Make scheduler debug file operations const
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
a4ec24b4 99#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
e05606d3
IM
134static inline int rt_policy(int policy)
135{
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139}
140
141static inline int task_has_rt_policy(struct task_struct *p)
142{
143 return rt_policy(p->policy);
144}
145
1da177e4 146/*
6aa645ea 147 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 148 */
6aa645ea
IM
149struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152};
153
29f59db3
SV
154#ifdef CONFIG_FAIR_GROUP_SCHED
155
29f59db3
SV
156struct cfs_rq;
157
158/* task group related information */
4cf86d77 159struct task_group {
29f59db3
SV
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
5cb350ba
DG
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
29f59db3
SV
167};
168
169/* Default task group's sched entity on each cpu */
170static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171/* Default task group's cfs_rq on each cpu */
172static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
9b5b7751
SV
174static struct sched_entity *init_sched_entity_p[NR_CPUS];
175static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
176
177/* Default task group.
3a252015 178 * Every task in system belong to this group at bootup.
29f59db3 179 */
4cf86d77 180struct task_group init_task_group = {
3a252015
IM
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183};
9b5b7751 184
24e377a8 185#ifdef CONFIG_FAIR_USER_SCHED
3a252015 186# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 187#else
3a252015 188# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
189#endif
190
4cf86d77 191static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
192
193/* return group to which a task belongs */
4cf86d77 194static inline struct task_group *task_group(struct task_struct *p)
29f59db3 195{
4cf86d77 196 struct task_group *tg;
9b5b7751 197
24e377a8
SV
198#ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200#else
4cf86d77 201 tg = &init_task_group;
24e377a8 202#endif
9b5b7751
SV
203
204 return tg;
29f59db3
SV
205}
206
207/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208static inline void set_task_cfs_rq(struct task_struct *p)
209{
4cf86d77
IM
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
212}
213
214#else
215
216static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218#endif /* CONFIG_FAIR_GROUP_SCHED */
219
6aa645ea
IM
220/* CFS-related fields in a runqueue */
221struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
6aa645ea 225 u64 exec_clock;
e9acbff6 226 u64 min_vruntime;
6aa645ea
IM
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
ddc97297
PZ
235
236 unsigned long nr_spread_over;
237
62160e3f 238#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 249 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 250 struct rcu_head rcu;
6aa645ea
IM
251#endif
252};
1da177e4 253
6aa645ea
IM
254/* Real-Time classes' related field in a runqueue: */
255struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259};
260
1da177e4
LT
261/*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
70b97a7f 268struct rq {
6aa645ea 269 spinlock_t lock; /* runqueue lock */
1da177e4
LT
270
271 /*
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
274 */
275 unsigned long nr_running;
6aa645ea
IM
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 278 unsigned char idle_at_tick;
46cb4b7c
SS
279#ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281#endif
495eca49 282 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
283 unsigned long nr_load_updates;
284 u64 nr_switches;
285
286 struct cfs_rq cfs;
287#ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 289#endif
6aa645ea 290 struct rt_rq rt;
1da177e4
LT
291
292 /*
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
297 */
298 unsigned long nr_uninterruptible;
299
36c8b586 300 struct task_struct *curr, *idle;
c9819f45 301 unsigned long next_balance;
1da177e4 302 struct mm_struct *prev_mm;
6aa645ea 303
6aa645ea
IM
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
306
307 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
529c7726 310 u64 tick_timestamp;
6aa645ea 311
1da177e4
LT
312 atomic_t nr_iowait;
313
314#ifdef CONFIG_SMP
315 struct sched_domain *sd;
316
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
0a2966b4 320 int cpu; /* cpu of this runqueue */
1da177e4 321
36c8b586 322 struct task_struct *migration_thread;
1da177e4
LT
323 struct list_head migration_queue;
324#endif
325
326#ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
329
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
2d72376b 334 unsigned long yld_count;
1da177e4
LT
335
336 /* schedule() stats */
337 unsigned long sched_switch;
2d72376b 338 unsigned long sched_count;
1da177e4
LT
339 unsigned long sched_goidle;
340
341 /* try_to_wake_up() stats */
2d72376b 342 unsigned long ttwu_count;
1da177e4 343 unsigned long ttwu_local;
b8efb561
IM
344
345 /* BKL stats */
2d72376b 346 unsigned long bkl_count;
1da177e4 347#endif
fcb99371 348 struct lock_class_key rq_lock_key;
1da177e4
LT
349};
350
f34e3b61 351static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 352static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 353
dd41f596
IM
354static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
355{
356 rq->curr->sched_class->check_preempt_curr(rq, p);
357}
358
0a2966b4
CL
359static inline int cpu_of(struct rq *rq)
360{
361#ifdef CONFIG_SMP
362 return rq->cpu;
363#else
364 return 0;
365#endif
366}
367
20d315d4 368/*
b04a0f4c
IM
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
20d315d4 371 */
b04a0f4c 372static void __update_rq_clock(struct rq *rq)
20d315d4
IM
373{
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
378
b04a0f4c
IM
379#ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381#endif
20d315d4
IM
382 /*
383 * Protect against sched_clock() occasionally going backwards:
384 */
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
389 /*
390 * Catch too large forward jumps too:
391 */
529c7726
IM
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
20d315d4
IM
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
402 }
403 }
404
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
b04a0f4c 407}
20d315d4 408
b04a0f4c
IM
409static void update_rq_clock(struct rq *rq)
410{
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
20d315d4
IM
413}
414
674311d5
NP
415/*
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 417 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
418 *
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
421 */
48f24c4d
IM
422#define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
424
425#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426#define this_rq() (&__get_cpu_var(runqueues))
427#define task_rq(p) cpu_rq(task_cpu(p))
428#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
429
bf5c91ba
IM
430/*
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
432 */
433#ifdef CONFIG_SCHED_DEBUG
434# define const_debug __read_mostly
435#else
436# define const_debug static const
437#endif
438
439/*
440 * Debugging: various feature bits
441 */
442enum {
bbdba7c0
IM
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
06877c33 445 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 446 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
95938a35 448 SCHED_FEAT_PREEMPT_RESTRICT = 32,
bf5c91ba
IM
449};
450
451const_debug unsigned int sysctl_sched_features =
bf5c91ba 452 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7 453 SCHED_FEAT_START_DEBIT *1 |
06877c33 454 SCHED_FEAT_TREE_AVG *0 |
ce6c1311 455 SCHED_FEAT_APPROX_AVG *0 |
95938a35
MG
456 SCHED_FEAT_WAKEUP_PREEMPT *1 |
457 SCHED_FEAT_PREEMPT_RESTRICT *1;
bf5c91ba
IM
458
459#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
460
e436d800
IM
461/*
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
464 */
465unsigned long long cpu_clock(int cpu)
466{
e436d800
IM
467 unsigned long long now;
468 unsigned long flags;
b04a0f4c 469 struct rq *rq;
e436d800 470
2cd4d0ea 471 local_irq_save(flags);
b04a0f4c
IM
472 rq = cpu_rq(cpu);
473 update_rq_clock(rq);
474 now = rq->clock;
2cd4d0ea 475 local_irq_restore(flags);
e436d800
IM
476
477 return now;
478}
a58f6f25 479EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 480
1da177e4 481#ifndef prepare_arch_switch
4866cde0
NP
482# define prepare_arch_switch(next) do { } while (0)
483#endif
484#ifndef finish_arch_switch
485# define finish_arch_switch(prev) do { } while (0)
486#endif
487
488#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 489static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
490{
491 return rq->curr == p;
492}
493
70b97a7f 494static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
495{
496}
497
70b97a7f 498static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 499{
da04c035
IM
500#ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq->lock.owner = current;
503#endif
8a25d5de
IM
504 /*
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
507 * prev into current:
508 */
509 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
510
4866cde0
NP
511 spin_unlock_irq(&rq->lock);
512}
513
514#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 515static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
516{
517#ifdef CONFIG_SMP
518 return p->oncpu;
519#else
520 return rq->curr == p;
521#endif
522}
523
70b97a7f 524static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
525{
526#ifdef CONFIG_SMP
527 /*
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
530 * here.
531 */
532 next->oncpu = 1;
533#endif
534#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq->lock);
536#else
537 spin_unlock(&rq->lock);
538#endif
539}
540
70b97a7f 541static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
542{
543#ifdef CONFIG_SMP
544 /*
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
547 * finished.
548 */
549 smp_wmb();
550 prev->oncpu = 0;
551#endif
552#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 local_irq_enable();
1da177e4 554#endif
4866cde0
NP
555}
556#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 557
b29739f9
IM
558/*
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
561 */
70b97a7f 562static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
563 __acquires(rq->lock)
564{
3a5c359a
AK
565 for (;;) {
566 struct rq *rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (likely(rq == task_rq(p)))
569 return rq;
b29739f9 570 spin_unlock(&rq->lock);
b29739f9 571 }
b29739f9
IM
572}
573
1da177e4
LT
574/*
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
578 */
70b97a7f 579static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
580 __acquires(rq->lock)
581{
70b97a7f 582 struct rq *rq;
1da177e4 583
3a5c359a
AK
584 for (;;) {
585 local_irq_save(*flags);
586 rq = task_rq(p);
587 spin_lock(&rq->lock);
588 if (likely(rq == task_rq(p)))
589 return rq;
1da177e4 590 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 591 }
1da177e4
LT
592}
593
a9957449 594static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
595 __releases(rq->lock)
596{
597 spin_unlock(&rq->lock);
598}
599
70b97a7f 600static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
601 __releases(rq->lock)
602{
603 spin_unlock_irqrestore(&rq->lock, *flags);
604}
605
1da177e4 606/*
cc2a73b5 607 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 608 */
a9957449 609static struct rq *this_rq_lock(void)
1da177e4
LT
610 __acquires(rq->lock)
611{
70b97a7f 612 struct rq *rq;
1da177e4
LT
613
614 local_irq_disable();
615 rq = this_rq();
616 spin_lock(&rq->lock);
617
618 return rq;
619}
620
1b9f19c2 621/*
2aa44d05 622 * We are going deep-idle (irqs are disabled):
1b9f19c2 623 */
2aa44d05 624void sched_clock_idle_sleep_event(void)
1b9f19c2 625{
2aa44d05
IM
626 struct rq *rq = cpu_rq(smp_processor_id());
627
628 spin_lock(&rq->lock);
629 __update_rq_clock(rq);
630 spin_unlock(&rq->lock);
631 rq->clock_deep_idle_events++;
632}
633EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
634
635/*
636 * We just idled delta nanoseconds (called with irqs disabled):
637 */
638void sched_clock_idle_wakeup_event(u64 delta_ns)
639{
640 struct rq *rq = cpu_rq(smp_processor_id());
641 u64 now = sched_clock();
1b9f19c2 642
2aa44d05
IM
643 rq->idle_clock += delta_ns;
644 /*
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
648 * rq clock:
649 */
650 spin_lock(&rq->lock);
651 rq->prev_clock_raw = now;
652 rq->clock += delta_ns;
653 spin_unlock(&rq->lock);
1b9f19c2 654}
2aa44d05 655EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 656
c24d20db
IM
657/*
658 * resched_task - mark a task 'to be rescheduled now'.
659 *
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
662 * the target CPU.
663 */
664#ifdef CONFIG_SMP
665
666#ifndef tsk_is_polling
667#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
668#endif
669
670static void resched_task(struct task_struct *p)
671{
672 int cpu;
673
674 assert_spin_locked(&task_rq(p)->lock);
675
676 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
677 return;
678
679 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
680
681 cpu = task_cpu(p);
682 if (cpu == smp_processor_id())
683 return;
684
685 /* NEED_RESCHED must be visible before we test polling */
686 smp_mb();
687 if (!tsk_is_polling(p))
688 smp_send_reschedule(cpu);
689}
690
691static void resched_cpu(int cpu)
692{
693 struct rq *rq = cpu_rq(cpu);
694 unsigned long flags;
695
696 if (!spin_trylock_irqsave(&rq->lock, flags))
697 return;
698 resched_task(cpu_curr(cpu));
699 spin_unlock_irqrestore(&rq->lock, flags);
700}
701#else
702static inline void resched_task(struct task_struct *p)
703{
704 assert_spin_locked(&task_rq(p)->lock);
705 set_tsk_need_resched(p);
706}
707#endif
708
45bf76df
IM
709#if BITS_PER_LONG == 32
710# define WMULT_CONST (~0UL)
711#else
712# define WMULT_CONST (1UL << 32)
713#endif
714
715#define WMULT_SHIFT 32
716
194081eb
IM
717/*
718 * Shift right and round:
719 */
cf2ab469 720#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 721
cb1c4fc9 722static unsigned long
45bf76df
IM
723calc_delta_mine(unsigned long delta_exec, unsigned long weight,
724 struct load_weight *lw)
725{
726 u64 tmp;
727
728 if (unlikely(!lw->inv_weight))
194081eb 729 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
730
731 tmp = (u64)delta_exec * weight;
732 /*
733 * Check whether we'd overflow the 64-bit multiplication:
734 */
194081eb 735 if (unlikely(tmp > WMULT_CONST))
cf2ab469 736 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
737 WMULT_SHIFT/2);
738 else
cf2ab469 739 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 740
ecf691da 741 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
742}
743
744static inline unsigned long
745calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
746{
747 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
748}
749
1091985b 750static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
751{
752 lw->weight += inc;
45bf76df
IM
753}
754
1091985b 755static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
756{
757 lw->weight -= dec;
45bf76df
IM
758}
759
2dd73a4f
PW
760/*
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
766 * slice expiry etc.
767 */
768
dd41f596
IM
769#define WEIGHT_IDLEPRIO 2
770#define WMULT_IDLEPRIO (1 << 31)
771
772/*
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
777 *
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
dd41f596
IM
783 */
784static const int prio_to_weight[40] = {
254753dc
IM
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
793};
794
5714d2de
IM
795/*
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
797 *
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
801 */
dd41f596 802static const u32 prio_to_wmult[40] = {
254753dc
IM
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 811};
2dd73a4f 812
dd41f596
IM
813static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
814
815/*
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
819 */
820struct rq_iterator {
821 void *arg;
822 struct task_struct *(*start)(void *);
823 struct task_struct *(*next)(void *);
824};
825
826static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
827 unsigned long max_nr_move, unsigned long max_load_move,
828 struct sched_domain *sd, enum cpu_idle_type idle,
829 int *all_pinned, unsigned long *load_moved,
a4ac01c3 830 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
831
832#include "sched_stats.h"
dd41f596 833#include "sched_idletask.c"
5522d5d5
IM
834#include "sched_fair.c"
835#include "sched_rt.c"
dd41f596
IM
836#ifdef CONFIG_SCHED_DEBUG
837# include "sched_debug.c"
838#endif
839
840#define sched_class_highest (&rt_sched_class)
841
9c217245
IM
842/*
843 * Update delta_exec, delta_fair fields for rq.
844 *
845 * delta_fair clock advances at a rate inversely proportional to
495eca49 846 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
847 * delta_exec advances at the same rate as wall-clock (provided
848 * cpu is not idle).
849 *
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
853 *
495eca49 854 * This function is called /before/ updating rq->load
9c217245
IM
855 * and when switching tasks.
856 */
29b4b623 857static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 858{
495eca49 859 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
860}
861
79b5dddf 862static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 863{
495eca49 864 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
865}
866
e5fa2237 867static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
868{
869 rq->nr_running++;
29b4b623 870 inc_load(rq, p);
9c217245
IM
871}
872
db53181e 873static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
874{
875 rq->nr_running--;
79b5dddf 876 dec_load(rq, p);
9c217245
IM
877}
878
45bf76df
IM
879static void set_load_weight(struct task_struct *p)
880{
881 if (task_has_rt_policy(p)) {
dd41f596
IM
882 p->se.load.weight = prio_to_weight[0] * 2;
883 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
884 return;
885 }
45bf76df 886
dd41f596
IM
887 /*
888 * SCHED_IDLE tasks get minimal weight:
889 */
890 if (p->policy == SCHED_IDLE) {
891 p->se.load.weight = WEIGHT_IDLEPRIO;
892 p->se.load.inv_weight = WMULT_IDLEPRIO;
893 return;
894 }
71f8bd46 895
dd41f596
IM
896 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
897 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
898}
899
8159f87e 900static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 901{
dd41f596 902 sched_info_queued(p);
fd390f6a 903 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 904 p->se.on_rq = 1;
71f8bd46
IM
905}
906
69be72c1 907static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 908{
f02231e5 909 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 910 p->se.on_rq = 0;
71f8bd46
IM
911}
912
14531189 913/*
dd41f596 914 * __normal_prio - return the priority that is based on the static prio
14531189 915 */
14531189
IM
916static inline int __normal_prio(struct task_struct *p)
917{
dd41f596 918 return p->static_prio;
14531189
IM
919}
920
b29739f9
IM
921/*
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
927 */
36c8b586 928static inline int normal_prio(struct task_struct *p)
b29739f9
IM
929{
930 int prio;
931
e05606d3 932 if (task_has_rt_policy(p))
b29739f9
IM
933 prio = MAX_RT_PRIO-1 - p->rt_priority;
934 else
935 prio = __normal_prio(p);
936 return prio;
937}
938
939/*
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
945 */
36c8b586 946static int effective_prio(struct task_struct *p)
b29739f9
IM
947{
948 p->normal_prio = normal_prio(p);
949 /*
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
953 */
954 if (!rt_prio(p->prio))
955 return p->normal_prio;
956 return p->prio;
957}
958
1da177e4 959/*
dd41f596 960 * activate_task - move a task to the runqueue.
1da177e4 961 */
dd41f596 962static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 963{
dd41f596
IM
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
1da177e4 966
8159f87e 967 enqueue_task(rq, p, wakeup);
e5fa2237 968 inc_nr_running(p, rq);
1da177e4
LT
969}
970
1da177e4
LT
971/*
972 * deactivate_task - remove a task from the runqueue.
973 */
2e1cb74a 974static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 975{
dd41f596
IM
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
978
69be72c1 979 dequeue_task(rq, p, sleep);
db53181e 980 dec_nr_running(p, rq);
1da177e4
LT
981}
982
1da177e4
LT
983/**
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
986 */
36c8b586 987inline int task_curr(const struct task_struct *p)
1da177e4
LT
988{
989 return cpu_curr(task_cpu(p)) == p;
990}
991
2dd73a4f
PW
992/* Used instead of source_load when we know the type == 0 */
993unsigned long weighted_cpuload(const int cpu)
994{
495eca49 995 return cpu_rq(cpu)->load.weight;
dd41f596
IM
996}
997
998static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
999{
1000#ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
dd41f596 1002#endif
29f59db3 1003 set_task_cfs_rq(p);
2dd73a4f
PW
1004}
1005
1da177e4 1006#ifdef CONFIG_SMP
c65cc870 1007
cc367732
IM
1008/*
1009 * Is this task likely cache-hot:
1010 */
1011static inline int
1012task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1013{
1014 s64 delta;
1015
1016 if (p->sched_class != &fair_sched_class)
1017 return 0;
1018
6bc1665b
IM
1019 if (sysctl_sched_migration_cost == -1)
1020 return 1;
1021 if (sysctl_sched_migration_cost == 0)
1022 return 0;
1023
cc367732
IM
1024 delta = now - p->se.exec_start;
1025
1026 return delta < (s64)sysctl_sched_migration_cost;
1027}
1028
1029
dd41f596 1030void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1031{
dd41f596
IM
1032 int old_cpu = task_cpu(p);
1033 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1034 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1035 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1036 u64 clock_offset;
dd41f596
IM
1037
1038 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1039
1040#ifdef CONFIG_SCHEDSTATS
1041 if (p->se.wait_start)
1042 p->se.wait_start -= clock_offset;
dd41f596
IM
1043 if (p->se.sleep_start)
1044 p->se.sleep_start -= clock_offset;
1045 if (p->se.block_start)
1046 p->se.block_start -= clock_offset;
cc367732
IM
1047 if (old_cpu != new_cpu) {
1048 schedstat_inc(p, se.nr_migrations);
1049 if (task_hot(p, old_rq->clock, NULL))
1050 schedstat_inc(p, se.nr_forced2_migrations);
1051 }
6cfb0d5d 1052#endif
2830cf8c
SV
1053 p->se.vruntime -= old_cfsrq->min_vruntime -
1054 new_cfsrq->min_vruntime;
dd41f596
IM
1055
1056 __set_task_cpu(p, new_cpu);
c65cc870
IM
1057}
1058
70b97a7f 1059struct migration_req {
1da177e4 1060 struct list_head list;
1da177e4 1061
36c8b586 1062 struct task_struct *task;
1da177e4
LT
1063 int dest_cpu;
1064
1da177e4 1065 struct completion done;
70b97a7f 1066};
1da177e4
LT
1067
1068/*
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1071 */
36c8b586 1072static int
70b97a7f 1073migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1074{
70b97a7f 1075 struct rq *rq = task_rq(p);
1da177e4
LT
1076
1077 /*
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1080 */
dd41f596 1081 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1084 }
1085
1086 init_completion(&req->done);
1da177e4
LT
1087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
48f24c4d 1090
1da177e4
LT
1091 return 1;
1092}
1093
1094/*
1095 * wait_task_inactive - wait for a thread to unschedule.
1096 *
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1102 */
36c8b586 1103void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1104{
1105 unsigned long flags;
dd41f596 1106 int running, on_rq;
70b97a7f 1107 struct rq *rq;
1da177e4 1108
3a5c359a
AK
1109 for (;;) {
1110 /*
1111 * We do the initial early heuristics without holding
1112 * any task-queue locks at all. We'll only try to get
1113 * the runqueue lock when things look like they will
1114 * work out!
1115 */
1116 rq = task_rq(p);
fa490cfd 1117
3a5c359a
AK
1118 /*
1119 * If the task is actively running on another CPU
1120 * still, just relax and busy-wait without holding
1121 * any locks.
1122 *
1123 * NOTE! Since we don't hold any locks, it's not
1124 * even sure that "rq" stays as the right runqueue!
1125 * But we don't care, since "task_running()" will
1126 * return false if the runqueue has changed and p
1127 * is actually now running somewhere else!
1128 */
1129 while (task_running(rq, p))
1130 cpu_relax();
fa490cfd 1131
3a5c359a
AK
1132 /*
1133 * Ok, time to look more closely! We need the rq
1134 * lock now, to be *sure*. If we're wrong, we'll
1135 * just go back and repeat.
1136 */
1137 rq = task_rq_lock(p, &flags);
1138 running = task_running(rq, p);
1139 on_rq = p->se.on_rq;
1140 task_rq_unlock(rq, &flags);
fa490cfd 1141
3a5c359a
AK
1142 /*
1143 * Was it really running after all now that we
1144 * checked with the proper locks actually held?
1145 *
1146 * Oops. Go back and try again..
1147 */
1148 if (unlikely(running)) {
1149 cpu_relax();
1150 continue;
1151 }
fa490cfd 1152
3a5c359a
AK
1153 /*
1154 * It's not enough that it's not actively running,
1155 * it must be off the runqueue _entirely_, and not
1156 * preempted!
1157 *
1158 * So if it wa still runnable (but just not actively
1159 * running right now), it's preempted, and we should
1160 * yield - it could be a while.
1161 */
1162 if (unlikely(on_rq)) {
1163 schedule_timeout_uninterruptible(1);
1164 continue;
1165 }
fa490cfd 1166
3a5c359a
AK
1167 /*
1168 * Ahh, all good. It wasn't running, and it wasn't
1169 * runnable, which means that it will never become
1170 * running in the future either. We're all done!
1171 */
1172 break;
1173 }
1da177e4
LT
1174}
1175
1176/***
1177 * kick_process - kick a running thread to enter/exit the kernel
1178 * @p: the to-be-kicked thread
1179 *
1180 * Cause a process which is running on another CPU to enter
1181 * kernel-mode, without any delay. (to get signals handled.)
1182 *
1183 * NOTE: this function doesnt have to take the runqueue lock,
1184 * because all it wants to ensure is that the remote task enters
1185 * the kernel. If the IPI races and the task has been migrated
1186 * to another CPU then no harm is done and the purpose has been
1187 * achieved as well.
1188 */
36c8b586 1189void kick_process(struct task_struct *p)
1da177e4
LT
1190{
1191 int cpu;
1192
1193 preempt_disable();
1194 cpu = task_cpu(p);
1195 if ((cpu != smp_processor_id()) && task_curr(p))
1196 smp_send_reschedule(cpu);
1197 preempt_enable();
1198}
1199
1200/*
2dd73a4f
PW
1201 * Return a low guess at the load of a migration-source cpu weighted
1202 * according to the scheduling class and "nice" value.
1da177e4
LT
1203 *
1204 * We want to under-estimate the load of migration sources, to
1205 * balance conservatively.
1206 */
a9957449 1207static unsigned long source_load(int cpu, int type)
1da177e4 1208{
70b97a7f 1209 struct rq *rq = cpu_rq(cpu);
dd41f596 1210 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1211
3b0bd9bc 1212 if (type == 0)
dd41f596 1213 return total;
b910472d 1214
dd41f596 1215 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1216}
1217
1218/*
2dd73a4f
PW
1219 * Return a high guess at the load of a migration-target cpu weighted
1220 * according to the scheduling class and "nice" value.
1da177e4 1221 */
a9957449 1222static unsigned long target_load(int cpu, int type)
1da177e4 1223{
70b97a7f 1224 struct rq *rq = cpu_rq(cpu);
dd41f596 1225 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1226
7897986b 1227 if (type == 0)
dd41f596 1228 return total;
3b0bd9bc 1229
dd41f596 1230 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1231}
1232
1233/*
1234 * Return the average load per task on the cpu's run queue
1235 */
1236static inline unsigned long cpu_avg_load_per_task(int cpu)
1237{
70b97a7f 1238 struct rq *rq = cpu_rq(cpu);
dd41f596 1239 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1240 unsigned long n = rq->nr_running;
1241
dd41f596 1242 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1243}
1244
147cbb4b
NP
1245/*
1246 * find_idlest_group finds and returns the least busy CPU group within the
1247 * domain.
