG_ON(in_interrupt());
1da177e4
LT
5134recheck:
5135 /* double check policy once rq lock held */
5136 if (policy < 0)
5137 policy = oldpolicy = p->policy;
5138 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5139 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5140 policy != SCHED_IDLE)
b0a9499c 5141 return -EINVAL;
1da177e4
LT
5142 /*
5143 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5144 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5145 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5146 */
5147 if (param->sched_priority < 0 ||
95cdf3b7 5148 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5149 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5150 return -EINVAL;
e05606d3 5151 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5152 return -EINVAL;
5153
37e4ab3f
OC
5154 /*
5155 * Allow unprivileged RT tasks to decrease priority:
5156 */
961ccddd 5157 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5158 if (rt_policy(policy)) {
8dc3e909 5159 unsigned long rlim_rtprio;
8dc3e909
ON
5160
5161 if (!lock_task_sighand(p, &flags))
5162 return -ESRCH;
5163 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5164 unlock_task_sighand(p, &flags);
5165
5166 /* can't set/change the rt policy */
5167 if (policy != p->policy && !rlim_rtprio)
5168 return -EPERM;
5169
5170 /* can't increase priority */
5171 if (param->sched_priority > p->rt_priority &&
5172 param->sched_priority > rlim_rtprio)
5173 return -EPERM;
5174 }
dd41f596
IM
5175 /*
5176 * Like positive nice levels, dont allow tasks to
5177 * move out of SCHED_IDLE either:
5178 */
5179 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5180 return -EPERM;
5fe1d75f 5181
37e4ab3f
OC
5182 /* can't change other user's priorities */
5183 if ((current->euid != p->euid) &&
5184 (current->euid != p->uid))
5185 return -EPERM;
5186 }
1da177e4 5187
725aad24 5188 if (user) {
b68aa230 5189#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5190 /*
5191 * Do not allow realtime tasks into groups that have no runtime
5192 * assigned.
5193 */
9a7e0b18
PZ
5194 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5195 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5196 return -EPERM;
b68aa230
PZ
5197#endif
5198
725aad24
JF
5199 retval = security_task_setscheduler(p, policy, param);
5200 if (retval)
5201 return retval;
5202 }
5203
b29739f9
IM
5204 /*
5205 * make sure no PI-waiters arrive (or leave) while we are
5206 * changing the priority of the task:
5207 */
5208 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5209 /*
5210 * To be able to change p->policy safely, the apropriate
5211 * runqueue lock must be held.
5212 */
b29739f9 5213 rq = __task_rq_lock(p);
1da177e4
LT
5214 /* recheck policy now with rq lock held */
5215 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5216 policy = oldpolicy = -1;
b29739f9
IM
5217 __task_rq_unlock(rq);
5218 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5219 goto recheck;
5220 }
2daa3577 5221 update_rq_clock(rq);
dd41f596 5222 on_rq = p->se.on_rq;
051a1d1a 5223 running = task_current(rq, p);
0e1f3483 5224 if (on_rq)
2e1cb74a 5225 deactivate_task(rq, p, 0);
0e1f3483
HS
5226 if (running)
5227 p->sched_class->put_prev_task(rq, p);
f6b53205 5228
1da177e4 5229 oldprio = p->prio;
dd41f596 5230 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5231
0e1f3483
HS
5232 if (running)
5233 p->sched_class->set_curr_task(rq);
dd41f596
IM
5234 if (on_rq) {
5235 activate_task(rq, p, 0);
cb469845
SR
5236
5237 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5238 }
b29739f9
IM
5239 __task_rq_unlock(rq);
5240 spin_unlock_irqrestore(&p->pi_lock, flags);
5241
95e02ca9
TG
5242 rt_mutex_adjust_pi(p);
5243
1da177e4
LT
5244 return 0;
5245}
961ccddd
RR
5246
5247/**
5248 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5249 * @p: the task in question.
5250 * @policy: new policy.
5251 * @param: structure containing the new RT priority.
5252 *
5253 * NOTE that the task may be already dead.
5254 */
5255int sched_setscheduler(struct task_struct *p, int policy,
5256 struct sched_param *param)
5257{
5258 return __sched_setscheduler(p, policy, param, true);
5259}
1da177e4
LT
5260EXPORT_SYMBOL_GPL(sched_setscheduler);
5261
961ccddd
RR
5262/**
5263 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5264 * @p: the task in question.
5265 * @policy: new policy.
5266 * @param: structure containing the new RT priority.
5267 *
5268 * Just like sched_setscheduler, only don't bother checking if the
5269 * current context has permission. For example, this is needed in
5270 * stop_machine(): we create temporary high priority worker threads,
5271 * but our caller might not have that capability.
5272 */
5273int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5274 struct sched_param *param)
5275{
5276 return __sched_setscheduler(p, policy, param, false);
5277}
5278
95cdf3b7
IM
5279static int
5280do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5281{
1da177e4
LT
5282 struct sched_param lparam;
5283 struct task_struct *p;
36c8b586 5284 int retval;
1da177e4
LT
5285
5286 if (!param || pid < 0)
5287 return -EINVAL;
5288 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5289 return -EFAULT;
5fe1d75f
ON
5290
5291 rcu_read_lock();
5292 retval = -ESRCH;
1da177e4 5293 p = find_process_by_pid(pid);
5fe1d75f
ON
5294 if (p != NULL)
5295 retval = sched_setscheduler(p, policy, &lparam);
5296 rcu_read_unlock();
36c8b586 5297
1da177e4
LT
5298 return retval;
5299}
5300
5301/**
5302 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5303 * @pid: the pid in question.
5304 * @policy: new policy.
5305 * @param: structure containing the new RT priority.
5306 */
41a2d6cf
IM
5307asmlinkage long
5308sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5309{
c21761f1
JB
5310 /* negative values for policy are not valid */
5311 if (policy < 0)
5312 return -EINVAL;
5313
1da177e4
LT
5314 return do_sched_setscheduler(pid, policy, param);
5315}
5316
5317/**
5318 * sys_sched_setparam - set/change the RT priority of a thread
5319 * @pid: the pid in question.
5320 * @param: structure containing the new RT priority.
5321 */
5322asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5323{
5324 return do_sched_setscheduler(pid, -1, param);
5325}
5326
5327/**
5328 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5329 * @pid: the pid in question.
5330 */
5331asmlinkage long sys_sched_getscheduler(pid_t pid)
5332{
36c8b586 5333 struct task_struct *p;
3a5c359a 5334 int retval;
1da177e4
LT
5335
5336 if (pid < 0)
3a5c359a 5337 return -EINVAL;
1da177e4
LT
5338
5339 retval = -ESRCH;
5340 read_lock(&tasklist_lock);
5341 p = find_process_by_pid(pid);
5342 if (p) {
5343 retval = security_task_getscheduler(p);
5344 if (!retval)
5345 retval = p->policy;
5346 }
5347 read_unlock(&tasklist_lock);
1da177e4
LT
5348 return retval;
5349}
5350
5351/**
5352 * sys_sched_getscheduler - get the RT priority of a thread
5353 * @pid: the pid in question.
5354 * @param: structure containing the RT priority.
5355 */
5356asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5357{
5358 struct sched_param lp;
36c8b586 5359 struct task_struct *p;
3a5c359a 5360 int retval;
1da177e4
LT
5361
5362 if (!param || pid < 0)
3a5c359a 5363 return -EINVAL;
1da177e4
LT
5364
5365 read_lock(&tasklist_lock);
5366 p = find_process_by_pid(pid);
5367 retval = -ESRCH;
5368 if (!p)
5369 goto out_unlock;
5370
5371 retval = security_task_getscheduler(p);
5372 if (retval)
5373 goto out_unlock;
5374
5375 lp.sched_priority = p->rt_priority;
5376 read_unlock(&tasklist_lock);
5377
5378 /*
5379 * This one might sleep, we cannot do it with a spinlock held ...
5380 */
5381 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5382
1da177e4
LT
5383 return retval;
5384
5385out_unlock:
5386 read_unlock(&tasklist_lock);
5387 return retval;
5388}
5389
b53e921b 5390long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5391{
1da177e4 5392 cpumask_t cpus_allowed;
b53e921b 5393 cpumask_t new_mask = *in_mask;
36c8b586
IM
5394 struct task_struct *p;
5395 int retval;
1da177e4 5396
95402b38 5397 get_online_cpus();
1da177e4
LT
5398 read_lock(&tasklist_lock);
5399
5400 p = find_process_by_pid(pid);
5401 if (!p) {
5402 read_unlock(&tasklist_lock);
95402b38 5403 put_online_cpus();
1da177e4
LT
5404 return -ESRCH;
5405 }
5406
5407 /*
5408 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5409 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5410 * usage count and then drop tasklist_lock.
5411 */
5412 get_task_struct(p);
5413 read_unlock(&tasklist_lock);
5414
5415 retval = -EPERM;
5416 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5417 !capable(CAP_SYS_NICE))
5418 goto out_unlock;
5419
e7834f8f
DQ
5420 retval = security_task_setscheduler(p, 0, NULL);
5421 if (retval)
5422 goto out_unlock;
5423
f9a86fcb 5424 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5425 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5426 again:
7c16ec58 5427 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5428
8707d8b8 5429 if (!retval) {
f9a86fcb 5430 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5431 if (!cpus_subset(new_mask, cpus_allowed)) {
5432 /*
5433 * We must have raced with a concurrent cpuset
5434 * update. Just reset the cpus_allowed to the
5435 * cpuset's cpus_allowed
5436 */
5437 new_mask = cpus_allowed;
5438 goto again;
5439 }
5440 }
1da177e4
LT
5441out_unlock:
5442 put_task_struct(p);
95402b38 5443 put_online_cpus();
1da177e4
LT
5444 return retval;
5445}
5446
5447static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5448 cpumask_t *new_mask)
5449{
5450 if (len < sizeof(cpumask_t)) {
5451 memset(new_mask, 0, sizeof(cpumask_t));
5452 } else if (len > sizeof(cpumask_t)) {
5453 len = sizeof(cpumask_t);
5454 }
5455 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5456}
5457
5458/**
5459 * sys_sched_setaffinity - set the cpu affinity of a process
5460 * @pid: pid of the process
5461 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5462 * @user_mask_ptr: user-space pointer to the new cpu mask
5463 */
5464asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5465 unsigned long __user *user_mask_ptr)
5466{
5467 cpumask_t new_mask;
5468 int retval;
5469
5470 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5471 if (retval)
5472 return retval;
5473
b53e921b 5474 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5475}
5476
1da177e4
LT
5477long sched_getaffinity(pid_t pid, cpumask_t *mask)
5478{
36c8b586 5479 struct task_struct *p;
1da177e4 5480 int retval;
1da177e4 5481
95402b38 5482 get_online_cpus();
1da177e4
LT
5483 read_lock(&tasklist_lock);
5484
5485 retval = -ESRCH;
5486 p = find_process_by_pid(pid);
5487 if (!p)
5488 goto out_unlock;
5489
e7834f8f
DQ
5490 retval = security_task_getscheduler(p);
5491 if (retval)
5492 goto out_unlock;
5493
2f7016d9 5494 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5495
5496out_unlock:
5497 read_unlock(&tasklist_lock);
95402b38 5498 put_online_cpus();
1da177e4 5499
9531b62f 5500 return retval;
1da177e4
LT
5501}
5502
5503/**
5504 * sys_sched_getaffinity - get the cpu affinity of a process
5505 * @pid: pid of the process
5506 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5507 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5508 */
5509asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5510 unsigned long __user *user_mask_ptr)
5511{
5512 int ret;
5513 cpumask_t mask;
5514
5515 if (len < sizeof(cpumask_t))
5516 return -EINVAL;
5517
5518 ret = sched_getaffinity(pid, &mask);
5519 if (ret < 0)
5520 return ret;
5521
5522 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5523 return -EFAULT;
5524
5525 return sizeof(cpumask_t);
5526}
5527
5528/**
5529 * sys_sched_yield - yield the current processor to other threads.
5530 *
dd41f596
IM
5531 * This function yields the current CPU to other tasks. If there are no
5532 * other threads running on this CPU then this function will return.
1da177e4
LT
5533 */
5534asmlinkage long sys_sched_yield(void)
5535{
70b97a7f 5536 struct rq *rq = this_rq_lock();
1da177e4 5537
2d72376b 5538 schedstat_inc(rq, yld_count);
4530d7ab 5539 current->sched_class->yield_task(rq);
1da177e4
LT
5540
5541 /*
5542 * Since we are going to call schedule() anyway, there's
5543 * no need to preempt or enable interrupts:
5544 */
5545 __release(rq->lock);
8a25d5de 5546 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5547 _raw_spin_unlock(&rq->lock);
5548 preempt_enable_no_resched();
5549
5550 schedule();
5551
5552 return 0;
5553}
5554
e7b38404 5555static void __cond_resched(void)
1da177e4 5556{
8e0a43d8
IM
5557#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5558 __might_sleep(__FILE__, __LINE__);
5559#endif
5bbcfd90
IM
5560 /*
5561 * The BKS might be reacquired before we have dropped
5562 * PREEMPT_ACTIVE, which could trigger a second
5563 * cond_resched() call.
5564 */
1da177e4
LT
5565 do {
5566 add_preempt_count(PREEMPT_ACTIVE);
5567 schedule();
5568 sub_preempt_count(PREEMPT_ACTIVE);
5569 } while (need_resched());
5570}
5571
02b67cc3 5572int __sched _cond_resched(void)
1da177e4 5573{
9414232f
IM
5574 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5575 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5576 __cond_resched();
5577 return 1;
5578 }
5579 return 0;
5580}
02b67cc3 5581EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5582
5583/*
5584 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5585 * call schedule, and on return reacquire the lock.
5586 *
41a2d6cf 5587 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5588 * operations here to prevent schedule() from being called twice (once via
5589 * spin_unlock(), once by hand).
5590 */
95cdf3b7 5591int cond_resched_lock(spinlock_t *lock)
1da177e4 5592{
95c354fe 5593 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5594 int ret = 0;
5595
95c354fe 5596 if (spin_needbreak(lock) || resched) {
1da177e4 5597 spin_unlock(lock);
95c354fe
NP
5598 if (resched && need_resched())
5599 __cond_resched();
5600 else
5601 cpu_relax();
6df3cecb 5602 ret = 1;
1da177e4 5603 spin_lock(lock);
1da177e4 5604 }
6df3cecb 5605 return ret;
1da177e4 5606}
1da177e4
LT
5607EXPORT_SYMBOL(cond_resched_lock);
5608
5609int __sched cond_resched_softirq(void)
5610{
5611 BUG_ON(!in_softirq());
5612
9414232f 5613 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5614 local_bh_enable();
1da177e4
LT
5615 __cond_resched();
5616 local_bh_disable();
5617 return 1;
5618 }
5619 return 0;
5620}
1da177e4
LT
5621EXPORT_SYMBOL(cond_resched_softirq);
5622
1da177e4
LT
5623/**
5624 * yield - yield the current processor to other threads.
5625 *
72fd4a35 5626 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5627 * thread runnable and calls sys_sched_yield().
5628 */
5629void __sched yield(void)
5630{
5631 set_current_state(TASK_RUNNING);
5632 sys_sched_yield();
5633}
1da177e4
LT
5634EXPORT_SYMBOL(yield);
5635
5636/*
41a2d6cf 5637 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5638 * that process accounting knows that this is a task in IO wait state.
5639 *
5640 * But don't do that if it is a deliberate, throttling IO wait (this task
5641 * has set its backing_dev_info: the queue against which it should throttle)
5642 */
5643void __sched io_schedule(void)
5644{
70b97a7f 5645 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5646
0ff92245 5647 delayacct_blkio_start();
1da177e4
LT
5648 atomic_inc(&rq->nr_iowait);
5649 schedule();
5650 atomic_dec(&rq->nr_iowait);
0ff92245 5651 delayacct_blkio_end();
1da177e4 5652}
1da177e4
LT
5653EXPORT_SYMBOL(io_schedule);
5654
5655long __sched io_schedule_timeout(long timeout)
5656{
70b97a7f 5657 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5658 long ret;
5659
0ff92245 5660 delayacct_blkio_start();
1da177e4
LT
5661 atomic_inc(&rq->nr_iowait);
5662 ret = schedule_timeout(timeout);
5663 atomic_dec(&rq->nr_iowait);
0ff92245 5664 delayacct_blkio_end();
1da177e4
LT
5665 return ret;
5666}
5667
5668/**
5669 * sys_sched_get_priority_max - return maximum RT priority.
5670 * @policy: scheduling class.
5671 *
5672 * this syscall returns the maximum rt_priority that can be used
5673 * by a given scheduling class.
