sched: Simplify finding the lowest sched_domain
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
6aa645ea
IM
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
4a55bd5e
PZ
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
ac53db59 326 struct sched_entity *curr, *next, *last, *skip;
ddc97297 327
5ac5c4d6 328 unsigned int nr_spread_over;
ddc97297 329
62160e3f 330#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
41a2d6cf
IM
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
3d4b47b4 341 int on_list;
41a2d6cf
IM
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
344
345#ifdef CONFIG_SMP
c09595f6 346 /*
c8cba857 347 * the part of load.weight contributed by tasks
c09595f6 348 */
c8cba857 349 unsigned long task_weight;
c09595f6 350
c8cba857
PZ
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
c09595f6 358
c8cba857 359 /*
3b3d190e
PT
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 365 */
2069dd75
PZ
366 u64 load_avg;
367 u64 load_period;
3b3d190e 368 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 369
2069dd75 370 unsigned long load_contribution;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
a64692a3 560
1e5a7405 561static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 562
0a2966b4
CL
563static inline int cpu_of(struct rq *rq)
564{
565#ifdef CONFIG_SMP
566 return rq->cpu;
567#else
568 return 0;
569#endif
570}
571
497f0ab3 572#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
674311d5
NP
577/*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 579 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
48f24c4d 584#define for_each_domain(cpu, __sd) \
497f0ab3 585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
586
587#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588#define this_rq() (&__get_cpu_var(runqueues))
589#define task_rq(p) cpu_rq(task_cpu(p))
590#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 591#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 592
dc61b1d6
PZ
593#ifdef CONFIG_CGROUP_SCHED
594
595/*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603static inline struct task_group *task_group(struct task_struct *p)
604{
5091faa4 605 struct task_group *tg;
dc61b1d6
PZ
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
dc61b1d6
PZ
613}
614
615/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617{
618#ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621#endif
622
623#ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626#endif
627}
628
629#else /* CONFIG_CGROUP_SCHED */
630
631static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632static inline struct task_group *task_group(struct task_struct *p)
633{
634 return NULL;
635}
636
637#endif /* CONFIG_CGROUP_SCHED */
638
fe44d621 639static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 640
fe44d621 641static void update_rq_clock(struct rq *rq)
3e51f33f 642{
fe44d621 643 s64 delta;
305e6835 644
f26f9aff
MG
645 if (rq->skip_clock_update)
646 return;
aa483808 647
fe44d621
PZ
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
3e51f33f
PZ
651}
652
bf5c91ba
IM
653/*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656#ifdef CONFIG_SCHED_DEBUG
657# define const_debug __read_mostly
658#else
659# define const_debug static const
660#endif
661
017730c1 662/**
1fd06bb1 663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 664 * @cpu: the processor in question.
017730c1 665 *
017730c1
IM
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
89f19f04 669int runqueue_is_locked(int cpu)
017730c1 670{
05fa785c 671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
672}
673
bf5c91ba
IM
674/*
675 * Debugging: various feature bits
676 */
f00b45c1
PZ
677
678#define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
bf5c91ba 681enum {
f00b45c1 682#include "sched_features.h"
bf5c91ba
IM
683};
684
f00b45c1
PZ
685#undef SCHED_FEAT
686
687#define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
bf5c91ba 690const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
691#include "sched_features.h"
692 0;
693
694#undef SCHED_FEAT
695
696#ifdef CONFIG_SCHED_DEBUG
697#define SCHED_FEAT(name, enabled) \
698 #name ,
699
983ed7a6 700static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
701#include "sched_features.h"
702 NULL
703};
704
705#undef SCHED_FEAT
706
34f3a814 707static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 708{
f00b45c1
PZ
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 715 }
34f3a814 716 seq_puts(m, "\n");
f00b45c1 717
34f3a814 718 return 0;
f00b45c1
PZ
719}
720
721static ssize_t
722sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724{
725 char buf[64];
7740191c 726 char *cmp;
f00b45c1
PZ
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
7740191c 737 cmp = strstrip(buf);
f00b45c1 738
524429c3 739 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
7740191c 745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
42994724 757 *ppos += cnt;
f00b45c1
PZ
758
759 return cnt;
760}
761
34f3a814
LZ
762static int sched_feat_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, sched_feat_show, NULL);
765}
766
828c0950 767static const struct file_operations sched_feat_fops = {
34f3a814
LZ
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
f00b45c1
PZ
773};
774
775static __init int sched_init_debug(void)
776{
f00b45c1
PZ
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781}
782late_initcall(sched_init_debug);
783
784#endif
785
786#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 787
b82d9fdd
PZ
788/*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
e9e9250b
PZ
794/*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
fa85ae24 802/*
9f0c1e56 803 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
804 * default: 1s
805 */
9f0c1e56 806unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 807
6892b75e
IM
808static __read_mostly int scheduler_running;
809
9f0c1e56
PZ
810/*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814int sysctl_sched_rt_runtime = 950000;
fa85ae24 815
d0b27fa7
PZ
816static inline u64 global_rt_period(void)
817{
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819}
820
821static inline u64 global_rt_runtime(void)
822{
e26873bb 823 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827}
fa85ae24 828
1da177e4 829#ifndef prepare_arch_switch
4866cde0
NP
830# define prepare_arch_switch(next) do { } while (0)
831#endif
832#ifndef finish_arch_switch
833# define finish_arch_switch(prev) do { } while (0)
834#endif
835
051a1d1a
DA
836static inline int task_current(struct rq *rq, struct task_struct *p)
837{
838 return rq->curr == p;
839}
840
4866cde0 841#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 842static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 843{
051a1d1a 844 return task_current(rq, p);
4866cde0
NP
845}
846
70b97a7f 847static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
848{
849}
850
70b97a7f 851static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 852{
da04c035
IM
853#ifdef CONFIG_DEBUG_SPINLOCK
854 /* this is a valid case when another task releases the spinlock */
855 rq->lock.owner = current;
856#endif
8a25d5de
IM
857 /*
858 * If we are tracking spinlock dependencies then we have to
859 * fix up the runqueue lock - which gets 'carried over' from
860 * prev into current:
861 */
862 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
863
05fa785c 864 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
865}
866
867#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 868static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
869{
870#ifdef CONFIG_SMP
871 return p->oncpu;
872#else
051a1d1a 873 return task_current(rq, p);
4866cde0
NP
874#endif
875}
876
70b97a7f 877static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
878{
879#ifdef CONFIG_SMP
880 /*
881 * We can optimise this out completely for !SMP, because the
882 * SMP rebalancing from interrupt is the only thing that cares
883 * here.
884 */
885 next->oncpu = 1;
886#endif
887#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 888 raw_spin_unlock_irq(&rq->lock);
4866cde0 889#else
05fa785c 890 raw_spin_unlock(&rq->lock);
4866cde0
NP
891#endif
892}
893
70b97a7f 894static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
895{
896#ifdef CONFIG_SMP
897 /*
898 * After ->oncpu is cleared, the task can be moved to a different CPU.
899 * We must ensure this doesn't happen until the switch is completely
900 * finished.
901 */
902 smp_wmb();
903 prev->oncpu = 0;
904#endif
905#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
906 local_irq_enable();
1da177e4 907#endif
4866cde0
NP
908}
909#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 910
0970d299 911/*
65cc8e48
PZ
912 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
913 * against ttwu().
0970d299
PZ
914 */
915static inline int task_is_waking(struct task_struct *p)
916{
0017d735 917 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
918}
919
b29739f9
IM
920/*
921 * __task_rq_lock - lock the runqueue a given task resides on.
922 * Must be called interrupts disabled.
923 */
70b97a7f 924static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
925 __acquires(rq->lock)
926{
0970d299
PZ
927 struct rq *rq;
928
3a5c359a 929 for (;;) {
0970d299 930 rq = task_rq(p);
05fa785c 931 raw_spin_lock(&rq->lock);
65cc8e48 932 if (likely(rq == task_rq(p)))
3a5c359a 933 return rq;
05fa785c 934 raw_spin_unlock(&rq->lock);
b29739f9 935 }
b29739f9
IM
936}
937
1da177e4
LT
938/*
939 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 940 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
941 * explicitly disabling preemption.
942 */
70b97a7f 943static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
944 __acquires(rq->lock)
945{
70b97a7f 946 struct rq *rq;
1da177e4 947
3a5c359a
AK
948 for (;;) {
949 local_irq_save(*flags);
950 rq = task_rq(p);
05fa785c 951 raw_spin_lock(&rq->lock);
65cc8e48 952 if (likely(rq == task_rq(p)))
3a5c359a 953 return rq;
05fa785c 954 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 955 }
1da177e4
LT
956}
957
a9957449 958static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
959 __releases(rq->lock)
960{
05fa785c 961 raw_spin_unlock(&rq->lock);
b29739f9
IM
962}
963
70b97a7f 964static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
965 __releases(rq->lock)
966{
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
968}
969
1da177e4 970/*
cc2a73b5 971 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 972 */
a9957449 973static struct rq *this_rq_lock(void)
1da177e4
LT
974 __acquires(rq->lock)
975{
70b97a7f 976 struct rq *rq;
1da177e4
LT
977
978 local_irq_disable();
979 rq = this_rq();
05fa785c 980 raw_spin_lock(&rq->lock);
1da177e4
LT
981
982 return rq;
983}
984
8f4d37ec
PZ
985#ifdef CONFIG_SCHED_HRTICK
986/*
987 * Use HR-timers to deliver accurate preemption points.
988 *
989 * Its all a bit involved since we cannot program an hrt while holding the
990 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
991 * reschedule event.
992 *
993 * When we get rescheduled we reprogram the hrtick_timer outside of the
994 * rq->lock.
995 */
8f4d37ec
PZ
996
997/*
998 * Use hrtick when:
999 * - enabled by features
1000 * - hrtimer is actually high res
1001 */
1002static inline int hrtick_enabled(struct rq *rq)
1003{
1004 if (!sched_feat(HRTICK))
1005 return 0;
ba42059f 1006 if (!cpu_active(cpu_of(rq)))
b328ca18 1007 return 0;
8f4d37ec
PZ
1008 return hrtimer_is_hres_active(&rq->hrtick_timer);
1009}
1010
8f4d37ec
PZ
1011static void hrtick_clear(struct rq *rq)
1012{
1013 if (hrtimer_active(&rq->hrtick_timer))
1014 hrtimer_cancel(&rq->hrtick_timer);
1015}
1016
8f4d37ec
PZ
1017/*
1018 * High-resolution timer tick.
1019 * Runs from hardirq context with interrupts disabled.
1020 */
1021static enum hrtimer_restart hrtick(struct hrtimer *timer)
1022{
1023 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1024
1025 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1026
05fa785c 1027 raw_spin_lock(&rq->lock);
3e51f33f 1028 update_rq_clock(rq);
8f4d37ec 1029 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1030 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1031
1032 return HRTIMER_NORESTART;
1033}
1034
95e904c7 1035#ifdef CONFIG_SMP
31656519
PZ
1036/*
1037 * called from hardirq (IPI) context
1038 */
1039static void __hrtick_start(void *arg)
b328ca18 1040{
31656519 1041 struct rq *rq = arg;
b328ca18 1042
05fa785c 1043 raw_spin_lock(&rq->lock);
31656519
PZ
1044 hrtimer_restart(&rq->hrtick_timer);
1045 rq->hrtick_csd_pending = 0;
05fa785c 1046 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1047}
1048
31656519
PZ
1049/*
1050 * Called to set the hrtick timer state.
1051 *
1052 * called with rq->lock held and irqs disabled
1053 */
1054static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1055{
31656519
PZ
1056 struct hrtimer *timer = &rq->hrtick_timer;
1057 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1058
cc584b21 1059 hrtimer_set_expires(timer, time);
31656519
PZ
1060
1061 if (rq == this_rq()) {
1062 hrtimer_restart(timer);
1063 } else if (!rq->hrtick_csd_pending) {
6e275637 1064 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1065 rq->hrtick_csd_pending = 1;
1066 }
b328ca18
PZ
1067}
1068
1069static int
1070hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1071{
1072 int cpu = (int)(long)hcpu;
1073
1074 switch (action) {
1075 case CPU_UP_CANCELED:
1076 case CPU_UP_CANCELED_FROZEN:
1077 case CPU_DOWN_PREPARE:
1078 case CPU_DOWN_PREPARE_FROZEN:
1079 case CPU_DEAD:
1080 case CPU_DEAD_FROZEN:
31656519 1081 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1082 return NOTIFY_OK;
1083 }
1084
1085 return NOTIFY_DONE;
1086}
1087
fa748203 1088static __init void init_hrtick(void)
b328ca18
PZ
1089{
1090 hotcpu_notifier(hotplug_hrtick, 0);
1091}
31656519
PZ
1092#else
1093/*
1094 * Called to set the hrtick timer state.
1095 *
1096 * called with rq->lock held and irqs disabled
1097 */
1098static void hrtick_start(struct rq *rq, u64 delay)
1099{
7f1e2ca9 1100 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1101 HRTIMER_MODE_REL_PINNED, 0);
31656519 1102}
b328ca18 1103
006c75f1 1104static inline void init_hrtick(void)
8f4d37ec 1105{
8f4d37ec 1106}
31656519 1107#endif /* CONFIG_SMP */
8f4d37ec 1108
31656519 1109static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1110{
31656519
PZ
1111#ifdef CONFIG_SMP
1112 rq->hrtick_csd_pending = 0;
8f4d37ec 1113
31656519
PZ
1114 rq->hrtick_csd.flags = 0;
1115 rq->hrtick_csd.func = __hrtick_start;
1116 rq->hrtick_csd.info = rq;
1117#endif
8f4d37ec 1118
31656519
PZ
1119 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1120 rq->hrtick_timer.function = hrtick;
8f4d37ec 1121}
006c75f1 1122#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1123static inline void hrtick_clear(struct rq *rq)
1124{
1125}
1126
8f4d37ec
PZ
1127static inline void init_rq_hrtick(struct rq *rq)
1128{
1129}
1130
b328ca18
PZ
1131static inline void init_hrtick(void)
1132{
1133}
006c75f1 1134#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1135
c24d20db
IM
1136/*
1137 * resched_task - mark a task 'to be rescheduled now'.
1138 *
1139 * On UP this means the setting of the need_resched flag, on SMP it
1140 * might also involve a cross-CPU call to trigger the scheduler on
1141 * the target CPU.
1142 */
1143#ifdef CONFIG_SMP
1144
1145#ifndef tsk_is_polling
1146#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1147#endif
1148
31656519 1149static void resched_task(struct task_struct *p)
c24d20db
IM
1150{
1151 int cpu;
1152
05fa785c 1153 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1154
5ed0cec0 1155 if (test_tsk_need_resched(p))
c24d20db
IM
1156 return;
1157
5ed0cec0 1158 set_tsk_need_resched(p);
c24d20db
IM
1159
1160 cpu = task_cpu(p);
1161 if (cpu == smp_processor_id())
1162 return;
1163
1164 /* NEED_RESCHED must be visible before we test polling */
1165 smp_mb();
1166 if (!tsk_is_polling(p))
1167 smp_send_reschedule(cpu);
1168}
1169
1170static void resched_cpu(int cpu)
1171{
1172 struct rq *rq = cpu_rq(cpu);
1173 unsigned long flags;
1174
05fa785c 1175 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1176 return;
1177 resched_task(cpu_curr(cpu));
05fa785c 1178 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1179}
06d8308c
TG
1180
1181#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1182/*
1183 * In the semi idle case, use the nearest busy cpu for migrating timers
1184 * from an idle cpu. This is good for power-savings.
1185 *
1186 * We don't do similar optimization for completely idle system, as
1187 * selecting an idle cpu will add more delays to the timers than intended
1188 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1189 */
1190int get_nohz_timer_target(void)
1191{
1192 int cpu = smp_processor_id();
1193 int i;
1194 struct sched_domain *sd;
1195
1196 for_each_domain(cpu, sd) {
1197 for_each_cpu(i, sched_domain_span(sd))
1198 if (!idle_cpu(i))
1199 return i;
1200 }
1201 return cpu;
1202}
06d8308c
TG
1203/*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213void wake_up_idle_cpu(int cpu)
1214{
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
5ed0cec0 1235 set_tsk_need_resched(rq->idle);
06d8308c
TG
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241}
39c0cbe2 1242
6d6bc0ad 1243#endif /* CONFIG_NO_HZ */
06d8308c 1244
e9e9250b
PZ
1245static u64 sched_avg_period(void)
1246{
1247 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1248}
1249
1250static void sched_avg_update(struct rq *rq)
1251{
1252 s64 period = sched_avg_period();
1253
1254 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1255 /*
1256 * Inline assembly required to prevent the compiler
1257 * optimising this loop into a divmod call.
1258 * See __iter_div_u64_rem() for another example of this.
1259 */
1260 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264}
1265
1266static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267{
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270}
1271
6d6bc0ad 1272#else /* !CONFIG_SMP */
31656519 1273static void resched_task(struct task_struct *p)
c24d20db 1274{
05fa785c 1275 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1276 set_tsk_need_resched(p);
c24d20db 1277}
e9e9250b
PZ
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281}
da2b71ed
SS
1282
1283static void sched_avg_update(struct rq *rq)
1284{
1285}
6d6bc0ad 1286#endif /* CONFIG_SMP */
c24d20db 1287
45bf76df
IM
1288#if BITS_PER_LONG == 32
1289# define WMULT_CONST (~0UL)
1290#else
1291# define WMULT_CONST (1UL << 32)
1292#endif
1293
1294#define WMULT_SHIFT 32
1295
194081eb
IM
1296/*
1297 * Shift right and round:
1298 */
cf2ab469 1299#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1300
a7be37ac
PZ
1301/*
1302 * delta *= weight / lw
1303 */
cb1c4fc9 1304static unsigned long
45bf76df
IM
1305calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307{
1308 u64 tmp;
1309
7a232e03
LJ
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
45bf76df
IM
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
194081eb 1322 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1324 WMULT_SHIFT/2);
1325 else
cf2ab469 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1327
ecf691da 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1332{
1333 lw->weight += inc;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1338{
1339 lw->weight -= dec;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
2069dd75
PZ
1343static inline void update_load_set(struct load_weight *lw, unsigned long w)
1344{
1345 lw->weight = w;
1346 lw->inv_weight = 0;
1347}
1348
2dd73a4f
PW
1349/*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
cce7ade8
PZ
1358#define WEIGHT_IDLEPRIO 3
1359#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1360
1361/*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
dd41f596
IM
1372 */
1373static const int prio_to_weight[40] = {
254753dc
IM
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1382};
1383
5714d2de
IM
1384/*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
dd41f596 1391static const u32 prio_to_wmult[40] = {
254753dc
IM
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1400};
2dd73a4f 1401
ef12fefa
BR
1402/* Time spent by the tasks of the cpu accounting group executing in ... */
1403enum cpuacct_stat_index {
1404 CPUACCT_STAT_USER, /* ... user mode */
1405 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1406
1407 CPUACCT_STAT_NSTATS,
1408};
1409
d842de87
SV
1410#ifdef CONFIG_CGROUP_CPUACCT
1411static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1412static void cpuacct_update_stats(struct task_struct *tsk,
1413 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1414#else
1415static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1416static inline void cpuacct_update_stats(struct task_struct *tsk,
1417 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1418#endif
1419
18d95a28
PZ
1420static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1421{
1422 update_load_add(&rq->load, load);
1423}
1424
1425static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1426{
1427 update_load_sub(&rq->load, load);
1428}
1429
7940ca36 1430#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1431typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1432
1433/*
1434 * Iterate the full tree, calling @down when first entering a node and @up when
1435 * leaving it for the final time.
1436 */
eb755805 1437static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1438{
1439 struct task_group *parent, *child;
eb755805 1440 int ret;
c09595f6
PZ
1441
1442 rcu_read_lock();
1443 parent = &root_task_group;
1444down:
eb755805
PZ
1445 ret = (*down)(parent, data);
1446 if (ret)
1447 goto out_unlock;
c09595f6
PZ
1448 list_for_each_entry_rcu(child, &parent->children, siblings) {
1449 parent = child;
1450 goto down;
1451
1452up:
1453 continue;
1454 }
eb755805
PZ
1455 ret = (*up)(parent, data);
1456 if (ret)
1457 goto out_unlock;
c09595f6
PZ
1458
1459 child = parent;
1460 parent = parent->parent;
1461 if (parent)
1462 goto up;
eb755805 1463out_unlock:
c09595f6 1464 rcu_read_unlock();
eb755805
PZ
1465
1466 return ret;
c09595f6
PZ
1467}
1468
eb755805
PZ
1469static int tg_nop(struct task_group *tg, void *data)
1470{
1471 return 0;
c09595f6 1472}
eb755805
PZ
1473#endif
1474
1475#ifdef CONFIG_SMP
f5f08f39
PZ
1476/* Used instead of source_load when we know the type == 0 */
1477static unsigned long weighted_cpuload(const int cpu)
1478{
1479 return cpu_rq(cpu)->load.weight;
1480}
1481
1482/*
1483 * Return a low guess at the load of a migration-source cpu weighted
1484 * according to the scheduling class and "nice" value.
1485 *
1486 * We want to under-estimate the load of migration sources, to
1487 * balance conservatively.
1488 */
1489static unsigned long source_load(int cpu, int type)
1490{
1491 struct rq *rq = cpu_rq(cpu);
1492 unsigned long total = weighted_cpuload(cpu);
1493
1494 if (type == 0 || !sched_feat(LB_BIAS))
1495 return total;
1496
1497 return min(rq->cpu_load[type-1], total);
1498}
1499
1500/*
1501 * Return a high guess at the load of a migration-target cpu weighted
1502 * according to the scheduling class and "nice" value.
1503 */
1504static unsigned long target_load(int cpu, int type)
1505{
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return max(rq->cpu_load[type-1], total);
1513}
1514
ae154be1
PZ
1515static unsigned long power_of(int cpu)
1516{
e51fd5e2 1517 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1518}
1519
eb755805
PZ
1520static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1521
1522static unsigned long cpu_avg_load_per_task(int cpu)
1523{
1524 struct rq *rq = cpu_rq(cpu);
af6d596f 1525 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1526
4cd42620
SR
1527 if (nr_running)
1528 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1529 else
1530 rq->avg_load_per_task = 0;
eb755805
PZ
1531
1532 return rq->avg_load_per_task;
1533}
1534
1535#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1536
c09595f6 1537/*
c8cba857
PZ
1538 * Compute the cpu's hierarchical load factor for each task group.