1248 */
1249static struct sched_group *
1250find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1251{
1252 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1253 unsigned long min_load = ULONG_MAX, this_load = 0;
1254 int load_idx = sd->forkexec_idx;
1255 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1256
1257 do {
1258 unsigned long load, avg_load;
1259 int local_group;
1260 int i;
1261
da5a5522
BD
1262 /* Skip over this group if it has no CPUs allowed */
1263 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1264 continue;
da5a5522 1265
147cbb4b 1266 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1267
1268 /* Tally up the load of all CPUs in the group */
1269 avg_load = 0;
1270
1271 for_each_cpu_mask(i, group->cpumask) {
1272 /* Bias balancing toward cpus of our domain */
1273 if (local_group)
1274 load = source_load(i, load_idx);
1275 else
1276 load = target_load(i, load_idx);
1277
1278 avg_load += load;
1279 }
1280
1281 /* Adjust by relative CPU power of the group */
5517d86b
ED
1282 avg_load = sg_div_cpu_power(group,
1283 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1284
1285 if (local_group) {
1286 this_load = avg_load;
1287 this = group;
1288 } else if (avg_load < min_load) {
1289 min_load = avg_load;
1290 idlest = group;
1291 }
3a5c359a 1292 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1293
1294 if (!idlest || 100*this_load < imbalance*min_load)
1295 return NULL;
1296 return idlest;
1297}
1298
1299/*
0feaece9 1300 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1301 */
95cdf3b7
IM
1302static int
1303find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1304{
da5a5522 1305 cpumask_t tmp;
147cbb4b
NP
1306 unsigned long load, min_load = ULONG_MAX;
1307 int idlest = -1;
1308 int i;
1309
da5a5522
BD
1310 /* Traverse only the allowed CPUs */
1311 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1312
1313 for_each_cpu_mask(i, tmp) {
2dd73a4f 1314 load = weighted_cpuload(i);
147cbb4b
NP
1315
1316 if (load < min_load || (load == min_load && i == this_cpu)) {
1317 min_load = load;
1318 idlest = i;
1319 }
1320 }
1321
1322 return idlest;
1323}
1324
476d139c
NP
1325/*
1326 * sched_balance_self: balance the current task (running on cpu) in domains
1327 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1328 * SD_BALANCE_EXEC.
1329 *
1330 * Balance, ie. select the least loaded group.
1331 *
1332 * Returns the target CPU number, or the same CPU if no balancing is needed.
1333 *
1334 * preempt must be disabled.
1335 */
1336static int sched_balance_self(int cpu, int flag)
1337{
1338 struct task_struct *t = current;
1339 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1340
c96d145e 1341 for_each_domain(cpu, tmp) {
9761eea8
IM
1342 /*
1343 * If power savings logic is enabled for a domain, stop there.
1344 */
5c45bf27
SS
1345 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1346 break;
476d139c
NP
1347 if (tmp->flags & flag)
1348 sd = tmp;
c96d145e 1349 }
476d139c
NP
1350
1351 while (sd) {
1352 cpumask_t span;
1353 struct sched_group *group;
1a848870
SS
1354 int new_cpu, weight;
1355
1356 if (!(sd->flags & flag)) {
1357 sd = sd->child;
1358 continue;
1359 }
476d139c
NP
1360
1361 span = sd->span;
1362 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1363 if (!group) {
1364 sd = sd->child;
1365 continue;
1366 }
476d139c 1367
da5a5522 1368 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1369 if (new_cpu == -1 || new_cpu == cpu) {
1370 /* Now try balancing at a lower domain level of cpu */
1371 sd = sd->child;
1372 continue;
1373 }
476d139c 1374
1a848870 1375 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1376 cpu = new_cpu;
476d139c
NP
1377 sd = NULL;
1378 weight = cpus_weight(span);
1379 for_each_domain(cpu, tmp) {
1380 if (weight <= cpus_weight(tmp->span))
1381 break;
1382 if (tmp->flags & flag)
1383 sd = tmp;
1384 }
1385 /* while loop will break here if sd == NULL */
1386 }
1387
1388 return cpu;
1389}
1390
1391#endif /* CONFIG_SMP */
1da177e4
LT
1392
1393/*
1394 * wake_idle() will wake a task on an idle cpu if task->cpu is
1395 * not idle and an idle cpu is available. The span of cpus to
1396 * search starts with cpus closest then further out as needed,
1397 * so we always favor a closer, idle cpu.
1398 *
1399 * Returns the CPU we should wake onto.
1400 */
1401#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1402static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1403{
1404 cpumask_t tmp;
1405 struct sched_domain *sd;
1406 int i;
1407
4953198b
SS
1408 /*
1409 * If it is idle, then it is the best cpu to run this task.
1410 *
1411 * This cpu is also the best, if it has more than one task already.
1412 * Siblings must be also busy(in most cases) as they didn't already
1413 * pickup the extra load from this cpu and hence we need not check
1414 * sibling runqueue info. This will avoid the checks and cache miss
1415 * penalities associated with that.
1416 */
1417 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1418 return cpu;
1419
1420 for_each_domain(cpu, sd) {
1421 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1422 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1423 for_each_cpu_mask(i, tmp) {
cc367732
IM
1424 if (idle_cpu(i)) {
1425 if (i != task_cpu(p)) {
1426 schedstat_inc(p,
1427 se.nr_wakeups_idle);
1428 }
1da177e4 1429 return i;
cc367732 1430 }
1da177e4 1431 }
9761eea8 1432 } else {
e0f364f4 1433 break;
9761eea8 1434 }
1da177e4
LT
1435 }
1436 return cpu;
1437}
1438#else
36c8b586 1439static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1440{
1441 return cpu;
1442}
1443#endif
1444
1445/***
1446 * try_to_wake_up - wake up a thread
1447 * @p: the to-be-woken-up thread
1448 * @state: the mask of task states that can be woken
1449 * @sync: do a synchronous wakeup?
1450 *
1451 * Put it on the run-queue if it's not already there. The "current"
1452 * thread is always on the run-queue (except when the actual
1453 * re-schedule is in progress), and as such you're allowed to do
1454 * the simpler "current->state = TASK_RUNNING" to mark yourself
1455 * runnable without the overhead of this.
1456 *
1457 * returns failure only if the task is already active.
1458 */
36c8b586 1459static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1460{
cc367732 1461 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1462 unsigned long flags;
1463 long old_state;
70b97a7f 1464 struct rq *rq;
1da177e4 1465#ifdef CONFIG_SMP
7897986b 1466 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1467 unsigned long load, this_load;
1da177e4
LT
1468 int new_cpu;
1469#endif
1470
1471 rq = task_rq_lock(p, &flags);
1472 old_state = p->state;
1473 if (!(old_state & state))
1474 goto out;
1475
dd41f596 1476 if (p->se.on_rq)
1da177e4
LT
1477 goto out_running;
1478
1479 cpu = task_cpu(p);
cc367732 1480 orig_cpu = cpu;
1da177e4
LT
1481 this_cpu = smp_processor_id();
1482
1483#ifdef CONFIG_SMP
1484 if (unlikely(task_running(rq, p)))
1485 goto out_activate;
1486
7897986b
NP
1487 new_cpu = cpu;
1488
2d72376b 1489 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1490 if (cpu == this_cpu) {
1491 schedstat_inc(rq, ttwu_local);
7897986b
NP
1492 goto out_set_cpu;
1493 }
1494
1495 for_each_domain(this_cpu, sd) {
1496 if (cpu_isset(cpu, sd->span)) {
1497 schedstat_inc(sd, ttwu_wake_remote);
1498 this_sd = sd;
1499 break;
1da177e4
LT
1500 }
1501 }
1da177e4 1502
7897986b 1503 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1504 goto out_set_cpu;
1505
1da177e4 1506 /*
7897986b 1507 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1508 */
7897986b
NP
1509 if (this_sd) {
1510 int idx = this_sd->wake_idx;
1511 unsigned int imbalance;
1da177e4 1512
a3f21bce
NP
1513 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1514
7897986b
NP
1515 load = source_load(cpu, idx);
1516 this_load = target_load(this_cpu, idx);
1da177e4 1517
7897986b
NP
1518 new_cpu = this_cpu; /* Wake to this CPU if we can */
1519
a3f21bce
NP
1520 if (this_sd->flags & SD_WAKE_AFFINE) {
1521 unsigned long tl = this_load;
33859f7f
MOS
1522 unsigned long tl_per_task;
1523
cc367732 1524 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1525 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1526
1da177e4 1527 /*
a3f21bce
NP
1528 * If sync wakeup then subtract the (maximum possible)
1529 * effect of the currently running task from the load
1530 * of the current CPU:
1da177e4 1531 */
a3f21bce 1532 if (sync)
dd41f596 1533 tl -= current->se.load.weight;
a3f21bce
NP
1534
1535 if ((tl <= load &&
2dd73a4f 1536 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1537 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1538 /*
1539 * This domain has SD_WAKE_AFFINE and
1540 * p is cache cold in this domain, and
1541 * there is no bad imbalance.
1542 */
1543 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1544 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1545 goto out_set_cpu;
1546 }
1547 }
1548
1549 /*
1550 * Start passive balancing when half the imbalance_pct
1551 * limit is reached.
1552 */
1553 if (this_sd->flags & SD_WAKE_BALANCE) {
1554 if (imbalance*this_load <= 100*load) {
1555 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1556 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1557 goto out_set_cpu;
1558 }
1da177e4
LT
1559 }
1560 }
1561
1562 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1563out_set_cpu:
1564 new_cpu = wake_idle(new_cpu, p);
1565 if (new_cpu != cpu) {
1566 set_task_cpu(p, new_cpu);
1567 task_rq_unlock(rq, &flags);
1568 /* might preempt at this point */
1569 rq = task_rq_lock(p, &flags);
1570 old_state = p->state;
1571 if (!(old_state & state))
1572 goto out;
dd41f596 1573 if (p->se.on_rq)
1da177e4
LT
1574 goto out_running;
1575
1576 this_cpu = smp_processor_id();
1577 cpu = task_cpu(p);
1578 }
1579
1580out_activate:
1581#endif /* CONFIG_SMP */
cc367732
IM
1582 schedstat_inc(p, se.nr_wakeups);
1583 if (sync)
1584 schedstat_inc(p, se.nr_wakeups_sync);
1585 if (orig_cpu != cpu)
1586 schedstat_inc(p, se.nr_wakeups_migrate);
1587 if (cpu == this_cpu)
1588 schedstat_inc(p, se.nr_wakeups_local);
1589 else
1590 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1591 update_rq_clock(rq);
dd41f596 1592 activate_task(rq, p, 1);
1da177e4
LT
1593 /*
1594 * Sync wakeups (i.e. those types of wakeups where the waker
1595 * has indicated that it will leave the CPU in short order)
1596 * don't trigger a preemption, if the woken up task will run on
1597 * this cpu. (in this case the 'I will reschedule' promise of
1598 * the waker guarantees that the freshly woken up task is going
1599 * to be considered on this CPU.)
1600 */
dd41f596
IM
1601 if (!sync || cpu != this_cpu)
1602 check_preempt_curr(rq, p);
1da177e4
LT
1603 success = 1;
1604
1605out_running:
1606 p->state = TASK_RUNNING;
1607out:
1608 task_rq_unlock(rq, &flags);
1609
1610 return success;
1611}
1612
36c8b586 1613int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1614{
1615 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1616 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1617}
1da177e4
LT
1618EXPORT_SYMBOL(wake_up_process);
1619
36c8b586 1620int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1621{
1622 return try_to_wake_up(p, state, 0);
1623}
1624
1da177e4
LT
1625/*
1626 * Perform scheduler related setup for a newly forked process p.
1627 * p is forked by current.
dd41f596
IM
1628 *
1629 * __sched_fork() is basic setup used by init_idle() too:
1630 */
1631static void __sched_fork(struct task_struct *p)
1632{
dd41f596
IM
1633 p->se.exec_start = 0;
1634 p->se.sum_exec_runtime = 0;
f6cf891c 1635 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1636
1637#ifdef CONFIG_SCHEDSTATS
1638 p->se.wait_start = 0;
dd41f596
IM
1639 p->se.sum_sleep_runtime = 0;
1640 p->se.sleep_start = 0;
dd41f596
IM
1641 p->se.block_start = 0;
1642 p->se.sleep_max = 0;
1643 p->se.block_max = 0;
1644 p->se.exec_max = 0;
eba1ed4b 1645 p->se.slice_max = 0;
dd41f596 1646 p->se.wait_max = 0;
6cfb0d5d 1647#endif
476d139c 1648
dd41f596
IM
1649 INIT_LIST_HEAD(&p->run_list);
1650 p->se.on_rq = 0;
476d139c 1651
e107be36
AK
1652#ifdef CONFIG_PREEMPT_NOTIFIERS
1653 INIT_HLIST_HEAD(&p->preempt_notifiers);
1654#endif
1655
1da177e4
LT
1656 /*
1657 * We mark the process as running here, but have not actually
1658 * inserted it onto the runqueue yet. This guarantees that
1659 * nobody will actually run it, and a signal or other external
1660 * event cannot wake it up and insert it on the runqueue either.
1661 */
1662 p->state = TASK_RUNNING;
dd41f596
IM
1663}
1664
1665/*
1666 * fork()/clone()-time setup:
1667 */
1668void sched_fork(struct task_struct *p, int clone_flags)
1669{
1670 int cpu = get_cpu();
1671
1672 __sched_fork(p);
1673
1674#ifdef CONFIG_SMP
1675 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1676#endif
02e4bac2 1677 set_task_cpu(p, cpu);
b29739f9
IM
1678
1679 /*
1680 * Make sure we do not leak PI boosting priority to the child:
1681 */
1682 p->prio = current->normal_prio;
2ddbf952
HS
1683 if (!rt_prio(p->prio))
1684 p->sched_class = &fair_sched_class;
b29739f9 1685
52f17b6c 1686#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1687 if (likely(sched_info_on()))
52f17b6c 1688 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1689#endif
d6077cb8 1690#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1691 p->oncpu = 0;
1692#endif
1da177e4 1693#ifdef CONFIG_PREEMPT
4866cde0 1694 /* Want to start with kernel preemption disabled. */
a1261f54 1695 task_thread_info(p)->preempt_count = 1;
1da177e4 1696#endif
476d139c 1697 put_cpu();
1da177e4
LT
1698}
1699
1700/*
1701 * wake_up_new_task - wake up a newly created task for the first time.
1702 *
1703 * This function will do some initial scheduler statistics housekeeping
1704 * that must be done for every newly created context, then puts the task
1705 * on the runqueue and wakes it.
1706 */
36c8b586 1707void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1708{
1709 unsigned long flags;
dd41f596 1710 struct rq *rq;
1da177e4
LT
1711
1712 rq = task_rq_lock(p, &flags);
147cbb4b 1713 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1714 update_rq_clock(rq);
1da177e4
LT
1715
1716 p->prio = effective_prio(p);
1717
00bf7bfc 1718 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
dd41f596 1719 activate_task(rq, p, 0);
1da177e4 1720 } else {
1da177e4 1721 /*
dd41f596
IM
1722 * Let the scheduling class do new task startup
1723 * management (if any):
1da177e4 1724 */
ee0827d8 1725 p->sched_class->task_new(rq, p);
e5fa2237 1726 inc_nr_running(p, rq);
1da177e4 1727 }
dd41f596
IM
1728 check_preempt_curr(rq, p);
1729 task_rq_unlock(rq, &flags);
1da177e4
LT
1730}
1731
e107be36
AK
1732#ifdef CONFIG_PREEMPT_NOTIFIERS
1733
1734/**
421cee29
RD
1735 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1736 * @notifier: notifier struct to register
e107be36
AK
1737 */
1738void preempt_notifier_register(struct preempt_notifier *notifier)
1739{
1740 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1741}
1742EXPORT_SYMBOL_GPL(preempt_notifier_register);
1743
1744/**
1745 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1746 * @notifier: notifier struct to unregister
e107be36
AK
1747 *
1748 * This is safe to call from within a preemption notifier.
1749 */
1750void preempt_notifier_unregister(struct preempt_notifier *notifier)
1751{
1752 hlist_del(&notifier->link);
1753}
1754EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1755
1756static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1757{
1758 struct preempt_notifier *notifier;
1759 struct hlist_node *node;
1760
1761 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1762 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1763}
1764
1765static void
1766fire_sched_out_preempt_notifiers(struct task_struct *curr,
1767 struct task_struct *next)
1768{
1769 struct preempt_notifier *notifier;
1770 struct hlist_node *node;
1771
1772 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1773 notifier->ops->sched_out(notifier, next);
1774}
1775
1776#else
1777
1778static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1779{
1780}
1781
1782static void
1783fire_sched_out_preempt_notifiers(struct task_struct *curr,
1784 struct task_struct *next)
1785{
1786}
1787
1788#endif
1789
4866cde0
NP
1790/**
1791 * prepare_task_switch - prepare to switch tasks
1792 * @rq: the runqueue preparing to switch
421cee29 1793 * @prev: the current task that is being switched out
4866cde0
NP
1794 * @next: the task we are going to switch to.
1795 *
1796 * This is called with the rq lock held and interrupts off. It must
1797 * be paired with a subsequent finish_task_switch after the context
1798 * switch.
1799 *
1800 * prepare_task_switch sets up locking and calls architecture specific
1801 * hooks.
1802 */
e107be36
AK
1803static inline void
1804prepare_task_switch(struct rq *rq, struct task_struct *prev,
1805 struct task_struct *next)
4866cde0 1806{
e107be36 1807 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1808 prepare_lock_switch(rq, next);
1809 prepare_arch_switch(next);
1810}
1811
1da177e4
LT
1812/**
1813 * finish_task_switch - clean up after a task-switch
344babaa 1814 * @rq: runqueue associated with task-switch
1da177e4
LT
1815 * @prev: the thread we just switched away from.
1816 *
4866cde0
NP
1817 * finish_task_switch must be called after the context switch, paired
1818 * with a prepare_task_switch call before the context switch.
1819 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1820 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1821 *
1822 * Note that we may have delayed dropping an mm in context_switch(). If
1823 * so, we finish that here outside of the runqueue lock. (Doing it
1824 * with the lock held can cause deadlocks; see schedule() for
1825 * details.)
1826 */
a9957449 1827static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1828 __releases(rq->lock)
1829{
1da177e4 1830 struct mm_struct *mm = rq->prev_mm;
55a101f8 1831 long prev_state;
1da177e4
LT
1832
1833 rq->prev_mm = NULL;
1834
1835 /*
1836 * A task struct has one reference for the use as "current".
c394cc9f 1837 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1838 * schedule one last time. The schedule call will never return, and
1839 * the scheduled task must drop that reference.
c394cc9f 1840 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1841 * still held, otherwise prev could be scheduled on another cpu, die
1842 * there before we look at prev->state, and then the reference would
1843 * be dropped twice.
1844 * Manfred Spraul <manfred@colorfullife.com>
1845 */
55a101f8 1846 prev_state = prev->state;
4866cde0
NP
1847 finish_arch_switch(prev);
1848 finish_lock_switch(rq, prev);
e107be36 1849 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1850 if (mm)
1851 mmdrop(mm);
c394cc9f 1852 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1853 /*
1854 * Remove function-return probe instances associated with this
1855 * task and put them back on the free list.
9761eea8 1856 */
c6fd91f0 1857 kprobe_flush_task(prev);
1da177e4 1858 put_task_struct(prev);
c6fd91f0 1859 }
1da177e4
LT
1860}
1861
1862/**
1863 * schedule_tail - first thing a freshly forked thread must call.
1864 * @prev: the thread we just switched away from.
1865 */
36c8b586 1866asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1867 __releases(rq->lock)
1868{
70b97a7f
IM
1869 struct rq *rq = this_rq();
1870
4866cde0
NP
1871 finish_task_switch(rq, prev);
1872#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1873 /* In this case, finish_task_switch does not reenable preemption */
1874 preempt_enable();
1875#endif
1da177e4
LT
1876 if (current->set_child_tid)
1877 put_user(current->pid, current->set_child_tid);
1878}
1879
1880/*
1881 * context_switch - switch to the new MM and the new
1882 * thread's register state.
1883 */
dd41f596 1884static inline void
70b97a7f 1885context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1886 struct task_struct *next)
1da177e4 1887{
dd41f596 1888 struct mm_struct *mm, *oldmm;
1da177e4 1889
e107be36 1890 prepare_task_switch(rq, prev, next);
dd41f596
IM
1891 mm = next->mm;
1892 oldmm = prev->active_mm;
9226d125
ZA
1893 /*
1894 * For paravirt, this is coupled with an exit in switch_to to
1895 * combine the page table reload and the switch backend into
1896 * one hypercall.
1897 */
1898 arch_enter_lazy_cpu_mode();
1899
dd41f596 1900 if (unlikely(!mm)) {
1da177e4
LT
1901 next->active_mm = oldmm;
1902 atomic_inc(&oldmm->mm_count);
1903 enter_lazy_tlb(oldmm, next);
1904 } else
1905 switch_mm(oldmm, mm, next);
1906
dd41f596 1907 if (unlikely(!prev->mm)) {
1da177e4 1908 prev->active_mm = NULL;
1da177e4
LT
1909 rq->prev_mm = oldmm;
1910 }
3a5f5e48
IM
1911 /*
1912 * Since the runqueue lock will be released by the next
1913 * task (which is an invalid locking op but in the case
1914 * of the scheduler it's an obvious special-case), so we
1915 * do an early lockdep release here:
1916 */
1917#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1918 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1919#endif
1da177e4
LT
1920
1921 /* Here we just switch the register state and the stack. */
1922 switch_to(prev, next, prev);
1923
dd41f596
IM
1924 barrier();
1925 /*
1926 * this_rq must be evaluated again because prev may have moved
1927 * CPUs since it called schedule(), thus the 'rq' on its stack
1928 * frame will be invalid.
1929 */
1930 finish_task_switch(this_rq(), prev);
1da177e4
LT
1931}
1932
1933/*
1934 * nr_running, nr_uninterruptible and nr_context_switches:
1935 *
1936 * externally visible scheduler statistics: current number of runnable
1937 * threads, current number of uninterruptible-sleeping threads, total
1938 * number of context switches performed since bootup.
1939 */
1940unsigned long nr_running(void)
1941{
1942 unsigned long i, sum = 0;
1943
1944 for_each_online_cpu(i)
1945 sum += cpu_rq(i)->nr_running;
1946
1947 return sum;
1948}
1949
1950unsigned long nr_uninterruptible(void)
1951{
1952 unsigned long i, sum = 0;
1953
0a945022 1954 for_each_possible_cpu(i)
1da177e4
LT
1955 sum += cpu_rq(i)->nr_uninterruptible;
1956
1957 /*
1958 * Since we read the counters lockless, it might be slightly
1959 * inaccurate. Do not allow it to go below zero though:
1960 */
1961 if (unlikely((long)sum < 0))
1962 sum = 0;
1963
1964 return sum;
1965}
1966
1967unsigned long long nr_context_switches(void)
1968{
cc94abfc
SR
1969 int i;
1970 unsigned long long sum = 0;
1da177e4 1971
0a945022 1972 for_each_possible_cpu(i)
1da177e4
LT
1973 sum += cpu_rq(i)->nr_switches;
1974
1975 return sum;
1976}
1977
1978unsigned long nr_iowait(void)
1979{
1980 unsigned long i, sum = 0;
1981
0a945022 1982 for_each_possible_cpu(i)
1da177e4
LT
1983 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1984
1985 return sum;
1986}
1987
db1b1fef
JS
1988unsigned long nr_active(void)
1989{
1990 unsigned long i, running = 0, uninterruptible = 0;
1991
1992 for_each_online_cpu(i) {
1993 running += cpu_rq(i)->nr_running;
1994 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1995 }
1996
1997 if (unlikely((long)uninterruptible < 0))
1998 uninterruptible = 0;
1999
2000 return running + uninterruptible;
2001}
2002
48f24c4d 2003/*
dd41f596
IM
2004 * Update rq->cpu_load[] statistics. This function is usually called every
2005 * scheduler tick (TICK_NSEC).
48f24c4d 2006 */
dd41f596 2007static void update_cpu_load(struct rq *this_rq)
48f24c4d 2008{
495eca49 2009 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2010 int i, scale;
2011
2012 this_rq->nr_load_updates++;
dd41f596
IM
2013
2014 /* Update our load: */
2015 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2016 unsigned long old_load, new_load;
2017
2018 /* scale is effectively 1 << i now, and >> i divides by scale */
2019
2020 old_load = this_rq->cpu_load[i];
2021 new_load = this_load;
a25707f3
IM
2022 /*
2023 * Round up the averaging division if load is increasing. This
2024 * prevents us from getting stuck on 9 if the load is 10, for
2025 * example.
2026 */
2027 if (new_load > old_load)
2028 new_load += scale-1;
dd41f596
IM
2029 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2030 }
48f24c4d
IM
2031}
2032
dd41f596
IM
2033#ifdef CONFIG_SMP
2034
1da177e4
LT
2035/*
2036 * double_rq_lock - safely lock two runqueues
2037 *
2038 * Note this does not disable interrupts like task_rq_lock,
2039 * you need to do so manually before calling.
2040 */
70b97a7f 2041static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2042 __acquires(rq1->lock)
2043 __acquires(rq2->lock)
2044{
054b9108 2045 BUG_ON(!irqs_disabled());
1da177e4
LT
2046 if (rq1 == rq2) {
2047 spin_lock(&rq1->lock);
2048 __acquire(rq2->lock); /* Fake it out ;) */
2049 } else {
c96d145e 2050 if (rq1 < rq2) {
1da177e4
LT
2051 spin_lock(&rq1->lock);
2052 spin_lock(&rq2->lock);
2053 } else {
2054 spin_lock(&rq2->lock);
2055 spin_lock(&rq1->lock);
2056 }
2057 }
6e82a3be
IM
2058 update_rq_clock(rq1);
2059 update_rq_clock(rq2);
1da177e4
LT
2060}
2061
2062/*
2063 * double_rq_unlock - safely unlock two runqueues
2064 *
2065 * Note this does not restore interrupts like task_rq_unlock,
2066 * you need to do so manually after calling.