5674 */
5675asmlinkage long sys_sched_get_priority_max(int policy)
5676{
5677 int ret = -EINVAL;
5678
5679 switch (policy) {
5680 case SCHED_FIFO:
5681 case SCHED_RR:
5682 ret = MAX_USER_RT_PRIO-1;
5683 break;
5684 case SCHED_NORMAL:
b0a9499c 5685 case SCHED_BATCH:
dd41f596 5686 case SCHED_IDLE:
1da177e4
LT
5687 ret = 0;
5688 break;
5689 }
5690 return ret;
5691}
5692
5693/**
5694 * sys_sched_get_priority_min - return minimum RT priority.
5695 * @policy: scheduling class.
5696 *
5697 * this syscall returns the minimum rt_priority that can be used
5698 * by a given scheduling class.
5699 */
5700asmlinkage long sys_sched_get_priority_min(int policy)
5701{
5702 int ret = -EINVAL;
5703
5704 switch (policy) {
5705 case SCHED_FIFO:
5706 case SCHED_RR:
5707 ret = 1;
5708 break;
5709 case SCHED_NORMAL:
b0a9499c 5710 case SCHED_BATCH:
dd41f596 5711 case SCHED_IDLE:
1da177e4
LT
5712 ret = 0;
5713 }
5714 return ret;
5715}
5716
5717/**
5718 * sys_sched_rr_get_interval - return the default timeslice of a process.
5719 * @pid: pid of the process.
5720 * @interval: userspace pointer to the timeslice value.
5721 *
5722 * this syscall writes the default timeslice value of a given process
5723 * into the user-space timespec buffer. A value of '0' means infinity.
5724 */
5725asmlinkage
5726long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5727{
36c8b586 5728 struct task_struct *p;
a4ec24b4 5729 unsigned int time_slice;
3a5c359a 5730 int retval;
1da177e4 5731 struct timespec t;
1da177e4
LT
5732
5733 if (pid < 0)
3a5c359a 5734 return -EINVAL;
1da177e4
LT
5735
5736 retval = -ESRCH;
5737 read_lock(&tasklist_lock);
5738 p = find_process_by_pid(pid);
5739 if (!p)
5740 goto out_unlock;
5741
5742 retval = security_task_getscheduler(p);
5743 if (retval)
5744 goto out_unlock;
5745
77034937
IM
5746 /*
5747 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5748 * tasks that are on an otherwise idle runqueue:
5749 */
5750 time_slice = 0;
5751 if (p->policy == SCHED_RR) {
a4ec24b4 5752 time_slice = DEF_TIMESLICE;
1868f958 5753 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5754 struct sched_entity *se = &p->se;
5755 unsigned long flags;
5756 struct rq *rq;
5757
5758 rq = task_rq_lock(p, &flags);
77034937
IM
5759 if (rq->cfs.load.weight)
5760 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5761 task_rq_unlock(rq, &flags);
5762 }
1da177e4 5763 read_unlock(&tasklist_lock);
a4ec24b4 5764 jiffies_to_timespec(time_slice, &t);
1da177e4 5765 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5766 return retval;
3a5c359a 5767
1da177e4
LT
5768out_unlock:
5769 read_unlock(&tasklist_lock);
5770 return retval;
5771}
5772
7c731e0a 5773static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5774
82a1fcb9 5775void sched_show_task(struct task_struct *p)
1da177e4 5776{
1da177e4 5777 unsigned long free = 0;
36c8b586 5778 unsigned state;
1da177e4 5779
1da177e4 5780 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5781 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5782 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5783#if BITS_PER_LONG == 32
1da177e4 5784 if (state == TASK_RUNNING)
cc4ea795 5785 printk(KERN_CONT " running ");
1da177e4 5786 else
cc4ea795 5787 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5788#else
5789 if (state == TASK_RUNNING)
cc4ea795 5790 printk(KERN_CONT " running task ");
1da177e4 5791 else
cc4ea795 5792 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5793#endif
5794#ifdef CONFIG_DEBUG_STACK_USAGE
5795 {
10ebffde 5796 unsigned long *n = end_of_stack(p);
1da177e4
LT
5797 while (!*n)
5798 n++;
10ebffde 5799 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5800 }
5801#endif
ba25f9dc 5802 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5803 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5804
5fb5e6de 5805 show_stack(p, NULL);
1da177e4
LT
5806}
5807
e59e2ae2 5808void show_state_filter(unsigned long state_filter)
1da177e4 5809{
36c8b586 5810 struct task_struct *g, *p;
1da177e4 5811
4bd77321
IM
5812#if BITS_PER_LONG == 32
5813 printk(KERN_INFO
5814 " task PC stack pid father\n");
1da177e4 5815#else
4bd77321
IM
5816 printk(KERN_INFO
5817 " task PC stack pid father\n");
1da177e4
LT
5818#endif
5819 read_lock(&tasklist_lock);
5820 do_each_thread(g, p) {
5821 /*
5822 * reset the NMI-timeout, listing all files on a slow
5823 * console might take alot of time:
5824 */
5825 touch_nmi_watchdog();
39bc89fd 5826 if (!state_filter || (p->state & state_filter))
82a1fcb9 5827 sched_show_task(p);
1da177e4
LT
5828 } while_each_thread(g, p);
5829
04c9167f
JF
5830 touch_all_softlockup_watchdogs();
5831
dd41f596
IM
5832#ifdef CONFIG_SCHED_DEBUG
5833 sysrq_sched_debug_show();
5834#endif
1da177e4 5835 read_unlock(&tasklist_lock);
e59e2ae2
IM
5836 /*
5837 * Only show locks if all tasks are dumped:
5838 */
5839 if (state_filter == -1)
5840 debug_show_all_locks();
1da177e4
LT
5841}
5842
1df21055
IM
5843void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5844{
dd41f596 5845 idle->sched_class = &idle_sched_class;
1df21055
IM
5846}
5847
f340c0d1
IM
5848/**
5849 * init_idle - set up an idle thread for a given CPU
5850 * @idle: task in question
5851 * @cpu: cpu the idle task belongs to
5852 *
5853 * NOTE: this function does not set the idle thread's NEED_RESCHED
5854 * flag, to make booting more robust.
5855 */
5c1e1767 5856void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5857{
70b97a7f 5858 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5859 unsigned long flags;
5860
dd41f596
IM
5861 __sched_fork(idle);
5862 idle->se.exec_start = sched_clock();
5863
b29739f9 5864 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5865 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5866 __set_task_cpu(idle, cpu);
1da177e4
LT
5867
5868 spin_lock_irqsave(&rq->lock, flags);
5869 rq->curr = rq->idle = idle;
4866cde0
NP
5870#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5871 idle->oncpu = 1;
5872#endif
1da177e4
LT
5873 spin_unlock_irqrestore(&rq->lock, flags);
5874
5875 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5876#if defined(CONFIG_PREEMPT)
5877 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5878#else
a1261f54 5879 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5880#endif
dd41f596
IM
5881 /*
5882 * The idle tasks have their own, simple scheduling class:
5883 */
5884 idle->sched_class = &idle_sched_class;
1da177e4
LT
5885}
5886
5887/*
5888 * In a system that switches off the HZ timer nohz_cpu_mask
5889 * indicates which cpus entered this state. This is used
5890 * in the rcu update to wait only for active cpus. For system
5891 * which do not switch off the HZ timer nohz_cpu_mask should
5892 * always be CPU_MASK_NONE.
5893 */
5894cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5895
19978ca6
IM
5896/*
5897 * Increase the granularity value when there are more CPUs,
5898 * because with more CPUs the 'effective latency' as visible
5899 * to users decreases. But the relationship is not linear,
5900 * so pick a second-best guess by going with the log2 of the
5901 * number of CPUs.
5902 *
5903 * This idea comes from the SD scheduler of Con Kolivas:
5904 */
5905static inline void sched_init_granularity(void)
5906{
5907 unsigned int factor = 1 + ilog2(num_online_cpus());
5908 const unsigned long limit = 200000000;
5909
5910 sysctl_sched_min_granularity *= factor;
5911 if (sysctl_sched_min_granularity > limit)
5912 sysctl_sched_min_granularity = limit;
5913
5914 sysctl_sched_latency *= factor;
5915 if (sysctl_sched_latency > limit)
5916 sysctl_sched_latency = limit;
5917
5918 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5919
5920 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5921}
5922
1da177e4
LT
5923#ifdef CONFIG_SMP
5924/*
5925 * This is how migration works:
5926 *
70b97a7f 5927 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5928 * runqueue and wake up that CPU's migration thread.
5929 * 2) we down() the locked semaphore => thread blocks.
5930 * 3) migration thread wakes up (implicitly it forces the migrated
5931 * thread off the CPU)
5932 * 4) it gets the migration request and checks whether the migrated
5933 * task is still in the wrong runqueue.
5934 * 5) if it's in the wrong runqueue then the migration thread removes
5935 * it and puts it into the right queue.
5936 * 6) migration thread up()s the semaphore.
5937 * 7) we wake up and the migration is done.
5938 */
5939
5940/*
5941 * Change a given task's CPU affinity. Migrate the thread to a
5942 * proper CPU and schedule it away if the CPU it's executing on
5943 * is removed from the allowed bitmask.
5944 *
5945 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5946 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5947 * call is not atomic; no spinlocks may be held.
5948 */
cd8ba7cd 5949int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5950{
70b97a7f 5951 struct migration_req req;
1da177e4 5952 unsigned long flags;
70b97a7f 5953 struct rq *rq;
48f24c4d 5954 int ret = 0;
1da177e4
LT
5955
5956 rq = task_rq_lock(p, &flags);
cd8ba7cd 5957 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5958 ret = -EINVAL;
5959 goto out;
5960 }
5961
9985b0ba
DR
5962 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5963 !cpus_equal(p->cpus_allowed, *new_mask))) {
5964 ret = -EINVAL;
5965 goto out;
5966 }
5967
73fe6aae 5968 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5969 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5970 else {
cd8ba7cd
MT
5971 p->cpus_allowed = *new_mask;
5972 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5973 }
5974
1da177e4 5975 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5976 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5977 goto out;
5978
cd8ba7cd 5979 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5980 /* Need help from migration thread: drop lock and wait. */
5981 task_rq_unlock(rq, &flags);
5982 wake_up_process(rq->migration_thread);
5983 wait_for_completion(&req.done);
5984 tlb_migrate_finish(p->mm);
5985 return 0;
5986 }
5987out:
5988 task_rq_unlock(rq, &flags);
48f24c4d 5989
1da177e4
LT
5990 return ret;
5991}
cd8ba7cd 5992EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5993
5994/*
41a2d6cf 5995 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5996 * this because either it can't run here any more (set_cpus_allowed()
5997 * away from this CPU, or CPU going down), or because we're
5998 * attempting to rebalance this task on exec (sched_exec).
5999 *
6000 * So we race with normal scheduler movements, but that's OK, as long
6001 * as the task is no longer on this CPU.
efc30814
KK
6002 *
6003 * Returns non-zero if task was successfully migrated.
1da177e4 6004 */
efc30814 6005static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6006{
70b97a7f 6007 struct rq *rq_dest, *rq_src;
dd41f596 6008 int ret = 0, on_rq;
1da177e4 6009
e761b772 6010 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6011 return ret;
1da177e4
LT
6012
6013 rq_src = cpu_rq(src_cpu);
6014 rq_dest = cpu_rq(dest_cpu);
6015
6016 double_rq_lock(rq_src, rq_dest);
6017 /* Already moved. */
6018 if (task_cpu(p) != src_cpu)
b1e38734 6019 goto done;
1da177e4
LT
6020 /* Affinity changed (again). */
6021 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6022 goto fail;
1da177e4 6023
dd41f596 6024 on_rq = p->se.on_rq;
6e82a3be 6025 if (on_rq)
2e1cb74a 6026 deactivate_task(rq_src, p, 0);
6e82a3be 6027
1da177e4 6028 set_task_cpu(p, dest_cpu);
dd41f596
IM
6029 if (on_rq) {
6030 activate_task(rq_dest, p, 0);
15afe09b 6031 check_preempt_curr(rq_dest, p, 0);
1da177e4 6032 }
b1e38734 6033done:
efc30814 6034 ret = 1;
b1e38734 6035fail:
1da177e4 6036 double_rq_unlock(rq_src, rq_dest);
efc30814 6037 return ret;
1da177e4
LT
6038}
6039
6040/*
6041 * migration_thread - this is a highprio system thread that performs
6042 * thread migration by bumping thread off CPU then 'pushing' onto
6043 * another runqueue.
6044 */
95cdf3b7 6045static int migration_thread(void *data)
1da177e4 6046{
1da177e4 6047 int cpu = (long)data;
70b97a7f 6048 struct rq *rq;
1da177e4
LT
6049
6050 rq = cpu_rq(cpu);
6051 BUG_ON(rq->migration_thread != current);
6052
6053 set_current_state(TASK_INTERRUPTIBLE);
6054 while (!kthread_should_stop()) {
70b97a7f 6055 struct migration_req *req;
1da177e4 6056 struct list_head *head;
1da177e4 6057
1da177e4
LT
6058 spin_lock_irq(&rq->lock);
6059
6060 if (cpu_is_offline(cpu)) {
6061 spin_unlock_irq(&rq->lock);
6062 goto wait_to_die;
6063 }
6064
6065 if (rq->active_balance) {
6066 active_load_balance(rq, cpu);
6067 rq->active_balance = 0;
6068 }
6069
6070 head = &rq->migration_queue;
6071
6072 if (list_empty(head)) {
6073 spin_unlock_irq(&rq->lock);
6074 schedule();
6075 set_current_state(TASK_INTERRUPTIBLE);
6076 continue;
6077 }
70b97a7f 6078 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6079 list_del_init(head->next);
6080
674311d5
NP
6081 spin_unlock(&rq->lock);
6082 __migrate_task(req->task, cpu, req->dest_cpu);
6083 local_irq_enable();
1da177e4
LT
6084
6085 complete(&req->done);
6086 }
6087 __set_current_state(TASK_RUNNING);
6088 return 0;
6089
6090wait_to_die:
6091 /* Wait for kthread_stop */
6092 set_current_state(TASK_INTERRUPTIBLE);
6093 while (!kthread_should_stop()) {
6094 schedule();
6095 set_current_state(TASK_INTERRUPTIBLE);
6096 }
6097 __set_current_state(TASK_RUNNING);
6098 return 0;
6099}
6100
6101#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6102
6103static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6104{
6105 int ret;
6106
6107 local_irq_disable();
6108 ret = __migrate_task(p, src_cpu, dest_cpu);
6109 local_irq_enable();
6110 return ret;
6111}
6112
054b9108 6113/*
3a4fa0a2 6114 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6115 * NOTE: interrupts should be disabled by the caller
6116 */
48f24c4d 6117static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6118{
efc30814 6119 unsigned long flags;
1da177e4 6120 cpumask_t mask;
70b97a7f
IM
6121 struct rq *rq;
6122 int dest_cpu;
1da177e4 6123
3a5c359a
AK
6124 do {
6125 /* On same node? */
6126 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6127 cpus_and(mask, mask, p->cpus_allowed);
6128 dest_cpu = any_online_cpu(mask);
6129
6130 /* On any allowed CPU? */
434d53b0 6131 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6132 dest_cpu = any_online_cpu(p->cpus_allowed);
6133
6134 /* No more Mr. Nice Guy. */
434d53b0 6135 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6136 cpumask_t cpus_allowed;
6137
6138 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6139 /*
6140 * Try to stay on the same cpuset, where the
6141 * current cpuset may be a subset of all cpus.
6142 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6143 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6144 * called within calls to cpuset_lock/cpuset_unlock.
6145 */
3a5c359a 6146 rq = task_rq_lock(p, &flags);
470fd646 6147 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6148 dest_cpu = any_online_cpu(p->cpus_allowed);
6149 task_rq_unlock(rq, &flags);
1da177e4 6150
3a5c359a
AK
6151 /*
6152 * Don't tell them about moving exiting tasks or
6153 * kernel threads (both mm NULL), since they never
6154 * leave kernel.