1539 * This needs to be done in a top-down fashion because the load of a child
1540 * group is a fraction of its parents load.
c09595f6 1541 */
eb755805 1542static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1543{
c8cba857 1544 unsigned long load;
eb755805 1545 long cpu = (long)data;
c09595f6 1546
c8cba857
PZ
1547 if (!tg->parent) {
1548 load = cpu_rq(cpu)->load.weight;
1549 } else {
1550 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1551 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1552 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1553 }
c09595f6 1554
c8cba857 1555 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1556
eb755805 1557 return 0;
c09595f6
PZ
1558}
1559
eb755805 1560static void update_h_load(long cpu)
c09595f6 1561{
eb755805 1562 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1563}
1564
18d95a28
PZ
1565#endif
1566
8f45e2b5
GH
1567#ifdef CONFIG_PREEMPT
1568
b78bb868
PZ
1569static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1570
70574a99 1571/*
8f45e2b5
GH
1572 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1573 * way at the expense of forcing extra atomic operations in all
1574 * invocations. This assures that the double_lock is acquired using the
1575 * same underlying policy as the spinlock_t on this architecture, which
1576 * reduces latency compared to the unfair variant below. However, it
1577 * also adds more overhead and therefore may reduce throughput.
70574a99 1578 */
8f45e2b5
GH
1579static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1580 __releases(this_rq->lock)
1581 __acquires(busiest->lock)
1582 __acquires(this_rq->lock)
1583{
05fa785c 1584 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1585 double_rq_lock(this_rq, busiest);
1586
1587 return 1;
1588}
1589
1590#else
1591/*
1592 * Unfair double_lock_balance: Optimizes throughput at the expense of
1593 * latency by eliminating extra atomic operations when the locks are
1594 * already in proper order on entry. This favors lower cpu-ids and will
1595 * grant the double lock to lower cpus over higher ids under contention,
1596 * regardless of entry order into the function.
1597 */
1598static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1599 __releases(this_rq->lock)
1600 __acquires(busiest->lock)
1601 __acquires(this_rq->lock)
1602{
1603 int ret = 0;
1604
05fa785c 1605 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1606 if (busiest < this_rq) {
05fa785c
TG
1607 raw_spin_unlock(&this_rq->lock);
1608 raw_spin_lock(&busiest->lock);
1609 raw_spin_lock_nested(&this_rq->lock,
1610 SINGLE_DEPTH_NESTING);
70574a99
AD
1611 ret = 1;
1612 } else
05fa785c
TG
1613 raw_spin_lock_nested(&busiest->lock,
1614 SINGLE_DEPTH_NESTING);
70574a99
AD
1615 }
1616 return ret;
1617}
1618
8f45e2b5
GH
1619#endif /* CONFIG_PREEMPT */
1620
1621/*
1622 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1623 */
1624static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1625{
1626 if (unlikely(!irqs_disabled())) {
1627 /* printk() doesn't work good under rq->lock */
05fa785c 1628 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1629 BUG_ON(1);
1630 }
1631
1632 return _double_lock_balance(this_rq, busiest);
1633}
1634
70574a99
AD
1635static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1636 __releases(busiest->lock)
1637{
05fa785c 1638 raw_spin_unlock(&busiest->lock);
70574a99
AD
1639 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1640}
1e3c88bd
PZ
1641
1642/*
1643 * double_rq_lock - safely lock two runqueues
1644 *
1645 * Note this does not disable interrupts like task_rq_lock,
1646 * you need to do so manually before calling.
1647 */
1648static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1649 __acquires(rq1->lock)
1650 __acquires(rq2->lock)
1651{
1652 BUG_ON(!irqs_disabled());
1653 if (rq1 == rq2) {
1654 raw_spin_lock(&rq1->lock);
1655 __acquire(rq2->lock); /* Fake it out ;) */
1656 } else {
1657 if (rq1 < rq2) {
1658 raw_spin_lock(&rq1->lock);
1659 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1660 } else {
1661 raw_spin_lock(&rq2->lock);
1662 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1663 }
1664 }
1e3c88bd
PZ
1665}
1666
1667/*
1668 * double_rq_unlock - safely unlock two runqueues
1669 *
1670 * Note this does not restore interrupts like task_rq_unlock,
1671 * you need to do so manually after calling.
1672 */
1673static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1674 __releases(rq1->lock)
1675 __releases(rq2->lock)
1676{
1677 raw_spin_unlock(&rq1->lock);
1678 if (rq1 != rq2)
1679 raw_spin_unlock(&rq2->lock);
1680 else
1681 __release(rq2->lock);
1682}
1683
d95f4122
MG
1684#else /* CONFIG_SMP */
1685
1686/*
1687 * double_rq_lock - safely lock two runqueues
1688 *
1689 * Note this does not disable interrupts like task_rq_lock,
1690 * you need to do so manually before calling.
1691 */
1692static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1693 __acquires(rq1->lock)
1694 __acquires(rq2->lock)
1695{
1696 BUG_ON(!irqs_disabled());
1697 BUG_ON(rq1 != rq2);
1698 raw_spin_lock(&rq1->lock);
1699 __acquire(rq2->lock); /* Fake it out ;) */
1700}
1701
1702/*
1703 * double_rq_unlock - safely unlock two runqueues
1704 *
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1707 */
1708static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 __releases(rq1->lock)
1710 __releases(rq2->lock)
1711{
1712 BUG_ON(rq1 != rq2);
1713 raw_spin_unlock(&rq1->lock);
1714 __release(rq2->lock);
1715}
1716
18d95a28
PZ
1717#endif
1718
74f5187a 1719static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1720static void update_sysctl(void);
acb4a848 1721static int get_update_sysctl_factor(void);
fdf3e95d 1722static void update_cpu_load(struct rq *this_rq);
dce48a84 1723
cd29fe6f
PZ
1724static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1725{
1726 set_task_rq(p, cpu);
1727#ifdef CONFIG_SMP
1728 /*
1729 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1730 * successfuly executed on another CPU. We must ensure that updates of
1731 * per-task data have been completed by this moment.
1732 */
1733 smp_wmb();
1734 task_thread_info(p)->cpu = cpu;
1735#endif
1736}
dce48a84 1737
1e3c88bd 1738static const struct sched_class rt_sched_class;
dd41f596 1739
34f971f6 1740#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1741#define for_each_class(class) \
1742 for (class = sched_class_highest; class; class = class->next)
dd41f596 1743
1e3c88bd
PZ
1744#include "sched_stats.h"
1745
c09595f6 1746static void inc_nr_running(struct rq *rq)
9c217245
IM
1747{
1748 rq->nr_running++;
9c217245
IM
1749}
1750
c09595f6 1751static void dec_nr_running(struct rq *rq)
9c217245
IM
1752{
1753 rq->nr_running--;
9c217245
IM
1754}
1755
45bf76df
IM
1756static void set_load_weight(struct task_struct *p)
1757{
dd41f596
IM
1758 /*
1759 * SCHED_IDLE tasks get minimal weight:
1760 */
1761 if (p->policy == SCHED_IDLE) {
1762 p->se.load.weight = WEIGHT_IDLEPRIO;
1763 p->se.load.inv_weight = WMULT_IDLEPRIO;
1764 return;
1765 }
71f8bd46 1766
dd41f596
IM
1767 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1768 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1769}
1770
371fd7e7 1771static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1772{
a64692a3 1773 update_rq_clock(rq);
dd41f596 1774 sched_info_queued(p);
371fd7e7 1775 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1776 p->se.on_rq = 1;
71f8bd46
IM
1777}
1778
371fd7e7 1779static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1780{
a64692a3 1781 update_rq_clock(rq);
46ac22ba 1782 sched_info_dequeued(p);
371fd7e7 1783 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1784 p->se.on_rq = 0;
71f8bd46
IM
1785}
1786
1e3c88bd
PZ
1787/*
1788 * activate_task - move a task to the runqueue.
1789 */
371fd7e7 1790static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1791{
1792 if (task_contributes_to_load(p))
1793 rq->nr_uninterruptible--;
1794
371fd7e7 1795 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1796 inc_nr_running(rq);
1797}
1798
1799/*
1800 * deactivate_task - remove a task from the runqueue.
1801 */
371fd7e7 1802static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1803{
1804 if (task_contributes_to_load(p))
1805 rq->nr_uninterruptible++;
1806
371fd7e7 1807 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1808 dec_nr_running(rq);
1809}
1810
b52bfee4
VP
1811#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1812
305e6835
VP
1813/*
1814 * There are no locks covering percpu hardirq/softirq time.
1815 * They are only modified in account_system_vtime, on corresponding CPU
1816 * with interrupts disabled. So, writes are safe.
1817 * They are read and saved off onto struct rq in update_rq_clock().
1818 * This may result in other CPU reading this CPU's irq time and can
1819 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1820 * or new value with a side effect of accounting a slice of irq time to wrong
1821 * task when irq is in progress while we read rq->clock. That is a worthy
1822 * compromise in place of having locks on each irq in account_system_time.
305e6835 1823 */
b52bfee4
VP
1824static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1825static DEFINE_PER_CPU(u64, cpu_softirq_time);
1826
1827static DEFINE_PER_CPU(u64, irq_start_time);
1828static int sched_clock_irqtime;
1829
1830void enable_sched_clock_irqtime(void)
1831{
1832 sched_clock_irqtime = 1;
1833}
1834
1835void disable_sched_clock_irqtime(void)
1836{
1837 sched_clock_irqtime = 0;
1838}
1839
8e92c201
PZ
1840#ifndef CONFIG_64BIT
1841static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1842
1843static inline void irq_time_write_begin(void)
1844{
1845 __this_cpu_inc(irq_time_seq.sequence);
1846 smp_wmb();
1847}
1848
1849static inline void irq_time_write_end(void)
1850{
1851 smp_wmb();
1852 __this_cpu_inc(irq_time_seq.sequence);
1853}
1854
1855static inline u64 irq_time_read(int cpu)
1856{
1857 u64 irq_time;
1858 unsigned seq;
1859
1860 do {
1861 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1862 irq_time = per_cpu(cpu_softirq_time, cpu) +
1863 per_cpu(cpu_hardirq_time, cpu);
1864 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1865
1866 return irq_time;
1867}
1868#else /* CONFIG_64BIT */
1869static inline void irq_time_write_begin(void)
1870{
1871}
1872
1873static inline void irq_time_write_end(void)
1874{
1875}
1876
1877static inline u64 irq_time_read(int cpu)
305e6835 1878{
305e6835
VP
1879 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1880}
8e92c201 1881#endif /* CONFIG_64BIT */
305e6835 1882
fe44d621
PZ
1883/*
1884 * Called before incrementing preempt_count on {soft,}irq_enter
1885 * and before decrementing preempt_count on {soft,}irq_exit.
1886 */
b52bfee4
VP
1887void account_system_vtime(struct task_struct *curr)
1888{
1889 unsigned long flags;
fe44d621 1890 s64 delta;
b52bfee4 1891 int cpu;
b52bfee4
VP
1892
1893 if (!sched_clock_irqtime)
1894 return;
1895
1896 local_irq_save(flags);
1897
b52bfee4 1898 cpu = smp_processor_id();
fe44d621
PZ
1899 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1900 __this_cpu_add(irq_start_time, delta);
1901
8e92c201 1902 irq_time_write_begin();
b52bfee4
VP
1903 /*
1904 * We do not account for softirq time from ksoftirqd here.
1905 * We want to continue accounting softirq time to ksoftirqd thread
1906 * in that case, so as not to confuse scheduler with a special task
1907 * that do not consume any time, but still wants to run.
1908 */
1909 if (hardirq_count())
fe44d621 1910 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1911 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1912 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1913
8e92c201 1914 irq_time_write_end();
b52bfee4
VP
1915 local_irq_restore(flags);
1916}
b7dadc38 1917EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1918
fe44d621 1919static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1920{
fe44d621
PZ
1921 s64 irq_delta;
1922
8e92c201 1923 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1924
1925 /*
1926 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1927 * this case when a previous update_rq_clock() happened inside a
1928 * {soft,}irq region.
1929 *
1930 * When this happens, we stop ->clock_task and only update the
1931 * prev_irq_time stamp to account for the part that fit, so that a next
1932 * update will consume the rest. This ensures ->clock_task is
1933 * monotonic.
1934 *
1935 * It does however cause some slight miss-attribution of {soft,}irq
1936 * time, a more accurate solution would be to update the irq_time using
1937 * the current rq->clock timestamp, except that would require using
1938 * atomic ops.
1939 */
1940 if (irq_delta > delta)
1941 irq_delta = delta;
1942
1943 rq->prev_irq_time += irq_delta;
1944 delta -= irq_delta;
1945 rq->clock_task += delta;
1946
1947 if (irq_delta && sched_feat(NONIRQ_POWER))
1948 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1949}
1950
abb74cef
VP
1951static int irqtime_account_hi_update(void)
1952{
1953 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1954 unsigned long flags;
1955 u64 latest_ns;
1956 int ret = 0;
1957
1958 local_irq_save(flags);
1959 latest_ns = this_cpu_read(cpu_hardirq_time);
1960 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1961 ret = 1;
1962 local_irq_restore(flags);
1963 return ret;
1964}
1965
1966static int irqtime_account_si_update(void)
1967{
1968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1969 unsigned long flags;
1970 u64 latest_ns;
1971 int ret = 0;
1972
1973 local_irq_save(flags);
1974 latest_ns = this_cpu_read(cpu_softirq_time);
1975 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1976 ret = 1;
1977 local_irq_restore(flags);
1978 return ret;
1979}
1980
fe44d621 1981#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1982
abb74cef
VP
1983#define sched_clock_irqtime (0)
1984
fe44d621 1985static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1986{
fe44d621 1987 rq->clock_task += delta;
305e6835
VP
1988}
1989
fe44d621 1990#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1991
1e3c88bd
PZ
1992#include "sched_idletask.c"
1993#include "sched_fair.c"
1994#include "sched_rt.c"
5091faa4 1995#include "sched_autogroup.c"
34f971f6 1996#include "sched_stoptask.c"
1e3c88bd
PZ
1997#ifdef CONFIG_SCHED_DEBUG
1998# include "sched_debug.c"
1999#endif
2000
34f971f6
PZ
2001void sched_set_stop_task(int cpu, struct task_struct *stop)
2002{
2003 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2004 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2005
2006 if (stop) {
2007 /*
2008 * Make it appear like a SCHED_FIFO task, its something
2009 * userspace knows about and won't get confused about.
2010 *
2011 * Also, it will make PI more or less work without too
2012 * much confusion -- but then, stop work should not
2013 * rely on PI working anyway.
2014 */
2015 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2016
2017 stop->sched_class = &stop_sched_class;
2018 }
2019
2020 cpu_rq(cpu)->stop = stop;
2021
2022 if (old_stop) {
2023 /*
2024 * Reset it back to a normal scheduling class so that
2025 * it can die in pieces.
2026 */
2027 old_stop->sched_class = &rt_sched_class;
2028 }
2029}
2030
14531189 2031/*
dd41f596 2032 * __normal_prio - return the priority that is based on the static prio
14531189 2033 */
14531189
IM
2034static inline int __normal_prio(struct task_struct *p)
2035{
dd41f596 2036 return p->static_prio;
14531189
IM
2037}
2038
b29739f9
IM
2039/*
2040 * Calculate the expected normal priority: i.e. priority
2041 * without taking RT-inheritance into account. Might be
2042 * boosted by interactivity modifiers. Changes upon fork,
2043 * setprio syscalls, and whenever the interactivity
2044 * estimator recalculates.
2045 */
36c8b586 2046static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2047{
2048 int prio;
2049
e05606d3 2050 if (task_has_rt_policy(p))
b29739f9
IM
2051 prio = MAX_RT_PRIO-1 - p->rt_priority;
2052 else
2053 prio = __normal_prio(p);
2054 return prio;
2055}
2056
2057/*
2058 * Calculate the current priority, i.e. the priority
2059 * taken into account by the scheduler. This value might
2060 * be boosted by RT tasks, or might be boosted by
2061 * interactivity modifiers. Will be RT if the task got
2062 * RT-boosted. If not then it returns p->normal_prio.
2063 */
36c8b586 2064static int effective_prio(struct task_struct *p)
b29739f9
IM
2065{
2066 p->normal_prio = normal_prio(p);
2067 /*
2068 * If we are RT tasks or we were boosted to RT priority,
2069 * keep the priority unchanged. Otherwise, update priority
2070 * to the normal priority:
2071 */
2072 if (!rt_prio(p->prio))
2073 return p->normal_prio;
2074 return p->prio;
2075}
2076
1da177e4
LT
2077/**
2078 * task_curr - is this task currently executing on a CPU?
2079 * @p: the task in question.
2080 */
36c8b586 2081inline int task_curr(const struct task_struct *p)
1da177e4
LT
2082{
2083 return cpu_curr(task_cpu(p)) == p;
2084}
2085
cb469845
SR
2086static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2087 const struct sched_class *prev_class,
da7a735e 2088 int oldprio)
cb469845
SR
2089{
2090 if (prev_class != p->sched_class) {
2091 if (prev_class->switched_from)
da7a735e
PZ
2092 prev_class->switched_from(rq, p);
2093 p->sched_class->switched_to(rq, p);
2094 } else if (oldprio != p->prio)
2095 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2096}
2097
1e5a7405
PZ
2098static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2099{
2100 const struct sched_class *class;
2101
2102 if (p->sched_class == rq->curr->sched_class) {
2103 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2104 } else {
2105 for_each_class(class) {
2106 if (class == rq->curr->sched_class)
2107 break;
2108 if (class == p->sched_class) {
2109 resched_task(rq->curr);
2110 break;
2111 }
2112 }
2113 }
2114
2115 /*
2116 * A queue event has occurred, and we're going to schedule. In
2117 * this case, we can save a useless back to back clock update.
2118 */
f26f9aff 2119 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2120 rq->skip_clock_update = 1;
2121}
2122
1da177e4 2123#ifdef CONFIG_SMP
cc367732
IM
2124/*
2125 * Is this task likely cache-hot:
2126 */
e7693a36 2127static int
cc367732
IM
2128task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2129{
2130 s64 delta;
2131
e6c8fba7
PZ
2132 if (p->sched_class != &fair_sched_class)
2133 return 0;
2134
ef8002f6
NR
2135 if (unlikely(p->policy == SCHED_IDLE))
2136 return 0;
2137
f540a608
IM
2138 /*
2139 * Buddy candidates are cache hot:
2140 */
f685ceac 2141 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2142 (&p->se == cfs_rq_of(&p->se)->next ||
2143 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2144 return 1;
2145
6bc1665b
IM
2146 if (sysctl_sched_migration_cost == -1)
2147 return 1;
2148 if (sysctl_sched_migration_cost == 0)
2149 return 0;
2150
cc367732
IM
2151 delta = now - p->se.exec_start;
2152
2153 return delta < (s64)sysctl_sched_migration_cost;
2154}
2155
dd41f596 2156void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2157{
e2912009
PZ
2158#ifdef CONFIG_SCHED_DEBUG
2159 /*
2160 * We should never call set_task_cpu() on a blocked task,
2161 * ttwu() will sort out the placement.
2162 */
077614ee
PZ
2163 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2164 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2165#endif
2166
de1d7286 2167 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2168
0c69774e
PZ
2169 if (task_cpu(p) != new_cpu) {
2170 p->se.nr_migrations++;
2171 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2172 }
dd41f596
IM
2173
2174 __set_task_cpu(p, new_cpu);
c65cc870
IM
2175}
2176
969c7921 2177struct migration_arg {
36c8b586 2178 struct task_struct *task;
1da177e4 2179 int dest_cpu;
70b97a7f 2180};
1da177e4 2181
969c7921
TH
2182static int migration_cpu_stop(void *data);
2183
1da177e4
LT
2184/*
2185 * The task's runqueue lock must be held.
2186 * Returns true if you have to wait for migration thread.
2187 */
b7a2b39d 2188static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2189{
1da177e4
LT
2190 /*
2191 * If the task is not on a runqueue (and not running), then
e2912009 2192 * the next wake-up will properly place the task.
1da177e4 2193 */
969c7921 2194 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2195}
2196
2197/*
2198 * wait_task_inactive - wait for a thread to unschedule.
2199 *
85ba2d86
RM
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2206 *
1da177e4
LT
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2212 */
85ba2d86 2213unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2214{
2215 unsigned long flags;
dd41f596 2216 int running, on_rq;
85ba2d86 2217 unsigned long ncsw;
70b97a7f 2218 struct rq *rq;
1da177e4 2219
3a5c359a
AK
2220 for (;;) {
2221 /*
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2225 * work out!
2226 */
2227 rq = task_rq(p);
fa490cfd 2228
3a5c359a
AK
2229 /*
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2232 * any locks.
2233 *
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2239 */
85ba2d86
RM
2240 while (task_running(rq, p)) {
2241 if (match_state && unlikely(p->state != match_state))
2242 return 0;
3a5c359a 2243 cpu_relax();
85ba2d86 2244 }
fa490cfd 2245
3a5c359a
AK
2246 /*
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2250 */
2251 rq = task_rq_lock(p, &flags);
27a9da65 2252 trace_sched_wait_task(p);
3a5c359a
AK
2253 running = task_running(rq, p);
2254 on_rq = p->se.on_rq;
85ba2d86 2255 ncsw = 0;
f31e11d8 2256 if (!match_state || p->state == match_state)
93dcf55f 2257 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2258 task_rq_unlock(rq, &flags);
fa490cfd 2259
85ba2d86
RM
2260 /*
2261 * If it changed from the expected state, bail out now.
2262 */
2263 if (unlikely(!ncsw))
2264 break;
2265
3a5c359a
AK
2266 /*
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2269 *
2270 * Oops. Go back and try again..
2271 */
2272 if (unlikely(running)) {
2273 cpu_relax();
2274 continue;
2275 }
fa490cfd 2276
3a5c359a
AK
2277 /*
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2280 * preempted!
2281 *
80dd99b3 2282 * So if it was still runnable (but just not actively
3a5c359a
AK
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2285 */
2286 if (unlikely(on_rq)) {
8eb90c30
TG
2287 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2288
2289 set_current_state(TASK_UNINTERRUPTIBLE);
2290 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2291 continue;
2292 }
fa490cfd 2293
3a5c359a
AK
2294 /*
2295 * Ahh, all good. It wasn't running, and it wasn't
2296 * runnable, which means that it will never become
2297 * running in the future either. We're all done!
