sched: Remove a stale comment
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3
SV
308
309/* return group to which a task belongs */
4cf86d77 310static inline struct task_group *task_group(struct task_struct *p)
29f59db3 311{
4cf86d77 312 struct task_group *tg;
9b5b7751 313
7c941438 314#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
24e377a8 317#else
41a2d6cf 318 tg = &init_task_group;
24e377a8 319#endif
9b5b7751 320 return tg;
29f59db3
SV
321}
322
323/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 324static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 325{
052f1dc7 326#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
327 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
328 p->se.parent = task_group(p)->se[cpu];
052f1dc7 329#endif
6f505b16 330
052f1dc7 331#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
332 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
333 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 334#endif
29f59db3
SV
335}
336
337#else
338
6f505b16 339static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
340static inline struct task_group *task_group(struct task_struct *p)
341{
342 return NULL;
343}
29f59db3 344
7c941438 345#endif /* CONFIG_CGROUP_SCHED */
29f59db3 346
6aa645ea
IM
347/* CFS-related fields in a runqueue */
348struct cfs_rq {
349 struct load_weight load;
350 unsigned long nr_running;
351
6aa645ea 352 u64 exec_clock;
e9acbff6 353 u64 min_vruntime;
6aa645ea
IM
354
355 struct rb_root tasks_timeline;
356 struct rb_node *rb_leftmost;
4a55bd5e
PZ
357
358 struct list_head tasks;
359 struct list_head *balance_iterator;
360
361 /*
362 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
363 * It is set to NULL otherwise (i.e when none are currently running).
364 */
4793241b 365 struct sched_entity *curr, *next, *last;
ddc97297 366
5ac5c4d6 367 unsigned int nr_spread_over;
ddc97297 368
62160e3f 369#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
371
41a2d6cf
IM
372 /*
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
376 *
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
379 */
41a2d6cf
IM
380 struct list_head leaf_cfs_rq_list;
381 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
382
383#ifdef CONFIG_SMP
c09595f6 384 /*
c8cba857 385 * the part of load.weight contributed by tasks
c09595f6 386 */
c8cba857 387 unsigned long task_weight;
c09595f6 388
c8cba857
PZ
389 /*
390 * h_load = weight * f(tg)
391 *
392 * Where f(tg) is the recursive weight fraction assigned to
393 * this group.
394 */
395 unsigned long h_load;
c09595f6 396
c8cba857
PZ
397 /*
398 * this cpu's part of tg->shares
399 */
400 unsigned long shares;
f1d239f7
PZ
401
402 /*
403 * load.weight at the time we set shares
404 */
405 unsigned long rq_weight;
c09595f6 406#endif
6aa645ea
IM
407#endif
408};
1da177e4 409
6aa645ea
IM
410/* Real-Time classes' related field in a runqueue: */
411struct rt_rq {
412 struct rt_prio_array active;
63489e45 413 unsigned long rt_nr_running;
052f1dc7 414#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
415 struct {
416 int curr; /* highest queued rt task prio */
398a153b 417#ifdef CONFIG_SMP
e864c499 418 int next; /* next highest */
398a153b 419#endif
e864c499 420 } highest_prio;
6f505b16 421#endif
fa85ae24 422#ifdef CONFIG_SMP
73fe6aae 423 unsigned long rt_nr_migratory;
a1ba4d8b 424 unsigned long rt_nr_total;
a22d7fc1 425 int overloaded;
917b627d 426 struct plist_head pushable_tasks;
fa85ae24 427#endif
6f505b16 428 int rt_throttled;
fa85ae24 429 u64 rt_time;
ac086bc2 430 u64 rt_runtime;
ea736ed5 431 /* Nests inside the rq lock: */
0986b11b 432 raw_spinlock_t rt_runtime_lock;
6f505b16 433
052f1dc7 434#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
435 unsigned long rt_nr_boosted;
436
6f505b16
PZ
437 struct rq *rq;
438 struct list_head leaf_rt_rq_list;
439 struct task_group *tg;
6f505b16 440#endif
6aa645ea
IM
441};
442
57d885fe
GH
443#ifdef CONFIG_SMP
444
445/*
446 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
447 * variables. Each exclusive cpuset essentially defines an island domain by
448 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
449 * exclusive cpuset is created, we also create and attach a new root-domain
450 * object.
451 *
57d885fe
GH
452 */
453struct root_domain {
454 atomic_t refcount;
c6c4927b
RR
455 cpumask_var_t span;
456 cpumask_var_t online;
637f5085 457
0eab9146 458 /*
637f5085
GH
459 * The "RT overload" flag: it gets set if a CPU has more than
460 * one runnable RT task.
461 */
c6c4927b 462 cpumask_var_t rto_mask;
0eab9146 463 atomic_t rto_count;
6e0534f2
GH
464#ifdef CONFIG_SMP
465 struct cpupri cpupri;
466#endif
57d885fe
GH
467};
468
dc938520
GH
469/*
470 * By default the system creates a single root-domain with all cpus as
471 * members (mimicking the global state we have today).
472 */
57d885fe
GH
473static struct root_domain def_root_domain;
474
475#endif
476
1da177e4
LT
477/*
478 * This is the main, per-CPU runqueue data structure.
479 *
480 * Locking rule: those places that want to lock multiple runqueues
481 * (such as the load balancing or the thread migration code), lock
482 * acquire operations must be ordered by ascending &runqueue.
483 */
70b97a7f 484struct rq {
d8016491 485 /* runqueue lock: */
05fa785c 486 raw_spinlock_t lock;
1da177e4
LT
487
488 /*
489 * nr_running and cpu_load should be in the same cacheline because
490 * remote CPUs use both these fields when doing load calculation.
491 */
492 unsigned long nr_running;
6aa645ea
IM
493 #define CPU_LOAD_IDX_MAX 5
494 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 495#ifdef CONFIG_NO_HZ
39c0cbe2 496 u64 nohz_stamp;
46cb4b7c
SS
497 unsigned char in_nohz_recently;
498#endif
a64692a3
MG
499 unsigned int skip_clock_update;
500
d8016491
IM
501 /* capture load from *all* tasks on this cpu: */
502 struct load_weight load;
6aa645ea
IM
503 unsigned long nr_load_updates;
504 u64 nr_switches;
505
506 struct cfs_rq cfs;
6f505b16 507 struct rt_rq rt;
6f505b16 508
6aa645ea 509#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
510 /* list of leaf cfs_rq on this cpu: */
511 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
512#endif
513#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 514 struct list_head leaf_rt_rq_list;
1da177e4 515#endif
1da177e4
LT
516
517 /*
518 * This is part of a global counter where only the total sum
519 * over all CPUs matters. A task can increase this counter on
520 * one CPU and if it got migrated afterwards it may decrease
521 * it on another CPU. Always updated under the runqueue lock:
522 */
523 unsigned long nr_uninterruptible;
524
36c8b586 525 struct task_struct *curr, *idle;
c9819f45 526 unsigned long next_balance;
1da177e4 527 struct mm_struct *prev_mm;
6aa645ea 528
3e51f33f 529 u64 clock;
6aa645ea 530
1da177e4
LT
531 atomic_t nr_iowait;
532
533#ifdef CONFIG_SMP
0eab9146 534 struct root_domain *rd;
1da177e4
LT
535 struct sched_domain *sd;
536
a0a522ce 537 unsigned char idle_at_tick;
1da177e4 538 /* For active balancing */
3f029d3c 539 int post_schedule;
1da177e4
LT
540 int active_balance;
541 int push_cpu;
969c7921 542 struct cpu_stop_work active_balance_work;
d8016491
IM
543 /* cpu of this runqueue: */
544 int cpu;
1f11eb6a 545 int online;
1da177e4 546
a8a51d5e 547 unsigned long avg_load_per_task;
1da177e4 548
e9e9250b
PZ
549 u64 rt_avg;
550 u64 age_stamp;
1b9508f6
MG
551 u64 idle_stamp;
552 u64 avg_idle;
1da177e4
LT
553#endif
554
dce48a84
TG
555 /* calc_load related fields */
556 unsigned long calc_load_update;
557 long calc_load_active;
558
8f4d37ec 559#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
560#ifdef CONFIG_SMP
561 int hrtick_csd_pending;
562 struct call_single_data hrtick_csd;
563#endif
8f4d37ec
PZ
564 struct hrtimer hrtick_timer;
565#endif
566
1da177e4
LT
567#ifdef CONFIG_SCHEDSTATS
568 /* latency stats */
569 struct sched_info rq_sched_info;
9c2c4802
KC
570 unsigned long long rq_cpu_time;
571 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
572
573 /* sys_sched_yield() stats */
480b9434 574 unsigned int yld_count;
1da177e4
LT
575
576 /* schedule() stats */
480b9434
KC
577 unsigned int sched_switch;
578 unsigned int sched_count;
579 unsigned int sched_goidle;
1da177e4
LT
580
581 /* try_to_wake_up() stats */
480b9434
KC
582 unsigned int ttwu_count;
583 unsigned int ttwu_local;
b8efb561
IM
584
585 /* BKL stats */
480b9434 586 unsigned int bkl_count;
1da177e4
LT
587#endif
588};
589
f34e3b61 590static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 591
7d478721
PZ
592static inline
593void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 594{
7d478721 595 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
596
597 /*
598 * A queue event has occurred, and we're going to schedule. In
599 * this case, we can save a useless back to back clock update.
600 */
601 if (test_tsk_need_resched(p))
602 rq->skip_clock_update = 1;
dd41f596
IM
603}
604
0a2966b4
CL
605static inline int cpu_of(struct rq *rq)
606{
607#ifdef CONFIG_SMP
608 return rq->cpu;
609#else
610 return 0;
611#endif
612}
613
497f0ab3 614#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
615 rcu_dereference_check((p), \
616 rcu_read_lock_sched_held() || \
617 lockdep_is_held(&sched_domains_mutex))
618
674311d5
NP
619/*
620 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 621 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
622 *
623 * The domain tree of any CPU may only be accessed from within
624 * preempt-disabled sections.
625 */
48f24c4d 626#define for_each_domain(cpu, __sd) \
497f0ab3 627 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
628
629#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
630#define this_rq() (&__get_cpu_var(runqueues))
631#define task_rq(p) cpu_rq(task_cpu(p))
632#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 633#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 634
aa9c4c0f 635inline void update_rq_clock(struct rq *rq)
3e51f33f 636{
a64692a3
MG
637 if (!rq->skip_clock_update)
638 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
639}
640
bf5c91ba
IM
641/*
642 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
643 */
644#ifdef CONFIG_SCHED_DEBUG
645# define const_debug __read_mostly
646#else
647# define const_debug static const
648#endif
649
017730c1
IM
650/**
651 * runqueue_is_locked
e17b38bf 652 * @cpu: the processor in question.
017730c1
IM
653 *
654 * Returns true if the current cpu runqueue is locked.
655 * This interface allows printk to be called with the runqueue lock
656 * held and know whether or not it is OK to wake up the klogd.
657 */
89f19f04 658int runqueue_is_locked(int cpu)
017730c1 659{
05fa785c 660 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
661}
662
bf5c91ba
IM
663/*
664 * Debugging: various feature bits
665 */
f00b45c1
PZ
666
667#define SCHED_FEAT(name, enabled) \
668 __SCHED_FEAT_##name ,
669
bf5c91ba 670enum {
f00b45c1 671#include "sched_features.h"
bf5c91ba
IM
672};
673
f00b45c1
PZ
674#undef SCHED_FEAT
675
676#define SCHED_FEAT(name, enabled) \
677 (1UL << __SCHED_FEAT_##name) * enabled |
678
bf5c91ba 679const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
680#include "sched_features.h"
681 0;
682
683#undef SCHED_FEAT
684
685#ifdef CONFIG_SCHED_DEBUG
686#define SCHED_FEAT(name, enabled) \
687 #name ,
688
983ed7a6 689static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
690#include "sched_features.h"
691 NULL
692};
693
694#undef SCHED_FEAT
695
34f3a814 696static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 697{
f00b45c1
PZ
698 int i;
699
700 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
701 if (!(sysctl_sched_features & (1UL << i)))
702 seq_puts(m, "NO_");
703 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 704 }
34f3a814 705 seq_puts(m, "\n");
f00b45c1 706
34f3a814 707 return 0;
f00b45c1
PZ
708}
709
710static ssize_t
711sched_feat_write(struct file *filp, const char __user *ubuf,
712 size_t cnt, loff_t *ppos)
713{
714 char buf[64];
715 char *cmp = buf;
716 int neg = 0;
717 int i;
718
719 if (cnt > 63)
720 cnt = 63;
721
722 if (copy_from_user(&buf, ubuf, cnt))
723 return -EFAULT;
724
725 buf[cnt] = 0;
726
c24b7c52 727 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
728 neg = 1;
729 cmp += 3;
730 }
731
732 for (i = 0; sched_feat_names[i]; i++) {
733 int len = strlen(sched_feat_names[i]);
734
735 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
736 if (neg)
737 sysctl_sched_features &= ~(1UL << i);
738 else
739 sysctl_sched_features |= (1UL << i);
740 break;
741 }
742 }
743
744 if (!sched_feat_names[i])
745 return -EINVAL;
746
42994724 747 *ppos += cnt;
f00b45c1
PZ
748
749 return cnt;
750}
751
34f3a814
LZ
752static int sched_feat_open(struct inode *inode, struct file *filp)
753{
754 return single_open(filp, sched_feat_show, NULL);
755}
756
828c0950 757static const struct file_operations sched_feat_fops = {
34f3a814
LZ
758 .open = sched_feat_open,
759 .write = sched_feat_write,
760 .read = seq_read,
761 .llseek = seq_lseek,
762 .release = single_release,
f00b45c1
PZ
763};
764
765static __init int sched_init_debug(void)
766{
f00b45c1
PZ
767 debugfs_create_file("sched_features", 0644, NULL, NULL,
768 &sched_feat_fops);
769
770 return 0;
771}
772late_initcall(sched_init_debug);
773
774#endif
775
776#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 777
b82d9fdd
PZ
778/*
779 * Number of tasks to iterate in a single balance run.
780 * Limited because this is done with IRQs disabled.
781 */
782const_debug unsigned int sysctl_sched_nr_migrate = 32;
783
2398f2c6
PZ
784/*
785 * ratelimit for updating the group shares.
55cd5340 786 * default: 0.25ms
2398f2c6 787 */
55cd5340 788unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 789unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 790
ffda12a1
PZ
791/*
792 * Inject some fuzzyness into changing the per-cpu group shares
793 * this avoids remote rq-locks at the expense of fairness.
794 * default: 4
795 */
796unsigned int sysctl_sched_shares_thresh = 4;
797
e9e9250b
PZ
798/*
799 * period over which we average the RT time consumption, measured
800 * in ms.
801 *
802 * default: 1s
803 */
804const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
805
fa85ae24 806/*
9f0c1e56 807 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
808 * default: 1s
809 */
9f0c1e56 810unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 811
6892b75e
IM
812static __read_mostly int scheduler_running;
813
9f0c1e56
PZ
814/*
815 * part of the period that we allow rt tasks to run in us.
816 * default: 0.95s
817 */
818int sysctl_sched_rt_runtime = 950000;
fa85ae24 819
d0b27fa7
PZ
820static inline u64 global_rt_period(void)
821{
822 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
823}
824
825static inline u64 global_rt_runtime(void)
826{
e26873bb 827 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
828 return RUNTIME_INF;
829
830 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
831}
fa85ae24 832
1da177e4 833#ifndef prepare_arch_switch
4866cde0
NP
834# define prepare_arch_switch(next) do { } while (0)
835#endif
836#ifndef finish_arch_switch
837# define finish_arch_switch(prev) do { } while (0)
838#endif
839
051a1d1a
DA
840static inline int task_current(struct rq *rq, struct task_struct *p)
841{
842 return rq->curr == p;
843}
844
4866cde0 845#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 846static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 847{
051a1d1a 848 return task_current(rq, p);
4866cde0
NP
849}
850
70b97a7f 851static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
852{
853}
854
70b97a7f 855static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 856{
da04c035
IM
857#ifdef CONFIG_DEBUG_SPINLOCK
858 /* this is a valid case when another task releases the spinlock */
859 rq->lock.owner = current;
860#endif
8a25d5de
IM
861 /*
862 * If we are tracking spinlock dependencies then we have to
863 * fix up the runqueue lock - which gets 'carried over' from
864 * prev into current:
865 */
866 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
867
05fa785c 868 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
869}
870
871#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 872static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
873{
874#ifdef CONFIG_SMP
875 return p->oncpu;
876#else
051a1d1a 877 return task_current(rq, p);
4866cde0
NP
878#endif
879}
880
70b97a7f 881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
882{
883#ifdef CONFIG_SMP
884 /*
885 * We can optimise this out completely for !SMP, because the
886 * SMP rebalancing from interrupt is the only thing that cares
887 * here.
888 */
889 next->oncpu = 1;
890#endif
891#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 892 raw_spin_unlock_irq(&rq->lock);
4866cde0 893#else
05fa785c 894 raw_spin_unlock(&rq->lock);
4866cde0
NP
895#endif
896}
897
70b97a7f 898static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
899{
900#ifdef CONFIG_SMP
901 /*
902 * After ->oncpu is cleared, the task can be moved to a different CPU.
903 * We must ensure this doesn't happen until the switch is completely
904 * finished.
905 */
906 smp_wmb();
907 prev->oncpu = 0;
908#endif
909#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 local_irq_enable();
1da177e4 911#endif
4866cde0
NP
912}
913#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 914
0970d299 915/*
65cc8e48
PZ
916 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
917 * against ttwu().
0970d299
PZ
918 */
919static inline int task_is_waking(struct task_struct *p)
920{
0017d735 921 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
922}
923
b29739f9
IM
924/*
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
927 */
70b97a7f 928static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
929 __acquires(rq->lock)
930{
0970d299
PZ
931 struct rq *rq;
932
3a5c359a 933 for (;;) {
0970d299 934 rq = task_rq(p);
05fa785c 935 raw_spin_lock(&rq->lock);
65cc8e48 936 if (likely(rq == task_rq(p)))
3a5c359a 937 return rq;
05fa785c 938 raw_spin_unlock(&rq->lock);
b29739f9 939 }
b29739f9
IM
940}
941
1da177e4
LT
942/*
943 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 944 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
945 * explicitly disabling preemption.
946 */
70b97a7f 947static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
948 __acquires(rq->lock)
949{
70b97a7f 950 struct rq *rq;
1da177e4 951
3a5c359a
AK
952 for (;;) {
953 local_irq_save(*flags);
954 rq = task_rq(p);
05fa785c 955 raw_spin_lock(&rq->lock);
65cc8e48 956 if (likely(rq == task_rq(p)))
3a5c359a 957 return rq;
05fa785c 958 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 959 }
1da177e4
LT
960}
961
ad474cac
ON
962void task_rq_unlock_wait(struct task_struct *p)
963{
964 struct rq *rq = task_rq(p);
965
966 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 967 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
05fa785c 979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
05fa785c 992 raw_spin_lock(&rq->lock);
1da177e4
LT
993
994 return rq;
995}
996
8f4d37ec
PZ
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
8f4d37ec
PZ
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
ba42059f 1018 if (!cpu_active(cpu_of(rq)))
b328ca18 1019 return 0;
8f4d37ec
PZ
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
05fa785c 1039 raw_spin_lock(&rq->lock);
3e51f33f 1040 update_rq_clock(rq);
8f4d37ec 1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1042 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1043
1044 return HRTIMER_NORESTART;
1045}
1046
95e904c7 1047#ifdef CONFIG_SMP
31656519
PZ
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
b328ca18 1052{
31656519 1053 struct rq *rq = arg;
b328ca18 1054
05fa785c 1055 raw_spin_lock(&rq->lock);
31656519
PZ
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
05fa785c 1058 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1059}
1060
31656519
PZ
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1067{
31656519
PZ
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1070
cc584b21 1071 hrtimer_set_expires(timer, time);
31656519
PZ
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
6e275637 1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1077 rq->hrtick_csd_pending = 1;
1078 }
b328ca18
PZ
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
31656519 1093 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
fa748203 1100static __init void init_hrtick(void)
b328ca18
PZ
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
31656519
PZ
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
7f1e2ca9 1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1113 HRTIMER_MODE_REL_PINNED, 0);
31656519 1114}
b328ca18 1115
006c75f1 1116static inline void init_hrtick(void)
8f4d37ec 1117{
8f4d37ec 1118}
31656519 1119#endif /* CONFIG_SMP */
8f4d37ec 1120
31656519 1121static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1122{
31656519
PZ
1123#ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
8f4d37ec 1125
31656519
PZ
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129#endif
8f4d37ec 1130
31656519
PZ
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
8f4d37ec 1133}
006c75f1 1134#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
8f4d37ec
PZ
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
b328ca18
PZ
1143static inline void init_hrtick(void)
1144{
1145}
006c75f1 1146#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1147
c24d20db
IM
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
31656519 1161static void resched_task(struct task_struct *p)
c24d20db
IM
1162{
1163 int cpu;
1164
05fa785c 1165 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1166
5ed0cec0 1167 if (test_tsk_need_resched(p))
c24d20db
IM
1168 return;
1169
5ed0cec0 1170 set_tsk_need_resched(p);
c24d20db
IM
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
05fa785c 1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1188 return;
1189 resched_task(cpu_curr(cpu));
05fa785c 1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1191}
06d8308c
TG
1192
1193#ifdef CONFIG_NO_HZ
1194/*
1195 * When add_timer_on() enqueues a timer into the timer wheel of an
1196 * idle CPU then this timer might expire before the next timer event
1197 * which is scheduled to wake up that CPU. In case of a completely
1198 * idle system the next event might even be infinite time into the
1199 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1200 * leaves the inner idle loop so the newly added timer is taken into
1201 * account when the CPU goes back to idle and evaluates the timer
1202 * wheel for the next timer event.
1203 */
1204void wake_up_idle_cpu(int cpu)
1205{
1206 struct rq *rq = cpu_rq(cpu);
1207
1208 if (cpu == smp_processor_id())
1209 return;
1210
1211 /*
1212 * This is safe, as this function is called with the timer
1213 * wheel base lock of (cpu) held. When the CPU is on the way
1214 * to idle and has not yet set rq->curr to idle then it will
1215 * be serialized on the timer wheel base lock and take the new
1216 * timer into account automatically.
1217 */
1218 if (rq->curr != rq->idle)
1219 return;
1220
1221 /*
1222 * We can set TIF_RESCHED on the idle task of the other CPU
1223 * lockless. The worst case is that the other CPU runs the
1224 * idle task through an additional NOOP schedule()
1225 */
5ed0cec0 1226 set_tsk_need_resched(rq->idle);
06d8308c
TG
1227
1228 /* NEED_RESCHED must be visible before we test polling */
1229 smp_mb();
1230 if (!tsk_is_polling(rq->idle))
1231 smp_send_reschedule(cpu);
1232}
39c0cbe2
MG
1233
1234int nohz_ratelimit(int cpu)
1235{
1236 struct rq *rq = cpu_rq(cpu);
1237 u64 diff = rq->clock - rq->nohz_stamp;
1238
1239 rq->nohz_stamp = rq->clock;
1240
1241 return diff < (NSEC_PER_SEC / HZ) >> 1;
1242}
1243
6d6bc0ad 1244#endif /* CONFIG_NO_HZ */
06d8308c 1245
e9e9250b
PZ
1246static u64 sched_avg_period(void)
1247{
1248 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1249}
1250
1251static void sched_avg_update(struct rq *rq)
1252{
1253 s64 period = sched_avg_period();
1254
1255 while ((s64)(rq->clock - rq->age_stamp) > period) {
1256 rq->age_stamp += period;
1257 rq->rt_avg /= 2;
1258 }
1259}
1260
1261static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1262{
1263 rq->rt_avg += rt_delta;
1264 sched_avg_update(rq);
1265}
1266
6d6bc0ad 1267#else /* !CONFIG_SMP */
31656519 1268static void resched_task(struct task_struct *p)
c24d20db 1269{
05fa785c 1270 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1271 set_tsk_need_resched(p);
c24d20db 1272}
e9e9250b
PZ
1273
1274static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1275{
1276}
6d6bc0ad 1277#endif /* CONFIG_SMP */
c24d20db 1278
45bf76df
IM
1279#if BITS_PER_LONG == 32
1280# define WMULT_CONST (~0UL)
1281#else
1282# define WMULT_CONST (1UL << 32)
1283#endif
1284
1285#define WMULT_SHIFT 32
1286
194081eb
IM
1287/*
1288 * Shift right and round:
1289 */
cf2ab469 1290#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1291
a7be37ac
PZ
1292/*
1293 * delta *= weight / lw
1294 */
cb1c4fc9 1295static unsigned long
45bf76df
IM
1296calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1298{
1299 u64 tmp;
1300
7a232e03
LJ
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1307 }
45bf76df
IM
1308
1309 tmp = (u64)delta_exec * weight;
1310 /*
1311 * Check whether we'd overflow the 64-bit multiplication:
1312 */
194081eb 1313 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1315 WMULT_SHIFT/2);
1316 else
cf2ab469 1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1318
ecf691da 1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1320}
1321
1091985b 1322static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1323{
1324 lw->weight += inc;
e89996ae 1325 lw->inv_weight = 0;
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1329{
1330 lw->weight -= dec;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
2dd73a4f
PW
1334/*
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1341 */
1342
cce7ade8
PZ
1343#define WEIGHT_IDLEPRIO 3
1344#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1345
1346/*
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1351 *
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
dd41f596
IM
1357 */
1358static const int prio_to_weight[40] = {
254753dc
IM
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1367};
1368
5714d2de
IM
1369/*
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 *
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1375 */
dd41f596 1376static const u32 prio_to_wmult[40] = {
254753dc
IM
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1385};
2dd73a4f 1386
ef12fefa
BR
1387/* Time spent by the tasks of the cpu accounting group executing in ... */
1388enum cpuacct_stat_index {
1389 CPUACCT_STAT_USER, /* ... user mode */
1390 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1391
1392 CPUACCT_STAT_NSTATS,
1393};
1394
d842de87
SV
1395#ifdef CONFIG_CGROUP_CPUACCT
1396static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1397static void cpuacct_update_stats(struct task_struct *tsk,
1398 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1399#else
1400static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1401static inline void cpuacct_update_stats(struct task_struct *tsk,
1402 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1403#endif
1404
18d95a28
PZ
1405static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1406{
1407 update_load_add(&rq->load, load);
1408}
1409
1410static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1411{
1412 update_load_sub(&rq->load, load);
1413}
1414
7940ca36 1415#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1416typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1417
1418/*
1419 * Iterate the full tree, calling @down when first entering a node and @up when
1420 * leaving it for the final time.
1421 */
eb755805 1422static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1423{
1424 struct task_group *parent, *child;
eb755805 1425 int ret;
c09595f6
PZ
1426
1427 rcu_read_lock();
1428 parent = &root_task_group;
1429down:
eb755805
PZ
1430 ret = (*down)(parent, data);
1431 if (ret)
1432 goto out_unlock;
c09595f6
PZ
1433 list_for_each_entry_rcu(child, &parent->children, siblings) {
1434 parent = child;
1435 goto down;
1436
1437up:
1438 continue;
1439 }
eb755805
PZ
1440 ret = (*up)(parent, data);
1441 if (ret)
1442 goto out_unlock;
c09595f6
PZ
1443
1444 child = parent;
1445 parent = parent->parent;
1446 if (parent)
1447 goto up;
eb755805 1448out_unlock:
c09595f6 1449 rcu_read_unlock();
eb755805
PZ
1450
1451 return ret;
c09595f6
PZ
1452}
1453
eb755805
PZ
1454static int tg_nop(struct task_group *tg, void *data)
1455{
1456 return 0;
c09595f6 1457}
eb755805
PZ
1458#endif
1459
1460#ifdef CONFIG_SMP
f5f08f39
PZ
1461/* Used instead of source_load when we know the type == 0 */
1462static unsigned long weighted_cpuload(const int cpu)
1463{
1464 return cpu_rq(cpu)->load.weight;
1465}
1466
1467/*
1468 * Return a low guess at the load of a migration-source cpu weighted
1469 * according to the scheduling class and "nice" value.
1470 *
1471 * We want to under-estimate the load of migration sources, to
1472 * balance conservatively.
1473 */
1474static unsigned long source_load(int cpu, int type)
1475{
1476 struct rq *rq = cpu_rq(cpu);
1477 unsigned long total = weighted_cpuload(cpu);
1478
1479 if (type == 0 || !sched_feat(LB_BIAS))
1480 return total;
1481
1482 return min(rq->cpu_load[type-1], total);
1483}
1484
1485/*
1486 * Return a high guess at the load of a migration-target cpu weighted
1487 * according to the scheduling class and "nice" value.
1488 */
1489static unsigned long target_load(int cpu, int type)
1490{
1491 struct rq *rq = cpu_rq(cpu);
1492 unsigned long total = weighted_cpuload(cpu);
1493
1494 if (type == 0 || !sched_feat(LB_BIAS))
1495 return total;
1496
1497 return max(rq->cpu_load[type-1], total);
1498}
1499
ae154be1
PZ
1500static struct sched_group *group_of(int cpu)
1501{
d11c563d 1502 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1503
1504 if (!sd)
1505 return NULL;
1506
1507 return sd->groups;
1508}
1509
1510static unsigned long power_of(int cpu)
1511{
1512 struct sched_group *group = group_of(cpu);
1513
1514 if (!group)
1515 return SCHED_LOAD_SCALE;
1516
1517 return group->cpu_power;
1518}
1519
eb755805
PZ
1520static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1521
1522static unsigned long cpu_avg_load_per_task(int cpu)
1523{
1524 struct rq *rq = cpu_rq(cpu);
af6d596f 1525 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1526
4cd42620
SR
1527 if (nr_running)
1528 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1529 else
1530 rq->avg_load_per_task = 0;
eb755805
PZ
1531
1532 return rq->avg_load_per_task;
1533}
1534
1535#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1536
43cf38eb 1537static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1538
c09595f6
PZ
1539static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1540
1541/*
1542 * Calculate and set the cpu's group shares.
1543 */
34d76c41
PZ
1544static void update_group_shares_cpu(struct task_group *tg, int cpu,
1545 unsigned long sd_shares,
1546 unsigned long sd_rq_weight,
4a6cc4bd 1547 unsigned long *usd_rq_weight)
18d95a28 1548{
34d76c41 1549 unsigned long shares, rq_weight;
a5004278 1550 int boost = 0;
c09595f6 1551
4a6cc4bd 1552 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1553 if (!rq_weight) {
1554 boost = 1;
1555 rq_weight = NICE_0_LOAD;
1556 }
c8cba857 1557
c09595f6 1558 /*
a8af7246
PZ
1559 * \Sum_j shares_j * rq_weight_i
1560 * shares_i = -----------------------------
1561 * \Sum_j rq_weight_j
c09595f6 1562 */
ec4e0e2f 1563 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1564 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1565
ffda12a1
PZ
1566 if (abs(shares - tg->se[cpu]->load.weight) >
1567 sysctl_sched_shares_thresh) {
1568 struct rq *rq = cpu_rq(cpu);
1569 unsigned long flags;
c09595f6 1570
05fa785c 1571 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1572 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1573 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1574 __set_se_shares(tg->se[cpu], shares);
05fa785c 1575 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1576 }
18d95a28 1577}
c09595f6
PZ
1578
1579/*
c8cba857
PZ
1580 * Re-compute the task group their per cpu shares over the given domain.
1581 * This needs to be done in a bottom-up fashion because the rq weight of a
1582 * parent group depends on the shares of its child groups.
c09595f6 1583 */
eb755805 1584static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1585{
cd8ad40d 1586 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1587 unsigned long *usd_rq_weight;
eb755805 1588 struct sched_domain *sd = data;
34d76c41 1589 unsigned long flags;
c8cba857 1590 int i;
c09595f6 1591
34d76c41
PZ
1592 if (!tg->se[0])
1593 return 0;
1594
1595 local_irq_save(flags);
4a6cc4bd 1596 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1597
758b2cdc 1598 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1599 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1600 usd_rq_weight[i] = weight;
34d76c41 1601
cd8ad40d 1602 rq_weight += weight;
ec4e0e2f
KC
1603 /*
1604 * If there are currently no tasks on the cpu pretend there
1605 * is one of average load so that when a new task gets to
1606 * run here it will not get delayed by group starvation.
1607 */
ec4e0e2f
KC
1608 if (!weight)
1609 weight = NICE_0_LOAD;
1610
cd8ad40d 1611 sum_weight += weight;
c8cba857 1612 shares += tg->cfs_rq[i]->shares;
c09595f6 1613 }
c09595f6 1614
cd8ad40d
PZ
1615 if (!rq_weight)
1616 rq_weight = sum_weight;
1617
c8cba857
PZ
1618 if ((!shares && rq_weight) || shares > tg->shares)
1619 shares = tg->shares;
1620
1621 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1622 shares = tg->shares;
c09595f6 1623
758b2cdc 1624 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1625 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1626
1627 local_irq_restore(flags);
eb755805
PZ
1628
1629 return 0;
c09595f6
PZ
1630}
1631
1632/*
c8cba857
PZ
1633 * Compute the cpu's hierarchical load factor for each task group.