6155 */
41a2d6cf 6156 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6157 printk(KERN_INFO "process %d (%s) no "
6158 "longer affine to cpu%d\n",
41a2d6cf
IM
6159 task_pid_nr(p), p->comm, dead_cpu);
6160 }
3a5c359a 6161 }
f7b4cddc 6162 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6163}
6164
6165/*
6166 * While a dead CPU has no uninterruptible tasks queued at this point,
6167 * it might still have a nonzero ->nr_uninterruptible counter, because
6168 * for performance reasons the counter is not stricly tracking tasks to
6169 * their home CPUs. So we just add the counter to another CPU's counter,
6170 * to keep the global sum constant after CPU-down:
6171 */
70b97a7f 6172static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6173{
7c16ec58 6174 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6175 unsigned long flags;
6176
6177 local_irq_save(flags);
6178 double_rq_lock(rq_src, rq_dest);
6179 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6180 rq_src->nr_uninterruptible = 0;
6181 double_rq_unlock(rq_src, rq_dest);
6182 local_irq_restore(flags);
6183}
6184
6185/* Run through task list and migrate tasks from the dead cpu. */
6186static void migrate_live_tasks(int src_cpu)
6187{
48f24c4d 6188 struct task_struct *p, *t;
1da177e4 6189
f7b4cddc 6190 read_lock(&tasklist_lock);
1da177e4 6191
48f24c4d
IM
6192 do_each_thread(t, p) {
6193 if (p == current)
1da177e4
LT
6194 continue;
6195
48f24c4d
IM
6196 if (task_cpu(p) == src_cpu)
6197 move_task_off_dead_cpu(src_cpu, p);
6198 } while_each_thread(t, p);
1da177e4 6199
f7b4cddc 6200 read_unlock(&tasklist_lock);
1da177e4
LT
6201}
6202
dd41f596
IM
6203/*
6204 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6205 * It does so by boosting its priority to highest possible.
6206 * Used by CPU offline code.
1da177e4
LT
6207 */
6208void sched_idle_next(void)
6209{
48f24c4d 6210 int this_cpu = smp_processor_id();
70b97a7f 6211 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6212 struct task_struct *p = rq->idle;
6213 unsigned long flags;
6214
6215 /* cpu has to be offline */
48f24c4d 6216 BUG_ON(cpu_online(this_cpu));
1da177e4 6217
48f24c4d
IM
6218 /*
6219 * Strictly not necessary since rest of the CPUs are stopped by now
6220 * and interrupts disabled on the current cpu.
1da177e4
LT
6221 */
6222 spin_lock_irqsave(&rq->lock, flags);
6223
dd41f596 6224 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6225
94bc9a7b
DA
6226 update_rq_clock(rq);
6227 activate_task(rq, p, 0);
1da177e4
LT
6228
6229 spin_unlock_irqrestore(&rq->lock, flags);
6230}
6231
48f24c4d
IM
6232/*
6233 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6234 * offline.
6235 */
6236void idle_task_exit(void)
6237{
6238 struct mm_struct *mm = current->active_mm;
6239
6240 BUG_ON(cpu_online(smp_processor_id()));
6241
6242 if (mm != &init_mm)
6243 switch_mm(mm, &init_mm, current);
6244 mmdrop(mm);
6245}
6246
054b9108 6247/* called under rq->lock with disabled interrupts */
36c8b586 6248static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6249{
70b97a7f 6250 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6251
6252 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6253 BUG_ON(!p->exit_state);
1da177e4
LT
6254
6255 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6256 BUG_ON(p->state == TASK_DEAD);
1da177e4 6257
48f24c4d 6258 get_task_struct(p);
1da177e4
LT
6259
6260 /*
6261 * Drop lock around migration; if someone else moves it,
41a2d6cf 6262 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6263 * fine.
6264 */
f7b4cddc 6265 spin_unlock_irq(&rq->lock);
48f24c4d 6266 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6267 spin_lock_irq(&rq->lock);
1da177e4 6268
48f24c4d 6269 put_task_struct(p);
1da177e4
LT
6270}
6271
6272/* release_task() removes task from tasklist, so we won't find dead tasks. */
6273static void migrate_dead_tasks(unsigned int dead_cpu)
6274{
70b97a7f 6275 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6276 struct task_struct *next;
48f24c4d 6277
dd41f596
IM
6278 for ( ; ; ) {
6279 if (!rq->nr_running)
6280 break;
a8e504d2 6281 update_rq_clock(rq);
ff95f3df 6282 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6283 if (!next)
6284 break;
79c53799 6285 next->sched_class->put_prev_task(rq, next);
dd41f596 6286 migrate_dead(dead_cpu, next);
e692ab53 6287
1da177e4
LT
6288 }
6289}
6290#endif /* CONFIG_HOTPLUG_CPU */
6291
e692ab53
NP
6292#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6293
6294static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6295 {
6296 .procname = "sched_domain",
c57baf1e 6297 .mode = 0555,
e0361851 6298 },
38605cae 6299 {0, },
e692ab53
NP
6300};
6301
6302static struct ctl_table sd_ctl_root[] = {
e0361851 6303 {
c57baf1e 6304 .ctl_name = CTL_KERN,
e0361851 6305 .procname = "kernel",
c57baf1e 6306 .mode = 0555,
e0361851
AD
6307 .child = sd_ctl_dir,
6308 },
38605cae 6309 {0, },
e692ab53
NP
6310};
6311
6312static struct ctl_table *sd_alloc_ctl_entry(int n)
6313{
6314 struct ctl_table *entry =
5cf9f062 6315 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6316
e692ab53
NP
6317 return entry;
6318}
6319
6382bc90
MM
6320static void sd_free_ctl_entry(struct ctl_table **tablep)
6321{
cd790076 6322 struct ctl_table *entry;
6382bc90 6323
cd790076
MM
6324 /*
6325 * In the intermediate directories, both the child directory and
6326 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6327 * will always be set. In the lowest directory the names are
cd790076
MM
6328 * static strings and all have proc handlers.
6329 */
6330 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6331 if (entry->child)
6332 sd_free_ctl_entry(&entry->child);
cd790076
MM
6333 if (entry->proc_handler == NULL)
6334 kfree(entry->procname);
6335 }
6382bc90
MM
6336
6337 kfree(*tablep);
6338 *tablep = NULL;
6339}
6340
e692ab53 6341static void
e0361851 6342set_table_entry(struct ctl_table *entry,
e692ab53
NP
6343 const char *procname, void *data, int maxlen,
6344 mode_t mode, proc_handler *proc_handler)
6345{
e692ab53
NP
6346 entry->procname = procname;
6347 entry->data = data;
6348 entry->maxlen = maxlen;
6349 entry->mode = mode;
6350 entry->proc_handler = proc_handler;
6351}
6352
6353static struct ctl_table *
6354sd_alloc_ctl_domain_table(struct sched_domain *sd)
6355{
a5d8c348 6356 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6357
ad1cdc1d
MM
6358 if (table == NULL)
6359 return NULL;
6360
e0361851 6361 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6362 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6363 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6364 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6365 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6366 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6367 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6368 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6369 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6370 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6371 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6372 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6373 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6374 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6375 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6376 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6377 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6378 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6379 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6380 &sd->cache_nice_tries,
6381 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6382 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6383 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6384 set_table_entry(&table[11], "name", sd->name,
6385 CORENAME_MAX_SIZE, 0444, proc_dostring);
6386 /* &table[12] is terminator */
e692ab53
NP
6387
6388 return table;
6389}
6390
9a4e7159 6391static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6392{
6393 struct ctl_table *entry, *table;
6394 struct sched_domain *sd;
6395 int domain_num = 0, i;
6396 char buf[32];
6397
6398 for_each_domain(cpu, sd)
6399 domain_num++;
6400 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6401 if (table == NULL)
6402 return NULL;
e692ab53
NP
6403
6404 i = 0;
6405 for_each_domain(cpu, sd) {
6406 snprintf(buf, 32, "domain%d", i);
e692ab53 6407 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6408 entry->mode = 0555;
e692ab53
NP
6409 entry->child = sd_alloc_ctl_domain_table(sd);
6410 entry++;
6411 i++;
6412 }
6413 return table;
6414}
6415
6416static struct ctl_table_header *sd_sysctl_header;
6382bc90 6417static void register_sched_domain_sysctl(void)
e692ab53
NP
6418{
6419 int i, cpu_num = num_online_cpus();
6420 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6421 char buf[32];
6422
7378547f
MM
6423 WARN_ON(sd_ctl_dir[0].child);
6424 sd_ctl_dir[0].child = entry;
6425
ad1cdc1d
MM
6426 if (entry == NULL)
6427 return;
6428
97b6ea7b 6429 for_each_online_cpu(i) {
e692ab53 6430 snprintf(buf, 32, "cpu%d", i);
e692ab53 6431 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6432 entry->mode = 0555;
e692ab53 6433 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6434 entry++;
e692ab53 6435 }
7378547f
MM
6436
6437 WARN_ON(sd_sysctl_header);
e692ab53
NP
6438 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6439}
6382bc90 6440
7378547f 6441/* may be called multiple times per register */
6382bc90
MM
6442static void unregister_sched_domain_sysctl(void)
6443{
7378547f
MM
6444 if (sd_sysctl_header)
6445 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6446 sd_sysctl_header = NULL;
7378547f
MM
6447 if (sd_ctl_dir[0].child)
6448 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6449}
e692ab53 6450#else
6382bc90
MM
6451static void register_sched_domain_sysctl(void)
6452{
6453}
6454static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6455{
6456}
6457#endif
6458
1f11eb6a
GH
6459static void set_rq_online(struct rq *rq)
6460{
6461 if (!rq->online) {
6462 const struct sched_class *class;
6463
6464 cpu_set(rq->cpu, rq->rd->online);
6465 rq->online = 1;
6466
6467 for_each_class(class) {
6468 if (class->rq_online)
6469 class->rq_online(rq);
6470 }
6471 }
6472}
6473
6474static void set_rq_offline(struct rq *rq)
6475{
6476 if (rq->online) {
6477 const struct sched_class *class;
6478
6479 for_each_class(class) {
6480 if (class->rq_offline)
6481 class->rq_offline(rq);
6482 }
6483
6484 cpu_clear(rq->cpu, rq->rd->online);
6485 rq->online = 0;
6486 }
6487}
6488
1da177e4
LT
6489/*
6490 * migration_call - callback that gets triggered when a CPU is added.
6491 * Here we can start up the necessary migration thread for the new CPU.
6492 */
48f24c4d
IM
6493static int __cpuinit
6494migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6495{
1da177e4 6496 struct task_struct *p;
48f24c4d 6497 int cpu = (long)hcpu;
1da177e4 6498 unsigned long flags;
70b97a7f 6499 struct rq *rq;
1da177e4
LT
6500
6501 switch (action) {
5be9361c 6502
1da177e4 6503 case CPU_UP_PREPARE:
8bb78442 6504 case CPU_UP_PREPARE_FROZEN:
dd41f596 6505 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6506 if (IS_ERR(p))
6507 return NOTIFY_BAD;
1da177e4
LT
6508 kthread_bind(p, cpu);
6509 /* Must be high prio: stop_machine expects to yield to it. */
6510 rq = task_rq_lock(p, &flags);
dd41f596 6511 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6512 task_rq_unlock(rq, &flags);
6513 cpu_rq(cpu)->migration_thread = p;
6514 break;
48f24c4d 6515
1da177e4 6516 case CPU_ONLINE:
8bb78442 6517 case CPU_ONLINE_FROZEN:
3a4fa0a2 6518 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6519 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6520
6521 /* Update our root-domain */
6522 rq = cpu_rq(cpu);
6523 spin_lock_irqsave(&rq->lock, flags);
6524 if (rq->rd) {
6525 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6526
6527 set_rq_online(rq);
1f94ef59
GH
6528 }
6529 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6530 break;
48f24c4d 6531
1da177e4
LT
6532#ifdef CONFIG_HOTPLUG_CPU
6533 case CPU_UP_CANCELED:
8bb78442 6534 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6535 if (!cpu_rq(cpu)->migration_thread)
6536 break;
41a2d6cf 6537 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6538 kthread_bind(cpu_rq(cpu)->migration_thread,
6539 any_online_cpu(cpu_online_map));
1da177e4
LT
6540 kthread_stop(cpu_rq(cpu)->migration_thread);
6541 cpu_rq(cpu)->migration_thread = NULL;
6542 break;
48f24c4d 6543
1da177e4 6544 case CPU_DEAD:
8bb78442 6545 case CPU_DEAD_FROZEN:
470fd646 6546 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6547 migrate_live_tasks(cpu);
6548 rq = cpu_rq(cpu);
6549 kthread_stop(rq->migration_thread);
6550 rq->migration_thread = NULL;
6551 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6552 spin_lock_irq(&rq->lock);
a8e504d2 6553 update_rq_clock(rq);
2e1cb74a 6554 deactivate_task(rq, rq->idle, 0);
1da177e4 6555 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6556 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6557 rq->idle->sched_class = &idle_sched_class;
1da177e4 6558 migrate_dead_tasks(cpu);
d2da272a 6559 spin_unlock_irq(&rq->lock);
470fd646 6560 cpuset_unlock();
1da177e4
LT
6561 migrate_nr_uninterruptible(rq);
6562 BUG_ON(rq->nr_running != 0);
6563
41a2d6cf
IM
6564 /*
6565 * No need to migrate the tasks: it was best-effort if
6566 * they didn't take sched_hotcpu_mutex. Just wake up
6567 * the requestors.
6568 */
1da177e4
LT
6569 spin_lock_irq(&rq->lock);
6570 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6571 struct migration_req *req;
6572
1da177e4 6573 req = list_entry(rq->migration_queue.next,
70b97a7f 6574 struct migration_req, list);
1da177e4
LT
6575 list_del_init(&req->list);
6576 complete(&req->done);
6577 }
6578 spin_unlock_irq(&rq->lock);
6579 break;
57d885fe 6580
08f503b0
GH
6581 case CPU_DYING:
6582 case CPU_DYING_FROZEN:
57d885fe
GH
6583 /* Update our root-domain */
6584 rq = cpu_rq(cpu);
6585 spin_lock_irqsave(&rq->lock, flags);
6586 if (rq->rd) {
6587 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6588 set_rq_offline(rq);
57d885fe
GH
6589 }
6590 spin_unlock_irqrestore(&rq->lock, flags);
6591 break;
1da177e4
LT
6592#endif
6593 }
6594 return NOTIFY_OK;
6595}
6596
6597/* Register at highest priority so that task migration (migrate_all_tasks)
6598 * happens before everything else.