2298 */
2299 break;
2300 }
85ba2d86
RM
2301
2302 return ncsw;
1da177e4
LT
2303}
2304
2305/***
2306 * kick_process - kick a running thread to enter/exit the kernel
2307 * @p: the to-be-kicked thread
2308 *
2309 * Cause a process which is running on another CPU to enter
2310 * kernel-mode, without any delay. (to get signals handled.)
2311 *
25985edc 2312 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2313 * because all it wants to ensure is that the remote task enters
2314 * the kernel. If the IPI races and the task has been migrated
2315 * to another CPU then no harm is done and the purpose has been
2316 * achieved as well.
2317 */
36c8b586 2318void kick_process(struct task_struct *p)
1da177e4
LT
2319{
2320 int cpu;
2321
2322 preempt_disable();
2323 cpu = task_cpu(p);
2324 if ((cpu != smp_processor_id()) && task_curr(p))
2325 smp_send_reschedule(cpu);
2326 preempt_enable();
2327}
b43e3521 2328EXPORT_SYMBOL_GPL(kick_process);
476d139c 2329#endif /* CONFIG_SMP */
1da177e4 2330
970b13ba 2331#ifdef CONFIG_SMP
30da688e
ON
2332/*
2333 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2334 */
5da9a0fb
PZ
2335static int select_fallback_rq(int cpu, struct task_struct *p)
2336{
2337 int dest_cpu;
2338 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2339
2340 /* Look for allowed, online CPU in same node. */
2341 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2342 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2343 return dest_cpu;
2344
2345 /* Any allowed, online CPU? */
2346 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2347 if (dest_cpu < nr_cpu_ids)
2348 return dest_cpu;
2349
2350 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2351 dest_cpu = cpuset_cpus_allowed_fallback(p);
2352 /*
2353 * Don't tell them about moving exiting tasks or
2354 * kernel threads (both mm NULL), since they never
2355 * leave kernel.
2356 */
2357 if (p->mm && printk_ratelimit()) {
2358 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2359 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2360 }
2361
2362 return dest_cpu;
2363}
2364
e2912009 2365/*
30da688e 2366 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2367 */
970b13ba 2368static inline
0017d735 2369int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2370{
0017d735 2371 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2372
2373 /*
2374 * In order not to call set_task_cpu() on a blocking task we need
2375 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2376 * cpu.
2377 *
2378 * Since this is common to all placement strategies, this lives here.
2379 *
2380 * [ this allows ->select_task() to simply return task_cpu(p) and
2381 * not worry about this generic constraint ]
2382 */
2383 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2384 !cpu_online(cpu)))
5da9a0fb 2385 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2386
2387 return cpu;
970b13ba 2388}
09a40af5
MG
2389
2390static void update_avg(u64 *avg, u64 sample)
2391{
2392 s64 diff = sample - *avg;
2393 *avg += diff >> 3;
2394}
970b13ba
PZ
2395#endif
2396
9ed3811a
TH
2397static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2398 bool is_sync, bool is_migrate, bool is_local,
2399 unsigned long en_flags)
2400{
2401 schedstat_inc(p, se.statistics.nr_wakeups);
2402 if (is_sync)
2403 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2404 if (is_migrate)
2405 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2406 if (is_local)
2407 schedstat_inc(p, se.statistics.nr_wakeups_local);
2408 else
2409 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2410
2411 activate_task(rq, p, en_flags);
2412}
2413
2414static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2415 int wake_flags, bool success)
2416{
2417 trace_sched_wakeup(p, success);
2418 check_preempt_curr(rq, p, wake_flags);
2419
2420 p->state = TASK_RUNNING;
2421#ifdef CONFIG_SMP
2422 if (p->sched_class->task_woken)
2423 p->sched_class->task_woken(rq, p);
2424
2425 if (unlikely(rq->idle_stamp)) {
2426 u64 delta = rq->clock - rq->idle_stamp;
2427 u64 max = 2*sysctl_sched_migration_cost;
2428
2429 if (delta > max)
2430 rq->avg_idle = max;
2431 else
2432 update_avg(&rq->avg_idle, delta);
2433 rq->idle_stamp = 0;
2434 }
2435#endif
21aa9af0
TH
2436 /* if a worker is waking up, notify workqueue */
2437 if ((p->flags & PF_WQ_WORKER) && success)
2438 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2439}
2440
2441/**
1da177e4 2442 * try_to_wake_up - wake up a thread
9ed3811a 2443 * @p: the thread to be awakened
1da177e4 2444 * @state: the mask of task states that can be woken
9ed3811a 2445 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2446 *
2447 * Put it on the run-queue if it's not already there. The "current"
2448 * thread is always on the run-queue (except when the actual
2449 * re-schedule is in progress), and as such you're allowed to do
2450 * the simpler "current->state = TASK_RUNNING" to mark yourself
2451 * runnable without the overhead of this.
2452 *
9ed3811a
TH
2453 * Returns %true if @p was woken up, %false if it was already running
2454 * or @state didn't match @p's state.
1da177e4 2455 */
7d478721
PZ
2456static int try_to_wake_up(struct task_struct *p, unsigned int state,
2457 int wake_flags)
1da177e4 2458{
cc367732 2459 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2460 unsigned long flags;
371fd7e7 2461 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2462 struct rq *rq;
1da177e4 2463
e9c84311 2464 this_cpu = get_cpu();
2398f2c6 2465
04e2f174 2466 smp_wmb();
ab3b3aa5 2467 rq = task_rq_lock(p, &flags);
e9c84311 2468 if (!(p->state & state))
1da177e4
LT
2469 goto out;
2470
dd41f596 2471 if (p->se.on_rq)
1da177e4
LT
2472 goto out_running;
2473
2474 cpu = task_cpu(p);
cc367732 2475 orig_cpu = cpu;
1da177e4
LT
2476
2477#ifdef CONFIG_SMP
2478 if (unlikely(task_running(rq, p)))
2479 goto out_activate;
2480
e9c84311
PZ
2481 /*
2482 * In order to handle concurrent wakeups and release the rq->lock
2483 * we put the task in TASK_WAKING state.
eb24073b
IM
2484 *
2485 * First fix up the nr_uninterruptible count:
e9c84311 2486 */
cc87f76a
PZ
2487 if (task_contributes_to_load(p)) {
2488 if (likely(cpu_online(orig_cpu)))
2489 rq->nr_uninterruptible--;
2490 else
2491 this_rq()->nr_uninterruptible--;
2492 }
e9c84311 2493 p->state = TASK_WAKING;
efbbd05a 2494
371fd7e7 2495 if (p->sched_class->task_waking) {
efbbd05a 2496 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2497 en_flags |= ENQUEUE_WAKING;
2498 }
efbbd05a 2499
0017d735
PZ
2500 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2501 if (cpu != orig_cpu)
5d2f5a61 2502 set_task_cpu(p, cpu);
0017d735 2503 __task_rq_unlock(rq);
ab19cb23 2504
0970d299
PZ
2505 rq = cpu_rq(cpu);
2506 raw_spin_lock(&rq->lock);
f5dc3753 2507
0970d299
PZ
2508 /*
2509 * We migrated the task without holding either rq->lock, however
2510 * since the task is not on the task list itself, nobody else
2511 * will try and migrate the task, hence the rq should match the
2512 * cpu we just moved it to.
2513 */
2514 WARN_ON(task_cpu(p) != cpu);
e9c84311 2515 WARN_ON(p->state != TASK_WAKING);
1da177e4 2516
e7693a36
GH
2517#ifdef CONFIG_SCHEDSTATS
2518 schedstat_inc(rq, ttwu_count);
2519 if (cpu == this_cpu)
2520 schedstat_inc(rq, ttwu_local);
2521 else {
2522 struct sched_domain *sd;
2523 for_each_domain(this_cpu, sd) {
758b2cdc 2524 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2525 schedstat_inc(sd, ttwu_wake_remote);
2526 break;
2527 }
2528 }
2529 }
6d6bc0ad 2530#endif /* CONFIG_SCHEDSTATS */
e7693a36 2531
1da177e4
LT
2532out_activate:
2533#endif /* CONFIG_SMP */
9ed3811a
TH
2534 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2535 cpu == this_cpu, en_flags);
1da177e4 2536 success = 1;
1da177e4 2537out_running:
9ed3811a 2538 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2539out:
2540 task_rq_unlock(rq, &flags);
e9c84311 2541 put_cpu();
1da177e4
LT
2542
2543 return success;
2544}
2545
21aa9af0
TH
2546/**
2547 * try_to_wake_up_local - try to wake up a local task with rq lock held
2548 * @p: the thread to be awakened
2549 *
b595076a 2550 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2551 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2552 * the current task. this_rq() stays locked over invocation.
2553 */
2554static void try_to_wake_up_local(struct task_struct *p)
2555{
2556 struct rq *rq = task_rq(p);
2557 bool success = false;
2558
2559 BUG_ON(rq != this_rq());
2560 BUG_ON(p == current);
2561 lockdep_assert_held(&rq->lock);
2562
2563 if (!(p->state & TASK_NORMAL))
2564 return;
2565
2566 if (!p->se.on_rq) {
2567 if (likely(!task_running(rq, p))) {
2568 schedstat_inc(rq, ttwu_count);
2569 schedstat_inc(rq, ttwu_local);
2570 }
2571 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2572 success = true;
2573 }
2574 ttwu_post_activation(p, rq, 0, success);
2575}
2576
50fa610a
DH
2577/**
2578 * wake_up_process - Wake up a specific process
2579 * @p: The process to be woken up.
2580 *
2581 * Attempt to wake up the nominated process and move it to the set of runnable
2582 * processes. Returns 1 if the process was woken up, 0 if it was already
2583 * running.
2584 *
2585 * It may be assumed that this function implies a write memory barrier before
2586 * changing the task state if and only if any tasks are woken up.
2587 */
7ad5b3a5 2588int wake_up_process(struct task_struct *p)
1da177e4 2589{
d9514f6c 2590 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2591}
1da177e4
LT
2592EXPORT_SYMBOL(wake_up_process);
2593
7ad5b3a5 2594int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2595{
2596 return try_to_wake_up(p, state, 0);
2597}
2598
1da177e4
LT
2599/*
2600 * Perform scheduler related setup for a newly forked process p.
2601 * p is forked by current.
dd41f596
IM
2602 *
2603 * __sched_fork() is basic setup used by init_idle() too:
2604 */
2605static void __sched_fork(struct task_struct *p)
2606{
dd41f596
IM
2607 p->se.exec_start = 0;
2608 p->se.sum_exec_runtime = 0;
f6cf891c 2609 p->se.prev_sum_exec_runtime = 0;
6c594c21 2610 p->se.nr_migrations = 0;
da7a735e 2611 p->se.vruntime = 0;
6cfb0d5d
IM
2612
2613#ifdef CONFIG_SCHEDSTATS
41acab88 2614 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2615#endif
476d139c 2616
fa717060 2617 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2618 p->se.on_rq = 0;
4a55bd5e 2619 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2620
e107be36
AK
2621#ifdef CONFIG_PREEMPT_NOTIFIERS
2622 INIT_HLIST_HEAD(&p->preempt_notifiers);
2623#endif
dd41f596
IM
2624}
2625
2626/*
2627 * fork()/clone()-time setup:
2628 */
2629void sched_fork(struct task_struct *p, int clone_flags)
2630{
2631 int cpu = get_cpu();
2632
2633 __sched_fork(p);
06b83b5f 2634 /*
0017d735 2635 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2636 * nobody will actually run it, and a signal or other external
2637 * event cannot wake it up and insert it on the runqueue either.
2638 */
0017d735 2639 p->state = TASK_RUNNING;
dd41f596 2640
b9dc29e7
MG
2641 /*
2642 * Revert to default priority/policy on fork if requested.
2643 */
2644 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2645 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2646 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2647 p->normal_prio = p->static_prio;
2648 }
b9dc29e7 2649
6c697bdf
MG
2650 if (PRIO_TO_NICE(p->static_prio) < 0) {
2651 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2652 p->normal_prio = p->static_prio;
6c697bdf
MG
2653 set_load_weight(p);
2654 }
2655
b9dc29e7
MG
2656 /*
2657 * We don't need the reset flag anymore after the fork. It has
2658 * fulfilled its duty:
2659 */
2660 p->sched_reset_on_fork = 0;
2661 }
ca94c442 2662
f83f9ac2
PW
2663 /*
2664 * Make sure we do not leak PI boosting priority to the child.
2665 */
2666 p->prio = current->normal_prio;
2667
2ddbf952
HS
2668 if (!rt_prio(p->prio))
2669 p->sched_class = &fair_sched_class;
b29739f9 2670
cd29fe6f
PZ
2671 if (p->sched_class->task_fork)
2672 p->sched_class->task_fork(p);
2673
86951599
PZ
2674 /*
2675 * The child is not yet in the pid-hash so no cgroup attach races,
2676 * and the cgroup is pinned to this child due to cgroup_fork()
2677 * is ran before sched_fork().
2678 *
2679 * Silence PROVE_RCU.
2680 */
2681 rcu_read_lock();
5f3edc1b 2682 set_task_cpu(p, cpu);
86951599 2683 rcu_read_unlock();
5f3edc1b 2684
52f17b6c 2685#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2686 if (likely(sched_info_on()))
52f17b6c 2687 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2688#endif
d6077cb8 2689#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2690 p->oncpu = 0;
2691#endif
1da177e4 2692#ifdef CONFIG_PREEMPT
4866cde0 2693 /* Want to start with kernel preemption disabled. */
a1261f54 2694 task_thread_info(p)->preempt_count = 1;
1da177e4 2695#endif
806c09a7 2696#ifdef CONFIG_SMP
917b627d 2697 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2698#endif
917b627d 2699
476d139c 2700 put_cpu();
1da177e4
LT
2701}
2702
2703/*
2704 * wake_up_new_task - wake up a newly created task for the first time.
2705 *
2706 * This function will do some initial scheduler statistics housekeeping
2707 * that must be done for every newly created context, then puts the task
2708 * on the runqueue and wakes it.
2709 */
7ad5b3a5 2710void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2711{
2712 unsigned long flags;
dd41f596 2713 struct rq *rq;
c890692b 2714 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2715
2716#ifdef CONFIG_SMP
0017d735
PZ
2717 rq = task_rq_lock(p, &flags);
2718 p->state = TASK_WAKING;
2719
fabf318e
PZ
2720 /*
2721 * Fork balancing, do it here and not earlier because:
2722 * - cpus_allowed can change in the fork path
2723 * - any previously selected cpu might disappear through hotplug
2724 *
0017d735
PZ
2725 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2726 * without people poking at ->cpus_allowed.
fabf318e 2727 */
0017d735 2728 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2729 set_task_cpu(p, cpu);
1da177e4 2730
06b83b5f 2731 p->state = TASK_RUNNING;
0017d735
PZ
2732 task_rq_unlock(rq, &flags);
2733#endif
2734
2735 rq = task_rq_lock(p, &flags);
cd29fe6f 2736 activate_task(rq, p, 0);
27a9da65 2737 trace_sched_wakeup_new(p, 1);
a7558e01 2738 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2739#ifdef CONFIG_SMP
efbbd05a
PZ
2740 if (p->sched_class->task_woken)
2741 p->sched_class->task_woken(rq, p);
9a897c5a 2742#endif
dd41f596 2743 task_rq_unlock(rq, &flags);
fabf318e 2744 put_cpu();
1da177e4
LT
2745}
2746
e107be36
AK
2747#ifdef CONFIG_PREEMPT_NOTIFIERS
2748
2749/**
80dd99b3 2750 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2751 * @notifier: notifier struct to register
e107be36
AK
2752 */
2753void preempt_notifier_register(struct preempt_notifier *notifier)
2754{
2755 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2756}
2757EXPORT_SYMBOL_GPL(preempt_notifier_register);
2758
2759/**
2760 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2761 * @notifier: notifier struct to unregister
e107be36
AK
2762 *
2763 * This is safe to call from within a preemption notifier.
2764 */
2765void preempt_notifier_unregister(struct preempt_notifier *notifier)
2766{
2767 hlist_del(&notifier->link);
2768}
2769EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2770
2771static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2772{
2773 struct preempt_notifier *notifier;
2774 struct hlist_node *node;
2775
2776 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2777 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2778}
2779
2780static void
2781fire_sched_out_preempt_notifiers(struct task_struct *curr,
2782 struct task_struct *next)
2783{
2784 struct preempt_notifier *notifier;
2785 struct hlist_node *node;
2786
2787 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2788 notifier->ops->sched_out(notifier, next);
2789}
2790
6d6bc0ad 2791#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2792
2793static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2794{
2795}
2796
2797static void
2798fire_sched_out_preempt_notifiers(struct task_struct *curr,
2799 struct task_struct *next)
2800{
2801}
2802
6d6bc0ad 2803#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2804
4866cde0
NP
2805/**
2806 * prepare_task_switch - prepare to switch tasks
2807 * @rq: the runqueue preparing to switch
421cee29 2808 * @prev: the current task that is being switched out
4866cde0
NP
2809 * @next: the task we are going to switch to.
2810 *
2811 * This is called with the rq lock held and interrupts off. It must
2812 * be paired with a subsequent finish_task_switch after the context
2813 * switch.
2814 *
2815 * prepare_task_switch sets up locking and calls architecture specific
2816 * hooks.
2817 */
e107be36
AK
2818static inline void
2819prepare_task_switch(struct rq *rq, struct task_struct *prev,
2820 struct task_struct *next)
4866cde0 2821{
fe4b04fa
PZ
2822 sched_info_switch(prev, next);
2823 perf_event_task_sched_out(prev, next);
e107be36 2824 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2825 prepare_lock_switch(rq, next);
2826 prepare_arch_switch(next);
fe4b04fa 2827 trace_sched_switch(prev, next);
4866cde0
NP
2828}
2829
1da177e4
LT
2830/**
2831 * finish_task_switch - clean up after a task-switch
344babaa 2832 * @rq: runqueue associated with task-switch
1da177e4
LT
2833 * @prev: the thread we just switched away from.
2834 *
4866cde0
NP
2835 * finish_task_switch must be called after the context switch, paired
2836 * with a prepare_task_switch call before the context switch.
2837 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2838 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2839 *
2840 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2841 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2842 * with the lock held can cause deadlocks; see schedule() for
2843 * details.)
2844 */
a9957449 2845static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2846 __releases(rq->lock)
2847{
1da177e4 2848 struct mm_struct *mm = rq->prev_mm;
55a101f8 2849 long prev_state;
1da177e4
LT
2850
2851 rq->prev_mm = NULL;
2852
2853 /*
2854 * A task struct has one reference for the use as "current".
c394cc9f 2855 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2856 * schedule one last time. The schedule call will never return, and
2857 * the scheduled task must drop that reference.
c394cc9f 2858 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2859 * still held, otherwise prev could be scheduled on another cpu, die
2860 * there before we look at prev->state, and then the reference would
2861 * be dropped twice.
2862 * Manfred Spraul <manfred@colorfullife.com>
2863 */
55a101f8 2864 prev_state = prev->state;
4866cde0 2865 finish_arch_switch(prev);
8381f65d
JI
2866#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2867 local_irq_disable();
2868#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2869 perf_event_task_sched_in(current);
8381f65d
JI
2870#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2871 local_irq_enable();
2872#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2873 finish_lock_switch(rq, prev);
e8fa1362 2874
e107be36 2875 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2876 if (mm)
2877 mmdrop(mm);
c394cc9f 2878 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2879 /*
2880 * Remove function-return probe instances associated with this
2881 * task and put them back on the free list.
9761eea8 2882 */
c6fd91f0 2883 kprobe_flush_task(prev);
1da177e4 2884 put_task_struct(prev);
c6fd91f0 2885 }
1da177e4
LT
2886}
2887
3f029d3c
GH
2888#ifdef CONFIG_SMP
2889
2890/* assumes rq->lock is held */
2891static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2892{
2893 if (prev->sched_class->pre_schedule)
2894 prev->sched_class->pre_schedule(rq, prev);
2895}
2896
2897/* rq->lock is NOT held, but preemption is disabled */
2898static inline void post_schedule(struct rq *rq)
2899{
2900 if (rq->post_schedule) {
2901 unsigned long flags;
2902
05fa785c 2903 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2904 if (rq->curr->sched_class->post_schedule)
2905 rq->curr->sched_class->post_schedule(rq);
05fa785c 2906 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2907
2908 rq->post_schedule = 0;
2909 }
2910}
2911
2912#else
da19ab51 2913
3f029d3c
GH
2914static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2915{
2916}
2917
2918static inline void post_schedule(struct rq *rq)
2919{
1da177e4
LT
2920}
2921
3f029d3c
GH
2922#endif
2923
1da177e4
LT
2924/**
2925 * schedule_tail - first thing a freshly forked thread must call.
2926 * @prev: the thread we just switched away from.
2927 */
36c8b586 2928asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2929 __releases(rq->lock)
2930{
70b97a7f
IM
2931 struct rq *rq = this_rq();
2932
4866cde0 2933 finish_task_switch(rq, prev);
da19ab51 2934
3f029d3c
GH
2935 /*
2936 * FIXME: do we need to worry about rq being invalidated by the
2937 * task_switch?
2938 */
2939 post_schedule(rq);
70b97a7f 2940
4866cde0
NP
2941#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2942 /* In this case, finish_task_switch does not reenable preemption */
2943 preempt_enable();
2944#endif
1da177e4 2945 if (current->set_child_tid)
b488893a 2946 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2947}
2948
2949/*
2950 * context_switch - switch to the new MM and the new
2951 * thread's register state.
2952 */
dd41f596 2953static inline void
70b97a7f 2954context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2955 struct task_struct *next)
1da177e4 2956{
dd41f596 2957 struct mm_struct *mm, *oldmm;
1da177e4 2958
e107be36 2959 prepare_task_switch(rq, prev, next);
fe4b04fa 2960
dd41f596
IM
2961 mm = next->mm;
2962 oldmm = prev->active_mm;
9226d125
ZA
2963 /*
2964 * For paravirt, this is coupled with an exit in switch_to to
2965 * combine the page table reload and the switch backend into
2966 * one hypercall.