1634 * This needs to be done in a top-down fashion because the load of a child
1635 * group is a fraction of its parents load.
c09595f6 1636 */
eb755805 1637static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1638{
c8cba857 1639 unsigned long load;
eb755805 1640 long cpu = (long)data;
c09595f6 1641
c8cba857
PZ
1642 if (!tg->parent) {
1643 load = cpu_rq(cpu)->load.weight;
1644 } else {
1645 load = tg->parent->cfs_rq[cpu]->h_load;
1646 load *= tg->cfs_rq[cpu]->shares;
1647 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1648 }
c09595f6 1649
c8cba857 1650 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1651
eb755805 1652 return 0;
c09595f6
PZ
1653}
1654
c8cba857 1655static void update_shares(struct sched_domain *sd)
4d8d595d 1656{
e7097159
PZ
1657 s64 elapsed;
1658 u64 now;
1659
1660 if (root_task_group_empty())
1661 return;
1662
1663 now = cpu_clock(raw_smp_processor_id());
1664 elapsed = now - sd->last_update;
2398f2c6
PZ
1665
1666 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1667 sd->last_update = now;
eb755805 1668 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1669 }
4d8d595d
PZ
1670}
1671
eb755805 1672static void update_h_load(long cpu)
c09595f6 1673{
e7097159
PZ
1674 if (root_task_group_empty())
1675 return;
1676
eb755805 1677 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1678}
1679
c09595f6
PZ
1680#else
1681
c8cba857 1682static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1683{
1684}
1685
18d95a28
PZ
1686#endif
1687
8f45e2b5
GH
1688#ifdef CONFIG_PREEMPT
1689
b78bb868
PZ
1690static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1691
70574a99 1692/*
8f45e2b5
GH
1693 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1694 * way at the expense of forcing extra atomic operations in all
1695 * invocations. This assures that the double_lock is acquired using the
1696 * same underlying policy as the spinlock_t on this architecture, which
1697 * reduces latency compared to the unfair variant below. However, it
1698 * also adds more overhead and therefore may reduce throughput.
70574a99 1699 */
8f45e2b5
GH
1700static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1701 __releases(this_rq->lock)
1702 __acquires(busiest->lock)
1703 __acquires(this_rq->lock)
1704{
05fa785c 1705 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1706 double_rq_lock(this_rq, busiest);
1707
1708 return 1;
1709}
1710
1711#else
1712/*
1713 * Unfair double_lock_balance: Optimizes throughput at the expense of
1714 * latency by eliminating extra atomic operations when the locks are
1715 * already in proper order on entry. This favors lower cpu-ids and will
1716 * grant the double lock to lower cpus over higher ids under contention,
1717 * regardless of entry order into the function.
1718 */
1719static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1720 __releases(this_rq->lock)
1721 __acquires(busiest->lock)
1722 __acquires(this_rq->lock)
1723{
1724 int ret = 0;
1725
05fa785c 1726 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1727 if (busiest < this_rq) {
05fa785c
TG
1728 raw_spin_unlock(&this_rq->lock);
1729 raw_spin_lock(&busiest->lock);
1730 raw_spin_lock_nested(&this_rq->lock,
1731 SINGLE_DEPTH_NESTING);
70574a99
AD
1732 ret = 1;
1733 } else
05fa785c
TG
1734 raw_spin_lock_nested(&busiest->lock,
1735 SINGLE_DEPTH_NESTING);
70574a99
AD
1736 }
1737 return ret;
1738}
1739
8f45e2b5
GH
1740#endif /* CONFIG_PREEMPT */
1741
1742/*
1743 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1744 */
1745static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1746{
1747 if (unlikely(!irqs_disabled())) {
1748 /* printk() doesn't work good under rq->lock */
05fa785c 1749 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1750 BUG_ON(1);
1751 }
1752
1753 return _double_lock_balance(this_rq, busiest);
1754}
1755
70574a99
AD
1756static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1757 __releases(busiest->lock)
1758{
05fa785c 1759 raw_spin_unlock(&busiest->lock);
70574a99
AD
1760 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1761}
1e3c88bd
PZ
1762
1763/*
1764 * double_rq_lock - safely lock two runqueues
1765 *
1766 * Note this does not disable interrupts like task_rq_lock,
1767 * you need to do so manually before calling.
1768 */
1769static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1770 __acquires(rq1->lock)
1771 __acquires(rq2->lock)
1772{
1773 BUG_ON(!irqs_disabled());
1774 if (rq1 == rq2) {
1775 raw_spin_lock(&rq1->lock);
1776 __acquire(rq2->lock); /* Fake it out ;) */
1777 } else {
1778 if (rq1 < rq2) {
1779 raw_spin_lock(&rq1->lock);
1780 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1781 } else {
1782 raw_spin_lock(&rq2->lock);
1783 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1784 }
1785 }
1e3c88bd
PZ
1786}
1787
1788/*
1789 * double_rq_unlock - safely unlock two runqueues
1790 *
1791 * Note this does not restore interrupts like task_rq_unlock,
1792 * you need to do so manually after calling.
1793 */
1794static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1795 __releases(rq1->lock)
1796 __releases(rq2->lock)
1797{
1798 raw_spin_unlock(&rq1->lock);
1799 if (rq1 != rq2)
1800 raw_spin_unlock(&rq2->lock);
1801 else
1802 __release(rq2->lock);
1803}
1804
18d95a28
PZ
1805#endif
1806
30432094 1807#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1808static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809{
30432094 1810#ifdef CONFIG_SMP
34e83e85
IM
1811 cfs_rq->shares = shares;
1812#endif
1813}
30432094 1814#endif
e7693a36 1815
74f5187a 1816static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1817static void update_sysctl(void);
acb4a848 1818static int get_update_sysctl_factor(void);
dce48a84 1819
cd29fe6f
PZ
1820static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1821{
1822 set_task_rq(p, cpu);
1823#ifdef CONFIG_SMP
1824 /*
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1828 */
1829 smp_wmb();
1830 task_thread_info(p)->cpu = cpu;
1831#endif
1832}
dce48a84 1833
1e3c88bd 1834static const struct sched_class rt_sched_class;
dd41f596
IM
1835
1836#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1837#define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
dd41f596 1839
1e3c88bd
PZ
1840#include "sched_stats.h"
1841
c09595f6 1842static void inc_nr_running(struct rq *rq)
9c217245
IM
1843{
1844 rq->nr_running++;
9c217245
IM
1845}
1846
c09595f6 1847static void dec_nr_running(struct rq *rq)
9c217245
IM
1848{
1849 rq->nr_running--;
9c217245
IM
1850}
1851
45bf76df
IM
1852static void set_load_weight(struct task_struct *p)
1853{
1854 if (task_has_rt_policy(p)) {
dd41f596
IM
1855 p->se.load.weight = prio_to_weight[0] * 2;
1856 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1857 return;
1858 }
45bf76df 1859
dd41f596
IM
1860 /*
1861 * SCHED_IDLE tasks get minimal weight:
1862 */
1863 if (p->policy == SCHED_IDLE) {
1864 p->se.load.weight = WEIGHT_IDLEPRIO;
1865 p->se.load.inv_weight = WMULT_IDLEPRIO;
1866 return;
1867 }
71f8bd46 1868
dd41f596
IM
1869 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1870 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1871}
1872
371fd7e7 1873static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1874{
a64692a3 1875 update_rq_clock(rq);
dd41f596 1876 sched_info_queued(p);
371fd7e7 1877 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1878 p->se.on_rq = 1;
71f8bd46
IM
1879}
1880
371fd7e7 1881static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1882{
a64692a3 1883 update_rq_clock(rq);
46ac22ba 1884 sched_info_dequeued(p);
371fd7e7 1885 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1886 p->se.on_rq = 0;
71f8bd46
IM
1887}
1888
1e3c88bd
PZ
1889/*
1890 * activate_task - move a task to the runqueue.
1891 */
371fd7e7 1892static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1893{
1894 if (task_contributes_to_load(p))
1895 rq->nr_uninterruptible--;
1896
371fd7e7 1897 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1898 inc_nr_running(rq);
1899}
1900
1901/*
1902 * deactivate_task - remove a task from the runqueue.
1903 */
371fd7e7 1904static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1905{
1906 if (task_contributes_to_load(p))
1907 rq->nr_uninterruptible++;
1908
371fd7e7 1909 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1910 dec_nr_running(rq);
1911}
1912
1913#include "sched_idletask.c"
1914#include "sched_fair.c"
1915#include "sched_rt.c"
1916#ifdef CONFIG_SCHED_DEBUG
1917# include "sched_debug.c"
1918#endif
1919
14531189 1920/*
dd41f596 1921 * __normal_prio - return the priority that is based on the static prio
14531189 1922 */
14531189
IM
1923static inline int __normal_prio(struct task_struct *p)
1924{
dd41f596 1925 return p->static_prio;
14531189
IM
1926}
1927
b29739f9
IM
1928/*
1929 * Calculate the expected normal priority: i.e. priority
1930 * without taking RT-inheritance into account. Might be
1931 * boosted by interactivity modifiers. Changes upon fork,
1932 * setprio syscalls, and whenever the interactivity
1933 * estimator recalculates.
1934 */
36c8b586 1935static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1936{
1937 int prio;
1938
e05606d3 1939 if (task_has_rt_policy(p))
b29739f9
IM
1940 prio = MAX_RT_PRIO-1 - p->rt_priority;
1941 else
1942 prio = __normal_prio(p);
1943 return prio;
1944}
1945
1946/*
1947 * Calculate the current priority, i.e. the priority
1948 * taken into account by the scheduler. This value might
1949 * be boosted by RT tasks, or might be boosted by
1950 * interactivity modifiers. Will be RT if the task got
1951 * RT-boosted. If not then it returns p->normal_prio.
1952 */
36c8b586 1953static int effective_prio(struct task_struct *p)
b29739f9
IM
1954{
1955 p->normal_prio = normal_prio(p);
1956 /*
1957 * If we are RT tasks or we were boosted to RT priority,
1958 * keep the priority unchanged. Otherwise, update priority
1959 * to the normal priority:
1960 */
1961 if (!rt_prio(p->prio))
1962 return p->normal_prio;
1963 return p->prio;
1964}
1965
1da177e4
LT
1966/**
1967 * task_curr - is this task currently executing on a CPU?
1968 * @p: the task in question.
1969 */
36c8b586 1970inline int task_curr(const struct task_struct *p)
1da177e4
LT
1971{
1972 return cpu_curr(task_cpu(p)) == p;
1973}
1974
cb469845
SR
1975static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1976 const struct sched_class *prev_class,
1977 int oldprio, int running)
1978{
1979 if (prev_class != p->sched_class) {
1980 if (prev_class->switched_from)
1981 prev_class->switched_from(rq, p, running);
1982 p->sched_class->switched_to(rq, p, running);
1983 } else
1984 p->sched_class->prio_changed(rq, p, oldprio, running);
1985}
1986
1da177e4 1987#ifdef CONFIG_SMP
cc367732
IM
1988/*
1989 * Is this task likely cache-hot:
1990 */
e7693a36 1991static int
cc367732
IM
1992task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1993{
1994 s64 delta;
1995
e6c8fba7
PZ
1996 if (p->sched_class != &fair_sched_class)
1997 return 0;
1998
f540a608
IM
1999 /*
2000 * Buddy candidates are cache hot:
2001 */
f685ceac 2002 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2003 (&p->se == cfs_rq_of(&p->se)->next ||
2004 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2005 return 1;
2006
6bc1665b
IM
2007 if (sysctl_sched_migration_cost == -1)
2008 return 1;
2009 if (sysctl_sched_migration_cost == 0)
2010 return 0;
2011
cc367732
IM
2012 delta = now - p->se.exec_start;
2013
2014 return delta < (s64)sysctl_sched_migration_cost;
2015}
2016
dd41f596 2017void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2018{
e2912009
PZ
2019#ifdef CONFIG_SCHED_DEBUG
2020 /*
2021 * We should never call set_task_cpu() on a blocked task,
2022 * ttwu() will sort out the placement.
2023 */
077614ee
PZ
2024 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2025 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2026#endif
2027
de1d7286 2028 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2029
0c69774e
PZ
2030 if (task_cpu(p) != new_cpu) {
2031 p->se.nr_migrations++;
2032 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2033 }
dd41f596
IM
2034
2035 __set_task_cpu(p, new_cpu);
c65cc870
IM
2036}
2037
969c7921 2038struct migration_arg {
36c8b586 2039 struct task_struct *task;
1da177e4 2040 int dest_cpu;
70b97a7f 2041};
1da177e4 2042
969c7921
TH
2043static int migration_cpu_stop(void *data);
2044
1da177e4
LT
2045/*
2046 * The task's runqueue lock must be held.
2047 * Returns true if you have to wait for migration thread.
2048 */
969c7921 2049static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2050{
70b97a7f 2051 struct rq *rq = task_rq(p);
1da177e4
LT
2052
2053 /*
2054 * If the task is not on a runqueue (and not running), then
e2912009 2055 * the next wake-up will properly place the task.
1da177e4 2056 */
969c7921 2057 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2058}
2059
a26b89f0
MM
2060/*
2061 * wait_task_context_switch - wait for a thread to complete at least one
2062 * context switch.
2063 *
2064 * @p must not be current.
2065 */
2066void wait_task_context_switch(struct task_struct *p)
2067{
2068 unsigned long nvcsw, nivcsw, flags;
2069 int running;
2070 struct rq *rq;
2071
2072 nvcsw = p->nvcsw;
2073 nivcsw = p->nivcsw;
2074 for (;;) {
2075 /*
2076 * The runqueue is assigned before the actual context
2077 * switch. We need to take the runqueue lock.
2078 *
2079 * We could check initially without the lock but it is
2080 * very likely that we need to take the lock in every
2081 * iteration.
2082 */
2083 rq = task_rq_lock(p, &flags);
2084 running = task_running(rq, p);
2085 task_rq_unlock(rq, &flags);
2086
2087 if (likely(!running))
2088 break;
2089 /*
2090 * The switch count is incremented before the actual
2091 * context switch. We thus wait for two switches to be
2092 * sure at least one completed.
2093 */
2094 if ((p->nvcsw - nvcsw) > 1)
2095 break;
2096 if ((p->nivcsw - nivcsw) > 1)
2097 break;
2098
2099 cpu_relax();
2100 }
2101}
2102
1da177e4
LT
2103/*
2104 * wait_task_inactive - wait for a thread to unschedule.
2105 *
85ba2d86
RM
2106 * If @match_state is nonzero, it's the @p->state value just checked and
2107 * not expected to change. If it changes, i.e. @p might have woken up,
2108 * then return zero. When we succeed in waiting for @p to be off its CPU,
2109 * we return a positive number (its total switch count). If a second call
2110 * a short while later returns the same number, the caller can be sure that
2111 * @p has remained unscheduled the whole time.
2112 *
1da177e4
LT
2113 * The caller must ensure that the task *will* unschedule sometime soon,
2114 * else this function might spin for a *long* time. This function can't
2115 * be called with interrupts off, or it may introduce deadlock with
2116 * smp_call_function() if an IPI is sent by the same process we are
2117 * waiting to become inactive.
2118 */
85ba2d86 2119unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2120{
2121 unsigned long flags;
dd41f596 2122 int running, on_rq;
85ba2d86 2123 unsigned long ncsw;
70b97a7f 2124 struct rq *rq;
1da177e4 2125
3a5c359a
AK
2126 for (;;) {
2127 /*
2128 * We do the initial early heuristics without holding
2129 * any task-queue locks at all. We'll only try to get
2130 * the runqueue lock when things look like they will
2131 * work out!
2132 */
2133 rq = task_rq(p);
fa490cfd 2134
3a5c359a
AK
2135 /*
2136 * If the task is actively running on another CPU
2137 * still, just relax and busy-wait without holding
2138 * any locks.
2139 *
2140 * NOTE! Since we don't hold any locks, it's not
2141 * even sure that "rq" stays as the right runqueue!
2142 * But we don't care, since "task_running()" will
2143 * return false if the runqueue has changed and p
2144 * is actually now running somewhere else!
2145 */
85ba2d86
RM
2146 while (task_running(rq, p)) {
2147 if (match_state && unlikely(p->state != match_state))
2148 return 0;
3a5c359a 2149 cpu_relax();
85ba2d86 2150 }
fa490cfd 2151
3a5c359a
AK
2152 /*
2153 * Ok, time to look more closely! We need the rq
2154 * lock now, to be *sure*. If we're wrong, we'll
2155 * just go back and repeat.
2156 */
2157 rq = task_rq_lock(p, &flags);
27a9da65 2158 trace_sched_wait_task(p);
3a5c359a
AK
2159 running = task_running(rq, p);
2160 on_rq = p->se.on_rq;
85ba2d86 2161 ncsw = 0;
f31e11d8 2162 if (!match_state || p->state == match_state)
93dcf55f 2163 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2164 task_rq_unlock(rq, &flags);
fa490cfd 2165
85ba2d86
RM
2166 /*
2167 * If it changed from the expected state, bail out now.
2168 */
2169 if (unlikely(!ncsw))
2170 break;
2171
3a5c359a
AK
2172 /*
2173 * Was it really running after all now that we
2174 * checked with the proper locks actually held?
2175 *
2176 * Oops. Go back and try again..
2177 */
2178 if (unlikely(running)) {
2179 cpu_relax();
2180 continue;
2181 }
fa490cfd 2182
3a5c359a
AK
2183 /*
2184 * It's not enough that it's not actively running,
2185 * it must be off the runqueue _entirely_, and not
2186 * preempted!
2187 *
80dd99b3 2188 * So if it was still runnable (but just not actively
3a5c359a
AK
2189 * running right now), it's preempted, and we should
2190 * yield - it could be a while.
2191 */
2192 if (unlikely(on_rq)) {
2193 schedule_timeout_uninterruptible(1);
2194 continue;
2195 }
fa490cfd 2196
3a5c359a
AK
2197 /*
2198 * Ahh, all good. It wasn't running, and it wasn't
2199 * runnable, which means that it will never become
2200 * running in the future either. We're all done!
2201 */
2202 break;
2203 }
85ba2d86
RM
2204
2205 return ncsw;
1da177e4
LT
2206}
2207
2208/***
2209 * kick_process - kick a running thread to enter/exit the kernel
2210 * @p: the to-be-kicked thread
2211 *
2212 * Cause a process which is running on another CPU to enter
2213 * kernel-mode, without any delay. (to get signals handled.)
2214 *
2215 * NOTE: this function doesnt have to take the runqueue lock,
2216 * because all it wants to ensure is that the remote task enters
2217 * the kernel. If the IPI races and the task has been migrated
2218 * to another CPU then no harm is done and the purpose has been
2219 * achieved as well.
2220 */
36c8b586 2221void kick_process(struct task_struct *p)
1da177e4
LT
2222{
2223 int cpu;
2224
2225 preempt_disable();
2226 cpu = task_cpu(p);
2227 if ((cpu != smp_processor_id()) && task_curr(p))
2228 smp_send_reschedule(cpu);
2229 preempt_enable();
2230}
b43e3521 2231EXPORT_SYMBOL_GPL(kick_process);
476d139c 2232#endif /* CONFIG_SMP */
1da177e4 2233
0793a61d
TG
2234/**
2235 * task_oncpu_function_call - call a function on the cpu on which a task runs
2236 * @p: the task to evaluate
2237 * @func: the function to be called
2238 * @info: the function call argument
2239 *
2240 * Calls the function @func when the task is currently running. This might
2241 * be on the current CPU, which just calls the function directly
2242 */
2243void task_oncpu_function_call(struct task_struct *p,
2244 void (*func) (void *info), void *info)
2245{
2246 int cpu;
2247
2248 preempt_disable();
2249 cpu = task_cpu(p);
2250 if (task_curr(p))
2251 smp_call_function_single(cpu, func, info, 1);
2252 preempt_enable();
2253}
2254
970b13ba 2255#ifdef CONFIG_SMP
30da688e
ON
2256/*
2257 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2258 */
5da9a0fb
PZ
2259static int select_fallback_rq(int cpu, struct task_struct *p)
2260{
2261 int dest_cpu;
2262 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2263
2264 /* Look for allowed, online CPU in same node. */
2265 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2266 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2267 return dest_cpu;
2268
2269 /* Any allowed, online CPU? */
2270 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2271 if (dest_cpu < nr_cpu_ids)
2272 return dest_cpu;
2273
2274 /* No more Mr. Nice Guy. */
897f0b3c 2275 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2276 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2277 /*
2278 * Don't tell them about moving exiting tasks or
2279 * kernel threads (both mm NULL), since they never
2280 * leave kernel.
2281 */
2282 if (p->mm && printk_ratelimit()) {
2283 printk(KERN_INFO "process %d (%s) no "
2284 "longer affine to cpu%d\n",
2285 task_pid_nr(p), p->comm, cpu);
2286 }
2287 }
2288
2289 return dest_cpu;
2290}
2291
e2912009 2292/*
30da688e 2293 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2294 */
970b13ba 2295static inline
0017d735 2296int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2297{
0017d735 2298 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2299
2300 /*
2301 * In order not to call set_task_cpu() on a blocking task we need
2302 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2303 * cpu.
2304 *
2305 * Since this is common to all placement strategies, this lives here.
2306 *
2307 * [ this allows ->select_task() to simply return task_cpu(p) and
2308 * not worry about this generic constraint ]
2309 */
2310 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2311 !cpu_online(cpu)))
5da9a0fb 2312 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2313
2314 return cpu;
970b13ba 2315}
09a40af5
MG
2316
2317static void update_avg(u64 *avg, u64 sample)
2318{
2319 s64 diff = sample - *avg;
2320 *avg += diff >> 3;
2321}
970b13ba
PZ
2322#endif
2323
1da177e4
LT
2324/***
2325 * try_to_wake_up - wake up a thread
2326 * @p: the to-be-woken-up thread
2327 * @state: the mask of task states that can be woken
2328 * @sync: do a synchronous wakeup?
2329 *
2330 * Put it on the run-queue if it's not already there. The "current"
2331 * thread is always on the run-queue (except when the actual
2332 * re-schedule is in progress), and as such you're allowed to do
2333 * the simpler "current->state = TASK_RUNNING" to mark yourself
2334 * runnable without the overhead of this.
2335 *
2336 * returns failure only if the task is already active.
2337 */
7d478721
PZ
2338static int try_to_wake_up(struct task_struct *p, unsigned int state,
2339 int wake_flags)
1da177e4 2340{
cc367732 2341 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2342 unsigned long flags;
371fd7e7 2343 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2344 struct rq *rq;
1da177e4 2345
e9c84311 2346 this_cpu = get_cpu();
2398f2c6 2347
04e2f174 2348 smp_wmb();
ab3b3aa5 2349 rq = task_rq_lock(p, &flags);
e9c84311 2350 if (!(p->state & state))
1da177e4
LT
2351 goto out;
2352
dd41f596 2353 if (p->se.on_rq)
1da177e4
LT
2354 goto out_running;
2355
2356 cpu = task_cpu(p);
cc367732 2357 orig_cpu = cpu;
1da177e4
LT
2358
2359#ifdef CONFIG_SMP
2360 if (unlikely(task_running(rq, p)))
2361 goto out_activate;
2362
e9c84311
PZ
2363 /*
2364 * In order to handle concurrent wakeups and release the rq->lock
2365 * we put the task in TASK_WAKING state.
eb24073b
IM
2366 *
2367 * First fix up the nr_uninterruptible count:
e9c84311 2368 */
cc87f76a
PZ
2369 if (task_contributes_to_load(p)) {
2370 if (likely(cpu_online(orig_cpu)))
2371 rq->nr_uninterruptible--;
2372 else
2373 this_rq()->nr_uninterruptible--;
2374 }
e9c84311 2375 p->state = TASK_WAKING;
efbbd05a 2376
371fd7e7 2377 if (p->sched_class->task_waking) {
efbbd05a 2378 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2379 en_flags |= ENQUEUE_WAKING;
2380 }
efbbd05a 2381
0017d735
PZ
2382 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2383 if (cpu != orig_cpu)
5d2f5a61 2384 set_task_cpu(p, cpu);
0017d735 2385 __task_rq_unlock(rq);
ab19cb23 2386
0970d299
PZ
2387 rq = cpu_rq(cpu);
2388 raw_spin_lock(&rq->lock);
f5dc3753 2389
0970d299
PZ
2390 /*
2391 * We migrated the task without holding either rq->lock, however
2392 * since the task is not on the task list itself, nobody else
2393 * will try and migrate the task, hence the rq should match the
2394 * cpu we just moved it to.
2395 */
2396 WARN_ON(task_cpu(p) != cpu);
e9c84311 2397 WARN_ON(p->state != TASK_WAKING);
1da177e4 2398
e7693a36
GH
2399#ifdef CONFIG_SCHEDSTATS
2400 schedstat_inc(rq, ttwu_count);
2401 if (cpu == this_cpu)
2402 schedstat_inc(rq, ttwu_local);
2403 else {
2404 struct sched_domain *sd;
2405 for_each_domain(this_cpu, sd) {
758b2cdc 2406 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2407 schedstat_inc(sd, ttwu_wake_remote);
2408 break;
2409 }
2410 }
2411 }
6d6bc0ad 2412#endif /* CONFIG_SCHEDSTATS */
e7693a36 2413
1da177e4
LT
2414out_activate:
2415#endif /* CONFIG_SMP */
41acab88 2416 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2417 if (wake_flags & WF_SYNC)
41acab88 2418 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2419 if (orig_cpu != cpu)
41acab88 2420 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2421 if (cpu == this_cpu)
41acab88 2422 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2423 else
41acab88 2424 schedstat_inc(p, se.statistics.nr_wakeups_remote);
371fd7e7 2425 activate_task(rq, p, en_flags);
1da177e4
LT
2426 success = 1;
2427
2428out_running:
27a9da65 2429 trace_sched_wakeup(p, success);
7d478721 2430 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2431
1da177e4 2432 p->state = TASK_RUNNING;
9a897c5a 2433#ifdef CONFIG_SMP
efbbd05a
PZ
2434 if (p->sched_class->task_woken)
2435 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2436
2437 if (unlikely(rq->idle_stamp)) {
2438 u64 delta = rq->clock - rq->idle_stamp;
2439 u64 max = 2*sysctl_sched_migration_cost;
2440
2441 if (delta > max)
2442 rq->avg_idle = max;
2443 else
2444 update_avg(&rq->avg_idle, delta);
2445 rq->idle_stamp = 0;
2446 }
9a897c5a 2447#endif
1da177e4
LT
2448out:
2449 task_rq_unlock(rq, &flags);
e9c84311 2450 put_cpu();
1da177e4
LT
2451
2452 return success;
2453}
2454
50fa610a
DH
2455/**
2456 * wake_up_process - Wake up a specific process
2457 * @p: The process to be woken up.
2458 *
2459 * Attempt to wake up the nominated process and move it to the set of runnable
2460 * processes. Returns 1 if the process was woken up, 0 if it was already
2461 * running.
2462 *
2463 * It may be assumed that this function implies a write memory barrier before
2464 * changing the task state if and only if any tasks are woken up.
2465 */
7ad5b3a5 2466int wake_up_process(struct task_struct *p)
1da177e4 2467{
d9514f6c 2468 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2469}
1da177e4
LT
2470EXPORT_SYMBOL(wake_up_process);
2471
7ad5b3a5 2472int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2473{
2474 return try_to_wake_up(p, state, 0);
2475}
2476
1da177e4
LT
2477/*
2478 * Perform scheduler related setup for a newly forked process p.
2479 * p is forked by current.
dd41f596
IM
2480 *
2481 * __sched_fork() is basic setup used by init_idle() too:
2482 */
2483static void __sched_fork(struct task_struct *p)
2484{
dd41f596
IM
2485 p->se.exec_start = 0;
2486 p->se.sum_exec_runtime = 0;
f6cf891c 2487 p->se.prev_sum_exec_runtime = 0;
6c594c21 2488 p->se.nr_migrations = 0;
6cfb0d5d
IM
2489
2490#ifdef CONFIG_SCHEDSTATS
41acab88 2491 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2492#endif
476d139c 2493
fa717060 2494 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2495 p->se.on_rq = 0;
4a55bd5e 2496 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2497
e107be36
AK
2498#ifdef CONFIG_PREEMPT_NOTIFIERS
2499 INIT_HLIST_HEAD(&p->preempt_notifiers);
2500#endif
dd41f596
IM
2501}
2502
2503/*
2504 * fork()/clone()-time setup:
2505 */
2506void sched_fork(struct task_struct *p, int clone_flags)
2507{
2508 int cpu = get_cpu();
2509
2510 __sched_fork(p);
06b83b5f 2511 /*
0017d735 2512 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2513 * nobody will actually run it, and a signal or other external
2514 * event cannot wake it up and insert it on the runqueue either.
2515 */
0017d735 2516 p->state = TASK_RUNNING;
dd41f596 2517
b9dc29e7
MG
2518 /*
2519 * Revert to default priority/policy on fork if requested.
2520 */
2521 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2522 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2523 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2524 p->normal_prio = p->static_prio;
2525 }
b9dc29e7 2526
6c697bdf
MG
2527 if (PRIO_TO_NICE(p->static_prio) < 0) {
2528 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2529 p->normal_prio = p->static_prio;
6c697bdf
MG
2530 set_load_weight(p);
2531 }
2532
b9dc29e7
MG
2533 /*
2534 * We don't need the reset flag anymore after the fork. It has
2535 * fulfilled its duty:
2536 */
2537 p->sched_reset_on_fork = 0;
2538 }
ca94c442 2539
f83f9ac2
PW
2540 /*
2541 * Make sure we do not leak PI boosting priority to the child.
2542 */
2543 p->prio = current->normal_prio;
2544
2ddbf952
HS
2545 if (!rt_prio(p->prio))
2546 p->sched_class = &fair_sched_class;
b29739f9 2547
cd29fe6f
PZ
2548 if (p->sched_class->task_fork)
2549 p->sched_class->task_fork(p);
2550
5f3edc1b
PZ
2551 set_task_cpu(p, cpu);
2552
52f17b6c 2553#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2554 if (likely(sched_info_on()))
52f17b6c 2555 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2556#endif
d6077cb8 2557#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2558 p->oncpu = 0;
2559#endif
1da177e4 2560#ifdef CONFIG_PREEMPT
4866cde0 2561 /* Want to start with kernel preemption disabled. */
a1261f54 2562 task_thread_info(p)->preempt_count = 1;
1da177e4 2563#endif
917b627d
GH
2564 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2565
476d139c 2566 put_cpu();
1da177e4
LT
2567}
2568
2569/*
2570 * wake_up_new_task - wake up a newly created task for the first time.
2571 *
2572 * This function will do some initial scheduler statistics housekeeping
2573 * that must be done for every newly created context, then puts the task
2574 * on the runqueue and wakes it.
2575 */
7ad5b3a5 2576void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2577{
2578 unsigned long flags;
dd41f596 2579 struct rq *rq;
c890692b 2580 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2581
2582#ifdef CONFIG_SMP
0017d735
PZ
2583 rq = task_rq_lock(p, &flags);
2584 p->state = TASK_WAKING;
2585
fabf318e
PZ
2586 /*
2587 * Fork balancing, do it here and not earlier because:
2588 * - cpus_allowed can change in the fork path
2589 * - any previously selected cpu might disappear through hotplug
2590 *
0017d735
PZ
2591 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2592 * without people poking at ->cpus_allowed.
fabf318e 2593 */
0017d735 2594 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2595 set_task_cpu(p, cpu);
0970d299 2596
06b83b5f 2597 p->state = TASK_RUNNING;
0017d735
PZ
2598 task_rq_unlock(rq, &flags);
2599#endif
2600
2601 rq = task_rq_lock(p, &flags);
cd29fe6f 2602 activate_task(rq, p, 0);
27a9da65 2603 trace_sched_wakeup_new(p, 1);
a7558e01 2604 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2605#ifdef CONFIG_SMP
efbbd05a
PZ
2606 if (p->sched_class->task_woken)
2607 p->sched_class->task_woken(rq, p);
9a897c5a 2608#endif
dd41f596 2609 task_rq_unlock(rq, &flags);
fabf318e 2610 put_cpu();
1da177e4
LT
2611}
2612
e107be36
AK
2613#ifdef CONFIG_PREEMPT_NOTIFIERS
2614
2615/**
80dd99b3 2616 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2617 * @notifier: notifier struct to register
e107be36
AK
2618 */
2619void preempt_notifier_register(struct preempt_notifier *notifier)
2620{
2621 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2622}
2623EXPORT_SYMBOL_GPL(preempt_notifier_register);
2624
2625/**
2626 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2627 * @notifier: notifier struct to unregister
e107be36
AK
2628 *
2629 * This is safe to call from within a preemption notifier.