6599 */
26c2143b 6600static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6601 .notifier_call = migration_call,
6602 .priority = 10
6603};
6604
7babe8db 6605static int __init migration_init(void)
1da177e4
LT
6606{
6607 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6608 int err;
48f24c4d
IM
6609
6610 /* Start one for the boot CPU: */
07dccf33
AM
6611 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6612 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6613 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6614 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6615
6616 return err;
1da177e4 6617}
7babe8db 6618early_initcall(migration_init);
1da177e4
LT
6619#endif
6620
6621#ifdef CONFIG_SMP
476f3534 6622
3e9830dc 6623#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6624
099f98c8
GS
6625static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6626{
6627 switch (lvl) {
6628 case SD_LV_NONE:
6629 return "NONE";
6630 case SD_LV_SIBLING:
6631 return "SIBLING";
6632 case SD_LV_MC:
6633 return "MC";
6634 case SD_LV_CPU:
6635 return "CPU";
6636 case SD_LV_NODE:
6637 return "NODE";
6638 case SD_LV_ALLNODES:
6639 return "ALLNODES";
6640 case SD_LV_MAX:
6641 return "MAX";
6642
6643 }
6644 return "MAX";
6645}
6646
7c16ec58
MT
6647static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6648 cpumask_t *groupmask)
1da177e4 6649{
4dcf6aff 6650 struct sched_group *group = sd->groups;
434d53b0 6651 char str[256];
1da177e4 6652
434d53b0 6653 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6654 cpus_clear(*groupmask);
4dcf6aff
IM
6655
6656 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6657
6658 if (!(sd->flags & SD_LOAD_BALANCE)) {
6659 printk("does not load-balance\n");
6660 if (sd->parent)
6661 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6662 " has parent");
6663 return -1;
41c7ce9a
NP
6664 }
6665
099f98c8
GS
6666 printk(KERN_CONT "span %s level %s\n",
6667 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6668
6669 if (!cpu_isset(cpu, sd->span)) {
6670 printk(KERN_ERR "ERROR: domain->span does not contain "
6671 "CPU%d\n", cpu);
6672 }
6673 if (!cpu_isset(cpu, group->cpumask)) {
6674 printk(KERN_ERR "ERROR: domain->groups does not contain"
6675 " CPU%d\n", cpu);
6676 }
1da177e4 6677
4dcf6aff 6678 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6679 do {
4dcf6aff
IM
6680 if (!group) {
6681 printk("\n");
6682 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6683 break;
6684 }
6685
4dcf6aff
IM
6686 if (!group->__cpu_power) {
6687 printk(KERN_CONT "\n");
6688 printk(KERN_ERR "ERROR: domain->cpu_power not "
6689 "set\n");
6690 break;
6691 }
1da177e4 6692
4dcf6aff
IM
6693 if (!cpus_weight(group->cpumask)) {
6694 printk(KERN_CONT "\n");
6695 printk(KERN_ERR "ERROR: empty group\n");
6696 break;
6697 }
1da177e4 6698
7c16ec58 6699 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6700 printk(KERN_CONT "\n");
6701 printk(KERN_ERR "ERROR: repeated CPUs\n");
6702 break;
6703 }
1da177e4 6704
7c16ec58 6705 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6706
434d53b0 6707 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6708 printk(KERN_CONT " %s", str);
1da177e4 6709
4dcf6aff
IM
6710 group = group->next;
6711 } while (group != sd->groups);
6712 printk(KERN_CONT "\n");
1da177e4 6713
7c16ec58 6714 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6715 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6716
7c16ec58 6717 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6718 printk(KERN_ERR "ERROR: parent span is not a superset "
6719 "of domain->span\n");
6720 return 0;
6721}
1da177e4 6722
4dcf6aff
IM
6723static void sched_domain_debug(struct sched_domain *sd, int cpu)
6724{
7c16ec58 6725 cpumask_t *groupmask;
4dcf6aff 6726 int level = 0;
1da177e4 6727
4dcf6aff
IM
6728 if (!sd) {
6729 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6730 return;
6731 }
1da177e4 6732
4dcf6aff
IM
6733 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6734
7c16ec58
MT
6735 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6736 if (!groupmask) {
6737 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6738 return;
6739 }
6740
4dcf6aff 6741 for (;;) {
7c16ec58 6742 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6743 break;
1da177e4
LT
6744 level++;
6745 sd = sd->parent;
33859f7f 6746 if (!sd)
4dcf6aff
IM
6747 break;
6748 }
7c16ec58 6749 kfree(groupmask);
1da177e4 6750}
6d6bc0ad 6751#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6752# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6753#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6754
1a20ff27 6755static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6756{
6757 if (cpus_weight(sd->span) == 1)
6758 return 1;
6759
6760 /* Following flags need at least 2 groups */
6761 if (sd->flags & (SD_LOAD_BALANCE |
6762 SD_BALANCE_NEWIDLE |
6763 SD_BALANCE_FORK |
89c4710e
SS
6764 SD_BALANCE_EXEC |
6765 SD_SHARE_CPUPOWER |
6766 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6767 if (sd->groups != sd->groups->next)
6768 return 0;
6769 }
6770
6771 /* Following flags don't use groups */
6772 if (sd->flags & (SD_WAKE_IDLE |
6773 SD_WAKE_AFFINE |
6774 SD_WAKE_BALANCE))
6775 return 0;
6776
6777 return 1;
6778}
6779
48f24c4d
IM
6780static int
6781sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6782{
6783 unsigned long cflags = sd->flags, pflags = parent->flags;
6784
6785 if (sd_degenerate(parent))
6786 return 1;
6787
6788 if (!cpus_equal(sd->span, parent->span))
6789 return 0;
6790
6791 /* Does parent contain flags not in child? */
6792 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6793 if (cflags & SD_WAKE_AFFINE)
6794 pflags &= ~SD_WAKE_BALANCE;
6795 /* Flags needing groups don't count if only 1 group in parent */
6796 if (parent->groups == parent->groups->next) {
6797 pflags &= ~(SD_LOAD_BALANCE |
6798 SD_BALANCE_NEWIDLE |
6799 SD_BALANCE_FORK |
89c4710e
SS
6800 SD_BALANCE_EXEC |
6801 SD_SHARE_CPUPOWER |
6802 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6803 }
6804 if (~cflags & pflags)
6805 return 0;
6806
6807 return 1;
6808}
6809
57d885fe
GH
6810static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6811{
6812 unsigned long flags;
57d885fe
GH
6813
6814 spin_lock_irqsave(&rq->lock, flags);
6815
6816 if (rq->rd) {
6817 struct root_domain *old_rd = rq->rd;
6818
1f11eb6a
GH
6819 if (cpu_isset(rq->cpu, old_rd->online))
6820 set_rq_offline(rq);
57d885fe 6821
dc938520 6822 cpu_clear(rq->cpu, old_rd->span);
dc938520 6823
57d885fe
GH
6824 if (atomic_dec_and_test(&old_rd->refcount))
6825 kfree(old_rd);
6826 }
6827
6828 atomic_inc(&rd->refcount);
6829 rq->rd = rd;
6830
dc938520 6831 cpu_set(rq->cpu, rd->span);
1f94ef59 6832 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6833 set_rq_online(rq);
57d885fe
GH
6834
6835 spin_unlock_irqrestore(&rq->lock, flags);
6836}
6837
dc938520 6838static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6839{
6840 memset(rd, 0, sizeof(*rd));
6841
dc938520
GH
6842 cpus_clear(rd->span);
6843 cpus_clear(rd->online);
6e0534f2
GH
6844
6845 cpupri_init(&rd->cpupri);
57d885fe
GH
6846}
6847
6848static void init_defrootdomain(void)
6849{
dc938520 6850 init_rootdomain(&def_root_domain);
57d885fe
GH
6851 atomic_set(&def_root_domain.refcount, 1);
6852}
6853
dc938520 6854static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6855{
6856 struct root_domain *rd;
6857
6858 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6859 if (!rd)
6860 return NULL;
6861
dc938520 6862 init_rootdomain(rd);
57d885fe
GH
6863
6864 return rd;
6865}
6866
1da177e4 6867/*
0eab9146 6868 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6869 * hold the hotplug lock.
6870 */
0eab9146
IM
6871static void
6872cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6873{
70b97a7f 6874 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6875 struct sched_domain *tmp;
6876
6877 /* Remove the sched domains which do not contribute to scheduling. */
6878 for (tmp = sd; tmp; tmp = tmp->parent) {
6879 struct sched_domain *parent = tmp->parent;
6880 if (!parent)
6881 break;
1a848870 6882 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6883 tmp->parent = parent->parent;
1a848870
SS
6884 if (parent->parent)
6885 parent->parent->child = tmp;
6886 }
245af2c7
SS
6887 }
6888
1a848870 6889 if (sd && sd_degenerate(sd)) {
245af2c7 6890 sd = sd->parent;
1a848870
SS
6891 if (sd)
6892 sd->child = NULL;
6893 }
1da177e4
LT
6894
6895 sched_domain_debug(sd, cpu);
6896
57d885fe 6897 rq_attach_root(rq, rd);
674311d5 6898 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6899}
6900
6901/* cpus with isolated domains */
67af63a6 6902static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6903
6904/* Setup the mask of cpus configured for isolated domains */
6905static int __init isolated_cpu_setup(char *str)
6906{
13b40c1e
MT
6907 static int __initdata ints[NR_CPUS];
6908 int i;
1da177e4
LT
6909
6910 str = get_options(str, ARRAY_SIZE(ints), ints);
6911 cpus_clear(cpu_isolated_map);
6912 for (i = 1; i <= ints[0]; i++)
6913 if (ints[i] < NR_CPUS)
6914 cpu_set(ints[i], cpu_isolated_map);
6915 return 1;
6916}
6917
8927f494 6918__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6919
6920/*
6711cab4
SS
6921 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6922 * to a function which identifies what group(along with sched group) a CPU
6923 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6924 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6925 *
6926 * init_sched_build_groups will build a circular linked list of the groups
6927 * covered by the given span, and will set each group's ->cpumask correctly,
6928 * and ->cpu_power to 0.
6929 */
a616058b 6930static void
7c16ec58 6931init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6932 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6933 struct sched_group **sg,
6934 cpumask_t *tmpmask),
6935 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6936{
6937 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6938 int i;
6939
7c16ec58
MT
6940 cpus_clear(*covered);
6941
363ab6f1 6942 for_each_cpu_mask_nr(i, *span) {
6711cab4 6943 struct sched_group *sg;
7c16ec58 6944 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6945 int j;
6946
7c16ec58 6947 if (cpu_isset(i, *covered))
1da177e4
LT
6948 continue;
6949
7c16ec58 6950 cpus_clear(sg->cpumask);
5517d86b 6951 sg->__cpu_power = 0;
1da177e4 6952
363ab6f1 6953 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6954 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6955 continue;
6956
7c16ec58 6957 cpu_set(j, *covered);
1da177e4
LT
6958 cpu_set(j, sg->cpumask);
6959 }
6960 if (!first)
6961 first = sg;
6962 if (last)
6963 last->next = sg;
6964 last = sg;
6965 }
6966 last->next = first;
6967}
6968
9c1cfda2 6969#define SD_NODES_PER_DOMAIN 16
1da177e4 6970
9c1cfda2 6971#ifdef CONFIG_NUMA
198e2f18 6972
9c1cfda2
JH
6973/**
6974 * find_next_best_node - find the next node to include in a sched_domain
6975 * @node: node whose sched_domain we're building
6976 * @used_nodes: nodes already in the sched_domain
6977 *
41a2d6cf 6978 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6979 * finds the closest node not already in the @used_nodes map.
6980 *
6981 * Should use nodemask_t.
6982 */
c5f59f08 6983static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6984{
6985 int i, n, val, min_val, best_node = 0;
6986
6987 min_val = INT_MAX;
6988
076ac2af 6989 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6990 /* Start at @node */
076ac2af 6991 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6992
6993 if (!nr_cpus_node(n))
6994 continue;
6995
6996 /* Skip already used nodes */
c5f59f08 6997 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6998 continue;
6999
7000 /* Simple min distance search */
7001 val = node_distance(node, n);
7002
7003 if (val < min_val) {
7004 min_val = val;
7005 best_node = n;
7006 }
7007 }
7008
c5f59f08 7009 node_set(best_node, *used_nodes);
9c1cfda2
JH
7010 return best_node;
7011}
7012
7013/**
7014 * sched_domain_node_span - get a cpumask for a node's sched_domain
7015 * @node: node whose cpumask we're constructing
73486722 7016 * @span: resulting cpumask
9c1cfda2 7017 *
41a2d6cf 7018 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7019 * should be one that prevents unnecessary balancing, but also spreads tasks
7020 * out optimally.
7021 */
4bdbaad3 7022static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7023{
c5f59f08 7024 nodemask_t used_nodes;
c5f59f08 7025 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7026 int i;
9c1cfda2 7027
4bdbaad3 7028 cpus_clear(*span);
c5f59f08 7029 nodes_clear(used_nodes);
9c1cfda2 7030
4bdbaad3 7031 cpus_or(*span, *span, *nodemask);
c5f59f08 7032 node_set(node, used_nodes);
9c1cfda2
JH
7033
7034 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7035 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7036
c5f59f08 7037 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7038 cpus_or(*span, *span, *nodemask);
9c1cfda2 7039 }
9c1cfda2 7040}
6d6bc0ad 7041#endif /* CONFIG_NUMA */
9c1cfda2 7042
5c45bf27 7043int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7044
9c1cfda2 7045/*
48f24c4d 7046 * SMT sched-domains:
9c1cfda2 7047 */
1da177e4
LT
7048#ifdef CONFIG_SCHED_SMT
7049static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7050static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7051
41a2d6cf 7052static int
7c16ec58
MT
7053cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7054 cpumask_t *unused)
1da177e4 7055{
6711cab4
SS
7056 if (sg)
7057 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7058 return cpu;
7059}
6d6bc0ad 7060#endif /* CONFIG_SCHED_SMT */
1da177e4 7061
48f24c4d
IM
7062/*
7063 * multi-core sched-domains:
7064 */
1e9f28fa
SS
7065#ifdef CONFIG_SCHED_MC
7066static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7067static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7068#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7069
7070#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7071static int
7c16ec58
MT
7072cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7073 cpumask_t *mask)
1e9f28fa 7074{
6711cab4 7075 int group;
7c16ec58
MT
7076
7077 *mask = per_cpu(cpu_sibling_map, cpu);
7078 cpus_and(*mask, *mask, *cpu_map);
7079 group = first_cpu(*mask);
6711cab4
SS
7080 if (sg)
7081 *sg = &per_cpu(sched_group_core, group);
7082 return group;
1e9f28fa
SS
7083}
7084#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7085static int
7c16ec58
MT
7086cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7087 cpumask_t *unused)
1e9f28fa 7088{
6711cab4
SS
7089 if (sg)
7090 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7091 return cpu;
7092}
7093#endif
7094
1da177e4 7095static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7096static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7097
41a2d6cf 7098static int
7c16ec58
MT
7099cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7100 cpumask_t *mask)
1da177e4 7101{
6711cab4 7102 int group;
48f24c4d 7103#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7104 *mask = cpu_coregroup_map(cpu);
7105 cpus_and(*mask, *mask, *cpu_map);
7106 group = first_cpu(*mask);
1e9f28fa 7107#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7108 *mask = per_cpu(cpu_sibling_map, cpu);
7109 cpus_and(*mask, *mask, *cpu_map);
7110 group = first_cpu(*mask);
1da177e4 7111#else
6711cab4 7112 group = cpu;
1da177e4 7113#endif
6711cab4
SS
7114 if (sg)
7115 *sg = &per_cpu(sched_group_phys, group);
7116 return group;
1da177e4
LT
7117}
7118
7119#ifdef CONFIG_NUMA
1da177e4 7120/*
9c1cfda2
JH
7121 * The init_sched_build_groups can't handle what we want to do with node
7122 * groups, so roll our own. Now each node has its own list of groups which
7123 * gets dynamically allocated.
1da177e4 7124 */
9c1cfda2 7125static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7126static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7127
9c1cfda2 7128static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7129static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7130
6711cab4 7131static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7132 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7133{
6711cab4
SS
7134 int group;
7135
7c16ec58
MT
7136 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7137 cpus_and(*nodemask, *nodemask, *cpu_map);
7138 group = first_cpu(*nodemask);
6711cab4
SS
7139
7140 if (sg)
7141 *sg = &per_cpu(sched_group_allnodes, group);
7142 return group;
1da177e4 7143}
6711cab4 7144
08069033
SS
7145static void init_numa_sched_groups_power(struct sched_group *group_head)
7146{
7147 struct sched_group *sg = group_head;
7148 int j;
7149
7150 if (!sg)
7151 return;
3a5c359a 7152 do {
363ab6f1 7153 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7154 struct sched_domain *sd;
08069033 7155
3a5c359a
AK
7156 sd = &per_cpu(phys_domains, j);
7157 if (j != first_cpu(sd->groups->cpumask)) {
7158 /*
7159 * Only add "power" once for each
7160 * physical package.
7161 */
7162 continue;
7163 }
08069033 7164
3a5c359a
AK
7165 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7166 }
7167 sg = sg->next;
7168 } while (sg != group_head);
08069033 7169}
6d6bc0ad 7170#endif /* CONFIG_NUMA */
1da177e4 7171
a616058b 7172#ifdef CONFIG_NUMA
51888ca2 7173/* Free memory allocated for various sched_group structures */
7c16ec58 7174static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7175{
a616058b 7176 int cpu, i;
51888ca2 7177
363ab6f1 7178 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7179 struct sched_group **sched_group_nodes
7180 = sched_group_nodes_bycpu[cpu];
7181
51888ca2
SV
7182 if (!sched_group_nodes)
7183 continue;
7184
076ac2af 7185 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7186 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7187
7c16ec58
MT
7188 *nodemask = node_to_cpumask(i);
7189 cpus_and(*nodemask, *nodemask, *cpu_map);
7190 if (cpus_empty(*nodemask))
51888ca2
SV
7191 continue;
7192
7193 if (sg == NULL)
7194 continue;
7195 sg = sg->next;
7196next_sg:
7197 oldsg = sg;
7198 sg = sg->next;
7199 kfree(oldsg);
7200 if (oldsg != sched_group_nodes[i])
7201 goto next_sg;
7202 }
7203 kfree(sched_group_nodes);
7204 sched_group_nodes_bycpu[cpu] = NULL;
7205 }
51888ca2 7206}
6d6bc0ad 7207#else /* !CONFIG_NUMA */
7c16ec58 7208static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7209{
7210}
6d6bc0ad 7211#endif /* CONFIG_NUMA */
51888ca2 7212
89c4710e
SS
7213/*
7214 * Initialize sched groups cpu_power.
7215 *
7216 * cpu_power indicates the capacity of sched group, which is used while
7217 * distributing the load between different sched groups in a sched domain.
7218 * Typically cpu_power for all the groups in a sched domain will be same unless
7219 * there are asymmetries in the topology. If there are asymmetries, group
7220 * having more cpu_power will pickup more load compared to the group having
7221 * less cpu_power.
7222 *
7223 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7224 * the maximum number of tasks a group can handle in the presence of other idle
7225 * or lightly loaded groups in the same sched domain.
7226 */
7227static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7228{
7229 struct sched_domain *child;
7230 struct sched_group *group;
7231
7232 WARN_ON(!sd || !sd->groups);
7233
7234 if (cpu != first_cpu(sd->groups->cpumask))
7235 return;
7236
7237 child = sd->child;
7238
5517d86b
ED
7239 sd->groups->__cpu_power = 0;
7240
89c4710e
SS
7241 /*
7242 * For perf policy, if the groups in child domain share resources
7243 * (for example cores sharing some portions of the cache hierarchy
7244 * or SMT), then set this domain groups cpu_power such that each group
7245 * can handle only one task, when there are other idle groups in the
7246 * same sched domain.