2067 */
70b97a7f 2068static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2069 __releases(rq1->lock)
2070 __releases(rq2->lock)
2071{
2072 spin_unlock(&rq1->lock);
2073 if (rq1 != rq2)
2074 spin_unlock(&rq2->lock);
2075 else
2076 __release(rq2->lock);
2077}
2078
2079/*
2080 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2081 */
70b97a7f 2082static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2083 __releases(this_rq->lock)
2084 __acquires(busiest->lock)
2085 __acquires(this_rq->lock)
2086{
054b9108
KK
2087 if (unlikely(!irqs_disabled())) {
2088 /* printk() doesn't work good under rq->lock */
2089 spin_unlock(&this_rq->lock);
2090 BUG_ON(1);
2091 }
1da177e4 2092 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2093 if (busiest < this_rq) {
1da177e4
LT
2094 spin_unlock(&this_rq->lock);
2095 spin_lock(&busiest->lock);
2096 spin_lock(&this_rq->lock);
2097 } else
2098 spin_lock(&busiest->lock);
2099 }
2100}
2101
1da177e4
LT
2102/*
2103 * If dest_cpu is allowed for this process, migrate the task to it.
2104 * This is accomplished by forcing the cpu_allowed mask to only
2105 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2106 * the cpu_allowed mask is restored.
2107 */
36c8b586 2108static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2109{
70b97a7f 2110 struct migration_req req;
1da177e4 2111 unsigned long flags;
70b97a7f 2112 struct rq *rq;
1da177e4
LT
2113
2114 rq = task_rq_lock(p, &flags);
2115 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2116 || unlikely(cpu_is_offline(dest_cpu)))
2117 goto out;
2118
2119 /* force the process onto the specified CPU */
2120 if (migrate_task(p, dest_cpu, &req)) {
2121 /* Need to wait for migration thread (might exit: take ref). */
2122 struct task_struct *mt = rq->migration_thread;
36c8b586 2123
1da177e4
LT
2124 get_task_struct(mt);
2125 task_rq_unlock(rq, &flags);
2126 wake_up_process(mt);
2127 put_task_struct(mt);
2128 wait_for_completion(&req.done);
36c8b586 2129
1da177e4
LT
2130 return;
2131 }
2132out:
2133 task_rq_unlock(rq, &flags);
2134}
2135
2136/*
476d139c
NP
2137 * sched_exec - execve() is a valuable balancing opportunity, because at
2138 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2139 */
2140void sched_exec(void)
2141{
1da177e4 2142 int new_cpu, this_cpu = get_cpu();
476d139c 2143 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2144 put_cpu();
476d139c
NP
2145 if (new_cpu != this_cpu)
2146 sched_migrate_task(current, new_cpu);
1da177e4
LT
2147}
2148
2149/*
2150 * pull_task - move a task from a remote runqueue to the local runqueue.
2151 * Both runqueues must be locked.
2152 */
dd41f596
IM
2153static void pull_task(struct rq *src_rq, struct task_struct *p,
2154 struct rq *this_rq, int this_cpu)
1da177e4 2155{
2e1cb74a 2156 deactivate_task(src_rq, p, 0);
1da177e4 2157 set_task_cpu(p, this_cpu);
dd41f596 2158 activate_task(this_rq, p, 0);
1da177e4
LT
2159 /*
2160 * Note that idle threads have a prio of MAX_PRIO, for this test
2161 * to be always true for them.
2162 */
dd41f596 2163 check_preempt_curr(this_rq, p);
1da177e4
LT
2164}
2165
2166/*
2167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2168 */
858119e1 2169static
70b97a7f 2170int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2171 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2172 int *all_pinned)
1da177e4
LT
2173{
2174 /*
2175 * We do not migrate tasks that are:
2176 * 1) running (obviously), or
2177 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2178 * 3) are cache-hot on their current CPU.
2179 */
cc367732
IM
2180 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2181 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2182 return 0;
cc367732 2183 }
81026794
NP
2184 *all_pinned = 0;
2185
cc367732
IM
2186 if (task_running(rq, p)) {
2187 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2188 return 0;
cc367732 2189 }
1da177e4 2190
da84d961
IM
2191 /*
2192 * Aggressive migration if:
2193 * 1) task is cache cold, or
2194 * 2) too many balance attempts have failed.
2195 */
2196
6bc1665b
IM
2197 if (!task_hot(p, rq->clock, sd) ||
2198 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2199#ifdef CONFIG_SCHEDSTATS
cc367732 2200 if (task_hot(p, rq->clock, sd)) {
da84d961 2201 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2202 schedstat_inc(p, se.nr_forced_migrations);
2203 }
da84d961
IM
2204#endif
2205 return 1;
2206 }
2207
cc367732
IM
2208 if (task_hot(p, rq->clock, sd)) {
2209 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2210 return 0;
cc367732 2211 }
1da177e4
LT
2212 return 1;
2213}
2214
dd41f596 2215static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2216 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2217 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2218 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2219 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2220{
dd41f596
IM
2221 int pulled = 0, pinned = 0, skip_for_load;
2222 struct task_struct *p;
2223 long rem_load_move = max_load_move;
1da177e4 2224
2dd73a4f 2225 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2226 goto out;
2227
81026794
NP
2228 pinned = 1;
2229
1da177e4 2230 /*
dd41f596 2231 * Start the load-balancing iterator:
1da177e4 2232 */
dd41f596
IM
2233 p = iterator->start(iterator->arg);
2234next:
2235 if (!p)
1da177e4 2236 goto out;
50ddd969
PW
2237 /*
2238 * To help distribute high priority tasks accross CPUs we don't
2239 * skip a task if it will be the highest priority task (i.e. smallest
2240 * prio value) on its new queue regardless of its load weight
2241 */
dd41f596
IM
2242 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2243 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2244 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2245 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2246 p = iterator->next(iterator->arg);
2247 goto next;
1da177e4
LT
2248 }
2249
dd41f596 2250 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2251 pulled++;
dd41f596 2252 rem_load_move -= p->se.load.weight;
1da177e4 2253
2dd73a4f
PW
2254 /*
2255 * We only want to steal up to the prescribed number of tasks
2256 * and the prescribed amount of weighted load.
2257 */
2258 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2259 if (p->prio < *this_best_prio)
2260 *this_best_prio = p->prio;
dd41f596
IM
2261 p = iterator->next(iterator->arg);
2262 goto next;
1da177e4
LT
2263 }
2264out:
2265 /*
2266 * Right now, this is the only place pull_task() is called,
2267 * so we can safely collect pull_task() stats here rather than
2268 * inside pull_task().
2269 */
2270 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2271
2272 if (all_pinned)
2273 *all_pinned = pinned;
dd41f596 2274 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2275 return pulled;
2276}
2277
dd41f596 2278/*
43010659
PW
2279 * move_tasks tries to move up to max_load_move weighted load from busiest to
2280 * this_rq, as part of a balancing operation within domain "sd".
2281 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2282 *
2283 * Called with both runqueues locked.
2284 */
2285static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2286 unsigned long max_load_move,
dd41f596
IM
2287 struct sched_domain *sd, enum cpu_idle_type idle,
2288 int *all_pinned)
2289{
5522d5d5 2290 const struct sched_class *class = sched_class_highest;
43010659 2291 unsigned long total_load_moved = 0;
a4ac01c3 2292 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2293
2294 do {
43010659
PW
2295 total_load_moved +=
2296 class->load_balance(this_rq, this_cpu, busiest,
2297 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2298 sd, idle, all_pinned, &this_best_prio);
dd41f596 2299 class = class->next;
43010659 2300 } while (class && max_load_move > total_load_moved);
dd41f596 2301
43010659
PW
2302 return total_load_moved > 0;
2303}
2304
2305/*
2306 * move_one_task tries to move exactly one task from busiest to this_rq, as
2307 * part of active balancing operations within "domain".
2308 * Returns 1 if successful and 0 otherwise.
2309 *
2310 * Called with both runqueues locked.
2311 */
2312static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2313 struct sched_domain *sd, enum cpu_idle_type idle)
2314{
5522d5d5 2315 const struct sched_class *class;
a4ac01c3 2316 int this_best_prio = MAX_PRIO;
43010659
PW
2317
2318 for (class = sched_class_highest; class; class = class->next)
2319 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2320 1, ULONG_MAX, sd, idle, NULL,
2321 &this_best_prio))
43010659
PW
2322 return 1;
2323
2324 return 0;
dd41f596
IM
2325}
2326
1da177e4
LT
2327/*
2328 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2329 * domain. It calculates and returns the amount of weighted load which
2330 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2331 */
2332static struct sched_group *
2333find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2334 unsigned long *imbalance, enum cpu_idle_type idle,
2335 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2336{
2337 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2338 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2339 unsigned long max_pull;
2dd73a4f
PW
2340 unsigned long busiest_load_per_task, busiest_nr_running;
2341 unsigned long this_load_per_task, this_nr_running;
7897986b 2342 int load_idx;
5c45bf27
SS
2343#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2344 int power_savings_balance = 1;
2345 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2346 unsigned long min_nr_running = ULONG_MAX;
2347 struct sched_group *group_min = NULL, *group_leader = NULL;
2348#endif
1da177e4
LT
2349
2350 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2351 busiest_load_per_task = busiest_nr_running = 0;
2352 this_load_per_task = this_nr_running = 0;
d15bcfdb 2353 if (idle == CPU_NOT_IDLE)
7897986b 2354 load_idx = sd->busy_idx;
d15bcfdb 2355 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2356 load_idx = sd->newidle_idx;
2357 else
2358 load_idx = sd->idle_idx;
1da177e4
LT
2359
2360 do {
5c45bf27 2361 unsigned long load, group_capacity;
1da177e4
LT
2362 int local_group;
2363 int i;
783609c6 2364 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2365 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2366
2367 local_group = cpu_isset(this_cpu, group->cpumask);
2368
783609c6
SS
2369 if (local_group)
2370 balance_cpu = first_cpu(group->cpumask);
2371
1da177e4 2372 /* Tally up the load of all CPUs in the group */
2dd73a4f 2373 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2374
2375 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2376 struct rq *rq;
2377
2378 if (!cpu_isset(i, *cpus))
2379 continue;
2380
2381 rq = cpu_rq(i);
2dd73a4f 2382
9439aab8 2383 if (*sd_idle && rq->nr_running)
5969fe06
NP
2384 *sd_idle = 0;
2385
1da177e4 2386 /* Bias balancing toward cpus of our domain */
783609c6
SS
2387 if (local_group) {
2388 if (idle_cpu(i) && !first_idle_cpu) {
2389 first_idle_cpu = 1;
2390 balance_cpu = i;
2391 }
2392
a2000572 2393 load = target_load(i, load_idx);
783609c6 2394 } else
a2000572 2395 load = source_load(i, load_idx);
1da177e4
LT
2396
2397 avg_load += load;
2dd73a4f 2398 sum_nr_running += rq->nr_running;
dd41f596 2399 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2400 }
2401
783609c6
SS
2402 /*
2403 * First idle cpu or the first cpu(busiest) in this sched group
2404 * is eligible for doing load balancing at this and above
9439aab8
SS
2405 * domains. In the newly idle case, we will allow all the cpu's
2406 * to do the newly idle load balance.
783609c6 2407 */
9439aab8
SS
2408 if (idle != CPU_NEWLY_IDLE && local_group &&
2409 balance_cpu != this_cpu && balance) {
783609c6
SS
2410 *balance = 0;
2411 goto ret;
2412 }
2413
1da177e4 2414 total_load += avg_load;
5517d86b 2415 total_pwr += group->__cpu_power;
1da177e4
LT
2416
2417 /* Adjust by relative CPU power of the group */
5517d86b
ED
2418 avg_load = sg_div_cpu_power(group,
2419 avg_load * SCHED_LOAD_SCALE);
1da177e4 2420
5517d86b 2421 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2422
1da177e4
LT
2423 if (local_group) {
2424 this_load = avg_load;
2425 this = group;
2dd73a4f
PW
2426 this_nr_running = sum_nr_running;
2427 this_load_per_task = sum_weighted_load;
2428 } else if (avg_load > max_load &&
5c45bf27 2429 sum_nr_running > group_capacity) {
1da177e4
LT
2430 max_load = avg_load;
2431 busiest = group;
2dd73a4f
PW
2432 busiest_nr_running = sum_nr_running;
2433 busiest_load_per_task = sum_weighted_load;
1da177e4 2434 }
5c45bf27
SS
2435
2436#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2437 /*
2438 * Busy processors will not participate in power savings
2439 * balance.
2440 */
dd41f596
IM
2441 if (idle == CPU_NOT_IDLE ||
2442 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2443 goto group_next;
5c45bf27
SS
2444
2445 /*
2446 * If the local group is idle or completely loaded
2447 * no need to do power savings balance at this domain
2448 */
2449 if (local_group && (this_nr_running >= group_capacity ||
2450 !this_nr_running))
2451 power_savings_balance = 0;
2452
dd41f596 2453 /*
5c45bf27
SS
2454 * If a group is already running at full capacity or idle,
2455 * don't include that group in power savings calculations
dd41f596
IM
2456 */
2457 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2458 || !sum_nr_running)
dd41f596 2459 goto group_next;
5c45bf27 2460
dd41f596 2461 /*
5c45bf27 2462 * Calculate the group which has the least non-idle load.
dd41f596
IM
2463 * This is the group from where we need to pick up the load
2464 * for saving power
2465 */
2466 if ((sum_nr_running < min_nr_running) ||
2467 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2468 first_cpu(group->cpumask) <
2469 first_cpu(group_min->cpumask))) {
dd41f596
IM
2470 group_min = group;
2471 min_nr_running = sum_nr_running;
5c45bf27
SS
2472 min_load_per_task = sum_weighted_load /
2473 sum_nr_running;
dd41f596 2474 }
5c45bf27 2475
dd41f596 2476 /*
5c45bf27 2477 * Calculate the group which is almost near its
dd41f596
IM
2478 * capacity but still has some space to pick up some load
2479 * from other group and save more power
2480 */
2481 if (sum_nr_running <= group_capacity - 1) {
2482 if (sum_nr_running > leader_nr_running ||
2483 (sum_nr_running == leader_nr_running &&
2484 first_cpu(group->cpumask) >
2485 first_cpu(group_leader->cpumask))) {
2486 group_leader = group;
2487 leader_nr_running = sum_nr_running;
2488 }
48f24c4d 2489 }
5c45bf27
SS
2490group_next:
2491#endif
1da177e4
LT
2492 group = group->next;
2493 } while (group != sd->groups);
2494
2dd73a4f 2495 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2496 goto out_balanced;
2497
2498 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2499
2500 if (this_load >= avg_load ||
2501 100*max_load <= sd->imbalance_pct*this_load)
2502 goto out_balanced;
2503
2dd73a4f 2504 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2505 /*
2506 * We're trying to get all the cpus to the average_load, so we don't
2507 * want to push ourselves above the average load, nor do we wish to
2508 * reduce the max loaded cpu below the average load, as either of these
2509 * actions would just result in more rebalancing later, and ping-pong
2510 * tasks around. Thus we look for the minimum possible imbalance.
2511 * Negative imbalances (*we* are more loaded than anyone else) will
2512 * be counted as no imbalance for these purposes -- we can't fix that
2513 * by pulling tasks to us. Be careful of negative numbers as they'll
2514 * appear as very large values with unsigned longs.
2515 */
2dd73a4f
PW
2516 if (max_load <= busiest_load_per_task)
2517 goto out_balanced;
2518
2519 /*
2520 * In the presence of smp nice balancing, certain scenarios can have
2521 * max load less than avg load(as we skip the groups at or below
2522 * its cpu_power, while calculating max_load..)
2523 */
2524 if (max_load < avg_load) {
2525 *imbalance = 0;
2526 goto small_imbalance;
2527 }
0c117f1b
SS
2528
2529 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2530 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2531
1da177e4 2532 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2533 *imbalance = min(max_pull * busiest->__cpu_power,
2534 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2535 / SCHED_LOAD_SCALE;
2536
2dd73a4f
PW
2537 /*
2538 * if *imbalance is less than the average load per runnable task
2539 * there is no gaurantee that any tasks will be moved so we'll have
2540 * a think about bumping its value to force at least one task to be
2541 * moved
2542 */
7fd0d2dd 2543 if (*imbalance < busiest_load_per_task) {
48f24c4d 2544 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2545 unsigned int imbn;
2546
2547small_imbalance:
2548 pwr_move = pwr_now = 0;
2549 imbn = 2;
2550 if (this_nr_running) {
2551 this_load_per_task /= this_nr_running;
2552 if (busiest_load_per_task > this_load_per_task)
2553 imbn = 1;
2554 } else
2555 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2556
dd41f596
IM
2557 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2558 busiest_load_per_task * imbn) {
2dd73a4f 2559 *imbalance = busiest_load_per_task;
1da177e4
LT
2560 return busiest;
2561 }
2562
2563 /*
2564 * OK, we don't have enough imbalance to justify moving tasks,
2565 * however we may be able to increase total CPU power used by
2566 * moving them.
2567 */
2568
5517d86b
ED
2569 pwr_now += busiest->__cpu_power *
2570 min(busiest_load_per_task, max_load);
2571 pwr_now += this->__cpu_power *
2572 min(this_load_per_task, this_load);
1da177e4
LT
2573 pwr_now /= SCHED_LOAD_SCALE;
2574
2575 /* Amount of load we'd subtract */
5517d86b
ED
2576 tmp = sg_div_cpu_power(busiest,
2577 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2578 if (max_load > tmp)
5517d86b 2579 pwr_move += busiest->__cpu_power *
2dd73a4f 2580 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2581
2582 /* Amount of load we'd add */
5517d86b 2583 if (max_load * busiest->__cpu_power <
33859f7f 2584 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2585 tmp = sg_div_cpu_power(this,
2586 max_load * busiest->__cpu_power);
1da177e4 2587 else
5517d86b
ED
2588 tmp = sg_div_cpu_power(this,
2589 busiest_load_per_task * SCHED_LOAD_SCALE);
2590 pwr_move += this->__cpu_power *
2591 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2592 pwr_move /= SCHED_LOAD_SCALE;
2593
2594 /* Move if we gain throughput */
7fd0d2dd
SS
2595 if (pwr_move > pwr_now)
2596 *imbalance = busiest_load_per_task;
1da177e4
LT
2597 }
2598
1da177e4
LT
2599 return busiest;
2600
2601out_balanced:
5c45bf27 2602#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2603 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2604 goto ret;
1da177e4 2605
5c45bf27
SS
2606 if (this == group_leader && group_leader != group_min) {
2607 *imbalance = min_load_per_task;
2608 return group_min;
2609 }
5c45bf27 2610#endif
783609c6 2611ret:
1da177e4
LT
2612 *imbalance = 0;
2613 return NULL;
2614}
2615
2616/*
2617 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2618 */
70b97a7f 2619static struct rq *
d15bcfdb 2620find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2621 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2622{
70b97a7f 2623 struct rq *busiest = NULL, *rq;
2dd73a4f 2624 unsigned long max_load = 0;
1da177e4
LT
2625 int i;
2626
2627 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2628 unsigned long wl;
0a2966b4
CL
2629
2630 if (!cpu_isset(i, *cpus))
2631 continue;
2632
48f24c4d 2633 rq = cpu_rq(i);
dd41f596 2634 wl = weighted_cpuload(i);
2dd73a4f 2635
dd41f596 2636 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2637 continue;
1da177e4 2638
dd41f596
IM
2639 if (wl > max_load) {
2640 max_load = wl;
48f24c4d 2641 busiest = rq;
1da177e4
LT
2642 }
2643 }
2644
2645 return busiest;
2646}
2647
77391d71
NP
2648/*
2649 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2650 * so long as it is large enough.
2651 */
2652#define MAX_PINNED_INTERVAL 512
2653
1da177e4
LT
2654/*
2655 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2656 * tasks if there is an imbalance.
1da177e4 2657 */
70b97a7f 2658static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2659 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2660 int *balance)
1da177e4 2661{
43010659 2662 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2663 struct sched_group *group;
1da177e4 2664 unsigned long imbalance;
70b97a7f 2665 struct rq *busiest;
0a2966b4 2666 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2667 unsigned long flags;
5969fe06 2668
89c4710e
SS
2669 /*
2670 * When power savings policy is enabled for the parent domain, idle
2671 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2672 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2673 * portraying it as CPU_NOT_IDLE.
89c4710e 2674 */
d15bcfdb 2675 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2676 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2677 sd_idle = 1;
1da177e4 2678
2d72376b 2679 schedstat_inc(sd, lb_count[idle]);
1da177e4 2680
0a2966b4
CL
2681redo:
2682 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2683 &cpus, balance);
2684
06066714 2685 if (*balance == 0)
783609c6 2686 goto out_balanced;
783609c6 2687
1da177e4
LT
2688 if (!group) {
2689 schedstat_inc(sd, lb_nobusyg[idle]);
2690 goto out_balanced;
2691 }
2692
0a2966b4 2693 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2694 if (!busiest) {
2695 schedstat_inc(sd, lb_nobusyq[idle]);
2696 goto out_balanced;
2697 }
2698
db935dbd 2699 BUG_ON(busiest == this_rq);
1da177e4
LT
2700
2701 schedstat_add(sd, lb_imbalance[idle], imbalance);
2702
43010659 2703 ld_moved = 0;
1da177e4
LT
2704 if (busiest->nr_running > 1) {
2705 /*
2706 * Attempt to move tasks. If find_busiest_group has found
2707 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2708 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2709 * correctly treated as an imbalance.
2710 */
fe2eea3f 2711 local_irq_save(flags);
e17224bf 2712 double_rq_lock(this_rq, busiest);
43010659 2713 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2714 imbalance, sd, idle, &all_pinned);
e17224bf 2715 double_rq_unlock(this_rq, busiest);
fe2eea3f 2716 local_irq_restore(flags);
81026794 2717
46cb4b7c
SS
2718 /*
2719 * some other cpu did the load balance for us.
2720 */
43010659 2721 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2722 resched_cpu(this_cpu);
2723
81026794 2724 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2725 if (unlikely(all_pinned)) {
2726 cpu_clear(cpu_of(busiest), cpus);
2727 if (!cpus_empty(cpus))
2728 goto redo;
81026794 2729 goto out_balanced;
0a2966b4 2730 }
1da177e4 2731 }
81026794 2732
43010659 2733 if (!ld_moved) {
1da177e4
LT
2734 schedstat_inc(sd, lb_failed[idle]);
2735 sd->nr_balance_failed++;
2736
2737 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2738
fe2eea3f 2739 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2740
2741 /* don't kick the migration_thread, if the curr
2742 * task on busiest cpu can't be moved to this_cpu
2743 */
2744 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2745 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2746 all_pinned = 1;
2747 goto out_one_pinned;
2748 }
2749
1da177e4
LT
2750 if (!busiest->active_balance) {
2751 busiest->active_balance = 1;
2752 busiest->push_cpu = this_cpu;
81026794 2753 active_balance = 1;
1da177e4 2754 }
fe2eea3f 2755 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2756 if (active_balance)
1da177e4
LT
2757 wake_up_process(busiest->migration_thread);
2758
2759 /*
2760 * We've kicked active balancing, reset the failure
2761 * counter.
2762 */
39507451 2763 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2764 }
81026794 2765 } else
1da177e4
LT
2766 sd->nr_balance_failed = 0;
2767
81026794 2768 if (likely(!active_balance)) {
1da177e4
LT
2769 /* We were unbalanced, so reset the balancing interval */
2770 sd->balance_interval = sd->min_interval;
81026794
NP
2771 } else {
2772 /*
2773 * If we've begun active balancing, start to back off. This
2774 * case may not be covered by the all_pinned logic if there
2775 * is only 1 task on the busy runqueue (because we don't call
2776 * move_tasks).
2777 */
2778 if (sd->balance_interval < sd->max_interval)
2779 sd->balance_interval *= 2;
1da177e4
LT
2780 }
2781
43010659 2782 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2783 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2784 return -1;
43010659 2785 return ld_moved;
1da177e4
LT
2786
2787out_balanced:
1da177e4
LT
2788 schedstat_inc(sd, lb_balanced[idle]);
2789
16cfb1c0 2790 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2791
2792out_one_pinned:
1da177e4 2793 /* tune up the balancing interval */
77391d71
NP
2794 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2795 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2796 sd->balance_interval *= 2;
2797
48f24c4d 2798 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2800 return -1;
1da177e4
LT
2801 return 0;
2802}
2803
2804/*
2805 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2806 * tasks if there is an imbalance.
2807 *
d15bcfdb 2808 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2809 * this_rq is locked.
2810 */
48f24c4d 2811static int
70b97a7f 2812load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2813{
2814 struct sched_group *group;
70b97a7f 2815 struct rq *busiest = NULL;
1da177e4 2816 unsigned long imbalance;
43010659 2817 int ld_moved = 0;
5969fe06 2818 int sd_idle = 0;
969bb4e4 2819 int all_pinned = 0;
0a2966b4 2820 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2821
89c4710e
SS
2822 /*
2823 * When power savings policy is enabled for the parent domain, idle
2824 * sibling can pick up load irrespective of busy siblings. In this case,
2825 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2826 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2827 */
2828 if (sd->flags & SD_SHARE_CPUPOWER &&
2829 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2830 sd_idle = 1;
1da177e4 2831
2d72376b 2832 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2833redo:
d15bcfdb 2834 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2835 &sd_idle, &cpus, NULL);
1da177e4 2836 if (!group) {
d15bcfdb 2837 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2838 goto out_balanced;
1da177e4
LT
2839 }
2840
d15bcfdb 2841 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2842 &cpus);
db935dbd 2843 if (!busiest) {
d15bcfdb 2844 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2845 goto out_balanced;
1da177e4
LT
2846 }
2847
db935dbd
NP
2848 BUG_ON(busiest == this_rq);
2849
d15bcfdb 2850 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2851
43010659 2852 ld_moved = 0;
d6d5cfaf
NP
2853 if (busiest->nr_running > 1) {
2854 /* Attempt to move tasks */
2855 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2856 /* this_rq->clock is already updated */
2857 update_rq_clock(busiest);
43010659 2858 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2859 imbalance, sd, CPU_NEWLY_IDLE,
2860 &all_pinned);
d6d5cfaf 2861 spin_unlock(&busiest->lock);
0a2966b4 2862
969bb4e4 2863 if (unlikely(all_pinned)) {
0a2966b4
CL
2864 cpu_clear(cpu_of(busiest), cpus);
2865 if (!cpus_empty(cpus))
2866 goto redo;
2867 }
d6d5cfaf
NP
2868 }
2869
43010659 2870 if (!ld_moved) {
d15bcfdb 2871 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2872 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2873 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2874 return -1;
2875 } else
16cfb1c0 2876 sd->nr_balance_failed = 0;
1da177e4 2877
43010659 2878 return ld_moved;
16cfb1c0
NP
2879
2880out_balanced:
d15bcfdb 2881 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2882 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2883 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2884 return -1;
16cfb1c0 2885 sd->nr_balance_failed = 0;
48f24c4d 2886
16cfb1c0 2887 return 0;
1da177e4
LT
2888}
2889
2890/*
2891 * idle_balance is called by schedule() if this_cpu is about to become
2892 * idle. Attempts to pull tasks from other CPUs.