2630 */
2631void preempt_notifier_unregister(struct preempt_notifier *notifier)
2632{
2633 hlist_del(&notifier->link);
2634}
2635EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2636
2637static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2638{
2639 struct preempt_notifier *notifier;
2640 struct hlist_node *node;
2641
2642 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2643 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2644}
2645
2646static void
2647fire_sched_out_preempt_notifiers(struct task_struct *curr,
2648 struct task_struct *next)
2649{
2650 struct preempt_notifier *notifier;
2651 struct hlist_node *node;
2652
2653 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2654 notifier->ops->sched_out(notifier, next);
2655}
2656
6d6bc0ad 2657#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2658
2659static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2660{
2661}
2662
2663static void
2664fire_sched_out_preempt_notifiers(struct task_struct *curr,
2665 struct task_struct *next)
2666{
2667}
2668
6d6bc0ad 2669#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2670
4866cde0
NP
2671/**
2672 * prepare_task_switch - prepare to switch tasks
2673 * @rq: the runqueue preparing to switch
421cee29 2674 * @prev: the current task that is being switched out
4866cde0
NP
2675 * @next: the task we are going to switch to.
2676 *
2677 * This is called with the rq lock held and interrupts off. It must
2678 * be paired with a subsequent finish_task_switch after the context
2679 * switch.
2680 *
2681 * prepare_task_switch sets up locking and calls architecture specific
2682 * hooks.
2683 */
e107be36
AK
2684static inline void
2685prepare_task_switch(struct rq *rq, struct task_struct *prev,
2686 struct task_struct *next)
4866cde0 2687{
e107be36 2688 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2689 prepare_lock_switch(rq, next);
2690 prepare_arch_switch(next);
2691}
2692
1da177e4
LT
2693/**
2694 * finish_task_switch - clean up after a task-switch
344babaa 2695 * @rq: runqueue associated with task-switch
1da177e4
LT
2696 * @prev: the thread we just switched away from.
2697 *
4866cde0
NP
2698 * finish_task_switch must be called after the context switch, paired
2699 * with a prepare_task_switch call before the context switch.
2700 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2701 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2702 *
2703 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2704 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2705 * with the lock held can cause deadlocks; see schedule() for
2706 * details.)
2707 */
a9957449 2708static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2709 __releases(rq->lock)
2710{
1da177e4 2711 struct mm_struct *mm = rq->prev_mm;
55a101f8 2712 long prev_state;
1da177e4
LT
2713
2714 rq->prev_mm = NULL;
2715
2716 /*
2717 * A task struct has one reference for the use as "current".
c394cc9f 2718 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2719 * schedule one last time. The schedule call will never return, and
2720 * the scheduled task must drop that reference.
c394cc9f 2721 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2722 * still held, otherwise prev could be scheduled on another cpu, die
2723 * there before we look at prev->state, and then the reference would
2724 * be dropped twice.
2725 * Manfred Spraul <manfred@colorfullife.com>
2726 */
55a101f8 2727 prev_state = prev->state;
4866cde0 2728 finish_arch_switch(prev);
8381f65d
JI
2729#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2730 local_irq_disable();
2731#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2732 perf_event_task_sched_in(current);
8381f65d
JI
2733#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2734 local_irq_enable();
2735#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2736 finish_lock_switch(rq, prev);
e8fa1362 2737
e107be36 2738 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2739 if (mm)
2740 mmdrop(mm);
c394cc9f 2741 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2742 /*
2743 * Remove function-return probe instances associated with this
2744 * task and put them back on the free list.
9761eea8 2745 */
c6fd91f0 2746 kprobe_flush_task(prev);
1da177e4 2747 put_task_struct(prev);
c6fd91f0 2748 }
1da177e4
LT
2749}
2750
3f029d3c
GH
2751#ifdef CONFIG_SMP
2752
2753/* assumes rq->lock is held */
2754static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2755{
2756 if (prev->sched_class->pre_schedule)
2757 prev->sched_class->pre_schedule(rq, prev);
2758}
2759
2760/* rq->lock is NOT held, but preemption is disabled */
2761static inline void post_schedule(struct rq *rq)
2762{
2763 if (rq->post_schedule) {
2764 unsigned long flags;
2765
05fa785c 2766 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2767 if (rq->curr->sched_class->post_schedule)
2768 rq->curr->sched_class->post_schedule(rq);
05fa785c 2769 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2770
2771 rq->post_schedule = 0;
2772 }
2773}
2774
2775#else
da19ab51 2776
3f029d3c
GH
2777static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2778{
2779}
2780
2781static inline void post_schedule(struct rq *rq)
2782{
1da177e4
LT
2783}
2784
3f029d3c
GH
2785#endif
2786
1da177e4
LT
2787/**
2788 * schedule_tail - first thing a freshly forked thread must call.
2789 * @prev: the thread we just switched away from.
2790 */
36c8b586 2791asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2792 __releases(rq->lock)
2793{
70b97a7f
IM
2794 struct rq *rq = this_rq();
2795
4866cde0 2796 finish_task_switch(rq, prev);
da19ab51 2797
3f029d3c
GH
2798 /*
2799 * FIXME: do we need to worry about rq being invalidated by the
2800 * task_switch?
2801 */
2802 post_schedule(rq);
70b97a7f 2803
4866cde0
NP
2804#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2805 /* In this case, finish_task_switch does not reenable preemption */
2806 preempt_enable();
2807#endif
1da177e4 2808 if (current->set_child_tid)
b488893a 2809 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2810}
2811
2812/*
2813 * context_switch - switch to the new MM and the new
2814 * thread's register state.
2815 */
dd41f596 2816static inline void
70b97a7f 2817context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2818 struct task_struct *next)
1da177e4 2819{
dd41f596 2820 struct mm_struct *mm, *oldmm;
1da177e4 2821
e107be36 2822 prepare_task_switch(rq, prev, next);
27a9da65 2823 trace_sched_switch(prev, next);
dd41f596
IM
2824 mm = next->mm;
2825 oldmm = prev->active_mm;
9226d125
ZA
2826 /*
2827 * For paravirt, this is coupled with an exit in switch_to to
2828 * combine the page table reload and the switch backend into
2829 * one hypercall.
2830 */
224101ed 2831 arch_start_context_switch(prev);
9226d125 2832
710390d9 2833 if (likely(!mm)) {
1da177e4
LT
2834 next->active_mm = oldmm;
2835 atomic_inc(&oldmm->mm_count);
2836 enter_lazy_tlb(oldmm, next);
2837 } else
2838 switch_mm(oldmm, mm, next);
2839
710390d9 2840 if (likely(!prev->mm)) {
1da177e4 2841 prev->active_mm = NULL;
1da177e4
LT
2842 rq->prev_mm = oldmm;
2843 }
3a5f5e48
IM
2844 /*
2845 * Since the runqueue lock will be released by the next
2846 * task (which is an invalid locking op but in the case
2847 * of the scheduler it's an obvious special-case), so we
2848 * do an early lockdep release here:
2849 */
2850#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2851 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2852#endif
1da177e4
LT
2853
2854 /* Here we just switch the register state and the stack. */
2855 switch_to(prev, next, prev);
2856
dd41f596
IM
2857 barrier();
2858 /*
2859 * this_rq must be evaluated again because prev may have moved
2860 * CPUs since it called schedule(), thus the 'rq' on its stack
2861 * frame will be invalid.
2862 */
2863 finish_task_switch(this_rq(), prev);
1da177e4
LT
2864}
2865
2866/*
2867 * nr_running, nr_uninterruptible and nr_context_switches:
2868 *
2869 * externally visible scheduler statistics: current number of runnable
2870 * threads, current number of uninterruptible-sleeping threads, total
2871 * number of context switches performed since bootup.
2872 */
2873unsigned long nr_running(void)
2874{
2875 unsigned long i, sum = 0;
2876
2877 for_each_online_cpu(i)
2878 sum += cpu_rq(i)->nr_running;
2879
2880 return sum;
f711f609 2881}
1da177e4
LT
2882
2883unsigned long nr_uninterruptible(void)
f711f609 2884{
1da177e4 2885 unsigned long i, sum = 0;
f711f609 2886
0a945022 2887 for_each_possible_cpu(i)
1da177e4 2888 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2889
2890 /*
1da177e4
LT
2891 * Since we read the counters lockless, it might be slightly
2892 * inaccurate. Do not allow it to go below zero though:
f711f609 2893 */
1da177e4
LT
2894 if (unlikely((long)sum < 0))
2895 sum = 0;
f711f609 2896
1da177e4 2897 return sum;
f711f609 2898}
f711f609 2899
1da177e4 2900unsigned long long nr_context_switches(void)
46cb4b7c 2901{
cc94abfc
SR
2902 int i;
2903 unsigned long long sum = 0;
46cb4b7c 2904
0a945022 2905 for_each_possible_cpu(i)
1da177e4 2906 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2907
1da177e4
LT
2908 return sum;
2909}
483b4ee6 2910
1da177e4
LT
2911unsigned long nr_iowait(void)
2912{
2913 unsigned long i, sum = 0;
483b4ee6 2914
0a945022 2915 for_each_possible_cpu(i)
1da177e4 2916 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2917
1da177e4
LT
2918 return sum;
2919}
483b4ee6 2920
69d25870
AV
2921unsigned long nr_iowait_cpu(void)
2922{
2923 struct rq *this = this_rq();
2924 return atomic_read(&this->nr_iowait);
2925}
46cb4b7c 2926
69d25870
AV
2927unsigned long this_cpu_load(void)
2928{
2929 struct rq *this = this_rq();
2930 return this->cpu_load[0];
2931}
e790fb0b 2932
46cb4b7c 2933
dce48a84
TG
2934/* Variables and functions for calc_load */
2935static atomic_long_t calc_load_tasks;
2936static unsigned long calc_load_update;
2937unsigned long avenrun[3];
2938EXPORT_SYMBOL(avenrun);
46cb4b7c 2939
74f5187a
PZ
2940static long calc_load_fold_active(struct rq *this_rq)
2941{
2942 long nr_active, delta = 0;
2943
2944 nr_active = this_rq->nr_running;
2945 nr_active += (long) this_rq->nr_uninterruptible;
2946
2947 if (nr_active != this_rq->calc_load_active) {
2948 delta = nr_active - this_rq->calc_load_active;
2949 this_rq->calc_load_active = nr_active;
2950 }
2951
2952 return delta;
2953}
2954
2955#ifdef CONFIG_NO_HZ
2956/*
2957 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2958 *
2959 * When making the ILB scale, we should try to pull this in as well.
2960 */
2961static atomic_long_t calc_load_tasks_idle;
2962
2963static void calc_load_account_idle(struct rq *this_rq)
2964{
2965 long delta;
2966
2967 delta = calc_load_fold_active(this_rq);
2968 if (delta)
2969 atomic_long_add(delta, &calc_load_tasks_idle);
2970}
2971
2972static long calc_load_fold_idle(void)
2973{
2974 long delta = 0;
2975
2976 /*
2977 * Its got a race, we don't care...
2978 */
2979 if (atomic_long_read(&calc_load_tasks_idle))
2980 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2981
2982 return delta;
2983}
2984#else
2985static void calc_load_account_idle(struct rq *this_rq)
2986{
2987}
2988
2989static inline long calc_load_fold_idle(void)
2990{
2991 return 0;
2992}
2993#endif
2994
2d02494f
TG
2995/**
2996 * get_avenrun - get the load average array
2997 * @loads: pointer to dest load array
2998 * @offset: offset to add
2999 * @shift: shift count to shift the result left
3000 *
3001 * These values are estimates at best, so no need for locking.
3002 */
3003void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3004{
3005 loads[0] = (avenrun[0] + offset) << shift;
3006 loads[1] = (avenrun[1] + offset) << shift;
3007 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3008}
46cb4b7c 3009
dce48a84
TG
3010static unsigned long
3011calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3012{
dce48a84
TG
3013 load *= exp;
3014 load += active * (FIXED_1 - exp);
3015 return load >> FSHIFT;
3016}
46cb4b7c
SS
3017
3018/*
dce48a84
TG
3019 * calc_load - update the avenrun load estimates 10 ticks after the
3020 * CPUs have updated calc_load_tasks.
7835b98b 3021 */
dce48a84 3022void calc_global_load(void)
7835b98b 3023{
dce48a84
TG
3024 unsigned long upd = calc_load_update + 10;
3025 long active;
1da177e4 3026
dce48a84
TG
3027 if (time_before(jiffies, upd))
3028 return;
1da177e4 3029
dce48a84
TG
3030 active = atomic_long_read(&calc_load_tasks);
3031 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3032
dce48a84
TG
3033 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3034 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3035 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3036
dce48a84
TG
3037 calc_load_update += LOAD_FREQ;
3038}
1da177e4 3039
dce48a84 3040/*
74f5187a
PZ
3041 * Called from update_cpu_load() to periodically update this CPU's
3042 * active count.
dce48a84
TG
3043 */
3044static void calc_load_account_active(struct rq *this_rq)
3045{
74f5187a 3046 long delta;
08c183f3 3047
74f5187a
PZ
3048 if (time_before(jiffies, this_rq->calc_load_update))
3049 return;
783609c6 3050
74f5187a
PZ
3051 delta = calc_load_fold_active(this_rq);
3052 delta += calc_load_fold_idle();
3053 if (delta)
dce48a84 3054 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3055
3056 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3057}
3058
3059/*
dd41f596
IM
3060 * Update rq->cpu_load[] statistics. This function is usually called every
3061 * scheduler tick (TICK_NSEC).
46cb4b7c 3062 */
dd41f596 3063static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3064{
495eca49 3065 unsigned long this_load = this_rq->load.weight;
dd41f596 3066 int i, scale;
46cb4b7c 3067
dd41f596 3068 this_rq->nr_load_updates++;
46cb4b7c 3069
dd41f596
IM
3070 /* Update our load: */
3071 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3072 unsigned long old_load, new_load;
7d1e6a9b 3073
dd41f596 3074 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3075
dd41f596
IM
3076 old_load = this_rq->cpu_load[i];
3077 new_load = this_load;
a25707f3
IM
3078 /*
3079 * Round up the averaging division if load is increasing. This
3080 * prevents us from getting stuck on 9 if the load is 10, for
3081 * example.
3082 */
3083 if (new_load > old_load)
3084 new_load += scale-1;
dd41f596
IM
3085 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3086 }
46cb4b7c 3087
74f5187a 3088 calc_load_account_active(this_rq);
46cb4b7c
SS
3089}
3090
dd41f596 3091#ifdef CONFIG_SMP
8a0be9ef 3092
46cb4b7c 3093/*
38022906
PZ
3094 * sched_exec - execve() is a valuable balancing opportunity, because at
3095 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3096 */
38022906 3097void sched_exec(void)
46cb4b7c 3098{
38022906 3099 struct task_struct *p = current;
1da177e4 3100 unsigned long flags;
70b97a7f 3101 struct rq *rq;
0017d735 3102 int dest_cpu;
46cb4b7c 3103
1da177e4 3104 rq = task_rq_lock(p, &flags);
0017d735
PZ
3105 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3106 if (dest_cpu == smp_processor_id())
3107 goto unlock;
3108
46cb4b7c 3109 /*
38022906 3110 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3111 */
30da688e 3112 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3113 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3114 struct migration_arg arg = { p, dest_cpu };
dd41f596 3115
1da177e4 3116 task_rq_unlock(rq, &flags);
969c7921 3117 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3118 return;
3119 }
0017d735 3120unlock:
1da177e4 3121 task_rq_unlock(rq, &flags);
1da177e4 3122}
dd41f596 3123
1da177e4
LT
3124#endif
3125
1da177e4
LT
3126DEFINE_PER_CPU(struct kernel_stat, kstat);
3127
3128EXPORT_PER_CPU_SYMBOL(kstat);
3129
3130/*
c5f8d995 3131 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3132 * @p in case that task is currently running.
c5f8d995
HS
3133 *
3134 * Called with task_rq_lock() held on @rq.
1da177e4 3135 */
c5f8d995
HS
3136static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3137{
3138 u64 ns = 0;
3139
3140 if (task_current(rq, p)) {
3141 update_rq_clock(rq);
3142 ns = rq->clock - p->se.exec_start;
3143 if ((s64)ns < 0)
3144 ns = 0;
3145 }
3146
3147 return ns;
3148}
3149
bb34d92f 3150unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3151{
1da177e4 3152 unsigned long flags;
41b86e9c 3153 struct rq *rq;
bb34d92f 3154 u64 ns = 0;
48f24c4d 3155
41b86e9c 3156 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3157 ns = do_task_delta_exec(p, rq);
3158 task_rq_unlock(rq, &flags);
1508487e 3159
c5f8d995
HS
3160 return ns;
3161}
f06febc9 3162
c5f8d995
HS
3163/*
3164 * Return accounted runtime for the task.
3165 * In case the task is currently running, return the runtime plus current's
3166 * pending runtime that have not been accounted yet.
3167 */
3168unsigned long long task_sched_runtime(struct task_struct *p)
3169{
3170 unsigned long flags;
3171 struct rq *rq;
3172 u64 ns = 0;
3173
3174 rq = task_rq_lock(p, &flags);
3175 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3176 task_rq_unlock(rq, &flags);
3177
3178 return ns;
3179}
48f24c4d 3180
c5f8d995
HS
3181/*
3182 * Return sum_exec_runtime for the thread group.
3183 * In case the task is currently running, return the sum plus current's
3184 * pending runtime that have not been accounted yet.
3185 *
3186 * Note that the thread group might have other running tasks as well,
3187 * so the return value not includes other pending runtime that other
3188 * running tasks might have.
3189 */
3190unsigned long long thread_group_sched_runtime(struct task_struct *p)
3191{
3192 struct task_cputime totals;
3193 unsigned long flags;
3194 struct rq *rq;
3195 u64 ns;
3196
3197 rq = task_rq_lock(p, &flags);
3198 thread_group_cputime(p, &totals);
3199 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3200 task_rq_unlock(rq, &flags);
48f24c4d 3201
1da177e4
LT
3202 return ns;
3203}
3204
1da177e4
LT
3205/*
3206 * Account user cpu time to a process.
3207 * @p: the process that the cpu time gets accounted to
1da177e4 3208 * @cputime: the cpu time spent in user space since the last update
457533a7 3209 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3210 */
457533a7
MS
3211void account_user_time(struct task_struct *p, cputime_t cputime,
3212 cputime_t cputime_scaled)
1da177e4
LT
3213{
3214 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3215 cputime64_t tmp;
3216
457533a7 3217 /* Add user time to process. */
1da177e4 3218 p->utime = cputime_add(p->utime, cputime);
457533a7 3219 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3220 account_group_user_time(p, cputime);
1da177e4
LT
3221
3222 /* Add user time to cpustat. */
3223 tmp = cputime_to_cputime64(cputime);
3224 if (TASK_NICE(p) > 0)
3225 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3226 else
3227 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3228
3229 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3230 /* Account for user time used */
3231 acct_update_integrals(p);
1da177e4
LT
3232}
3233
94886b84
LV
3234/*
3235 * Account guest cpu time to a process.
3236 * @p: the process that the cpu time gets accounted to
3237 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3238 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3239 */
457533a7
MS
3240static void account_guest_time(struct task_struct *p, cputime_t cputime,
3241 cputime_t cputime_scaled)
94886b84
LV
3242{
3243 cputime64_t tmp;
3244 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3245
3246 tmp = cputime_to_cputime64(cputime);
3247
457533a7 3248 /* Add guest time to process. */
94886b84 3249 p->utime = cputime_add(p->utime, cputime);
457533a7 3250 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3251 account_group_user_time(p, cputime);
94886b84
LV
3252 p->gtime = cputime_add(p->gtime, cputime);
3253
457533a7 3254 /* Add guest time to cpustat. */
ce0e7b28
RO
3255 if (TASK_NICE(p) > 0) {
3256 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3257 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3258 } else {
3259 cpustat->user = cputime64_add(cpustat->user, tmp);
3260 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3261 }
94886b84
LV
3262}
3263
1da177e4
LT
3264/*
3265 * Account system cpu time to a process.
3266 * @p: the process that the cpu time gets accounted to
3267 * @hardirq_offset: the offset to subtract from hardirq_count()
3268 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3269 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3270 */
3271void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3272 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3273{
3274 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3275 cputime64_t tmp;
3276
983ed7a6 3277 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3278 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3279 return;
3280 }
94886b84 3281
457533a7 3282 /* Add system time to process. */
1da177e4 3283 p->stime = cputime_add(p->stime, cputime);
457533a7 3284 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3285 account_group_system_time(p, cputime);
1da177e4
LT
3286
3287 /* Add system time to cpustat. */
3288 tmp = cputime_to_cputime64(cputime);
3289 if (hardirq_count() - hardirq_offset)
3290 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3291 else if (softirq_count())
3292 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3293 else
79741dd3
MS
3294 cpustat->system = cputime64_add(cpustat->system, tmp);
3295
ef12fefa
BR
3296 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3297
1da177e4
LT
3298 /* Account for system time used */
3299 acct_update_integrals(p);
1da177e4
LT
3300}
3301
c66f08be 3302/*
1da177e4 3303 * Account for involuntary wait time.
1da177e4 3304 * @steal: the cpu time spent in involuntary wait
c66f08be 3305 */
79741dd3 3306void account_steal_time(cputime_t cputime)
c66f08be 3307{
79741dd3
MS
3308 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3309 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3310
3311 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3312}
3313
1da177e4 3314/*
79741dd3
MS
3315 * Account for idle time.
3316 * @cputime: the cpu time spent in idle wait
1da177e4 3317 */
79741dd3 3318void account_idle_time(cputime_t cputime)
1da177e4
LT
3319{
3320 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3321 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3322 struct rq *rq = this_rq();
1da177e4 3323
79741dd3
MS
3324 if (atomic_read(&rq->nr_iowait) > 0)
3325 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3326 else
3327 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3328}
3329
79741dd3
MS
3330#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3331
3332/*
3333 * Account a single tick of cpu time.
3334 * @p: the process that the cpu time gets accounted to
3335 * @user_tick: indicates if the tick is a user or a system tick
3336 */
3337void account_process_tick(struct task_struct *p, int user_tick)
3338{
a42548a1 3339 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3340 struct rq *rq = this_rq();
3341
3342 if (user_tick)
a42548a1 3343 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3344 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3345 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3346 one_jiffy_scaled);
3347 else
a42548a1 3348 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3349}
3350
3351/*
3352 * Account multiple ticks of steal time.
3353 * @p: the process from which the cpu time has been stolen
3354 * @ticks: number of stolen ticks
3355 */
3356void account_steal_ticks(unsigned long ticks)
3357{
3358 account_steal_time(jiffies_to_cputime(ticks));
3359}
3360
3361/*
3362 * Account multiple ticks of idle time.
3363 * @ticks: number of stolen ticks
3364 */
3365void account_idle_ticks(unsigned long ticks)
3366{
3367 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3368}
3369
79741dd3
MS
3370#endif
3371
49048622
BS
3372/*
3373 * Use precise platform statistics if available:
3374 */
3375#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3376void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3377{
d99ca3b9
HS
3378 *ut = p->utime;
3379 *st = p->stime;
49048622
BS
3380}
3381
0cf55e1e 3382void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3383{
0cf55e1e
HS
3384 struct task_cputime cputime;
3385
3386 thread_group_cputime(p, &cputime);
3387
3388 *ut = cputime.utime;
3389 *st = cputime.stime;
49048622
BS
3390}
3391#else
761b1d26
HS
3392
3393#ifndef nsecs_to_cputime
b7b20df9 3394# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3395#endif
3396
d180c5bc 3397void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3398{
d99ca3b9 3399 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3400
3401 /*
3402 * Use CFS's precise accounting:
3403 */
d180c5bc 3404 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3405
3406 if (total) {
d180c5bc
HS
3407 u64 temp;
3408
3409 temp = (u64)(rtime * utime);
49048622 3410 do_div(temp, total);
d180c5bc
HS
3411 utime = (cputime_t)temp;
3412 } else
3413 utime = rtime;
49048622 3414
d180c5bc
HS
3415 /*
3416 * Compare with previous values, to keep monotonicity:
3417 */
761b1d26 3418 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3419 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3420
d99ca3b9
HS
3421 *ut = p->prev_utime;
3422 *st = p->prev_stime;
49048622
BS
3423}
3424
0cf55e1e
HS
3425/*
3426 * Must be called with siglock held.
3427 */
3428void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3429{
0cf55e1e
HS
3430 struct signal_struct *sig = p->signal;
3431 struct task_cputime cputime;
3432 cputime_t rtime, utime, total;
49048622 3433
0cf55e1e 3434 thread_group_cputime(p, &cputime);
49048622 3435
0cf55e1e
HS
3436 total = cputime_add(cputime.utime, cputime.stime);
3437 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3438
0cf55e1e
HS
3439 if (total) {
3440 u64 temp;
49048622 3441
0cf55e1e
HS
3442 temp = (u64)(rtime * cputime.utime);
3443 do_div(temp, total);
3444 utime = (cputime_t)temp;
3445 } else
3446 utime = rtime;
3447
3448 sig->prev_utime = max(sig->prev_utime, utime);
3449 sig->prev_stime = max(sig->prev_stime,
3450 cputime_sub(rtime, sig->prev_utime));
3451
3452 *ut = sig->prev_utime;
3453 *st = sig->prev_stime;
49048622 3454}
49048622 3455#endif
49048622 3456
7835b98b
CL
3457/*
3458 * This function gets called by the timer code, with HZ frequency.
3459 * We call it with interrupts disabled.
3460 *
3461 * It also gets called by the fork code, when changing the parent's
3462 * timeslices.
3463 */
3464void scheduler_tick(void)
3465{
7835b98b
CL
3466 int cpu = smp_processor_id();
3467 struct rq *rq = cpu_rq(cpu);
dd41f596 3468 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3469
3470 sched_clock_tick();
dd41f596 3471
05fa785c 3472 raw_spin_lock(&rq->lock);
3e51f33f 3473 update_rq_clock(rq);
f1a438d8 3474 update_cpu_load(rq);
fa85ae24 3475 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3476 raw_spin_unlock(&rq->lock);
7835b98b 3477
49f47433 3478 perf_event_task_tick(curr);
e220d2dc 3479
e418e1c2 3480#ifdef CONFIG_SMP
dd41f596
IM
3481 rq->idle_at_tick = idle_cpu(cpu);
3482 trigger_load_balance(rq, cpu);
e418e1c2 3483#endif
1da177e4
LT
3484}
3485
132380a0 3486notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3487{
3488 if (in_lock_functions(addr)) {
3489 addr = CALLER_ADDR2;
3490 if (in_lock_functions(addr))
3491 addr = CALLER_ADDR3;
3492 }
3493 return addr;
3494}
1da177e4 3495
7e49fcce
SR
3496#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3497 defined(CONFIG_PREEMPT_TRACER))
3498
43627582 3499void __kprobes add_preempt_count(int val)
1da177e4 3500{
6cd8a4bb 3501#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3502 /*
3503 * Underflow?
3504 */
9a11b49a
IM
3505 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3506 return;
6cd8a4bb 3507#endif
1da177e4 3508 preempt_count() += val;
6cd8a4bb 3509#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3510 /*
3511 * Spinlock count overflowing soon?
3512 */
33859f7f
MOS
3513 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3514 PREEMPT_MASK - 10);
6cd8a4bb
SR
3515#endif
3516 if (preempt_count() == val)
3517 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3518}
3519EXPORT_SYMBOL(add_preempt_count);
3520
43627582 3521void __kprobes sub_preempt_count(int val)
1da177e4 3522{
6cd8a4bb 3523#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3524 /*
3525 * Underflow?
3526 */
01e3eb82 3527 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3528 return;
1da177e4
LT
3529 /*
3530 * Is the spinlock portion underflowing?
3531 */
9a11b49a
IM
3532 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3533 !(preempt_count() & PREEMPT_MASK)))
3534 return;
6cd8a4bb 3535#endif
9a11b49a 3536
6cd8a4bb
SR
3537 if (preempt_count() == val)
3538 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3539 preempt_count() -= val;
3540}
3541EXPORT_SYMBOL(sub_preempt_count);
3542
3543#endif
3544
3545/*
dd41f596 3546 * Print scheduling while atomic bug:
1da177e4 3547 */
dd41f596 3548static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3549{
838225b4
SS
3550 struct pt_regs *regs = get_irq_regs();
3551
3df0fc5b
PZ
3552 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3553 prev->comm, prev->pid, preempt_count());
838225b4 3554
dd41f596 3555 debug_show_held_locks(prev);
e21f5b15 3556 print_modules();
dd41f596
IM
3557 if (irqs_disabled())
3558 print_irqtrace_events(prev);
838225b4
SS
3559
3560 if (regs)
3561 show_regs(regs);
3562 else
3563 dump_stack();
dd41f596 3564}
1da177e4 3565
dd41f596
IM
3566/*
3567 * Various schedule()-time debugging checks and statistics:
3568 */
3569static inline void schedule_debug(struct task_struct *prev)
3570{
1da177e4 3571 /*
41a2d6cf 3572 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3573 * schedule() atomically, we ignore that path for now.
3574 * Otherwise, whine if we are scheduling when we should not be.
3575 */
3f33a7ce 3576 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3577 __schedule_bug(prev);
3578
1da177e4
LT
3579 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3580
2d72376b 3581 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3582#ifdef CONFIG_SCHEDSTATS
3583 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3584 schedstat_inc(this_rq(), bkl_count);
3585 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3586 }
3587#endif
dd41f596
IM
3588}
3589
6cecd084 3590static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3591{
a64692a3
MG
3592 if (prev->se.on_rq)
3593 update_rq_clock(rq);
3594 rq->skip_clock_update = 0;
6cecd084 3595 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3596}
3597
dd41f596
IM
3598/*
3599 * Pick up the highest-prio task:
3600 */
3601static inline struct task_struct *
b67802ea 3602pick_next_task(struct rq *rq)
dd41f596 3603{
5522d5d5 3604 const struct sched_class *class;
dd41f596 3605 struct task_struct *p;
1da177e4
LT
3606
3607 /*
dd41f596
IM
3608 * Optimization: we know that if all tasks are in
3609 * the fair class we can call that function directly:
1da177e4 3610 */
dd41f596 3611 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3612 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3613 if (likely(p))
3614 return p;
1da177e4
LT
3615 }
3616
dd41f596
IM
3617 class = sched_class_highest;
3618 for ( ; ; ) {
fb8d4724 3619 p = class->pick_next_task(rq);
dd41f596
IM
3620 if (p)
3621 return p;
3622 /*
3623 * Will never be NULL as the idle class always
3624 * returns a non-NULL p:
3625 */
3626 class = class->next;
3627 }
3628}
1da177e4 3629
dd41f596
IM
3630/*
3631 * schedule() is the main scheduler function.
3632 */
ff743345 3633asmlinkage void __sched schedule(void)
dd41f596
IM
3634{
3635 struct task_struct *prev, *next;
67ca7bde 3636 unsigned long *switch_count;
dd41f596 3637 struct rq *rq;
31656519 3638 int cpu;
dd41f596 3639
ff743345
PZ
3640need_resched:
3641 preempt_disable();
dd41f596
IM
3642 cpu = smp_processor_id();
3643 rq = cpu_rq(cpu);
d6714c22 3644 rcu_sched_qs(cpu);
dd41f596
IM
3645 prev = rq->curr;
3646 switch_count = &prev->nivcsw;
3647
3648 release_kernel_lock(prev);
3649need_resched_nonpreemptible:
3650
3651 schedule_debug(prev);
1da177e4 3652
31656519 3653 if (sched_feat(HRTICK))
f333fdc9 3654 hrtick_clear(rq);
8f4d37ec 3655
05fa785c 3656 raw_spin_lock_irq(&rq->lock);
1e819950 3657 clear_tsk_need_resched(prev);
1da177e4 3658
1da177e4 3659 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3660 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3661 prev->state = TASK_RUNNING;
16882c1e 3662 else
371fd7e7 3663 deactivate_task(rq, prev, DEQUEUE_SLEEP);
dd41f596 3664 switch_count = &prev->nvcsw;
1da177e4
LT
3665 }
3666
3f029d3c 3667 pre_schedule(rq, prev);
f65eda4f 3668
dd41f596 3669 if (unlikely(!rq->nr_running))
1da177e4 3670 idle_balance(cpu, rq);
1da177e4 3671
df1c99d4 3672 put_prev_task(rq, prev);
b67802ea 3673 next = pick_next_task(rq);
1da177e4 3674
1da177e4 3675 if (likely(prev != next)) {
673a90a1 3676 sched_info_switch(prev, next);
49f47433 3677 perf_event_task_sched_out(prev, next);
673a90a1 3678
1da177e4
LT
3679 rq->nr_switches++;
3680 rq->curr = next;
3681 ++*switch_count;
3682
dd41f596 3683 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3684 /*
3685 * the context switch might have flipped the stack from under
3686 * us, hence refresh the local variables.