2967 */
224101ed 2968 arch_start_context_switch(prev);
9226d125 2969
31915ab4 2970 if (!mm) {
1da177e4
LT
2971 next->active_mm = oldmm;
2972 atomic_inc(&oldmm->mm_count);
2973 enter_lazy_tlb(oldmm, next);
2974 } else
2975 switch_mm(oldmm, mm, next);
2976
31915ab4 2977 if (!prev->mm) {
1da177e4 2978 prev->active_mm = NULL;
1da177e4
LT
2979 rq->prev_mm = oldmm;
2980 }
3a5f5e48
IM
2981 /*
2982 * Since the runqueue lock will be released by the next
2983 * task (which is an invalid locking op but in the case
2984 * of the scheduler it's an obvious special-case), so we
2985 * do an early lockdep release here:
2986 */
2987#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2988 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2989#endif
1da177e4
LT
2990
2991 /* Here we just switch the register state and the stack. */
2992 switch_to(prev, next, prev);
2993
dd41f596
IM
2994 barrier();
2995 /*
2996 * this_rq must be evaluated again because prev may have moved
2997 * CPUs since it called schedule(), thus the 'rq' on its stack
2998 * frame will be invalid.
2999 */
3000 finish_task_switch(this_rq(), prev);
1da177e4
LT
3001}
3002
3003/*
3004 * nr_running, nr_uninterruptible and nr_context_switches:
3005 *
3006 * externally visible scheduler statistics: current number of runnable
3007 * threads, current number of uninterruptible-sleeping threads, total
3008 * number of context switches performed since bootup.
3009 */
3010unsigned long nr_running(void)
3011{
3012 unsigned long i, sum = 0;
3013
3014 for_each_online_cpu(i)
3015 sum += cpu_rq(i)->nr_running;
3016
3017 return sum;
f711f609 3018}
1da177e4
LT
3019
3020unsigned long nr_uninterruptible(void)
f711f609 3021{
1da177e4 3022 unsigned long i, sum = 0;
f711f609 3023
0a945022 3024 for_each_possible_cpu(i)
1da177e4 3025 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3026
3027 /*
1da177e4
LT
3028 * Since we read the counters lockless, it might be slightly
3029 * inaccurate. Do not allow it to go below zero though:
f711f609 3030 */
1da177e4
LT
3031 if (unlikely((long)sum < 0))
3032 sum = 0;
f711f609 3033
1da177e4 3034 return sum;
f711f609 3035}
f711f609 3036
1da177e4 3037unsigned long long nr_context_switches(void)
46cb4b7c 3038{
cc94abfc
SR
3039 int i;
3040 unsigned long long sum = 0;
46cb4b7c 3041
0a945022 3042 for_each_possible_cpu(i)
1da177e4 3043 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3044
1da177e4
LT
3045 return sum;
3046}
483b4ee6 3047
1da177e4
LT
3048unsigned long nr_iowait(void)
3049{
3050 unsigned long i, sum = 0;
483b4ee6 3051
0a945022 3052 for_each_possible_cpu(i)
1da177e4 3053 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3054
1da177e4
LT
3055 return sum;
3056}
483b4ee6 3057
8c215bd3 3058unsigned long nr_iowait_cpu(int cpu)
69d25870 3059{
8c215bd3 3060 struct rq *this = cpu_rq(cpu);
69d25870
AV
3061 return atomic_read(&this->nr_iowait);
3062}
46cb4b7c 3063
69d25870
AV
3064unsigned long this_cpu_load(void)
3065{
3066 struct rq *this = this_rq();
3067 return this->cpu_load[0];
3068}
e790fb0b 3069
46cb4b7c 3070
dce48a84
TG
3071/* Variables and functions for calc_load */
3072static atomic_long_t calc_load_tasks;
3073static unsigned long calc_load_update;
3074unsigned long avenrun[3];
3075EXPORT_SYMBOL(avenrun);
46cb4b7c 3076
74f5187a
PZ
3077static long calc_load_fold_active(struct rq *this_rq)
3078{
3079 long nr_active, delta = 0;
3080
3081 nr_active = this_rq->nr_running;
3082 nr_active += (long) this_rq->nr_uninterruptible;
3083
3084 if (nr_active != this_rq->calc_load_active) {
3085 delta = nr_active - this_rq->calc_load_active;
3086 this_rq->calc_load_active = nr_active;
3087 }
3088
3089 return delta;
3090}
3091
0f004f5a
PZ
3092static unsigned long
3093calc_load(unsigned long load, unsigned long exp, unsigned long active)
3094{
3095 load *= exp;
3096 load += active * (FIXED_1 - exp);
3097 load += 1UL << (FSHIFT - 1);
3098 return load >> FSHIFT;
3099}
3100
74f5187a
PZ
3101#ifdef CONFIG_NO_HZ
3102/*
3103 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3104 *
3105 * When making the ILB scale, we should try to pull this in as well.
3106 */
3107static atomic_long_t calc_load_tasks_idle;
3108
3109static void calc_load_account_idle(struct rq *this_rq)
3110{
3111 long delta;
3112
3113 delta = calc_load_fold_active(this_rq);
3114 if (delta)
3115 atomic_long_add(delta, &calc_load_tasks_idle);
3116}
3117
3118static long calc_load_fold_idle(void)
3119{
3120 long delta = 0;
3121
3122 /*
3123 * Its got a race, we don't care...
3124 */
3125 if (atomic_long_read(&calc_load_tasks_idle))
3126 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3127
3128 return delta;
3129}
0f004f5a
PZ
3130
3131/**
3132 * fixed_power_int - compute: x^n, in O(log n) time
3133 *
3134 * @x: base of the power
3135 * @frac_bits: fractional bits of @x
3136 * @n: power to raise @x to.
3137 *
3138 * By exploiting the relation between the definition of the natural power
3139 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3140 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3141 * (where: n_i \elem {0, 1}, the binary vector representing n),
3142 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3143 * of course trivially computable in O(log_2 n), the length of our binary
3144 * vector.
3145 */
3146static unsigned long
3147fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3148{
3149 unsigned long result = 1UL << frac_bits;
3150
3151 if (n) for (;;) {
3152 if (n & 1) {
3153 result *= x;
3154 result += 1UL << (frac_bits - 1);
3155 result >>= frac_bits;
3156 }
3157 n >>= 1;
3158 if (!n)
3159 break;
3160 x *= x;
3161 x += 1UL << (frac_bits - 1);
3162 x >>= frac_bits;
3163 }
3164
3165 return result;
3166}
3167
3168/*
3169 * a1 = a0 * e + a * (1 - e)
3170 *
3171 * a2 = a1 * e + a * (1 - e)
3172 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3173 * = a0 * e^2 + a * (1 - e) * (1 + e)
3174 *
3175 * a3 = a2 * e + a * (1 - e)
3176 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3177 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3178 *
3179 * ...
3180 *
3181 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3182 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3183 * = a0 * e^n + a * (1 - e^n)
3184 *
3185 * [1] application of the geometric series:
3186 *
3187 * n 1 - x^(n+1)
3188 * S_n := \Sum x^i = -------------
3189 * i=0 1 - x
3190 */
3191static unsigned long
3192calc_load_n(unsigned long load, unsigned long exp,
3193 unsigned long active, unsigned int n)
3194{
3195
3196 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3197}
3198
3199/*
3200 * NO_HZ can leave us missing all per-cpu ticks calling
3201 * calc_load_account_active(), but since an idle CPU folds its delta into
3202 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3203 * in the pending idle delta if our idle period crossed a load cycle boundary.
3204 *
3205 * Once we've updated the global active value, we need to apply the exponential
3206 * weights adjusted to the number of cycles missed.
3207 */
3208static void calc_global_nohz(unsigned long ticks)
3209{
3210 long delta, active, n;
3211
3212 if (time_before(jiffies, calc_load_update))
3213 return;
3214
3215 /*
3216 * If we crossed a calc_load_update boundary, make sure to fold
3217 * any pending idle changes, the respective CPUs might have
3218 * missed the tick driven calc_load_account_active() update
3219 * due to NO_HZ.
3220 */
3221 delta = calc_load_fold_idle();
3222 if (delta)
3223 atomic_long_add(delta, &calc_load_tasks);
3224
3225 /*
3226 * If we were idle for multiple load cycles, apply them.
3227 */
3228 if (ticks >= LOAD_FREQ) {
3229 n = ticks / LOAD_FREQ;
3230
3231 active = atomic_long_read(&calc_load_tasks);
3232 active = active > 0 ? active * FIXED_1 : 0;
3233
3234 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3235 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3236 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3237
3238 calc_load_update += n * LOAD_FREQ;
3239 }
3240
3241 /*
3242 * Its possible the remainder of the above division also crosses
3243 * a LOAD_FREQ period, the regular check in calc_global_load()
3244 * which comes after this will take care of that.
3245 *
3246 * Consider us being 11 ticks before a cycle completion, and us
3247 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3248 * age us 4 cycles, and the test in calc_global_load() will
3249 * pick up the final one.
3250 */
3251}
74f5187a
PZ
3252#else
3253static void calc_load_account_idle(struct rq *this_rq)
3254{
3255}
3256
3257static inline long calc_load_fold_idle(void)
3258{
3259 return 0;
3260}
0f004f5a
PZ
3261
3262static void calc_global_nohz(unsigned long ticks)
3263{
3264}
74f5187a
PZ
3265#endif
3266
2d02494f
TG
3267/**
3268 * get_avenrun - get the load average array
3269 * @loads: pointer to dest load array
3270 * @offset: offset to add
3271 * @shift: shift count to shift the result left
3272 *
3273 * These values are estimates at best, so no need for locking.
3274 */
3275void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3276{
3277 loads[0] = (avenrun[0] + offset) << shift;
3278 loads[1] = (avenrun[1] + offset) << shift;
3279 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3280}
46cb4b7c 3281
46cb4b7c 3282/*
dce48a84
TG
3283 * calc_load - update the avenrun load estimates 10 ticks after the
3284 * CPUs have updated calc_load_tasks.
7835b98b 3285 */
0f004f5a 3286void calc_global_load(unsigned long ticks)
7835b98b 3287{
dce48a84 3288 long active;
1da177e4 3289
0f004f5a
PZ
3290 calc_global_nohz(ticks);
3291
3292 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3293 return;
1da177e4 3294
dce48a84
TG
3295 active = atomic_long_read(&calc_load_tasks);
3296 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3297
dce48a84
TG
3298 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3299 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3300 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3301
dce48a84
TG
3302 calc_load_update += LOAD_FREQ;
3303}
1da177e4 3304
dce48a84 3305/*
74f5187a
PZ
3306 * Called from update_cpu_load() to periodically update this CPU's
3307 * active count.
dce48a84
TG
3308 */
3309static void calc_load_account_active(struct rq *this_rq)
3310{
74f5187a 3311 long delta;
08c183f3 3312
74f5187a
PZ
3313 if (time_before(jiffies, this_rq->calc_load_update))
3314 return;
783609c6 3315
74f5187a
PZ
3316 delta = calc_load_fold_active(this_rq);
3317 delta += calc_load_fold_idle();
3318 if (delta)
dce48a84 3319 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3320
3321 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3322}
3323
fdf3e95d
VP
3324/*
3325 * The exact cpuload at various idx values, calculated at every tick would be
3326 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3327 *
3328 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3329 * on nth tick when cpu may be busy, then we have:
3330 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3331 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3332 *
3333 * decay_load_missed() below does efficient calculation of
3334 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3335 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3336 *
3337 * The calculation is approximated on a 128 point scale.
3338 * degrade_zero_ticks is the number of ticks after which load at any
3339 * particular idx is approximated to be zero.
3340 * degrade_factor is a precomputed table, a row for each load idx.
3341 * Each column corresponds to degradation factor for a power of two ticks,
3342 * based on 128 point scale.
3343 * Example:
3344 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3345 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3346 *
3347 * With this power of 2 load factors, we can degrade the load n times
3348 * by looking at 1 bits in n and doing as many mult/shift instead of
3349 * n mult/shifts needed by the exact degradation.
3350 */
3351#define DEGRADE_SHIFT 7
3352static const unsigned char
3353 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3354static const unsigned char
3355 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3356 {0, 0, 0, 0, 0, 0, 0, 0},
3357 {64, 32, 8, 0, 0, 0, 0, 0},
3358 {96, 72, 40, 12, 1, 0, 0},
3359 {112, 98, 75, 43, 15, 1, 0},
3360 {120, 112, 98, 76, 45, 16, 2} };
3361
3362/*
3363 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3364 * would be when CPU is idle and so we just decay the old load without
3365 * adding any new load.
3366 */
3367static unsigned long
3368decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3369{
3370 int j = 0;
3371
3372 if (!missed_updates)
3373 return load;
3374
3375 if (missed_updates >= degrade_zero_ticks[idx])
3376 return 0;
3377
3378 if (idx == 1)
3379 return load >> missed_updates;
3380
3381 while (missed_updates) {
3382 if (missed_updates % 2)
3383 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3384
3385 missed_updates >>= 1;
3386 j++;
3387 }
3388 return load;
3389}
3390
46cb4b7c 3391/*
dd41f596 3392 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3393 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3394 * every tick. We fix it up based on jiffies.
46cb4b7c 3395 */
dd41f596 3396static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3397{
495eca49 3398 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3399 unsigned long curr_jiffies = jiffies;
3400 unsigned long pending_updates;
dd41f596 3401 int i, scale;
46cb4b7c 3402
dd41f596 3403 this_rq->nr_load_updates++;
46cb4b7c 3404
fdf3e95d
VP
3405 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3406 if (curr_jiffies == this_rq->last_load_update_tick)
3407 return;
3408
3409 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3410 this_rq->last_load_update_tick = curr_jiffies;
3411
dd41f596 3412 /* Update our load: */
fdf3e95d
VP
3413 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3414 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3415 unsigned long old_load, new_load;
7d1e6a9b 3416
dd41f596 3417 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3418
dd41f596 3419 old_load = this_rq->cpu_load[i];
fdf3e95d 3420 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3421 new_load = this_load;
a25707f3
IM
3422 /*
3423 * Round up the averaging division if load is increasing. This
3424 * prevents us from getting stuck on 9 if the load is 10, for
3425 * example.
3426 */
3427 if (new_load > old_load)
fdf3e95d
VP
3428 new_load += scale - 1;
3429
3430 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3431 }
da2b71ed
SS
3432
3433 sched_avg_update(this_rq);
fdf3e95d
VP
3434}
3435
3436static void update_cpu_load_active(struct rq *this_rq)
3437{
3438 update_cpu_load(this_rq);
46cb4b7c 3439
74f5187a 3440 calc_load_account_active(this_rq);
46cb4b7c
SS
3441}
3442
dd41f596 3443#ifdef CONFIG_SMP
8a0be9ef 3444
46cb4b7c 3445/*
38022906
PZ
3446 * sched_exec - execve() is a valuable balancing opportunity, because at
3447 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3448 */
38022906 3449void sched_exec(void)
46cb4b7c 3450{
38022906 3451 struct task_struct *p = current;
1da177e4 3452 unsigned long flags;
70b97a7f 3453 struct rq *rq;
0017d735 3454 int dest_cpu;
46cb4b7c 3455
1da177e4 3456 rq = task_rq_lock(p, &flags);
0017d735
PZ
3457 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3458 if (dest_cpu == smp_processor_id())
3459 goto unlock;
38022906 3460
46cb4b7c 3461 /*
38022906 3462 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3463 */
30da688e 3464 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3465 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3466 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3467
1da177e4 3468 task_rq_unlock(rq, &flags);
969c7921 3469 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3470 return;
3471 }
0017d735 3472unlock:
1da177e4 3473 task_rq_unlock(rq, &flags);
1da177e4 3474}
dd41f596 3475
1da177e4
LT
3476#endif
3477
1da177e4
LT
3478DEFINE_PER_CPU(struct kernel_stat, kstat);
3479
3480EXPORT_PER_CPU_SYMBOL(kstat);
3481
3482/*
c5f8d995 3483 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3484 * @p in case that task is currently running.
c5f8d995
HS
3485 *
3486 * Called with task_rq_lock() held on @rq.
1da177e4 3487 */
c5f8d995
HS
3488static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3489{
3490 u64 ns = 0;
3491
3492 if (task_current(rq, p)) {
3493 update_rq_clock(rq);
305e6835 3494 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3495 if ((s64)ns < 0)
3496 ns = 0;
3497 }
3498
3499 return ns;
3500}
3501
bb34d92f 3502unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3503{
1da177e4 3504 unsigned long flags;
41b86e9c 3505 struct rq *rq;
bb34d92f 3506 u64 ns = 0;
48f24c4d 3507
41b86e9c 3508 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3509 ns = do_task_delta_exec(p, rq);
3510 task_rq_unlock(rq, &flags);
1508487e 3511
c5f8d995
HS
3512 return ns;
3513}
f06febc9 3514
c5f8d995
HS
3515/*
3516 * Return accounted runtime for the task.
3517 * In case the task is currently running, return the runtime plus current's
3518 * pending runtime that have not been accounted yet.
3519 */
3520unsigned long long task_sched_runtime(struct task_struct *p)
3521{
3522 unsigned long flags;
3523 struct rq *rq;
3524 u64 ns = 0;
3525
3526 rq = task_rq_lock(p, &flags);
3527 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3528 task_rq_unlock(rq, &flags);
3529
3530 return ns;
3531}
48f24c4d 3532
c5f8d995
HS
3533/*
3534 * Return sum_exec_runtime for the thread group.
3535 * In case the task is currently running, return the sum plus current's
3536 * pending runtime that have not been accounted yet.
3537 *
3538 * Note that the thread group might have other running tasks as well,
3539 * so the return value not includes other pending runtime that other
3540 * running tasks might have.
3541 */
3542unsigned long long thread_group_sched_runtime(struct task_struct *p)
3543{
3544 struct task_cputime totals;
3545 unsigned long flags;
3546 struct rq *rq;
3547 u64 ns;
3548
3549 rq = task_rq_lock(p, &flags);
3550 thread_group_cputime(p, &totals);
3551 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3552 task_rq_unlock(rq, &flags);
48f24c4d 3553
1da177e4
LT
3554 return ns;
3555}
3556
1da177e4
LT
3557/*
3558 * Account user cpu time to a process.
3559 * @p: the process that the cpu time gets accounted to
1da177e4 3560 * @cputime: the cpu time spent in user space since the last update
457533a7 3561 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3562 */
457533a7
MS
3563void account_user_time(struct task_struct *p, cputime_t cputime,
3564 cputime_t cputime_scaled)
1da177e4
LT
3565{
3566 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3567 cputime64_t tmp;
3568
457533a7 3569 /* Add user time to process. */
1da177e4 3570 p->utime = cputime_add(p->utime, cputime);
457533a7 3571 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3572 account_group_user_time(p, cputime);
1da177e4
LT
3573
3574 /* Add user time to cpustat. */
3575 tmp = cputime_to_cputime64(cputime);
3576 if (TASK_NICE(p) > 0)
3577 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3578 else
3579 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3580
3581 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3582 /* Account for user time used */
3583 acct_update_integrals(p);
1da177e4
LT
3584}
3585
94886b84
LV
3586/*
3587 * Account guest cpu time to a process.
3588 * @p: the process that the cpu time gets accounted to
3589 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3590 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3591 */
457533a7
MS
3592static void account_guest_time(struct task_struct *p, cputime_t cputime,
3593 cputime_t cputime_scaled)
94886b84
LV
3594{
3595 cputime64_t tmp;
3596 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3597
3598 tmp = cputime_to_cputime64(cputime);
3599
457533a7 3600 /* Add guest time to process. */
94886b84 3601 p->utime = cputime_add(p->utime, cputime);
457533a7 3602 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3603 account_group_user_time(p, cputime);
94886b84
LV
3604 p->gtime = cputime_add(p->gtime, cputime);
3605
457533a7 3606 /* Add guest time to cpustat. */
ce0e7b28
RO
3607 if (TASK_NICE(p) > 0) {
3608 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3609 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3610 } else {
3611 cpustat->user = cputime64_add(cpustat->user, tmp);
3612 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3613 }
94886b84
LV
3614}
3615
70a89a66
VP
3616/*
3617 * Account system cpu time to a process and desired cpustat field
3618 * @p: the process that the cpu time gets accounted to
3619 * @cputime: the cpu time spent in kernel space since the last update
3620 * @cputime_scaled: cputime scaled by cpu frequency
3621 * @target_cputime64: pointer to cpustat field that has to be updated
3622 */
3623static inline
3624void __account_system_time(struct task_struct *p, cputime_t cputime,
3625 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3626{
3627 cputime64_t tmp = cputime_to_cputime64(cputime);
3628
3629 /* Add system time to process. */
3630 p->stime = cputime_add(p->stime, cputime);
3631 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3632 account_group_system_time(p, cputime);
3633
3634 /* Add system time to cpustat. */
3635 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3636 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3637
3638 /* Account for system time used */
3639 acct_update_integrals(p);
3640}
3641
1da177e4
LT
3642/*
3643 * Account system cpu time to a process.
3644 * @p: the process that the cpu time gets accounted to
3645 * @hardirq_offset: the offset to subtract from hardirq_count()
3646 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3647 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3648 */
3649void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3650 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3651{
3652 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3653 cputime64_t *target_cputime64;
1da177e4 3654
983ed7a6 3655 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3656 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3657 return;
3658 }
94886b84 3659
1da177e4 3660 if (hardirq_count() - hardirq_offset)
70a89a66 3661 target_cputime64 = &cpustat->irq;
75e1056f 3662 else if (in_serving_softirq())
70a89a66 3663 target_cputime64 = &cpustat->softirq;
1da177e4 3664 else
70a89a66 3665 target_cputime64 = &cpustat->system;
ef12fefa 3666
70a89a66 3667 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3668}
3669
c66f08be 3670/*
1da177e4 3671 * Account for involuntary wait time.
544b4a1f 3672 * @cputime: the cpu time spent in involuntary wait
c66f08be 3673 */
79741dd3 3674void account_steal_time(cputime_t cputime)
c66f08be 3675{
79741dd3
MS
3676 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3677 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3678
3679 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3680}
3681
1da177e4 3682/*
79741dd3
MS
3683 * Account for idle time.
3684 * @cputime: the cpu time spent in idle wait
1da177e4 3685 */
79741dd3 3686void account_idle_time(cputime_t cputime)
1da177e4
LT
3687{
3688 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3689 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3690 struct rq *rq = this_rq();
1da177e4 3691
79741dd3
MS
3692 if (atomic_read(&rq->nr_iowait) > 0)
3693 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3694 else
3695 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3696}
3697
79741dd3
MS
3698#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3699
abb74cef
VP
3700#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3701/*
3702 * Account a tick to a process and cpustat
3703 * @p: the process that the cpu time gets accounted to
3704 * @user_tick: is the tick from userspace
3705 * @rq: the pointer to rq
3706 *
3707 * Tick demultiplexing follows the order
3708 * - pending hardirq update
3709 * - pending softirq update
3710 * - user_time
3711 * - idle_time
3712 * - system time
3713 * - check for guest_time
3714 * - else account as system_time
3715 *
3716 * Check for hardirq is done both for system and user time as there is
3717 * no timer going off while we are on hardirq and hence we may never get an
3718 * opportunity to update it solely in system time.