2893 */
70b97a7f 2894static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2895{
2896 struct sched_domain *sd;
dd41f596
IM
2897 int pulled_task = -1;
2898 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2899
2900 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2901 unsigned long interval;
2902
2903 if (!(sd->flags & SD_LOAD_BALANCE))
2904 continue;
2905
2906 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2907 /* If we've pulled tasks over stop searching: */
1bd77f2d 2908 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2909 this_rq, sd);
2910
2911 interval = msecs_to_jiffies(sd->balance_interval);
2912 if (time_after(next_balance, sd->last_balance + interval))
2913 next_balance = sd->last_balance + interval;
2914 if (pulled_task)
2915 break;
1da177e4 2916 }
dd41f596 2917 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2918 /*
2919 * We are going idle. next_balance may be set based on
2920 * a busy processor. So reset next_balance.
2921 */
2922 this_rq->next_balance = next_balance;
dd41f596 2923 }
1da177e4
LT
2924}
2925
2926/*
2927 * active_load_balance is run by migration threads. It pushes running tasks
2928 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2929 * running on each physical CPU where possible, and avoids physical /
2930 * logical imbalances.
2931 *
2932 * Called with busiest_rq locked.
2933 */
70b97a7f 2934static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2935{
39507451 2936 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2937 struct sched_domain *sd;
2938 struct rq *target_rq;
39507451 2939
48f24c4d 2940 /* Is there any task to move? */
39507451 2941 if (busiest_rq->nr_running <= 1)
39507451
NP
2942 return;
2943
2944 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2945
2946 /*
39507451
NP
2947 * This condition is "impossible", if it occurs
2948 * we need to fix it. Originally reported by
2949 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2950 */
39507451 2951 BUG_ON(busiest_rq == target_rq);
1da177e4 2952
39507451
NP
2953 /* move a task from busiest_rq to target_rq */
2954 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2955 update_rq_clock(busiest_rq);
2956 update_rq_clock(target_rq);
39507451
NP
2957
2958 /* Search for an sd spanning us and the target CPU. */
c96d145e 2959 for_each_domain(target_cpu, sd) {
39507451 2960 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2961 cpu_isset(busiest_cpu, sd->span))
39507451 2962 break;
c96d145e 2963 }
39507451 2964
48f24c4d 2965 if (likely(sd)) {
2d72376b 2966 schedstat_inc(sd, alb_count);
39507451 2967
43010659
PW
2968 if (move_one_task(target_rq, target_cpu, busiest_rq,
2969 sd, CPU_IDLE))
48f24c4d
IM
2970 schedstat_inc(sd, alb_pushed);
2971 else
2972 schedstat_inc(sd, alb_failed);
2973 }
39507451 2974 spin_unlock(&target_rq->lock);
1da177e4
LT
2975}
2976
46cb4b7c
SS
2977#ifdef CONFIG_NO_HZ
2978static struct {
2979 atomic_t load_balancer;
2980 cpumask_t cpu_mask;
2981} nohz ____cacheline_aligned = {
2982 .load_balancer = ATOMIC_INIT(-1),
2983 .cpu_mask = CPU_MASK_NONE,
2984};
2985
7835b98b 2986/*
46cb4b7c
SS
2987 * This routine will try to nominate the ilb (idle load balancing)
2988 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2989 * load balancing on behalf of all those cpus. If all the cpus in the system
2990 * go into this tickless mode, then there will be no ilb owner (as there is
2991 * no need for one) and all the cpus will sleep till the next wakeup event
2992 * arrives...
2993 *
2994 * For the ilb owner, tick is not stopped. And this tick will be used
2995 * for idle load balancing. ilb owner will still be part of
2996 * nohz.cpu_mask..
7835b98b 2997 *
46cb4b7c
SS
2998 * While stopping the tick, this cpu will become the ilb owner if there
2999 * is no other owner. And will be the owner till that cpu becomes busy
3000 * or if all cpus in the system stop their ticks at which point
3001 * there is no need for ilb owner.
3002 *
3003 * When the ilb owner becomes busy, it nominates another owner, during the
3004 * next busy scheduler_tick()
3005 */
3006int select_nohz_load_balancer(int stop_tick)
3007{
3008 int cpu = smp_processor_id();
3009
3010 if (stop_tick) {
3011 cpu_set(cpu, nohz.cpu_mask);
3012 cpu_rq(cpu)->in_nohz_recently = 1;
3013
3014 /*
3015 * If we are going offline and still the leader, give up!
3016 */
3017 if (cpu_is_offline(cpu) &&
3018 atomic_read(&nohz.load_balancer) == cpu) {
3019 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3020 BUG();
3021 return 0;
3022 }
3023
3024 /* time for ilb owner also to sleep */
3025 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3026 if (atomic_read(&nohz.load_balancer) == cpu)
3027 atomic_set(&nohz.load_balancer, -1);
3028 return 0;
3029 }
3030
3031 if (atomic_read(&nohz.load_balancer) == -1) {
3032 /* make me the ilb owner */
3033 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3034 return 1;
3035 } else if (atomic_read(&nohz.load_balancer) == cpu)
3036 return 1;
3037 } else {
3038 if (!cpu_isset(cpu, nohz.cpu_mask))
3039 return 0;
3040
3041 cpu_clear(cpu, nohz.cpu_mask);
3042
3043 if (atomic_read(&nohz.load_balancer) == cpu)
3044 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3045 BUG();
3046 }
3047 return 0;
3048}
3049#endif
3050
3051static DEFINE_SPINLOCK(balancing);
3052
3053/*
7835b98b
CL
3054 * It checks each scheduling domain to see if it is due to be balanced,
3055 * and initiates a balancing operation if so.
3056 *
3057 * Balancing parameters are set up in arch_init_sched_domains.
3058 */
a9957449 3059static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3060{
46cb4b7c
SS
3061 int balance = 1;
3062 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3063 unsigned long interval;
3064 struct sched_domain *sd;
46cb4b7c 3065 /* Earliest time when we have to do rebalance again */
c9819f45 3066 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3067 int update_next_balance = 0;
1da177e4 3068
46cb4b7c 3069 for_each_domain(cpu, sd) {
1da177e4
LT
3070 if (!(sd->flags & SD_LOAD_BALANCE))
3071 continue;
3072
3073 interval = sd->balance_interval;
d15bcfdb 3074 if (idle != CPU_IDLE)
1da177e4
LT
3075 interval *= sd->busy_factor;
3076
3077 /* scale ms to jiffies */
3078 interval = msecs_to_jiffies(interval);
3079 if (unlikely(!interval))
3080 interval = 1;
dd41f596
IM
3081 if (interval > HZ*NR_CPUS/10)
3082 interval = HZ*NR_CPUS/10;
3083
1da177e4 3084
08c183f3
CL
3085 if (sd->flags & SD_SERIALIZE) {
3086 if (!spin_trylock(&balancing))
3087 goto out;
3088 }
3089
c9819f45 3090 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3091 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3092 /*
3093 * We've pulled tasks over so either we're no
5969fe06
NP
3094 * longer idle, or one of our SMT siblings is
3095 * not idle.
3096 */
d15bcfdb 3097 idle = CPU_NOT_IDLE;
1da177e4 3098 }
1bd77f2d 3099 sd->last_balance = jiffies;
1da177e4 3100 }
08c183f3
CL
3101 if (sd->flags & SD_SERIALIZE)
3102 spin_unlock(&balancing);
3103out:
f549da84 3104 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3105 next_balance = sd->last_balance + interval;
f549da84
SS
3106 update_next_balance = 1;
3107 }
783609c6
SS
3108
3109 /*
3110 * Stop the load balance at this level. There is another
3111 * CPU in our sched group which is doing load balancing more
3112 * actively.
3113 */
3114 if (!balance)
3115 break;
1da177e4 3116 }
f549da84
SS
3117
3118 /*
3119 * next_balance will be updated only when there is a need.
3120 * When the cpu is attached to null domain for ex, it will not be
3121 * updated.
3122 */
3123 if (likely(update_next_balance))
3124 rq->next_balance = next_balance;
46cb4b7c
SS
3125}
3126
3127/*
3128 * run_rebalance_domains is triggered when needed from the scheduler tick.
3129 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3130 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3131 */
3132static void run_rebalance_domains(struct softirq_action *h)
3133{
dd41f596
IM
3134 int this_cpu = smp_processor_id();
3135 struct rq *this_rq = cpu_rq(this_cpu);
3136 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3137 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3138
dd41f596 3139 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3140
3141#ifdef CONFIG_NO_HZ
3142 /*
3143 * If this cpu is the owner for idle load balancing, then do the
3144 * balancing on behalf of the other idle cpus whose ticks are
3145 * stopped.
3146 */
dd41f596
IM
3147 if (this_rq->idle_at_tick &&
3148 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3149 cpumask_t cpus = nohz.cpu_mask;
3150 struct rq *rq;
3151 int balance_cpu;
3152
dd41f596 3153 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3154 for_each_cpu_mask(balance_cpu, cpus) {
3155 /*
3156 * If this cpu gets work to do, stop the load balancing
3157 * work being done for other cpus. Next load
3158 * balancing owner will pick it up.
3159 */
3160 if (need_resched())
3161 break;
3162
de0cf899 3163 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3164
3165 rq = cpu_rq(balance_cpu);
dd41f596
IM
3166 if (time_after(this_rq->next_balance, rq->next_balance))
3167 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3168 }
3169 }
3170#endif
3171}
3172
3173/*
3174 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3175 *
3176 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3177 * idle load balancing owner or decide to stop the periodic load balancing,
3178 * if the whole system is idle.
3179 */
dd41f596 3180static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3181{
46cb4b7c
SS
3182#ifdef CONFIG_NO_HZ
3183 /*
3184 * If we were in the nohz mode recently and busy at the current
3185 * scheduler tick, then check if we need to nominate new idle
3186 * load balancer.
3187 */
3188 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3189 rq->in_nohz_recently = 0;
3190
3191 if (atomic_read(&nohz.load_balancer) == cpu) {
3192 cpu_clear(cpu, nohz.cpu_mask);
3193 atomic_set(&nohz.load_balancer, -1);
3194 }
3195
3196 if (atomic_read(&nohz.load_balancer) == -1) {
3197 /*
3198 * simple selection for now: Nominate the
3199 * first cpu in the nohz list to be the next
3200 * ilb owner.
3201 *
3202 * TBD: Traverse the sched domains and nominate
3203 * the nearest cpu in the nohz.cpu_mask.
3204 */
3205 int ilb = first_cpu(nohz.cpu_mask);
3206
3207 if (ilb != NR_CPUS)
3208 resched_cpu(ilb);
3209 }
3210 }
3211
3212 /*
3213 * If this cpu is idle and doing idle load balancing for all the
3214 * cpus with ticks stopped, is it time for that to stop?
3215 */
3216 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3217 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3218 resched_cpu(cpu);
3219 return;
3220 }
3221
3222 /*
3223 * If this cpu is idle and the idle load balancing is done by
3224 * someone else, then no need raise the SCHED_SOFTIRQ
3225 */
3226 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3227 cpu_isset(cpu, nohz.cpu_mask))
3228 return;
3229#endif
3230 if (time_after_eq(jiffies, rq->next_balance))
3231 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3232}
dd41f596
IM
3233
3234#else /* CONFIG_SMP */
3235
1da177e4
LT
3236/*
3237 * on UP we do not need to balance between CPUs:
3238 */
70b97a7f 3239static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3240{
3241}
dd41f596
IM
3242
3243/* Avoid "used but not defined" warning on UP */
3244static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3245 unsigned long max_nr_move, unsigned long max_load_move,
3246 struct sched_domain *sd, enum cpu_idle_type idle,
3247 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3248 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3249{
3250 *load_moved = 0;
3251
3252 return 0;
3253}
3254
1da177e4
LT
3255#endif
3256
1da177e4
LT
3257DEFINE_PER_CPU(struct kernel_stat, kstat);
3258
3259EXPORT_PER_CPU_SYMBOL(kstat);
3260
3261/*
41b86e9c
IM
3262 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3263 * that have not yet been banked in case the task is currently running.
1da177e4 3264 */
41b86e9c 3265unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3266{
1da177e4 3267 unsigned long flags;
41b86e9c
IM
3268 u64 ns, delta_exec;
3269 struct rq *rq;
48f24c4d 3270
41b86e9c
IM
3271 rq = task_rq_lock(p, &flags);
3272 ns = p->se.sum_exec_runtime;
3273 if (rq->curr == p) {
a8e504d2
IM
3274 update_rq_clock(rq);
3275 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3276 if ((s64)delta_exec > 0)
3277 ns += delta_exec;
3278 }
3279 task_rq_unlock(rq, &flags);
48f24c4d 3280
1da177e4
LT
3281 return ns;
3282}
3283
1da177e4
LT
3284/*
3285 * Account user cpu time to a process.
3286 * @p: the process that the cpu time gets accounted to
3287 * @hardirq_offset: the offset to subtract from hardirq_count()
3288 * @cputime: the cpu time spent in user space since the last update
3289 */
3290void account_user_time(struct task_struct *p, cputime_t cputime)
3291{
3292 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3293 cputime64_t tmp;
3294
3295 p->utime = cputime_add(p->utime, cputime);
3296
3297 /* Add user time to cpustat. */
3298 tmp = cputime_to_cputime64(cputime);
3299 if (TASK_NICE(p) > 0)
3300 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3301 else
3302 cpustat->user = cputime64_add(cpustat->user, tmp);
3303}
3304
3305/*
3306 * Account system cpu time to a process.
3307 * @p: the process that the cpu time gets accounted to
3308 * @hardirq_offset: the offset to subtract from hardirq_count()
3309 * @cputime: the cpu time spent in kernel space since the last update
3310 */
3311void account_system_time(struct task_struct *p, int hardirq_offset,
3312 cputime_t cputime)
3313{
3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3315 struct rq *rq = this_rq();
1da177e4
LT
3316 cputime64_t tmp;
3317
3318 p->stime = cputime_add(p->stime, cputime);
3319
3320 /* Add system time to cpustat. */
3321 tmp = cputime_to_cputime64(cputime);
3322 if (hardirq_count() - hardirq_offset)
3323 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3324 else if (softirq_count())
3325 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3326 else if (p != rq->idle)
3327 cpustat->system = cputime64_add(cpustat->system, tmp);
3328 else if (atomic_read(&rq->nr_iowait) > 0)
3329 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3330 else
3331 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3332 /* Account for system time used */
3333 acct_update_integrals(p);
1da177e4
LT
3334}
3335
3336/*
3337 * Account for involuntary wait time.
3338 * @p: the process from which the cpu time has been stolen
3339 * @steal: the cpu time spent in involuntary wait
3340 */
3341void account_steal_time(struct task_struct *p, cputime_t steal)
3342{
3343 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3344 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3345 struct rq *rq = this_rq();
1da177e4
LT
3346
3347 if (p == rq->idle) {
3348 p->stime = cputime_add(p->stime, steal);
3349 if (atomic_read(&rq->nr_iowait) > 0)
3350 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3351 else
3352 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3353 } else
3354 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3355}
3356
7835b98b
CL
3357/*
3358 * This function gets called by the timer code, with HZ frequency.
3359 * We call it with interrupts disabled.
3360 *
3361 * It also gets called by the fork code, when changing the parent's
3362 * timeslices.
3363 */
3364void scheduler_tick(void)
3365{
7835b98b
CL
3366 int cpu = smp_processor_id();
3367 struct rq *rq = cpu_rq(cpu);
dd41f596 3368 struct task_struct *curr = rq->curr;
529c7726 3369 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3370
3371 spin_lock(&rq->lock);
546fe3c9 3372 __update_rq_clock(rq);
529c7726
IM
3373 /*
3374 * Let rq->clock advance by at least TICK_NSEC:
3375 */
3376 if (unlikely(rq->clock < next_tick))
3377 rq->clock = next_tick;
3378 rq->tick_timestamp = rq->clock;
f1a438d8 3379 update_cpu_load(rq);
dd41f596
IM
3380 if (curr != rq->idle) /* FIXME: needed? */
3381 curr->sched_class->task_tick(rq, curr);
dd41f596 3382 spin_unlock(&rq->lock);
7835b98b 3383
e418e1c2 3384#ifdef CONFIG_SMP
dd41f596
IM
3385 rq->idle_at_tick = idle_cpu(cpu);
3386 trigger_load_balance(rq, cpu);
e418e1c2 3387#endif
1da177e4
LT
3388}
3389
1da177e4
LT
3390#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3391
3392void fastcall add_preempt_count(int val)
3393{
3394 /*
3395 * Underflow?
3396 */
9a11b49a
IM
3397 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3398 return;
1da177e4
LT
3399 preempt_count() += val;
3400 /*
3401 * Spinlock count overflowing soon?
3402 */
33859f7f
MOS
3403 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3404 PREEMPT_MASK - 10);
1da177e4
LT
3405}
3406EXPORT_SYMBOL(add_preempt_count);
3407
3408void fastcall sub_preempt_count(int val)
3409{
3410 /*
3411 * Underflow?
3412 */
9a11b49a
IM
3413 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3414 return;
1da177e4
LT
3415 /*
3416 * Is the spinlock portion underflowing?
3417 */
9a11b49a
IM
3418 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3419 !(preempt_count() & PREEMPT_MASK)))
3420 return;
3421
1da177e4
LT
3422 preempt_count() -= val;
3423}
3424EXPORT_SYMBOL(sub_preempt_count);
3425
3426#endif
3427
3428/*
dd41f596 3429 * Print scheduling while atomic bug:
1da177e4 3430 */
dd41f596 3431static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3432{
dd41f596
IM
3433 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3434 prev->comm, preempt_count(), prev->pid);
3435 debug_show_held_locks(prev);
3436 if (irqs_disabled())
3437 print_irqtrace_events(prev);
3438 dump_stack();
3439}
1da177e4 3440
dd41f596
IM
3441/*
3442 * Various schedule()-time debugging checks and statistics:
3443 */
3444static inline void schedule_debug(struct task_struct *prev)
3445{
1da177e4
LT
3446 /*
3447 * Test if we are atomic. Since do_exit() needs to call into
3448 * schedule() atomically, we ignore that path for now.
3449 * Otherwise, whine if we are scheduling when we should not be.
3450 */
dd41f596
IM
3451 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3452 __schedule_bug(prev);
3453
1da177e4
LT
3454 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3455
2d72376b 3456 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3457#ifdef CONFIG_SCHEDSTATS
3458 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3459 schedstat_inc(this_rq(), bkl_count);
3460 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3461 }
3462#endif
dd41f596
IM
3463}
3464
3465/*
3466 * Pick up the highest-prio task:
3467 */
3468static inline struct task_struct *
ff95f3df 3469pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3470{
5522d5d5 3471 const struct sched_class *class;
dd41f596 3472 struct task_struct *p;
1da177e4
LT
3473
3474 /*
dd41f596
IM
3475 * Optimization: we know that if all tasks are in
3476 * the fair class we can call that function directly:
1da177e4 3477 */
dd41f596 3478 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3479 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3480 if (likely(p))
3481 return p;
1da177e4
LT
3482 }
3483
dd41f596
IM
3484 class = sched_class_highest;
3485 for ( ; ; ) {
fb8d4724 3486 p = class->pick_next_task(rq);
dd41f596
IM
3487 if (p)
3488 return p;
3489 /*
3490 * Will never be NULL as the idle class always
3491 * returns a non-NULL p:
3492 */
3493 class = class->next;
3494 }
3495}
1da177e4 3496
dd41f596
IM
3497/*
3498 * schedule() is the main scheduler function.
3499 */
3500asmlinkage void __sched schedule(void)
3501{
3502 struct task_struct *prev, *next;
3503 long *switch_count;
3504 struct rq *rq;
dd41f596
IM
3505 int cpu;
3506
3507need_resched:
3508 preempt_disable();
3509 cpu = smp_processor_id();
3510 rq = cpu_rq(cpu);
3511 rcu_qsctr_inc(cpu);
3512 prev = rq->curr;
3513 switch_count = &prev->nivcsw;
3514
3515 release_kernel_lock(prev);
3516need_resched_nonpreemptible:
3517
3518 schedule_debug(prev);
1da177e4 3519
1e819950
IM
3520 /*
3521 * Do the rq-clock update outside the rq lock:
3522 */
3523 local_irq_disable();
c1b3da3e 3524 __update_rq_clock(rq);
1e819950
IM
3525 spin_lock(&rq->lock);
3526 clear_tsk_need_resched(prev);
1da177e4 3527
1da177e4 3528 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3529 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3530 unlikely(signal_pending(prev)))) {
1da177e4 3531 prev->state = TASK_RUNNING;
dd41f596 3532 } else {
2e1cb74a 3533 deactivate_task(rq, prev, 1);
1da177e4 3534 }
dd41f596 3535 switch_count = &prev->nvcsw;
1da177e4
LT
3536 }
3537
dd41f596 3538 if (unlikely(!rq->nr_running))
1da177e4 3539 idle_balance(cpu, rq);
1da177e4 3540
31ee529c 3541 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3542 next = pick_next_task(rq, prev);
1da177e4
LT
3543
3544 sched_info_switch(prev, next);
dd41f596 3545
1da177e4 3546 if (likely(prev != next)) {
1da177e4
LT
3547 rq->nr_switches++;
3548 rq->curr = next;
3549 ++*switch_count;
3550
dd41f596 3551 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3552 } else
3553 spin_unlock_irq(&rq->lock);
3554
dd41f596
IM
3555 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3556 cpu = smp_processor_id();
3557 rq = cpu_rq(cpu);
1da177e4 3558 goto need_resched_nonpreemptible;
dd41f596 3559 }
1da177e4
LT
3560 preempt_enable_no_resched();
3561 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3562 goto need_resched;
3563}
1da177e4
LT
3564EXPORT_SYMBOL(schedule);
3565
3566#ifdef CONFIG_PREEMPT
3567/*
2ed6e34f 3568 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3569 * off of preempt_enable. Kernel preemptions off return from interrupt
3570 * occur there and call schedule directly.
3571 */
3572asmlinkage void __sched preempt_schedule(void)
3573{
3574 struct thread_info *ti = current_thread_info();
3575#ifdef CONFIG_PREEMPT_BKL
3576 struct task_struct *task = current;
3577 int saved_lock_depth;
3578#endif
3579 /*
3580 * If there is a non-zero preempt_count or interrupts are disabled,
3581 * we do not want to preempt the current task. Just return..
3582 */
beed33a8 3583 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3584 return;
3585
3a5c359a
AK
3586 do {
3587 add_preempt_count(PREEMPT_ACTIVE);
3588
3589 /*
3590 * We keep the big kernel semaphore locked, but we
3591 * clear ->lock_depth so that schedule() doesnt
3592 * auto-release the semaphore:
3593 */
1da177e4 3594#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3595 saved_lock_depth = task->lock_depth;
3596 task->lock_depth = -1;
1da177e4 3597#endif
3a5c359a 3598 schedule();
1da177e4 3599#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3600 task->lock_depth = saved_lock_depth;
1da177e4 3601#endif
3a5c359a 3602 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3603
3a5c359a
AK
3604 /*
3605 * Check again in case we missed a preemption opportunity
3606 * between schedule and now.
3607 */
3608 barrier();
3609 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3610}
1da177e4
LT
3611EXPORT_SYMBOL(preempt_schedule);
3612
3613/*
2ed6e34f 3614 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3615 * off of irq context.
3616 * Note, that this is called and return with irqs disabled. This will
3617 * protect us against recursive calling from irq.
3618 */
3619asmlinkage void __sched preempt_schedule_irq(void)
3620{
3621 struct thread_info *ti = current_thread_info();
3622#ifdef CONFIG_PREEMPT_BKL
3623 struct task_struct *task = current;
3624 int saved_lock_depth;
3625#endif
2ed6e34f 3626 /* Catch callers which need to be fixed */
1da177e4
LT
3627 BUG_ON(ti->preempt_count || !irqs_disabled());
3628
3a5c359a
AK
3629 do {
3630 add_preempt_count(PREEMPT_ACTIVE);
3631
3632 /*
3633 * We keep the big kernel semaphore locked, but we
3634 * clear ->lock_depth so that schedule() doesnt
3635 * auto-release the semaphore:
3636 */
1da177e4 3637#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3638 saved_lock_depth = task->lock_depth;
3639 task->lock_depth = -1;
1da177e4 3640#endif
3a5c359a
AK
3641 local_irq_enable();
3642 schedule();
3643 local_irq_disable();
1da177e4 3644#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3645 task->lock_depth = saved_lock_depth;
1da177e4 3646#endif
3a5c359a 3647 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3648
3a5c359a
AK
3649 /*
3650 * Check again in case we missed a preemption opportunity
3651 * between schedule and now.
3652 */
3653 barrier();
3654 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3655}
3656
3657#endif /* CONFIG_PREEMPT */
3658
95cdf3b7
IM
3659int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3660 void *key)
1da177e4 3661{
48f24c4d 3662 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3663}
1da177e4
LT
3664EXPORT_SYMBOL(default_wake_function);
3665
3666/*
3667 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3668 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3669 * number) then we wake all the non-exclusive tasks and one exclusive task.
3670 *
3671 * There are circumstances in which we can try to wake a task which has already
3672 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3673 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3674 */
3675static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3676 int nr_exclusive, int sync, void *key)
3677{
2e45874c 3678 wait_queue_t *curr, *next;
1da177e4 3679
2e45874c 3680 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3681 unsigned flags = curr->flags;
3682
1da177e4 3683 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3684 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3685 break;
3686 }
3687}
3688
3689/**
3690 * __wake_up - wake up threads blocked on a waitqueue.