3687 */
3688 cpu = smp_processor_id();
3689 rq = cpu_rq(cpu);
1da177e4 3690 } else
05fa785c 3691 raw_spin_unlock_irq(&rq->lock);
1da177e4 3692
3f029d3c 3693 post_schedule(rq);
1da177e4 3694
6d558c3a
YZ
3695 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3696 prev = rq->curr;
3697 switch_count = &prev->nivcsw;
1da177e4 3698 goto need_resched_nonpreemptible;
6d558c3a 3699 }
8f4d37ec 3700
1da177e4 3701 preempt_enable_no_resched();
ff743345 3702 if (need_resched())
1da177e4
LT
3703 goto need_resched;
3704}
1da177e4
LT
3705EXPORT_SYMBOL(schedule);
3706
c08f7829 3707#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3708/*
3709 * Look out! "owner" is an entirely speculative pointer
3710 * access and not reliable.
3711 */
3712int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3713{
3714 unsigned int cpu;
3715 struct rq *rq;
3716
3717 if (!sched_feat(OWNER_SPIN))
3718 return 0;
3719
3720#ifdef CONFIG_DEBUG_PAGEALLOC
3721 /*
3722 * Need to access the cpu field knowing that
3723 * DEBUG_PAGEALLOC could have unmapped it if
3724 * the mutex owner just released it and exited.
3725 */
3726 if (probe_kernel_address(&owner->cpu, cpu))
3727 goto out;
3728#else
3729 cpu = owner->cpu;
3730#endif
3731
3732 /*
3733 * Even if the access succeeded (likely case),
3734 * the cpu field may no longer be valid.
3735 */
3736 if (cpu >= nr_cpumask_bits)
3737 goto out;
3738
3739 /*
3740 * We need to validate that we can do a
3741 * get_cpu() and that we have the percpu area.
3742 */
3743 if (!cpu_online(cpu))
3744 goto out;
3745
3746 rq = cpu_rq(cpu);
3747
3748 for (;;) {
3749 /*
3750 * Owner changed, break to re-assess state.
3751 */
3752 if (lock->owner != owner)
3753 break;
3754
3755 /*
3756 * Is that owner really running on that cpu?
3757 */
3758 if (task_thread_info(rq->curr) != owner || need_resched())
3759 return 0;
3760
3761 cpu_relax();
3762 }
3763out:
3764 return 1;
3765}
3766#endif
3767
1da177e4
LT
3768#ifdef CONFIG_PREEMPT
3769/*
2ed6e34f 3770 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3771 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3772 * occur there and call schedule directly.
3773 */
3774asmlinkage void __sched preempt_schedule(void)
3775{
3776 struct thread_info *ti = current_thread_info();
6478d880 3777
1da177e4
LT
3778 /*
3779 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3780 * we do not want to preempt the current task. Just return..
1da177e4 3781 */
beed33a8 3782 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3783 return;
3784
3a5c359a
AK
3785 do {
3786 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3787 schedule();
3a5c359a 3788 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3789
3a5c359a
AK
3790 /*
3791 * Check again in case we missed a preemption opportunity
3792 * between schedule and now.
3793 */
3794 barrier();
5ed0cec0 3795 } while (need_resched());
1da177e4 3796}
1da177e4
LT
3797EXPORT_SYMBOL(preempt_schedule);
3798
3799/*
2ed6e34f 3800 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3801 * off of irq context.
3802 * Note, that this is called and return with irqs disabled. This will
3803 * protect us against recursive calling from irq.
3804 */
3805asmlinkage void __sched preempt_schedule_irq(void)
3806{
3807 struct thread_info *ti = current_thread_info();
6478d880 3808
2ed6e34f 3809 /* Catch callers which need to be fixed */
1da177e4
LT
3810 BUG_ON(ti->preempt_count || !irqs_disabled());
3811
3a5c359a
AK
3812 do {
3813 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3814 local_irq_enable();
3815 schedule();
3816 local_irq_disable();
3a5c359a 3817 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3818
3a5c359a
AK
3819 /*
3820 * Check again in case we missed a preemption opportunity
3821 * between schedule and now.
3822 */
3823 barrier();
5ed0cec0 3824 } while (need_resched());
1da177e4
LT
3825}
3826
3827#endif /* CONFIG_PREEMPT */
3828
63859d4f 3829int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3830 void *key)
1da177e4 3831{
63859d4f 3832 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3833}
1da177e4
LT
3834EXPORT_SYMBOL(default_wake_function);
3835
3836/*
41a2d6cf
IM
3837 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3838 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3839 * number) then we wake all the non-exclusive tasks and one exclusive task.
3840 *
3841 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3842 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3843 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3844 */
78ddb08f 3845static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3846 int nr_exclusive, int wake_flags, void *key)
1da177e4 3847{
2e45874c 3848 wait_queue_t *curr, *next;
1da177e4 3849
2e45874c 3850 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3851 unsigned flags = curr->flags;
3852
63859d4f 3853 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3854 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3855 break;
3856 }
3857}
3858
3859/**
3860 * __wake_up - wake up threads blocked on a waitqueue.
3861 * @q: the waitqueue
3862 * @mode: which threads
3863 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3864 * @key: is directly passed to the wakeup function
50fa610a
DH
3865 *
3866 * It may be assumed that this function implies a write memory barrier before
3867 * changing the task state if and only if any tasks are woken up.
1da177e4 3868 */
7ad5b3a5 3869void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3870 int nr_exclusive, void *key)
1da177e4
LT
3871{
3872 unsigned long flags;
3873
3874 spin_lock_irqsave(&q->lock, flags);
3875 __wake_up_common(q, mode, nr_exclusive, 0, key);
3876 spin_unlock_irqrestore(&q->lock, flags);
3877}
1da177e4
LT
3878EXPORT_SYMBOL(__wake_up);
3879
3880/*
3881 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3882 */
7ad5b3a5 3883void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3884{
3885 __wake_up_common(q, mode, 1, 0, NULL);
3886}
3887
4ede816a
DL
3888void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3889{
3890 __wake_up_common(q, mode, 1, 0, key);
3891}
3892
1da177e4 3893/**
4ede816a 3894 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3895 * @q: the waitqueue
3896 * @mode: which threads
3897 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3898 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3899 *
3900 * The sync wakeup differs that the waker knows that it will schedule
3901 * away soon, so while the target thread will be woken up, it will not
3902 * be migrated to another CPU - ie. the two threads are 'synchronized'
3903 * with each other. This can prevent needless bouncing between CPUs.
3904 *
3905 * On UP it can prevent extra preemption.
50fa610a
DH
3906 *
3907 * It may be assumed that this function implies a write memory barrier before
3908 * changing the task state if and only if any tasks are woken up.
1da177e4 3909 */
4ede816a
DL
3910void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3911 int nr_exclusive, void *key)
1da177e4
LT
3912{
3913 unsigned long flags;
7d478721 3914 int wake_flags = WF_SYNC;
1da177e4
LT
3915
3916 if (unlikely(!q))
3917 return;
3918
3919 if (unlikely(!nr_exclusive))
7d478721 3920 wake_flags = 0;
1da177e4
LT
3921
3922 spin_lock_irqsave(&q->lock, flags);
7d478721 3923 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3924 spin_unlock_irqrestore(&q->lock, flags);
3925}
4ede816a
DL
3926EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3927
3928/*
3929 * __wake_up_sync - see __wake_up_sync_key()
3930 */
3931void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3932{
3933 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3934}
1da177e4
LT
3935EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3936
65eb3dc6
KD
3937/**
3938 * complete: - signals a single thread waiting on this completion
3939 * @x: holds the state of this particular completion
3940 *
3941 * This will wake up a single thread waiting on this completion. Threads will be
3942 * awakened in the same order in which they were queued.
3943 *
3944 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3945 *
3946 * It may be assumed that this function implies a write memory barrier before
3947 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3948 */
b15136e9 3949void complete(struct completion *x)
1da177e4
LT
3950{
3951 unsigned long flags;
3952
3953 spin_lock_irqsave(&x->wait.lock, flags);
3954 x->done++;
d9514f6c 3955 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3956 spin_unlock_irqrestore(&x->wait.lock, flags);
3957}
3958EXPORT_SYMBOL(complete);
3959
65eb3dc6
KD
3960/**
3961 * complete_all: - signals all threads waiting on this completion
3962 * @x: holds the state of this particular completion
3963 *
3964 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3965 *
3966 * It may be assumed that this function implies a write memory barrier before
3967 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3968 */
b15136e9 3969void complete_all(struct completion *x)
1da177e4
LT
3970{
3971 unsigned long flags;
3972
3973 spin_lock_irqsave(&x->wait.lock, flags);
3974 x->done += UINT_MAX/2;
d9514f6c 3975 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3976 spin_unlock_irqrestore(&x->wait.lock, flags);
3977}
3978EXPORT_SYMBOL(complete_all);
3979
8cbbe86d
AK
3980static inline long __sched
3981do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3982{
1da177e4
LT
3983 if (!x->done) {
3984 DECLARE_WAITQUEUE(wait, current);
3985
3986 wait.flags |= WQ_FLAG_EXCLUSIVE;
3987 __add_wait_queue_tail(&x->wait, &wait);
3988 do {
94d3d824 3989 if (signal_pending_state(state, current)) {
ea71a546
ON
3990 timeout = -ERESTARTSYS;
3991 break;
8cbbe86d
AK
3992 }
3993 __set_current_state(state);
1da177e4
LT
3994 spin_unlock_irq(&x->wait.lock);
3995 timeout = schedule_timeout(timeout);
3996 spin_lock_irq(&x->wait.lock);
ea71a546 3997 } while (!x->done && timeout);
1da177e4 3998 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3999 if (!x->done)
4000 return timeout;
1da177e4
LT
4001 }
4002 x->done--;
ea71a546 4003 return timeout ?: 1;
1da177e4 4004}
1da177e4 4005
8cbbe86d
AK
4006static long __sched
4007wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4008{
1da177e4
LT
4009 might_sleep();
4010
4011 spin_lock_irq(&x->wait.lock);
8cbbe86d 4012 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4013 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4014 return timeout;
4015}
1da177e4 4016
65eb3dc6
KD
4017/**
4018 * wait_for_completion: - waits for completion of a task
4019 * @x: holds the state of this particular completion
4020 *
4021 * This waits to be signaled for completion of a specific task. It is NOT
4022 * interruptible and there is no timeout.
4023 *
4024 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4025 * and interrupt capability. Also see complete().
4026 */
b15136e9 4027void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4028{
4029 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4030}
8cbbe86d 4031EXPORT_SYMBOL(wait_for_completion);
1da177e4 4032
65eb3dc6
KD
4033/**
4034 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4035 * @x: holds the state of this particular completion
4036 * @timeout: timeout value in jiffies
4037 *
4038 * This waits for either a completion of a specific task to be signaled or for a
4039 * specified timeout to expire. The timeout is in jiffies. It is not
4040 * interruptible.
4041 */
b15136e9 4042unsigned long __sched
8cbbe86d 4043wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4044{
8cbbe86d 4045 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4046}
8cbbe86d 4047EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4048
65eb3dc6
KD
4049/**
4050 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4051 * @x: holds the state of this particular completion
4052 *
4053 * This waits for completion of a specific task to be signaled. It is
4054 * interruptible.
4055 */
8cbbe86d 4056int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4057{
51e97990
AK
4058 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4059 if (t == -ERESTARTSYS)
4060 return t;
4061 return 0;
0fec171c 4062}
8cbbe86d 4063EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4064
65eb3dc6
KD
4065/**
4066 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4067 * @x: holds the state of this particular completion
4068 * @timeout: timeout value in jiffies
4069 *
4070 * This waits for either a completion of a specific task to be signaled or for a
4071 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4072 */
b15136e9 4073unsigned long __sched
8cbbe86d
AK
4074wait_for_completion_interruptible_timeout(struct completion *x,
4075 unsigned long timeout)
0fec171c 4076{
8cbbe86d 4077 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4078}
8cbbe86d 4079EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4080
65eb3dc6
KD
4081/**
4082 * wait_for_completion_killable: - waits for completion of a task (killable)
4083 * @x: holds the state of this particular completion
4084 *
4085 * This waits to be signaled for completion of a specific task. It can be
4086 * interrupted by a kill signal.
4087 */
009e577e
MW
4088int __sched wait_for_completion_killable(struct completion *x)
4089{
4090 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4091 if (t == -ERESTARTSYS)
4092 return t;
4093 return 0;
4094}
4095EXPORT_SYMBOL(wait_for_completion_killable);
4096
be4de352
DC
4097/**
4098 * try_wait_for_completion - try to decrement a completion without blocking
4099 * @x: completion structure
4100 *
4101 * Returns: 0 if a decrement cannot be done without blocking
4102 * 1 if a decrement succeeded.
4103 *
4104 * If a completion is being used as a counting completion,
4105 * attempt to decrement the counter without blocking. This
4106 * enables us to avoid waiting if the resource the completion
4107 * is protecting is not available.
4108 */
4109bool try_wait_for_completion(struct completion *x)
4110{
7539a3b3 4111 unsigned long flags;
be4de352
DC
4112 int ret = 1;
4113
7539a3b3 4114 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4115 if (!x->done)
4116 ret = 0;
4117 else
4118 x->done--;
7539a3b3 4119 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4120 return ret;
4121}
4122EXPORT_SYMBOL(try_wait_for_completion);
4123
4124/**
4125 * completion_done - Test to see if a completion has any waiters
4126 * @x: completion structure
4127 *
4128 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4129 * 1 if there are no waiters.
4130 *
4131 */
4132bool completion_done(struct completion *x)
4133{
7539a3b3 4134 unsigned long flags;
be4de352
DC
4135 int ret = 1;
4136
7539a3b3 4137 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4138 if (!x->done)
4139 ret = 0;
7539a3b3 4140 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4141 return ret;
4142}
4143EXPORT_SYMBOL(completion_done);
4144
8cbbe86d
AK
4145static long __sched
4146sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4147{
0fec171c
IM
4148 unsigned long flags;
4149 wait_queue_t wait;
4150
4151 init_waitqueue_entry(&wait, current);
1da177e4 4152
8cbbe86d 4153 __set_current_state(state);
1da177e4 4154
8cbbe86d
AK
4155 spin_lock_irqsave(&q->lock, flags);
4156 __add_wait_queue(q, &wait);
4157 spin_unlock(&q->lock);
4158 timeout = schedule_timeout(timeout);
4159 spin_lock_irq(&q->lock);
4160 __remove_wait_queue(q, &wait);
4161 spin_unlock_irqrestore(&q->lock, flags);
4162
4163 return timeout;
4164}
4165
4166void __sched interruptible_sleep_on(wait_queue_head_t *q)
4167{
4168 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4169}
1da177e4
LT
4170EXPORT_SYMBOL(interruptible_sleep_on);
4171
0fec171c 4172long __sched
95cdf3b7 4173interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4174{
8cbbe86d 4175 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4176}
1da177e4
LT
4177EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4178
0fec171c 4179void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4180{
8cbbe86d 4181 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4182}
1da177e4
LT
4183EXPORT_SYMBOL(sleep_on);
4184
0fec171c 4185long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4186{
8cbbe86d 4187 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4188}
1da177e4
LT
4189EXPORT_SYMBOL(sleep_on_timeout);
4190
b29739f9
IM
4191#ifdef CONFIG_RT_MUTEXES
4192
4193/*
4194 * rt_mutex_setprio - set the current priority of a task
4195 * @p: task
4196 * @prio: prio value (kernel-internal form)
4197 *
4198 * This function changes the 'effective' priority of a task. It does
4199 * not touch ->normal_prio like __setscheduler().
4200 *
4201 * Used by the rt_mutex code to implement priority inheritance logic.
4202 */
36c8b586 4203void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4204{
4205 unsigned long flags;
83b699ed 4206 int oldprio, on_rq, running;
70b97a7f 4207 struct rq *rq;
83ab0aa0 4208 const struct sched_class *prev_class;
b29739f9
IM
4209
4210 BUG_ON(prio < 0 || prio > MAX_PRIO);
4211
4212 rq = task_rq_lock(p, &flags);
4213
d5f9f942 4214 oldprio = p->prio;
83ab0aa0 4215 prev_class = p->sched_class;
dd41f596 4216 on_rq = p->se.on_rq;
051a1d1a 4217 running = task_current(rq, p);
0e1f3483 4218 if (on_rq)
69be72c1 4219 dequeue_task(rq, p, 0);
0e1f3483
HS
4220 if (running)
4221 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4222
4223 if (rt_prio(prio))
4224 p->sched_class = &rt_sched_class;
4225 else
4226 p->sched_class = &fair_sched_class;
4227
b29739f9
IM
4228 p->prio = prio;
4229
0e1f3483
HS
4230 if (running)
4231 p->sched_class->set_curr_task(rq);
dd41f596 4232 if (on_rq) {
371fd7e7 4233 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4234
4235 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4236 }
4237 task_rq_unlock(rq, &flags);
4238}
4239
4240#endif
4241
36c8b586 4242void set_user_nice(struct task_struct *p, long nice)
1da177e4 4243{
dd41f596 4244 int old_prio, delta, on_rq;
1da177e4 4245 unsigned long flags;
70b97a7f 4246 struct rq *rq;
1da177e4
LT
4247
4248 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4249 return;
4250 /*
4251 * We have to be careful, if called from sys_setpriority(),
4252 * the task might be in the middle of scheduling on another CPU.
4253 */
4254 rq = task_rq_lock(p, &flags);
4255 /*
4256 * The RT priorities are set via sched_setscheduler(), but we still
4257 * allow the 'normal' nice value to be set - but as expected
4258 * it wont have any effect on scheduling until the task is
dd41f596 4259 * SCHED_FIFO/SCHED_RR:
1da177e4 4260 */
e05606d3 4261 if (task_has_rt_policy(p)) {
1da177e4
LT
4262 p->static_prio = NICE_TO_PRIO(nice);
4263 goto out_unlock;
4264 }
dd41f596 4265 on_rq = p->se.on_rq;
c09595f6 4266 if (on_rq)
69be72c1 4267 dequeue_task(rq, p, 0);
1da177e4 4268
1da177e4 4269 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4270 set_load_weight(p);
b29739f9
IM
4271 old_prio = p->prio;
4272 p->prio = effective_prio(p);
4273 delta = p->prio - old_prio;
1da177e4 4274
dd41f596 4275 if (on_rq) {
371fd7e7 4276 enqueue_task(rq, p, 0);
1da177e4 4277 /*
d5f9f942
AM
4278 * If the task increased its priority or is running and
4279 * lowered its priority, then reschedule its CPU:
1da177e4 4280 */
d5f9f942 4281 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4282 resched_task(rq->curr);
4283 }
4284out_unlock:
4285 task_rq_unlock(rq, &flags);
4286}
1da177e4
LT
4287EXPORT_SYMBOL(set_user_nice);
4288
e43379f1
MM
4289/*
4290 * can_nice - check if a task can reduce its nice value
4291 * @p: task
4292 * @nice: nice value
4293 */
36c8b586 4294int can_nice(const struct task_struct *p, const int nice)
e43379f1 4295{
024f4747
MM
4296 /* convert nice value [19,-20] to rlimit style value [1,40] */
4297 int nice_rlim = 20 - nice;
48f24c4d 4298
78d7d407 4299 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4300 capable(CAP_SYS_NICE));
4301}
4302
1da177e4
LT
4303#ifdef __ARCH_WANT_SYS_NICE
4304
4305/*
4306 * sys_nice - change the priority of the current process.
4307 * @increment: priority increment
4308 *
4309 * sys_setpriority is a more generic, but much slower function that
4310 * does similar things.
4311 */
5add95d4 4312SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4313{
48f24c4d 4314 long nice, retval;
1da177e4
LT
4315
4316 /*
4317 * Setpriority might change our priority at the same moment.
4318 * We don't have to worry. Conceptually one call occurs first
4319 * and we have a single winner.
4320 */
e43379f1
MM
4321 if (increment < -40)
4322 increment = -40;
1da177e4
LT
4323 if (increment > 40)
4324 increment = 40;
4325
2b8f836f 4326 nice = TASK_NICE(current) + increment;
1da177e4
LT
4327 if (nice < -20)
4328 nice = -20;
4329 if (nice > 19)
4330 nice = 19;
4331
e43379f1
MM
4332 if (increment < 0 && !can_nice(current, nice))
4333 return -EPERM;
4334
1da177e4
LT
4335 retval = security_task_setnice(current, nice);
4336 if (retval)
4337 return retval;
4338
4339 set_user_nice(current, nice);
4340 return 0;
4341}
4342
4343#endif
4344
4345/**
4346 * task_prio - return the priority value of a given task.
4347 * @p: the task in question.
4348 *
4349 * This is the priority value as seen by users in /proc.
4350 * RT tasks are offset by -200. Normal tasks are centered
4351 * around 0, value goes from -16 to +15.
4352 */
36c8b586 4353int task_prio(const struct task_struct *p)
1da177e4
LT
4354{
4355 return p->prio - MAX_RT_PRIO;
4356}
4357
4358/**
4359 * task_nice - return the nice value of a given task.
4360 * @p: the task in question.
4361 */
36c8b586 4362int task_nice(const struct task_struct *p)
1da177e4
LT
4363{
4364 return TASK_NICE(p);
4365}
150d8bed 4366EXPORT_SYMBOL(task_nice);
1da177e4
LT
4367
4368/**
4369 * idle_cpu - is a given cpu idle currently?
4370 * @cpu: the processor in question.
4371 */
4372int idle_cpu(int cpu)
4373{
4374 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4375}
4376
1da177e4
LT
4377/**
4378 * idle_task - return the idle task for a given cpu.
4379 * @cpu: the processor in question.
4380 */
36c8b586 4381struct task_struct *idle_task(int cpu)
1da177e4
LT
4382{
4383 return cpu_rq(cpu)->idle;
4384}
4385
4386/**
4387 * find_process_by_pid - find a process with a matching PID value.
4388 * @pid: the pid in question.
4389 */
a9957449 4390static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4391{
228ebcbe 4392 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4393}
4394
4395/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4396static void
4397__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4398{
dd41f596 4399 BUG_ON(p->se.on_rq);
48f24c4d 4400
1da177e4
LT
4401 p->policy = policy;
4402 p->rt_priority = prio;
b29739f9
IM
4403 p->normal_prio = normal_prio(p);
4404 /* we are holding p->pi_lock already */
4405 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4406 if (rt_prio(p->prio))
4407 p->sched_class = &rt_sched_class;
4408 else
4409 p->sched_class = &fair_sched_class;
2dd73a4f 4410 set_load_weight(p);
1da177e4
LT
4411}
4412
c69e8d9c
DH
4413/*
4414 * check the target process has a UID that matches the current process's
4415 */
4416static bool check_same_owner(struct task_struct *p)
4417{
4418 const struct cred *cred = current_cred(), *pcred;
4419 bool match;
4420
4421 rcu_read_lock();
4422 pcred = __task_cred(p);
4423 match = (cred->euid == pcred->euid ||
4424 cred->euid == pcred->uid);
4425 rcu_read_unlock();
4426 return match;
4427}
4428
961ccddd
RR
4429static int __sched_setscheduler(struct task_struct *p, int policy,
4430 struct sched_param *param, bool user)
1da177e4 4431{
83b699ed 4432 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4433 unsigned long flags;
83ab0aa0 4434 const struct sched_class *prev_class;
70b97a7f 4435 struct rq *rq;
ca94c442 4436 int reset_on_fork;
1da177e4 4437
66e5393a
SR
4438 /* may grab non-irq protected spin_locks */
4439 BUG_ON(in_interrupt());
1da177e4
LT
4440recheck:
4441 /* double check policy once rq lock held */
ca94c442
LP
4442 if (policy < 0) {
4443 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4444 policy = oldpolicy = p->policy;
ca94c442
LP
4445 } else {
4446 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4447 policy &= ~SCHED_RESET_ON_FORK;
4448
4449 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4450 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4451 policy != SCHED_IDLE)
4452 return -EINVAL;
4453 }
4454
1da177e4
LT
4455 /*
4456 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4457 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4458 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4459 */
4460 if (param->sched_priority < 0 ||
95cdf3b7 4461 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4462 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4463 return -EINVAL;
e05606d3 4464 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4465 return -EINVAL;
4466
37e4ab3f
OC
4467 /*
4468 * Allow unprivileged RT tasks to decrease priority:
4469 */
961ccddd 4470 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4471 if (rt_policy(policy)) {
8dc3e909 4472 unsigned long rlim_rtprio;
8dc3e909
ON
4473
4474 if (!lock_task_sighand(p, &flags))
4475 return -ESRCH;
78d7d407 4476 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4477 unlock_task_sighand(p, &flags);
4478
4479 /* can't set/change the rt policy */
4480 if (policy != p->policy && !rlim_rtprio)
4481 return -EPERM;
4482
4483 /* can't increase priority */
4484 if (param->sched_priority > p->rt_priority &&
4485 param->sched_priority > rlim_rtprio)
4486 return -EPERM;
4487 }
dd41f596
IM
4488 /*
4489 * Like positive nice levels, dont allow tasks to
4490 * move out of SCHED_IDLE either:
4491 */
4492 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4493 return -EPERM;
5fe1d75f 4494
37e4ab3f 4495 /* can't change other user's priorities */
c69e8d9c 4496 if (!check_same_owner(p))
37e4ab3f 4497 return -EPERM;
ca94c442
LP
4498
4499 /* Normal users shall not reset the sched_reset_on_fork flag */
4500 if (p->sched_reset_on_fork && !reset_on_fork)
4501 return -EPERM;
37e4ab3f 4502 }
1da177e4 4503
725aad24 4504 if (user) {
b68aa230 4505#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4506 /*
4507 * Do not allow realtime tasks into groups that have no runtime
4508 * assigned.
4509 */
9a7e0b18
PZ
4510 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4511 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4512 return -EPERM;
b68aa230
PZ
4513#endif
4514
725aad24
JF
4515 retval = security_task_setscheduler(p, policy, param);
4516 if (retval)
4517 return retval;
4518 }
4519
b29739f9
IM
4520 /*
4521 * make sure no PI-waiters arrive (or leave) while we are
4522 * changing the priority of the task:
4523 */
1d615482 4524 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4525 /*
4526 * To be able to change p->policy safely, the apropriate
4527 * runqueue lock must be held.
4528 */
b29739f9 4529 rq = __task_rq_lock(p);
1da177e4
LT
4530 /* recheck policy now with rq lock held */
4531 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4532 policy = oldpolicy = -1;
b29739f9 4533 __task_rq_unlock(rq);
1d615482 4534 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4535 goto recheck;
4536 }
dd41f596 4537 on_rq = p->se.on_rq;
051a1d1a 4538 running = task_current(rq, p);
0e1f3483 4539 if (on_rq)
2e1cb74a 4540 deactivate_task(rq, p, 0);
0e1f3483
HS
4541 if (running)
4542 p->sched_class->put_prev_task(rq, p);
f6b53205 4543
ca94c442
LP
4544 p->sched_reset_on_fork = reset_on_fork;
4545
1da177e4 4546 oldprio = p->prio;
83ab0aa0 4547 prev_class = p->sched_class;
dd41f596 4548 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4549
0e1f3483
HS
4550 if (running)
4551 p->sched_class->set_curr_task(rq);
dd41f596
IM
4552 if (on_rq) {
4553 activate_task(rq, p, 0);
cb469845
SR
4554
4555 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4556 }
b29739f9 4557 __task_rq_unlock(rq);
1d615482 4558 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4559
95e02ca9
TG
4560 rt_mutex_adjust_pi(p);
4561
1da177e4
LT
4562 return 0;
4563}
961ccddd
RR
4564
4565/**
4566 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4567 * @p: the task in question.
4568 * @policy: new policy.
4569 * @param: structure containing the new RT priority.
4570 *
4571 * NOTE that the task may be already dead.
4572 */
4573int sched_setscheduler(struct task_struct *p, int policy,
4574 struct sched_param *param)
4575{
4576 return __sched_setscheduler(p, policy, param, true);
4577}
1da177e4
LT
4578EXPORT_SYMBOL_GPL(sched_setscheduler);
4579
961ccddd
RR
4580/**
4581 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4582 * @p: the task in question.
4583 * @policy: new policy.
4584 * @param: structure containing the new RT priority.
4585 *
4586 * Just like sched_setscheduler, only don't bother checking if the
4587 * current context has permission. For example, this is needed in
4588 * stop_machine(): we create temporary high priority worker threads,
4589 * but our caller might not have that capability.
4590 */
4591int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4592 struct sched_param *param)
4593{
4594 return __sched_setscheduler(p, policy, param, false);
4595}
4596
95cdf3b7
IM
4597static int
4598do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4599{
1da177e4
LT
4600 struct sched_param lparam;
4601 struct task_struct *p;
36c8b586 4602 int retval;
1da177e4
LT
4603
4604 if (!param || pid < 0)
4605 return -EINVAL;
4606 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4607 return -EFAULT;
5fe1d75f
ON
4608
4609 rcu_read_lock();
4610 retval = -ESRCH;
1da177e4 4611 p = find_process_by_pid(pid);
5fe1d75f
ON
4612 if (p != NULL)
4613 retval = sched_setscheduler(p, policy, &lparam);
4614 rcu_read_unlock();
36c8b586 4615
1da177e4
LT
4616 return retval;
4617}
4618
4619/**
4620 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4621 * @pid: the pid in question.
4622 * @policy: new policy.
4623 * @param: structure containing the new RT priority.
4624 */
5add95d4
HC
4625SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4626 struct sched_param __user *, param)
1da177e4 4627{
c21761f1
JB
4628 /* negative values for policy are not valid */
4629 if (policy < 0)
4630 return -EINVAL;
4631
1da177e4
LT
4632 return do_sched_setscheduler(pid, policy, param);
4633}
4634
4635/**
4636 * sys_sched_setparam - set/change the RT priority of a thread
4637 * @pid: the pid in question.
4638 * @param: structure containing the new RT priority.
4639 */
5add95d4 4640SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4641{
4642 return do_sched_setscheduler(pid, -1, param);
4643}
4644
4645/**
4646 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4647 * @pid: the pid in question.
4648 */
5add95d4 4649SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4650{
36c8b586 4651 struct task_struct *p;
3a5c359a 4652 int retval;
1da177e4
LT
4653
4654 if (pid < 0)
3a5c359a 4655 return -EINVAL;
1da177e4
LT
4656
4657 retval = -ESRCH;
5fe85be0 4658 rcu_read_lock();
1da177e4
LT
4659 p = find_process_by_pid(pid);
4660 if (p) {
4661 retval = security_task_getscheduler(p);
4662 if (!retval)
ca94c442
LP
4663 retval = p->policy
4664 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4665 }
5fe85be0 4666 rcu_read_unlock();
1da177e4
LT
4667 return retval;
4668}
4669
4670/**
ca94c442 4671 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4672 * @pid: the pid in question.
4673 * @param: structure containing the RT priority.
4674 */
5add95d4 4675SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4676{
4677 struct sched_param lp;
36c8b586 4678 struct task_struct *p;
3a5c359a 4679 int retval;
1da177e4
LT
4680
4681 if (!param || pid < 0)
3a5c359a 4682 return -EINVAL;
1da177e4 4683
5fe85be0 4684 rcu_read_lock();
1da177e4
LT
4685 p = find_process_by_pid(pid);
4686 retval = -ESRCH;
4687 if (!p)
4688 goto out_unlock;
4689
4690 retval = security_task_getscheduler(p);
4691 if (retval)
4692 goto out_unlock;
4693
4694 lp.sched_priority = p->rt_priority;
5fe85be0 4695 rcu_read_unlock();
1da177e4
LT
4696
4697 /*
4698 * This one might sleep, we cannot do it with a spinlock held ...