3719 * p->stime and friends are only updated on system time and not on irq
3720 * softirq as those do not count in task exec_runtime any more.
3721 */
3722static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3723 struct rq *rq)
3724{
3725 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3726 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3727 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3728
3729 if (irqtime_account_hi_update()) {
3730 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3731 } else if (irqtime_account_si_update()) {
3732 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3733 } else if (this_cpu_ksoftirqd() == p) {
3734 /*
3735 * ksoftirqd time do not get accounted in cpu_softirq_time.
3736 * So, we have to handle it separately here.
3737 * Also, p->stime needs to be updated for ksoftirqd.
3738 */
3739 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3740 &cpustat->softirq);
abb74cef
VP
3741 } else if (user_tick) {
3742 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3743 } else if (p == rq->idle) {
3744 account_idle_time(cputime_one_jiffy);
3745 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3746 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3747 } else {
3748 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3749 &cpustat->system);
3750 }
3751}
3752
3753static void irqtime_account_idle_ticks(int ticks)
3754{
3755 int i;
3756 struct rq *rq = this_rq();
3757
3758 for (i = 0; i < ticks; i++)
3759 irqtime_account_process_tick(current, 0, rq);
3760}
544b4a1f 3761#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3762static void irqtime_account_idle_ticks(int ticks) {}
3763static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3764 struct rq *rq) {}
544b4a1f 3765#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3766
3767/*
3768 * Account a single tick of cpu time.
3769 * @p: the process that the cpu time gets accounted to
3770 * @user_tick: indicates if the tick is a user or a system tick
3771 */
3772void account_process_tick(struct task_struct *p, int user_tick)
3773{
a42548a1 3774 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3775 struct rq *rq = this_rq();
3776
abb74cef
VP
3777 if (sched_clock_irqtime) {
3778 irqtime_account_process_tick(p, user_tick, rq);
3779 return;
3780 }
3781
79741dd3 3782 if (user_tick)
a42548a1 3783 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3784 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3785 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3786 one_jiffy_scaled);
3787 else
a42548a1 3788 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3789}
3790
3791/*
3792 * Account multiple ticks of steal time.
3793 * @p: the process from which the cpu time has been stolen
3794 * @ticks: number of stolen ticks
3795 */
3796void account_steal_ticks(unsigned long ticks)
3797{
3798 account_steal_time(jiffies_to_cputime(ticks));
3799}
3800
3801/*
3802 * Account multiple ticks of idle time.
3803 * @ticks: number of stolen ticks
3804 */
3805void account_idle_ticks(unsigned long ticks)
3806{
abb74cef
VP
3807
3808 if (sched_clock_irqtime) {
3809 irqtime_account_idle_ticks(ticks);
3810 return;
3811 }
3812
79741dd3 3813 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3814}
3815
79741dd3
MS
3816#endif
3817
49048622
BS
3818/*
3819 * Use precise platform statistics if available:
3820 */
3821#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3822void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3823{
d99ca3b9
HS
3824 *ut = p->utime;
3825 *st = p->stime;
49048622
BS
3826}
3827
0cf55e1e 3828void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3829{
0cf55e1e
HS
3830 struct task_cputime cputime;
3831
3832 thread_group_cputime(p, &cputime);
3833
3834 *ut = cputime.utime;
3835 *st = cputime.stime;
49048622
BS
3836}
3837#else
761b1d26
HS
3838
3839#ifndef nsecs_to_cputime
b7b20df9 3840# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3841#endif
3842
d180c5bc 3843void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3844{
d99ca3b9 3845 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3846
3847 /*
3848 * Use CFS's precise accounting:
3849 */
d180c5bc 3850 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3851
3852 if (total) {
e75e863d 3853 u64 temp = rtime;
d180c5bc 3854
e75e863d 3855 temp *= utime;
49048622 3856 do_div(temp, total);
d180c5bc
HS
3857 utime = (cputime_t)temp;
3858 } else
3859 utime = rtime;
49048622 3860
d180c5bc
HS
3861 /*
3862 * Compare with previous values, to keep monotonicity:
3863 */
761b1d26 3864 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3865 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3866
d99ca3b9
HS
3867 *ut = p->prev_utime;
3868 *st = p->prev_stime;
49048622
BS
3869}
3870
0cf55e1e
HS
3871/*
3872 * Must be called with siglock held.
3873 */
3874void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3875{
0cf55e1e
HS
3876 struct signal_struct *sig = p->signal;
3877 struct task_cputime cputime;
3878 cputime_t rtime, utime, total;
49048622 3879
0cf55e1e 3880 thread_group_cputime(p, &cputime);
49048622 3881
0cf55e1e
HS
3882 total = cputime_add(cputime.utime, cputime.stime);
3883 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3884
0cf55e1e 3885 if (total) {
e75e863d 3886 u64 temp = rtime;
49048622 3887
e75e863d 3888 temp *= cputime.utime;
0cf55e1e
HS
3889 do_div(temp, total);
3890 utime = (cputime_t)temp;
3891 } else
3892 utime = rtime;
3893
3894 sig->prev_utime = max(sig->prev_utime, utime);
3895 sig->prev_stime = max(sig->prev_stime,
3896 cputime_sub(rtime, sig->prev_utime));
3897
3898 *ut = sig->prev_utime;
3899 *st = sig->prev_stime;
49048622 3900}
49048622 3901#endif
49048622 3902
7835b98b
CL
3903/*
3904 * This function gets called by the timer code, with HZ frequency.
3905 * We call it with interrupts disabled.
3906 *
3907 * It also gets called by the fork code, when changing the parent's
3908 * timeslices.
3909 */
3910void scheduler_tick(void)
3911{
7835b98b
CL
3912 int cpu = smp_processor_id();
3913 struct rq *rq = cpu_rq(cpu);
dd41f596 3914 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3915
3916 sched_clock_tick();
dd41f596 3917
05fa785c 3918 raw_spin_lock(&rq->lock);
3e51f33f 3919 update_rq_clock(rq);
fdf3e95d 3920 update_cpu_load_active(rq);
fa85ae24 3921 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3922 raw_spin_unlock(&rq->lock);
7835b98b 3923
e9d2b064 3924 perf_event_task_tick();
e220d2dc 3925
e418e1c2 3926#ifdef CONFIG_SMP
dd41f596
IM
3927 rq->idle_at_tick = idle_cpu(cpu);
3928 trigger_load_balance(rq, cpu);
e418e1c2 3929#endif
1da177e4
LT
3930}
3931
132380a0 3932notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3933{
3934 if (in_lock_functions(addr)) {
3935 addr = CALLER_ADDR2;
3936 if (in_lock_functions(addr))
3937 addr = CALLER_ADDR3;
3938 }
3939 return addr;
3940}
1da177e4 3941
7e49fcce
SR
3942#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3943 defined(CONFIG_PREEMPT_TRACER))
3944
43627582 3945void __kprobes add_preempt_count(int val)
1da177e4 3946{
6cd8a4bb 3947#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3948 /*
3949 * Underflow?
3950 */
9a11b49a
IM
3951 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3952 return;
6cd8a4bb 3953#endif
1da177e4 3954 preempt_count() += val;
6cd8a4bb 3955#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3956 /*
3957 * Spinlock count overflowing soon?
3958 */
33859f7f
MOS
3959 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3960 PREEMPT_MASK - 10);
6cd8a4bb
SR
3961#endif
3962 if (preempt_count() == val)
3963 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3964}
3965EXPORT_SYMBOL(add_preempt_count);
3966
43627582 3967void __kprobes sub_preempt_count(int val)
1da177e4 3968{
6cd8a4bb 3969#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3970 /*
3971 * Underflow?
3972 */
01e3eb82 3973 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3974 return;
1da177e4
LT
3975 /*
3976 * Is the spinlock portion underflowing?
3977 */
9a11b49a
IM
3978 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3979 !(preempt_count() & PREEMPT_MASK)))
3980 return;
6cd8a4bb 3981#endif
9a11b49a 3982
6cd8a4bb
SR
3983 if (preempt_count() == val)
3984 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3985 preempt_count() -= val;
3986}
3987EXPORT_SYMBOL(sub_preempt_count);
3988
3989#endif
3990
3991/*
dd41f596 3992 * Print scheduling while atomic bug:
1da177e4 3993 */
dd41f596 3994static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3995{
838225b4
SS
3996 struct pt_regs *regs = get_irq_regs();
3997
3df0fc5b
PZ
3998 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3999 prev->comm, prev->pid, preempt_count());
838225b4 4000
dd41f596 4001 debug_show_held_locks(prev);
e21f5b15 4002 print_modules();
dd41f596
IM
4003 if (irqs_disabled())
4004 print_irqtrace_events(prev);
838225b4
SS
4005
4006 if (regs)
4007 show_regs(regs);
4008 else
4009 dump_stack();
dd41f596 4010}
1da177e4 4011
dd41f596
IM
4012/*
4013 * Various schedule()-time debugging checks and statistics:
4014 */
4015static inline void schedule_debug(struct task_struct *prev)
4016{
1da177e4 4017 /*
41a2d6cf 4018 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4019 * schedule() atomically, we ignore that path for now.
4020 * Otherwise, whine if we are scheduling when we should not be.
4021 */
3f33a7ce 4022 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4023 __schedule_bug(prev);
4024
1da177e4
LT
4025 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4026
2d72376b 4027 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4028#ifdef CONFIG_SCHEDSTATS
4029 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4030 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4031 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4032 }
4033#endif
dd41f596
IM
4034}
4035
6cecd084 4036static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4037{
a64692a3
MG
4038 if (prev->se.on_rq)
4039 update_rq_clock(rq);
6cecd084 4040 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4041}
4042
dd41f596
IM
4043/*
4044 * Pick up the highest-prio task:
4045 */
4046static inline struct task_struct *
b67802ea 4047pick_next_task(struct rq *rq)
dd41f596 4048{
5522d5d5 4049 const struct sched_class *class;
dd41f596 4050 struct task_struct *p;
1da177e4
LT
4051
4052 /*
dd41f596
IM
4053 * Optimization: we know that if all tasks are in
4054 * the fair class we can call that function directly:
1da177e4 4055 */
dd41f596 4056 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4057 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4058 if (likely(p))
4059 return p;
1da177e4
LT
4060 }
4061
34f971f6 4062 for_each_class(class) {
fb8d4724 4063 p = class->pick_next_task(rq);
dd41f596
IM
4064 if (p)
4065 return p;
dd41f596 4066 }
34f971f6
PZ
4067
4068 BUG(); /* the idle class will always have a runnable task */
dd41f596 4069}
1da177e4 4070
dd41f596
IM
4071/*
4072 * schedule() is the main scheduler function.
4073 */
ff743345 4074asmlinkage void __sched schedule(void)
dd41f596
IM
4075{
4076 struct task_struct *prev, *next;
67ca7bde 4077 unsigned long *switch_count;
dd41f596 4078 struct rq *rq;
31656519 4079 int cpu;
dd41f596 4080
ff743345
PZ
4081need_resched:
4082 preempt_disable();
dd41f596
IM
4083 cpu = smp_processor_id();
4084 rq = cpu_rq(cpu);
25502a6c 4085 rcu_note_context_switch(cpu);
dd41f596 4086 prev = rq->curr;
dd41f596 4087
dd41f596 4088 schedule_debug(prev);
1da177e4 4089
31656519 4090 if (sched_feat(HRTICK))
f333fdc9 4091 hrtick_clear(rq);
8f4d37ec 4092
05fa785c 4093 raw_spin_lock_irq(&rq->lock);
1da177e4 4094
246d86b5 4095 switch_count = &prev->nivcsw;
1da177e4 4096 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4097 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4098 prev->state = TASK_RUNNING;
21aa9af0
TH
4099 } else {
4100 /*
4101 * If a worker is going to sleep, notify and
4102 * ask workqueue whether it wants to wake up a
4103 * task to maintain concurrency. If so, wake
4104 * up the task.
4105 */
4106 if (prev->flags & PF_WQ_WORKER) {
4107 struct task_struct *to_wakeup;
4108
4109 to_wakeup = wq_worker_sleeping(prev, cpu);
4110 if (to_wakeup)
4111 try_to_wake_up_local(to_wakeup);
4112 }
371fd7e7 4113 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4114 }
dd41f596 4115 switch_count = &prev->nvcsw;
1da177e4
LT
4116 }
4117
73c10101
JA
4118 /*
4119 * If we are going to sleep and we have plugged IO queued, make
4120 * sure to submit it to avoid deadlocks.
4121 */
4122 if (prev->state != TASK_RUNNING && blk_needs_flush_plug(prev)) {
4123 raw_spin_unlock(&rq->lock);
4124 blk_flush_plug(prev);
4125 raw_spin_lock(&rq->lock);
4126 }
4127
3f029d3c 4128 pre_schedule(rq, prev);
f65eda4f 4129
dd41f596 4130 if (unlikely(!rq->nr_running))
1da177e4 4131 idle_balance(cpu, rq);
1da177e4 4132
df1c99d4 4133 put_prev_task(rq, prev);
b67802ea 4134 next = pick_next_task(rq);
f26f9aff
MG
4135 clear_tsk_need_resched(prev);
4136 rq->skip_clock_update = 0;
1da177e4 4137
1da177e4 4138 if (likely(prev != next)) {
1da177e4
LT
4139 rq->nr_switches++;
4140 rq->curr = next;
4141 ++*switch_count;
4142
dd41f596 4143 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4144 /*
246d86b5
ON
4145 * The context switch have flipped the stack from under us
4146 * and restored the local variables which were saved when
4147 * this task called schedule() in the past. prev == current
4148 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4149 */
4150 cpu = smp_processor_id();
4151 rq = cpu_rq(cpu);
1da177e4 4152 } else
05fa785c 4153 raw_spin_unlock_irq(&rq->lock);
1da177e4 4154
3f029d3c 4155 post_schedule(rq);
1da177e4 4156
1da177e4 4157 preempt_enable_no_resched();
ff743345 4158 if (need_resched())
1da177e4
LT
4159 goto need_resched;
4160}
1da177e4
LT
4161EXPORT_SYMBOL(schedule);
4162
c08f7829 4163#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4164/*
4165 * Look out! "owner" is an entirely speculative pointer
4166 * access and not reliable.
4167 */
4168int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4169{
4170 unsigned int cpu;
4171 struct rq *rq;
4172
4173 if (!sched_feat(OWNER_SPIN))
4174 return 0;
4175
4176#ifdef CONFIG_DEBUG_PAGEALLOC
4177 /*
4178 * Need to access the cpu field knowing that
4179 * DEBUG_PAGEALLOC could have unmapped it if
4180 * the mutex owner just released it and exited.
4181 */
4182 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4183 return 0;
0d66bf6d
PZ
4184#else
4185 cpu = owner->cpu;
4186#endif
4187
4188 /*
4189 * Even if the access succeeded (likely case),
4190 * the cpu field may no longer be valid.
4191 */
4192 if (cpu >= nr_cpumask_bits)
4b402210 4193 return 0;
0d66bf6d
PZ
4194
4195 /*
4196 * We need to validate that we can do a
4197 * get_cpu() and that we have the percpu area.
4198 */
4199 if (!cpu_online(cpu))
4b402210 4200 return 0;
0d66bf6d
PZ
4201
4202 rq = cpu_rq(cpu);
4203
4204 for (;;) {
4205 /*
4206 * Owner changed, break to re-assess state.
4207 */
9d0f4dcc
TC
4208 if (lock->owner != owner) {
4209 /*
4210 * If the lock has switched to a different owner,
4211 * we likely have heavy contention. Return 0 to quit
4212 * optimistic spinning and not contend further:
4213 */
4214 if (lock->owner)
4215 return 0;
0d66bf6d 4216 break;
9d0f4dcc 4217 }
0d66bf6d
PZ
4218
4219 /*
4220 * Is that owner really running on that cpu?
4221 */
4222 if (task_thread_info(rq->curr) != owner || need_resched())
4223 return 0;
4224
335d7afb 4225 arch_mutex_cpu_relax();
0d66bf6d 4226 }
4b402210 4227
0d66bf6d
PZ
4228 return 1;
4229}
4230#endif
4231
1da177e4
LT
4232#ifdef CONFIG_PREEMPT
4233/*
2ed6e34f 4234 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4235 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4236 * occur there and call schedule directly.
4237 */
d1f74e20 4238asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4239{
4240 struct thread_info *ti = current_thread_info();
6478d880 4241
1da177e4
LT
4242 /*
4243 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4244 * we do not want to preempt the current task. Just return..
1da177e4 4245 */
beed33a8 4246 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4247 return;
4248
3a5c359a 4249 do {
d1f74e20 4250 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4251 schedule();
d1f74e20 4252 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4253
3a5c359a
AK
4254 /*
4255 * Check again in case we missed a preemption opportunity
4256 * between schedule and now.
4257 */
4258 barrier();
5ed0cec0 4259 } while (need_resched());
1da177e4 4260}
1da177e4
LT
4261EXPORT_SYMBOL(preempt_schedule);
4262
4263/*
2ed6e34f 4264 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4265 * off of irq context.
4266 * Note, that this is called and return with irqs disabled. This will
4267 * protect us against recursive calling from irq.
4268 */
4269asmlinkage void __sched preempt_schedule_irq(void)
4270{
4271 struct thread_info *ti = current_thread_info();
6478d880 4272
2ed6e34f 4273 /* Catch callers which need to be fixed */
1da177e4
LT
4274 BUG_ON(ti->preempt_count || !irqs_disabled());
4275
3a5c359a
AK
4276 do {
4277 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4278 local_irq_enable();
4279 schedule();
4280 local_irq_disable();
3a5c359a 4281 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4282
3a5c359a
AK
4283 /*
4284 * Check again in case we missed a preemption opportunity
4285 * between schedule and now.
4286 */
4287 barrier();
5ed0cec0 4288 } while (need_resched());
1da177e4
LT
4289}
4290
4291#endif /* CONFIG_PREEMPT */
4292
63859d4f 4293int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4294 void *key)
1da177e4 4295{
63859d4f 4296 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4297}
1da177e4
LT
4298EXPORT_SYMBOL(default_wake_function);
4299
4300/*
41a2d6cf
IM
4301 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4302 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4303 * number) then we wake all the non-exclusive tasks and one exclusive task.
4304 *
4305 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4306 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4307 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4308 */
78ddb08f 4309static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4310 int nr_exclusive, int wake_flags, void *key)
1da177e4 4311{
2e45874c 4312 wait_queue_t *curr, *next;
1da177e4 4313
2e45874c 4314 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4315 unsigned flags = curr->flags;
4316
63859d4f 4317 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4318 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4319 break;
4320 }
4321}
4322
4323/**
4324 * __wake_up - wake up threads blocked on a waitqueue.
4325 * @q: the waitqueue
4326 * @mode: which threads
4327 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4328 * @key: is directly passed to the wakeup function
50fa610a
DH
4329 *
4330 * It may be assumed that this function implies a write memory barrier before
4331 * changing the task state if and only if any tasks are woken up.
1da177e4 4332 */
7ad5b3a5 4333void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4334 int nr_exclusive, void *key)
1da177e4
LT
4335{
4336 unsigned long flags;
4337
4338 spin_lock_irqsave(&q->lock, flags);
4339 __wake_up_common(q, mode, nr_exclusive, 0, key);
4340 spin_unlock_irqrestore(&q->lock, flags);
4341}
1da177e4
LT
4342EXPORT_SYMBOL(__wake_up);
4343
4344/*
4345 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4346 */
7ad5b3a5 4347void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4348{
4349 __wake_up_common(q, mode, 1, 0, NULL);
4350}
22c43c81 4351EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4352
4ede816a
DL
4353void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4354{
4355 __wake_up_common(q, mode, 1, 0, key);
4356}
bf294b41 4357EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4358
1da177e4 4359/**
4ede816a 4360 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4361 * @q: the waitqueue
4362 * @mode: which threads
4363 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4364 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4365 *
4366 * The sync wakeup differs that the waker knows that it will schedule
4367 * away soon, so while the target thread will be woken up, it will not
4368 * be migrated to another CPU - ie. the two threads are 'synchronized'
4369 * with each other. This can prevent needless bouncing between CPUs.
4370 *
4371 * On UP it can prevent extra preemption.
50fa610a
DH
4372 *
4373 * It may be assumed that this function implies a write memory barrier before
4374 * changing the task state if and only if any tasks are woken up.
1da177e4 4375 */
4ede816a
DL
4376void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4377 int nr_exclusive, void *key)
1da177e4
LT
4378{
4379 unsigned long flags;
7d478721 4380 int wake_flags = WF_SYNC;
1da177e4
LT
4381
4382 if (unlikely(!q))
4383 return;
4384
4385 if (unlikely(!nr_exclusive))
7d478721 4386 wake_flags = 0;
1da177e4
LT
4387
4388 spin_lock_irqsave(&q->lock, flags);
7d478721 4389 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4390 spin_unlock_irqrestore(&q->lock, flags);
4391}
4ede816a
DL
4392EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4393
4394/*
4395 * __wake_up_sync - see __wake_up_sync_key()
4396 */
4397void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4398{
4399 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4400}
1da177e4
LT
4401EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4402
65eb3dc6
KD
4403/**
4404 * complete: - signals a single thread waiting on this completion
4405 * @x: holds the state of this particular completion
4406 *
4407 * This will wake up a single thread waiting on this completion. Threads will be
4408 * awakened in the same order in which they were queued.