7247 */
7248 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7249 (child->flags &
7250 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7251 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7252 return;
7253 }
7254
89c4710e
SS
7255 /*
7256 * add cpu_power of each child group to this groups cpu_power
7257 */
7258 group = child->groups;
7259 do {
5517d86b 7260 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7261 group = group->next;
7262 } while (group != child->groups);
7263}
7264
7c16ec58
MT
7265/*
7266 * Initializers for schedule domains
7267 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7268 */
7269
a5d8c348
IM
7270#ifdef CONFIG_SCHED_DEBUG
7271# define SD_INIT_NAME(sd, type) sd->name = #type
7272#else
7273# define SD_INIT_NAME(sd, type) do { } while (0)
7274#endif
7275
7c16ec58 7276#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7277
7c16ec58
MT
7278#define SD_INIT_FUNC(type) \
7279static noinline void sd_init_##type(struct sched_domain *sd) \
7280{ \
7281 memset(sd, 0, sizeof(*sd)); \
7282 *sd = SD_##type##_INIT; \
1d3504fc 7283 sd->level = SD_LV_##type; \
a5d8c348 7284 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7285}
7286
7287SD_INIT_FUNC(CPU)
7288#ifdef CONFIG_NUMA
7289 SD_INIT_FUNC(ALLNODES)
7290 SD_INIT_FUNC(NODE)
7291#endif
7292#ifdef CONFIG_SCHED_SMT
7293 SD_INIT_FUNC(SIBLING)
7294#endif
7295#ifdef CONFIG_SCHED_MC
7296 SD_INIT_FUNC(MC)
7297#endif
7298
7299/*
7300 * To minimize stack usage kmalloc room for cpumasks and share the
7301 * space as the usage in build_sched_domains() dictates. Used only
7302 * if the amount of space is significant.
7303 */
7304struct allmasks {
7305 cpumask_t tmpmask; /* make this one first */
7306 union {
7307 cpumask_t nodemask;
7308 cpumask_t this_sibling_map;
7309 cpumask_t this_core_map;
7310 };
7311 cpumask_t send_covered;
7312
7313#ifdef CONFIG_NUMA
7314 cpumask_t domainspan;
7315 cpumask_t covered;
7316 cpumask_t notcovered;
7317#endif
7318};
7319
7320#if NR_CPUS > 128
7321#define SCHED_CPUMASK_ALLOC 1
7322#define SCHED_CPUMASK_FREE(v) kfree(v)
7323#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7324#else
7325#define SCHED_CPUMASK_ALLOC 0
7326#define SCHED_CPUMASK_FREE(v)
7327#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7328#endif
7329
7330#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7331 ((unsigned long)(a) + offsetof(struct allmasks, v))
7332
1d3504fc
HS
7333static int default_relax_domain_level = -1;
7334
7335static int __init setup_relax_domain_level(char *str)
7336{
30e0e178
LZ
7337 unsigned long val;
7338
7339 val = simple_strtoul(str, NULL, 0);
7340 if (val < SD_LV_MAX)
7341 default_relax_domain_level = val;
7342
1d3504fc
HS
7343 return 1;
7344}
7345__setup("relax_domain_level=", setup_relax_domain_level);
7346
7347static void set_domain_attribute(struct sched_domain *sd,
7348 struct sched_domain_attr *attr)
7349{
7350 int request;
7351
7352 if (!attr || attr->relax_domain_level < 0) {
7353 if (default_relax_domain_level < 0)
7354 return;
7355 else
7356 request = default_relax_domain_level;
7357 } else
7358 request = attr->relax_domain_level;
7359 if (request < sd->level) {
7360 /* turn off idle balance on this domain */
7361 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7362 } else {
7363 /* turn on idle balance on this domain */
7364 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7365 }
7366}
7367
1da177e4 7368/*
1a20ff27
DG
7369 * Build sched domains for a given set of cpus and attach the sched domains
7370 * to the individual cpus
1da177e4 7371 */
1d3504fc
HS
7372static int __build_sched_domains(const cpumask_t *cpu_map,
7373 struct sched_domain_attr *attr)
1da177e4
LT
7374{
7375 int i;
57d885fe 7376 struct root_domain *rd;
7c16ec58
MT
7377 SCHED_CPUMASK_DECLARE(allmasks);
7378 cpumask_t *tmpmask;
d1b55138
JH
7379#ifdef CONFIG_NUMA
7380 struct sched_group **sched_group_nodes = NULL;
6711cab4 7381 int sd_allnodes = 0;
d1b55138
JH
7382
7383 /*
7384 * Allocate the per-node list of sched groups
7385 */
076ac2af 7386 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7387 GFP_KERNEL);
d1b55138
JH
7388 if (!sched_group_nodes) {
7389 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7390 return -ENOMEM;
d1b55138 7391 }
d1b55138 7392#endif
1da177e4 7393
dc938520 7394 rd = alloc_rootdomain();
57d885fe
GH
7395 if (!rd) {
7396 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7397#ifdef CONFIG_NUMA
7398 kfree(sched_group_nodes);
7399#endif
57d885fe
GH
7400 return -ENOMEM;
7401 }
7402
7c16ec58
MT
7403#if SCHED_CPUMASK_ALLOC
7404 /* get space for all scratch cpumask variables */
7405 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7406 if (!allmasks) {
7407 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7408 kfree(rd);
7409#ifdef CONFIG_NUMA
7410 kfree(sched_group_nodes);
7411#endif
7412 return -ENOMEM;
7413 }
7414#endif
7415 tmpmask = (cpumask_t *)allmasks;
7416
7417
7418#ifdef CONFIG_NUMA
7419 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7420#endif
7421
1da177e4 7422 /*
1a20ff27 7423 * Set up domains for cpus specified by the cpu_map.
1da177e4 7424 */
363ab6f1 7425 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7426 struct sched_domain *sd = NULL, *p;
7c16ec58 7427 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7428
7c16ec58
MT
7429 *nodemask = node_to_cpumask(cpu_to_node(i));
7430 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7431
7432#ifdef CONFIG_NUMA
dd41f596 7433 if (cpus_weight(*cpu_map) >
7c16ec58 7434 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7435 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7436 SD_INIT(sd, ALLNODES);
1d3504fc 7437 set_domain_attribute(sd, attr);
9c1cfda2 7438 sd->span = *cpu_map;
7c16ec58 7439 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7440 p = sd;
6711cab4 7441 sd_allnodes = 1;
9c1cfda2
JH
7442 } else
7443 p = NULL;
7444
1da177e4 7445 sd = &per_cpu(node_domains, i);
7c16ec58 7446 SD_INIT(sd, NODE);
1d3504fc 7447 set_domain_attribute(sd, attr);
4bdbaad3 7448 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7449 sd->parent = p;
1a848870
SS
7450 if (p)
7451 p->child = sd;
9c1cfda2 7452 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7453#endif
7454
7455 p = sd;
7456 sd = &per_cpu(phys_domains, i);
7c16ec58 7457 SD_INIT(sd, CPU);
1d3504fc 7458 set_domain_attribute(sd, attr);
7c16ec58 7459 sd->span = *nodemask;
1da177e4 7460 sd->parent = p;
1a848870
SS
7461 if (p)
7462 p->child = sd;
7c16ec58 7463 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7464
1e9f28fa
SS
7465#ifdef CONFIG_SCHED_MC
7466 p = sd;
7467 sd = &per_cpu(core_domains, i);
7c16ec58 7468 SD_INIT(sd, MC);
1d3504fc 7469 set_domain_attribute(sd, attr);
1e9f28fa
SS
7470 sd->span = cpu_coregroup_map(i);
7471 cpus_and(sd->span, sd->span, *cpu_map);
7472 sd->parent = p;
1a848870 7473 p->child = sd;
7c16ec58 7474 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7475#endif
7476
1da177e4
LT
7477#ifdef CONFIG_SCHED_SMT
7478 p = sd;
7479 sd = &per_cpu(cpu_domains, i);
7c16ec58 7480 SD_INIT(sd, SIBLING);
1d3504fc 7481 set_domain_attribute(sd, attr);
d5a7430d 7482 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7483 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7484 sd->parent = p;
1a848870 7485 p->child = sd;
7c16ec58 7486 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7487#endif
7488 }
7489
7490#ifdef CONFIG_SCHED_SMT
7491 /* Set up CPU (sibling) groups */
363ab6f1 7492 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7493 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7494 SCHED_CPUMASK_VAR(send_covered, allmasks);
7495
7496 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7497 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7498 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7499 continue;
7500
dd41f596 7501 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7502 &cpu_to_cpu_group,
7503 send_covered, tmpmask);
1da177e4
LT
7504 }
7505#endif
7506
1e9f28fa
SS
7507#ifdef CONFIG_SCHED_MC
7508 /* Set up multi-core groups */
363ab6f1 7509 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7510 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7511 SCHED_CPUMASK_VAR(send_covered, allmasks);
7512
7513 *this_core_map = cpu_coregroup_map(i);
7514 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7515 if (i != first_cpu(*this_core_map))
1e9f28fa 7516 continue;
7c16ec58 7517
dd41f596 7518 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7519 &cpu_to_core_group,
7520 send_covered, tmpmask);
1e9f28fa
SS
7521 }
7522#endif
7523
1da177e4 7524 /* Set up physical groups */
076ac2af 7525 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7526 SCHED_CPUMASK_VAR(nodemask, allmasks);
7527 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7528
7c16ec58
MT
7529 *nodemask = node_to_cpumask(i);
7530 cpus_and(*nodemask, *nodemask, *cpu_map);
7531 if (cpus_empty(*nodemask))
1da177e4
LT
7532 continue;
7533
7c16ec58
MT
7534 init_sched_build_groups(nodemask, cpu_map,
7535 &cpu_to_phys_group,
7536 send_covered, tmpmask);
1da177e4
LT
7537 }
7538
7539#ifdef CONFIG_NUMA
7540 /* Set up node groups */
7c16ec58
MT
7541 if (sd_allnodes) {
7542 SCHED_CPUMASK_VAR(send_covered, allmasks);
7543
7544 init_sched_build_groups(cpu_map, cpu_map,
7545 &cpu_to_allnodes_group,
7546 send_covered, tmpmask);
7547 }
9c1cfda2 7548
076ac2af 7549 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7550 /* Set up node groups */
7551 struct sched_group *sg, *prev;
7c16ec58
MT
7552 SCHED_CPUMASK_VAR(nodemask, allmasks);
7553 SCHED_CPUMASK_VAR(domainspan, allmasks);
7554 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7555 int j;
7556
7c16ec58
MT
7557 *nodemask = node_to_cpumask(i);
7558 cpus_clear(*covered);
7559
7560 cpus_and(*nodemask, *nodemask, *cpu_map);
7561 if (cpus_empty(*nodemask)) {
d1b55138 7562 sched_group_nodes[i] = NULL;
9c1cfda2 7563 continue;
d1b55138 7564 }
9c1cfda2 7565
4bdbaad3 7566 sched_domain_node_span(i, domainspan);
7c16ec58 7567 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7568
15f0b676 7569 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7570 if (!sg) {
7571 printk(KERN_WARNING "Can not alloc domain group for "
7572 "node %d\n", i);
7573 goto error;
7574 }
9c1cfda2 7575 sched_group_nodes[i] = sg;
363ab6f1 7576 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7577 struct sched_domain *sd;
9761eea8 7578
9c1cfda2
JH
7579 sd = &per_cpu(node_domains, j);
7580 sd->groups = sg;
9c1cfda2 7581 }
5517d86b 7582 sg->__cpu_power = 0;
7c16ec58 7583 sg->cpumask = *nodemask;
51888ca2 7584 sg->next = sg;
7c16ec58 7585 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7586 prev = sg;
7587
076ac2af 7588 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7589 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7590 int n = (i + j) % nr_node_ids;
c5f59f08 7591 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7592
7c16ec58
MT
7593 cpus_complement(*notcovered, *covered);
7594 cpus_and(*tmpmask, *notcovered, *cpu_map);
7595 cpus_and(*tmpmask, *tmpmask, *domainspan);
7596 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7597 break;
7598
7c16ec58
MT
7599 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7600 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7601 continue;
7602
15f0b676
SV
7603 sg = kmalloc_node(sizeof(struct sched_group),
7604 GFP_KERNEL, i);
9c1cfda2
JH
7605 if (!sg) {
7606 printk(KERN_WARNING
7607 "Can not alloc domain group for node %d\n", j);
51888ca2 7608 goto error;
9c1cfda2 7609 }
5517d86b 7610 sg->__cpu_power = 0;
7c16ec58 7611 sg->cpumask = *tmpmask;
51888ca2 7612 sg->next = prev->next;
7c16ec58 7613 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7614 prev->next = sg;
7615 prev = sg;
7616 }
9c1cfda2 7617 }
1da177e4
LT
7618#endif
7619
7620 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7621#ifdef CONFIG_SCHED_SMT
363ab6f1 7622 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7623 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7624
89c4710e 7625 init_sched_groups_power(i, sd);
5c45bf27 7626 }
1da177e4 7627#endif
1e9f28fa 7628#ifdef CONFIG_SCHED_MC
363ab6f1 7629 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7630 struct sched_domain *sd = &per_cpu(core_domains, i);
7631
89c4710e 7632 init_sched_groups_power(i, sd);
5c45bf27
SS
7633 }
7634#endif
1e9f28fa 7635
363ab6f1 7636 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7637 struct sched_domain *sd = &per_cpu(phys_domains, i);
7638
89c4710e 7639 init_sched_groups_power(i, sd);
1da177e4
LT
7640 }
7641
9c1cfda2 7642#ifdef CONFIG_NUMA
076ac2af 7643 for (i = 0; i < nr_node_ids; i++)
08069033 7644 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7645
6711cab4
SS
7646 if (sd_allnodes) {
7647 struct sched_group *sg;
f712c0c7 7648
7c16ec58
MT
7649 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7650 tmpmask);
f712c0c7
SS
7651 init_numa_sched_groups_power(sg);
7652 }
9c1cfda2
JH
7653#endif
7654
1da177e4 7655 /* Attach the domains */
363ab6f1 7656 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7657 struct sched_domain *sd;
7658#ifdef CONFIG_SCHED_SMT
7659 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7660#elif defined(CONFIG_SCHED_MC)
7661 sd = &per_cpu(core_domains, i);
1da177e4
LT
7662#else
7663 sd = &per_cpu(phys_domains, i);
7664#endif
57d885fe 7665 cpu_attach_domain(sd, rd, i);
1da177e4 7666 }
51888ca2 7667
7c16ec58 7668 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7669 return 0;
7670
a616058b 7671#ifdef CONFIG_NUMA
51888ca2 7672error:
7c16ec58
MT
7673 free_sched_groups(cpu_map, tmpmask);
7674 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7675 return -ENOMEM;
a616058b 7676#endif
1da177e4 7677}
029190c5 7678
1d3504fc
HS
7679static int build_sched_domains(const cpumask_t *cpu_map)
7680{
7681 return __build_sched_domains(cpu_map, NULL);
7682}
7683
029190c5
PJ
7684static cpumask_t *doms_cur; /* current sched domains */
7685static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7686static struct sched_domain_attr *dattr_cur;
7687 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7688
7689/*
7690 * Special case: If a kmalloc of a doms_cur partition (array of
7691 * cpumask_t) fails, then fallback to a single sched domain,
7692 * as determined by the single cpumask_t fallback_doms.
7693 */
7694static cpumask_t fallback_doms;
7695
22e52b07
HC
7696void __attribute__((weak)) arch_update_cpu_topology(void)
7697{
7698}
7699
1a20ff27 7700/*
41a2d6cf 7701 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7702 * For now this just excludes isolated cpus, but could be used to
7703 * exclude other special cases in the future.