4699 */
4700 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4701
1da177e4
LT
4702 return retval;
4703
4704out_unlock:
5fe85be0 4705 rcu_read_unlock();
1da177e4
LT
4706 return retval;
4707}
4708
96f874e2 4709long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4710{
5a16f3d3 4711 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4712 struct task_struct *p;
4713 int retval;
1da177e4 4714
95402b38 4715 get_online_cpus();
23f5d142 4716 rcu_read_lock();
1da177e4
LT
4717
4718 p = find_process_by_pid(pid);
4719 if (!p) {
23f5d142 4720 rcu_read_unlock();
95402b38 4721 put_online_cpus();
1da177e4
LT
4722 return -ESRCH;
4723 }
4724
23f5d142 4725 /* Prevent p going away */
1da177e4 4726 get_task_struct(p);
23f5d142 4727 rcu_read_unlock();
1da177e4 4728
5a16f3d3
RR
4729 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4730 retval = -ENOMEM;
4731 goto out_put_task;
4732 }
4733 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4734 retval = -ENOMEM;
4735 goto out_free_cpus_allowed;
4736 }
1da177e4 4737 retval = -EPERM;
c69e8d9c 4738 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4739 goto out_unlock;
4740
e7834f8f
DQ
4741 retval = security_task_setscheduler(p, 0, NULL);
4742 if (retval)
4743 goto out_unlock;
4744
5a16f3d3
RR
4745 cpuset_cpus_allowed(p, cpus_allowed);
4746 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4747 again:
5a16f3d3 4748 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4749
8707d8b8 4750 if (!retval) {
5a16f3d3
RR
4751 cpuset_cpus_allowed(p, cpus_allowed);
4752 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4753 /*
4754 * We must have raced with a concurrent cpuset
4755 * update. Just reset the cpus_allowed to the
4756 * cpuset's cpus_allowed
4757 */
5a16f3d3 4758 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4759 goto again;
4760 }
4761 }
1da177e4 4762out_unlock:
5a16f3d3
RR
4763 free_cpumask_var(new_mask);
4764out_free_cpus_allowed:
4765 free_cpumask_var(cpus_allowed);
4766out_put_task:
1da177e4 4767 put_task_struct(p);
95402b38 4768 put_online_cpus();
1da177e4
LT
4769 return retval;
4770}
4771
4772static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4773 struct cpumask *new_mask)
1da177e4 4774{
96f874e2
RR
4775 if (len < cpumask_size())
4776 cpumask_clear(new_mask);
4777 else if (len > cpumask_size())
4778 len = cpumask_size();
4779
1da177e4
LT
4780 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4781}
4782
4783/**
4784 * sys_sched_setaffinity - set the cpu affinity of a process
4785 * @pid: pid of the process
4786 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4787 * @user_mask_ptr: user-space pointer to the new cpu mask
4788 */
5add95d4
HC
4789SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4790 unsigned long __user *, user_mask_ptr)
1da177e4 4791{
5a16f3d3 4792 cpumask_var_t new_mask;
1da177e4
LT
4793 int retval;
4794
5a16f3d3
RR
4795 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4796 return -ENOMEM;
1da177e4 4797
5a16f3d3
RR
4798 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4799 if (retval == 0)
4800 retval = sched_setaffinity(pid, new_mask);
4801 free_cpumask_var(new_mask);
4802 return retval;
1da177e4
LT
4803}
4804
96f874e2 4805long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4806{
36c8b586 4807 struct task_struct *p;
31605683
TG
4808 unsigned long flags;
4809 struct rq *rq;
1da177e4 4810 int retval;
1da177e4 4811
95402b38 4812 get_online_cpus();
23f5d142 4813 rcu_read_lock();
1da177e4
LT
4814
4815 retval = -ESRCH;
4816 p = find_process_by_pid(pid);
4817 if (!p)
4818 goto out_unlock;
4819
e7834f8f
DQ
4820 retval = security_task_getscheduler(p);
4821 if (retval)
4822 goto out_unlock;
4823
31605683 4824 rq = task_rq_lock(p, &flags);
96f874e2 4825 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4826 task_rq_unlock(rq, &flags);
1da177e4
LT
4827
4828out_unlock:
23f5d142 4829 rcu_read_unlock();
95402b38 4830 put_online_cpus();
1da177e4 4831
9531b62f 4832 return retval;
1da177e4
LT
4833}
4834
4835/**
4836 * sys_sched_getaffinity - get the cpu affinity of a process
4837 * @pid: pid of the process
4838 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4839 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4840 */
5add95d4
HC
4841SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4842 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4843{
4844 int ret;
f17c8607 4845 cpumask_var_t mask;
1da177e4 4846
84fba5ec 4847 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4848 return -EINVAL;
4849 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4850 return -EINVAL;
4851
f17c8607
RR
4852 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4853 return -ENOMEM;
1da177e4 4854
f17c8607
RR
4855 ret = sched_getaffinity(pid, mask);
4856 if (ret == 0) {
8bc037fb 4857 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4858
4859 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4860 ret = -EFAULT;
4861 else
cd3d8031 4862 ret = retlen;
f17c8607
RR
4863 }
4864 free_cpumask_var(mask);
1da177e4 4865
f17c8607 4866 return ret;
1da177e4
LT
4867}
4868
4869/**
4870 * sys_sched_yield - yield the current processor to other threads.
4871 *
dd41f596
IM
4872 * This function yields the current CPU to other tasks. If there are no
4873 * other threads running on this CPU then this function will return.
1da177e4 4874 */
5add95d4 4875SYSCALL_DEFINE0(sched_yield)
1da177e4 4876{
70b97a7f 4877 struct rq *rq = this_rq_lock();
1da177e4 4878
2d72376b 4879 schedstat_inc(rq, yld_count);
4530d7ab 4880 current->sched_class->yield_task(rq);
1da177e4
LT
4881
4882 /*
4883 * Since we are going to call schedule() anyway, there's
4884 * no need to preempt or enable interrupts:
4885 */
4886 __release(rq->lock);
8a25d5de 4887 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4888 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4889 preempt_enable_no_resched();
4890
4891 schedule();
4892
4893 return 0;
4894}
4895
d86ee480
PZ
4896static inline int should_resched(void)
4897{
4898 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4899}
4900
e7b38404 4901static void __cond_resched(void)
1da177e4 4902{
e7aaaa69
FW
4903 add_preempt_count(PREEMPT_ACTIVE);
4904 schedule();
4905 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4906}
4907
02b67cc3 4908int __sched _cond_resched(void)
1da177e4 4909{
d86ee480 4910 if (should_resched()) {
1da177e4
LT
4911 __cond_resched();
4912 return 1;
4913 }
4914 return 0;
4915}
02b67cc3 4916EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4917
4918/*
613afbf8 4919 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4920 * call schedule, and on return reacquire the lock.
4921 *
41a2d6cf 4922 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4923 * operations here to prevent schedule() from being called twice (once via
4924 * spin_unlock(), once by hand).
4925 */
613afbf8 4926int __cond_resched_lock(spinlock_t *lock)
1da177e4 4927{
d86ee480 4928 int resched = should_resched();
6df3cecb
JK
4929 int ret = 0;
4930
f607c668
PZ
4931 lockdep_assert_held(lock);
4932
95c354fe 4933 if (spin_needbreak(lock) || resched) {
1da177e4 4934 spin_unlock(lock);
d86ee480 4935 if (resched)
95c354fe
NP
4936 __cond_resched();
4937 else
4938 cpu_relax();
6df3cecb 4939 ret = 1;
1da177e4 4940 spin_lock(lock);
1da177e4 4941 }
6df3cecb 4942 return ret;
1da177e4 4943}
613afbf8 4944EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4945
613afbf8 4946int __sched __cond_resched_softirq(void)
1da177e4
LT
4947{
4948 BUG_ON(!in_softirq());
4949
d86ee480 4950 if (should_resched()) {
98d82567 4951 local_bh_enable();
1da177e4
LT
4952 __cond_resched();
4953 local_bh_disable();
4954 return 1;
4955 }
4956 return 0;
4957}
613afbf8 4958EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4959
1da177e4
LT
4960/**
4961 * yield - yield the current processor to other threads.
4962 *
72fd4a35 4963 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4964 * thread runnable and calls sys_sched_yield().
4965 */
4966void __sched yield(void)
4967{
4968 set_current_state(TASK_RUNNING);
4969 sys_sched_yield();
4970}
1da177e4
LT
4971EXPORT_SYMBOL(yield);
4972
4973/*
41a2d6cf 4974 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4975 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4976 */
4977void __sched io_schedule(void)
4978{
54d35f29 4979 struct rq *rq = raw_rq();
1da177e4 4980
0ff92245 4981 delayacct_blkio_start();
1da177e4 4982 atomic_inc(&rq->nr_iowait);
8f0dfc34 4983 current->in_iowait = 1;
1da177e4 4984 schedule();
8f0dfc34 4985 current->in_iowait = 0;
1da177e4 4986 atomic_dec(&rq->nr_iowait);
0ff92245 4987 delayacct_blkio_end();
1da177e4 4988}
1da177e4
LT
4989EXPORT_SYMBOL(io_schedule);
4990
4991long __sched io_schedule_timeout(long timeout)
4992{
54d35f29 4993 struct rq *rq = raw_rq();
1da177e4
LT
4994 long ret;
4995
0ff92245 4996 delayacct_blkio_start();
1da177e4 4997 atomic_inc(&rq->nr_iowait);
8f0dfc34 4998 current->in_iowait = 1;
1da177e4 4999 ret = schedule_timeout(timeout);
8f0dfc34 5000 current->in_iowait = 0;
1da177e4 5001 atomic_dec(&rq->nr_iowait);
0ff92245 5002 delayacct_blkio_end();
1da177e4
LT
5003 return ret;
5004}
5005
5006/**
5007 * sys_sched_get_priority_max - return maximum RT priority.
5008 * @policy: scheduling class.
5009 *
5010 * this syscall returns the maximum rt_priority that can be used
5011 * by a given scheduling class.
5012 */
5add95d4 5013SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5014{
5015 int ret = -EINVAL;
5016
5017 switch (policy) {
5018 case SCHED_FIFO:
5019 case SCHED_RR:
5020 ret = MAX_USER_RT_PRIO-1;
5021 break;
5022 case SCHED_NORMAL:
b0a9499c 5023 case SCHED_BATCH:
dd41f596 5024 case SCHED_IDLE:
1da177e4
LT
5025 ret = 0;
5026 break;
5027 }
5028 return ret;
5029}
5030
5031/**
5032 * sys_sched_get_priority_min - return minimum RT priority.
5033 * @policy: scheduling class.
5034 *
5035 * this syscall returns the minimum rt_priority that can be used
5036 * by a given scheduling class.
5037 */
5add95d4 5038SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5039{
5040 int ret = -EINVAL;
5041
5042 switch (policy) {
5043 case SCHED_FIFO:
5044 case SCHED_RR:
5045 ret = 1;
5046 break;
5047 case SCHED_NORMAL:
b0a9499c 5048 case SCHED_BATCH:
dd41f596 5049 case SCHED_IDLE:
1da177e4
LT
5050 ret = 0;
5051 }
5052 return ret;
5053}
5054
5055/**
5056 * sys_sched_rr_get_interval - return the default timeslice of a process.
5057 * @pid: pid of the process.
5058 * @interval: userspace pointer to the timeslice value.
5059 *
5060 * this syscall writes the default timeslice value of a given process
5061 * into the user-space timespec buffer. A value of '0' means infinity.
5062 */
17da2bd9 5063SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5064 struct timespec __user *, interval)
1da177e4 5065{
36c8b586 5066 struct task_struct *p;
a4ec24b4 5067 unsigned int time_slice;
dba091b9
TG
5068 unsigned long flags;
5069 struct rq *rq;
3a5c359a 5070 int retval;
1da177e4 5071 struct timespec t;
1da177e4
LT
5072
5073 if (pid < 0)
3a5c359a 5074 return -EINVAL;
1da177e4
LT
5075
5076 retval = -ESRCH;
1a551ae7 5077 rcu_read_lock();
1da177e4
LT
5078 p = find_process_by_pid(pid);
5079 if (!p)
5080 goto out_unlock;
5081
5082 retval = security_task_getscheduler(p);
5083 if (retval)
5084 goto out_unlock;
5085
dba091b9
TG
5086 rq = task_rq_lock(p, &flags);
5087 time_slice = p->sched_class->get_rr_interval(rq, p);
5088 task_rq_unlock(rq, &flags);
a4ec24b4 5089
1a551ae7 5090 rcu_read_unlock();
a4ec24b4 5091 jiffies_to_timespec(time_slice, &t);
1da177e4 5092 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5093 return retval;
3a5c359a 5094
1da177e4 5095out_unlock:
1a551ae7 5096 rcu_read_unlock();
1da177e4
LT
5097 return retval;
5098}
5099
7c731e0a 5100static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5101
82a1fcb9 5102void sched_show_task(struct task_struct *p)
1da177e4 5103{
1da177e4 5104 unsigned long free = 0;
36c8b586 5105 unsigned state;
1da177e4 5106
1da177e4 5107 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5108 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5109 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5110#if BITS_PER_LONG == 32
1da177e4 5111 if (state == TASK_RUNNING)
3df0fc5b 5112 printk(KERN_CONT " running ");
1da177e4 5113 else
3df0fc5b 5114 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5115#else
5116 if (state == TASK_RUNNING)
3df0fc5b 5117 printk(KERN_CONT " running task ");
1da177e4 5118 else
3df0fc5b 5119 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5120#endif
5121#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5122 free = stack_not_used(p);
1da177e4 5123#endif
3df0fc5b 5124 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5125 task_pid_nr(p), task_pid_nr(p->real_parent),
5126 (unsigned long)task_thread_info(p)->flags);
1da177e4 5127
5fb5e6de 5128 show_stack(p, NULL);
1da177e4
LT
5129}
5130
e59e2ae2 5131void show_state_filter(unsigned long state_filter)
1da177e4 5132{
36c8b586 5133 struct task_struct *g, *p;
1da177e4 5134
4bd77321 5135#if BITS_PER_LONG == 32
3df0fc5b
PZ
5136 printk(KERN_INFO
5137 " task PC stack pid father\n");
1da177e4 5138#else
3df0fc5b
PZ
5139 printk(KERN_INFO
5140 " task PC stack pid father\n");
1da177e4
LT
5141#endif
5142 read_lock(&tasklist_lock);
5143 do_each_thread(g, p) {
5144 /*
5145 * reset the NMI-timeout, listing all files on a slow
5146 * console might take alot of time:
5147 */
5148 touch_nmi_watchdog();
39bc89fd 5149 if (!state_filter || (p->state & state_filter))
82a1fcb9 5150 sched_show_task(p);
1da177e4
LT
5151 } while_each_thread(g, p);
5152
04c9167f
JF
5153 touch_all_softlockup_watchdogs();
5154
dd41f596
IM
5155#ifdef CONFIG_SCHED_DEBUG
5156 sysrq_sched_debug_show();
5157#endif
1da177e4 5158 read_unlock(&tasklist_lock);
e59e2ae2
IM
5159 /*
5160 * Only show locks if all tasks are dumped:
5161 */
93335a21 5162 if (!state_filter)
e59e2ae2 5163 debug_show_all_locks();
1da177e4
LT
5164}
5165
1df21055
IM
5166void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5167{
dd41f596 5168 idle->sched_class = &idle_sched_class;
1df21055
IM
5169}
5170
f340c0d1
IM
5171/**
5172 * init_idle - set up an idle thread for a given CPU
5173 * @idle: task in question
5174 * @cpu: cpu the idle task belongs to
5175 *
5176 * NOTE: this function does not set the idle thread's NEED_RESCHED
5177 * flag, to make booting more robust.
5178 */
5c1e1767 5179void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5180{
70b97a7f 5181 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5182 unsigned long flags;
5183
05fa785c 5184 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5185
dd41f596 5186 __sched_fork(idle);
06b83b5f 5187 idle->state = TASK_RUNNING;
dd41f596
IM
5188 idle->se.exec_start = sched_clock();
5189
96f874e2 5190 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5191 __set_task_cpu(idle, cpu);
1da177e4 5192
1da177e4 5193 rq->curr = rq->idle = idle;
4866cde0
NP
5194#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5195 idle->oncpu = 1;
5196#endif
05fa785c 5197 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5198
5199 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5200#if defined(CONFIG_PREEMPT)
5201 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5202#else
a1261f54 5203 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5204#endif
dd41f596
IM
5205 /*
5206 * The idle tasks have their own, simple scheduling class:
5207 */
5208 idle->sched_class = &idle_sched_class;
fb52607a 5209 ftrace_graph_init_task(idle);
1da177e4
LT
5210}
5211
5212/*
5213 * In a system that switches off the HZ timer nohz_cpu_mask
5214 * indicates which cpus entered this state. This is used
5215 * in the rcu update to wait only for active cpus. For system
5216 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5217 * always be CPU_BITS_NONE.
1da177e4 5218 */
6a7b3dc3 5219cpumask_var_t nohz_cpu_mask;
1da177e4 5220
19978ca6
IM
5221/*
5222 * Increase the granularity value when there are more CPUs,
5223 * because with more CPUs the 'effective latency' as visible
5224 * to users decreases. But the relationship is not linear,
5225 * so pick a second-best guess by going with the log2 of the
5226 * number of CPUs.
5227 *
5228 * This idea comes from the SD scheduler of Con Kolivas:
5229 */
acb4a848 5230static int get_update_sysctl_factor(void)
19978ca6 5231{
4ca3ef71 5232 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5233 unsigned int factor;
5234
5235 switch (sysctl_sched_tunable_scaling) {
5236 case SCHED_TUNABLESCALING_NONE:
5237 factor = 1;
5238 break;
5239 case SCHED_TUNABLESCALING_LINEAR:
5240 factor = cpus;
5241 break;
5242 case SCHED_TUNABLESCALING_LOG:
5243 default:
5244 factor = 1 + ilog2(cpus);
5245 break;
5246 }
19978ca6 5247
acb4a848
CE
5248 return factor;
5249}
19978ca6 5250
acb4a848
CE
5251static void update_sysctl(void)
5252{
5253 unsigned int factor = get_update_sysctl_factor();
19978ca6 5254
0bcdcf28
CE
5255#define SET_SYSCTL(name) \
5256 (sysctl_##name = (factor) * normalized_sysctl_##name)
5257 SET_SYSCTL(sched_min_granularity);
5258 SET_SYSCTL(sched_latency);
5259 SET_SYSCTL(sched_wakeup_granularity);
5260 SET_SYSCTL(sched_shares_ratelimit);
5261#undef SET_SYSCTL
5262}
55cd5340 5263
0bcdcf28
CE
5264static inline void sched_init_granularity(void)
5265{
5266 update_sysctl();
19978ca6
IM
5267}
5268
1da177e4
LT
5269#ifdef CONFIG_SMP
5270/*
5271 * This is how migration works:
5272 *
969c7921
TH
5273 * 1) we invoke migration_cpu_stop() on the target CPU using
5274 * stop_one_cpu().
5275 * 2) stopper starts to run (implicitly forcing the migrated thread
5276 * off the CPU)
5277 * 3) it checks whether the migrated task is still in the wrong runqueue.
5278 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5279 * it and puts it into the right queue.
969c7921
TH
5280 * 5) stopper completes and stop_one_cpu() returns and the migration
5281 * is done.
1da177e4
LT
5282 */
5283
5284/*
5285 * Change a given task's CPU affinity. Migrate the thread to a
5286 * proper CPU and schedule it away if the CPU it's executing on
5287 * is removed from the allowed bitmask.
5288 *
5289 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5290 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5291 * call is not atomic; no spinlocks may be held.
5292 */
96f874e2 5293int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5294{
5295 unsigned long flags;
70b97a7f 5296 struct rq *rq;
969c7921 5297 unsigned int dest_cpu;
48f24c4d 5298 int ret = 0;
1da177e4 5299
65cc8e48
PZ
5300 /*
5301 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5302 * drop the rq->lock and still rely on ->cpus_allowed.
5303 */
5304again:
5305 while (task_is_waking(p))
5306 cpu_relax();
1da177e4 5307 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5308 if (task_is_waking(p)) {
5309 task_rq_unlock(rq, &flags);
5310 goto again;
5311 }
e2912009 5312
6ad4c188 5313 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5314 ret = -EINVAL;
5315 goto out;
5316 }
5317
9985b0ba 5318 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5319 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5320 ret = -EINVAL;
5321 goto out;
5322 }
5323
73fe6aae 5324 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5325 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5326 else {
96f874e2
RR
5327 cpumask_copy(&p->cpus_allowed, new_mask);
5328 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5329 }
5330
1da177e4 5331 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5332 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5333 goto out;
5334
969c7921
TH
5335 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5336 if (migrate_task(p, dest_cpu)) {
5337 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5338 /* Need help from migration thread: drop lock and wait. */
5339 task_rq_unlock(rq, &flags);
969c7921 5340 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5341 tlb_migrate_finish(p->mm);
5342 return 0;
5343 }
5344out:
5345 task_rq_unlock(rq, &flags);
48f24c4d 5346
1da177e4
LT
5347 return ret;
5348}
cd8ba7cd 5349EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5350
5351/*
41a2d6cf 5352 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5353 * this because either it can't run here any more (set_cpus_allowed()
5354 * away from this CPU, or CPU going down), or because we're
5355 * attempting to rebalance this task on exec (sched_exec).
5356 *
5357 * So we race with normal scheduler movements, but that's OK, as long
5358 * as the task is no longer on this CPU.
efc30814
KK
5359 *
5360 * Returns non-zero if task was successfully migrated.
1da177e4 5361 */
efc30814 5362static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5363{
70b97a7f 5364 struct rq *rq_dest, *rq_src;
e2912009 5365 int ret = 0;
1da177e4 5366
e761b772 5367 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5368 return ret;
1da177e4
LT
5369
5370 rq_src = cpu_rq(src_cpu);
5371 rq_dest = cpu_rq(dest_cpu);
5372
5373 double_rq_lock(rq_src, rq_dest);
5374 /* Already moved. */
5375 if (task_cpu(p) != src_cpu)
b1e38734 5376 goto done;
1da177e4 5377 /* Affinity changed (again). */
96f874e2 5378 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5379 goto fail;
1da177e4 5380
e2912009
PZ
5381 /*
5382 * If we're not on a rq, the next wake-up will ensure we're
5383 * placed properly.
5384 */
5385 if (p->se.on_rq) {
2e1cb74a 5386 deactivate_task(rq_src, p, 0);
e2912009 5387 set_task_cpu(p, dest_cpu);
dd41f596 5388 activate_task(rq_dest, p, 0);
15afe09b 5389 check_preempt_curr(rq_dest, p, 0);
1da177e4 5390 }
b1e38734 5391done:
efc30814 5392 ret = 1;
b1e38734 5393fail:
1da177e4 5394 double_rq_unlock(rq_src, rq_dest);
efc30814 5395 return ret;
1da177e4
LT
5396}
5397
5398/*
969c7921
TH
5399 * migration_cpu_stop - this will be executed by a highprio stopper thread
5400 * and performs thread migration by bumping thread off CPU then
5401 * 'pushing' onto another runqueue.
1da177e4 5402 */
969c7921 5403static int migration_cpu_stop(void *data)
1da177e4 5404{
969c7921 5405 struct migration_arg *arg = data;
1da177e4 5406
969c7921
TH
5407 /*
5408 * The original target cpu might have gone down and we might
5409 * be on another cpu but it doesn't matter.
5410 */
5411 local_irq_disable();
5412 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5413 local_irq_enable();
1da177e4
LT
5414 return 0;
5415}
5416
5417#ifdef CONFIG_HOTPLUG_CPU
054b9108 5418/*
3a4fa0a2 5419 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5420 */
6a1bdc1b 5421void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5422{
1445c08d
ON
5423 struct rq *rq = cpu_rq(dead_cpu);
5424 int needs_cpu, uninitialized_var(dest_cpu);
5425 unsigned long flags;
c1804d54 5426
1445c08d
ON
5427 local_irq_save(flags);
5428
5429 raw_spin_lock(&rq->lock);
5430 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5431 if (needs_cpu)
5432 dest_cpu = select_fallback_rq(dead_cpu, p);
5433 raw_spin_unlock(&rq->lock);
c1804d54
ON
5434 /*
5435 * It can only fail if we race with set_cpus_allowed(),
5436 * in the racer should migrate the task anyway.
5437 */
1445c08d 5438 if (needs_cpu)
c1804d54 5439 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5440 local_irq_restore(flags);
1da177e4
LT
5441}
5442
5443/*
5444 * While a dead CPU has no uninterruptible tasks queued at this point,
5445 * it might still have a nonzero ->nr_uninterruptible counter, because
5446 * for performance reasons the counter is not stricly tracking tasks to
5447 * their home CPUs. So we just add the counter to another CPU's counter,
5448 * to keep the global sum constant after CPU-down:
5449 */
70b97a7f 5450static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5451{
6ad4c188 5452 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5453 unsigned long flags;
5454
5455 local_irq_save(flags);
5456 double_rq_lock(rq_src, rq_dest);
5457 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5458 rq_src->nr_uninterruptible = 0;
5459 double_rq_unlock(rq_src, rq_dest);
5460 local_irq_restore(flags);
5461}
5462
5463/* Run through task list and migrate tasks from the dead cpu. */
5464static void migrate_live_tasks(int src_cpu)
5465{
48f24c4d 5466 struct task_struct *p, *t;
1da177e4 5467
f7b4cddc 5468 read_lock(&tasklist_lock);
1da177e4 5469
48f24c4d
IM
5470 do_each_thread(t, p) {
5471 if (p == current)
1da177e4
LT
5472 continue;
5473
48f24c4d
IM
5474 if (task_cpu(p) == src_cpu)
5475 move_task_off_dead_cpu(src_cpu, p);
5476 } while_each_thread(t, p);
1da177e4 5477
f7b4cddc 5478 read_unlock(&tasklist_lock);
1da177e4
LT
5479}
5480
dd41f596
IM
5481/*
5482 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5483 * It does so by boosting its priority to highest possible.
5484 * Used by CPU offline code.
1da177e4
LT
5485 */
5486void sched_idle_next(void)
5487{
48f24c4d 5488 int this_cpu = smp_processor_id();
70b97a7f 5489 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5490 struct task_struct *p = rq->idle;
5491 unsigned long flags;
5492
5493 /* cpu has to be offline */
48f24c4d 5494 BUG_ON(cpu_online(this_cpu));
1da177e4 5495
48f24c4d
IM
5496 /*
5497 * Strictly not necessary since rest of the CPUs are stopped by now
5498 * and interrupts disabled on the current cpu.
1da177e4 5499 */
05fa785c 5500 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5501
dd41f596 5502 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5503
94bc9a7b 5504 activate_task(rq, p, 0);
1da177e4 5505
05fa785c 5506 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5507}
5508
48f24c4d
IM
5509/*
5510 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5511 * offline.
5512 */
5513void idle_task_exit(void)
5514{
5515 struct mm_struct *mm = current->active_mm;
5516
5517 BUG_ON(cpu_online(smp_processor_id()));
5518
5519 if (mm != &init_mm)
5520 switch_mm(mm, &init_mm, current);
5521 mmdrop(mm);
5522}
5523
054b9108 5524/* called under rq->lock with disabled interrupts */
36c8b586 5525static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5526{
70b97a7f 5527 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5528
5529 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5530 BUG_ON(!p->exit_state);
1da177e4
LT
5531
5532 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5533 BUG_ON(p->state == TASK_DEAD);
1da177e4 5534
48f24c4d 5535 get_task_struct(p);
1da177e4
LT
5536
5537 /*
5538 * Drop lock around migration; if someone else moves it,
41a2d6cf 5539 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5540 * fine.
5541 */
05fa785c 5542 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5543 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5544 raw_spin_lock_irq(&rq->lock);
1da177e4 5545
48f24c4d 5546 put_task_struct(p);
1da177e4
LT
5547}
5548
5549/* release_task() removes task from tasklist, so we won't find dead tasks. */
5550static void migrate_dead_tasks(unsigned int dead_cpu)
5551{
70b97a7f 5552 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5553 struct task_struct *next;
48f24c4d 5554
dd41f596
IM
5555 for ( ; ; ) {
5556 if (!rq->nr_running)
5557 break;
b67802ea 5558 next = pick_next_task(rq);
dd41f596
IM
5559 if (!next)
5560 break;
79c53799 5561 next->sched_class->put_prev_task(rq, next);
dd41f596 5562 migrate_dead(dead_cpu, next);
e692ab53 5563
1da177e4
LT
5564 }
5565}
dce48a84
TG
5566
5567/*
5568 * remove the tasks which were accounted by rq from calc_load_tasks.
5569 */
5570static void calc_global_load_remove(struct rq *rq)
5571{
5572 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5573 rq->calc_load_active = 0;
dce48a84 5574}
1da177e4
LT
5575#endif /* CONFIG_HOTPLUG_CPU */
5576
e692ab53
NP
5577#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5578
5579static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5580 {
5581 .procname = "sched_domain",
c57baf1e 5582 .mode = 0555,
e0361851 5583 },
56992309 5584 {}
e692ab53
NP
5585};
5586
5587static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5588 {
5589 .procname = "kernel",
c57baf1e 5590 .mode = 0555,
e0361851
AD
5591 .child = sd_ctl_dir,
5592 },
56992309 5593 {}
e692ab53
NP
5594};
5595
5596static struct ctl_table *sd_alloc_ctl_entry(int n)
5597{
5598 struct ctl_table *entry =
5cf9f062 5599 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5600
e692ab53
NP
5601 return entry;
5602}
5603
6382bc90
MM
5604static void sd_free_ctl_entry(struct ctl_table **tablep)
5605{
cd790076 5606 struct ctl_table *entry;
6382bc90 5607
cd790076
MM
5608 /*
5609 * In the intermediate directories, both the child directory and
5610 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5611 * will always be set. In the lowest directory the names are
cd790076
MM
5612 * static strings and all have proc handlers.
5613 */
5614 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5615 if (entry->child)
5616 sd_free_ctl_entry(&entry->child);
cd790076
MM
5617 if (entry->proc_handler == NULL)
5618 kfree(entry->procname);
5619 }
6382bc90
MM
5620
5621 kfree(*tablep);
5622 *tablep = NULL;
5623}
5624
e692ab53 5625static void
e0361851 5626set_table_entry(struct ctl_table *entry,
e692ab53
NP
5627 const char *procname, void *data, int maxlen,
5628 mode_t mode, proc_handler *proc_handler)
5629{
e692ab53
NP
5630 entry->procname = procname;
5631 entry->data = data;
5632 entry->maxlen = maxlen;
5633 entry->mode = mode;
5634 entry->proc_handler = proc_handler;
5635}
5636
5637static struct ctl_table *
5638sd_alloc_ctl_domain_table(struct sched_domain *sd)
5639{
a5d8c348 5640 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5641
ad1cdc1d
MM
5642 if (table == NULL)
5643 return NULL;
5644
e0361851 5645 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5646 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5647 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5648 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5649 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5650 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5651 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5652 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5653 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5654 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5655 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5656 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5657 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5658 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5659 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5660 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5661 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5662 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5663 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5664 &sd->cache_nice_tries,
5665 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5666 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5667 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5668 set_table_entry(&table[11], "name", sd->name,
5669 CORENAME_MAX_SIZE, 0444, proc_dostring);
5670 /* &table[12] is terminator */
e692ab53
NP
5671
5672 return table;
5673}
5674
9a4e7159 5675static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5676{
5677 struct ctl_table *entry, *table;
5678 struct sched_domain *sd;
5679 int domain_num = 0, i;
5680 char buf[32];
5681
5682 for_each_domain(cpu, sd)
5683 domain_num++;
5684 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5685 if (table == NULL)
5686 return NULL;
e692ab53
NP
5687
5688 i = 0;
5689 for_each_domain(cpu, sd) {
5690 snprintf(buf, 32, "domain%d", i);
e692ab53 5691 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5692 entry->mode = 0555;
e692ab53
NP
5693 entry->child = sd_alloc_ctl_domain_table(sd);
5694 entry++;
5695 i++;
5696 }
5697 return table;
5698}
5699
5700static struct ctl_table_header *sd_sysctl_header;
6382bc90 5701static void register_sched_domain_sysctl(void)
e692ab53 5702{
6ad4c188 5703 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5704 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5705 char buf[32];
5706
7378547f
MM
5707 WARN_ON(sd_ctl_dir[0].child);
5708 sd_ctl_dir[0].child = entry;
5709
ad1cdc1d
MM
5710 if (entry == NULL)
5711 return;
5712
6ad4c188 5713 for_each_possible_cpu(i) {
e692ab53 5714 snprintf(buf, 32, "cpu%d", i);
e692ab53 5715 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5716 entry->mode = 0555;
e692ab53 5717 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5718 entry++;
e692ab53 5719 }
7378547f
MM
5720
5721 WARN_ON(sd_sysctl_header);
e692ab53
NP
5722 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5723}
6382bc90 5724
7378547f 5725/* may be called multiple times per register */
6382bc90
MM
5726static void unregister_sched_domain_sysctl(void)
5727{
7378547f
MM
5728 if (sd_sysctl_header)
5729 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5730 sd_sysctl_header = NULL;
7378547f
MM
5731 if (sd_ctl_dir[0].child)
5732 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5733}
e692ab53 5734#else
6382bc90
MM
5735static void register_sched_domain_sysctl(void)
5736{
5737}
5738static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5739{
5740}
5741#endif
5742
1f11eb6a
GH
5743static void set_rq_online(struct rq *rq)
5744{
5745 if (!rq->online) {
5746 const struct sched_class *class;
5747
c6c4927b 5748 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5749 rq->online = 1;
5750
5751 for_each_class(class) {
5752 if (class->rq_online)
5753 class->rq_online(rq);
5754 }
5755 }
5756}
5757
5758static void set_rq_offline(struct rq *rq)
5759{
5760 if (rq->online) {
5761 const struct sched_class *class;
5762
5763 for_each_class(class) {
5764 if (class->rq_offline)
5765 class->rq_offline(rq);
5766 }
5767
c6c4927b 5768 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5769 rq->online = 0;
5770 }
5771}
5772
1da177e4
LT
5773/*
5774 * migration_call - callback that gets triggered when a CPU is added.