4409 *
4410 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4411 *
4412 * It may be assumed that this function implies a write memory barrier before
4413 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4414 */
b15136e9 4415void complete(struct completion *x)
1da177e4
LT
4416{
4417 unsigned long flags;
4418
4419 spin_lock_irqsave(&x->wait.lock, flags);
4420 x->done++;
d9514f6c 4421 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4422 spin_unlock_irqrestore(&x->wait.lock, flags);
4423}
4424EXPORT_SYMBOL(complete);
4425
65eb3dc6
KD
4426/**
4427 * complete_all: - signals all threads waiting on this completion
4428 * @x: holds the state of this particular completion
4429 *
4430 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4431 *
4432 * It may be assumed that this function implies a write memory barrier before
4433 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4434 */
b15136e9 4435void complete_all(struct completion *x)
1da177e4
LT
4436{
4437 unsigned long flags;
4438
4439 spin_lock_irqsave(&x->wait.lock, flags);
4440 x->done += UINT_MAX/2;
d9514f6c 4441 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4442 spin_unlock_irqrestore(&x->wait.lock, flags);
4443}
4444EXPORT_SYMBOL(complete_all);
4445
8cbbe86d
AK
4446static inline long __sched
4447do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4448{
1da177e4
LT
4449 if (!x->done) {
4450 DECLARE_WAITQUEUE(wait, current);
4451
a93d2f17 4452 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4453 do {
94d3d824 4454 if (signal_pending_state(state, current)) {
ea71a546
ON
4455 timeout = -ERESTARTSYS;
4456 break;
8cbbe86d
AK
4457 }
4458 __set_current_state(state);
1da177e4
LT
4459 spin_unlock_irq(&x->wait.lock);
4460 timeout = schedule_timeout(timeout);
4461 spin_lock_irq(&x->wait.lock);
ea71a546 4462 } while (!x->done && timeout);
1da177e4 4463 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4464 if (!x->done)
4465 return timeout;
1da177e4
LT
4466 }
4467 x->done--;
ea71a546 4468 return timeout ?: 1;
1da177e4 4469}
1da177e4 4470
8cbbe86d
AK
4471static long __sched
4472wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4473{
1da177e4
LT
4474 might_sleep();
4475
4476 spin_lock_irq(&x->wait.lock);
8cbbe86d 4477 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4478 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4479 return timeout;
4480}
1da177e4 4481
65eb3dc6
KD
4482/**
4483 * wait_for_completion: - waits for completion of a task
4484 * @x: holds the state of this particular completion
4485 *
4486 * This waits to be signaled for completion of a specific task. It is NOT
4487 * interruptible and there is no timeout.
4488 *
4489 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4490 * and interrupt capability. Also see complete().
4491 */
b15136e9 4492void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4493{
4494 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4495}
8cbbe86d 4496EXPORT_SYMBOL(wait_for_completion);
1da177e4 4497
65eb3dc6
KD
4498/**
4499 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4500 * @x: holds the state of this particular completion
4501 * @timeout: timeout value in jiffies
4502 *
4503 * This waits for either a completion of a specific task to be signaled or for a
4504 * specified timeout to expire. The timeout is in jiffies. It is not
4505 * interruptible.
4506 */
b15136e9 4507unsigned long __sched
8cbbe86d 4508wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4509{
8cbbe86d 4510 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4511}
8cbbe86d 4512EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4513
65eb3dc6
KD
4514/**
4515 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4516 * @x: holds the state of this particular completion
4517 *
4518 * This waits for completion of a specific task to be signaled. It is
4519 * interruptible.
4520 */
8cbbe86d 4521int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4522{
51e97990
AK
4523 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4524 if (t == -ERESTARTSYS)
4525 return t;
4526 return 0;
0fec171c 4527}
8cbbe86d 4528EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4529
65eb3dc6
KD
4530/**
4531 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4532 * @x: holds the state of this particular completion
4533 * @timeout: timeout value in jiffies
4534 *
4535 * This waits for either a completion of a specific task to be signaled or for a
4536 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4537 */
6bf41237 4538long __sched
8cbbe86d
AK
4539wait_for_completion_interruptible_timeout(struct completion *x,
4540 unsigned long timeout)
0fec171c 4541{
8cbbe86d 4542 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4543}
8cbbe86d 4544EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4545
65eb3dc6
KD
4546/**
4547 * wait_for_completion_killable: - waits for completion of a task (killable)
4548 * @x: holds the state of this particular completion
4549 *
4550 * This waits to be signaled for completion of a specific task. It can be
4551 * interrupted by a kill signal.
4552 */
009e577e
MW
4553int __sched wait_for_completion_killable(struct completion *x)
4554{
4555 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4556 if (t == -ERESTARTSYS)
4557 return t;
4558 return 0;
4559}
4560EXPORT_SYMBOL(wait_for_completion_killable);
4561
0aa12fb4
SW
4562/**
4563 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4564 * @x: holds the state of this particular completion
4565 * @timeout: timeout value in jiffies
4566 *
4567 * This waits for either a completion of a specific task to be
4568 * signaled or for a specified timeout to expire. It can be
4569 * interrupted by a kill signal. The timeout is in jiffies.
4570 */
6bf41237 4571long __sched
0aa12fb4
SW
4572wait_for_completion_killable_timeout(struct completion *x,
4573 unsigned long timeout)
4574{
4575 return wait_for_common(x, timeout, TASK_KILLABLE);
4576}
4577EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4578
be4de352
DC
4579/**
4580 * try_wait_for_completion - try to decrement a completion without blocking
4581 * @x: completion structure
4582 *
4583 * Returns: 0 if a decrement cannot be done without blocking
4584 * 1 if a decrement succeeded.
4585 *
4586 * If a completion is being used as a counting completion,
4587 * attempt to decrement the counter without blocking. This
4588 * enables us to avoid waiting if the resource the completion
4589 * is protecting is not available.
4590 */
4591bool try_wait_for_completion(struct completion *x)
4592{
7539a3b3 4593 unsigned long flags;
be4de352
DC
4594 int ret = 1;
4595
7539a3b3 4596 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4597 if (!x->done)
4598 ret = 0;
4599 else
4600 x->done--;
7539a3b3 4601 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4602 return ret;
4603}
4604EXPORT_SYMBOL(try_wait_for_completion);
4605
4606/**
4607 * completion_done - Test to see if a completion has any waiters
4608 * @x: completion structure
4609 *
4610 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4611 * 1 if there are no waiters.
4612 *
4613 */
4614bool completion_done(struct completion *x)
4615{
7539a3b3 4616 unsigned long flags;
be4de352
DC
4617 int ret = 1;
4618
7539a3b3 4619 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4620 if (!x->done)
4621 ret = 0;
7539a3b3 4622 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4623 return ret;
4624}
4625EXPORT_SYMBOL(completion_done);
4626
8cbbe86d
AK
4627static long __sched
4628sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4629{
0fec171c
IM
4630 unsigned long flags;
4631 wait_queue_t wait;
4632
4633 init_waitqueue_entry(&wait, current);
1da177e4 4634
8cbbe86d 4635 __set_current_state(state);
1da177e4 4636
8cbbe86d
AK
4637 spin_lock_irqsave(&q->lock, flags);
4638 __add_wait_queue(q, &wait);
4639 spin_unlock(&q->lock);
4640 timeout = schedule_timeout(timeout);
4641 spin_lock_irq(&q->lock);
4642 __remove_wait_queue(q, &wait);
4643 spin_unlock_irqrestore(&q->lock, flags);
4644
4645 return timeout;
4646}
4647
4648void __sched interruptible_sleep_on(wait_queue_head_t *q)
4649{
4650 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4651}
1da177e4
LT
4652EXPORT_SYMBOL(interruptible_sleep_on);
4653
0fec171c 4654long __sched
95cdf3b7 4655interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4656{
8cbbe86d 4657 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4658}
1da177e4
LT
4659EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4660
0fec171c 4661void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4662{
8cbbe86d 4663 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4664}
1da177e4
LT
4665EXPORT_SYMBOL(sleep_on);
4666
0fec171c 4667long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4668{
8cbbe86d 4669 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4670}
1da177e4
LT
4671EXPORT_SYMBOL(sleep_on_timeout);
4672
b29739f9
IM
4673#ifdef CONFIG_RT_MUTEXES
4674
4675/*
4676 * rt_mutex_setprio - set the current priority of a task
4677 * @p: task
4678 * @prio: prio value (kernel-internal form)
4679 *
4680 * This function changes the 'effective' priority of a task. It does
4681 * not touch ->normal_prio like __setscheduler().
4682 *
4683 * Used by the rt_mutex code to implement priority inheritance logic.
4684 */
36c8b586 4685void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4686{
4687 unsigned long flags;
83b699ed 4688 int oldprio, on_rq, running;
70b97a7f 4689 struct rq *rq;
83ab0aa0 4690 const struct sched_class *prev_class;
b29739f9
IM
4691
4692 BUG_ON(prio < 0 || prio > MAX_PRIO);
4693
4694 rq = task_rq_lock(p, &flags);
4695
a8027073 4696 trace_sched_pi_setprio(p, prio);
d5f9f942 4697 oldprio = p->prio;
83ab0aa0 4698 prev_class = p->sched_class;
dd41f596 4699 on_rq = p->se.on_rq;
051a1d1a 4700 running = task_current(rq, p);
0e1f3483 4701 if (on_rq)
69be72c1 4702 dequeue_task(rq, p, 0);
0e1f3483
HS
4703 if (running)
4704 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4705
4706 if (rt_prio(prio))
4707 p->sched_class = &rt_sched_class;
4708 else
4709 p->sched_class = &fair_sched_class;
4710
b29739f9
IM
4711 p->prio = prio;
4712
0e1f3483
HS
4713 if (running)
4714 p->sched_class->set_curr_task(rq);
da7a735e 4715 if (on_rq)
371fd7e7 4716 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4717
da7a735e 4718 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4719 task_rq_unlock(rq, &flags);
4720}
4721
4722#endif
4723
36c8b586 4724void set_user_nice(struct task_struct *p, long nice)
1da177e4 4725{
dd41f596 4726 int old_prio, delta, on_rq;
1da177e4 4727 unsigned long flags;
70b97a7f 4728 struct rq *rq;
1da177e4
LT
4729
4730 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4731 return;
4732 /*
4733 * We have to be careful, if called from sys_setpriority(),
4734 * the task might be in the middle of scheduling on another CPU.
4735 */
4736 rq = task_rq_lock(p, &flags);
4737 /*
4738 * The RT priorities are set via sched_setscheduler(), but we still
4739 * allow the 'normal' nice value to be set - but as expected
4740 * it wont have any effect on scheduling until the task is
dd41f596 4741 * SCHED_FIFO/SCHED_RR:
1da177e4 4742 */
e05606d3 4743 if (task_has_rt_policy(p)) {
1da177e4
LT
4744 p->static_prio = NICE_TO_PRIO(nice);
4745 goto out_unlock;
4746 }
dd41f596 4747 on_rq = p->se.on_rq;
c09595f6 4748 if (on_rq)
69be72c1 4749 dequeue_task(rq, p, 0);
1da177e4 4750
1da177e4 4751 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4752 set_load_weight(p);
b29739f9
IM
4753 old_prio = p->prio;
4754 p->prio = effective_prio(p);
4755 delta = p->prio - old_prio;
1da177e4 4756
dd41f596 4757 if (on_rq) {
371fd7e7 4758 enqueue_task(rq, p, 0);
1da177e4 4759 /*
d5f9f942
AM
4760 * If the task increased its priority or is running and
4761 * lowered its priority, then reschedule its CPU:
1da177e4 4762 */
d5f9f942 4763 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4764 resched_task(rq->curr);
4765 }
4766out_unlock:
4767 task_rq_unlock(rq, &flags);
4768}
1da177e4
LT
4769EXPORT_SYMBOL(set_user_nice);
4770
e43379f1
MM
4771/*
4772 * can_nice - check if a task can reduce its nice value
4773 * @p: task
4774 * @nice: nice value
4775 */
36c8b586 4776int can_nice(const struct task_struct *p, const int nice)
e43379f1 4777{
024f4747
MM
4778 /* convert nice value [19,-20] to rlimit style value [1,40] */
4779 int nice_rlim = 20 - nice;
48f24c4d 4780
78d7d407 4781 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4782 capable(CAP_SYS_NICE));
4783}
4784
1da177e4
LT
4785#ifdef __ARCH_WANT_SYS_NICE
4786
4787/*
4788 * sys_nice - change the priority of the current process.
4789 * @increment: priority increment
4790 *
4791 * sys_setpriority is a more generic, but much slower function that
4792 * does similar things.
4793 */
5add95d4 4794SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4795{
48f24c4d 4796 long nice, retval;
1da177e4
LT
4797
4798 /*
4799 * Setpriority might change our priority at the same moment.
4800 * We don't have to worry. Conceptually one call occurs first
4801 * and we have a single winner.
4802 */
e43379f1
MM
4803 if (increment < -40)
4804 increment = -40;
1da177e4
LT
4805 if (increment > 40)
4806 increment = 40;
4807
2b8f836f 4808 nice = TASK_NICE(current) + increment;
1da177e4
LT
4809 if (nice < -20)
4810 nice = -20;
4811 if (nice > 19)
4812 nice = 19;
4813
e43379f1
MM
4814 if (increment < 0 && !can_nice(current, nice))
4815 return -EPERM;
4816
1da177e4
LT
4817 retval = security_task_setnice(current, nice);
4818 if (retval)
4819 return retval;
4820
4821 set_user_nice(current, nice);
4822 return 0;
4823}
4824
4825#endif
4826
4827/**
4828 * task_prio - return the priority value of a given task.
4829 * @p: the task in question.
4830 *
4831 * This is the priority value as seen by users in /proc.
4832 * RT tasks are offset by -200. Normal tasks are centered
4833 * around 0, value goes from -16 to +15.
4834 */
36c8b586 4835int task_prio(const struct task_struct *p)
1da177e4
LT
4836{
4837 return p->prio - MAX_RT_PRIO;
4838}
4839
4840/**
4841 * task_nice - return the nice value of a given task.
4842 * @p: the task in question.
4843 */
36c8b586 4844int task_nice(const struct task_struct *p)
1da177e4
LT
4845{
4846 return TASK_NICE(p);
4847}
150d8bed 4848EXPORT_SYMBOL(task_nice);
1da177e4
LT
4849
4850/**
4851 * idle_cpu - is a given cpu idle currently?
4852 * @cpu: the processor in question.
4853 */
4854int idle_cpu(int cpu)
4855{
4856 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4857}
4858
1da177e4
LT
4859/**
4860 * idle_task - return the idle task for a given cpu.
4861 * @cpu: the processor in question.
4862 */
36c8b586 4863struct task_struct *idle_task(int cpu)
1da177e4
LT
4864{
4865 return cpu_rq(cpu)->idle;
4866}
4867
4868/**
4869 * find_process_by_pid - find a process with a matching PID value.
4870 * @pid: the pid in question.
4871 */
a9957449 4872static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4873{
228ebcbe 4874 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4875}
4876
4877/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4878static void
4879__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4880{
dd41f596 4881 BUG_ON(p->se.on_rq);
48f24c4d 4882
1da177e4
LT
4883 p->policy = policy;
4884 p->rt_priority = prio;
b29739f9
IM
4885 p->normal_prio = normal_prio(p);
4886 /* we are holding p->pi_lock already */
4887 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4888 if (rt_prio(p->prio))
4889 p->sched_class = &rt_sched_class;
4890 else
4891 p->sched_class = &fair_sched_class;
2dd73a4f 4892 set_load_weight(p);
1da177e4
LT
4893}
4894
c69e8d9c
DH
4895/*
4896 * check the target process has a UID that matches the current process's
4897 */
4898static bool check_same_owner(struct task_struct *p)
4899{
4900 const struct cred *cred = current_cred(), *pcred;
4901 bool match;
4902
4903 rcu_read_lock();
4904 pcred = __task_cred(p);
b0e77598
SH
4905 if (cred->user->user_ns == pcred->user->user_ns)
4906 match = (cred->euid == pcred->euid ||
4907 cred->euid == pcred->uid);
4908 else
4909 match = false;
c69e8d9c
DH
4910 rcu_read_unlock();
4911 return match;
4912}
4913
961ccddd 4914static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4915 const struct sched_param *param, bool user)
1da177e4 4916{
83b699ed 4917 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4918 unsigned long flags;
83ab0aa0 4919 const struct sched_class *prev_class;
70b97a7f 4920 struct rq *rq;
ca94c442 4921 int reset_on_fork;
1da177e4 4922
66e5393a
SR
4923 /* may grab non-irq protected spin_locks */
4924 BUG_ON(in_interrupt());
1da177e4
LT
4925recheck:
4926 /* double check policy once rq lock held */
ca94c442
LP
4927 if (policy < 0) {
4928 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4929 policy = oldpolicy = p->policy;
ca94c442
LP
4930 } else {
4931 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4932 policy &= ~SCHED_RESET_ON_FORK;
4933
4934 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4935 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4936 policy != SCHED_IDLE)
4937 return -EINVAL;
4938 }
4939
1da177e4
LT
4940 /*
4941 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4942 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4943 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4944 */
4945 if (param->sched_priority < 0 ||
95cdf3b7 4946 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4947 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4948 return -EINVAL;
e05606d3 4949 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4950 return -EINVAL;
4951
37e4ab3f
OC
4952 /*
4953 * Allow unprivileged RT tasks to decrease priority:
4954 */
961ccddd 4955 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4956 if (rt_policy(policy)) {
a44702e8
ON
4957 unsigned long rlim_rtprio =
4958 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4959
4960 /* can't set/change the rt policy */
4961 if (policy != p->policy && !rlim_rtprio)
4962 return -EPERM;
4963
4964 /* can't increase priority */
4965 if (param->sched_priority > p->rt_priority &&
4966 param->sched_priority > rlim_rtprio)
4967 return -EPERM;
4968 }
c02aa73b 4969
dd41f596 4970 /*
c02aa73b
DH
4971 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4972 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4973 */
c02aa73b
DH
4974 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4975 if (!can_nice(p, TASK_NICE(p)))
4976 return -EPERM;
4977 }
5fe1d75f 4978
37e4ab3f 4979 /* can't change other user's priorities */
c69e8d9c 4980 if (!check_same_owner(p))
37e4ab3f 4981 return -EPERM;
ca94c442
LP
4982
4983 /* Normal users shall not reset the sched_reset_on_fork flag */
4984 if (p->sched_reset_on_fork && !reset_on_fork)
4985 return -EPERM;
37e4ab3f 4986 }
1da177e4 4987
725aad24 4988 if (user) {
b0ae1981 4989 retval = security_task_setscheduler(p);
725aad24
JF
4990 if (retval)
4991 return retval;
4992 }
4993
b29739f9
IM
4994 /*
4995 * make sure no PI-waiters arrive (or leave) while we are
4996 * changing the priority of the task:
4997 */
1d615482 4998 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4 4999 /*
25985edc 5000 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5001 * runqueue lock must be held.
5002 */
b29739f9 5003 rq = __task_rq_lock(p);
dc61b1d6 5004
34f971f6
PZ
5005 /*
5006 * Changing the policy of the stop threads its a very bad idea
5007 */
5008 if (p == rq->stop) {
5009 __task_rq_unlock(rq);
5010 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5011 return -EINVAL;
5012 }
5013
a51e9198
DF
5014 /*
5015 * If not changing anything there's no need to proceed further:
5016 */
5017 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5018 param->sched_priority == p->rt_priority))) {
5019
5020 __task_rq_unlock(rq);
5021 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5022 return 0;
5023 }
5024
dc61b1d6
PZ
5025#ifdef CONFIG_RT_GROUP_SCHED
5026 if (user) {
5027 /*
5028 * Do not allow realtime tasks into groups that have no runtime
5029 * assigned.
5030 */
5031 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5032 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5033 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5034 __task_rq_unlock(rq);
5035 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5036 return -EPERM;
5037 }
5038 }
5039#endif
5040
1da177e4
LT
5041 /* recheck policy now with rq lock held */
5042 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5043 policy = oldpolicy = -1;
b29739f9 5044 __task_rq_unlock(rq);
1d615482 5045 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5046 goto recheck;
5047 }
dd41f596 5048 on_rq = p->se.on_rq;
051a1d1a 5049 running = task_current(rq, p);
0e1f3483 5050 if (on_rq)
2e1cb74a 5051 deactivate_task(rq, p, 0);
0e1f3483
HS
5052 if (running)
5053 p->sched_class->put_prev_task(rq, p);
f6b53205 5054
ca94c442
LP
5055 p->sched_reset_on_fork = reset_on_fork;
5056
1da177e4 5057 oldprio = p->prio;
83ab0aa0 5058 prev_class = p->sched_class;
dd41f596 5059 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5060
0e1f3483
HS
5061 if (running)
5062 p->sched_class->set_curr_task(rq);
da7a735e 5063 if (on_rq)
dd41f596 5064 activate_task(rq, p, 0);
cb469845 5065
da7a735e 5066 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5067 __task_rq_unlock(rq);
1d615482 5068 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5069
95e02ca9
TG
5070 rt_mutex_adjust_pi(p);
5071
1da177e4
LT
5072 return 0;
5073}
961ccddd
RR
5074
5075/**
5076 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5077 * @p: the task in question.
5078 * @policy: new policy.
5079 * @param: structure containing the new RT priority.
5080 *
5081 * NOTE that the task may be already dead.
5082 */
5083int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5084 const struct sched_param *param)
961ccddd
RR
5085{
5086 return __sched_setscheduler(p, policy, param, true);
5087}
1da177e4
LT
5088EXPORT_SYMBOL_GPL(sched_setscheduler);
5089
961ccddd
RR
5090/**
5091 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5092 * @p: the task in question.
5093 * @policy: new policy.
5094 * @param: structure containing the new RT priority.
5095 *
5096 * Just like sched_setscheduler, only don't bother checking if the
5097 * current context has permission. For example, this is needed in
5098 * stop_machine(): we create temporary high priority worker threads,
5099 * but our caller might not have that capability.
5100 */
5101int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5102 const struct sched_param *param)
961ccddd
RR
5103{
5104 return __sched_setscheduler(p, policy, param, false);
5105}
5106
95cdf3b7
IM
5107static int
5108do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5109{
1da177e4
LT
5110 struct sched_param lparam;
5111 struct task_struct *p;
36c8b586 5112 int retval;
1da177e4
LT
5113
5114 if (!param || pid < 0)
5115 return -EINVAL;
5116 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5117 return -EFAULT;
5fe1d75f
ON
5118
5119 rcu_read_lock();
5120 retval = -ESRCH;
1da177e4 5121 p = find_process_by_pid(pid);
5fe1d75f
ON
5122 if (p != NULL)
5123 retval = sched_setscheduler(p, policy, &lparam);
5124 rcu_read_unlock();
36c8b586 5125
1da177e4
LT
5126 return retval;
5127}
5128
5129/**
5130 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5131 * @pid: the pid in question.
5132 * @policy: new policy.
5133 * @param: structure containing the new RT priority.