3691 * @q: the waitqueue
3692 * @mode: which threads
3693 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3694 * @key: is directly passed to the wakeup function
1da177e4
LT
3695 */
3696void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3697 int nr_exclusive, void *key)
1da177e4
LT
3698{
3699 unsigned long flags;
3700
3701 spin_lock_irqsave(&q->lock, flags);
3702 __wake_up_common(q, mode, nr_exclusive, 0, key);
3703 spin_unlock_irqrestore(&q->lock, flags);
3704}
1da177e4
LT
3705EXPORT_SYMBOL(__wake_up);
3706
3707/*
3708 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3709 */
3710void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3711{
3712 __wake_up_common(q, mode, 1, 0, NULL);
3713}
3714
3715/**
67be2dd1 3716 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3717 * @q: the waitqueue
3718 * @mode: which threads
3719 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3720 *
3721 * The sync wakeup differs that the waker knows that it will schedule
3722 * away soon, so while the target thread will be woken up, it will not
3723 * be migrated to another CPU - ie. the two threads are 'synchronized'
3724 * with each other. This can prevent needless bouncing between CPUs.
3725 *
3726 * On UP it can prevent extra preemption.
3727 */
95cdf3b7
IM
3728void fastcall
3729__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3730{
3731 unsigned long flags;
3732 int sync = 1;
3733
3734 if (unlikely(!q))
3735 return;
3736
3737 if (unlikely(!nr_exclusive))
3738 sync = 0;
3739
3740 spin_lock_irqsave(&q->lock, flags);
3741 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3742 spin_unlock_irqrestore(&q->lock, flags);
3743}
3744EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3745
3746void fastcall complete(struct completion *x)
3747{
3748 unsigned long flags;
3749
3750 spin_lock_irqsave(&x->wait.lock, flags);
3751 x->done++;
3752 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3753 1, 0, NULL);
3754 spin_unlock_irqrestore(&x->wait.lock, flags);
3755}
3756EXPORT_SYMBOL(complete);
3757
3758void fastcall complete_all(struct completion *x)
3759{
3760 unsigned long flags;
3761
3762 spin_lock_irqsave(&x->wait.lock, flags);
3763 x->done += UINT_MAX/2;
3764 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3765 0, 0, NULL);
3766 spin_unlock_irqrestore(&x->wait.lock, flags);
3767}
3768EXPORT_SYMBOL(complete_all);
3769
8cbbe86d
AK
3770static inline long __sched
3771do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3772{
1da177e4
LT
3773 if (!x->done) {
3774 DECLARE_WAITQUEUE(wait, current);
3775
3776 wait.flags |= WQ_FLAG_EXCLUSIVE;
3777 __add_wait_queue_tail(&x->wait, &wait);
3778 do {
8cbbe86d
AK
3779 if (state == TASK_INTERRUPTIBLE &&
3780 signal_pending(current)) {
3781 __remove_wait_queue(&x->wait, &wait);
3782 return -ERESTARTSYS;
3783 }
3784 __set_current_state(state);
1da177e4
LT
3785 spin_unlock_irq(&x->wait.lock);
3786 timeout = schedule_timeout(timeout);
3787 spin_lock_irq(&x->wait.lock);
3788 if (!timeout) {
3789 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3790 return timeout;
1da177e4
LT
3791 }
3792 } while (!x->done);
3793 __remove_wait_queue(&x->wait, &wait);
3794 }
3795 x->done--;
1da177e4
LT
3796 return timeout;
3797}
1da177e4 3798
8cbbe86d
AK
3799static long __sched
3800wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3801{
1da177e4
LT
3802 might_sleep();
3803
3804 spin_lock_irq(&x->wait.lock);
8cbbe86d 3805 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3806 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3807 return timeout;
3808}
1da177e4 3809
8cbbe86d
AK
3810void fastcall __sched wait_for_completion(struct completion *x)
3811{
3812 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3813}
8cbbe86d 3814EXPORT_SYMBOL(wait_for_completion);
1da177e4
LT
3815
3816unsigned long fastcall __sched
8cbbe86d 3817wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3818{
8cbbe86d 3819 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3820}
8cbbe86d 3821EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3822
8cbbe86d 3823int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3824{
8cbbe86d 3825 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
0fec171c 3826}
8cbbe86d 3827EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3828
8cbbe86d
AK
3829unsigned long fastcall __sched
3830wait_for_completion_interruptible_timeout(struct completion *x,
3831 unsigned long timeout)
0fec171c 3832{
8cbbe86d 3833 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3834}
8cbbe86d 3835EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3836
8cbbe86d
AK
3837static long __sched
3838sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3839{
0fec171c
IM
3840 unsigned long flags;
3841 wait_queue_t wait;
3842
3843 init_waitqueue_entry(&wait, current);
1da177e4 3844
8cbbe86d 3845 __set_current_state(state);
1da177e4 3846
8cbbe86d
AK
3847 spin_lock_irqsave(&q->lock, flags);
3848 __add_wait_queue(q, &wait);
3849 spin_unlock(&q->lock);
3850 timeout = schedule_timeout(timeout);
3851 spin_lock_irq(&q->lock);
3852 __remove_wait_queue(q, &wait);
3853 spin_unlock_irqrestore(&q->lock, flags);
3854
3855 return timeout;
3856}
3857
3858void __sched interruptible_sleep_on(wait_queue_head_t *q)
3859{
3860 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3861}
1da177e4
LT
3862EXPORT_SYMBOL(interruptible_sleep_on);
3863
0fec171c 3864long __sched
95cdf3b7 3865interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3866{
8cbbe86d 3867 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3868}
1da177e4
LT
3869EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3870
0fec171c 3871void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3872{
8cbbe86d 3873 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3874}
1da177e4
LT
3875EXPORT_SYMBOL(sleep_on);
3876
0fec171c 3877long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3878{
8cbbe86d 3879 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3880}
1da177e4
LT
3881EXPORT_SYMBOL(sleep_on_timeout);
3882
b29739f9
IM
3883#ifdef CONFIG_RT_MUTEXES
3884
3885/*
3886 * rt_mutex_setprio - set the current priority of a task
3887 * @p: task
3888 * @prio: prio value (kernel-internal form)
3889 *
3890 * This function changes the 'effective' priority of a task. It does
3891 * not touch ->normal_prio like __setscheduler().
3892 *
3893 * Used by the rt_mutex code to implement priority inheritance logic.
3894 */
36c8b586 3895void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3896{
3897 unsigned long flags;
83b699ed 3898 int oldprio, on_rq, running;
70b97a7f 3899 struct rq *rq;
b29739f9
IM
3900
3901 BUG_ON(prio < 0 || prio > MAX_PRIO);
3902
3903 rq = task_rq_lock(p, &flags);
a8e504d2 3904 update_rq_clock(rq);
b29739f9 3905
d5f9f942 3906 oldprio = p->prio;
dd41f596 3907 on_rq = p->se.on_rq;
83b699ed
SV
3908 running = task_running(rq, p);
3909 if (on_rq) {
69be72c1 3910 dequeue_task(rq, p, 0);
83b699ed
SV
3911 if (running)
3912 p->sched_class->put_prev_task(rq, p);
3913 }
dd41f596
IM
3914
3915 if (rt_prio(prio))
3916 p->sched_class = &rt_sched_class;
3917 else
3918 p->sched_class = &fair_sched_class;
3919
b29739f9
IM
3920 p->prio = prio;
3921
dd41f596 3922 if (on_rq) {
83b699ed
SV
3923 if (running)
3924 p->sched_class->set_curr_task(rq);
8159f87e 3925 enqueue_task(rq, p, 0);
b29739f9
IM
3926 /*
3927 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3928 * our priority decreased, or if we are not currently running on
3929 * this runqueue and our priority is higher than the current's
b29739f9 3930 */
83b699ed 3931 if (running) {
d5f9f942
AM
3932 if (p->prio > oldprio)
3933 resched_task(rq->curr);
dd41f596
IM
3934 } else {
3935 check_preempt_curr(rq, p);
3936 }
b29739f9
IM
3937 }
3938 task_rq_unlock(rq, &flags);
3939}
3940
3941#endif
3942
36c8b586 3943void set_user_nice(struct task_struct *p, long nice)
1da177e4 3944{
dd41f596 3945 int old_prio, delta, on_rq;
1da177e4 3946 unsigned long flags;
70b97a7f 3947 struct rq *rq;
1da177e4
LT
3948
3949 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3950 return;
3951 /*
3952 * We have to be careful, if called from sys_setpriority(),
3953 * the task might be in the middle of scheduling on another CPU.
3954 */
3955 rq = task_rq_lock(p, &flags);
a8e504d2 3956 update_rq_clock(rq);
1da177e4
LT
3957 /*
3958 * The RT priorities are set via sched_setscheduler(), but we still
3959 * allow the 'normal' nice value to be set - but as expected
3960 * it wont have any effect on scheduling until the task is
dd41f596 3961 * SCHED_FIFO/SCHED_RR:
1da177e4 3962 */
e05606d3 3963 if (task_has_rt_policy(p)) {
1da177e4
LT
3964 p->static_prio = NICE_TO_PRIO(nice);
3965 goto out_unlock;
3966 }
dd41f596
IM
3967 on_rq = p->se.on_rq;
3968 if (on_rq) {
69be72c1 3969 dequeue_task(rq, p, 0);
79b5dddf 3970 dec_load(rq, p);
2dd73a4f 3971 }
1da177e4 3972
1da177e4 3973 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3974 set_load_weight(p);
b29739f9
IM
3975 old_prio = p->prio;
3976 p->prio = effective_prio(p);
3977 delta = p->prio - old_prio;
1da177e4 3978
dd41f596 3979 if (on_rq) {
8159f87e 3980 enqueue_task(rq, p, 0);
29b4b623 3981 inc_load(rq, p);
1da177e4 3982 /*
d5f9f942
AM
3983 * If the task increased its priority or is running and
3984 * lowered its priority, then reschedule its CPU:
1da177e4 3985 */
d5f9f942 3986 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3987 resched_task(rq->curr);
3988 }
3989out_unlock:
3990 task_rq_unlock(rq, &flags);
3991}
1da177e4
LT
3992EXPORT_SYMBOL(set_user_nice);
3993
e43379f1
MM
3994/*
3995 * can_nice - check if a task can reduce its nice value
3996 * @p: task
3997 * @nice: nice value
3998 */
36c8b586 3999int can_nice(const struct task_struct *p, const int nice)
e43379f1 4000{
024f4747
MM
4001 /* convert nice value [19,-20] to rlimit style value [1,40] */
4002 int nice_rlim = 20 - nice;
48f24c4d 4003
e43379f1
MM
4004 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4005 capable(CAP_SYS_NICE));
4006}
4007
1da177e4
LT
4008#ifdef __ARCH_WANT_SYS_NICE
4009
4010/*
4011 * sys_nice - change the priority of the current process.
4012 * @increment: priority increment
4013 *
4014 * sys_setpriority is a more generic, but much slower function that
4015 * does similar things.
4016 */
4017asmlinkage long sys_nice(int increment)
4018{
48f24c4d 4019 long nice, retval;
1da177e4
LT
4020
4021 /*
4022 * Setpriority might change our priority at the same moment.
4023 * We don't have to worry. Conceptually one call occurs first
4024 * and we have a single winner.
4025 */
e43379f1
MM
4026 if (increment < -40)
4027 increment = -40;
1da177e4
LT
4028 if (increment > 40)
4029 increment = 40;
4030
4031 nice = PRIO_TO_NICE(current->static_prio) + increment;
4032 if (nice < -20)
4033 nice = -20;
4034 if (nice > 19)
4035 nice = 19;
4036
e43379f1
MM
4037 if (increment < 0 && !can_nice(current, nice))
4038 return -EPERM;
4039
1da177e4
LT
4040 retval = security_task_setnice(current, nice);
4041 if (retval)
4042 return retval;
4043
4044 set_user_nice(current, nice);
4045 return 0;
4046}
4047
4048#endif
4049
4050/**
4051 * task_prio - return the priority value of a given task.
4052 * @p: the task in question.
4053 *
4054 * This is the priority value as seen by users in /proc.
4055 * RT tasks are offset by -200. Normal tasks are centered
4056 * around 0, value goes from -16 to +15.
4057 */
36c8b586 4058int task_prio(const struct task_struct *p)
1da177e4
LT
4059{
4060 return p->prio - MAX_RT_PRIO;
4061}
4062
4063/**
4064 * task_nice - return the nice value of a given task.
4065 * @p: the task in question.
4066 */
36c8b586 4067int task_nice(const struct task_struct *p)
1da177e4
LT
4068{
4069 return TASK_NICE(p);
4070}
1da177e4 4071EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4072
4073/**
4074 * idle_cpu - is a given cpu idle currently?
4075 * @cpu: the processor in question.
4076 */
4077int idle_cpu(int cpu)
4078{
4079 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4080}
4081
1da177e4
LT
4082/**
4083 * idle_task - return the idle task for a given cpu.
4084 * @cpu: the processor in question.
4085 */
36c8b586 4086struct task_struct *idle_task(int cpu)
1da177e4
LT
4087{
4088 return cpu_rq(cpu)->idle;
4089}
4090
4091/**
4092 * find_process_by_pid - find a process with a matching PID value.
4093 * @pid: the pid in question.
4094 */
a9957449 4095static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4096{
4097 return pid ? find_task_by_pid(pid) : current;
4098}
4099
4100/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4101static void
4102__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4103{
dd41f596 4104 BUG_ON(p->se.on_rq);
48f24c4d 4105
1da177e4 4106 p->policy = policy;
dd41f596
IM
4107 switch (p->policy) {
4108 case SCHED_NORMAL:
4109 case SCHED_BATCH:
4110 case SCHED_IDLE:
4111 p->sched_class = &fair_sched_class;
4112 break;
4113 case SCHED_FIFO:
4114 case SCHED_RR:
4115 p->sched_class = &rt_sched_class;
4116 break;
4117 }
4118
1da177e4 4119 p->rt_priority = prio;
b29739f9
IM
4120 p->normal_prio = normal_prio(p);
4121 /* we are holding p->pi_lock already */
4122 p->prio = rt_mutex_getprio(p);
2dd73a4f 4123 set_load_weight(p);
1da177e4
LT
4124}
4125
4126/**
72fd4a35 4127 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4128 * @p: the task in question.
4129 * @policy: new policy.
4130 * @param: structure containing the new RT priority.
5fe1d75f 4131 *
72fd4a35 4132 * NOTE that the task may be already dead.
1da177e4 4133 */
95cdf3b7
IM
4134int sched_setscheduler(struct task_struct *p, int policy,
4135 struct sched_param *param)
1da177e4 4136{
83b699ed 4137 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4138 unsigned long flags;
70b97a7f 4139 struct rq *rq;
1da177e4 4140
66e5393a
SR
4141 /* may grab non-irq protected spin_locks */
4142 BUG_ON(in_interrupt());
1da177e4
LT
4143recheck:
4144 /* double check policy once rq lock held */
4145 if (policy < 0)
4146 policy = oldpolicy = p->policy;
4147 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4148 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4149 policy != SCHED_IDLE)
b0a9499c 4150 return -EINVAL;
1da177e4
LT
4151 /*
4152 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4153 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4154 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4155 */
4156 if (param->sched_priority < 0 ||
95cdf3b7 4157 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4158 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4159 return -EINVAL;
e05606d3 4160 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4161 return -EINVAL;
4162
37e4ab3f
OC
4163 /*
4164 * Allow unprivileged RT tasks to decrease priority:
4165 */
4166 if (!capable(CAP_SYS_NICE)) {
e05606d3 4167 if (rt_policy(policy)) {
8dc3e909 4168 unsigned long rlim_rtprio;
8dc3e909
ON
4169
4170 if (!lock_task_sighand(p, &flags))
4171 return -ESRCH;
4172 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4173 unlock_task_sighand(p, &flags);
4174
4175 /* can't set/change the rt policy */
4176 if (policy != p->policy && !rlim_rtprio)
4177 return -EPERM;
4178
4179 /* can't increase priority */
4180 if (param->sched_priority > p->rt_priority &&
4181 param->sched_priority > rlim_rtprio)
4182 return -EPERM;
4183 }
dd41f596
IM
4184 /*
4185 * Like positive nice levels, dont allow tasks to
4186 * move out of SCHED_IDLE either:
4187 */
4188 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4189 return -EPERM;
5fe1d75f 4190
37e4ab3f
OC
4191 /* can't change other user's priorities */
4192 if ((current->euid != p->euid) &&
4193 (current->euid != p->uid))
4194 return -EPERM;
4195 }
1da177e4
LT
4196
4197 retval = security_task_setscheduler(p, policy, param);
4198 if (retval)
4199 return retval;
b29739f9
IM
4200 /*
4201 * make sure no PI-waiters arrive (or leave) while we are
4202 * changing the priority of the task:
4203 */
4204 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4205 /*
4206 * To be able to change p->policy safely, the apropriate
4207 * runqueue lock must be held.
4208 */
b29739f9 4209 rq = __task_rq_lock(p);
1da177e4
LT
4210 /* recheck policy now with rq lock held */
4211 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4212 policy = oldpolicy = -1;
b29739f9
IM
4213 __task_rq_unlock(rq);
4214 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4215 goto recheck;
4216 }
2daa3577 4217 update_rq_clock(rq);
dd41f596 4218 on_rq = p->se.on_rq;
83b699ed
SV
4219 running = task_running(rq, p);
4220 if (on_rq) {
2e1cb74a 4221 deactivate_task(rq, p, 0);
83b699ed
SV
4222 if (running)
4223 p->sched_class->put_prev_task(rq, p);
4224 }
f6b53205 4225
1da177e4 4226 oldprio = p->prio;
dd41f596 4227 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4228
dd41f596 4229 if (on_rq) {
83b699ed
SV
4230 if (running)
4231 p->sched_class->set_curr_task(rq);
dd41f596 4232 activate_task(rq, p, 0);
1da177e4
LT
4233 /*
4234 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4235 * our priority decreased, or if we are not currently running on
4236 * this runqueue and our priority is higher than the current's
1da177e4 4237 */
83b699ed 4238 if (running) {
d5f9f942
AM
4239 if (p->prio > oldprio)
4240 resched_task(rq->curr);
dd41f596
IM
4241 } else {
4242 check_preempt_curr(rq, p);
4243 }
1da177e4 4244 }
b29739f9
IM
4245 __task_rq_unlock(rq);
4246 spin_unlock_irqrestore(&p->pi_lock, flags);
4247
95e02ca9
TG
4248 rt_mutex_adjust_pi(p);
4249
1da177e4
LT
4250 return 0;
4251}
4252EXPORT_SYMBOL_GPL(sched_setscheduler);
4253
95cdf3b7
IM
4254static int
4255do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4256{
1da177e4
LT
4257 struct sched_param lparam;
4258 struct task_struct *p;
36c8b586 4259 int retval;
1da177e4
LT
4260
4261 if (!param || pid < 0)
4262 return -EINVAL;
4263 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4264 return -EFAULT;
5fe1d75f
ON
4265
4266 rcu_read_lock();
4267 retval = -ESRCH;
1da177e4 4268 p = find_process_by_pid(pid);
5fe1d75f
ON
4269 if (p != NULL)
4270 retval = sched_setscheduler(p, policy, &lparam);
4271 rcu_read_unlock();
36c8b586 4272
1da177e4
LT
4273 return retval;
4274}
4275
4276/**
4277 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4278 * @pid: the pid in question.
4279 * @policy: new policy.
4280 * @param: structure containing the new RT priority.
4281 */
4282asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4283 struct sched_param __user *param)
4284{
c21761f1
JB
4285 /* negative values for policy are not valid */
4286 if (policy < 0)
4287 return -EINVAL;
4288
1da177e4
LT
4289 return do_sched_setscheduler(pid, policy, param);
4290}
4291
4292/**
4293 * sys_sched_setparam - set/change the RT priority of a thread
4294 * @pid: the pid in question.
4295 * @param: structure containing the new RT priority.
4296 */
4297asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4298{
4299 return do_sched_setscheduler(pid, -1, param);
4300}
4301
4302/**
4303 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4304 * @pid: the pid in question.
4305 */
4306asmlinkage long sys_sched_getscheduler(pid_t pid)
4307{
36c8b586 4308 struct task_struct *p;
3a5c359a 4309 int retval;
1da177e4
LT
4310
4311 if (pid < 0)
3a5c359a 4312 return -EINVAL;
1da177e4
LT
4313
4314 retval = -ESRCH;
4315 read_lock(&tasklist_lock);
4316 p = find_process_by_pid(pid);
4317 if (p) {
4318 retval = security_task_getscheduler(p);
4319 if (!retval)
4320 retval = p->policy;
4321 }
4322 read_unlock(&tasklist_lock);
1da177e4
LT
4323 return retval;
4324}
4325
4326/**
4327 * sys_sched_getscheduler - get the RT priority of a thread
4328 * @pid: the pid in question.
4329 * @param: structure containing the RT priority.
4330 */
4331asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4332{
4333 struct sched_param lp;
36c8b586 4334 struct task_struct *p;
3a5c359a 4335 int retval;
1da177e4
LT
4336
4337 if (!param || pid < 0)
3a5c359a 4338 return -EINVAL;
1da177e4
LT
4339
4340 read_lock(&tasklist_lock);
4341 p = find_process_by_pid(pid);
4342 retval = -ESRCH;
4343 if (!p)
4344 goto out_unlock;
4345
4346 retval = security_task_getscheduler(p);
4347 if (retval)
4348 goto out_unlock;
4349
4350 lp.sched_priority = p->rt_priority;
4351 read_unlock(&tasklist_lock);
4352
4353 /*
4354 * This one might sleep, we cannot do it with a spinlock held ...
4355 */
4356 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4357
1da177e4
LT
4358 return retval;
4359
4360out_unlock:
4361 read_unlock(&tasklist_lock);
4362 return retval;
4363}
4364
4365long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4366{
1da177e4 4367 cpumask_t cpus_allowed;
36c8b586
IM
4368 struct task_struct *p;
4369 int retval;
1da177e4 4370
5be9361c 4371 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4372 read_lock(&tasklist_lock);
4373
4374 p = find_process_by_pid(pid);
4375 if (!p) {
4376 read_unlock(&tasklist_lock);
5be9361c 4377 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4378 return -ESRCH;
4379 }
4380
4381 /*
4382 * It is not safe to call set_cpus_allowed with the
4383 * tasklist_lock held. We will bump the task_struct's
4384 * usage count and then drop tasklist_lock.
4385 */
4386 get_task_struct(p);
4387 read_unlock(&tasklist_lock);
4388
4389 retval = -EPERM;
4390 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4391 !capable(CAP_SYS_NICE))
4392 goto out_unlock;
4393
e7834f8f
DQ
4394 retval = security_task_setscheduler(p, 0, NULL);
4395 if (retval)
4396 goto out_unlock;
4397
1da177e4
LT
4398 cpus_allowed = cpuset_cpus_allowed(p);
4399 cpus_and(new_mask, new_mask, cpus_allowed);
4400 retval = set_cpus_allowed(p, new_mask);
4401
4402out_unlock:
4403 put_task_struct(p);
5be9361c 4404 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4405 return retval;
4406}
4407
4408static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4409 cpumask_t *new_mask)
4410{
4411 if (len < sizeof(cpumask_t)) {
4412 memset(new_mask, 0, sizeof(cpumask_t));
4413 } else if (len > sizeof(cpumask_t)) {
4414 len = sizeof(cpumask_t);
4415 }
4416 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4417}
4418
4419/**
4420 * sys_sched_setaffinity - set the cpu affinity of a process
4421 * @pid: pid of the process
4422 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4423 * @user_mask_ptr: user-space pointer to the new cpu mask
4424 */
4425asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4426 unsigned long __user *user_mask_ptr)
4427{
4428 cpumask_t new_mask;
4429 int retval;
4430
4431 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4432 if (retval)
4433 return retval;
4434
4435 return sched_setaffinity(pid, new_mask);
4436}
4437
4438/*
4439 * Represents all cpu's present in the system
4440 * In systems capable of hotplug, this map could dynamically grow
4441 * as new cpu's are detected in the system via any platform specific
4442 * method, such as ACPI for e.g.
4443 */
4444
4cef0c61 4445cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4446EXPORT_SYMBOL(cpu_present_map);
4447
4448#ifndef CONFIG_SMP
4cef0c61 4449cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4450EXPORT_SYMBOL(cpu_online_map);
4451
4cef0c61 4452cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4453EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4454#endif
4455
4456long sched_getaffinity(pid_t pid, cpumask_t *mask)
4457{
36c8b586 4458 struct task_struct *p;
1da177e4 4459 int retval;
1da177e4 4460
5be9361c 4461 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4462 read_lock(&tasklist_lock);
4463
4464 retval = -ESRCH;
4465 p = find_process_by_pid(pid);
4466 if (!p)
4467 goto out_unlock;
4468
e7834f8f
DQ
4469 retval = security_task_getscheduler(p);
4470 if (retval)
4471 goto out_unlock;
4472
2f7016d9 4473 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4474
4475out_unlock:
4476 read_unlock(&tasklist_lock);
5be9361c 4477 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4478
9531b62f 4479 return retval;
1da177e4
LT
4480}
4481
4482/**
4483 * sys_sched_getaffinity - get the cpu affinity of a process
4484 * @pid: pid of the process
4485 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4486 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4487 */
4488asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4489 unsigned long __user *user_mask_ptr)
4490{
4491 int ret;
4492 cpumask_t mask;
4493
4494 if (len < sizeof(cpumask_t))
4495 return -EINVAL;
4496
4497 ret = sched_getaffinity(pid, &mask);
4498 if (ret < 0)
4499 return ret;
4500
4501 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4502 return -EFAULT;
4503
4504 return sizeof(cpumask_t);
4505}
4506
4507/**
4508 * sys_sched_yield - yield the current processor to other threads.
4509 *
dd41f596
IM
4510 * This function yields the current CPU to other tasks. If there are no
4511 * other threads running on this CPU then this function will return.