5775 * Here we can start up the necessary migration thread for the new CPU.
5776 */
48f24c4d
IM
5777static int __cpuinit
5778migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5779{
48f24c4d 5780 int cpu = (long)hcpu;
1da177e4 5781 unsigned long flags;
969c7921 5782 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5783
5784 switch (action) {
5be9361c 5785
1da177e4 5786 case CPU_UP_PREPARE:
8bb78442 5787 case CPU_UP_PREPARE_FROZEN:
a468d389 5788 rq->calc_load_update = calc_load_update;
1da177e4 5789 break;
48f24c4d 5790
1da177e4 5791 case CPU_ONLINE:
8bb78442 5792 case CPU_ONLINE_FROZEN:
1f94ef59 5793 /* Update our root-domain */
05fa785c 5794 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5795 if (rq->rd) {
c6c4927b 5796 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5797
5798 set_rq_online(rq);
1f94ef59 5799 }
05fa785c 5800 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5801 break;
48f24c4d 5802
1da177e4 5803#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5804 case CPU_DEAD:
8bb78442 5805 case CPU_DEAD_FROZEN:
1da177e4 5806 migrate_live_tasks(cpu);
1da177e4 5807 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5808 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5809 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5810 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5811 rq->idle->sched_class = &idle_sched_class;
1da177e4 5812 migrate_dead_tasks(cpu);
05fa785c 5813 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5814 migrate_nr_uninterruptible(rq);
5815 BUG_ON(rq->nr_running != 0);
dce48a84 5816 calc_global_load_remove(rq);
1da177e4 5817 break;
57d885fe 5818
08f503b0
GH
5819 case CPU_DYING:
5820 case CPU_DYING_FROZEN:
57d885fe 5821 /* Update our root-domain */
05fa785c 5822 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5823 if (rq->rd) {
c6c4927b 5824 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5825 set_rq_offline(rq);
57d885fe 5826 }
05fa785c 5827 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5828 break;
1da177e4
LT
5829#endif
5830 }
5831 return NOTIFY_OK;
5832}
5833
f38b0820
PM
5834/*
5835 * Register at high priority so that task migration (migrate_all_tasks)
5836 * happens before everything else. This has to be lower priority than
cdd6c482 5837 * the notifier in the perf_event subsystem, though.
1da177e4 5838 */
26c2143b 5839static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5840 .notifier_call = migration_call,
5841 .priority = 10
5842};
5843
7babe8db 5844static int __init migration_init(void)
1da177e4
LT
5845{
5846 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5847 int err;
48f24c4d
IM
5848
5849 /* Start one for the boot CPU: */
07dccf33
AM
5850 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5851 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5852 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5853 register_cpu_notifier(&migration_notifier);
7babe8db 5854
a004cd42 5855 return 0;
1da177e4 5856}
7babe8db 5857early_initcall(migration_init);
1da177e4
LT
5858#endif
5859
5860#ifdef CONFIG_SMP
476f3534 5861
3e9830dc 5862#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5863
f6630114
MT
5864static __read_mostly int sched_domain_debug_enabled;
5865
5866static int __init sched_domain_debug_setup(char *str)
5867{
5868 sched_domain_debug_enabled = 1;
5869
5870 return 0;
5871}
5872early_param("sched_debug", sched_domain_debug_setup);
5873
7c16ec58 5874static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5875 struct cpumask *groupmask)
1da177e4 5876{
4dcf6aff 5877 struct sched_group *group = sd->groups;
434d53b0 5878 char str[256];
1da177e4 5879
968ea6d8 5880 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5881 cpumask_clear(groupmask);
4dcf6aff
IM
5882
5883 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5884
5885 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5886 printk("does not load-balance\n");
4dcf6aff 5887 if (sd->parent)
3df0fc5b
PZ
5888 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5889 " has parent");
4dcf6aff 5890 return -1;
41c7ce9a
NP
5891 }
5892
3df0fc5b 5893 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5894
758b2cdc 5895 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5896 printk(KERN_ERR "ERROR: domain->span does not contain "
5897 "CPU%d\n", cpu);
4dcf6aff 5898 }
758b2cdc 5899 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5900 printk(KERN_ERR "ERROR: domain->groups does not contain"
5901 " CPU%d\n", cpu);
4dcf6aff 5902 }
1da177e4 5903
4dcf6aff 5904 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5905 do {
4dcf6aff 5906 if (!group) {
3df0fc5b
PZ
5907 printk("\n");
5908 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5909 break;
5910 }
5911
18a3885f 5912 if (!group->cpu_power) {
3df0fc5b
PZ
5913 printk(KERN_CONT "\n");
5914 printk(KERN_ERR "ERROR: domain->cpu_power not "
5915 "set\n");
4dcf6aff
IM
5916 break;
5917 }
1da177e4 5918
758b2cdc 5919 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5920 printk(KERN_CONT "\n");
5921 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5922 break;
5923 }
1da177e4 5924
758b2cdc 5925 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5926 printk(KERN_CONT "\n");
5927 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5928 break;
5929 }
1da177e4 5930
758b2cdc 5931 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5932
968ea6d8 5933 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5934
3df0fc5b 5935 printk(KERN_CONT " %s", str);
18a3885f 5936 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
5937 printk(KERN_CONT " (cpu_power = %d)",
5938 group->cpu_power);
381512cf 5939 }
1da177e4 5940
4dcf6aff
IM
5941 group = group->next;
5942 } while (group != sd->groups);
3df0fc5b 5943 printk(KERN_CONT "\n");
1da177e4 5944
758b2cdc 5945 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5946 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5947
758b2cdc
RR
5948 if (sd->parent &&
5949 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5950 printk(KERN_ERR "ERROR: parent span is not a superset "
5951 "of domain->span\n");
4dcf6aff
IM
5952 return 0;
5953}
1da177e4 5954
4dcf6aff
IM
5955static void sched_domain_debug(struct sched_domain *sd, int cpu)
5956{
d5dd3db1 5957 cpumask_var_t groupmask;
4dcf6aff 5958 int level = 0;
1da177e4 5959
f6630114
MT
5960 if (!sched_domain_debug_enabled)
5961 return;
5962
4dcf6aff
IM
5963 if (!sd) {
5964 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5965 return;
5966 }
1da177e4 5967
4dcf6aff
IM
5968 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5969
d5dd3db1 5970 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
5971 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5972 return;
5973 }
5974
4dcf6aff 5975 for (;;) {
7c16ec58 5976 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 5977 break;
1da177e4
LT
5978 level++;
5979 sd = sd->parent;
33859f7f 5980 if (!sd)
4dcf6aff
IM
5981 break;
5982 }
d5dd3db1 5983 free_cpumask_var(groupmask);
1da177e4 5984}
6d6bc0ad 5985#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5986# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5987#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5988
1a20ff27 5989static int sd_degenerate(struct sched_domain *sd)
245af2c7 5990{
758b2cdc 5991 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5992 return 1;
5993
5994 /* Following flags need at least 2 groups */
5995 if (sd->flags & (SD_LOAD_BALANCE |
5996 SD_BALANCE_NEWIDLE |
5997 SD_BALANCE_FORK |
89c4710e
SS
5998 SD_BALANCE_EXEC |
5999 SD_SHARE_CPUPOWER |
6000 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6001 if (sd->groups != sd->groups->next)
6002 return 0;
6003 }
6004
6005 /* Following flags don't use groups */
c88d5910 6006 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6007 return 0;
6008
6009 return 1;
6010}
6011
48f24c4d
IM
6012static int
6013sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6014{
6015 unsigned long cflags = sd->flags, pflags = parent->flags;
6016
6017 if (sd_degenerate(parent))
6018 return 1;
6019
758b2cdc 6020 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6021 return 0;
6022
245af2c7
SS
6023 /* Flags needing groups don't count if only 1 group in parent */
6024 if (parent->groups == parent->groups->next) {
6025 pflags &= ~(SD_LOAD_BALANCE |
6026 SD_BALANCE_NEWIDLE |
6027 SD_BALANCE_FORK |
89c4710e
SS
6028 SD_BALANCE_EXEC |
6029 SD_SHARE_CPUPOWER |
6030 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6031 if (nr_node_ids == 1)
6032 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6033 }
6034 if (~cflags & pflags)
6035 return 0;
6036
6037 return 1;
6038}
6039
c6c4927b
RR
6040static void free_rootdomain(struct root_domain *rd)
6041{
047106ad
PZ
6042 synchronize_sched();
6043
68e74568
RR
6044 cpupri_cleanup(&rd->cpupri);
6045
c6c4927b
RR
6046 free_cpumask_var(rd->rto_mask);
6047 free_cpumask_var(rd->online);
6048 free_cpumask_var(rd->span);
6049 kfree(rd);
6050}
6051
57d885fe
GH
6052static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6053{
a0490fa3 6054 struct root_domain *old_rd = NULL;
57d885fe 6055 unsigned long flags;
57d885fe 6056
05fa785c 6057 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6058
6059 if (rq->rd) {
a0490fa3 6060 old_rd = rq->rd;
57d885fe 6061
c6c4927b 6062 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6063 set_rq_offline(rq);
57d885fe 6064
c6c4927b 6065 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6066
a0490fa3
IM
6067 /*
6068 * If we dont want to free the old_rt yet then
6069 * set old_rd to NULL to skip the freeing later
6070 * in this function:
6071 */
6072 if (!atomic_dec_and_test(&old_rd->refcount))
6073 old_rd = NULL;
57d885fe
GH
6074 }
6075
6076 atomic_inc(&rd->refcount);
6077 rq->rd = rd;
6078
c6c4927b 6079 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6080 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6081 set_rq_online(rq);
57d885fe 6082
05fa785c 6083 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6084
6085 if (old_rd)
6086 free_rootdomain(old_rd);
57d885fe
GH
6087}
6088
fd5e1b5d 6089static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6090{
36b7b6d4
PE
6091 gfp_t gfp = GFP_KERNEL;
6092
57d885fe
GH
6093 memset(rd, 0, sizeof(*rd));
6094
36b7b6d4
PE
6095 if (bootmem)
6096 gfp = GFP_NOWAIT;
c6c4927b 6097
36b7b6d4 6098 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6099 goto out;
36b7b6d4 6100 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6101 goto free_span;
36b7b6d4 6102 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6103 goto free_online;
6e0534f2 6104
0fb53029 6105 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6106 goto free_rto_mask;
c6c4927b 6107 return 0;
6e0534f2 6108
68e74568
RR
6109free_rto_mask:
6110 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6111free_online:
6112 free_cpumask_var(rd->online);
6113free_span:
6114 free_cpumask_var(rd->span);
0c910d28 6115out:
c6c4927b 6116 return -ENOMEM;
57d885fe
GH
6117}
6118
6119static void init_defrootdomain(void)
6120{
c6c4927b
RR
6121 init_rootdomain(&def_root_domain, true);
6122
57d885fe
GH
6123 atomic_set(&def_root_domain.refcount, 1);
6124}
6125
dc938520 6126static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6127{
6128 struct root_domain *rd;
6129
6130 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6131 if (!rd)
6132 return NULL;
6133
c6c4927b
RR
6134 if (init_rootdomain(rd, false) != 0) {
6135 kfree(rd);
6136 return NULL;
6137 }
57d885fe
GH
6138
6139 return rd;
6140}
6141
1da177e4 6142/*
0eab9146 6143 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6144 * hold the hotplug lock.
6145 */
0eab9146
IM
6146static void
6147cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6148{
70b97a7f 6149 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6150 struct sched_domain *tmp;
6151
669c55e9
PZ
6152 for (tmp = sd; tmp; tmp = tmp->parent)
6153 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6154
245af2c7 6155 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6156 for (tmp = sd; tmp; ) {
245af2c7
SS
6157 struct sched_domain *parent = tmp->parent;
6158 if (!parent)
6159 break;
f29c9b1c 6160
1a848870 6161 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6162 tmp->parent = parent->parent;
1a848870
SS
6163 if (parent->parent)
6164 parent->parent->child = tmp;
f29c9b1c
LZ
6165 } else
6166 tmp = tmp->parent;
245af2c7
SS
6167 }
6168
1a848870 6169 if (sd && sd_degenerate(sd)) {
245af2c7 6170 sd = sd->parent;
1a848870
SS
6171 if (sd)
6172 sd->child = NULL;
6173 }
1da177e4
LT
6174
6175 sched_domain_debug(sd, cpu);
6176
57d885fe 6177 rq_attach_root(rq, rd);
674311d5 6178 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6179}
6180
6181/* cpus with isolated domains */
dcc30a35 6182static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6183
6184/* Setup the mask of cpus configured for isolated domains */
6185static int __init isolated_cpu_setup(char *str)
6186{
bdddd296 6187 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6188 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6189 return 1;
6190}
6191
8927f494 6192__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6193
6194/*
6711cab4
SS
6195 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6196 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6197 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6198 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6199 *
6200 * init_sched_build_groups will build a circular linked list of the groups
6201 * covered by the given span, and will set each group's ->cpumask correctly,
6202 * and ->cpu_power to 0.
6203 */
a616058b 6204static void
96f874e2
RR
6205init_sched_build_groups(const struct cpumask *span,
6206 const struct cpumask *cpu_map,
6207 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6208 struct sched_group **sg,
96f874e2
RR
6209 struct cpumask *tmpmask),
6210 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6211{
6212 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6213 int i;
6214
96f874e2 6215 cpumask_clear(covered);
7c16ec58 6216
abcd083a 6217 for_each_cpu(i, span) {
6711cab4 6218 struct sched_group *sg;
7c16ec58 6219 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6220 int j;
6221
758b2cdc 6222 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6223 continue;
6224
758b2cdc 6225 cpumask_clear(sched_group_cpus(sg));
18a3885f 6226 sg->cpu_power = 0;
1da177e4 6227
abcd083a 6228 for_each_cpu(j, span) {
7c16ec58 6229 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6230 continue;
6231
96f874e2 6232 cpumask_set_cpu(j, covered);
758b2cdc 6233 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6234 }
6235 if (!first)
6236 first = sg;
6237 if (last)
6238 last->next = sg;
6239 last = sg;
6240 }
6241 last->next = first;
6242}
6243
9c1cfda2 6244#define SD_NODES_PER_DOMAIN 16
1da177e4 6245
9c1cfda2 6246#ifdef CONFIG_NUMA
198e2f18 6247
9c1cfda2
JH
6248/**
6249 * find_next_best_node - find the next node to include in a sched_domain
6250 * @node: node whose sched_domain we're building
6251 * @used_nodes: nodes already in the sched_domain
6252 *
41a2d6cf 6253 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6254 * finds the closest node not already in the @used_nodes map.
6255 *
6256 * Should use nodemask_t.
6257 */
c5f59f08 6258static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6259{
6260 int i, n, val, min_val, best_node = 0;
6261
6262 min_val = INT_MAX;
6263
076ac2af 6264 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6265 /* Start at @node */
076ac2af 6266 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6267
6268 if (!nr_cpus_node(n))
6269 continue;
6270
6271 /* Skip already used nodes */
c5f59f08 6272 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6273 continue;
6274
6275 /* Simple min distance search */
6276 val = node_distance(node, n);
6277
6278 if (val < min_val) {
6279 min_val = val;
6280 best_node = n;
6281 }
6282 }
6283
c5f59f08 6284 node_set(best_node, *used_nodes);
9c1cfda2
JH
6285 return best_node;
6286}
6287
6288/**
6289 * sched_domain_node_span - get a cpumask for a node's sched_domain
6290 * @node: node whose cpumask we're constructing
73486722 6291 * @span: resulting cpumask
9c1cfda2 6292 *
41a2d6cf 6293 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6294 * should be one that prevents unnecessary balancing, but also spreads tasks
6295 * out optimally.
6296 */
96f874e2 6297static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6298{
c5f59f08 6299 nodemask_t used_nodes;
48f24c4d 6300 int i;
9c1cfda2 6301
6ca09dfc 6302 cpumask_clear(span);
c5f59f08 6303 nodes_clear(used_nodes);
9c1cfda2 6304
6ca09dfc 6305 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6306 node_set(node, used_nodes);
9c1cfda2
JH
6307
6308 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6309 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6310
6ca09dfc 6311 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6312 }
9c1cfda2 6313}
6d6bc0ad 6314#endif /* CONFIG_NUMA */
9c1cfda2 6315
5c45bf27 6316int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6317
6c99e9ad
RR
6318/*
6319 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6320 *
6321 * ( See the the comments in include/linux/sched.h:struct sched_group
6322 * and struct sched_domain. )
6c99e9ad
RR
6323 */
6324struct static_sched_group {
6325 struct sched_group sg;
6326 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6327};
6328
6329struct static_sched_domain {
6330 struct sched_domain sd;
6331 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6332};
6333
49a02c51
AH
6334struct s_data {
6335#ifdef CONFIG_NUMA
6336 int sd_allnodes;
6337 cpumask_var_t domainspan;
6338 cpumask_var_t covered;
6339 cpumask_var_t notcovered;
6340#endif
6341 cpumask_var_t nodemask;
6342 cpumask_var_t this_sibling_map;
6343 cpumask_var_t this_core_map;
6344 cpumask_var_t send_covered;
6345 cpumask_var_t tmpmask;
6346 struct sched_group **sched_group_nodes;
6347 struct root_domain *rd;
6348};
6349
2109b99e
AH
6350enum s_alloc {
6351 sa_sched_groups = 0,
6352 sa_rootdomain,
6353 sa_tmpmask,
6354 sa_send_covered,
6355 sa_this_core_map,
6356 sa_this_sibling_map,
6357 sa_nodemask,
6358 sa_sched_group_nodes,
6359#ifdef CONFIG_NUMA
6360 sa_notcovered,
6361 sa_covered,
6362 sa_domainspan,
6363#endif
6364 sa_none,
6365};
6366
9c1cfda2 6367/*
48f24c4d 6368 * SMT sched-domains:
9c1cfda2 6369 */
1da177e4 6370#ifdef CONFIG_SCHED_SMT
6c99e9ad 6371static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6372static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6373
41a2d6cf 6374static int
96f874e2
RR
6375cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6376 struct sched_group **sg, struct cpumask *unused)
1da177e4 6377{
6711cab4 6378 if (sg)
1871e52c 6379 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6380 return cpu;
6381}
6d6bc0ad 6382#endif /* CONFIG_SCHED_SMT */
1da177e4 6383
48f24c4d
IM
6384/*
6385 * multi-core sched-domains:
6386 */
1e9f28fa 6387#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6388static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6389static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6390#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6391
6392#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6393static int
96f874e2
RR
6394cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6395 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6396{
6711cab4 6397 int group;
7c16ec58 6398
c69fc56d 6399 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6400 group = cpumask_first(mask);
6711cab4 6401 if (sg)
6c99e9ad 6402 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6403 return group;
1e9f28fa
SS
6404}
6405#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6406static int
96f874e2
RR
6407cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6408 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6409{
6711cab4 6410 if (sg)
6c99e9ad 6411 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6412 return cpu;
6413}
6414#endif
6415
6c99e9ad
RR
6416static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6417static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6418
41a2d6cf 6419static int
96f874e2
RR
6420cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6421 struct sched_group **sg, struct cpumask *mask)
1da177e4 6422{
6711cab4 6423 int group;
48f24c4d 6424#ifdef CONFIG_SCHED_MC
6ca09dfc 6425 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6426 group = cpumask_first(mask);
1e9f28fa 6427#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6428 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6429 group = cpumask_first(mask);
1da177e4 6430#else
6711cab4 6431 group = cpu;
1da177e4 6432#endif
6711cab4 6433 if (sg)
6c99e9ad 6434 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6435 return group;
1da177e4
LT
6436}
6437
6438#ifdef CONFIG_NUMA
1da177e4 6439/*
9c1cfda2
JH
6440 * The init_sched_build_groups can't handle what we want to do with node
6441 * groups, so roll our own. Now each node has its own list of groups which
6442 * gets dynamically allocated.
1da177e4 6443 */
62ea9ceb 6444static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6445static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6446
62ea9ceb 6447static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6448static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6449
96f874e2
RR
6450static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6451 struct sched_group **sg,
6452 struct cpumask *nodemask)
9c1cfda2 6453{
6711cab4
SS
6454 int group;
6455
6ca09dfc 6456 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6457 group = cpumask_first(nodemask);
6711cab4
SS
6458
6459 if (sg)
6c99e9ad 6460 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6461 return group;
1da177e4 6462}
6711cab4 6463
08069033
SS
6464static void init_numa_sched_groups_power(struct sched_group *group_head)
6465{
6466 struct sched_group *sg = group_head;
6467 int j;
6468
6469 if (!sg)
6470 return;
3a5c359a 6471 do {
758b2cdc 6472 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6473 struct sched_domain *sd;
08069033 6474
6c99e9ad 6475 sd = &per_cpu(phys_domains, j).sd;
13318a71 6476 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6477 /*
6478 * Only add "power" once for each
6479 * physical package.
6480 */
6481 continue;
6482 }
08069033 6483
18a3885f 6484 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6485 }
6486 sg = sg->next;
6487 } while (sg != group_head);
08069033 6488}
0601a88d
AH
6489
6490static int build_numa_sched_groups(struct s_data *d,
6491 const struct cpumask *cpu_map, int num)
6492{
6493 struct sched_domain *sd;
6494 struct sched_group *sg, *prev;
6495 int n, j;
6496
6497 cpumask_clear(d->covered);
6498 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6499 if (cpumask_empty(d->nodemask)) {
6500 d->sched_group_nodes[num] = NULL;
6501 goto out;
6502 }
6503
6504 sched_domain_node_span(num, d->domainspan);
6505 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6506
6507 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6508 GFP_KERNEL, num);
6509 if (!sg) {
3df0fc5b
PZ
6510 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6511 num);
0601a88d
AH
6512 return -ENOMEM;
6513 }
6514 d->sched_group_nodes[num] = sg;
6515
6516 for_each_cpu(j, d->nodemask) {
6517 sd = &per_cpu(node_domains, j).sd;
6518 sd->groups = sg;
6519 }
6520
18a3885f 6521 sg->cpu_power = 0;
0601a88d
AH
6522 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6523 sg->next = sg;
6524 cpumask_or(d->covered, d->covered, d->nodemask);
6525
6526 prev = sg;
6527 for (j = 0; j < nr_node_ids; j++) {
6528 n = (num + j) % nr_node_ids;
6529 cpumask_complement(d->notcovered, d->covered);
6530 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6531 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6532 if (cpumask_empty(d->tmpmask))
6533 break;
6534 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6535 if (cpumask_empty(d->tmpmask))
6536 continue;
6537 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6538 GFP_KERNEL, num);
6539 if (!sg) {
3df0fc5b
PZ
6540 printk(KERN_WARNING
6541 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6542 return -ENOMEM;
6543 }
18a3885f 6544 sg->cpu_power = 0;
0601a88d
AH
6545 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6546 sg->next = prev->next;
6547 cpumask_or(d->covered, d->covered, d->tmpmask);
6548 prev->next = sg;
6549 prev = sg;
6550 }
6551out:
6552 return 0;
6553}
6d6bc0ad 6554#endif /* CONFIG_NUMA */
1da177e4 6555
a616058b 6556#ifdef CONFIG_NUMA
51888ca2 6557/* Free memory allocated for various sched_group structures */
96f874e2
RR
6558static void free_sched_groups(const struct cpumask *cpu_map,
6559 struct cpumask *nodemask)
51888ca2 6560{
a616058b 6561 int cpu, i;
51888ca2 6562
abcd083a 6563 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6564 struct sched_group **sched_group_nodes
6565 = sched_group_nodes_bycpu[cpu];
6566
51888ca2
SV
6567 if (!sched_group_nodes)
6568 continue;
6569
076ac2af 6570 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6571 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6572
6ca09dfc 6573 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6574 if (cpumask_empty(nodemask))
51888ca2
SV
6575 continue;
6576
6577 if (sg == NULL)
6578 continue;
6579 sg = sg->next;
6580next_sg:
6581 oldsg = sg;
6582 sg = sg->next;
6583 kfree(oldsg);
6584 if (oldsg != sched_group_nodes[i])
6585 goto next_sg;
6586 }
6587 kfree(sched_group_nodes);
6588 sched_group_nodes_bycpu[cpu] = NULL;
6589 }
51888ca2 6590}
6d6bc0ad 6591#else /* !CONFIG_NUMA */
96f874e2
RR
6592static void free_sched_groups(const struct cpumask *cpu_map,
6593 struct cpumask *nodemask)
a616058b
SS
6594{
6595}
6d6bc0ad 6596#endif /* CONFIG_NUMA */
51888ca2 6597
89c4710e
SS
6598/*
6599 * Initialize sched groups cpu_power.
6600 *
6601 * cpu_power indicates the capacity of sched group, which is used while
6602 * distributing the load between different sched groups in a sched domain.
6603 * Typically cpu_power for all the groups in a sched domain will be same unless
6604 * there are asymmetries in the topology. If there are asymmetries, group
6605 * having more cpu_power will pickup more load compared to the group having
6606 * less cpu_power.
89c4710e
SS
6607 */
6608static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6609{
6610 struct sched_domain *child;
6611 struct sched_group *group;
f93e65c1
PZ
6612 long power;
6613 int weight;
89c4710e
SS
6614
6615 WARN_ON(!sd || !sd->groups);
6616
13318a71 6617 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6618 return;
6619
6620 child = sd->child;
6621
18a3885f 6622 sd->groups->cpu_power = 0;
5517d86b 6623
f93e65c1
PZ
6624 if (!child) {
6625 power = SCHED_LOAD_SCALE;
6626 weight = cpumask_weight(sched_domain_span(sd));
6627 /*
6628 * SMT siblings share the power of a single core.
a52bfd73
PZ
6629 * Usually multiple threads get a better yield out of
6630 * that one core than a single thread would have,
6631 * reflect that in sd->smt_gain.
f93e65c1 6632 */
a52bfd73
PZ
6633 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6634 power *= sd->smt_gain;
f93e65c1 6635 power /= weight;
a52bfd73
PZ
6636 power >>= SCHED_LOAD_SHIFT;
6637 }
18a3885f 6638 sd->groups->cpu_power += power;
89c4710e
SS
6639 return;
6640 }
6641
89c4710e 6642 /*
f93e65c1 6643 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6644 */
6645 group = child->groups;
6646 do {
18a3885f 6647 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6648 group = group->next;
6649 } while (group != child->groups);
6650}
6651
7c16ec58
MT
6652/*
6653 * Initializers for schedule domains
6654 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6655 */
6656
a5d8c348
IM
6657#ifdef CONFIG_SCHED_DEBUG
6658# define SD_INIT_NAME(sd, type) sd->name = #type
6659#else
6660# define SD_INIT_NAME(sd, type) do { } while (0)
6661#endif
6662
7c16ec58 6663#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6664
7c16ec58
MT
6665#define SD_INIT_FUNC(type) \
6666static noinline void sd_init_##type(struct sched_domain *sd) \
6667{ \
6668 memset(sd, 0, sizeof(*sd)); \
6669 *sd = SD_##type##_INIT; \
1d3504fc 6670 sd->level = SD_LV_##type; \
a5d8c348 6671 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6672}
6673
6674SD_INIT_FUNC(CPU)
6675#ifdef CONFIG_NUMA
6676 SD_INIT_FUNC(ALLNODES)
6677 SD_INIT_FUNC(NODE)
6678#endif
6679#ifdef CONFIG_SCHED_SMT
6680 SD_INIT_FUNC(SIBLING)
6681#endif
6682#ifdef CONFIG_SCHED_MC
6683 SD_INIT_FUNC(MC)
6684#endif
6685
1d3504fc
HS
6686static int default_relax_domain_level = -1;
6687
6688static int __init setup_relax_domain_level(char *str)
6689{
30e0e178
LZ
6690 unsigned long val;
6691
6692 val = simple_strtoul(str, NULL, 0);
6693 if (val < SD_LV_MAX)
6694 default_relax_domain_level = val;
6695
1d3504fc
HS
6696 return 1;
6697}
6698__setup("relax_domain_level=", setup_relax_domain_level);
6699
6700static void set_domain_attribute(struct sched_domain *sd,
6701 struct sched_domain_attr *attr)
6702{
6703 int request;
6704
6705 if (!attr || attr->relax_domain_level < 0) {
6706 if (default_relax_domain_level < 0)
6707 return;
6708 else
6709 request = default_relax_domain_level;
6710 } else
6711 request = attr->relax_domain_level;
6712 if (request < sd->level) {
6713 /* turn off idle balance on this domain */
c88d5910 6714 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6715 } else {
6716 /* turn on idle balance on this domain */
c88d5910 6717 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6718 }
6719}
6720
2109b99e
AH
6721static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6722 const struct cpumask *cpu_map)
6723{
6724 switch (what) {
6725 case sa_sched_groups:
6726 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6727 d->sched_group_nodes = NULL;
6728 case sa_rootdomain:
6729 free_rootdomain(d->rd); /* fall through */
6730 case sa_tmpmask:
6731 free_cpumask_var(d->tmpmask); /* fall through */
6732 case sa_send_covered:
6733 free_cpumask_var(d->send_covered); /* fall through */
6734 case sa_this_core_map:
6735 free_cpumask_var(d->this_core_map); /* fall through */
6736 case sa_this_sibling_map:
6737 free_cpumask_var(d->this_sibling_map); /* fall through */
6738 case sa_nodemask:
6739 free_cpumask_var(d->nodemask); /* fall through */
6740 case sa_sched_group_nodes:
d1b55138 6741#ifdef CONFIG_NUMA
2109b99e
AH
6742 kfree(d->sched_group_nodes); /* fall through */
6743 case sa_notcovered:
6744 free_cpumask_var(d->notcovered); /* fall through */
6745 case sa_covered:
6746 free_cpumask_var(d->covered); /* fall through */
6747 case sa_domainspan:
6748 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6749#endif
2109b99e
AH
6750 case sa_none:
6751 break;
6752 }
6753}
3404c8d9 6754
2109b99e
AH
6755static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6756 const struct cpumask *cpu_map)
6757{
3404c8d9 6758#ifdef CONFIG_NUMA
2109b99e
AH
6759 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6760 return sa_none;
6761 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6762 return sa_domainspan;
6763 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6764 return sa_covered;
6765 /* Allocate the per-node list of sched groups */
6766 d->sched_group_nodes = kcalloc(nr_node_ids,
6767 sizeof(struct sched_group *), GFP_KERNEL);
6768 if (!d->sched_group_nodes) {
3df0fc5b 6769 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6770 return sa_notcovered;
d1b55138 6771 }
2109b99e 6772 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6773#endif
2109b99e
AH
6774 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6775 return sa_sched_group_nodes;
6776 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6777 return sa_nodemask;
6778 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6779 return sa_this_sibling_map;
6780 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6781 return sa_this_core_map;
6782 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6783 return sa_send_covered;
6784 d->rd = alloc_rootdomain();
6785 if (!d->rd) {
3df0fc5b 6786 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6787 return sa_tmpmask;
57d885fe 6788 }
2109b99e
AH
6789 return sa_rootdomain;
6790}
57d885fe 6791
7f4588f3
AH
6792static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6793 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6794{
6795 struct sched_domain *sd = NULL;
7c16ec58 6796#ifdef CONFIG_NUMA
7f4588f3 6797 struct sched_domain *parent;
1da177e4 6798
7f4588f3
AH
6799 d->sd_allnodes = 0;
6800 if (cpumask_weight(cpu_map) >
6801 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6802 sd = &per_cpu(allnodes_domains, i).sd;
6803 SD_INIT(sd, ALLNODES);
1d3504fc 6804 set_domain_attribute(sd, attr);
7f4588f3
AH
6805 cpumask_copy(sched_domain_span(sd), cpu_map);
6806 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6807 d->sd_allnodes = 1;
6808 }
6809 parent = sd;
6810
6811 sd = &per_cpu(node_domains, i).sd;
6812 SD_INIT(sd, NODE);
6813 set_domain_attribute(sd, attr);
6814 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6815 sd->parent = parent;
6816 if (parent)
6817 parent->child = sd;
6818 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6819#endif
7f4588f3
AH
6820 return sd;
6821}
1da177e4 6822
87cce662
AH
6823static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6824 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6825 struct sched_domain *parent, int i)
6826{
6827 struct sched_domain *sd;
6828 sd = &per_cpu(phys_domains, i).sd;
6829 SD_INIT(sd, CPU);
6830 set_domain_attribute(sd, attr);
6831 cpumask_copy(sched_domain_span(sd), d->nodemask);
6832 sd->parent = parent;
6833 if (parent)
6834 parent->child = sd;
6835 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6836 return sd;
6837}
1da177e4 6838
410c4081
AH
6839static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6840 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6841 struct sched_domain *parent, int i)
6842{
6843 struct sched_domain *sd = parent;
1e9f28fa 6844#ifdef CONFIG_SCHED_MC
410c4081
AH
6845 sd = &per_cpu(core_domains, i).sd;
6846 SD_INIT(sd, MC);
6847 set_domain_attribute(sd, attr);
6848 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6849 sd->parent = parent;
6850 parent->child = sd;
6851 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6852#endif
410c4081
AH
6853 return sd;
6854}
1e9f28fa 6855
d8173535
AH
6856static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6857 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6858 struct sched_domain *parent, int i)
6859{
6860 struct sched_domain *sd = parent;
1da177e4 6861#ifdef CONFIG_SCHED_SMT
d8173535
AH
6862 sd = &per_cpu(cpu_domains, i).sd;
6863 SD_INIT(sd, SIBLING);
6864 set_domain_attribute(sd, attr);
6865 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6866 sd->parent = parent;
6867 parent->child = sd;
6868 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6869#endif
d8173535
AH
6870 return sd;
6871}
1da177e4 6872
0e8e85c9
AH
6873static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6874 const struct cpumask *cpu_map, int cpu)
6875{
6876 switch (l) {
1da177e4 6877#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6878 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6879 cpumask_and(d->this_sibling_map, cpu_map,
6880 topology_thread_cpumask(cpu));
6881 if (cpu == cpumask_first(d->this_sibling_map))
6882 init_sched_build_groups(d->this_sibling_map, cpu_map,
6883 &cpu_to_cpu_group,
6884 d->send_covered, d->tmpmask);
6885 break;
1da177e4 6886#endif
1e9f28fa 6887#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6888 case SD_LV_MC: /* set up multi-core groups */
6889 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6890 if (cpu == cpumask_first(d->this_core_map))
6891 init_sched_build_groups(d->this_core_map, cpu_map,
6892 &cpu_to_core_group,
6893 d->send_covered, d->tmpmask);
6894 break;
1e9f28fa 6895#endif
86548096
AH
6896 case SD_LV_CPU: /* set up physical groups */
6897 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6898 if (!cpumask_empty(d->nodemask))
6899 init_sched_build_groups(d->nodemask, cpu_map,
6900 &cpu_to_phys_group,
6901 d->send_covered, d->tmpmask);
6902 break;
1da177e4 6903#ifdef CONFIG_NUMA
de616e36
AH
6904 case SD_LV_ALLNODES:
6905 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6906 d->send_covered, d->tmpmask);
6907 break;
6908#endif
0e8e85c9
AH
6909 default:
6910 break;
7c16ec58 6911 }
0e8e85c9 6912}
9c1cfda2 6913
2109b99e
AH
6914/*
6915 * Build sched domains for a given set of cpus and attach the sched domains
6916 * to the individual cpus
6917 */
6918static int __build_sched_domains(const struct cpumask *cpu_map,
6919 struct sched_domain_attr *attr)
6920{
6921 enum s_alloc alloc_state = sa_none;
6922 struct s_data d;
294b0c96 6923 struct sched_domain *sd;
2109b99e 6924 int i;
7c16ec58 6925#ifdef CONFIG_NUMA
2109b99e 6926 d.sd_allnodes = 0;
7c16ec58 6927#endif
9c1cfda2 6928
2109b99e
AH
6929 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6930 if (alloc_state != sa_rootdomain)
6931 goto error;
6932 alloc_state = sa_sched_groups;
9c1cfda2 6933
1da177e4 6934 /*
1a20ff27 6935 * Set up domains for cpus specified by the cpu_map.