5134 */
5add95d4
HC
5135SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5136 struct sched_param __user *, param)
1da177e4 5137{
c21761f1
JB
5138 /* negative values for policy are not valid */
5139 if (policy < 0)
5140 return -EINVAL;
5141
1da177e4
LT
5142 return do_sched_setscheduler(pid, policy, param);
5143}
5144
5145/**
5146 * sys_sched_setparam - set/change the RT priority of a thread
5147 * @pid: the pid in question.
5148 * @param: structure containing the new RT priority.
5149 */
5add95d4 5150SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5151{
5152 return do_sched_setscheduler(pid, -1, param);
5153}
5154
5155/**
5156 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5157 * @pid: the pid in question.
5158 */
5add95d4 5159SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5160{
36c8b586 5161 struct task_struct *p;
3a5c359a 5162 int retval;
1da177e4
LT
5163
5164 if (pid < 0)
3a5c359a 5165 return -EINVAL;
1da177e4
LT
5166
5167 retval = -ESRCH;
5fe85be0 5168 rcu_read_lock();
1da177e4
LT
5169 p = find_process_by_pid(pid);
5170 if (p) {
5171 retval = security_task_getscheduler(p);
5172 if (!retval)
ca94c442
LP
5173 retval = p->policy
5174 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5175 }
5fe85be0 5176 rcu_read_unlock();
1da177e4
LT
5177 return retval;
5178}
5179
5180/**
ca94c442 5181 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5182 * @pid: the pid in question.
5183 * @param: structure containing the RT priority.
5184 */
5add95d4 5185SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5186{
5187 struct sched_param lp;
36c8b586 5188 struct task_struct *p;
3a5c359a 5189 int retval;
1da177e4
LT
5190
5191 if (!param || pid < 0)
3a5c359a 5192 return -EINVAL;
1da177e4 5193
5fe85be0 5194 rcu_read_lock();
1da177e4
LT
5195 p = find_process_by_pid(pid);
5196 retval = -ESRCH;
5197 if (!p)
5198 goto out_unlock;
5199
5200 retval = security_task_getscheduler(p);
5201 if (retval)
5202 goto out_unlock;
5203
5204 lp.sched_priority = p->rt_priority;
5fe85be0 5205 rcu_read_unlock();
1da177e4
LT
5206
5207 /*
5208 * This one might sleep, we cannot do it with a spinlock held ...
5209 */
5210 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5211
1da177e4
LT
5212 return retval;
5213
5214out_unlock:
5fe85be0 5215 rcu_read_unlock();
1da177e4
LT
5216 return retval;
5217}
5218
96f874e2 5219long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5220{
5a16f3d3 5221 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5222 struct task_struct *p;
5223 int retval;
1da177e4 5224
95402b38 5225 get_online_cpus();
23f5d142 5226 rcu_read_lock();
1da177e4
LT
5227
5228 p = find_process_by_pid(pid);
5229 if (!p) {
23f5d142 5230 rcu_read_unlock();
95402b38 5231 put_online_cpus();
1da177e4
LT
5232 return -ESRCH;
5233 }
5234
23f5d142 5235 /* Prevent p going away */
1da177e4 5236 get_task_struct(p);
23f5d142 5237 rcu_read_unlock();
1da177e4 5238
5a16f3d3
RR
5239 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5240 retval = -ENOMEM;
5241 goto out_put_task;
5242 }
5243 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5244 retval = -ENOMEM;
5245 goto out_free_cpus_allowed;
5246 }
1da177e4 5247 retval = -EPERM;
b0e77598 5248 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5249 goto out_unlock;
5250
b0ae1981 5251 retval = security_task_setscheduler(p);
e7834f8f
DQ
5252 if (retval)
5253 goto out_unlock;
5254
5a16f3d3
RR
5255 cpuset_cpus_allowed(p, cpus_allowed);
5256 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5257again:
5a16f3d3 5258 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5259
8707d8b8 5260 if (!retval) {
5a16f3d3
RR
5261 cpuset_cpus_allowed(p, cpus_allowed);
5262 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5263 /*
5264 * We must have raced with a concurrent cpuset
5265 * update. Just reset the cpus_allowed to the
5266 * cpuset's cpus_allowed
5267 */
5a16f3d3 5268 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5269 goto again;
5270 }
5271 }
1da177e4 5272out_unlock:
5a16f3d3
RR
5273 free_cpumask_var(new_mask);
5274out_free_cpus_allowed:
5275 free_cpumask_var(cpus_allowed);
5276out_put_task:
1da177e4 5277 put_task_struct(p);
95402b38 5278 put_online_cpus();
1da177e4
LT
5279 return retval;
5280}
5281
5282static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5283 struct cpumask *new_mask)
1da177e4 5284{
96f874e2
RR
5285 if (len < cpumask_size())
5286 cpumask_clear(new_mask);
5287 else if (len > cpumask_size())
5288 len = cpumask_size();
5289
1da177e4
LT
5290 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5291}
5292
5293/**
5294 * sys_sched_setaffinity - set the cpu affinity of a process
5295 * @pid: pid of the process
5296 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5297 * @user_mask_ptr: user-space pointer to the new cpu mask
5298 */
5add95d4
HC
5299SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5300 unsigned long __user *, user_mask_ptr)
1da177e4 5301{
5a16f3d3 5302 cpumask_var_t new_mask;
1da177e4
LT
5303 int retval;
5304
5a16f3d3
RR
5305 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5306 return -ENOMEM;
1da177e4 5307
5a16f3d3
RR
5308 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5309 if (retval == 0)
5310 retval = sched_setaffinity(pid, new_mask);
5311 free_cpumask_var(new_mask);
5312 return retval;
1da177e4
LT
5313}
5314
96f874e2 5315long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5316{
36c8b586 5317 struct task_struct *p;
31605683
TG
5318 unsigned long flags;
5319 struct rq *rq;
1da177e4 5320 int retval;
1da177e4 5321
95402b38 5322 get_online_cpus();
23f5d142 5323 rcu_read_lock();
1da177e4
LT
5324
5325 retval = -ESRCH;
5326 p = find_process_by_pid(pid);
5327 if (!p)
5328 goto out_unlock;
5329
e7834f8f
DQ
5330 retval = security_task_getscheduler(p);
5331 if (retval)
5332 goto out_unlock;
5333
31605683 5334 rq = task_rq_lock(p, &flags);
96f874e2 5335 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5336 task_rq_unlock(rq, &flags);
1da177e4
LT
5337
5338out_unlock:
23f5d142 5339 rcu_read_unlock();
95402b38 5340 put_online_cpus();
1da177e4 5341
9531b62f 5342 return retval;
1da177e4
LT
5343}
5344
5345/**
5346 * sys_sched_getaffinity - get the cpu affinity of a process
5347 * @pid: pid of the process
5348 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5349 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5350 */
5add95d4
HC
5351SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5352 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5353{
5354 int ret;
f17c8607 5355 cpumask_var_t mask;
1da177e4 5356
84fba5ec 5357 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5358 return -EINVAL;
5359 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5360 return -EINVAL;
5361
f17c8607
RR
5362 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5363 return -ENOMEM;
1da177e4 5364
f17c8607
RR
5365 ret = sched_getaffinity(pid, mask);
5366 if (ret == 0) {
8bc037fb 5367 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5368
5369 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5370 ret = -EFAULT;
5371 else
cd3d8031 5372 ret = retlen;
f17c8607
RR
5373 }
5374 free_cpumask_var(mask);
1da177e4 5375
f17c8607 5376 return ret;
1da177e4
LT
5377}
5378
5379/**
5380 * sys_sched_yield - yield the current processor to other threads.
5381 *
dd41f596
IM
5382 * This function yields the current CPU to other tasks. If there are no
5383 * other threads running on this CPU then this function will return.
1da177e4 5384 */
5add95d4 5385SYSCALL_DEFINE0(sched_yield)
1da177e4 5386{
70b97a7f 5387 struct rq *rq = this_rq_lock();
1da177e4 5388
2d72376b 5389 schedstat_inc(rq, yld_count);
4530d7ab 5390 current->sched_class->yield_task(rq);
1da177e4
LT
5391
5392 /*
5393 * Since we are going to call schedule() anyway, there's
5394 * no need to preempt or enable interrupts:
5395 */
5396 __release(rq->lock);
8a25d5de 5397 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5398 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5399 preempt_enable_no_resched();
5400
5401 schedule();
5402
5403 return 0;
5404}
5405
d86ee480
PZ
5406static inline int should_resched(void)
5407{
5408 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5409}
5410
e7b38404 5411static void __cond_resched(void)
1da177e4 5412{
e7aaaa69
FW
5413 add_preempt_count(PREEMPT_ACTIVE);
5414 schedule();
5415 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5416}
5417
02b67cc3 5418int __sched _cond_resched(void)
1da177e4 5419{
d86ee480 5420 if (should_resched()) {
1da177e4
LT
5421 __cond_resched();
5422 return 1;
5423 }
5424 return 0;
5425}
02b67cc3 5426EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5427
5428/*
613afbf8 5429 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5430 * call schedule, and on return reacquire the lock.
5431 *
41a2d6cf 5432 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5433 * operations here to prevent schedule() from being called twice (once via
5434 * spin_unlock(), once by hand).
5435 */
613afbf8 5436int __cond_resched_lock(spinlock_t *lock)
1da177e4 5437{
d86ee480 5438 int resched = should_resched();
6df3cecb
JK
5439 int ret = 0;
5440
f607c668
PZ
5441 lockdep_assert_held(lock);
5442
95c354fe 5443 if (spin_needbreak(lock) || resched) {
1da177e4 5444 spin_unlock(lock);
d86ee480 5445 if (resched)
95c354fe
NP
5446 __cond_resched();
5447 else
5448 cpu_relax();
6df3cecb 5449 ret = 1;
1da177e4 5450 spin_lock(lock);
1da177e4 5451 }
6df3cecb 5452 return ret;
1da177e4 5453}
613afbf8 5454EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5455
613afbf8 5456int __sched __cond_resched_softirq(void)
1da177e4
LT
5457{
5458 BUG_ON(!in_softirq());
5459
d86ee480 5460 if (should_resched()) {
98d82567 5461 local_bh_enable();
1da177e4
LT
5462 __cond_resched();
5463 local_bh_disable();
5464 return 1;
5465 }
5466 return 0;
5467}
613afbf8 5468EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5469
1da177e4
LT
5470/**
5471 * yield - yield the current processor to other threads.
5472 *
72fd4a35 5473 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5474 * thread runnable and calls sys_sched_yield().
5475 */
5476void __sched yield(void)
5477{
5478 set_current_state(TASK_RUNNING);
5479 sys_sched_yield();
5480}
1da177e4
LT
5481EXPORT_SYMBOL(yield);
5482
d95f4122
MG
5483/**
5484 * yield_to - yield the current processor to another thread in
5485 * your thread group, or accelerate that thread toward the
5486 * processor it's on.
16addf95
RD
5487 * @p: target task
5488 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5489 *
5490 * It's the caller's job to ensure that the target task struct
5491 * can't go away on us before we can do any checks.
5492 *
5493 * Returns true if we indeed boosted the target task.
5494 */
5495bool __sched yield_to(struct task_struct *p, bool preempt)
5496{
5497 struct task_struct *curr = current;
5498 struct rq *rq, *p_rq;
5499 unsigned long flags;
5500 bool yielded = 0;
5501
5502 local_irq_save(flags);
5503 rq = this_rq();
5504
5505again:
5506 p_rq = task_rq(p);
5507 double_rq_lock(rq, p_rq);
5508 while (task_rq(p) != p_rq) {
5509 double_rq_unlock(rq, p_rq);
5510 goto again;
5511 }
5512
5513 if (!curr->sched_class->yield_to_task)
5514 goto out;
5515
5516 if (curr->sched_class != p->sched_class)
5517 goto out;
5518
5519 if (task_running(p_rq, p) || p->state)
5520 goto out;
5521
5522 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5523 if (yielded) {
d95f4122 5524 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5525 /*
5526 * Make p's CPU reschedule; pick_next_entity takes care of
5527 * fairness.
5528 */
5529 if (preempt && rq != p_rq)
5530 resched_task(p_rq->curr);
5531 }
d95f4122
MG
5532
5533out:
5534 double_rq_unlock(rq, p_rq);
5535 local_irq_restore(flags);
5536
5537 if (yielded)
5538 schedule();
5539
5540 return yielded;
5541}
5542EXPORT_SYMBOL_GPL(yield_to);
5543
1da177e4 5544/*
41a2d6cf 5545 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5546 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5547 */
5548void __sched io_schedule(void)
5549{
54d35f29 5550 struct rq *rq = raw_rq();
1da177e4 5551
0ff92245 5552 delayacct_blkio_start();
1da177e4 5553 atomic_inc(&rq->nr_iowait);
73c10101 5554 blk_flush_plug(current);
8f0dfc34 5555 current->in_iowait = 1;
1da177e4 5556 schedule();
8f0dfc34 5557 current->in_iowait = 0;
1da177e4 5558 atomic_dec(&rq->nr_iowait);
0ff92245 5559 delayacct_blkio_end();
1da177e4 5560}
1da177e4
LT
5561EXPORT_SYMBOL(io_schedule);
5562
5563long __sched io_schedule_timeout(long timeout)
5564{
54d35f29 5565 struct rq *rq = raw_rq();
1da177e4
LT
5566 long ret;
5567
0ff92245 5568 delayacct_blkio_start();
1da177e4 5569 atomic_inc(&rq->nr_iowait);
73c10101 5570 blk_flush_plug(current);
8f0dfc34 5571 current->in_iowait = 1;
1da177e4 5572 ret = schedule_timeout(timeout);
8f0dfc34 5573 current->in_iowait = 0;
1da177e4 5574 atomic_dec(&rq->nr_iowait);
0ff92245 5575 delayacct_blkio_end();
1da177e4
LT
5576 return ret;
5577}
5578
5579/**
5580 * sys_sched_get_priority_max - return maximum RT priority.
5581 * @policy: scheduling class.
5582 *
5583 * this syscall returns the maximum rt_priority that can be used
5584 * by a given scheduling class.
5585 */
5add95d4 5586SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5587{
5588 int ret = -EINVAL;
5589
5590 switch (policy) {
5591 case SCHED_FIFO:
5592 case SCHED_RR:
5593 ret = MAX_USER_RT_PRIO-1;
5594 break;
5595 case SCHED_NORMAL:
b0a9499c 5596 case SCHED_BATCH:
dd41f596 5597 case SCHED_IDLE:
1da177e4
LT
5598 ret = 0;
5599 break;
5600 }
5601 return ret;
5602}
5603
5604/**
5605 * sys_sched_get_priority_min - return minimum RT priority.
5606 * @policy: scheduling class.
5607 *
5608 * this syscall returns the minimum rt_priority that can be used
5609 * by a given scheduling class.
5610 */
5add95d4 5611SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5612{
5613 int ret = -EINVAL;
5614
5615 switch (policy) {
5616 case SCHED_FIFO:
5617 case SCHED_RR:
5618 ret = 1;
5619 break;
5620 case SCHED_NORMAL:
b0a9499c 5621 case SCHED_BATCH:
dd41f596 5622 case SCHED_IDLE:
1da177e4
LT
5623 ret = 0;
5624 }
5625 return ret;
5626}
5627
5628/**
5629 * sys_sched_rr_get_interval - return the default timeslice of a process.
5630 * @pid: pid of the process.
5631 * @interval: userspace pointer to the timeslice value.
5632 *
5633 * this syscall writes the default timeslice value of a given process
5634 * into the user-space timespec buffer. A value of '0' means infinity.
5635 */
17da2bd9 5636SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5637 struct timespec __user *, interval)
1da177e4 5638{
36c8b586 5639 struct task_struct *p;
a4ec24b4 5640 unsigned int time_slice;
dba091b9
TG
5641 unsigned long flags;
5642 struct rq *rq;
3a5c359a 5643 int retval;
1da177e4 5644 struct timespec t;
1da177e4
LT
5645
5646 if (pid < 0)
3a5c359a 5647 return -EINVAL;
1da177e4
LT
5648
5649 retval = -ESRCH;
1a551ae7 5650 rcu_read_lock();
1da177e4
LT
5651 p = find_process_by_pid(pid);
5652 if (!p)
5653 goto out_unlock;
5654
5655 retval = security_task_getscheduler(p);
5656 if (retval)
5657 goto out_unlock;
5658
dba091b9
TG
5659 rq = task_rq_lock(p, &flags);
5660 time_slice = p->sched_class->get_rr_interval(rq, p);
5661 task_rq_unlock(rq, &flags);
a4ec24b4 5662
1a551ae7 5663 rcu_read_unlock();
a4ec24b4 5664 jiffies_to_timespec(time_slice, &t);
1da177e4 5665 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5666 return retval;
3a5c359a 5667
1da177e4 5668out_unlock:
1a551ae7 5669 rcu_read_unlock();
1da177e4
LT
5670 return retval;
5671}
5672
7c731e0a 5673static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5674
82a1fcb9 5675void sched_show_task(struct task_struct *p)
1da177e4 5676{
1da177e4 5677 unsigned long free = 0;
36c8b586 5678 unsigned state;
1da177e4 5679
1da177e4 5680 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5681 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5682 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5683#if BITS_PER_LONG == 32
1da177e4 5684 if (state == TASK_RUNNING)
3df0fc5b 5685 printk(KERN_CONT " running ");
1da177e4 5686 else
3df0fc5b 5687 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5688#else
5689 if (state == TASK_RUNNING)
3df0fc5b 5690 printk(KERN_CONT " running task ");
1da177e4 5691 else
3df0fc5b 5692 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5693#endif
5694#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5695 free = stack_not_used(p);
1da177e4 5696#endif
3df0fc5b 5697 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5698 task_pid_nr(p), task_pid_nr(p->real_parent),
5699 (unsigned long)task_thread_info(p)->flags);
1da177e4 5700
5fb5e6de 5701 show_stack(p, NULL);
1da177e4
LT
5702}
5703
e59e2ae2 5704void show_state_filter(unsigned long state_filter)
1da177e4 5705{
36c8b586 5706 struct task_struct *g, *p;
1da177e4 5707
4bd77321 5708#if BITS_PER_LONG == 32
3df0fc5b
PZ
5709 printk(KERN_INFO
5710 " task PC stack pid father\n");
1da177e4 5711#else
3df0fc5b
PZ
5712 printk(KERN_INFO
5713 " task PC stack pid father\n");
1da177e4
LT
5714#endif
5715 read_lock(&tasklist_lock);
5716 do_each_thread(g, p) {
5717 /*
5718 * reset the NMI-timeout, listing all files on a slow
25985edc 5719 * console might take a lot of time:
1da177e4
LT
5720 */
5721 touch_nmi_watchdog();
39bc89fd 5722 if (!state_filter || (p->state & state_filter))
82a1fcb9 5723 sched_show_task(p);
1da177e4
LT
5724 } while_each_thread(g, p);
5725
04c9167f
JF
5726 touch_all_softlockup_watchdogs();
5727
dd41f596
IM
5728#ifdef CONFIG_SCHED_DEBUG
5729 sysrq_sched_debug_show();
5730#endif
1da177e4 5731 read_unlock(&tasklist_lock);
e59e2ae2
IM
5732 /*
5733 * Only show locks if all tasks are dumped:
5734 */
93335a21 5735 if (!state_filter)
e59e2ae2 5736 debug_show_all_locks();
1da177e4
LT
5737}
5738
1df21055
IM
5739void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5740{
dd41f596 5741 idle->sched_class = &idle_sched_class;
1df21055
IM
5742}
5743
f340c0d1
IM
5744/**
5745 * init_idle - set up an idle thread for a given CPU
5746 * @idle: task in question
5747 * @cpu: cpu the idle task belongs to
5748 *
5749 * NOTE: this function does not set the idle thread's NEED_RESCHED
5750 * flag, to make booting more robust.
5751 */
5c1e1767 5752void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5753{
70b97a7f 5754 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5755 unsigned long flags;
5756
05fa785c 5757 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5758
dd41f596 5759 __sched_fork(idle);
06b83b5f 5760 idle->state = TASK_RUNNING;
dd41f596
IM
5761 idle->se.exec_start = sched_clock();
5762
96f874e2 5763 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5764 /*
5765 * We're having a chicken and egg problem, even though we are
5766 * holding rq->lock, the cpu isn't yet set to this cpu so the
5767 * lockdep check in task_group() will fail.
5768 *
5769 * Similar case to sched_fork(). / Alternatively we could
5770 * use task_rq_lock() here and obtain the other rq->lock.
5771 *
5772 * Silence PROVE_RCU
5773 */
5774 rcu_read_lock();
dd41f596 5775 __set_task_cpu(idle, cpu);
6506cf6c 5776 rcu_read_unlock();
1da177e4 5777
1da177e4 5778 rq->curr = rq->idle = idle;
4866cde0
NP
5779#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5780 idle->oncpu = 1;
5781#endif
05fa785c 5782 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5783
5784 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5785#if defined(CONFIG_PREEMPT)
5786 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5787#else
a1261f54 5788 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5789#endif
dd41f596
IM
5790 /*
5791 * The idle tasks have their own, simple scheduling class:
5792 */
5793 idle->sched_class = &idle_sched_class;
868baf07 5794 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5795}
5796
5797/*
5798 * In a system that switches off the HZ timer nohz_cpu_mask
5799 * indicates which cpus entered this state. This is used
5800 * in the rcu update to wait only for active cpus. For system
5801 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5802 * always be CPU_BITS_NONE.
1da177e4 5803 */
6a7b3dc3 5804cpumask_var_t nohz_cpu_mask;
1da177e4 5805
19978ca6
IM
5806/*
5807 * Increase the granularity value when there are more CPUs,
5808 * because with more CPUs the 'effective latency' as visible
5809 * to users decreases. But the relationship is not linear,
5810 * so pick a second-best guess by going with the log2 of the
5811 * number of CPUs.