1da177e4
LT
4512 */
4513asmlinkage long sys_sched_yield(void)
4514{
70b97a7f 4515 struct rq *rq = this_rq_lock();
1da177e4 4516
2d72376b 4517 schedstat_inc(rq, yld_count);
4530d7ab 4518 current->sched_class->yield_task(rq);
1da177e4
LT
4519
4520 /*
4521 * Since we are going to call schedule() anyway, there's
4522 * no need to preempt or enable interrupts:
4523 */
4524 __release(rq->lock);
8a25d5de 4525 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4526 _raw_spin_unlock(&rq->lock);
4527 preempt_enable_no_resched();
4528
4529 schedule();
4530
4531 return 0;
4532}
4533
e7b38404 4534static void __cond_resched(void)
1da177e4 4535{
8e0a43d8
IM
4536#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4537 __might_sleep(__FILE__, __LINE__);
4538#endif
5bbcfd90
IM
4539 /*
4540 * The BKS might be reacquired before we have dropped
4541 * PREEMPT_ACTIVE, which could trigger a second
4542 * cond_resched() call.
4543 */
1da177e4
LT
4544 do {
4545 add_preempt_count(PREEMPT_ACTIVE);
4546 schedule();
4547 sub_preempt_count(PREEMPT_ACTIVE);
4548 } while (need_resched());
4549}
4550
4551int __sched cond_resched(void)
4552{
9414232f
IM
4553 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4554 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4555 __cond_resched();
4556 return 1;
4557 }
4558 return 0;
4559}
1da177e4
LT
4560EXPORT_SYMBOL(cond_resched);
4561
4562/*
4563 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4564 * call schedule, and on return reacquire the lock.
4565 *
4566 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4567 * operations here to prevent schedule() from being called twice (once via
4568 * spin_unlock(), once by hand).
4569 */
95cdf3b7 4570int cond_resched_lock(spinlock_t *lock)
1da177e4 4571{
6df3cecb
JK
4572 int ret = 0;
4573
1da177e4
LT
4574 if (need_lockbreak(lock)) {
4575 spin_unlock(lock);
4576 cpu_relax();
6df3cecb 4577 ret = 1;
1da177e4
LT
4578 spin_lock(lock);
4579 }
9414232f 4580 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4581 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4582 _raw_spin_unlock(lock);
4583 preempt_enable_no_resched();
4584 __cond_resched();
6df3cecb 4585 ret = 1;
1da177e4 4586 spin_lock(lock);
1da177e4 4587 }
6df3cecb 4588 return ret;
1da177e4 4589}
1da177e4
LT
4590EXPORT_SYMBOL(cond_resched_lock);
4591
4592int __sched cond_resched_softirq(void)
4593{
4594 BUG_ON(!in_softirq());
4595
9414232f 4596 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4597 local_bh_enable();
1da177e4
LT
4598 __cond_resched();
4599 local_bh_disable();
4600 return 1;
4601 }
4602 return 0;
4603}
1da177e4
LT
4604EXPORT_SYMBOL(cond_resched_softirq);
4605
1da177e4
LT
4606/**
4607 * yield - yield the current processor to other threads.
4608 *
72fd4a35 4609 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4610 * thread runnable and calls sys_sched_yield().
4611 */
4612void __sched yield(void)
4613{
4614 set_current_state(TASK_RUNNING);
4615 sys_sched_yield();
4616}
1da177e4
LT
4617EXPORT_SYMBOL(yield);
4618
4619/*
4620 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4621 * that process accounting knows that this is a task in IO wait state.
4622 *
4623 * But don't do that if it is a deliberate, throttling IO wait (this task
4624 * has set its backing_dev_info: the queue against which it should throttle)
4625 */
4626void __sched io_schedule(void)
4627{
70b97a7f 4628 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4629
0ff92245 4630 delayacct_blkio_start();
1da177e4
LT
4631 atomic_inc(&rq->nr_iowait);
4632 schedule();
4633 atomic_dec(&rq->nr_iowait);
0ff92245 4634 delayacct_blkio_end();
1da177e4 4635}
1da177e4
LT
4636EXPORT_SYMBOL(io_schedule);
4637
4638long __sched io_schedule_timeout(long timeout)
4639{
70b97a7f 4640 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4641 long ret;
4642
0ff92245 4643 delayacct_blkio_start();
1da177e4
LT
4644 atomic_inc(&rq->nr_iowait);
4645 ret = schedule_timeout(timeout);
4646 atomic_dec(&rq->nr_iowait);
0ff92245 4647 delayacct_blkio_end();
1da177e4
LT
4648 return ret;
4649}
4650
4651/**
4652 * sys_sched_get_priority_max - return maximum RT priority.
4653 * @policy: scheduling class.
4654 *
4655 * this syscall returns the maximum rt_priority that can be used
4656 * by a given scheduling class.
4657 */
4658asmlinkage long sys_sched_get_priority_max(int policy)
4659{
4660 int ret = -EINVAL;
4661
4662 switch (policy) {
4663 case SCHED_FIFO:
4664 case SCHED_RR:
4665 ret = MAX_USER_RT_PRIO-1;
4666 break;
4667 case SCHED_NORMAL:
b0a9499c 4668 case SCHED_BATCH:
dd41f596 4669 case SCHED_IDLE:
1da177e4
LT
4670 ret = 0;
4671 break;
4672 }
4673 return ret;
4674}
4675
4676/**
4677 * sys_sched_get_priority_min - return minimum RT priority.
4678 * @policy: scheduling class.
4679 *
4680 * this syscall returns the minimum rt_priority that can be used
4681 * by a given scheduling class.
4682 */
4683asmlinkage long sys_sched_get_priority_min(int policy)
4684{
4685 int ret = -EINVAL;
4686
4687 switch (policy) {
4688 case SCHED_FIFO:
4689 case SCHED_RR:
4690 ret = 1;
4691 break;
4692 case SCHED_NORMAL:
b0a9499c 4693 case SCHED_BATCH:
dd41f596 4694 case SCHED_IDLE:
1da177e4
LT
4695 ret = 0;
4696 }
4697 return ret;
4698}
4699
4700/**
4701 * sys_sched_rr_get_interval - return the default timeslice of a process.
4702 * @pid: pid of the process.
4703 * @interval: userspace pointer to the timeslice value.
4704 *
4705 * this syscall writes the default timeslice value of a given process
4706 * into the user-space timespec buffer. A value of '0' means infinity.
4707 */
4708asmlinkage
4709long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4710{
36c8b586 4711 struct task_struct *p;
a4ec24b4 4712 unsigned int time_slice;
3a5c359a 4713 int retval;
1da177e4 4714 struct timespec t;
1da177e4
LT
4715
4716 if (pid < 0)
3a5c359a 4717 return -EINVAL;
1da177e4
LT
4718
4719 retval = -ESRCH;
4720 read_lock(&tasklist_lock);
4721 p = find_process_by_pid(pid);
4722 if (!p)
4723 goto out_unlock;
4724
4725 retval = security_task_getscheduler(p);
4726 if (retval)
4727 goto out_unlock;
4728
a4ec24b4
DA
4729 if (p->policy == SCHED_FIFO)
4730 time_slice = 0;
4731 else if (p->policy == SCHED_RR)
4732 time_slice = DEF_TIMESLICE;
4733 else {
4734 struct sched_entity *se = &p->se;
4735 unsigned long flags;
4736 struct rq *rq;
4737
4738 rq = task_rq_lock(p, &flags);
4739 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4740 task_rq_unlock(rq, &flags);
4741 }
1da177e4 4742 read_unlock(&tasklist_lock);
a4ec24b4 4743 jiffies_to_timespec(time_slice, &t);
1da177e4 4744 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4745 return retval;
3a5c359a 4746
1da177e4
LT
4747out_unlock:
4748 read_unlock(&tasklist_lock);
4749 return retval;
4750}
4751
2ed6e34f 4752static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4753
4754static void show_task(struct task_struct *p)
1da177e4 4755{
1da177e4 4756 unsigned long free = 0;
36c8b586 4757 unsigned state;
1da177e4 4758
1da177e4 4759 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4760 printk("%-13.13s %c", p->comm,
4761 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4762#if BITS_PER_LONG == 32
1da177e4 4763 if (state == TASK_RUNNING)
4bd77321 4764 printk(" running ");
1da177e4 4765 else
4bd77321 4766 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4767#else
4768 if (state == TASK_RUNNING)
4bd77321 4769 printk(" running task ");
1da177e4
LT
4770 else
4771 printk(" %016lx ", thread_saved_pc(p));
4772#endif
4773#ifdef CONFIG_DEBUG_STACK_USAGE
4774 {
10ebffde 4775 unsigned long *n = end_of_stack(p);
1da177e4
LT
4776 while (!*n)
4777 n++;
10ebffde 4778 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4779 }
4780#endif
4bd77321 4781 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4782
4783 if (state != TASK_RUNNING)
4784 show_stack(p, NULL);
4785}
4786
e59e2ae2 4787void show_state_filter(unsigned long state_filter)
1da177e4 4788{
36c8b586 4789 struct task_struct *g, *p;
1da177e4 4790
4bd77321
IM
4791#if BITS_PER_LONG == 32
4792 printk(KERN_INFO
4793 " task PC stack pid father\n");
1da177e4 4794#else
4bd77321
IM
4795 printk(KERN_INFO
4796 " task PC stack pid father\n");
1da177e4
LT
4797#endif
4798 read_lock(&tasklist_lock);
4799 do_each_thread(g, p) {
4800 /*
4801 * reset the NMI-timeout, listing all files on a slow
4802 * console might take alot of time:
4803 */
4804 touch_nmi_watchdog();
39bc89fd 4805 if (!state_filter || (p->state & state_filter))
e59e2ae2 4806 show_task(p);
1da177e4
LT
4807 } while_each_thread(g, p);
4808
04c9167f
JF
4809 touch_all_softlockup_watchdogs();
4810
dd41f596
IM
4811#ifdef CONFIG_SCHED_DEBUG
4812 sysrq_sched_debug_show();
4813#endif
1da177e4 4814 read_unlock(&tasklist_lock);
e59e2ae2
IM
4815 /*
4816 * Only show locks if all tasks are dumped:
4817 */
4818 if (state_filter == -1)
4819 debug_show_all_locks();
1da177e4
LT
4820}
4821
1df21055
IM
4822void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4823{
dd41f596 4824 idle->sched_class = &idle_sched_class;
1df21055
IM
4825}
4826
f340c0d1
IM
4827/**
4828 * init_idle - set up an idle thread for a given CPU
4829 * @idle: task in question
4830 * @cpu: cpu the idle task belongs to
4831 *
4832 * NOTE: this function does not set the idle thread's NEED_RESCHED
4833 * flag, to make booting more robust.
4834 */
5c1e1767 4835void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4836{
70b97a7f 4837 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4838 unsigned long flags;
4839
dd41f596
IM
4840 __sched_fork(idle);
4841 idle->se.exec_start = sched_clock();
4842
b29739f9 4843 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4844 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4845 __set_task_cpu(idle, cpu);
1da177e4
LT
4846
4847 spin_lock_irqsave(&rq->lock, flags);
4848 rq->curr = rq->idle = idle;
4866cde0
NP
4849#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4850 idle->oncpu = 1;
4851#endif
1da177e4
LT
4852 spin_unlock_irqrestore(&rq->lock, flags);
4853
4854 /* Set the preempt count _outside_ the spinlocks! */
4855#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4856 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4857#else
a1261f54 4858 task_thread_info(idle)->preempt_count = 0;
1da177e4 4859#endif
dd41f596
IM
4860 /*
4861 * The idle tasks have their own, simple scheduling class:
4862 */
4863 idle->sched_class = &idle_sched_class;
1da177e4
LT
4864}
4865
4866/*
4867 * In a system that switches off the HZ timer nohz_cpu_mask
4868 * indicates which cpus entered this state. This is used
4869 * in the rcu update to wait only for active cpus. For system
4870 * which do not switch off the HZ timer nohz_cpu_mask should
4871 * always be CPU_MASK_NONE.
4872 */
4873cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4874
4875#ifdef CONFIG_SMP
4876/*
4877 * This is how migration works:
4878 *
70b97a7f 4879 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4880 * runqueue and wake up that CPU's migration thread.
4881 * 2) we down() the locked semaphore => thread blocks.
4882 * 3) migration thread wakes up (implicitly it forces the migrated
4883 * thread off the CPU)
4884 * 4) it gets the migration request and checks whether the migrated
4885 * task is still in the wrong runqueue.
4886 * 5) if it's in the wrong runqueue then the migration thread removes
4887 * it and puts it into the right queue.
4888 * 6) migration thread up()s the semaphore.
4889 * 7) we wake up and the migration is done.
4890 */
4891
4892/*
4893 * Change a given task's CPU affinity. Migrate the thread to a
4894 * proper CPU and schedule it away if the CPU it's executing on
4895 * is removed from the allowed bitmask.
4896 *
4897 * NOTE: the caller must have a valid reference to the task, the
4898 * task must not exit() & deallocate itself prematurely. The
4899 * call is not atomic; no spinlocks may be held.
4900 */
36c8b586 4901int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4902{
70b97a7f 4903 struct migration_req req;
1da177e4 4904 unsigned long flags;
70b97a7f 4905 struct rq *rq;
48f24c4d 4906 int ret = 0;
1da177e4
LT
4907
4908 rq = task_rq_lock(p, &flags);
4909 if (!cpus_intersects(new_mask, cpu_online_map)) {
4910 ret = -EINVAL;
4911 goto out;
4912 }
4913
4914 p->cpus_allowed = new_mask;
4915 /* Can the task run on the task's current CPU? If so, we're done */
4916 if (cpu_isset(task_cpu(p), new_mask))
4917 goto out;
4918
4919 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4920 /* Need help from migration thread: drop lock and wait. */
4921 task_rq_unlock(rq, &flags);
4922 wake_up_process(rq->migration_thread);
4923 wait_for_completion(&req.done);
4924 tlb_migrate_finish(p->mm);
4925 return 0;
4926 }
4927out:
4928 task_rq_unlock(rq, &flags);
48f24c4d 4929
1da177e4
LT
4930 return ret;
4931}
1da177e4
LT
4932EXPORT_SYMBOL_GPL(set_cpus_allowed);
4933
4934/*
4935 * Move (not current) task off this cpu, onto dest cpu. We're doing
4936 * this because either it can't run here any more (set_cpus_allowed()
4937 * away from this CPU, or CPU going down), or because we're
4938 * attempting to rebalance this task on exec (sched_exec).
4939 *
4940 * So we race with normal scheduler movements, but that's OK, as long
4941 * as the task is no longer on this CPU.
efc30814
KK
4942 *
4943 * Returns non-zero if task was successfully migrated.
1da177e4 4944 */
efc30814 4945static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4946{
70b97a7f 4947 struct rq *rq_dest, *rq_src;
dd41f596 4948 int ret = 0, on_rq;
1da177e4
LT
4949
4950 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4951 return ret;
1da177e4
LT
4952
4953 rq_src = cpu_rq(src_cpu);
4954 rq_dest = cpu_rq(dest_cpu);
4955
4956 double_rq_lock(rq_src, rq_dest);
4957 /* Already moved. */
4958 if (task_cpu(p) != src_cpu)
4959 goto out;
4960 /* Affinity changed (again). */
4961 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4962 goto out;
4963
dd41f596 4964 on_rq = p->se.on_rq;
6e82a3be 4965 if (on_rq)
2e1cb74a 4966 deactivate_task(rq_src, p, 0);
6e82a3be 4967
1da177e4 4968 set_task_cpu(p, dest_cpu);
dd41f596
IM
4969 if (on_rq) {
4970 activate_task(rq_dest, p, 0);
4971 check_preempt_curr(rq_dest, p);
1da177e4 4972 }
efc30814 4973 ret = 1;
1da177e4
LT
4974out:
4975 double_rq_unlock(rq_src, rq_dest);
efc30814 4976 return ret;
1da177e4
LT
4977}
4978
4979/*
4980 * migration_thread - this is a highprio system thread that performs
4981 * thread migration by bumping thread off CPU then 'pushing' onto
4982 * another runqueue.
4983 */
95cdf3b7 4984static int migration_thread(void *data)
1da177e4 4985{
1da177e4 4986 int cpu = (long)data;
70b97a7f 4987 struct rq *rq;
1da177e4
LT
4988
4989 rq = cpu_rq(cpu);
4990 BUG_ON(rq->migration_thread != current);
4991
4992 set_current_state(TASK_INTERRUPTIBLE);
4993 while (!kthread_should_stop()) {
70b97a7f 4994 struct migration_req *req;
1da177e4 4995 struct list_head *head;
1da177e4 4996
1da177e4
LT
4997 spin_lock_irq(&rq->lock);
4998
4999 if (cpu_is_offline(cpu)) {
5000 spin_unlock_irq(&rq->lock);
5001 goto wait_to_die;
5002 }
5003
5004 if (rq->active_balance) {
5005 active_load_balance(rq, cpu);
5006 rq->active_balance = 0;
5007 }
5008
5009 head = &rq->migration_queue;
5010
5011 if (list_empty(head)) {
5012 spin_unlock_irq(&rq->lock);
5013 schedule();
5014 set_current_state(TASK_INTERRUPTIBLE);
5015 continue;
5016 }
70b97a7f 5017 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5018 list_del_init(head->next);
5019
674311d5
NP
5020 spin_unlock(&rq->lock);
5021 __migrate_task(req->task, cpu, req->dest_cpu);
5022 local_irq_enable();
1da177e4
LT
5023
5024 complete(&req->done);
5025 }
5026 __set_current_state(TASK_RUNNING);
5027 return 0;
5028
5029wait_to_die:
5030 /* Wait for kthread_stop */
5031 set_current_state(TASK_INTERRUPTIBLE);
5032 while (!kthread_should_stop()) {
5033 schedule();
5034 set_current_state(TASK_INTERRUPTIBLE);
5035 }
5036 __set_current_state(TASK_RUNNING);
5037 return 0;
5038}
5039
5040#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5041/*
5042 * Figure out where task on dead CPU should go, use force if neccessary.
5043 * NOTE: interrupts should be disabled by the caller
5044 */
48f24c4d 5045static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5046{
efc30814 5047 unsigned long flags;
1da177e4 5048 cpumask_t mask;
70b97a7f
IM
5049 struct rq *rq;
5050 int dest_cpu;
1da177e4 5051
3a5c359a
AK
5052 do {
5053 /* On same node? */
5054 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5055 cpus_and(mask, mask, p->cpus_allowed);
5056 dest_cpu = any_online_cpu(mask);
5057
5058 /* On any allowed CPU? */
5059 if (dest_cpu == NR_CPUS)
5060 dest_cpu = any_online_cpu(p->cpus_allowed);
5061
5062 /* No more Mr. Nice Guy. */
5063 if (dest_cpu == NR_CPUS) {
5064 rq = task_rq_lock(p, &flags);
5065 cpus_setall(p->cpus_allowed);
5066 dest_cpu = any_online_cpu(p->cpus_allowed);
5067 task_rq_unlock(rq, &flags);
1da177e4 5068
3a5c359a
AK
5069 /*
5070 * Don't tell them about moving exiting tasks or
5071 * kernel threads (both mm NULL), since they never
5072 * leave kernel.
5073 */
5074 if (p->mm && printk_ratelimit())
5075 printk(KERN_INFO "process %d (%s) no "
5076 "longer affine to cpu%d\n",
5077 p->pid, p->comm, dead_cpu);
5078 }
5079 } while (!__migrate_task(p, dead_cpu, dest_cpu));
1da177e4
LT
5080}
5081
5082/*
5083 * While a dead CPU has no uninterruptible tasks queued at this point,
5084 * it might still have a nonzero ->nr_uninterruptible counter, because
5085 * for performance reasons the counter is not stricly tracking tasks to
5086 * their home CPUs. So we just add the counter to another CPU's counter,
5087 * to keep the global sum constant after CPU-down:
5088 */
70b97a7f 5089static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5090{
70b97a7f 5091 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5092 unsigned long flags;
5093
5094 local_irq_save(flags);
5095 double_rq_lock(rq_src, rq_dest);
5096 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5097 rq_src->nr_uninterruptible = 0;
5098 double_rq_unlock(rq_src, rq_dest);
5099 local_irq_restore(flags);
5100}
5101
5102/* Run through task list and migrate tasks from the dead cpu. */
5103static void migrate_live_tasks(int src_cpu)
5104{
48f24c4d 5105 struct task_struct *p, *t;
1da177e4
LT
5106
5107 write_lock_irq(&tasklist_lock);
5108
48f24c4d
IM
5109 do_each_thread(t, p) {
5110 if (p == current)
1da177e4
LT
5111 continue;
5112
48f24c4d
IM
5113 if (task_cpu(p) == src_cpu)
5114 move_task_off_dead_cpu(src_cpu, p);
5115 } while_each_thread(t, p);
1da177e4
LT
5116
5117 write_unlock_irq(&tasklist_lock);
5118}
5119
a9957449
AD
5120/*
5121 * activate_idle_task - move idle task to the _front_ of runqueue.
5122 */
5123static void activate_idle_task(struct task_struct *p, struct rq *rq)
5124{
5125 update_rq_clock(rq);
5126
5127 if (p->state == TASK_UNINTERRUPTIBLE)
5128 rq->nr_uninterruptible--;
5129
5130 enqueue_task(rq, p, 0);
5131 inc_nr_running(p, rq);
5132}
5133
dd41f596
IM
5134/*
5135 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5136 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5137 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5138 */
5139void sched_idle_next(void)
5140{
48f24c4d 5141 int this_cpu = smp_processor_id();
70b97a7f 5142 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5143 struct task_struct *p = rq->idle;
5144 unsigned long flags;
5145
5146 /* cpu has to be offline */
48f24c4d 5147 BUG_ON(cpu_online(this_cpu));
1da177e4 5148
48f24c4d
IM
5149 /*
5150 * Strictly not necessary since rest of the CPUs are stopped by now
5151 * and interrupts disabled on the current cpu.
1da177e4
LT
5152 */
5153 spin_lock_irqsave(&rq->lock, flags);
5154
dd41f596 5155 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5156
5157 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5158 activate_idle_task(p, rq);
1da177e4
LT
5159
5160 spin_unlock_irqrestore(&rq->lock, flags);
5161}
5162
48f24c4d
IM
5163/*
5164 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5165 * offline.
5166 */
5167void idle_task_exit(void)
5168{
5169 struct mm_struct *mm = current->active_mm;
5170
5171 BUG_ON(cpu_online(smp_processor_id()));
5172
5173 if (mm != &init_mm)
5174 switch_mm(mm, &init_mm, current);
5175 mmdrop(mm);
5176}
5177
054b9108 5178/* called under rq->lock with disabled interrupts */
36c8b586 5179static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5180{
70b97a7f 5181 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5182
5183 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5184 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5185
5186 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5187 BUG_ON(p->state == TASK_DEAD);
1da177e4 5188
48f24c4d 5189 get_task_struct(p);
1da177e4
LT
5190
5191 /*
5192 * Drop lock around migration; if someone else moves it,
5193 * that's OK. No task can be added to this CPU, so iteration is
5194 * fine.
054b9108 5195 * NOTE: interrupts should be left disabled --dev@
1da177e4 5196 */
054b9108 5197 spin_unlock(&rq->lock);
48f24c4d 5198 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5199 spin_lock(&rq->lock);
1da177e4 5200
48f24c4d 5201 put_task_struct(p);
1da177e4
LT
5202}
5203
5204/* release_task() removes task from tasklist, so we won't find dead tasks. */
5205static void migrate_dead_tasks(unsigned int dead_cpu)
5206{
70b97a7f 5207 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5208 struct task_struct *next;
48f24c4d 5209
dd41f596
IM
5210 for ( ; ; ) {
5211 if (!rq->nr_running)
5212 break;
a8e504d2 5213 update_rq_clock(rq);
ff95f3df 5214 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5215 if (!next)
5216 break;
5217 migrate_dead(dead_cpu, next);
e692ab53 5218
1da177e4
LT
5219 }
5220}
5221#endif /* CONFIG_HOTPLUG_CPU */
5222
e692ab53
NP
5223#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5224
5225static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5226 {
5227 .procname = "sched_domain",
c57baf1e 5228 .mode = 0555,
e0361851 5229 },
e692ab53
NP
5230 {0,},
5231};
5232
5233static struct ctl_table sd_ctl_root[] = {
e0361851 5234 {
c57baf1e 5235 .ctl_name = CTL_KERN,
e0361851 5236 .procname = "kernel",
c57baf1e 5237 .mode = 0555,
e0361851
AD
5238 .child = sd_ctl_dir,
5239 },
e692ab53
NP
5240 {0,},
5241};
5242
5243static struct ctl_table *sd_alloc_ctl_entry(int n)
5244{
5245 struct ctl_table *entry =
5246 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5247
5248 BUG_ON(!entry);
5249 memset(entry, 0, n * sizeof(struct ctl_table));
5250
5251 return entry;
5252}
5253
5254static void
e0361851 5255set_table_entry(struct ctl_table *entry,
e692ab53
NP
5256 const char *procname, void *data, int maxlen,
5257 mode_t mode, proc_handler *proc_handler)
5258{
e692ab53
NP
5259 entry->procname = procname;
5260 entry->data = data;
5261 entry->maxlen = maxlen;
5262 entry->mode = mode;
5263 entry->proc_handler = proc_handler;
5264}
5265
5266static struct ctl_table *
5267sd_alloc_ctl_domain_table(struct sched_domain *sd)
5268{
ace8b3d6 5269 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5270
e0361851 5271 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5272 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5273 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5274 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5275 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5276 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5277 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5278 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5279 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5280 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5281 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5282 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5283 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5284 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5285 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5286 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5287 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5288 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5289 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5290 &sd->cache_nice_tries,
5291 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5292 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53
NP
5293 sizeof(int), 0644, proc_dointvec_minmax);
5294
5295 return table;
5296}
5297
5298static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5299{
5300 struct ctl_table *entry, *table;
5301 struct sched_domain *sd;
5302 int domain_num = 0, i;
5303 char buf[32];
5304
5305 for_each_domain(cpu, sd)
5306 domain_num++;
5307 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5308
5309 i = 0;
5310 for_each_domain(cpu, sd) {
5311 snprintf(buf, 32, "domain%d", i);
e692ab53 5312 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5313 entry->mode = 0555;
e692ab53
NP
5314 entry->child = sd_alloc_ctl_domain_table(sd);
5315 entry++;
5316 i++;
5317 }
5318 return table;
5319}
5320
5321static struct ctl_table_header *sd_sysctl_header;
5322static void init_sched_domain_sysctl(void)
5323{
5324 int i, cpu_num = num_online_cpus();
5325 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5326 char buf[32];
5327
5328 sd_ctl_dir[0].child = entry;
5329
5330 for (i = 0; i < cpu_num; i++, entry++) {
5331 snprintf(buf, 32, "cpu%d", i);
e692ab53 5332 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5333 entry->mode = 0555;
e692ab53
NP
5334 entry->child = sd_alloc_ctl_cpu_table(i);
5335 }
5336 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5337}
5338#else
5339static void init_sched_domain_sysctl(void)
5340{
5341}
5342#endif
5343
1da177e4
LT
5344/*
5345 * migration_call - callback that gets triggered when a CPU is added.