1da177e4 6936 */
abcd083a 6937 for_each_cpu(i, cpu_map) {
49a02c51
AH
6938 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6939 cpu_map);
9761eea8 6940
7f4588f3 6941 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 6942 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 6943 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 6944 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 6945 }
9c1cfda2 6946
abcd083a 6947 for_each_cpu(i, cpu_map) {
0e8e85c9 6948 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 6949 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 6950 }
9c1cfda2 6951
1da177e4 6952 /* Set up physical groups */
86548096
AH
6953 for (i = 0; i < nr_node_ids; i++)
6954 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 6955
1da177e4
LT
6956#ifdef CONFIG_NUMA
6957 /* Set up node groups */
de616e36
AH
6958 if (d.sd_allnodes)
6959 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 6960
0601a88d
AH
6961 for (i = 0; i < nr_node_ids; i++)
6962 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 6963 goto error;
1da177e4
LT
6964#endif
6965
6966 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6967#ifdef CONFIG_SCHED_SMT
abcd083a 6968 for_each_cpu(i, cpu_map) {
294b0c96 6969 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 6970 init_sched_groups_power(i, sd);
5c45bf27 6971 }
1da177e4 6972#endif
1e9f28fa 6973#ifdef CONFIG_SCHED_MC
abcd083a 6974 for_each_cpu(i, cpu_map) {
294b0c96 6975 sd = &per_cpu(core_domains, i).sd;
89c4710e 6976 init_sched_groups_power(i, sd);
5c45bf27
SS
6977 }
6978#endif
1e9f28fa 6979
abcd083a 6980 for_each_cpu(i, cpu_map) {
294b0c96 6981 sd = &per_cpu(phys_domains, i).sd;
89c4710e 6982 init_sched_groups_power(i, sd);
1da177e4
LT
6983 }
6984
9c1cfda2 6985#ifdef CONFIG_NUMA
076ac2af 6986 for (i = 0; i < nr_node_ids; i++)
49a02c51 6987 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 6988
49a02c51 6989 if (d.sd_allnodes) {
6711cab4 6990 struct sched_group *sg;
f712c0c7 6991
96f874e2 6992 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 6993 d.tmpmask);
f712c0c7
SS
6994 init_numa_sched_groups_power(sg);
6995 }
9c1cfda2
JH
6996#endif
6997
1da177e4 6998 /* Attach the domains */
abcd083a 6999 for_each_cpu(i, cpu_map) {
1da177e4 7000#ifdef CONFIG_SCHED_SMT
6c99e9ad 7001 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7002#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7003 sd = &per_cpu(core_domains, i).sd;
1da177e4 7004#else
6c99e9ad 7005 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7006#endif
49a02c51 7007 cpu_attach_domain(sd, d.rd, i);
1da177e4 7008 }
51888ca2 7009
2109b99e
AH
7010 d.sched_group_nodes = NULL; /* don't free this we still need it */
7011 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7012 return 0;
51888ca2 7013
51888ca2 7014error:
2109b99e
AH
7015 __free_domain_allocs(&d, alloc_state, cpu_map);
7016 return -ENOMEM;
1da177e4 7017}
029190c5 7018
96f874e2 7019static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7020{
7021 return __build_sched_domains(cpu_map, NULL);
7022}
7023
acc3f5d7 7024static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7025static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7026static struct sched_domain_attr *dattr_cur;
7027 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7028
7029/*
7030 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7031 * cpumask) fails, then fallback to a single sched domain,
7032 * as determined by the single cpumask fallback_doms.
029190c5 7033 */
4212823f 7034static cpumask_var_t fallback_doms;
029190c5 7035
ee79d1bd
HC
7036/*
7037 * arch_update_cpu_topology lets virtualized architectures update the
7038 * cpu core maps. It is supposed to return 1 if the topology changed
7039 * or 0 if it stayed the same.
7040 */
7041int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7042{
ee79d1bd 7043 return 0;
22e52b07
HC
7044}
7045
acc3f5d7
RR
7046cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7047{
7048 int i;
7049 cpumask_var_t *doms;
7050
7051 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7052 if (!doms)
7053 return NULL;
7054 for (i = 0; i < ndoms; i++) {
7055 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7056 free_sched_domains(doms, i);
7057 return NULL;
7058 }
7059 }
7060 return doms;
7061}
7062
7063void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7064{
7065 unsigned int i;
7066 for (i = 0; i < ndoms; i++)
7067 free_cpumask_var(doms[i]);
7068 kfree(doms);
7069}
7070
1a20ff27 7071/*
41a2d6cf 7072 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7073 * For now this just excludes isolated cpus, but could be used to
7074 * exclude other special cases in the future.
1a20ff27 7075 */
96f874e2 7076static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7077{
7378547f
MM
7078 int err;
7079
22e52b07 7080 arch_update_cpu_topology();
029190c5 7081 ndoms_cur = 1;
acc3f5d7 7082 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7083 if (!doms_cur)
acc3f5d7
RR
7084 doms_cur = &fallback_doms;
7085 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7086 dattr_cur = NULL;
acc3f5d7 7087 err = build_sched_domains(doms_cur[0]);
6382bc90 7088 register_sched_domain_sysctl();
7378547f
MM
7089
7090 return err;
1a20ff27
DG
7091}
7092
96f874e2
RR
7093static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7094 struct cpumask *tmpmask)
1da177e4 7095{
7c16ec58 7096 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7097}
1da177e4 7098
1a20ff27
DG
7099/*
7100 * Detach sched domains from a group of cpus specified in cpu_map
7101 * These cpus will now be attached to the NULL domain
7102 */
96f874e2 7103static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7104{
96f874e2
RR
7105 /* Save because hotplug lock held. */
7106 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7107 int i;
7108
abcd083a 7109 for_each_cpu(i, cpu_map)
57d885fe 7110 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7111 synchronize_sched();
96f874e2 7112 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7113}
7114
1d3504fc
HS
7115/* handle null as "default" */
7116static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7117 struct sched_domain_attr *new, int idx_new)
7118{
7119 struct sched_domain_attr tmp;
7120
7121 /* fast path */
7122 if (!new && !cur)
7123 return 1;
7124
7125 tmp = SD_ATTR_INIT;
7126 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7127 new ? (new + idx_new) : &tmp,
7128 sizeof(struct sched_domain_attr));
7129}
7130
029190c5
PJ
7131/*
7132 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7133 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7134 * doms_new[] to the current sched domain partitioning, doms_cur[].
7135 * It destroys each deleted domain and builds each new domain.
7136 *
acc3f5d7 7137 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7138 * The masks don't intersect (don't overlap.) We should setup one
7139 * sched domain for each mask. CPUs not in any of the cpumasks will
7140 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7141 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7142 * it as it is.
7143 *
acc3f5d7
RR
7144 * The passed in 'doms_new' should be allocated using
7145 * alloc_sched_domains. This routine takes ownership of it and will
7146 * free_sched_domains it when done with it. If the caller failed the
7147 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7148 * and partition_sched_domains() will fallback to the single partition
7149 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7150 *
96f874e2 7151 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7152 * ndoms_new == 0 is a special case for destroying existing domains,
7153 * and it will not create the default domain.
dfb512ec 7154 *
029190c5
PJ
7155 * Call with hotplug lock held
7156 */
acc3f5d7 7157void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7158 struct sched_domain_attr *dattr_new)
029190c5 7159{
dfb512ec 7160 int i, j, n;
d65bd5ec 7161 int new_topology;
029190c5 7162
712555ee 7163 mutex_lock(&sched_domains_mutex);
a1835615 7164
7378547f
MM
7165 /* always unregister in case we don't destroy any domains */
7166 unregister_sched_domain_sysctl();
7167
d65bd5ec
HC
7168 /* Let architecture update cpu core mappings. */
7169 new_topology = arch_update_cpu_topology();
7170
dfb512ec 7171 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7172
7173 /* Destroy deleted domains */
7174 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7175 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7176 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7177 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7178 goto match1;
7179 }
7180 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7181 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7182match1:
7183 ;
7184 }
7185
e761b772
MK
7186 if (doms_new == NULL) {
7187 ndoms_cur = 0;
acc3f5d7 7188 doms_new = &fallback_doms;
6ad4c188 7189 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7190 WARN_ON_ONCE(dattr_new);
e761b772
MK
7191 }
7192
029190c5
PJ
7193 /* Build new domains */
7194 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7195 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7196 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7197 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7198 goto match2;
7199 }
7200 /* no match - add a new doms_new */
acc3f5d7 7201 __build_sched_domains(doms_new[i],
1d3504fc 7202 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7203match2:
7204 ;
7205 }
7206
7207 /* Remember the new sched domains */
acc3f5d7
RR
7208 if (doms_cur != &fallback_doms)
7209 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7210 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7211 doms_cur = doms_new;
1d3504fc 7212 dattr_cur = dattr_new;
029190c5 7213 ndoms_cur = ndoms_new;
7378547f
MM
7214
7215 register_sched_domain_sysctl();
a1835615 7216
712555ee 7217 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7218}
7219
5c45bf27 7220#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7221static void arch_reinit_sched_domains(void)
5c45bf27 7222{
95402b38 7223 get_online_cpus();
dfb512ec
MK
7224
7225 /* Destroy domains first to force the rebuild */
7226 partition_sched_domains(0, NULL, NULL);
7227
e761b772 7228 rebuild_sched_domains();
95402b38 7229 put_online_cpus();
5c45bf27
SS
7230}
7231
7232static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7233{
afb8a9b7 7234 unsigned int level = 0;
5c45bf27 7235
afb8a9b7
GS
7236 if (sscanf(buf, "%u", &level) != 1)
7237 return -EINVAL;
7238
7239 /*
7240 * level is always be positive so don't check for
7241 * level < POWERSAVINGS_BALANCE_NONE which is 0
7242 * What happens on 0 or 1 byte write,
7243 * need to check for count as well?
7244 */
7245
7246 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7247 return -EINVAL;
7248
7249 if (smt)
afb8a9b7 7250 sched_smt_power_savings = level;
5c45bf27 7251 else
afb8a9b7 7252 sched_mc_power_savings = level;
5c45bf27 7253
c70f22d2 7254 arch_reinit_sched_domains();
5c45bf27 7255
c70f22d2 7256 return count;
5c45bf27
SS
7257}
7258
5c45bf27 7259#ifdef CONFIG_SCHED_MC
f718cd4a 7260static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7261 struct sysdev_class_attribute *attr,
f718cd4a 7262 char *page)
5c45bf27
SS
7263{
7264 return sprintf(page, "%u\n", sched_mc_power_savings);
7265}
f718cd4a 7266static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7267 struct sysdev_class_attribute *attr,
48f24c4d 7268 const char *buf, size_t count)
5c45bf27
SS
7269{
7270 return sched_power_savings_store(buf, count, 0);
7271}
f718cd4a
AK
7272static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7273 sched_mc_power_savings_show,
7274 sched_mc_power_savings_store);
5c45bf27
SS
7275#endif
7276
7277#ifdef CONFIG_SCHED_SMT
f718cd4a 7278static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7279 struct sysdev_class_attribute *attr,
f718cd4a 7280 char *page)
5c45bf27
SS
7281{
7282 return sprintf(page, "%u\n", sched_smt_power_savings);
7283}
f718cd4a 7284static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7285 struct sysdev_class_attribute *attr,
48f24c4d 7286 const char *buf, size_t count)
5c45bf27
SS
7287{
7288 return sched_power_savings_store(buf, count, 1);
7289}
f718cd4a
AK
7290static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7291 sched_smt_power_savings_show,
6707de00
AB
7292 sched_smt_power_savings_store);
7293#endif
7294
39aac648 7295int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7296{
7297 int err = 0;
7298
7299#ifdef CONFIG_SCHED_SMT
7300 if (smt_capable())
7301 err = sysfs_create_file(&cls->kset.kobj,
7302 &attr_sched_smt_power_savings.attr);
7303#endif
7304#ifdef CONFIG_SCHED_MC
7305 if (!err && mc_capable())
7306 err = sysfs_create_file(&cls->kset.kobj,
7307 &attr_sched_mc_power_savings.attr);
7308#endif
7309 return err;
7310}
6d6bc0ad 7311#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7312
e761b772 7313#ifndef CONFIG_CPUSETS
1da177e4 7314/*
e761b772
MK
7315 * Add online and remove offline CPUs from the scheduler domains.
7316 * When cpusets are enabled they take over this function.
1da177e4
LT
7317 */
7318static int update_sched_domains(struct notifier_block *nfb,
7319 unsigned long action, void *hcpu)
e761b772
MK
7320{
7321 switch (action) {
7322 case CPU_ONLINE:
7323 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7324 case CPU_DOWN_PREPARE:
7325 case CPU_DOWN_PREPARE_FROZEN:
7326 case CPU_DOWN_FAILED:
7327 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7328 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7329 return NOTIFY_OK;
7330
7331 default:
7332 return NOTIFY_DONE;
7333 }
7334}
7335#endif
7336
7337static int update_runtime(struct notifier_block *nfb,
7338 unsigned long action, void *hcpu)
1da177e4 7339{
7def2be1
PZ
7340 int cpu = (int)(long)hcpu;
7341
1da177e4 7342 switch (action) {
1da177e4 7343 case CPU_DOWN_PREPARE:
8bb78442 7344 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7345 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7346 return NOTIFY_OK;
7347
1da177e4 7348 case CPU_DOWN_FAILED:
8bb78442 7349 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7350 case CPU_ONLINE:
8bb78442 7351 case CPU_ONLINE_FROZEN:
7def2be1 7352 enable_runtime(cpu_rq(cpu));
e761b772
MK
7353 return NOTIFY_OK;
7354
1da177e4
LT
7355 default:
7356 return NOTIFY_DONE;
7357 }
1da177e4 7358}
1da177e4
LT
7359
7360void __init sched_init_smp(void)
7361{
dcc30a35
RR
7362 cpumask_var_t non_isolated_cpus;
7363
7364 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7365 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7366
434d53b0
MT
7367#if defined(CONFIG_NUMA)
7368 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7369 GFP_KERNEL);
7370 BUG_ON(sched_group_nodes_bycpu == NULL);
7371#endif
95402b38 7372 get_online_cpus();
712555ee 7373 mutex_lock(&sched_domains_mutex);
6ad4c188 7374 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7375 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7376 if (cpumask_empty(non_isolated_cpus))
7377 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7378 mutex_unlock(&sched_domains_mutex);
95402b38 7379 put_online_cpus();
e761b772
MK
7380
7381#ifndef CONFIG_CPUSETS
1da177e4
LT
7382 /* XXX: Theoretical race here - CPU may be hotplugged now */
7383 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7384#endif
7385
7386 /* RT runtime code needs to handle some hotplug events */
7387 hotcpu_notifier(update_runtime, 0);
7388
b328ca18 7389 init_hrtick();
5c1e1767
NP
7390
7391 /* Move init over to a non-isolated CPU */
dcc30a35 7392 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7393 BUG();
19978ca6 7394 sched_init_granularity();
dcc30a35 7395 free_cpumask_var(non_isolated_cpus);
4212823f 7396
0e3900e6 7397 init_sched_rt_class();
1da177e4
LT
7398}
7399#else
7400void __init sched_init_smp(void)
7401{
19978ca6 7402 sched_init_granularity();
1da177e4
LT
7403}
7404#endif /* CONFIG_SMP */
7405
cd1bb94b
AB
7406const_debug unsigned int sysctl_timer_migration = 1;
7407
1da177e4
LT
7408int in_sched_functions(unsigned long addr)
7409{
1da177e4
LT
7410 return in_lock_functions(addr) ||
7411 (addr >= (unsigned long)__sched_text_start
7412 && addr < (unsigned long)__sched_text_end);
7413}
7414
a9957449 7415static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7416{
7417 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7418 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7419#ifdef CONFIG_FAIR_GROUP_SCHED
7420 cfs_rq->rq = rq;
7421#endif
67e9fb2a 7422 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7423}
7424
fa85ae24
PZ
7425static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7426{
7427 struct rt_prio_array *array;
7428 int i;
7429
7430 array = &rt_rq->active;
7431 for (i = 0; i < MAX_RT_PRIO; i++) {
7432 INIT_LIST_HEAD(array->queue + i);
7433 __clear_bit(i, array->bitmap);
7434 }
7435 /* delimiter for bitsearch: */
7436 __set_bit(MAX_RT_PRIO, array->bitmap);
7437
052f1dc7 7438#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7439 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7440#ifdef CONFIG_SMP
e864c499 7441 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7442#endif
48d5e258 7443#endif
fa85ae24
PZ
7444#ifdef CONFIG_SMP
7445 rt_rq->rt_nr_migratory = 0;
fa85ae24 7446 rt_rq->overloaded = 0;
05fa785c 7447 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7448#endif
7449
7450 rt_rq->rt_time = 0;
7451 rt_rq->rt_throttled = 0;
ac086bc2 7452 rt_rq->rt_runtime = 0;
0986b11b 7453 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7454
052f1dc7 7455#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7456 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7457 rt_rq->rq = rq;
7458#endif
fa85ae24
PZ
7459}
7460
6f505b16 7461#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7462static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7463 struct sched_entity *se, int cpu, int add,
7464 struct sched_entity *parent)
6f505b16 7465{
ec7dc8ac 7466 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7467 tg->cfs_rq[cpu] = cfs_rq;
7468 init_cfs_rq(cfs_rq, rq);
7469 cfs_rq->tg = tg;
7470 if (add)
7471 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7472
7473 tg->se[cpu] = se;
354d60c2
DG
7474 /* se could be NULL for init_task_group */
7475 if (!se)
7476 return;
7477
ec7dc8ac
DG
7478 if (!parent)
7479 se->cfs_rq = &rq->cfs;
7480 else
7481 se->cfs_rq = parent->my_q;
7482
6f505b16
PZ
7483 se->my_q = cfs_rq;
7484 se->load.weight = tg->shares;
e05510d0 7485 se->load.inv_weight = 0;
ec7dc8ac 7486 se->parent = parent;
6f505b16 7487}
052f1dc7 7488#endif
6f505b16 7489
052f1dc7 7490#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7491static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7492 struct sched_rt_entity *rt_se, int cpu, int add,
7493 struct sched_rt_entity *parent)
6f505b16 7494{
ec7dc8ac
DG
7495 struct rq *rq = cpu_rq(cpu);
7496
6f505b16
PZ
7497 tg->rt_rq[cpu] = rt_rq;
7498 init_rt_rq(rt_rq, rq);
7499 rt_rq->tg = tg;
ac086bc2 7500 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7501 if (add)
7502 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7503
7504 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7505 if (!rt_se)
7506 return;
7507
ec7dc8ac
DG
7508 if (!parent)
7509 rt_se->rt_rq = &rq->rt;
7510 else
7511 rt_se->rt_rq = parent->my_q;
7512
6f505b16 7513 rt_se->my_q = rt_rq;
ec7dc8ac 7514 rt_se->parent = parent;
6f505b16
PZ
7515 INIT_LIST_HEAD(&rt_se->run_list);
7516}
7517#endif
7518
1da177e4
LT
7519void __init sched_init(void)
7520{
dd41f596 7521 int i, j;
434d53b0
MT
7522 unsigned long alloc_size = 0, ptr;
7523
7524#ifdef CONFIG_FAIR_GROUP_SCHED
7525 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7526#endif
7527#ifdef CONFIG_RT_GROUP_SCHED
7528 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7529#endif
df7c8e84 7530#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7531 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7532#endif
434d53b0 7533 if (alloc_size) {
36b7b6d4 7534 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7535
7536#ifdef CONFIG_FAIR_GROUP_SCHED
7537 init_task_group.se = (struct sched_entity **)ptr;
7538 ptr += nr_cpu_ids * sizeof(void **);
7539
7540 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7541 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7542
6d6bc0ad 7543#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7544#ifdef CONFIG_RT_GROUP_SCHED
7545 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7546 ptr += nr_cpu_ids * sizeof(void **);
7547
7548 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7549 ptr += nr_cpu_ids * sizeof(void **);
7550
6d6bc0ad 7551#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7552#ifdef CONFIG_CPUMASK_OFFSTACK
7553 for_each_possible_cpu(i) {
7554 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7555 ptr += cpumask_size();
7556 }
7557#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7558 }
dd41f596 7559
57d885fe
GH
7560#ifdef CONFIG_SMP
7561 init_defrootdomain();
7562#endif
7563
d0b27fa7
PZ
7564 init_rt_bandwidth(&def_rt_bandwidth,
7565 global_rt_period(), global_rt_runtime());
7566
7567#ifdef CONFIG_RT_GROUP_SCHED
7568 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7569 global_rt_period(), global_rt_runtime());
6d6bc0ad 7570#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7571
7c941438 7572#ifdef CONFIG_CGROUP_SCHED
6f505b16 7573 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7574 INIT_LIST_HEAD(&init_task_group.children);
7575
7c941438 7576#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7577
4a6cc4bd
JK
7578#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7579 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7580 __alignof__(unsigned long));
7581#endif
0a945022 7582 for_each_possible_cpu(i) {
70b97a7f 7583 struct rq *rq;
1da177e4
LT
7584
7585 rq = cpu_rq(i);
05fa785c 7586 raw_spin_lock_init(&rq->lock);
7897986b 7587 rq->nr_running = 0;
dce48a84
TG
7588 rq->calc_load_active = 0;
7589 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7590 init_cfs_rq(&rq->cfs, rq);
6f505b16 7591 init_rt_rq(&rq->rt, rq);
dd41f596 7592#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7593 init_task_group.shares = init_task_group_load;
6f505b16 7594 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7595#ifdef CONFIG_CGROUP_SCHED
7596 /*
7597 * How much cpu bandwidth does init_task_group get?
7598 *
7599 * In case of task-groups formed thr' the cgroup filesystem, it
7600 * gets 100% of the cpu resources in the system. This overall
7601 * system cpu resource is divided among the tasks of
7602 * init_task_group and its child task-groups in a fair manner,
7603 * based on each entity's (task or task-group's) weight
7604 * (se->load.weight).
7605 *
7606 * In other words, if init_task_group has 10 tasks of weight
7607 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7608 * then A0's share of the cpu resource is:
7609 *
0d905bca 7610 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7611 *
7612 * We achieve this by letting init_task_group's tasks sit
7613 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7614 */
ec7dc8ac 7615 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7616#endif
354d60c2
DG
7617#endif /* CONFIG_FAIR_GROUP_SCHED */
7618
7619 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7620#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7621 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7622#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7623 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7624#endif
dd41f596 7625#endif
1da177e4 7626
dd41f596
IM
7627 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7628 rq->cpu_load[j] = 0;
1da177e4 7629#ifdef CONFIG_SMP
41c7ce9a 7630 rq->sd = NULL;
57d885fe 7631 rq->rd = NULL;
3f029d3c 7632 rq->post_schedule = 0;
1da177e4 7633 rq->active_balance = 0;
dd41f596 7634 rq->next_balance = jiffies;
1da177e4 7635 rq->push_cpu = 0;
0a2966b4 7636 rq->cpu = i;
1f11eb6a 7637 rq->online = 0;
eae0c9df
MG
7638 rq->idle_stamp = 0;
7639 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7640 rq_attach_root(rq, &def_root_domain);
1da177e4 7641#endif
8f4d37ec 7642 init_rq_hrtick(rq);
1da177e4 7643 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7644 }
7645
2dd73a4f 7646 set_load_weight(&init_task);
b50f60ce 7647
e107be36
AK
7648#ifdef CONFIG_PREEMPT_NOTIFIERS
7649 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7650#endif
7651
c9819f45 7652#ifdef CONFIG_SMP
962cf36c 7653 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7654#endif
7655
b50f60ce 7656#ifdef CONFIG_RT_MUTEXES
1d615482 7657 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7658#endif
7659
1da177e4
LT
7660 /*
7661 * The boot idle thread does lazy MMU switching as well:
7662 */
7663 atomic_inc(&init_mm.mm_count);
7664 enter_lazy_tlb(&init_mm, current);
7665
7666 /*
7667 * Make us the idle thread. Technically, schedule() should not be
7668 * called from this thread, however somewhere below it might be,
7669 * but because we are the idle thread, we just pick up running again
7670 * when this runqueue becomes "idle".
7671 */
7672 init_idle(current, smp_processor_id());
dce48a84
TG
7673
7674 calc_load_update = jiffies + LOAD_FREQ;
7675
dd41f596
IM
7676 /*
7677 * During early bootup we pretend to be a normal task:
7678 */
7679 current->sched_class = &fair_sched_class;
6892b75e 7680
6a7b3dc3 7681 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7682 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7683#ifdef CONFIG_SMP
7d1e6a9b 7684#ifdef CONFIG_NO_HZ
49557e62 7685 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7686 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7687#endif
bdddd296
RR
7688 /* May be allocated at isolcpus cmdline parse time */
7689 if (cpu_isolated_map == NULL)
7690 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7691#endif /* SMP */
6a7b3dc3 7692
cdd6c482 7693 perf_event_init();
0d905bca 7694
6892b75e 7695 scheduler_running = 1;
1da177e4
LT
7696}
7697
7698#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7699static inline int preempt_count_equals(int preempt_offset)
7700{
234da7bc 7701 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7702
7703 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7704}
7705
d894837f 7706void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7707{
48f24c4d 7708#ifdef in_atomic
1da177e4
LT
7709 static unsigned long prev_jiffy; /* ratelimiting */
7710
e4aafea2
FW
7711 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7712 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7713 return;
7714 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7715 return;
7716 prev_jiffy = jiffies;
7717
3df0fc5b
PZ
7718 printk(KERN_ERR
7719 "BUG: sleeping function called from invalid context at %s:%d\n",
7720 file, line);
7721 printk(KERN_ERR
7722 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7723 in_atomic(), irqs_disabled(),
7724 current->pid, current->comm);
aef745fc
IM
7725
7726 debug_show_held_locks(current);
7727 if (irqs_disabled())
7728 print_irqtrace_events(current);
7729 dump_stack();
1da177e4
LT
7730#endif
7731}
7732EXPORT_SYMBOL(__might_sleep);
7733#endif
7734
7735#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7736static void normalize_task(struct rq *rq, struct task_struct *p)
7737{
7738 int on_rq;
3e51f33f 7739
3a5e4dc1
AK
7740 on_rq = p->se.on_rq;
7741 if (on_rq)
7742 deactivate_task(rq, p, 0);
7743 __setscheduler(rq, p, SCHED_NORMAL, 0);
7744 if (on_rq) {
7745 activate_task(rq, p, 0);
7746 resched_task(rq->curr);
7747 }
7748}
7749
1da177e4
LT
7750void normalize_rt_tasks(void)
7751{
a0f98a1c 7752 struct task_struct *g, *p;
1da177e4 7753 unsigned long flags;
70b97a7f 7754 struct rq *rq;
1da177e4 7755
4cf5d77a 7756 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7757 do_each_thread(g, p) {
178be793
IM
7758 /*
7759 * Only normalize user tasks:
7760 */
7761 if (!p->mm)
7762 continue;
7763
6cfb0d5d 7764 p->se.exec_start = 0;
6cfb0d5d 7765#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7766 p->se.statistics.wait_start = 0;
7767 p->se.statistics.sleep_start = 0;
7768 p->se.statistics.block_start = 0;
6cfb0d5d 7769#endif
dd41f596
IM
7770
7771 if (!rt_task(p)) {
7772 /*
7773 * Renice negative nice level userspace
7774 * tasks back to 0:
7775 */
7776 if (TASK_NICE(p) < 0 && p->mm)
7777 set_user_nice(p, 0);
1da177e4 7778 continue;
dd41f596 7779 }
1da177e4 7780
1d615482 7781 raw_spin_lock(&p->pi_lock);
b29739f9 7782 rq = __task_rq_lock(p);
1da177e4 7783
178be793 7784 normalize_task(rq, p);
3a5e4dc1 7785
b29739f9 7786 __task_rq_unlock(rq);
1d615482 7787 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7788 } while_each_thread(g, p);
7789
4cf5d77a 7790 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7791}
7792
7793#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7794
7795#ifdef CONFIG_IA64
7796/*
7797 * These functions are only useful for the IA64 MCA handling.
7798 *
7799 * They can only be called when the whole system has been
7800 * stopped - every CPU needs to be quiescent, and no scheduling
7801 * activity can take place. Using them for anything else would
7802 * be a serious bug, and as a result, they aren't even visible
7803 * under any other configuration.
7804 */
7805
7806/**
7807 * curr_task - return the current task for a given cpu.
7808 * @cpu: the processor in question.
7809 *
7810 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7811 */
36c8b586 7812struct task_struct *curr_task(int cpu)
1df5c10a
LT
7813{
7814 return cpu_curr(cpu);
7815}
7816
7817/**
7818 * set_curr_task - set the current task for a given cpu.
7819 * @cpu: the processor in question.
7820 * @p: the task pointer to set.
7821 *
7822 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7823 * are serviced on a separate stack. It allows the architecture to switch the
7824 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7825 * must be called with all CPU's synchronized, and interrupts disabled, the
7826 * and caller must save the original value of the current task (see
7827 * curr_task() above) and restore that value before reenabling interrupts and
7828 * re-starting the system.