1a20ff27 7704 */
51888ca2 7705static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7706{
7378547f
MM
7707 int err;
7708
22e52b07 7709 arch_update_cpu_topology();
029190c5
PJ
7710 ndoms_cur = 1;
7711 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7712 if (!doms_cur)
7713 doms_cur = &fallback_doms;
7714 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7715 dattr_cur = NULL;
7378547f 7716 err = build_sched_domains(doms_cur);
6382bc90 7717 register_sched_domain_sysctl();
7378547f
MM
7718
7719 return err;
1a20ff27
DG
7720}
7721
7c16ec58
MT
7722static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7723 cpumask_t *tmpmask)
1da177e4 7724{
7c16ec58 7725 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7726}
1da177e4 7727
1a20ff27
DG
7728/*
7729 * Detach sched domains from a group of cpus specified in cpu_map
7730 * These cpus will now be attached to the NULL domain
7731 */
858119e1 7732static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7733{
7c16ec58 7734 cpumask_t tmpmask;
1a20ff27
DG
7735 int i;
7736
6382bc90
MM
7737 unregister_sched_domain_sysctl();
7738
363ab6f1 7739 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7740 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7741 synchronize_sched();
7c16ec58 7742 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7743}
7744
1d3504fc
HS
7745/* handle null as "default" */
7746static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7747 struct sched_domain_attr *new, int idx_new)
7748{
7749 struct sched_domain_attr tmp;
7750
7751 /* fast path */
7752 if (!new && !cur)
7753 return 1;
7754
7755 tmp = SD_ATTR_INIT;
7756 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7757 new ? (new + idx_new) : &tmp,
7758 sizeof(struct sched_domain_attr));
7759}
7760
029190c5
PJ
7761/*
7762 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7763 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7764 * doms_new[] to the current sched domain partitioning, doms_cur[].
7765 * It destroys each deleted domain and builds each new domain.
7766 *
7767 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7768 * The masks don't intersect (don't overlap.) We should setup one
7769 * sched domain for each mask. CPUs not in any of the cpumasks will
7770 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7771 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7772 * it as it is.
7773 *
41a2d6cf
IM
7774 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7775 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7776 * failed the kmalloc call, then it can pass in doms_new == NULL,
7777 * and partition_sched_domains() will fallback to the single partition
e761b772 7778 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7779 *
dfb512ec
MK
7780 * If doms_new==NULL it will be replaced with cpu_online_map.
7781 * ndoms_new==0 is a special case for destroying existing domains.
7782 * It will not create the default domain.
7783 *
029190c5
PJ
7784 * Call with hotplug lock held
7785 */
1d3504fc
HS
7786void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7787 struct sched_domain_attr *dattr_new)
029190c5 7788{
dfb512ec 7789 int i, j, n;
029190c5 7790
712555ee 7791 mutex_lock(&sched_domains_mutex);
a1835615 7792
7378547f
MM
7793 /* always unregister in case we don't destroy any domains */
7794 unregister_sched_domain_sysctl();
7795
dfb512ec 7796 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7797
7798 /* Destroy deleted domains */
7799 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7800 for (j = 0; j < n; j++) {
1d3504fc
HS
7801 if (cpus_equal(doms_cur[i], doms_new[j])
7802 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7803 goto match1;
7804 }
7805 /* no match - a current sched domain not in new doms_new[] */
7806 detach_destroy_domains(doms_cur + i);
7807match1:
7808 ;
7809 }
7810
e761b772
MK
7811 if (doms_new == NULL) {
7812 ndoms_cur = 0;
e761b772
MK
7813 doms_new = &fallback_doms;
7814 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7815 dattr_new = NULL;
7816 }
7817
029190c5
PJ
7818 /* Build new domains */
7819 for (i = 0; i < ndoms_new; i++) {
7820 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7821 if (cpus_equal(doms_new[i], doms_cur[j])
7822 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7823 goto match2;
7824 }
7825 /* no match - add a new doms_new */
1d3504fc
HS
7826 __build_sched_domains(doms_new + i,
7827 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7828match2:
7829 ;
7830 }
7831
7832 /* Remember the new sched domains */
7833 if (doms_cur != &fallback_doms)
7834 kfree(doms_cur);
1d3504fc 7835 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7836 doms_cur = doms_new;
1d3504fc 7837 dattr_cur = dattr_new;
029190c5 7838 ndoms_cur = ndoms_new;
7378547f
MM
7839
7840 register_sched_domain_sysctl();
a1835615 7841
712555ee 7842 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7843}
7844
5c45bf27 7845#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7846int arch_reinit_sched_domains(void)
5c45bf27 7847{
95402b38 7848 get_online_cpus();
dfb512ec
MK
7849
7850 /* Destroy domains first to force the rebuild */
7851 partition_sched_domains(0, NULL, NULL);
7852
e761b772 7853 rebuild_sched_domains();
95402b38 7854 put_online_cpus();
dfb512ec 7855
e761b772 7856 return 0;
5c45bf27
SS
7857}
7858
7859static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7860{
7861 int ret;
7862
7863 if (buf[0] != '0' && buf[0] != '1')
7864 return -EINVAL;
7865
7866 if (smt)
7867 sched_smt_power_savings = (buf[0] == '1');
7868 else
7869 sched_mc_power_savings = (buf[0] == '1');
7870
7871 ret = arch_reinit_sched_domains();
7872
7873 return ret ? ret : count;
7874}
7875
5c45bf27 7876#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7877static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7878 char *page)
5c45bf27
SS
7879{
7880 return sprintf(page, "%u\n", sched_mc_power_savings);
7881}
f718cd4a 7882static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7883 const char *buf, size_t count)
5c45bf27
SS
7884{
7885 return sched_power_savings_store(buf, count, 0);
7886}
f718cd4a
AK
7887static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7888 sched_mc_power_savings_show,
7889 sched_mc_power_savings_store);
5c45bf27
SS
7890#endif
7891
7892#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7893static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7894 char *page)
5c45bf27
SS
7895{
7896 return sprintf(page, "%u\n", sched_smt_power_savings);
7897}
f718cd4a 7898static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7899 const char *buf, size_t count)
5c45bf27
SS
7900{
7901 return sched_power_savings_store(buf, count, 1);
7902}
f718cd4a
AK
7903static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7904 sched_smt_power_savings_show,
6707de00
AB
7905 sched_smt_power_savings_store);
7906#endif
7907
7908int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7909{
7910 int err = 0;
7911
7912#ifdef CONFIG_SCHED_SMT
7913 if (smt_capable())
7914 err = sysfs_create_file(&cls->kset.kobj,
7915 &attr_sched_smt_power_savings.attr);
7916#endif
7917#ifdef CONFIG_SCHED_MC
7918 if (!err && mc_capable())
7919 err = sysfs_create_file(&cls->kset.kobj,
7920 &attr_sched_mc_power_savings.attr);
7921#endif
7922 return err;
7923}
6d6bc0ad 7924#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7925
e761b772 7926#ifndef CONFIG_CPUSETS
1da177e4 7927/*
e761b772
MK
7928 * Add online and remove offline CPUs from the scheduler domains.
7929 * When cpusets are enabled they take over this function.
1da177e4
LT
7930 */
7931static int update_sched_domains(struct notifier_block *nfb,
7932 unsigned long action, void *hcpu)
e761b772
MK
7933{
7934 switch (action) {
7935 case CPU_ONLINE:
7936 case CPU_ONLINE_FROZEN:
7937 case CPU_DEAD:
7938 case CPU_DEAD_FROZEN:
dfb512ec 7939 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7940 return NOTIFY_OK;
7941
7942 default:
7943 return NOTIFY_DONE;
7944 }
7945}
7946#endif
7947
7948static int update_runtime(struct notifier_block *nfb,
7949 unsigned long action, void *hcpu)
1da177e4 7950{
7def2be1
PZ
7951 int cpu = (int)(long)hcpu;
7952
1da177e4 7953 switch (action) {
1da177e4 7954 case CPU_DOWN_PREPARE:
8bb78442 7955 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7956 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7957 return NOTIFY_OK;
7958
1da177e4 7959 case CPU_DOWN_FAILED:
8bb78442 7960 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7961 case CPU_ONLINE:
8bb78442 7962 case CPU_ONLINE_FROZEN:
7def2be1 7963 enable_runtime(cpu_rq(cpu));
e761b772
MK
7964 return NOTIFY_OK;
7965
1da177e4
LT
7966 default:
7967 return NOTIFY_DONE;
7968 }
1da177e4 7969}
1da177e4
LT
7970
7971void __init sched_init_smp(void)
7972{
5c1e1767
NP
7973 cpumask_t non_isolated_cpus;
7974
434d53b0
MT
7975#if defined(CONFIG_NUMA)
7976 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7977 GFP_KERNEL);
7978 BUG_ON(sched_group_nodes_bycpu == NULL);
7979#endif
95402b38 7980 get_online_cpus();
712555ee 7981 mutex_lock(&sched_domains_mutex);
1a20ff27 7982 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7983 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7984 if (cpus_empty(non_isolated_cpus))
7985 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7986 mutex_unlock(&sched_domains_mutex);
95402b38 7987 put_online_cpus();
e761b772
MK
7988
7989#ifndef CONFIG_CPUSETS
1da177e4
LT
7990 /* XXX: Theoretical race here - CPU may be hotplugged now */
7991 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7992#endif
7993
7994 /* RT runtime code needs to handle some hotplug events */
7995 hotcpu_notifier(update_runtime, 0);
7996
b328ca18 7997 init_hrtick();
5c1e1767
NP
7998
7999 /* Move init over to a non-isolated CPU */
7c16ec58 8000 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8001 BUG();
19978ca6 8002 sched_init_granularity();
1da177e4
LT
8003}
8004#else
8005void __init sched_init_smp(void)
8006{
19978ca6 8007 sched_init_granularity();
1da177e4
LT
8008}
8009#endif /* CONFIG_SMP */
8010
8011int in_sched_functions(unsigned long addr)
8012{
1da177e4
LT
8013 return in_lock_functions(addr) ||
8014 (addr >= (unsigned long)__sched_text_start
8015 && addr < (unsigned long)__sched_text_end);
8016}
8017
a9957449 8018static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8019{
8020 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8021 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8022#ifdef CONFIG_FAIR_GROUP_SCHED
8023 cfs_rq->rq = rq;
8024#endif
67e9fb2a 8025 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8026}
8027
fa85ae24
PZ
8028static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8029{
8030 struct rt_prio_array *array;
8031 int i;
8032
8033 array = &rt_rq->active;
8034 for (i = 0; i < MAX_RT_PRIO; i++) {
8035 INIT_LIST_HEAD(array->queue + i);
8036 __clear_bit(i, array->bitmap);
8037 }
8038 /* delimiter for bitsearch: */
8039 __set_bit(MAX_RT_PRIO, array->bitmap);
8040
052f1dc7 8041#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8042 rt_rq->highest_prio = MAX_RT_PRIO;
8043#endif
fa85ae24
PZ
8044#ifdef CONFIG_SMP
8045 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8046 rt_rq->overloaded = 0;
8047#endif
8048
8049 rt_rq->rt_time = 0;
8050 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8051 rt_rq->rt_runtime = 0;
8052 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8053
052f1dc7 8054#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8055 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8056 rt_rq->rq = rq;
8057#endif
fa85ae24
PZ
8058}
8059
6f505b16 8060#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8061static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8062 struct sched_entity *se, int cpu, int add,
8063 struct sched_entity *parent)
6f505b16 8064{
ec7dc8ac 8065 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8066 tg->cfs_rq[cpu] = cfs_rq;
8067 init_cfs_rq(cfs_rq, rq);
8068 cfs_rq->tg = tg;
8069 if (add)
8070 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8071
8072 tg->se[cpu] = se;
354d60c2
DG
8073 /* se could be NULL for init_task_group */
8074 if (!se)
8075 return;
8076
ec7dc8ac
DG
8077 if (!parent)
8078 se->cfs_rq = &rq->cfs;
8079 else
8080 se->cfs_rq = parent->my_q;
8081
6f505b16
PZ
8082 se->my_q = cfs_rq;
8083 se->load.weight = tg->shares;
e05510d0 8084 se->load.inv_weight = 0;
ec7dc8ac 8085 se->parent = parent;
6f505b16 8086}
052f1dc7 8087#endif
6f505b16 8088
052f1dc7 8089#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8090static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8091 struct sched_rt_entity *rt_se, int cpu, int add,
8092 struct sched_rt_entity *parent)
6f505b16 8093{
ec7dc8ac
DG
8094 struct rq *rq = cpu_rq(cpu);
8095
6f505b16
PZ
8096 tg->rt_rq[cpu] = rt_rq;
8097 init_rt_rq(rt_rq, rq);
8098 rt_rq->tg = tg;
8099 rt_rq->rt_se = rt_se;
ac086bc2 8100 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8101 if (add)
8102 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8103
8104 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8105 if (!rt_se)
8106 return;
8107
ec7dc8ac
DG
8108 if (!parent)
8109 rt_se->rt_rq = &rq->rt;
8110 else
8111 rt_se->rt_rq = parent->my_q;
8112
6f505b16 8113 rt_se->my_q = rt_rq;
ec7dc8ac 8114 rt_se->parent = parent;
6f505b16
PZ
8115 INIT_LIST_HEAD(&rt_se->run_list);
8116}
8117#endif
8118
1da177e4
LT
8119void __init sched_init(void)
8120{
dd41f596 8121 int i, j;
434d53b0
MT
8122 unsigned long alloc_size = 0, ptr;
8123
8124#ifdef CONFIG_FAIR_GROUP_SCHED
8125 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8126#endif
8127#ifdef CONFIG_RT_GROUP_SCHED
8128 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8129#endif
8130#ifdef CONFIG_USER_SCHED
8131 alloc_size *= 2;
434d53b0
MT
8132#endif
8133 /*
8134 * As sched_init() is called before page_alloc is setup,
8135 * we use alloc_bootmem().
8136 */
8137 if (alloc_size) {
5a9d3225 8138 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8139
8140#ifdef CONFIG_FAIR_GROUP_SCHED
8141 init_task_group.se = (struct sched_entity **)ptr;
8142 ptr += nr_cpu_ids * sizeof(void **);
8143
8144 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8145 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8146
8147#ifdef CONFIG_USER_SCHED
8148 root_task_group.se = (struct sched_entity **)ptr;
8149 ptr += nr_cpu_ids * sizeof(void **);
8150
8151 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8152 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8153#endif /* CONFIG_USER_SCHED */
8154#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8155#ifdef CONFIG_RT_GROUP_SCHED
8156 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8157 ptr += nr_cpu_ids * sizeof(void **);
8158
8159 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8160 ptr += nr_cpu_ids * sizeof(void **);
8161
8162#ifdef CONFIG_USER_SCHED
8163 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8164 ptr += nr_cpu_ids * sizeof(void **);
8165
8166 root_task_group.rt_rq = (struct rt_rq **)ptr;
8167 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8168#endif /* CONFIG_USER_SCHED */
8169#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8170 }
dd41f596 8171
57d885fe
GH
8172#ifdef CONFIG_SMP
8173 init_defrootdomain();
8174#endif
8175
d0b27fa7
PZ
8176 init_rt_bandwidth(&def_rt_bandwidth,
8177 global_rt_period(), global_rt_runtime());
8178
8179#ifdef CONFIG_RT_GROUP_SCHED
8180 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8181 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8182#ifdef CONFIG_USER_SCHED
8183 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8184 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8185#endif /* CONFIG_USER_SCHED */
8186#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8187
052f1dc7 8188#ifdef CONFIG_GROUP_SCHED
6f505b16 8189 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8190 INIT_LIST_HEAD(&init_task_group.children);
8191
8192#ifdef CONFIG_USER_SCHED
8193 INIT_LIST_HEAD(&root_task_group.children);
8194 init_task_group.parent = &root_task_group;
8195 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8196#endif /* CONFIG_USER_SCHED */
8197#endif /* CONFIG_GROUP_SCHED */
6f505b16 8198
0a945022 8199 for_each_possible_cpu(i) {
70b97a7f 8200 struct rq *rq;
1da177e4
LT
8201
8202 rq = cpu_rq(i);
8203 spin_lock_init(&rq->lock);
7897986b 8204 rq->nr_running = 0;
dd41f596 8205 init_cfs_rq(&rq->cfs, rq);
6f505b16 8206 init_rt_rq(&rq->rt, rq);
dd41f596 8207#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8208 init_task_group.shares = init_task_group_load;
6f505b16 8209 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8210#ifdef CONFIG_CGROUP_SCHED
8211 /*
8212 * How much cpu bandwidth does init_task_group get?
8213 *
8214 * In case of task-groups formed thr' the cgroup filesystem, it
8215 * gets 100% of the cpu resources in the system. This overall
8216 * system cpu resource is divided among the tasks of
8217 * init_task_group and its child task-groups in a fair manner,
8218 * based on each entity's (task or task-group's) weight
8219 * (se->load.weight).
8220 *
8221 * In other words, if init_task_group has 10 tasks of weight
8222 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8223 * then A0's share of the cpu resource is:
8224 *
8225 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8226 *
8227 * We achieve this by letting init_task_group's tasks sit
8228 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8229 */
ec7dc8ac 8230 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8231#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8232 root_task_group.shares = NICE_0_LOAD;
8233 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8234 /*
8235 * In case of task-groups formed thr' the user id of tasks,
8236 * init_task_group represents tasks belonging to root user.
8237 * Hence it forms a sibling of all subsequent groups formed.