5346 * Here we can start up the necessary migration thread for the new CPU.
5347 */
48f24c4d
IM
5348static int __cpuinit
5349migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5350{
1da177e4 5351 struct task_struct *p;
48f24c4d 5352 int cpu = (long)hcpu;
1da177e4 5353 unsigned long flags;
70b97a7f 5354 struct rq *rq;
1da177e4
LT
5355
5356 switch (action) {
5be9361c
GS
5357 case CPU_LOCK_ACQUIRE:
5358 mutex_lock(&sched_hotcpu_mutex);
5359 break;
5360
1da177e4 5361 case CPU_UP_PREPARE:
8bb78442 5362 case CPU_UP_PREPARE_FROZEN:
dd41f596 5363 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5364 if (IS_ERR(p))
5365 return NOTIFY_BAD;
1da177e4
LT
5366 kthread_bind(p, cpu);
5367 /* Must be high prio: stop_machine expects to yield to it. */
5368 rq = task_rq_lock(p, &flags);
dd41f596 5369 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5370 task_rq_unlock(rq, &flags);
5371 cpu_rq(cpu)->migration_thread = p;
5372 break;
48f24c4d 5373
1da177e4 5374 case CPU_ONLINE:
8bb78442 5375 case CPU_ONLINE_FROZEN:
1da177e4
LT
5376 /* Strictly unneccessary, as first user will wake it. */
5377 wake_up_process(cpu_rq(cpu)->migration_thread);
5378 break;
48f24c4d 5379
1da177e4
LT
5380#ifdef CONFIG_HOTPLUG_CPU
5381 case CPU_UP_CANCELED:
8bb78442 5382 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5383 if (!cpu_rq(cpu)->migration_thread)
5384 break;
1da177e4 5385 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5386 kthread_bind(cpu_rq(cpu)->migration_thread,
5387 any_online_cpu(cpu_online_map));
1da177e4
LT
5388 kthread_stop(cpu_rq(cpu)->migration_thread);
5389 cpu_rq(cpu)->migration_thread = NULL;
5390 break;
48f24c4d 5391
1da177e4 5392 case CPU_DEAD:
8bb78442 5393 case CPU_DEAD_FROZEN:
1da177e4
LT
5394 migrate_live_tasks(cpu);
5395 rq = cpu_rq(cpu);
5396 kthread_stop(rq->migration_thread);
5397 rq->migration_thread = NULL;
5398 /* Idle task back to normal (off runqueue, low prio) */
5399 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5400 update_rq_clock(rq);
2e1cb74a 5401 deactivate_task(rq, rq->idle, 0);
1da177e4 5402 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5403 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5404 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5405 migrate_dead_tasks(cpu);
5406 task_rq_unlock(rq, &flags);
5407 migrate_nr_uninterruptible(rq);
5408 BUG_ON(rq->nr_running != 0);
5409
5410 /* No need to migrate the tasks: it was best-effort if
5be9361c 5411 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5412 * the requestors. */
5413 spin_lock_irq(&rq->lock);
5414 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5415 struct migration_req *req;
5416
1da177e4 5417 req = list_entry(rq->migration_queue.next,
70b97a7f 5418 struct migration_req, list);
1da177e4
LT
5419 list_del_init(&req->list);
5420 complete(&req->done);
5421 }
5422 spin_unlock_irq(&rq->lock);
5423 break;
5424#endif
5be9361c
GS
5425 case CPU_LOCK_RELEASE:
5426 mutex_unlock(&sched_hotcpu_mutex);
5427 break;
1da177e4
LT
5428 }
5429 return NOTIFY_OK;
5430}
5431
5432/* Register at highest priority so that task migration (migrate_all_tasks)
5433 * happens before everything else.
5434 */
26c2143b 5435static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5436 .notifier_call = migration_call,
5437 .priority = 10
5438};
5439
5440int __init migration_init(void)
5441{
5442 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5443 int err;
48f24c4d
IM
5444
5445 /* Start one for the boot CPU: */
07dccf33
AM
5446 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5447 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5448 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5449 register_cpu_notifier(&migration_notifier);
48f24c4d 5450
1da177e4
LT
5451 return 0;
5452}
5453#endif
5454
5455#ifdef CONFIG_SMP
476f3534
CL
5456
5457/* Number of possible processor ids */
5458int nr_cpu_ids __read_mostly = NR_CPUS;
5459EXPORT_SYMBOL(nr_cpu_ids);
5460
3e9830dc 5461#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5462static void sched_domain_debug(struct sched_domain *sd, int cpu)
5463{
5464 int level = 0;
5465
41c7ce9a
NP
5466 if (!sd) {
5467 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5468 return;
5469 }
5470
1da177e4
LT
5471 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5472
5473 do {
5474 int i;
5475 char str[NR_CPUS];
5476 struct sched_group *group = sd->groups;
5477 cpumask_t groupmask;
5478
5479 cpumask_scnprintf(str, NR_CPUS, sd->span);
5480 cpus_clear(groupmask);
5481
5482 printk(KERN_DEBUG);
5483 for (i = 0; i < level + 1; i++)
5484 printk(" ");
5485 printk("domain %d: ", level);
5486
5487 if (!(sd->flags & SD_LOAD_BALANCE)) {
5488 printk("does not load-balance\n");
5489 if (sd->parent)
33859f7f
MOS
5490 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5491 " has parent");
1da177e4
LT
5492 break;
5493 }
5494
5495 printk("span %s\n", str);
5496
5497 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5498 printk(KERN_ERR "ERROR: domain->span does not contain "
5499 "CPU%d\n", cpu);
1da177e4 5500 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5501 printk(KERN_ERR "ERROR: domain->groups does not contain"
5502 " CPU%d\n", cpu);
1da177e4
LT
5503
5504 printk(KERN_DEBUG);
5505 for (i = 0; i < level + 2; i++)
5506 printk(" ");
5507 printk("groups:");
5508 do {
5509 if (!group) {
5510 printk("\n");
5511 printk(KERN_ERR "ERROR: group is NULL\n");
5512 break;
5513 }
5514
5517d86b 5515 if (!group->__cpu_power) {
1da177e4 5516 printk("\n");
33859f7f
MOS
5517 printk(KERN_ERR "ERROR: domain->cpu_power not "
5518 "set\n");
26797a34 5519 break;
1da177e4
LT
5520 }
5521
5522 if (!cpus_weight(group->cpumask)) {
5523 printk("\n");
5524 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5525 break;
1da177e4
LT
5526 }
5527
5528 if (cpus_intersects(groupmask, group->cpumask)) {
5529 printk("\n");
5530 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5531 break;
1da177e4
LT
5532 }
5533
5534 cpus_or(groupmask, groupmask, group->cpumask);
5535
5536 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5537 printk(" %s", str);
5538
5539 group = group->next;
5540 } while (group != sd->groups);
5541 printk("\n");
5542
5543 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5544 printk(KERN_ERR "ERROR: groups don't span "
5545 "domain->span\n");
1da177e4
LT
5546
5547 level++;
5548 sd = sd->parent;
33859f7f
MOS
5549 if (!sd)
5550 continue;
1da177e4 5551
33859f7f
MOS
5552 if (!cpus_subset(groupmask, sd->span))
5553 printk(KERN_ERR "ERROR: parent span is not a superset "
5554 "of domain->span\n");
1da177e4
LT
5555
5556 } while (sd);
5557}
5558#else
48f24c4d 5559# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5560#endif
5561
1a20ff27 5562static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5563{
5564 if (cpus_weight(sd->span) == 1)
5565 return 1;
5566
5567 /* Following flags need at least 2 groups */
5568 if (sd->flags & (SD_LOAD_BALANCE |
5569 SD_BALANCE_NEWIDLE |
5570 SD_BALANCE_FORK |
89c4710e
SS
5571 SD_BALANCE_EXEC |
5572 SD_SHARE_CPUPOWER |
5573 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5574 if (sd->groups != sd->groups->next)
5575 return 0;
5576 }
5577
5578 /* Following flags don't use groups */
5579 if (sd->flags & (SD_WAKE_IDLE |
5580 SD_WAKE_AFFINE |
5581 SD_WAKE_BALANCE))
5582 return 0;
5583
5584 return 1;
5585}
5586
48f24c4d
IM
5587static int
5588sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5589{
5590 unsigned long cflags = sd->flags, pflags = parent->flags;
5591
5592 if (sd_degenerate(parent))
5593 return 1;
5594
5595 if (!cpus_equal(sd->span, parent->span))
5596 return 0;
5597
5598 /* Does parent contain flags not in child? */
5599 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5600 if (cflags & SD_WAKE_AFFINE)
5601 pflags &= ~SD_WAKE_BALANCE;
5602 /* Flags needing groups don't count if only 1 group in parent */
5603 if (parent->groups == parent->groups->next) {
5604 pflags &= ~(SD_LOAD_BALANCE |
5605 SD_BALANCE_NEWIDLE |
5606 SD_BALANCE_FORK |
89c4710e
SS
5607 SD_BALANCE_EXEC |
5608 SD_SHARE_CPUPOWER |
5609 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5610 }
5611 if (~cflags & pflags)
5612 return 0;
5613
5614 return 1;
5615}
5616
1da177e4
LT
5617/*
5618 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5619 * hold the hotplug lock.
5620 */
9c1cfda2 5621static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5622{
70b97a7f 5623 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5624 struct sched_domain *tmp;
5625
5626 /* Remove the sched domains which do not contribute to scheduling. */
5627 for (tmp = sd; tmp; tmp = tmp->parent) {
5628 struct sched_domain *parent = tmp->parent;
5629 if (!parent)
5630 break;
1a848870 5631 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5632 tmp->parent = parent->parent;
1a848870
SS
5633 if (parent->parent)
5634 parent->parent->child = tmp;
5635 }
245af2c7
SS
5636 }
5637
1a848870 5638 if (sd && sd_degenerate(sd)) {
245af2c7 5639 sd = sd->parent;
1a848870
SS
5640 if (sd)
5641 sd->child = NULL;
5642 }
1da177e4
LT
5643
5644 sched_domain_debug(sd, cpu);
5645
674311d5 5646 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5647}
5648
5649/* cpus with isolated domains */
67af63a6 5650static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5651
5652/* Setup the mask of cpus configured for isolated domains */
5653static int __init isolated_cpu_setup(char *str)
5654{
5655 int ints[NR_CPUS], i;
5656
5657 str = get_options(str, ARRAY_SIZE(ints), ints);
5658 cpus_clear(cpu_isolated_map);
5659 for (i = 1; i <= ints[0]; i++)
5660 if (ints[i] < NR_CPUS)
5661 cpu_set(ints[i], cpu_isolated_map);
5662 return 1;
5663}
5664
8927f494 5665__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5666
5667/*
6711cab4
SS
5668 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5669 * to a function which identifies what group(along with sched group) a CPU
5670 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5671 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5672 *
5673 * init_sched_build_groups will build a circular linked list of the groups
5674 * covered by the given span, and will set each group's ->cpumask correctly,
5675 * and ->cpu_power to 0.
5676 */
a616058b 5677static void
6711cab4
SS
5678init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5679 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5680 struct sched_group **sg))
1da177e4
LT
5681{
5682 struct sched_group *first = NULL, *last = NULL;
5683 cpumask_t covered = CPU_MASK_NONE;
5684 int i;
5685
5686 for_each_cpu_mask(i, span) {
6711cab4
SS
5687 struct sched_group *sg;
5688 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5689 int j;
5690
5691 if (cpu_isset(i, covered))
5692 continue;
5693
5694 sg->cpumask = CPU_MASK_NONE;
5517d86b 5695 sg->__cpu_power = 0;
1da177e4
LT
5696
5697 for_each_cpu_mask(j, span) {
6711cab4 5698 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5699 continue;
5700
5701 cpu_set(j, covered);
5702 cpu_set(j, sg->cpumask);
5703 }
5704 if (!first)
5705 first = sg;
5706 if (last)
5707 last->next = sg;
5708 last = sg;
5709 }
5710 last->next = first;
5711}
5712
9c1cfda2 5713#define SD_NODES_PER_DOMAIN 16
1da177e4 5714
9c1cfda2 5715#ifdef CONFIG_NUMA
198e2f18 5716
9c1cfda2
JH
5717/**
5718 * find_next_best_node - find the next node to include in a sched_domain
5719 * @node: node whose sched_domain we're building
5720 * @used_nodes: nodes already in the sched_domain
5721 *
5722 * Find the next node to include in a given scheduling domain. Simply
5723 * finds the closest node not already in the @used_nodes map.
5724 *
5725 * Should use nodemask_t.
5726 */
5727static int find_next_best_node(int node, unsigned long *used_nodes)
5728{
5729 int i, n, val, min_val, best_node = 0;
5730
5731 min_val = INT_MAX;
5732
5733 for (i = 0; i < MAX_NUMNODES; i++) {
5734 /* Start at @node */
5735 n = (node + i) % MAX_NUMNODES;
5736
5737 if (!nr_cpus_node(n))
5738 continue;
5739
5740 /* Skip already used nodes */
5741 if (test_bit(n, used_nodes))
5742 continue;
5743
5744 /* Simple min distance search */
5745 val = node_distance(node, n);
5746
5747 if (val < min_val) {
5748 min_val = val;
5749 best_node = n;
5750 }
5751 }
5752
5753 set_bit(best_node, used_nodes);
5754 return best_node;
5755}
5756
5757/**
5758 * sched_domain_node_span - get a cpumask for a node's sched_domain
5759 * @node: node whose cpumask we're constructing
5760 * @size: number of nodes to include in this span
5761 *
5762 * Given a node, construct a good cpumask for its sched_domain to span. It
5763 * should be one that prevents unnecessary balancing, but also spreads tasks
5764 * out optimally.
5765 */
5766static cpumask_t sched_domain_node_span(int node)
5767{
9c1cfda2 5768 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5769 cpumask_t span, nodemask;
5770 int i;
9c1cfda2
JH
5771
5772 cpus_clear(span);
5773 bitmap_zero(used_nodes, MAX_NUMNODES);
5774
5775 nodemask = node_to_cpumask(node);
5776 cpus_or(span, span, nodemask);
5777 set_bit(node, used_nodes);
5778
5779 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5780 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5781
9c1cfda2
JH
5782 nodemask = node_to_cpumask(next_node);
5783 cpus_or(span, span, nodemask);
5784 }
5785
5786 return span;
5787}
5788#endif
5789
5c45bf27 5790int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5791
9c1cfda2 5792/*
48f24c4d 5793 * SMT sched-domains:
9c1cfda2 5794 */
1da177e4
LT
5795#ifdef CONFIG_SCHED_SMT
5796static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5797static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5798
6711cab4
SS
5799static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5800 struct sched_group **sg)
1da177e4 5801{
6711cab4
SS
5802 if (sg)
5803 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5804 return cpu;
5805}
5806#endif
5807
48f24c4d
IM
5808/*
5809 * multi-core sched-domains:
5810 */
1e9f28fa
SS
5811#ifdef CONFIG_SCHED_MC
5812static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5813static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5814#endif
5815
5816#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5817static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5818 struct sched_group **sg)
1e9f28fa 5819{
6711cab4 5820 int group;
a616058b
SS
5821 cpumask_t mask = cpu_sibling_map[cpu];
5822 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5823 group = first_cpu(mask);
5824 if (sg)
5825 *sg = &per_cpu(sched_group_core, group);
5826 return group;
1e9f28fa
SS
5827}
5828#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5829static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5830 struct sched_group **sg)
1e9f28fa 5831{
6711cab4
SS
5832 if (sg)
5833 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5834 return cpu;
5835}
5836#endif
5837
1da177e4 5838static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5839static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5840
6711cab4
SS
5841static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5842 struct sched_group **sg)
1da177e4 5843{
6711cab4 5844 int group;
48f24c4d 5845#ifdef CONFIG_SCHED_MC
1e9f28fa 5846 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5847 cpus_and(mask, mask, *cpu_map);
6711cab4 5848 group = first_cpu(mask);
1e9f28fa 5849#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5850 cpumask_t mask = cpu_sibling_map[cpu];
5851 cpus_and(mask, mask, *cpu_map);
6711cab4 5852 group = first_cpu(mask);
1da177e4 5853#else
6711cab4 5854 group = cpu;
1da177e4 5855#endif
6711cab4
SS
5856 if (sg)
5857 *sg = &per_cpu(sched_group_phys, group);
5858 return group;
1da177e4
LT
5859}
5860
5861#ifdef CONFIG_NUMA
1da177e4 5862/*
9c1cfda2
JH
5863 * The init_sched_build_groups can't handle what we want to do with node
5864 * groups, so roll our own. Now each node has its own list of groups which
5865 * gets dynamically allocated.
1da177e4 5866 */
9c1cfda2 5867static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5868static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5869
9c1cfda2 5870static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5871static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5872
6711cab4
SS
5873static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5874 struct sched_group **sg)
9c1cfda2 5875{
6711cab4
SS
5876 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5877 int group;
5878
5879 cpus_and(nodemask, nodemask, *cpu_map);
5880 group = first_cpu(nodemask);
5881
5882 if (sg)
5883 *sg = &per_cpu(sched_group_allnodes, group);
5884 return group;
1da177e4 5885}
6711cab4 5886
08069033
SS
5887static void init_numa_sched_groups_power(struct sched_group *group_head)
5888{
5889 struct sched_group *sg = group_head;
5890 int j;
5891
5892 if (!sg)
5893 return;
3a5c359a
AK
5894 do {
5895 for_each_cpu_mask(j, sg->cpumask) {
5896 struct sched_domain *sd;
08069033 5897
3a5c359a
AK
5898 sd = &per_cpu(phys_domains, j);
5899 if (j != first_cpu(sd->groups->cpumask)) {
5900 /*
5901 * Only add "power" once for each
5902 * physical package.
5903 */
5904 continue;
5905 }
08069033 5906
3a5c359a
AK
5907 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5908 }
5909 sg = sg->next;
5910 } while (sg != group_head);
08069033 5911}
1da177e4
LT
5912#endif
5913
a616058b 5914#ifdef CONFIG_NUMA
51888ca2
SV
5915/* Free memory allocated for various sched_group structures */
5916static void free_sched_groups(const cpumask_t *cpu_map)
5917{
a616058b 5918 int cpu, i;
51888ca2
SV
5919
5920 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5921 struct sched_group **sched_group_nodes
5922 = sched_group_nodes_bycpu[cpu];
5923
51888ca2
SV
5924 if (!sched_group_nodes)
5925 continue;
5926
5927 for (i = 0; i < MAX_NUMNODES; i++) {
5928 cpumask_t nodemask = node_to_cpumask(i);
5929 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5930
5931 cpus_and(nodemask, nodemask, *cpu_map);
5932 if (cpus_empty(nodemask))
5933 continue;
5934
5935 if (sg == NULL)
5936 continue;
5937 sg = sg->next;
5938next_sg:
5939 oldsg = sg;
5940 sg = sg->next;
5941 kfree(oldsg);
5942 if (oldsg != sched_group_nodes[i])
5943 goto next_sg;
5944 }
5945 kfree(sched_group_nodes);
5946 sched_group_nodes_bycpu[cpu] = NULL;
5947 }
51888ca2 5948}
a616058b
SS
5949#else
5950static void free_sched_groups(const cpumask_t *cpu_map)
5951{
5952}
5953#endif
51888ca2 5954
89c4710e
SS
5955/*
5956 * Initialize sched groups cpu_power.
5957 *
5958 * cpu_power indicates the capacity of sched group, which is used while
5959 * distributing the load between different sched groups in a sched domain.
5960 * Typically cpu_power for all the groups in a sched domain will be same unless
5961 * there are asymmetries in the topology. If there are asymmetries, group
5962 * having more cpu_power will pickup more load compared to the group having
5963 * less cpu_power.
5964 *
5965 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5966 * the maximum number of tasks a group can handle in the presence of other idle
5967 * or lightly loaded groups in the same sched domain.
5968 */
5969static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5970{
5971 struct sched_domain *child;
5972 struct sched_group *group;
5973
5974 WARN_ON(!sd || !sd->groups);
5975
5976 if (cpu != first_cpu(sd->groups->cpumask))
5977 return;
5978
5979 child = sd->child;
5980
5517d86b
ED
5981 sd->groups->__cpu_power = 0;
5982
89c4710e
SS
5983 /*
5984 * For perf policy, if the groups in child domain share resources
5985 * (for example cores sharing some portions of the cache hierarchy
5986 * or SMT), then set this domain groups cpu_power such that each group
5987 * can handle only one task, when there are other idle groups in the
5988 * same sched domain.
5989 */
5990 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5991 (child->flags &
5992 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5993 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5994 return;
5995 }
5996
89c4710e
SS
5997 /*
5998 * add cpu_power of each child group to this groups cpu_power
5999 */
6000 group = child->groups;
6001 do {
5517d86b 6002 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6003 group = group->next;
6004 } while (group != child->groups);
6005}
6006
1da177e4 6007/*
1a20ff27
DG
6008 * Build sched domains for a given set of cpus and attach the sched domains
6009 * to the individual cpus
1da177e4 6010 */
51888ca2 6011static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6012{
6013 int i;
d1b55138
JH
6014#ifdef CONFIG_NUMA
6015 struct sched_group **sched_group_nodes = NULL;
6711cab4 6016 int sd_allnodes = 0;
d1b55138
JH
6017
6018 /*
6019 * Allocate the per-node list of sched groups
6020 */
dd41f596 6021 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6022 GFP_KERNEL);
d1b55138
JH
6023 if (!sched_group_nodes) {
6024 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6025 return -ENOMEM;
d1b55138
JH
6026 }
6027 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6028#endif
1da177e4
LT
6029
6030 /*
1a20ff27 6031 * Set up domains for cpus specified by the cpu_map.