7829 *
7830 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7831 */
36c8b586 7832void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7833{
7834 cpu_curr(cpu) = p;
7835}
7836
7837#endif
29f59db3 7838
bccbe08a
PZ
7839#ifdef CONFIG_FAIR_GROUP_SCHED
7840static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7841{
7842 int i;
7843
7844 for_each_possible_cpu(i) {
7845 if (tg->cfs_rq)
7846 kfree(tg->cfs_rq[i]);
7847 if (tg->se)
7848 kfree(tg->se[i]);
6f505b16
PZ
7849 }
7850
7851 kfree(tg->cfs_rq);
7852 kfree(tg->se);
6f505b16
PZ
7853}
7854
ec7dc8ac
DG
7855static
7856int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7857{
29f59db3 7858 struct cfs_rq *cfs_rq;
eab17229 7859 struct sched_entity *se;
9b5b7751 7860 struct rq *rq;
29f59db3
SV
7861 int i;
7862
434d53b0 7863 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7864 if (!tg->cfs_rq)
7865 goto err;
434d53b0 7866 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7867 if (!tg->se)
7868 goto err;
052f1dc7
PZ
7869
7870 tg->shares = NICE_0_LOAD;
29f59db3
SV
7871
7872 for_each_possible_cpu(i) {
9b5b7751 7873 rq = cpu_rq(i);
29f59db3 7874
eab17229
LZ
7875 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7876 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7877 if (!cfs_rq)
7878 goto err;
7879
eab17229
LZ
7880 se = kzalloc_node(sizeof(struct sched_entity),
7881 GFP_KERNEL, cpu_to_node(i));
29f59db3 7882 if (!se)
dfc12eb2 7883 goto err_free_rq;
29f59db3 7884
eab17229 7885 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7886 }
7887
7888 return 1;
7889
dfc12eb2
PC
7890 err_free_rq:
7891 kfree(cfs_rq);
bccbe08a
PZ
7892 err:
7893 return 0;
7894}
7895
7896static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7897{
7898 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7899 &cpu_rq(cpu)->leaf_cfs_rq_list);
7900}
7901
7902static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7903{
7904 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7905}
6d6bc0ad 7906#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7907static inline void free_fair_sched_group(struct task_group *tg)
7908{
7909}
7910
ec7dc8ac
DG
7911static inline
7912int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7913{
7914 return 1;
7915}
7916
7917static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7918{
7919}
7920
7921static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7922{
7923}
6d6bc0ad 7924#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7925
7926#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7927static void free_rt_sched_group(struct task_group *tg)
7928{
7929 int i;
7930
d0b27fa7
PZ
7931 destroy_rt_bandwidth(&tg->rt_bandwidth);
7932
bccbe08a
PZ
7933 for_each_possible_cpu(i) {
7934 if (tg->rt_rq)
7935 kfree(tg->rt_rq[i]);
7936 if (tg->rt_se)
7937 kfree(tg->rt_se[i]);
7938 }
7939
7940 kfree(tg->rt_rq);
7941 kfree(tg->rt_se);
7942}
7943
ec7dc8ac
DG
7944static
7945int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7946{
7947 struct rt_rq *rt_rq;
eab17229 7948 struct sched_rt_entity *rt_se;
bccbe08a
PZ
7949 struct rq *rq;
7950 int i;
7951
434d53b0 7952 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7953 if (!tg->rt_rq)
7954 goto err;
434d53b0 7955 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7956 if (!tg->rt_se)
7957 goto err;
7958
d0b27fa7
PZ
7959 init_rt_bandwidth(&tg->rt_bandwidth,
7960 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7961
7962 for_each_possible_cpu(i) {
7963 rq = cpu_rq(i);
7964
eab17229
LZ
7965 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7966 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
7967 if (!rt_rq)
7968 goto err;
29f59db3 7969
eab17229
LZ
7970 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7971 GFP_KERNEL, cpu_to_node(i));
6f505b16 7972 if (!rt_se)
dfc12eb2 7973 goto err_free_rq;
29f59db3 7974
eab17229 7975 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
7976 }
7977
bccbe08a
PZ
7978 return 1;
7979
dfc12eb2
PC
7980 err_free_rq:
7981 kfree(rt_rq);
bccbe08a
PZ
7982 err:
7983 return 0;
7984}
7985
7986static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7987{
7988 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7989 &cpu_rq(cpu)->leaf_rt_rq_list);
7990}
7991
7992static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7993{
7994 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7995}
6d6bc0ad 7996#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
7997static inline void free_rt_sched_group(struct task_group *tg)
7998{
7999}
8000
ec7dc8ac
DG
8001static inline
8002int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8003{
8004 return 1;
8005}
8006
8007static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8008{
8009}
8010
8011static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8012{
8013}
6d6bc0ad 8014#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8015
7c941438 8016#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8017static void free_sched_group(struct task_group *tg)
8018{
8019 free_fair_sched_group(tg);
8020 free_rt_sched_group(tg);
8021 kfree(tg);
8022}
8023
8024/* allocate runqueue etc for a new task group */
ec7dc8ac 8025struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8026{
8027 struct task_group *tg;
8028 unsigned long flags;
8029 int i;
8030
8031 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8032 if (!tg)
8033 return ERR_PTR(-ENOMEM);
8034
ec7dc8ac 8035 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8036 goto err;
8037
ec7dc8ac 8038 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8039 goto err;
8040
8ed36996 8041 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8042 for_each_possible_cpu(i) {
bccbe08a
PZ
8043 register_fair_sched_group(tg, i);
8044 register_rt_sched_group(tg, i);
9b5b7751 8045 }
6f505b16 8046 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8047
8048 WARN_ON(!parent); /* root should already exist */
8049
8050 tg->parent = parent;
f473aa5e 8051 INIT_LIST_HEAD(&tg->children);
09f2724a 8052 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8053 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8054
9b5b7751 8055 return tg;
29f59db3
SV
8056
8057err:
6f505b16 8058 free_sched_group(tg);
29f59db3
SV
8059 return ERR_PTR(-ENOMEM);
8060}
8061
9b5b7751 8062/* rcu callback to free various structures associated with a task group */
6f505b16 8063static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8064{
29f59db3 8065 /* now it should be safe to free those cfs_rqs */
6f505b16 8066 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8067}
8068
9b5b7751 8069/* Destroy runqueue etc associated with a task group */
4cf86d77 8070void sched_destroy_group(struct task_group *tg)
29f59db3 8071{
8ed36996 8072 unsigned long flags;
9b5b7751 8073 int i;
29f59db3 8074
8ed36996 8075 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8076 for_each_possible_cpu(i) {
bccbe08a
PZ
8077 unregister_fair_sched_group(tg, i);
8078 unregister_rt_sched_group(tg, i);
9b5b7751 8079 }
6f505b16 8080 list_del_rcu(&tg->list);
f473aa5e 8081 list_del_rcu(&tg->siblings);
8ed36996 8082 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8083
9b5b7751 8084 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8085 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8086}
8087
9b5b7751 8088/* change task's runqueue when it moves between groups.
3a252015
IM
8089 * The caller of this function should have put the task in its new group
8090 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8091 * reflect its new group.
9b5b7751
SV
8092 */
8093void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8094{
8095 int on_rq, running;
8096 unsigned long flags;
8097 struct rq *rq;
8098
8099 rq = task_rq_lock(tsk, &flags);
8100
051a1d1a 8101 running = task_current(rq, tsk);
29f59db3
SV
8102 on_rq = tsk->se.on_rq;
8103
0e1f3483 8104 if (on_rq)
29f59db3 8105 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8106 if (unlikely(running))
8107 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8108
6f505b16 8109 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8110
810b3817
PZ
8111#ifdef CONFIG_FAIR_GROUP_SCHED
8112 if (tsk->sched_class->moved_group)
88ec22d3 8113 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8114#endif
8115
0e1f3483
HS
8116 if (unlikely(running))
8117 tsk->sched_class->set_curr_task(rq);
8118 if (on_rq)
371fd7e7 8119 enqueue_task(rq, tsk, 0);
29f59db3 8120
29f59db3
SV
8121 task_rq_unlock(rq, &flags);
8122}
7c941438 8123#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8124
052f1dc7 8125#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8126static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8127{
8128 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8129 int on_rq;
8130
29f59db3 8131 on_rq = se->on_rq;
62fb1851 8132 if (on_rq)
29f59db3
SV
8133 dequeue_entity(cfs_rq, se, 0);
8134
8135 se->load.weight = shares;
e05510d0 8136 se->load.inv_weight = 0;
29f59db3 8137
62fb1851 8138 if (on_rq)
29f59db3 8139 enqueue_entity(cfs_rq, se, 0);
c09595f6 8140}
62fb1851 8141
c09595f6
PZ
8142static void set_se_shares(struct sched_entity *se, unsigned long shares)
8143{
8144 struct cfs_rq *cfs_rq = se->cfs_rq;
8145 struct rq *rq = cfs_rq->rq;
8146 unsigned long flags;
8147
05fa785c 8148 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8149 __set_se_shares(se, shares);
05fa785c 8150 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8151}
8152
8ed36996
PZ
8153static DEFINE_MUTEX(shares_mutex);
8154
4cf86d77 8155int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8156{
8157 int i;
8ed36996 8158 unsigned long flags;
c61935fd 8159
ec7dc8ac
DG
8160 /*
8161 * We can't change the weight of the root cgroup.
8162 */
8163 if (!tg->se[0])
8164 return -EINVAL;
8165
18d95a28
PZ
8166 if (shares < MIN_SHARES)
8167 shares = MIN_SHARES;
cb4ad1ff
MX
8168 else if (shares > MAX_SHARES)
8169 shares = MAX_SHARES;
62fb1851 8170
8ed36996 8171 mutex_lock(&shares_mutex);
9b5b7751 8172 if (tg->shares == shares)
5cb350ba 8173 goto done;
29f59db3 8174
8ed36996 8175 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8176 for_each_possible_cpu(i)
8177 unregister_fair_sched_group(tg, i);
f473aa5e 8178 list_del_rcu(&tg->siblings);
8ed36996 8179 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8180
8181 /* wait for any ongoing reference to this group to finish */
8182 synchronize_sched();
8183
8184 /*
8185 * Now we are free to modify the group's share on each cpu
8186 * w/o tripping rebalance_share or load_balance_fair.
8187 */
9b5b7751 8188 tg->shares = shares;
c09595f6
PZ
8189 for_each_possible_cpu(i) {
8190 /*
8191 * force a rebalance
8192 */
8193 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8194 set_se_shares(tg->se[i], shares);
c09595f6 8195 }
29f59db3 8196
6b2d7700
SV
8197 /*
8198 * Enable load balance activity on this group, by inserting it back on
8199 * each cpu's rq->leaf_cfs_rq_list.
8200 */
8ed36996 8201 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8202 for_each_possible_cpu(i)
8203 register_fair_sched_group(tg, i);
f473aa5e 8204 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8205 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8206done:
8ed36996 8207 mutex_unlock(&shares_mutex);
9b5b7751 8208 return 0;
29f59db3
SV
8209}
8210
5cb350ba
DG
8211unsigned long sched_group_shares(struct task_group *tg)
8212{
8213 return tg->shares;
8214}
052f1dc7 8215#endif
5cb350ba 8216
052f1dc7 8217#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8218/*
9f0c1e56 8219 * Ensure that the real time constraints are schedulable.
6f505b16 8220 */
9f0c1e56
PZ
8221static DEFINE_MUTEX(rt_constraints_mutex);
8222
8223static unsigned long to_ratio(u64 period, u64 runtime)
8224{
8225 if (runtime == RUNTIME_INF)
9a7e0b18 8226 return 1ULL << 20;
9f0c1e56 8227
9a7e0b18 8228 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8229}
8230
9a7e0b18
PZ
8231/* Must be called with tasklist_lock held */
8232static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8233{
9a7e0b18 8234 struct task_struct *g, *p;
b40b2e8e 8235
9a7e0b18
PZ
8236 do_each_thread(g, p) {
8237 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8238 return 1;
8239 } while_each_thread(g, p);
b40b2e8e 8240
9a7e0b18
PZ
8241 return 0;
8242}
b40b2e8e 8243
9a7e0b18
PZ
8244struct rt_schedulable_data {
8245 struct task_group *tg;
8246 u64 rt_period;
8247 u64 rt_runtime;
8248};
b40b2e8e 8249
9a7e0b18
PZ
8250static int tg_schedulable(struct task_group *tg, void *data)
8251{
8252 struct rt_schedulable_data *d = data;
8253 struct task_group *child;
8254 unsigned long total, sum = 0;
8255 u64 period, runtime;
b40b2e8e 8256
9a7e0b18
PZ
8257 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8258 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8259
9a7e0b18
PZ
8260 if (tg == d->tg) {
8261 period = d->rt_period;
8262 runtime = d->rt_runtime;
b40b2e8e 8263 }
b40b2e8e 8264
4653f803
PZ
8265 /*
8266 * Cannot have more runtime than the period.
8267 */
8268 if (runtime > period && runtime != RUNTIME_INF)
8269 return -EINVAL;
6f505b16 8270
4653f803
PZ
8271 /*
8272 * Ensure we don't starve existing RT tasks.
8273 */
9a7e0b18
PZ
8274 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8275 return -EBUSY;
6f505b16 8276
9a7e0b18 8277 total = to_ratio(period, runtime);
6f505b16 8278
4653f803
PZ
8279 /*
8280 * Nobody can have more than the global setting allows.
8281 */
8282 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8283 return -EINVAL;
6f505b16 8284
4653f803
PZ
8285 /*
8286 * The sum of our children's runtime should not exceed our own.
8287 */
9a7e0b18
PZ
8288 list_for_each_entry_rcu(child, &tg->children, siblings) {
8289 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8290 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8291
9a7e0b18
PZ
8292 if (child == d->tg) {
8293 period = d->rt_period;
8294 runtime = d->rt_runtime;
8295 }
6f505b16 8296
9a7e0b18 8297 sum += to_ratio(period, runtime);
9f0c1e56 8298 }
6f505b16 8299
9a7e0b18
PZ
8300 if (sum > total)
8301 return -EINVAL;
8302
8303 return 0;
6f505b16
PZ
8304}
8305
9a7e0b18 8306static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8307{
9a7e0b18
PZ
8308 struct rt_schedulable_data data = {
8309 .tg = tg,
8310 .rt_period = period,
8311 .rt_runtime = runtime,
8312 };
8313
8314 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8315}
8316
d0b27fa7
PZ
8317static int tg_set_bandwidth(struct task_group *tg,
8318 u64 rt_period, u64 rt_runtime)
6f505b16 8319{
ac086bc2 8320 int i, err = 0;
9f0c1e56 8321
9f0c1e56 8322 mutex_lock(&rt_constraints_mutex);
521f1a24 8323 read_lock(&tasklist_lock);
9a7e0b18
PZ
8324 err = __rt_schedulable(tg, rt_period, rt_runtime);
8325 if (err)
9f0c1e56 8326 goto unlock;
ac086bc2 8327
0986b11b 8328 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8329 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8330 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8331
8332 for_each_possible_cpu(i) {
8333 struct rt_rq *rt_rq = tg->rt_rq[i];
8334
0986b11b 8335 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8336 rt_rq->rt_runtime = rt_runtime;
0986b11b 8337 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8338 }
0986b11b 8339 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8340 unlock:
521f1a24 8341 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8342 mutex_unlock(&rt_constraints_mutex);
8343
8344 return err;
6f505b16
PZ
8345}
8346
d0b27fa7
PZ
8347int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8348{
8349 u64 rt_runtime, rt_period;
8350
8351 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8352 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8353 if (rt_runtime_us < 0)
8354 rt_runtime = RUNTIME_INF;
8355
8356 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8357}
8358
9f0c1e56
PZ
8359long sched_group_rt_runtime(struct task_group *tg)
8360{
8361 u64 rt_runtime_us;
8362
d0b27fa7 8363 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8364 return -1;
8365
d0b27fa7 8366 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8367 do_div(rt_runtime_us, NSEC_PER_USEC);
8368 return rt_runtime_us;
8369}
d0b27fa7
PZ
8370
8371int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8372{
8373 u64 rt_runtime, rt_period;
8374
8375 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8376 rt_runtime = tg->rt_bandwidth.rt_runtime;
8377
619b0488
R
8378 if (rt_period == 0)
8379 return -EINVAL;
8380
d0b27fa7
PZ
8381 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8382}
8383
8384long sched_group_rt_period(struct task_group *tg)
8385{
8386 u64 rt_period_us;
8387
8388 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8389 do_div(rt_period_us, NSEC_PER_USEC);
8390 return rt_period_us;
8391}
8392
8393static int sched_rt_global_constraints(void)
8394{
4653f803 8395 u64 runtime, period;
d0b27fa7
PZ
8396 int ret = 0;
8397
ec5d4989
HS
8398 if (sysctl_sched_rt_period <= 0)
8399 return -EINVAL;
8400
4653f803
PZ
8401 runtime = global_rt_runtime();
8402 period = global_rt_period();
8403
8404 /*
8405 * Sanity check on the sysctl variables.
8406 */
8407 if (runtime > period && runtime != RUNTIME_INF)
8408 return -EINVAL;
10b612f4 8409
d0b27fa7 8410 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8411 read_lock(&tasklist_lock);
4653f803 8412 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8413 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8414 mutex_unlock(&rt_constraints_mutex);
8415
8416 return ret;
8417}
54e99124
DG
8418
8419int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8420{
8421 /* Don't accept realtime tasks when there is no way for them to run */
8422 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8423 return 0;
8424
8425 return 1;
8426}
8427
6d6bc0ad 8428#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8429static int sched_rt_global_constraints(void)
8430{
ac086bc2
PZ
8431 unsigned long flags;
8432 int i;
8433
ec5d4989
HS
8434 if (sysctl_sched_rt_period <= 0)
8435 return -EINVAL;
8436
60aa605d
PZ
8437 /*
8438 * There's always some RT tasks in the root group
8439 * -- migration, kstopmachine etc..
8440 */
8441 if (sysctl_sched_rt_runtime == 0)
8442 return -EBUSY;
8443
0986b11b 8444 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8445 for_each_possible_cpu(i) {
8446 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8447
0986b11b 8448 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8449 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8450 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8451 }
0986b11b 8452 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8453
d0b27fa7
PZ
8454 return 0;
8455}
6d6bc0ad 8456#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8457
8458int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8459 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8460 loff_t *ppos)
8461{
8462 int ret;
8463 int old_period, old_runtime;
8464 static DEFINE_MUTEX(mutex);
8465
8466 mutex_lock(&mutex);
8467 old_period = sysctl_sched_rt_period;
8468 old_runtime = sysctl_sched_rt_runtime;
8469
8d65af78 8470 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8471
8472 if (!ret && write) {
8473 ret = sched_rt_global_constraints();
8474 if (ret) {
8475 sysctl_sched_rt_period = old_period;
8476 sysctl_sched_rt_runtime = old_runtime;
8477 } else {
8478 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8479 def_rt_bandwidth.rt_period =
8480 ns_to_ktime(global_rt_period());
8481 }
8482 }
8483 mutex_unlock(&mutex);
8484
8485 return ret;
8486}
68318b8e 8487
052f1dc7 8488#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8489
8490/* return corresponding task_group object of a cgroup */
2b01dfe3 8491static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8492{
2b01dfe3
PM
8493 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8494 struct task_group, css);
68318b8e
SV
8495}
8496
8497static struct cgroup_subsys_state *
2b01dfe3 8498cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8499{
ec7dc8ac 8500 struct task_group *tg, *parent;
68318b8e 8501
2b01dfe3 8502 if (!cgrp->parent) {
68318b8e 8503 /* This is early initialization for the top cgroup */
68318b8e
SV
8504 return &init_task_group.css;
8505 }
8506
ec7dc8ac
DG
8507 parent = cgroup_tg(cgrp->parent);
8508 tg = sched_create_group(parent);
68318b8e
SV
8509 if (IS_ERR(tg))
8510 return ERR_PTR(-ENOMEM);
8511
68318b8e
SV
8512 return &tg->css;
8513}
8514
41a2d6cf
IM
8515static void
8516cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8517{
2b01dfe3 8518 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8519
8520 sched_destroy_group(tg);
8521}
8522
41a2d6cf 8523static int
be367d09 8524cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8525{
b68aa230 8526#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8527 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8528 return -EINVAL;
8529#else
68318b8e
SV
8530 /* We don't support RT-tasks being in separate groups */
8531 if (tsk->sched_class != &fair_sched_class)
8532 return -EINVAL;
b68aa230 8533#endif
be367d09
BB
8534 return 0;
8535}
68318b8e 8536
be367d09
BB
8537static int
8538cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8539 struct task_struct *tsk, bool threadgroup)
8540{
8541 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8542 if (retval)
8543 return retval;
8544 if (threadgroup) {
8545 struct task_struct *c;
8546 rcu_read_lock();
8547 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8548 retval = cpu_cgroup_can_attach_task(cgrp, c);
8549 if (retval) {
8550 rcu_read_unlock();
8551 return retval;
8552 }
8553 }
8554 rcu_read_unlock();
8555 }
68318b8e
SV
8556 return 0;
8557}
8558
8559static void
2b01dfe3 8560cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8561 struct cgroup *old_cont, struct task_struct *tsk,
8562 bool threadgroup)
68318b8e
SV
8563{
8564 sched_move_task(tsk);
be367d09
BB
8565 if (threadgroup) {
8566 struct task_struct *c;
8567 rcu_read_lock();
8568 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8569 sched_move_task(c);
8570 }
8571 rcu_read_unlock();
8572 }
68318b8e
SV
8573}
8574
052f1dc7 8575#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8576static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8577 u64 shareval)
68318b8e 8578{
2b01dfe3 8579 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8580}
8581
f4c753b7 8582static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8583{
2b01dfe3 8584 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8585
8586 return (u64) tg->shares;
8587}
6d6bc0ad 8588#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8589
052f1dc7 8590#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8591static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8592 s64 val)
6f505b16 8593{
06ecb27c 8594 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8595}
8596
06ecb27c 8597static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8598{
06ecb27c 8599 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8600}
d0b27fa7
PZ
8601
8602static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8603 u64 rt_period_us)
8604{
8605 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8606}
8607
8608static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8609{
8610 return sched_group_rt_period(cgroup_tg(cgrp));
8611}
6d6bc0ad 8612#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8613
fe5c7cc2 8614static struct cftype cpu_files[] = {
052f1dc7 8615#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8616 {
8617 .name = "shares",
f4c753b7
PM
8618 .read_u64 = cpu_shares_read_u64,
8619 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8620 },
052f1dc7
PZ
8621#endif
8622#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8623 {
9f0c1e56 8624 .name = "rt_runtime_us",
06ecb27c
PM
8625 .read_s64 = cpu_rt_runtime_read,
8626 .write_s64 = cpu_rt_runtime_write,
6f505b16 8627 },
d0b27fa7
PZ
8628 {
8629 .name = "rt_period_us",
f4c753b7
PM
8630 .read_u64 = cpu_rt_period_read_uint,
8631 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8632 },
052f1dc7 8633#endif
68318b8e
SV
8634};
8635
8636static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8637{
fe5c7cc2 8638 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8639}
8640
8641struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8642 .name = "cpu",
8643 .create = cpu_cgroup_create,
8644 .destroy = cpu_cgroup_destroy,
8645 .can_attach = cpu_cgroup_can_attach,
8646 .attach = cpu_cgroup_attach,
8647 .populate = cpu_cgroup_populate,
8648 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8649 .early_init = 1,
8650};
8651
052f1dc7 8652#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8653
8654#ifdef CONFIG_CGROUP_CPUACCT
8655
8656/*
8657 * CPU accounting code for task groups.
8658 *
8659 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8660 * (balbir@in.ibm.com).
8661 */
8662
934352f2 8663/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8664struct cpuacct {
8665 struct cgroup_subsys_state css;
8666 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8667 u64 __percpu *cpuusage;
ef12fefa 8668 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8669 struct cpuacct *parent;
d842de87
SV
8670};
8671
8672struct cgroup_subsys cpuacct_subsys;
8673
8674/* return cpu accounting group corresponding to this container */
32cd756a 8675static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8676{
32cd756a 8677 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8678 struct cpuacct, css);
8679}
8680
8681/* return cpu accounting group to which this task belongs */
8682static inline struct cpuacct *task_ca(struct task_struct *tsk)
8683{
8684 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8685 struct cpuacct, css);
8686}
8687
8688/* create a new cpu accounting group */
8689static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8690 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8691{
8692 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8693 int i;
d842de87
SV
8694
8695 if (!ca)
ef12fefa 8696 goto out;
d842de87
SV
8697
8698 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8699 if (!ca->cpuusage)
8700 goto out_free_ca;
8701
8702 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8703 if (percpu_counter_init(&ca->cpustat[i], 0))
8704 goto out_free_counters;
d842de87 8705
934352f2
BR
8706 if (cgrp->parent)
8707 ca->parent = cgroup_ca(cgrp->parent);
8708
d842de87 8709 return &ca->css;
ef12fefa
BR
8710
8711out_free_counters:
8712 while (--i >= 0)
8713 percpu_counter_destroy(&ca->cpustat[i]);
8714 free_percpu(ca->cpuusage);
8715out_free_ca:
8716 kfree(ca);
8717out:
8718 return ERR_PTR(-ENOMEM);
d842de87
SV
8719}
8720
8721/* destroy an existing cpu accounting group */
41a2d6cf 8722static void
32cd756a 8723cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8724{
32cd756a 8725 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8726 int i;
d842de87 8727
ef12fefa
BR
8728 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8729 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8730 free_percpu(ca->cpuusage);
8731 kfree(ca);
8732}
8733
720f5498
KC
8734static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8735{
b36128c8 8736 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8737 u64 data;
8738
8739#ifndef CONFIG_64BIT
8740 /*
8741 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8742 */
05fa785c 8743 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8744 data = *cpuusage;
05fa785c 8745 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8746#else
8747 data = *cpuusage;
8748#endif
8749
8750 return data;
8751}
8752
8753static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8754{
b36128c8 8755 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8756
8757#ifndef CONFIG_64BIT
8758 /*
8759 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8760 */
05fa785c 8761 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8762 *cpuusage = val;
05fa785c 8763 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8764#else
8765 *cpuusage = val;
8766#endif
8767}
8768
d842de87 8769/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8770static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8771{
32cd756a 8772 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8773 u64 totalcpuusage = 0;
8774 int i;
8775
720f5498
KC
8776 for_each_present_cpu(i)
8777 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8778
8779 return totalcpuusage;
8780}
8781
0297b803
DG
8782static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8783 u64 reset)
8784{
8785 struct cpuacct *ca = cgroup_ca(cgrp);
8786 int err = 0;
8787 int i;
8788
8789 if (reset) {
8790 err = -EINVAL;
8791 goto out;
8792 }
8793
720f5498
KC
8794 for_each_present_cpu(i)
8795 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8796
0297b803
DG
8797out:
8798 return err;
8799}
8800
e9515c3c
KC
8801static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8802 struct seq_file *m)
8803{
8804 struct cpuacct *ca = cgroup_ca(cgroup);
8805 u64 percpu;
8806 int i;
8807
8808 for_each_present_cpu(i) {
8809 percpu = cpuacct_cpuusage_read(ca, i);
8810 seq_printf(m, "%llu ", (unsigned long long) percpu);
8811 }
8812 seq_printf(m, "\n");
8813 return 0;
8814}
8815
ef12fefa
BR
8816static const char *cpuacct_stat_desc[] = {
8817 [CPUACCT_STAT_USER] = "user",
8818 [CPUACCT_STAT_SYSTEM] = "system",
8819};
8820
8821static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8822 struct cgroup_map_cb *cb)
8823{
8824 struct cpuacct *ca = cgroup_ca(cgrp);
8825 int i;
8826
8827 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8828 s64 val = percpu_counter_read(&ca->cpustat[i]);
8829 val = cputime64_to_clock_t(val);
8830 cb->fill(cb, cpuacct_stat_desc[i], val);
8831 }
8832 return 0;
8833}
8834
d842de87
SV
8835static struct cftype files[] = {
8836 {
8837 .name = "usage",
f4c753b7
PM
8838 .read_u64 = cpuusage_read,
8839 .write_u64 = cpuusage_write,
d842de87 8840 },
e9515c3c
KC
8841 {
8842 .name = "usage_percpu",
8843 .read_seq_string = cpuacct_percpu_seq_read,
8844 },
ef12fefa
BR
8845 {
8846 .name = "stat",
8847 .read_map = cpuacct_stats_show,
8848 },
d842de87
SV
8849};
8850
32cd756a 8851static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8852{
32cd756a 8853 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8854}
8855
8856/*
8857 * charge this task's execution time to its accounting group.
8858 *
8859 * called with rq->lock held.
8860 */
8861static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8862{
8863 struct cpuacct *ca;
934352f2 8864 int cpu;
d842de87 8865
c40c6f85 8866 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8867 return;
8868
934352f2 8869 cpu = task_cpu(tsk);
a18b83b7
BR
8870
8871 rcu_read_lock();
8872
d842de87 8873 ca = task_ca(tsk);
d842de87 8874
934352f2 8875 for (; ca; ca = ca->parent) {
b36128c8 8876 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8877 *cpuusage += cputime;
8878 }
a18b83b7
BR
8879
8880 rcu_read_unlock();
d842de87
SV
8881}
8882
fa535a77
AB
8883/*
8884 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8885 * in cputime_t units. As a result, cpuacct_update_stats calls
8886 * percpu_counter_add with values large enough to always overflow the
8887 * per cpu batch limit causing bad SMP scalability.
8888 *
8889 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8890 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8891 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8892 */
8893#ifdef CONFIG_SMP
8894#define CPUACCT_BATCH \
8895 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8896#else
8897#define CPUACCT_BATCH 0
8898#endif
8899
ef12fefa
BR
8900/*
8901 * Charge the system/user time to the task's accounting group.
8902 */
8903static void cpuacct_update_stats(struct task_struct *tsk,
8904 enum cpuacct_stat_index idx, cputime_t val)
8905{
8906 struct cpuacct *ca;
fa535a77 8907 int batch = CPUACCT_BATCH;
ef12fefa
BR
8908
8909 if (unlikely(!cpuacct_subsys.active))
8910 return;
8911
8912 rcu_read_lock();
8913 ca = task_ca(tsk);
8914
8915 do {
fa535a77 8916 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8917 ca = ca->parent;
8918 } while (ca);
8919 rcu_read_unlock();
8920}
8921
d842de87
SV
8922struct cgroup_subsys cpuacct_subsys = {
8923 .name = "cpuacct",
8924 .create = cpuacct_create,
8925 .destroy = cpuacct_destroy,
8926 .populate = cpuacct_populate,
8927 .subsys_id = cpuacct_subsys_id,
8928};
8929#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8930
8931#ifndef CONFIG_SMP
8932
03b042bf
PM
8933void synchronize_sched_expedited(void)
8934{
fc390cde 8935 barrier();
03b042bf
PM
8936}
8937EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8938
8939#else /* #ifndef CONFIG_SMP */
8940
cc631fb7 8941static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 8942
cc631fb7 8943static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 8944{
969c7921
TH
8945 /*
8946 * There must be a full memory barrier on each affected CPU
8947 * between the time that try_stop_cpus() is called and the
8948 * time that it returns.
8949 *
8950 * In the current initial implementation of cpu_stop, the
8951 * above condition is already met when the control reaches
8952 * this point and the following smp_mb() is not strictly
8953 * necessary. Do smp_mb() anyway for documentation and
8954 * robustness against future implementation changes.
8955 */
cc631fb7 8956 smp_mb(); /* See above comment block. */
969c7921 8957 return 0;
03b042bf 8958}
03b042bf
PM
8959
8960/*
8961 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8962 * approach to force grace period to end quickly. This consumes
8963 * significant time on all CPUs, and is thus not recommended for
8964 * any sort of common-case code.
8965 *
8966 * Note that it is illegal to call this function while holding any
8967 * lock that is acquired by a CPU-hotplug notifier. Failing to
8968 * observe this restriction will result in deadlock.
8969 */
8970void synchronize_sched_expedited(void)
8971{
969c7921 8972 int snap, trycount = 0;
03b042bf
PM
8973
8974 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 8975 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 8976 get_online_cpus();
969c7921
TH
8977 while (try_stop_cpus(cpu_online_mask,
8978 synchronize_sched_expedited_cpu_stop,
94458d5e 8979 NULL) == -EAGAIN) {
03b042bf
PM
8980 put_online_cpus();
8981 if (trycount++ < 10)
8982 udelay(trycount * num_online_cpus());
8983 else {
8984 synchronize_sched();
8985 return;
8986 }
969c7921 8987 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
8988 smp_mb(); /* ensure test happens before caller kfree */
8989 return;
8990 }
8991 get_online_cpus();
8992 }
969c7921 8993 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 8994 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 8995 put_online_cpus();
03b042bf
PM
8996}
8997EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8998
8999#endif /* #else #ifndef CONFIG_SMP */