8238 * In this case, init_task_group gets only a fraction of overall
8239 * system cpu resource, based on the weight assigned to root
8240 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8241 * by letting tasks of init_task_group sit in a separate cfs_rq
8242 * (init_cfs_rq) and having one entity represent this group of
8243 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8244 */
ec7dc8ac 8245 init_tg_cfs_entry(&init_task_group,
6f505b16 8246 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8247 &per_cpu(init_sched_entity, i), i, 1,
8248 root_task_group.se[i]);
6f505b16 8249
052f1dc7 8250#endif
354d60c2
DG
8251#endif /* CONFIG_FAIR_GROUP_SCHED */
8252
8253 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8254#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8255 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8256#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8257 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8258#elif defined CONFIG_USER_SCHED
eff766a6 8259 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8260 init_tg_rt_entry(&init_task_group,
6f505b16 8261 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8262 &per_cpu(init_sched_rt_entity, i), i, 1,
8263 root_task_group.rt_se[i]);
354d60c2 8264#endif
dd41f596 8265#endif
1da177e4 8266
dd41f596
IM
8267 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8268 rq->cpu_load[j] = 0;
1da177e4 8269#ifdef CONFIG_SMP
41c7ce9a 8270 rq->sd = NULL;
57d885fe 8271 rq->rd = NULL;
1da177e4 8272 rq->active_balance = 0;
dd41f596 8273 rq->next_balance = jiffies;
1da177e4 8274 rq->push_cpu = 0;
0a2966b4 8275 rq->cpu = i;
1f11eb6a 8276 rq->online = 0;
1da177e4
LT
8277 rq->migration_thread = NULL;
8278 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8279 rq_attach_root(rq, &def_root_domain);
1da177e4 8280#endif
8f4d37ec 8281 init_rq_hrtick(rq);
1da177e4 8282 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8283 }
8284
2dd73a4f 8285 set_load_weight(&init_task);
b50f60ce 8286
e107be36
AK
8287#ifdef CONFIG_PREEMPT_NOTIFIERS
8288 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8289#endif
8290
c9819f45 8291#ifdef CONFIG_SMP
962cf36c 8292 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8293#endif
8294
b50f60ce
HC
8295#ifdef CONFIG_RT_MUTEXES
8296 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8297#endif
8298
1da177e4
LT
8299 /*
8300 * The boot idle thread does lazy MMU switching as well:
8301 */
8302 atomic_inc(&init_mm.mm_count);
8303 enter_lazy_tlb(&init_mm, current);
8304
8305 /*
8306 * Make us the idle thread. Technically, schedule() should not be
8307 * called from this thread, however somewhere below it might be,
8308 * but because we are the idle thread, we just pick up running again
8309 * when this runqueue becomes "idle".
8310 */
8311 init_idle(current, smp_processor_id());
dd41f596
IM
8312 /*
8313 * During early bootup we pretend to be a normal task:
8314 */
8315 current->sched_class = &fair_sched_class;
6892b75e
IM
8316
8317 scheduler_running = 1;
1da177e4
LT
8318}
8319
8320#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8321void __might_sleep(char *file, int line)
8322{
48f24c4d 8323#ifdef in_atomic
1da177e4
LT
8324 static unsigned long prev_jiffy; /* ratelimiting */
8325
aef745fc
IM
8326 if ((!in_atomic() && !irqs_disabled()) ||
8327 system_state != SYSTEM_RUNNING || oops_in_progress)
8328 return;
8329 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8330 return;
8331 prev_jiffy = jiffies;
8332
8333 printk(KERN_ERR
8334 "BUG: sleeping function called from invalid context at %s:%d\n",
8335 file, line);
8336 printk(KERN_ERR
8337 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8338 in_atomic(), irqs_disabled(),
8339 current->pid, current->comm);
8340
8341 debug_show_held_locks(current);
8342 if (irqs_disabled())
8343 print_irqtrace_events(current);
8344 dump_stack();
1da177e4
LT
8345#endif
8346}
8347EXPORT_SYMBOL(__might_sleep);
8348#endif
8349
8350#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8351static void normalize_task(struct rq *rq, struct task_struct *p)
8352{
8353 int on_rq;
3e51f33f 8354
3a5e4dc1
AK
8355 update_rq_clock(rq);
8356 on_rq = p->se.on_rq;
8357 if (on_rq)
8358 deactivate_task(rq, p, 0);
8359 __setscheduler(rq, p, SCHED_NORMAL, 0);
8360 if (on_rq) {
8361 activate_task(rq, p, 0);
8362 resched_task(rq->curr);
8363 }
8364}
8365
1da177e4
LT
8366void normalize_rt_tasks(void)
8367{
a0f98a1c 8368 struct task_struct *g, *p;
1da177e4 8369 unsigned long flags;
70b97a7f 8370 struct rq *rq;
1da177e4 8371
4cf5d77a 8372 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8373 do_each_thread(g, p) {
178be793
IM
8374 /*
8375 * Only normalize user tasks:
8376 */
8377 if (!p->mm)
8378 continue;
8379
6cfb0d5d 8380 p->se.exec_start = 0;
6cfb0d5d 8381#ifdef CONFIG_SCHEDSTATS
dd41f596 8382 p->se.wait_start = 0;
dd41f596 8383 p->se.sleep_start = 0;
dd41f596 8384 p->se.block_start = 0;
6cfb0d5d 8385#endif
dd41f596
IM
8386
8387 if (!rt_task(p)) {
8388 /*
8389 * Renice negative nice level userspace
8390 * tasks back to 0:
8391 */
8392 if (TASK_NICE(p) < 0 && p->mm)
8393 set_user_nice(p, 0);
1da177e4 8394 continue;
dd41f596 8395 }
1da177e4 8396
4cf5d77a 8397 spin_lock(&p->pi_lock);
b29739f9 8398 rq = __task_rq_lock(p);
1da177e4 8399
178be793 8400 normalize_task(rq, p);
3a5e4dc1 8401
b29739f9 8402 __task_rq_unlock(rq);
4cf5d77a 8403 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8404 } while_each_thread(g, p);
8405
4cf5d77a 8406 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8407}
8408
8409#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8410
8411#ifdef CONFIG_IA64
8412/*
8413 * These functions are only useful for the IA64 MCA handling.
8414 *
8415 * They can only be called when the whole system has been
8416 * stopped - every CPU needs to be quiescent, and no scheduling
8417 * activity can take place. Using them for anything else would
8418 * be a serious bug, and as a result, they aren't even visible
8419 * under any other configuration.
8420 */
8421
8422/**
8423 * curr_task - return the current task for a given cpu.
8424 * @cpu: the processor in question.
8425 *
8426 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8427 */
36c8b586 8428struct task_struct *curr_task(int cpu)
1df5c10a
LT
8429{
8430 return cpu_curr(cpu);
8431}
8432
8433/**
8434 * set_curr_task - set the current task for a given cpu.
8435 * @cpu: the processor in question.
8436 * @p: the task pointer to set.
8437 *
8438 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8439 * are serviced on a separate stack. It allows the architecture to switch the
8440 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8441 * must be called with all CPU's synchronized, and interrupts disabled, the
8442 * and caller must save the original value of the current task (see
8443 * curr_task() above) and restore that value before reenabling interrupts and
8444 * re-starting the system.
8445 *
8446 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8447 */
36c8b586 8448void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8449{
8450 cpu_curr(cpu) = p;
8451}
8452
8453#endif
29f59db3 8454
bccbe08a
PZ
8455#ifdef CONFIG_FAIR_GROUP_SCHED
8456static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8457{
8458 int i;
8459
8460 for_each_possible_cpu(i) {
8461 if (tg->cfs_rq)
8462 kfree(tg->cfs_rq[i]);
8463 if (tg->se)
8464 kfree(tg->se[i]);
6f505b16
PZ
8465 }
8466
8467 kfree(tg->cfs_rq);
8468 kfree(tg->se);
6f505b16
PZ
8469}
8470
ec7dc8ac
DG
8471static
8472int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8473{
29f59db3 8474 struct cfs_rq *cfs_rq;
ec7dc8ac 8475 struct sched_entity *se, *parent_se;
9b5b7751 8476 struct rq *rq;
29f59db3
SV
8477 int i;
8478
434d53b0 8479 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8480 if (!tg->cfs_rq)
8481 goto err;
434d53b0 8482 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8483 if (!tg->se)
8484 goto err;
052f1dc7
PZ
8485
8486 tg->shares = NICE_0_LOAD;
29f59db3
SV
8487
8488 for_each_possible_cpu(i) {
9b5b7751 8489 rq = cpu_rq(i);
29f59db3 8490
6f505b16
PZ
8491 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8492 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8493 if (!cfs_rq)
8494 goto err;
8495
6f505b16
PZ
8496 se = kmalloc_node(sizeof(struct sched_entity),
8497 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8498 if (!se)
8499 goto err;
8500
ec7dc8ac
DG
8501 parent_se = parent ? parent->se[i] : NULL;
8502 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8503 }
8504
8505 return 1;
8506
8507 err:
8508 return 0;
8509}
8510
8511static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8512{
8513 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8514 &cpu_rq(cpu)->leaf_cfs_rq_list);
8515}
8516
8517static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8518{
8519 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8520}
6d6bc0ad 8521#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8522static inline void free_fair_sched_group(struct task_group *tg)
8523{
8524}
8525
ec7dc8ac
DG
8526static inline
8527int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8528{
8529 return 1;
8530}
8531
8532static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8533{
8534}
8535
8536static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8537{
8538}
6d6bc0ad 8539#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8540
8541#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8542static void free_rt_sched_group(struct task_group *tg)
8543{
8544 int i;
8545
d0b27fa7
PZ
8546 destroy_rt_bandwidth(&tg->rt_bandwidth);
8547
bccbe08a
PZ
8548 for_each_possible_cpu(i) {
8549 if (tg->rt_rq)
8550 kfree(tg->rt_rq[i]);
8551 if (tg->rt_se)
8552 kfree(tg->rt_se[i]);
8553 }
8554
8555 kfree(tg->rt_rq);
8556 kfree(tg->rt_se);
8557}
8558
ec7dc8ac
DG
8559static
8560int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8561{
8562 struct rt_rq *rt_rq;
ec7dc8ac 8563 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8564 struct rq *rq;
8565 int i;
8566
434d53b0 8567 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8568 if (!tg->rt_rq)
8569 goto err;
434d53b0 8570 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8571 if (!tg->rt_se)
8572 goto err;
8573
d0b27fa7
PZ
8574 init_rt_bandwidth(&tg->rt_bandwidth,
8575 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8576
8577 for_each_possible_cpu(i) {
8578 rq = cpu_rq(i);
8579
6f505b16
PZ
8580 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8581 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8582 if (!rt_rq)
8583 goto err;
29f59db3 8584
6f505b16
PZ
8585 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8586 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8587 if (!rt_se)
8588 goto err;
29f59db3 8589
ec7dc8ac
DG
8590 parent_se = parent ? parent->rt_se[i] : NULL;
8591 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8592 }
8593
bccbe08a
PZ
8594 return 1;
8595
8596 err:
8597 return 0;
8598}
8599
8600static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8601{
8602 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8603 &cpu_rq(cpu)->leaf_rt_rq_list);
8604}
8605
8606static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8607{
8608 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8609}
6d6bc0ad 8610#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8611static inline void free_rt_sched_group(struct task_group *tg)
8612{
8613}
8614
ec7dc8ac
DG
8615static inline
8616int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8617{
8618 return 1;
8619}
8620
8621static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8622{
8623}
8624
8625static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8626{
8627}
6d6bc0ad 8628#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8629
d0b27fa7 8630#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8631static void free_sched_group(struct task_group *tg)
8632{
8633 free_fair_sched_group(tg);
8634 free_rt_sched_group(tg);
8635 kfree(tg);
8636}
8637
8638/* allocate runqueue etc for a new task group */
ec7dc8ac 8639struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8640{
8641 struct task_group *tg;
8642 unsigned long flags;
8643 int i;
8644
8645 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8646 if (!tg)
8647 return ERR_PTR(-ENOMEM);
8648
ec7dc8ac 8649 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8650 goto err;
8651
ec7dc8ac 8652 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8653 goto err;
8654
8ed36996 8655 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8656 for_each_possible_cpu(i) {
bccbe08a
PZ
8657 register_fair_sched_group(tg, i);
8658 register_rt_sched_group(tg, i);
9b5b7751 8659 }
6f505b16 8660 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8661
8662 WARN_ON(!parent); /* root should already exist */
8663
8664 tg->parent = parent;
f473aa5e 8665 INIT_LIST_HEAD(&tg->children);
09f2724a 8666 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8667 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8668
9b5b7751 8669 return tg;
29f59db3
SV
8670
8671err:
6f505b16 8672 free_sched_group(tg);
29f59db3
SV
8673 return ERR_PTR(-ENOMEM);
8674}
8675
9b5b7751 8676/* rcu callback to free various structures associated with a task group */
6f505b16 8677static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8678{
29f59db3 8679 /* now it should be safe to free those cfs_rqs */
6f505b16 8680 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8681}
8682
9b5b7751 8683/* Destroy runqueue etc associated with a task group */
4cf86d77 8684void sched_destroy_group(struct task_group *tg)
29f59db3 8685{
8ed36996 8686 unsigned long flags;
9b5b7751 8687 int i;
29f59db3 8688
8ed36996 8689 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8690 for_each_possible_cpu(i) {
bccbe08a
PZ
8691 unregister_fair_sched_group(tg, i);
8692 unregister_rt_sched_group(tg, i);
9b5b7751 8693 }
6f505b16 8694 list_del_rcu(&tg->list);
f473aa5e 8695 list_del_rcu(&tg->siblings);
8ed36996 8696 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8697
9b5b7751 8698 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8699 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8700}
8701
9b5b7751 8702/* change task's runqueue when it moves between groups.
3a252015
IM
8703 * The caller of this function should have put the task in its new group
8704 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8705 * reflect its new group.
9b5b7751
SV
8706 */
8707void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8708{
8709 int on_rq, running;
8710 unsigned long flags;
8711 struct rq *rq;
8712
8713 rq = task_rq_lock(tsk, &flags);
8714
29f59db3
SV
8715 update_rq_clock(rq);
8716
051a1d1a 8717 running = task_current(rq, tsk);
29f59db3
SV
8718 on_rq = tsk->se.on_rq;
8719
0e1f3483 8720 if (on_rq)
29f59db3 8721 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8722 if (unlikely(running))
8723 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8724
6f505b16 8725 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8726
810b3817
PZ
8727#ifdef CONFIG_FAIR_GROUP_SCHED
8728 if (tsk->sched_class->moved_group)
8729 tsk->sched_class->moved_group(tsk);
8730#endif
8731
0e1f3483
HS
8732 if (unlikely(running))
8733 tsk->sched_class->set_curr_task(rq);
8734 if (on_rq)
7074badb 8735 enqueue_task(rq, tsk, 0);
29f59db3 8736
29f59db3
SV
8737 task_rq_unlock(rq, &flags);
8738}
6d6bc0ad 8739#endif /* CONFIG_GROUP_SCHED */
29f59db3 8740
052f1dc7 8741#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8742static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8743{
8744 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8745 int on_rq;
8746
29f59db3 8747 on_rq = se->on_rq;
62fb1851 8748 if (on_rq)
29f59db3
SV
8749 dequeue_entity(cfs_rq, se, 0);
8750
8751 se->load.weight = shares;
e05510d0 8752 se->load.inv_weight = 0;
29f59db3 8753
62fb1851 8754 if (on_rq)
29f59db3 8755 enqueue_entity(cfs_rq, se, 0);
c09595f6 8756}
62fb1851 8757
c09595f6
PZ
8758static void set_se_shares(struct sched_entity *se, unsigned long shares)
8759{
8760 struct cfs_rq *cfs_rq = se->cfs_rq;
8761 struct rq *rq = cfs_rq->rq;
8762 unsigned long flags;
8763
8764 spin_lock_irqsave(&rq->lock, flags);
8765 __set_se_shares(se, shares);
8766 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8767}
8768
8ed36996
PZ
8769static DEFINE_MUTEX(shares_mutex);
8770
4cf86d77 8771int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8772{
8773 int i;
8ed36996 8774 unsigned long flags;
c61935fd 8775
ec7dc8ac
DG
8776 /*
8777 * We can't change the weight of the root cgroup.
8778 */
8779 if (!tg->se[0])
8780 return -EINVAL;
8781
18d95a28
PZ
8782 if (shares < MIN_SHARES)
8783 shares = MIN_SHARES;
cb4ad1ff
MX
8784 else if (shares > MAX_SHARES)
8785 shares = MAX_SHARES;
62fb1851 8786
8ed36996 8787 mutex_lock(&shares_mutex);
9b5b7751 8788 if (tg->shares == shares)
5cb350ba 8789 goto done;
29f59db3 8790
8ed36996 8791 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8792 for_each_possible_cpu(i)
8793 unregister_fair_sched_group(tg, i);
f473aa5e 8794 list_del_rcu(&tg->siblings);
8ed36996 8795 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8796
8797 /* wait for any ongoing reference to this group to finish */
8798 synchronize_sched();
8799
8800 /*
8801 * Now we are free to modify the group's share on each cpu
8802 * w/o tripping rebalance_share or load_balance_fair.