1da177e4 6032 */
1a20ff27 6033 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6034 struct sched_domain *sd = NULL, *p;
6035 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6036
1a20ff27 6037 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6038
6039#ifdef CONFIG_NUMA
dd41f596
IM
6040 if (cpus_weight(*cpu_map) >
6041 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6042 sd = &per_cpu(allnodes_domains, i);
6043 *sd = SD_ALLNODES_INIT;
6044 sd->span = *cpu_map;
6711cab4 6045 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6046 p = sd;
6711cab4 6047 sd_allnodes = 1;
9c1cfda2
JH
6048 } else
6049 p = NULL;
6050
1da177e4 6051 sd = &per_cpu(node_domains, i);
1da177e4 6052 *sd = SD_NODE_INIT;
9c1cfda2
JH
6053 sd->span = sched_domain_node_span(cpu_to_node(i));
6054 sd->parent = p;
1a848870
SS
6055 if (p)
6056 p->child = sd;
9c1cfda2 6057 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6058#endif
6059
6060 p = sd;
6061 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6062 *sd = SD_CPU_INIT;
6063 sd->span = nodemask;
6064 sd->parent = p;
1a848870
SS
6065 if (p)
6066 p->child = sd;
6711cab4 6067 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6068
1e9f28fa
SS
6069#ifdef CONFIG_SCHED_MC
6070 p = sd;
6071 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6072 *sd = SD_MC_INIT;
6073 sd->span = cpu_coregroup_map(i);
6074 cpus_and(sd->span, sd->span, *cpu_map);
6075 sd->parent = p;
1a848870 6076 p->child = sd;
6711cab4 6077 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6078#endif
6079
1da177e4
LT
6080#ifdef CONFIG_SCHED_SMT
6081 p = sd;
6082 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6083 *sd = SD_SIBLING_INIT;
6084 sd->span = cpu_sibling_map[i];
1a20ff27 6085 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6086 sd->parent = p;
1a848870 6087 p->child = sd;
6711cab4 6088 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6089#endif
6090 }
6091
6092#ifdef CONFIG_SCHED_SMT
6093 /* Set up CPU (sibling) groups */
9c1cfda2 6094 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6095 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6096 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6097 if (i != first_cpu(this_sibling_map))
6098 continue;
6099
dd41f596
IM
6100 init_sched_build_groups(this_sibling_map, cpu_map,
6101 &cpu_to_cpu_group);
1da177e4
LT
6102 }
6103#endif
6104
1e9f28fa
SS
6105#ifdef CONFIG_SCHED_MC
6106 /* Set up multi-core groups */
6107 for_each_cpu_mask(i, *cpu_map) {
6108 cpumask_t this_core_map = cpu_coregroup_map(i);
6109 cpus_and(this_core_map, this_core_map, *cpu_map);
6110 if (i != first_cpu(this_core_map))
6111 continue;
dd41f596
IM
6112 init_sched_build_groups(this_core_map, cpu_map,
6113 &cpu_to_core_group);
1e9f28fa
SS
6114 }
6115#endif
6116
1da177e4
LT
6117 /* Set up physical groups */
6118 for (i = 0; i < MAX_NUMNODES; i++) {
6119 cpumask_t nodemask = node_to_cpumask(i);
6120
1a20ff27 6121 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6122 if (cpus_empty(nodemask))
6123 continue;
6124
6711cab4 6125 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6126 }
6127
6128#ifdef CONFIG_NUMA
6129 /* Set up node groups */
6711cab4 6130 if (sd_allnodes)
dd41f596
IM
6131 init_sched_build_groups(*cpu_map, cpu_map,
6132 &cpu_to_allnodes_group);
9c1cfda2
JH
6133
6134 for (i = 0; i < MAX_NUMNODES; i++) {
6135 /* Set up node groups */
6136 struct sched_group *sg, *prev;
6137 cpumask_t nodemask = node_to_cpumask(i);
6138 cpumask_t domainspan;
6139 cpumask_t covered = CPU_MASK_NONE;
6140 int j;
6141
6142 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6143 if (cpus_empty(nodemask)) {
6144 sched_group_nodes[i] = NULL;
9c1cfda2 6145 continue;
d1b55138 6146 }
9c1cfda2
JH
6147
6148 domainspan = sched_domain_node_span(i);
6149 cpus_and(domainspan, domainspan, *cpu_map);
6150
15f0b676 6151 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6152 if (!sg) {
6153 printk(KERN_WARNING "Can not alloc domain group for "
6154 "node %d\n", i);
6155 goto error;
6156 }
9c1cfda2
JH
6157 sched_group_nodes[i] = sg;
6158 for_each_cpu_mask(j, nodemask) {
6159 struct sched_domain *sd;
9761eea8 6160
9c1cfda2
JH
6161 sd = &per_cpu(node_domains, j);
6162 sd->groups = sg;
9c1cfda2 6163 }
5517d86b 6164 sg->__cpu_power = 0;
9c1cfda2 6165 sg->cpumask = nodemask;
51888ca2 6166 sg->next = sg;
9c1cfda2
JH
6167 cpus_or(covered, covered, nodemask);
6168 prev = sg;
6169
6170 for (j = 0; j < MAX_NUMNODES; j++) {
6171 cpumask_t tmp, notcovered;
6172 int n = (i + j) % MAX_NUMNODES;
6173
6174 cpus_complement(notcovered, covered);
6175 cpus_and(tmp, notcovered, *cpu_map);
6176 cpus_and(tmp, tmp, domainspan);
6177 if (cpus_empty(tmp))
6178 break;
6179
6180 nodemask = node_to_cpumask(n);
6181 cpus_and(tmp, tmp, nodemask);
6182 if (cpus_empty(tmp))
6183 continue;
6184
15f0b676
SV
6185 sg = kmalloc_node(sizeof(struct sched_group),
6186 GFP_KERNEL, i);
9c1cfda2
JH
6187 if (!sg) {
6188 printk(KERN_WARNING
6189 "Can not alloc domain group for node %d\n", j);
51888ca2 6190 goto error;
9c1cfda2 6191 }
5517d86b 6192 sg->__cpu_power = 0;
9c1cfda2 6193 sg->cpumask = tmp;
51888ca2 6194 sg->next = prev->next;
9c1cfda2
JH
6195 cpus_or(covered, covered, tmp);
6196 prev->next = sg;
6197 prev = sg;
6198 }
9c1cfda2 6199 }
1da177e4
LT
6200#endif
6201
6202 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6203#ifdef CONFIG_SCHED_SMT
1a20ff27 6204 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6205 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6206
89c4710e 6207 init_sched_groups_power(i, sd);
5c45bf27 6208 }
1da177e4 6209#endif
1e9f28fa 6210#ifdef CONFIG_SCHED_MC
5c45bf27 6211 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6212 struct sched_domain *sd = &per_cpu(core_domains, i);
6213
89c4710e 6214 init_sched_groups_power(i, sd);
5c45bf27
SS
6215 }
6216#endif
1e9f28fa 6217
5c45bf27 6218 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6219 struct sched_domain *sd = &per_cpu(phys_domains, i);
6220
89c4710e 6221 init_sched_groups_power(i, sd);
1da177e4
LT
6222 }
6223
9c1cfda2 6224#ifdef CONFIG_NUMA
08069033
SS
6225 for (i = 0; i < MAX_NUMNODES; i++)
6226 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6227
6711cab4
SS
6228 if (sd_allnodes) {
6229 struct sched_group *sg;
f712c0c7 6230
6711cab4 6231 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6232 init_numa_sched_groups_power(sg);
6233 }
9c1cfda2
JH
6234#endif
6235
1da177e4 6236 /* Attach the domains */
1a20ff27 6237 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6238 struct sched_domain *sd;
6239#ifdef CONFIG_SCHED_SMT
6240 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6241#elif defined(CONFIG_SCHED_MC)
6242 sd = &per_cpu(core_domains, i);
1da177e4
LT
6243#else
6244 sd = &per_cpu(phys_domains, i);
6245#endif
6246 cpu_attach_domain(sd, i);
6247 }
51888ca2
SV
6248
6249 return 0;
6250
a616058b 6251#ifdef CONFIG_NUMA
51888ca2
SV
6252error:
6253 free_sched_groups(cpu_map);
6254 return -ENOMEM;
a616058b 6255#endif
1da177e4 6256}
1a20ff27
DG
6257/*
6258 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6259 */
51888ca2 6260static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6261{
6262 cpumask_t cpu_default_map;
51888ca2 6263 int err;
1da177e4 6264
1a20ff27
DG
6265 /*
6266 * Setup mask for cpus without special case scheduling requirements.
6267 * For now this just excludes isolated cpus, but could be used to
6268 * exclude other special cases in the future.
6269 */
6270 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6271
51888ca2
SV
6272 err = build_sched_domains(&cpu_default_map);
6273
6274 return err;
1a20ff27
DG
6275}
6276
6277static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6278{
51888ca2 6279 free_sched_groups(cpu_map);
9c1cfda2 6280}
1da177e4 6281
1a20ff27
DG
6282/*
6283 * Detach sched domains from a group of cpus specified in cpu_map
6284 * These cpus will now be attached to the NULL domain
6285 */
858119e1 6286static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6287{
6288 int i;
6289
6290 for_each_cpu_mask(i, *cpu_map)
6291 cpu_attach_domain(NULL, i);
6292 synchronize_sched();
6293 arch_destroy_sched_domains(cpu_map);
6294}
6295
6296/*
6297 * Partition sched domains as specified by the cpumasks below.
6298 * This attaches all cpus from the cpumasks to the NULL domain,
6299 * waits for a RCU quiescent period, recalculates sched
6300 * domain information and then attaches them back to the
6301 * correct sched domains
6302 * Call with hotplug lock held
6303 */
51888ca2 6304int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6305{
6306 cpumask_t change_map;
51888ca2 6307 int err = 0;
1a20ff27
DG
6308
6309 cpus_and(*partition1, *partition1, cpu_online_map);
6310 cpus_and(*partition2, *partition2, cpu_online_map);
6311 cpus_or(change_map, *partition1, *partition2);
6312
6313 /* Detach sched domains from all of the affected cpus */
6314 detach_destroy_domains(&change_map);
6315 if (!cpus_empty(*partition1))
51888ca2
SV
6316 err = build_sched_domains(partition1);
6317 if (!err && !cpus_empty(*partition2))
6318 err = build_sched_domains(partition2);
6319
6320 return err;
1a20ff27
DG
6321}
6322
5c45bf27 6323#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6324static int arch_reinit_sched_domains(void)
5c45bf27
SS
6325{
6326 int err;
6327
5be9361c 6328 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6329 detach_destroy_domains(&cpu_online_map);
6330 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6331 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6332
6333 return err;
6334}
6335
6336static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6337{
6338 int ret;
6339
6340 if (buf[0] != '0' && buf[0] != '1')
6341 return -EINVAL;
6342
6343 if (smt)
6344 sched_smt_power_savings = (buf[0] == '1');
6345 else
6346 sched_mc_power_savings = (buf[0] == '1');
6347
6348 ret = arch_reinit_sched_domains();
6349
6350 return ret ? ret : count;
6351}
6352
5c45bf27
SS
6353#ifdef CONFIG_SCHED_MC
6354static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6355{
6356 return sprintf(page, "%u\n", sched_mc_power_savings);
6357}
48f24c4d
IM
6358static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6359 const char *buf, size_t count)
5c45bf27
SS
6360{
6361 return sched_power_savings_store(buf, count, 0);
6362}
6707de00
AB
6363static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6364 sched_mc_power_savings_store);
5c45bf27
SS
6365#endif
6366
6367#ifdef CONFIG_SCHED_SMT
6368static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6369{
6370 return sprintf(page, "%u\n", sched_smt_power_savings);
6371}
48f24c4d
IM
6372static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6373 const char *buf, size_t count)
5c45bf27
SS
6374{
6375 return sched_power_savings_store(buf, count, 1);
6376}
6707de00
AB
6377static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6378 sched_smt_power_savings_store);
6379#endif
6380
6381int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6382{
6383 int err = 0;
6384
6385#ifdef CONFIG_SCHED_SMT
6386 if (smt_capable())
6387 err = sysfs_create_file(&cls->kset.kobj,
6388 &attr_sched_smt_power_savings.attr);
6389#endif
6390#ifdef CONFIG_SCHED_MC
6391 if (!err && mc_capable())
6392 err = sysfs_create_file(&cls->kset.kobj,
6393 &attr_sched_mc_power_savings.attr);
6394#endif
6395 return err;
6396}
5c45bf27
SS
6397#endif
6398
1da177e4
LT
6399/*
6400 * Force a reinitialization of the sched domains hierarchy. The domains
6401 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6402 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6403 * which will prevent rebalancing while the sched domains are recalculated.
6404 */
6405static int update_sched_domains(struct notifier_block *nfb,
6406 unsigned long action, void *hcpu)
6407{
1da177e4
LT
6408 switch (action) {
6409 case CPU_UP_PREPARE:
8bb78442 6410 case CPU_UP_PREPARE_FROZEN:
1da177e4 6411 case CPU_DOWN_PREPARE:
8bb78442 6412 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6413 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6414 return NOTIFY_OK;
6415
6416 case CPU_UP_CANCELED:
8bb78442 6417 case CPU_UP_CANCELED_FROZEN:
1da177e4 6418 case CPU_DOWN_FAILED:
8bb78442 6419 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6420 case CPU_ONLINE:
8bb78442 6421 case CPU_ONLINE_FROZEN:
1da177e4 6422 case CPU_DEAD:
8bb78442 6423 case CPU_DEAD_FROZEN:
1da177e4
LT
6424 /*
6425 * Fall through and re-initialise the domains.
6426 */
6427 break;
6428 default:
6429 return NOTIFY_DONE;
6430 }
6431
6432 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6433 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6434
6435 return NOTIFY_OK;
6436}
1da177e4
LT
6437
6438void __init sched_init_smp(void)
6439{
5c1e1767
NP
6440 cpumask_t non_isolated_cpus;
6441
5be9361c 6442 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6443 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6444 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6445 if (cpus_empty(non_isolated_cpus))
6446 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6447 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6448 /* XXX: Theoretical race here - CPU may be hotplugged now */
6449 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6450
e692ab53
NP
6451 init_sched_domain_sysctl();
6452
5c1e1767
NP
6453 /* Move init over to a non-isolated CPU */
6454 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6455 BUG();
1da177e4
LT
6456}
6457#else
6458void __init sched_init_smp(void)
6459{
6460}
6461#endif /* CONFIG_SMP */
6462
6463int in_sched_functions(unsigned long addr)
6464{
6465 /* Linker adds these: start and end of __sched functions */
6466 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6467
1da177e4
LT
6468 return in_lock_functions(addr) ||
6469 (addr >= (unsigned long)__sched_text_start
6470 && addr < (unsigned long)__sched_text_end);
6471}
6472
a9957449 6473static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6474{
6475 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6476#ifdef CONFIG_FAIR_GROUP_SCHED
6477 cfs_rq->rq = rq;
6478#endif
67e9fb2a 6479 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6480}
6481
1da177e4
LT
6482void __init sched_init(void)
6483{
476f3534 6484 int highest_cpu = 0;
dd41f596
IM
6485 int i, j;
6486
0a945022 6487 for_each_possible_cpu(i) {
dd41f596 6488 struct rt_prio_array *array;
70b97a7f 6489 struct rq *rq;
1da177e4
LT
6490
6491 rq = cpu_rq(i);
6492 spin_lock_init(&rq->lock);
fcb99371 6493 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6494 rq->nr_running = 0;
dd41f596
IM
6495 rq->clock = 1;
6496 init_cfs_rq(&rq->cfs, rq);
6497#ifdef CONFIG_FAIR_GROUP_SCHED
6498 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6499 {
6500 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6501 struct sched_entity *se =
6502 &per_cpu(init_sched_entity, i);
6503
6504 init_cfs_rq_p[i] = cfs_rq;
6505 init_cfs_rq(cfs_rq, rq);
4cf86d77 6506 cfs_rq->tg = &init_task_group;
3a252015 6507 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6508 &rq->leaf_cfs_rq_list);
6509
3a252015
IM
6510 init_sched_entity_p[i] = se;
6511 se->cfs_rq = &rq->cfs;
6512 se->my_q = cfs_rq;
4cf86d77 6513 se->load.weight = init_task_group_load;
9b5b7751 6514 se->load.inv_weight =
4cf86d77 6515 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6516 se->parent = NULL;
6517 }
4cf86d77 6518 init_task_group.shares = init_task_group_load;
5cb350ba 6519 spin_lock_init(&init_task_group.lock);
dd41f596 6520#endif
1da177e4 6521
dd41f596
IM
6522 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6523 rq->cpu_load[j] = 0;
1da177e4 6524#ifdef CONFIG_SMP
41c7ce9a 6525 rq->sd = NULL;
1da177e4 6526 rq->active_balance = 0;
dd41f596 6527 rq->next_balance = jiffies;
1da177e4 6528 rq->push_cpu = 0;
0a2966b4 6529 rq->cpu = i;
1da177e4
LT
6530 rq->migration_thread = NULL;
6531 INIT_LIST_HEAD(&rq->migration_queue);
6532#endif
6533 atomic_set(&rq->nr_iowait, 0);
6534
dd41f596
IM
6535 array = &rq->rt.active;
6536 for (j = 0; j < MAX_RT_PRIO; j++) {
6537 INIT_LIST_HEAD(array->queue + j);
6538 __clear_bit(j, array->bitmap);
1da177e4 6539 }
476f3534 6540 highest_cpu = i;
dd41f596
IM
6541 /* delimiter for bitsearch: */
6542 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6543 }
6544
2dd73a4f 6545 set_load_weight(&init_task);
b50f60ce 6546
e107be36
AK
6547#ifdef CONFIG_PREEMPT_NOTIFIERS
6548 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6549#endif
6550
c9819f45 6551#ifdef CONFIG_SMP
476f3534 6552 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6553 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6554#endif
6555
b50f60ce
HC
6556#ifdef CONFIG_RT_MUTEXES
6557 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6558#endif
6559
1da177e4
LT
6560 /*
6561 * The boot idle thread does lazy MMU switching as well:
6562 */
6563 atomic_inc(&init_mm.mm_count);
6564 enter_lazy_tlb(&init_mm, current);
6565
6566 /*
6567 * Make us the idle thread. Technically, schedule() should not be
6568 * called from this thread, however somewhere below it might be,
6569 * but because we are the idle thread, we just pick up running again
6570 * when this runqueue becomes "idle".
6571 */
6572 init_idle(current, smp_processor_id());
dd41f596
IM
6573 /*
6574 * During early bootup we pretend to be a normal task:
6575 */
6576 current->sched_class = &fair_sched_class;
1da177e4
LT
6577}
6578
6579#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6580void __might_sleep(char *file, int line)
6581{
48f24c4d 6582#ifdef in_atomic
1da177e4
LT
6583 static unsigned long prev_jiffy; /* ratelimiting */
6584
6585 if ((in_atomic() || irqs_disabled()) &&
6586 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6587 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6588 return;
6589 prev_jiffy = jiffies;
91368d73 6590 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6591 " context at %s:%d\n", file, line);
6592 printk("in_atomic():%d, irqs_disabled():%d\n",
6593 in_atomic(), irqs_disabled());
a4c410f0 6594 debug_show_held_locks(current);
3117df04
IM
6595 if (irqs_disabled())
6596 print_irqtrace_events(current);
1da177e4
LT
6597 dump_stack();
6598 }
6599#endif
6600}
6601EXPORT_SYMBOL(__might_sleep);
6602#endif
6603
6604#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6605static void normalize_task(struct rq *rq, struct task_struct *p)
6606{
6607 int on_rq;
6608 update_rq_clock(rq);
6609 on_rq = p->se.on_rq;
6610 if (on_rq)
6611 deactivate_task(rq, p, 0);
6612 __setscheduler(rq, p, SCHED_NORMAL, 0);
6613 if (on_rq) {
6614 activate_task(rq, p, 0);
6615 resched_task(rq->curr);
6616 }
6617}
6618
1da177e4
LT
6619void normalize_rt_tasks(void)
6620{
a0f98a1c 6621 struct task_struct *g, *p;
1da177e4 6622 unsigned long flags;
70b97a7f 6623 struct rq *rq;
1da177e4
LT
6624
6625 read_lock_irq(&tasklist_lock);
a0f98a1c 6626 do_each_thread(g, p) {
178be793
IM
6627 /*
6628 * Only normalize user tasks:
6629 */
6630 if (!p->mm)
6631 continue;
6632
6cfb0d5d 6633 p->se.exec_start = 0;
6cfb0d5d 6634#ifdef CONFIG_SCHEDSTATS
dd41f596 6635 p->se.wait_start = 0;
dd41f596 6636 p->se.sleep_start = 0;
dd41f596 6637 p->se.block_start = 0;
6cfb0d5d 6638#endif
dd41f596
IM
6639 task_rq(p)->clock = 0;
6640
6641 if (!rt_task(p)) {
6642 /*
6643 * Renice negative nice level userspace
6644 * tasks back to 0:
6645 */
6646 if (TASK_NICE(p) < 0 && p->mm)
6647 set_user_nice(p, 0);
1da177e4 6648 continue;
dd41f596 6649 }
1da177e4 6650
b29739f9
IM
6651 spin_lock_irqsave(&p->pi_lock, flags);
6652 rq = __task_rq_lock(p);
1da177e4 6653
178be793 6654 normalize_task(rq, p);
3a5e4dc1 6655
b29739f9
IM
6656 __task_rq_unlock(rq);
6657 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6658 } while_each_thread(g, p);
6659
1da177e4
LT
6660 read_unlock_irq(&tasklist_lock);
6661}
6662
6663#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6664
6665#ifdef CONFIG_IA64
6666/*
6667 * These functions are only useful for the IA64 MCA handling.
6668 *
6669 * They can only be called when the whole system has been
6670 * stopped - every CPU needs to be quiescent, and no scheduling
6671 * activity can take place. Using them for anything else would
6672 * be a serious bug, and as a result, they aren't even visible
6673 * under any other configuration.
6674 */
6675
6676/**
6677 * curr_task - return the current task for a given cpu.
6678 * @cpu: the processor in question.
6679 *
6680 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6681 */
36c8b586 6682struct task_struct *curr_task(int cpu)
1df5c10a
LT
6683{
6684 return cpu_curr(cpu);
6685}
6686
6687/**
6688 * set_curr_task - set the current task for a given cpu.
6689 * @cpu: the processor in question.
6690 * @p: the task pointer to set.
6691 *
6692 * Description: This function must only be used when non-maskable interrupts
6693 * are serviced on a separate stack. It allows the architecture to switch the
6694 * notion of the current task on a cpu in a non-blocking manner. This function
6695 * must be called with all CPU's synchronized, and interrupts disabled, the
6696 * and caller must save the original value of the current task (see
6697 * curr_task() above) and restore that value before reenabling interrupts and
6698 * re-starting the system.
6699 *
6700 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6701 */
36c8b586 6702void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6703{
6704 cpu_curr(cpu) = p;
6705}
6706
6707#endif
29f59db3
SV
6708
6709#ifdef CONFIG_FAIR_GROUP_SCHED
6710
29f59db3 6711/* allocate runqueue etc for a new task group */
4cf86d77 6712struct task_group *sched_create_group(void)
29f59db3 6713{
4cf86d77 6714 struct task_group *tg;
29f59db3
SV
6715 struct cfs_rq *cfs_rq;
6716 struct sched_entity *se;
9b5b7751 6717 struct rq *rq;
29f59db3
SV
6718 int i;
6719
29f59db3
SV
6720 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6721 if (!tg)
6722 return ERR_PTR(-ENOMEM);
6723
9b5b7751 6724 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6725 if (!tg->cfs_rq)
6726 goto err;
9b5b7751 6727 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6728 if (!tg->se)
6729 goto err;
6730
6731 for_each_possible_cpu(i) {
9b5b7751 6732 rq = cpu_rq(i);
29f59db3
SV
6733
6734 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6735 cpu_to_node(i));
6736 if (!cfs_rq)
6737 goto err;
6738
6739 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6740 cpu_to_node(i));
6741 if (!se)
6742 goto err;
6743
6744 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6745 memset(se, 0, sizeof(struct sched_entity));
6746
6747 tg->cfs_rq[i] = cfs_rq;
6748 init_cfs_rq(cfs_rq, rq);
6749 cfs_rq->tg = tg;
29f59db3
SV
6750
6751 tg->se[i] = se;
6752 se->cfs_rq = &rq->cfs;
6753 se->my_q = cfs_rq;
6754 se->load.weight = NICE_0_LOAD;
6755 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6756 se->parent = NULL;
6757 }
6758
9b5b7751
SV
6759 for_each_possible_cpu(i) {
6760 rq = cpu_rq(i);
6761 cfs_rq = tg->cfs_rq[i];
6762 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6763 }
29f59db3 6764
9b5b7751 6765 tg->shares = NICE_0_LOAD;
5cb350ba 6766 spin_lock_init(&tg->lock);
29f59db3 6767
9b5b7751 6768 return tg;
29f59db3
SV
6769
6770err:
6771 for_each_possible_cpu(i) {
a65914b3 6772 if (tg->cfs_rq)
29f59db3 6773 kfree(tg->cfs_rq[i]);
a65914b3 6774 if (tg->se)
29f59db3
SV
6775 kfree(tg->se[i]);
6776 }
a65914b3
IM
6777 kfree(tg->cfs_rq);
6778 kfree(tg->se);
6779 kfree(tg);
29f59db3
SV
6780
6781 return ERR_PTR(-ENOMEM);
6782}
6783
9b5b7751
SV
6784/* rcu callback to free various structures associated with a task group */
6785static void free_sched_group(struct rcu_head *rhp)
29f59db3 6786{
9b5b7751 6787 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6788 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6789 struct sched_entity *se;
6790 int i;
6791
29f59db3
SV
6792 /* now it should be safe to free those cfs_rqs */
6793 for_each_possible_cpu(i) {
6794 cfs_rq = tg->cfs_rq[i];
6795 kfree(cfs_rq);
6796
6797 se = tg->se[i];
6798 kfree(se);
6799 }
6800
6801 kfree(tg->cfs_rq);
6802 kfree(tg->se);
6803 kfree(tg);
6804}
6805
9b5b7751 6806/* Destroy runqueue etc associated with a task group */
4cf86d77 6807void sched_destroy_group(struct task_group *tg)
29f59db3 6808{
9b5b7751
SV
6809 struct cfs_rq *cfs_rq;
6810 int i;
29f59db3 6811
9b5b7751
SV
6812 for_each_possible_cpu(i) {
6813 cfs_rq = tg->cfs_rq[i];
6814 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6815 }
6816
6817 cfs_rq = tg->cfs_rq[0];
6818
6819 /* wait for possible concurrent references to cfs_rqs complete */
6820 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6821}
6822
9b5b7751 6823/* change task's runqueue when it moves between groups.
3a252015
IM
6824 * The caller of this function should have put the task in its new group
6825 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6826 * reflect its new group.
9b5b7751
SV
6827 */
6828void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6829{
6830 int on_rq, running;
6831 unsigned long flags;
6832 struct rq *rq;
6833
6834 rq = task_rq_lock(tsk, &flags);
6835
6836 if (tsk->sched_class != &fair_sched_class)
6837 goto done;
6838
6839 update_rq_clock(rq);
6840
6841 running = task_running(rq, tsk);
6842 on_rq = tsk->se.on_rq;
6843
83b699ed 6844 if (on_rq) {
29f59db3 6845 dequeue_task(rq, tsk, 0);
83b699ed
SV
6846 if (unlikely(running))
6847 tsk->sched_class->put_prev_task(rq, tsk);
6848 }
29f59db3
SV
6849
6850 set_task_cfs_rq(tsk);
6851
83b699ed
SV
6852 if (on_rq) {
6853 if (unlikely(running))
6854 tsk->sched_class->set_curr_task(rq);
7074badb 6855 enqueue_task(rq, tsk, 0);
83b699ed 6856 }
29f59db3
SV
6857
6858done:
6859 task_rq_unlock(rq, &flags);
6860}
6861
6862static void set_se_shares(struct sched_entity *se, unsigned long shares)
6863{
6864 struct cfs_rq *cfs_rq = se->cfs_rq;
6865 struct rq *rq = cfs_rq->rq;
6866 int on_rq;
6867
6868 spin_lock_irq(&rq->lock);
6869
6870 on_rq = se->on_rq;
6871 if (on_rq)
6872 dequeue_entity(cfs_rq, se, 0);
6873
6874 se->load.weight = shares;
6875 se->load.inv_weight = div64_64((1ULL<<32), shares);
6876
6877 if (on_rq)
6878 enqueue_entity(cfs_rq, se, 0);
6879
6880 spin_unlock_irq(&rq->lock);
6881}
6882
4cf86d77 6883int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
6884{
6885 int i;
29f59db3 6886
5cb350ba 6887 spin_lock(&tg->lock);
9b5b7751 6888 if (tg->shares == shares)
5cb350ba 6889 goto done;
29f59db3 6890
9b5b7751 6891 tg->shares = shares;
29f59db3 6892 for_each_possible_cpu(i)
9b5b7751 6893 set_se_shares(tg->se[i], shares);
29f59db3 6894
5cb350ba
DG
6895done:
6896 spin_unlock(&tg->lock);
9b5b7751 6897 return 0;
29f59db3
SV
6898}
6899
5cb350ba
DG
6900unsigned long sched_group_shares(struct task_group *tg)
6901{
6902 return tg->shares;
6903}
6904
3a252015 6905#endif /* CONFIG_FAIR_GROUP_SCHED */