8803 */
9b5b7751 8804 tg->shares = shares;
c09595f6
PZ
8805 for_each_possible_cpu(i) {
8806 /*
8807 * force a rebalance
8808 */
8809 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8810 set_se_shares(tg->se[i], shares);
c09595f6 8811 }
29f59db3 8812
6b2d7700
SV
8813 /*
8814 * Enable load balance activity on this group, by inserting it back on
8815 * each cpu's rq->leaf_cfs_rq_list.
8816 */
8ed36996 8817 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8818 for_each_possible_cpu(i)
8819 register_fair_sched_group(tg, i);
f473aa5e 8820 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8821 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8822done:
8ed36996 8823 mutex_unlock(&shares_mutex);
9b5b7751 8824 return 0;
29f59db3
SV
8825}
8826
5cb350ba
DG
8827unsigned long sched_group_shares(struct task_group *tg)
8828{
8829 return tg->shares;
8830}
052f1dc7 8831#endif
5cb350ba 8832
052f1dc7 8833#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8834/*
9f0c1e56 8835 * Ensure that the real time constraints are schedulable.
6f505b16 8836 */
9f0c1e56
PZ
8837static DEFINE_MUTEX(rt_constraints_mutex);
8838
8839static unsigned long to_ratio(u64 period, u64 runtime)
8840{
8841 if (runtime == RUNTIME_INF)
9a7e0b18 8842 return 1ULL << 20;
9f0c1e56 8843
9a7e0b18 8844 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8845}
8846
9a7e0b18
PZ
8847/* Must be called with tasklist_lock held */
8848static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8849{
9a7e0b18 8850 struct task_struct *g, *p;
b40b2e8e 8851
9a7e0b18
PZ
8852 do_each_thread(g, p) {
8853 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8854 return 1;
8855 } while_each_thread(g, p);
b40b2e8e 8856
9a7e0b18
PZ
8857 return 0;
8858}
b40b2e8e 8859
9a7e0b18
PZ
8860struct rt_schedulable_data {
8861 struct task_group *tg;
8862 u64 rt_period;
8863 u64 rt_runtime;
8864};
b40b2e8e 8865
9a7e0b18
PZ
8866static int tg_schedulable(struct task_group *tg, void *data)
8867{
8868 struct rt_schedulable_data *d = data;
8869 struct task_group *child;
8870 unsigned long total, sum = 0;
8871 u64 period, runtime;
b40b2e8e 8872
9a7e0b18
PZ
8873 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8874 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8875
9a7e0b18
PZ
8876 if (tg == d->tg) {
8877 period = d->rt_period;
8878 runtime = d->rt_runtime;
b40b2e8e 8879 }
b40b2e8e 8880
4653f803
PZ
8881 /*
8882 * Cannot have more runtime than the period.
8883 */
8884 if (runtime > period && runtime != RUNTIME_INF)
8885 return -EINVAL;
6f505b16 8886
4653f803
PZ
8887 /*
8888 * Ensure we don't starve existing RT tasks.
8889 */
9a7e0b18
PZ
8890 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8891 return -EBUSY;
6f505b16 8892
9a7e0b18 8893 total = to_ratio(period, runtime);
6f505b16 8894
4653f803
PZ
8895 /*
8896 * Nobody can have more than the global setting allows.
8897 */
8898 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8899 return -EINVAL;
6f505b16 8900
4653f803
PZ
8901 /*
8902 * The sum of our children's runtime should not exceed our own.
8903 */
9a7e0b18
PZ
8904 list_for_each_entry_rcu(child, &tg->children, siblings) {
8905 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8906 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8907
9a7e0b18
PZ
8908 if (child == d->tg) {
8909 period = d->rt_period;
8910 runtime = d->rt_runtime;
8911 }
6f505b16 8912
9a7e0b18 8913 sum += to_ratio(period, runtime);
9f0c1e56 8914 }
6f505b16 8915
9a7e0b18
PZ
8916 if (sum > total)
8917 return -EINVAL;
8918
8919 return 0;
6f505b16
PZ
8920}
8921
9a7e0b18 8922static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8923{
9a7e0b18
PZ
8924 struct rt_schedulable_data data = {
8925 .tg = tg,
8926 .rt_period = period,
8927 .rt_runtime = runtime,
8928 };
8929
8930 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8931}
8932
d0b27fa7
PZ
8933static int tg_set_bandwidth(struct task_group *tg,
8934 u64 rt_period, u64 rt_runtime)
6f505b16 8935{
ac086bc2 8936 int i, err = 0;
9f0c1e56 8937
9f0c1e56 8938 mutex_lock(&rt_constraints_mutex);
521f1a24 8939 read_lock(&tasklist_lock);
9a7e0b18
PZ
8940 err = __rt_schedulable(tg, rt_period, rt_runtime);
8941 if (err)
9f0c1e56 8942 goto unlock;
ac086bc2
PZ
8943
8944 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8945 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8946 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8947
8948 for_each_possible_cpu(i) {
8949 struct rt_rq *rt_rq = tg->rt_rq[i];
8950
8951 spin_lock(&rt_rq->rt_runtime_lock);
8952 rt_rq->rt_runtime = rt_runtime;
8953 spin_unlock(&rt_rq->rt_runtime_lock);
8954 }
8955 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8956 unlock:
521f1a24 8957 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8958 mutex_unlock(&rt_constraints_mutex);
8959
8960 return err;
6f505b16
PZ
8961}
8962
d0b27fa7
PZ
8963int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8964{
8965 u64 rt_runtime, rt_period;
8966
8967 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8968 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8969 if (rt_runtime_us < 0)
8970 rt_runtime = RUNTIME_INF;
8971
8972 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8973}
8974
9f0c1e56
PZ
8975long sched_group_rt_runtime(struct task_group *tg)
8976{
8977 u64 rt_runtime_us;
8978
d0b27fa7 8979 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8980 return -1;
8981
d0b27fa7 8982 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8983 do_div(rt_runtime_us, NSEC_PER_USEC);
8984 return rt_runtime_us;
8985}
d0b27fa7
PZ
8986
8987int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8988{
8989 u64 rt_runtime, rt_period;
8990
8991 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8992 rt_runtime = tg->rt_bandwidth.rt_runtime;
8993
619b0488
R
8994 if (rt_period == 0)
8995 return -EINVAL;
8996
d0b27fa7
PZ
8997 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8998}
8999
9000long sched_group_rt_period(struct task_group *tg)
9001{
9002 u64 rt_period_us;
9003
9004 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9005 do_div(rt_period_us, NSEC_PER_USEC);
9006 return rt_period_us;
9007}
9008
9009static int sched_rt_global_constraints(void)
9010{
4653f803 9011 u64 runtime, period;
d0b27fa7
PZ
9012 int ret = 0;
9013
ec5d4989
HS
9014 if (sysctl_sched_rt_period <= 0)
9015 return -EINVAL;
9016
4653f803
PZ
9017 runtime = global_rt_runtime();
9018 period = global_rt_period();
9019
9020 /*
9021 * Sanity check on the sysctl variables.
9022 */
9023 if (runtime > period && runtime != RUNTIME_INF)
9024 return -EINVAL;
10b612f4 9025
d0b27fa7 9026 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9027 read_lock(&tasklist_lock);
4653f803 9028 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9029 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9030 mutex_unlock(&rt_constraints_mutex);
9031
9032 return ret;
9033}
6d6bc0ad 9034#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9035static int sched_rt_global_constraints(void)
9036{
ac086bc2
PZ
9037 unsigned long flags;
9038 int i;
9039
ec5d4989
HS
9040 if (sysctl_sched_rt_period <= 0)
9041 return -EINVAL;
9042
ac086bc2
PZ
9043 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9044 for_each_possible_cpu(i) {
9045 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9046
9047 spin_lock(&rt_rq->rt_runtime_lock);
9048 rt_rq->rt_runtime = global_rt_runtime();
9049 spin_unlock(&rt_rq->rt_runtime_lock);
9050 }
9051 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9052
d0b27fa7
PZ
9053 return 0;
9054}
6d6bc0ad 9055#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9056
9057int sched_rt_handler(struct ctl_table *table, int write,
9058 struct file *filp, void __user *buffer, size_t *lenp,
9059 loff_t *ppos)
9060{
9061 int ret;
9062 int old_period, old_runtime;
9063 static DEFINE_MUTEX(mutex);
9064
9065 mutex_lock(&mutex);
9066 old_period = sysctl_sched_rt_period;
9067 old_runtime = sysctl_sched_rt_runtime;
9068
9069 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9070
9071 if (!ret && write) {
9072 ret = sched_rt_global_constraints();
9073 if (ret) {
9074 sysctl_sched_rt_period = old_period;
9075 sysctl_sched_rt_runtime = old_runtime;
9076 } else {
9077 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9078 def_rt_bandwidth.rt_period =
9079 ns_to_ktime(global_rt_period());
9080 }
9081 }
9082 mutex_unlock(&mutex);
9083
9084 return ret;
9085}
68318b8e 9086
052f1dc7 9087#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9088
9089/* return corresponding task_group object of a cgroup */
2b01dfe3 9090static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9091{
2b01dfe3
PM
9092 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9093 struct task_group, css);
68318b8e
SV
9094}
9095
9096static struct cgroup_subsys_state *
2b01dfe3 9097cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9098{
ec7dc8ac 9099 struct task_group *tg, *parent;
68318b8e 9100
2b01dfe3 9101 if (!cgrp->parent) {
68318b8e 9102 /* This is early initialization for the top cgroup */
68318b8e
SV
9103 return &init_task_group.css;
9104 }
9105
ec7dc8ac
DG
9106 parent = cgroup_tg(cgrp->parent);
9107 tg = sched_create_group(parent);
68318b8e
SV
9108 if (IS_ERR(tg))
9109 return ERR_PTR(-ENOMEM);
9110
68318b8e
SV
9111 return &tg->css;
9112}
9113
41a2d6cf
IM
9114static void
9115cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9116{
2b01dfe3 9117 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9118
9119 sched_destroy_group(tg);
9120}
9121
41a2d6cf
IM
9122static int
9123cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9124 struct task_struct *tsk)
68318b8e 9125{
b68aa230
PZ
9126#ifdef CONFIG_RT_GROUP_SCHED
9127 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9128 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9129 return -EINVAL;
9130#else
68318b8e
SV
9131 /* We don't support RT-tasks being in separate groups */
9132 if (tsk->sched_class != &fair_sched_class)
9133 return -EINVAL;
b68aa230 9134#endif
68318b8e
SV
9135
9136 return 0;
9137}
9138
9139static void
2b01dfe3 9140cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9141 struct cgroup *old_cont, struct task_struct *tsk)
9142{
9143 sched_move_task(tsk);
9144}
9145
052f1dc7 9146#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9147static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9148 u64 shareval)
68318b8e 9149{
2b01dfe3 9150 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9151}
9152
f4c753b7 9153static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9154{
2b01dfe3 9155 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9156
9157 return (u64) tg->shares;
9158}
6d6bc0ad 9159#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9160
052f1dc7 9161#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9162static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9163 s64 val)
6f505b16 9164{
06ecb27c 9165 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9166}
9167
06ecb27c 9168static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9169{
06ecb27c 9170 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9171}
d0b27fa7
PZ
9172
9173static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9174 u64 rt_period_us)
9175{
9176 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9177}
9178
9179static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9180{
9181 return sched_group_rt_period(cgroup_tg(cgrp));
9182}
6d6bc0ad 9183#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9184
fe5c7cc2 9185static struct cftype cpu_files[] = {
052f1dc7 9186#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9187 {
9188 .name = "shares",
f4c753b7
PM
9189 .read_u64 = cpu_shares_read_u64,
9190 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9191 },
052f1dc7
PZ
9192#endif
9193#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9194 {
9f0c1e56 9195 .name = "rt_runtime_us",
06ecb27c
PM
9196 .read_s64 = cpu_rt_runtime_read,
9197 .write_s64 = cpu_rt_runtime_write,
6f505b16 9198 },
d0b27fa7
PZ
9199 {
9200 .name = "rt_period_us",
f4c753b7
PM
9201 .read_u64 = cpu_rt_period_read_uint,
9202 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9203 },
052f1dc7 9204#endif
68318b8e
SV
9205};
9206
9207static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9208{
fe5c7cc2 9209 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9210}
9211
9212struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9213 .name = "cpu",
9214 .create = cpu_cgroup_create,
9215 .destroy = cpu_cgroup_destroy,
9216 .can_attach = cpu_cgroup_can_attach,
9217 .attach = cpu_cgroup_attach,
9218 .populate = cpu_cgroup_populate,
9219 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9220 .early_init = 1,
9221};
9222
052f1dc7 9223#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9224
9225#ifdef CONFIG_CGROUP_CPUACCT
9226
9227/*
9228 * CPU accounting code for task groups.
9229 *
9230 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9231 * (balbir@in.ibm.com).
9232 */
9233
9234/* track cpu usage of a group of tasks */
9235struct cpuacct {
9236 struct cgroup_subsys_state css;
9237 /* cpuusage holds pointer to a u64-type object on every cpu */
9238 u64 *cpuusage;
9239};
9240
9241struct cgroup_subsys cpuacct_subsys;
9242
9243/* return cpu accounting group corresponding to this container */
32cd756a 9244static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9245{
32cd756a 9246 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9247 struct cpuacct, css);
9248}
9249
9250/* return cpu accounting group to which this task belongs */
9251static inline struct cpuacct *task_ca(struct task_struct *tsk)
9252{
9253 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9254 struct cpuacct, css);
9255}
9256
9257/* create a new cpu accounting group */
9258static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9259 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9260{
9261 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9262
9263 if (!ca)
9264 return ERR_PTR(-ENOMEM);
9265
9266 ca->cpuusage = alloc_percpu(u64);
9267 if (!ca->cpuusage) {
9268 kfree(ca);
9269 return ERR_PTR(-ENOMEM);
9270 }
9271
9272 return &ca->css;
9273}
9274
9275/* destroy an existing cpu accounting group */
41a2d6cf 9276static void
32cd756a 9277cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9278{
32cd756a 9279 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9280
9281 free_percpu(ca->cpuusage);
9282 kfree(ca);
9283}
9284
9285/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9286static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9287{
32cd756a 9288 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9289 u64 totalcpuusage = 0;
9290 int i;
9291
9292 for_each_possible_cpu(i) {
9293 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9294
9295 /*
9296 * Take rq->lock to make 64-bit addition safe on 32-bit
9297 * platforms.
9298 */
9299 spin_lock_irq(&cpu_rq(i)->lock);
9300 totalcpuusage += *cpuusage;
9301 spin_unlock_irq(&cpu_rq(i)->lock);
9302 }
9303
9304 return totalcpuusage;
9305}
9306
0297b803
DG
9307static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9308 u64 reset)
9309{
9310 struct cpuacct *ca = cgroup_ca(cgrp);
9311 int err = 0;
9312 int i;
9313
9314 if (reset) {
9315 err = -EINVAL;
9316 goto out;
9317 }
9318
9319 for_each_possible_cpu(i) {
9320 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9321
9322 spin_lock_irq(&cpu_rq(i)->lock);
9323 *cpuusage = 0;
9324 spin_unlock_irq(&cpu_rq(i)->lock);
9325 }
9326out:
9327 return err;
9328}
9329
d842de87
SV
9330static struct cftype files[] = {
9331 {
9332 .name = "usage",
f4c753b7
PM
9333 .read_u64 = cpuusage_read,
9334 .write_u64 = cpuusage_write,
d842de87
SV
9335 },
9336};
9337
32cd756a 9338static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9339{
32cd756a 9340 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9341}
9342
9343/*
9344 * charge this task's execution time to its accounting group.
9345 *
9346 * called with rq->lock held.
9347 */
9348static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9349{
9350 struct cpuacct *ca;
9351
9352 if (!cpuacct_subsys.active)
9353 return;
9354
9355 ca = task_ca(tsk);
9356 if (ca) {
9357 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9358
9359 *cpuusage += cputime;
9360 }
9361}
9362
9363struct cgroup_subsys cpuacct_subsys = {
9364 .name = "cpuacct",
9365 .create = cpuacct_create,
9366 .destroy = cpuacct_destroy,
9367 .populate = cpuacct_populate,
9368 .subsys_id = cpuacct_subsys_id,
9369};
9370#endif /* CONFIG_CGROUP_CPUACCT */