5812 *
5813 * This idea comes from the SD scheduler of Con Kolivas:
5814 */
acb4a848 5815static int get_update_sysctl_factor(void)
19978ca6 5816{
4ca3ef71 5817 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5818 unsigned int factor;
5819
5820 switch (sysctl_sched_tunable_scaling) {
5821 case SCHED_TUNABLESCALING_NONE:
5822 factor = 1;
5823 break;
5824 case SCHED_TUNABLESCALING_LINEAR:
5825 factor = cpus;
5826 break;
5827 case SCHED_TUNABLESCALING_LOG:
5828 default:
5829 factor = 1 + ilog2(cpus);
5830 break;
5831 }
19978ca6 5832
acb4a848
CE
5833 return factor;
5834}
19978ca6 5835
acb4a848
CE
5836static void update_sysctl(void)
5837{
5838 unsigned int factor = get_update_sysctl_factor();
19978ca6 5839
0bcdcf28
CE
5840#define SET_SYSCTL(name) \
5841 (sysctl_##name = (factor) * normalized_sysctl_##name)
5842 SET_SYSCTL(sched_min_granularity);
5843 SET_SYSCTL(sched_latency);
5844 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5845#undef SET_SYSCTL
5846}
55cd5340 5847
0bcdcf28
CE
5848static inline void sched_init_granularity(void)
5849{
5850 update_sysctl();
19978ca6
IM
5851}
5852
1da177e4
LT
5853#ifdef CONFIG_SMP
5854/*
5855 * This is how migration works:
5856 *
969c7921
TH
5857 * 1) we invoke migration_cpu_stop() on the target CPU using
5858 * stop_one_cpu().
5859 * 2) stopper starts to run (implicitly forcing the migrated thread
5860 * off the CPU)
5861 * 3) it checks whether the migrated task is still in the wrong runqueue.
5862 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5863 * it and puts it into the right queue.
969c7921
TH
5864 * 5) stopper completes and stop_one_cpu() returns and the migration
5865 * is done.
1da177e4
LT
5866 */
5867
5868/*
5869 * Change a given task's CPU affinity. Migrate the thread to a
5870 * proper CPU and schedule it away if the CPU it's executing on
5871 * is removed from the allowed bitmask.
5872 *
5873 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5874 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5875 * call is not atomic; no spinlocks may be held.
5876 */
96f874e2 5877int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5878{
5879 unsigned long flags;
70b97a7f 5880 struct rq *rq;
969c7921 5881 unsigned int dest_cpu;
48f24c4d 5882 int ret = 0;
1da177e4 5883
65cc8e48
PZ
5884 /*
5885 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5886 * drop the rq->lock and still rely on ->cpus_allowed.
5887 */
5888again:
5889 while (task_is_waking(p))
5890 cpu_relax();
1da177e4 5891 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5892 if (task_is_waking(p)) {
5893 task_rq_unlock(rq, &flags);
5894 goto again;
5895 }
e2912009 5896
6ad4c188 5897 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5898 ret = -EINVAL;
5899 goto out;
5900 }
5901
9985b0ba 5902 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5903 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5904 ret = -EINVAL;
5905 goto out;
5906 }
5907
73fe6aae 5908 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5909 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5910 else {
96f874e2
RR
5911 cpumask_copy(&p->cpus_allowed, new_mask);
5912 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5913 }
5914
1da177e4 5915 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5916 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5917 goto out;
5918
969c7921 5919 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5920 if (migrate_task(p, rq)) {
969c7921 5921 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5922 /* Need help from migration thread: drop lock and wait. */
5923 task_rq_unlock(rq, &flags);
969c7921 5924 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5925 tlb_migrate_finish(p->mm);
5926 return 0;
5927 }
5928out:
5929 task_rq_unlock(rq, &flags);
48f24c4d 5930
1da177e4
LT
5931 return ret;
5932}
cd8ba7cd 5933EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5934
5935/*
41a2d6cf 5936 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5937 * this because either it can't run here any more (set_cpus_allowed()
5938 * away from this CPU, or CPU going down), or because we're
5939 * attempting to rebalance this task on exec (sched_exec).
5940 *
5941 * So we race with normal scheduler movements, but that's OK, as long
5942 * as the task is no longer on this CPU.
efc30814
KK
5943 *
5944 * Returns non-zero if task was successfully migrated.
1da177e4 5945 */
efc30814 5946static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5947{
70b97a7f 5948 struct rq *rq_dest, *rq_src;
e2912009 5949 int ret = 0;
1da177e4 5950
e761b772 5951 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5952 return ret;
1da177e4
LT
5953
5954 rq_src = cpu_rq(src_cpu);
5955 rq_dest = cpu_rq(dest_cpu);
5956
5957 double_rq_lock(rq_src, rq_dest);
5958 /* Already moved. */
5959 if (task_cpu(p) != src_cpu)
b1e38734 5960 goto done;
1da177e4 5961 /* Affinity changed (again). */
96f874e2 5962 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5963 goto fail;
1da177e4 5964
e2912009
PZ
5965 /*
5966 * If we're not on a rq, the next wake-up will ensure we're
5967 * placed properly.
5968 */
5969 if (p->se.on_rq) {
2e1cb74a 5970 deactivate_task(rq_src, p, 0);
e2912009 5971 set_task_cpu(p, dest_cpu);
dd41f596 5972 activate_task(rq_dest, p, 0);
15afe09b 5973 check_preempt_curr(rq_dest, p, 0);
1da177e4 5974 }
b1e38734 5975done:
efc30814 5976 ret = 1;
b1e38734 5977fail:
1da177e4 5978 double_rq_unlock(rq_src, rq_dest);
efc30814 5979 return ret;
1da177e4
LT
5980}
5981
5982/*
969c7921
TH
5983 * migration_cpu_stop - this will be executed by a highprio stopper thread
5984 * and performs thread migration by bumping thread off CPU then
5985 * 'pushing' onto another runqueue.
1da177e4 5986 */
969c7921 5987static int migration_cpu_stop(void *data)
1da177e4 5988{
969c7921 5989 struct migration_arg *arg = data;
f7b4cddc 5990
969c7921
TH
5991 /*
5992 * The original target cpu might have gone down and we might
5993 * be on another cpu but it doesn't matter.
5994 */
f7b4cddc 5995 local_irq_disable();
969c7921 5996 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5997 local_irq_enable();
1da177e4 5998 return 0;
f7b4cddc
ON
5999}
6000
1da177e4 6001#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6002
054b9108 6003/*
48c5ccae
PZ
6004 * Ensures that the idle task is using init_mm right before its cpu goes
6005 * offline.
054b9108 6006 */
48c5ccae 6007void idle_task_exit(void)
1da177e4 6008{
48c5ccae 6009 struct mm_struct *mm = current->active_mm;
e76bd8d9 6010
48c5ccae 6011 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6012
48c5ccae
PZ
6013 if (mm != &init_mm)
6014 switch_mm(mm, &init_mm, current);
6015 mmdrop(mm);
1da177e4
LT
6016}
6017
6018/*
6019 * While a dead CPU has no uninterruptible tasks queued at this point,
6020 * it might still have a nonzero ->nr_uninterruptible counter, because
6021 * for performance reasons the counter is not stricly tracking tasks to
6022 * their home CPUs. So we just add the counter to another CPU's counter,
6023 * to keep the global sum constant after CPU-down:
6024 */
70b97a7f 6025static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6026{
6ad4c188 6027 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6028
1da177e4
LT
6029 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6030 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6031}
6032
dd41f596 6033/*
48c5ccae 6034 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6035 */
48c5ccae 6036static void calc_global_load_remove(struct rq *rq)
1da177e4 6037{
48c5ccae
PZ
6038 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6039 rq->calc_load_active = 0;
1da177e4
LT
6040}
6041
48f24c4d 6042/*
48c5ccae
PZ
6043 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6044 * try_to_wake_up()->select_task_rq().
6045 *
6046 * Called with rq->lock held even though we'er in stop_machine() and
6047 * there's no concurrency possible, we hold the required locks anyway
6048 * because of lock validation efforts.
1da177e4 6049 */
48c5ccae 6050static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6051{
70b97a7f 6052 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6053 struct task_struct *next, *stop = rq->stop;
6054 int dest_cpu;
1da177e4
LT
6055
6056 /*
48c5ccae
PZ
6057 * Fudge the rq selection such that the below task selection loop
6058 * doesn't get stuck on the currently eligible stop task.
6059 *
6060 * We're currently inside stop_machine() and the rq is either stuck
6061 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6062 * either way we should never end up calling schedule() until we're
6063 * done here.
1da177e4 6064 */
48c5ccae 6065 rq->stop = NULL;
48f24c4d 6066
dd41f596 6067 for ( ; ; ) {
48c5ccae
PZ
6068 /*
6069 * There's this thread running, bail when that's the only
6070 * remaining thread.
6071 */
6072 if (rq->nr_running == 1)
dd41f596 6073 break;
48c5ccae 6074
b67802ea 6075 next = pick_next_task(rq);
48c5ccae 6076 BUG_ON(!next);
79c53799 6077 next->sched_class->put_prev_task(rq, next);
e692ab53 6078
48c5ccae
PZ
6079 /* Find suitable destination for @next, with force if needed. */
6080 dest_cpu = select_fallback_rq(dead_cpu, next);
6081 raw_spin_unlock(&rq->lock);
6082
6083 __migrate_task(next, dead_cpu, dest_cpu);
6084
6085 raw_spin_lock(&rq->lock);
1da177e4 6086 }
dce48a84 6087
48c5ccae 6088 rq->stop = stop;
dce48a84 6089}
48c5ccae 6090
1da177e4
LT
6091#endif /* CONFIG_HOTPLUG_CPU */
6092
e692ab53
NP
6093#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6094
6095static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6096 {
6097 .procname = "sched_domain",
c57baf1e 6098 .mode = 0555,
e0361851 6099 },
56992309 6100 {}
e692ab53
NP
6101};
6102
6103static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6104 {
6105 .procname = "kernel",
c57baf1e 6106 .mode = 0555,
e0361851
AD
6107 .child = sd_ctl_dir,
6108 },
56992309 6109 {}
e692ab53
NP
6110};
6111
6112static struct ctl_table *sd_alloc_ctl_entry(int n)
6113{
6114 struct ctl_table *entry =
5cf9f062 6115 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6116
e692ab53
NP
6117 return entry;
6118}
6119
6382bc90
MM
6120static void sd_free_ctl_entry(struct ctl_table **tablep)
6121{
cd790076 6122 struct ctl_table *entry;
6382bc90 6123
cd790076
MM
6124 /*
6125 * In the intermediate directories, both the child directory and
6126 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6127 * will always be set. In the lowest directory the names are
cd790076
MM
6128 * static strings and all have proc handlers.
6129 */
6130 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6131 if (entry->child)
6132 sd_free_ctl_entry(&entry->child);
cd790076
MM
6133 if (entry->proc_handler == NULL)
6134 kfree(entry->procname);
6135 }
6382bc90
MM
6136
6137 kfree(*tablep);
6138 *tablep = NULL;
6139}
6140
e692ab53 6141static void
e0361851 6142set_table_entry(struct ctl_table *entry,
e692ab53
NP
6143 const char *procname, void *data, int maxlen,
6144 mode_t mode, proc_handler *proc_handler)
6145{
e692ab53
NP
6146 entry->procname = procname;
6147 entry->data = data;
6148 entry->maxlen = maxlen;
6149 entry->mode = mode;
6150 entry->proc_handler = proc_handler;
6151}
6152
6153static struct ctl_table *
6154sd_alloc_ctl_domain_table(struct sched_domain *sd)
6155{
a5d8c348 6156 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6157
ad1cdc1d
MM
6158 if (table == NULL)
6159 return NULL;
6160
e0361851 6161 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6162 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6163 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6164 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6165 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6166 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6167 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6168 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6169 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6170 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6171 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6172 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6173 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6174 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6175 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6176 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6177 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6178 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6179 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6180 &sd->cache_nice_tries,
6181 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6182 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6183 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6184 set_table_entry(&table[11], "name", sd->name,
6185 CORENAME_MAX_SIZE, 0444, proc_dostring);
6186 /* &table[12] is terminator */
e692ab53
NP
6187
6188 return table;
6189}
6190
9a4e7159 6191static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6192{
6193 struct ctl_table *entry, *table;
6194 struct sched_domain *sd;
6195 int domain_num = 0, i;
6196 char buf[32];
6197
6198 for_each_domain(cpu, sd)
6199 domain_num++;
6200 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6201 if (table == NULL)
6202 return NULL;
e692ab53
NP
6203
6204 i = 0;
6205 for_each_domain(cpu, sd) {
6206 snprintf(buf, 32, "domain%d", i);
e692ab53 6207 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6208 entry->mode = 0555;
e692ab53
NP
6209 entry->child = sd_alloc_ctl_domain_table(sd);
6210 entry++;
6211 i++;
6212 }
6213 return table;
6214}
6215
6216static struct ctl_table_header *sd_sysctl_header;
6382bc90 6217static void register_sched_domain_sysctl(void)
e692ab53 6218{
6ad4c188 6219 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6220 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6221 char buf[32];
6222
7378547f
MM
6223 WARN_ON(sd_ctl_dir[0].child);
6224 sd_ctl_dir[0].child = entry;
6225
ad1cdc1d
MM
6226 if (entry == NULL)
6227 return;
6228
6ad4c188 6229 for_each_possible_cpu(i) {
e692ab53 6230 snprintf(buf, 32, "cpu%d", i);
e692ab53 6231 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6232 entry->mode = 0555;
e692ab53 6233 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6234 entry++;
e692ab53 6235 }
7378547f
MM
6236
6237 WARN_ON(sd_sysctl_header);
e692ab53
NP
6238 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6239}
6382bc90 6240
7378547f 6241/* may be called multiple times per register */
6382bc90
MM
6242static void unregister_sched_domain_sysctl(void)
6243{
7378547f
MM
6244 if (sd_sysctl_header)
6245 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6246 sd_sysctl_header = NULL;
7378547f
MM
6247 if (sd_ctl_dir[0].child)
6248 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6249}
e692ab53 6250#else
6382bc90
MM
6251static void register_sched_domain_sysctl(void)
6252{
6253}
6254static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6255{
6256}
6257#endif
6258
1f11eb6a
GH
6259static void set_rq_online(struct rq *rq)
6260{
6261 if (!rq->online) {
6262 const struct sched_class *class;
6263
c6c4927b 6264 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6265 rq->online = 1;
6266
6267 for_each_class(class) {
6268 if (class->rq_online)
6269 class->rq_online(rq);
6270 }
6271 }
6272}
6273
6274static void set_rq_offline(struct rq *rq)
6275{
6276 if (rq->online) {
6277 const struct sched_class *class;
6278
6279 for_each_class(class) {
6280 if (class->rq_offline)
6281 class->rq_offline(rq);
6282 }
6283
c6c4927b 6284 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6285 rq->online = 0;
6286 }
6287}
6288
1da177e4
LT
6289/*
6290 * migration_call - callback that gets triggered when a CPU is added.
6291 * Here we can start up the necessary migration thread for the new CPU.
6292 */
48f24c4d
IM
6293static int __cpuinit
6294migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6295{
48f24c4d 6296 int cpu = (long)hcpu;
1da177e4 6297 unsigned long flags;
969c7921 6298 struct rq *rq = cpu_rq(cpu);
1da177e4 6299
48c5ccae 6300 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6301
1da177e4 6302 case CPU_UP_PREPARE:
a468d389 6303 rq->calc_load_update = calc_load_update;
1da177e4 6304 break;
48f24c4d 6305
1da177e4 6306 case CPU_ONLINE:
1f94ef59 6307 /* Update our root-domain */
05fa785c 6308 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6309 if (rq->rd) {
c6c4927b 6310 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6311
6312 set_rq_online(rq);
1f94ef59 6313 }
05fa785c 6314 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6315 break;
48f24c4d 6316
1da177e4 6317#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6318 case CPU_DYING:
57d885fe 6319 /* Update our root-domain */
05fa785c 6320 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6321 if (rq->rd) {
c6c4927b 6322 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6323 set_rq_offline(rq);
57d885fe 6324 }
48c5ccae
PZ
6325 migrate_tasks(cpu);
6326 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6327 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6328
6329 migrate_nr_uninterruptible(rq);
6330 calc_global_load_remove(rq);
57d885fe 6331 break;
1da177e4
LT
6332#endif
6333 }
49c022e6
PZ
6334
6335 update_max_interval();
6336
1da177e4
LT
6337 return NOTIFY_OK;
6338}
6339
f38b0820
PM
6340/*
6341 * Register at high priority so that task migration (migrate_all_tasks)
6342 * happens before everything else. This has to be lower priority than
cdd6c482 6343 * the notifier in the perf_event subsystem, though.
1da177e4 6344 */
26c2143b 6345static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6346 .notifier_call = migration_call,
50a323b7 6347 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6348};
6349
3a101d05
TH
6350static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6351 unsigned long action, void *hcpu)
6352{
6353 switch (action & ~CPU_TASKS_FROZEN) {
6354 case CPU_ONLINE:
6355 case CPU_DOWN_FAILED:
6356 set_cpu_active((long)hcpu, true);
6357 return NOTIFY_OK;
6358 default:
6359 return NOTIFY_DONE;
6360 }
6361}
6362
6363static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6364 unsigned long action, void *hcpu)
6365{
6366 switch (action & ~CPU_TASKS_FROZEN) {
6367 case CPU_DOWN_PREPARE:
6368 set_cpu_active((long)hcpu, false);
6369 return NOTIFY_OK;
6370 default:
6371 return NOTIFY_DONE;
6372 }
6373}
6374
7babe8db 6375static int __init migration_init(void)
1da177e4
LT
6376{
6377 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6378 int err;
48f24c4d 6379
3a101d05 6380 /* Initialize migration for the boot CPU */
07dccf33
AM
6381 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6382 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6383 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6384 register_cpu_notifier(&migration_notifier);
7babe8db 6385
3a101d05
TH
6386 /* Register cpu active notifiers */
6387 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6388 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6389
a004cd42 6390 return 0;
1da177e4 6391}
7babe8db 6392early_initcall(migration_init);
1da177e4
LT
6393#endif
6394
6395#ifdef CONFIG_SMP
476f3534 6396
3e9830dc 6397#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6398
f6630114
MT
6399static __read_mostly int sched_domain_debug_enabled;
6400
6401static int __init sched_domain_debug_setup(char *str)
6402{
6403 sched_domain_debug_enabled = 1;
6404
6405 return 0;
6406}
6407early_param("sched_debug", sched_domain_debug_setup);
6408
7c16ec58 6409static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6410 struct cpumask *groupmask)
1da177e4 6411{
4dcf6aff 6412 struct sched_group *group = sd->groups;
434d53b0 6413 char str[256];
1da177e4 6414
968ea6d8 6415 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6416 cpumask_clear(groupmask);
4dcf6aff
IM
6417
6418 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6419
6420 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6421 printk("does not load-balance\n");
4dcf6aff 6422 if (sd->parent)
3df0fc5b
PZ
6423 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6424 " has parent");
4dcf6aff 6425 return -1;
41c7ce9a
NP
6426 }
6427
3df0fc5b 6428 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6429
758b2cdc 6430 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6431 printk(KERN_ERR "ERROR: domain->span does not contain "
6432 "CPU%d\n", cpu);
4dcf6aff 6433 }
758b2cdc 6434 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6435 printk(KERN_ERR "ERROR: domain->groups does not contain"
6436 " CPU%d\n", cpu);
4dcf6aff 6437 }
1da177e4 6438
4dcf6aff 6439 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6440 do {
4dcf6aff 6441 if (!group) {
3df0fc5b
PZ
6442 printk("\n");
6443 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6444 break;
6445 }
6446
18a3885f 6447 if (!group->cpu_power) {
3df0fc5b
PZ
6448 printk(KERN_CONT "\n");
6449 printk(KERN_ERR "ERROR: domain->cpu_power not "
6450 "set\n");
4dcf6aff
IM
6451 break;
6452 }
1da177e4 6453
758b2cdc 6454 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6455 printk(KERN_CONT "\n");
6456 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6457 break;
6458 }
1da177e4 6459
758b2cdc 6460 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6461 printk(KERN_CONT "\n");
6462 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6463 break;
6464 }
1da177e4 6465
758b2cdc 6466 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6467
968ea6d8 6468 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6469
3df0fc5b 6470 printk(KERN_CONT " %s", str);
18a3885f 6471 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6472 printk(KERN_CONT " (cpu_power = %d)",
6473 group->cpu_power);
381512cf 6474 }
1da177e4 6475
4dcf6aff
IM
6476 group = group->next;
6477 } while (group != sd->groups);
3df0fc5b 6478 printk(KERN_CONT "\n");
1da177e4 6479
758b2cdc 6480 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6481 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6482
758b2cdc
RR
6483 if (sd->parent &&
6484 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6485 printk(KERN_ERR "ERROR: parent span is not a superset "
6486 "of domain->span\n");
4dcf6aff
IM
6487 return 0;
6488}
1da177e4 6489
4dcf6aff
IM
6490static void sched_domain_debug(struct sched_domain *sd, int cpu)
6491{
d5dd3db1 6492 cpumask_var_t groupmask;
4dcf6aff 6493 int level = 0;
1da177e4 6494
f6630114
MT
6495 if (!sched_domain_debug_enabled)
6496 return;
6497
4dcf6aff
IM
6498 if (!sd) {
6499 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6500 return;
6501 }
1da177e4 6502
4dcf6aff
IM
6503 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6504
d5dd3db1 6505 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6506 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6507 return;
6508 }
6509
4dcf6aff 6510 for (;;) {
7c16ec58 6511 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6512 break;
1da177e4
LT
6513 level++;
6514 sd = sd->parent;
33859f7f 6515 if (!sd)
4dcf6aff
IM
6516 break;
6517 }
d5dd3db1 6518 free_cpumask_var(groupmask);
1da177e4 6519}
6d6bc0ad 6520#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6521# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6522#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6523
1a20ff27 6524static int sd_degenerate(struct sched_domain *sd)
245af2c7 6525{
758b2cdc 6526 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6527 return 1;
6528
6529 /* Following flags need at least 2 groups */
6530 if (sd->flags & (SD_LOAD_BALANCE |
6531 SD_BALANCE_NEWIDLE |
6532 SD_BALANCE_FORK |
89c4710e
SS
6533 SD_BALANCE_EXEC |
6534 SD_SHARE_CPUPOWER |
6535 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6536 if (sd->groups != sd->groups->next)
6537 return 0;
6538 }
6539
6540 /* Following flags don't use groups */
c88d5910 6541 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6542 return 0;
6543
6544 return 1;
6545}
6546
48f24c4d
IM
6547static int
6548sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6549{
6550 unsigned long cflags = sd->flags, pflags = parent->flags;
6551
6552 if (sd_degenerate(parent))
6553 return 1;
6554
758b2cdc 6555 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6556 return 0;
6557
245af2c7
SS
6558 /* Flags needing groups don't count if only 1 group in parent */
6559 if (parent->groups == parent->groups->next) {
6560 pflags &= ~(SD_LOAD_BALANCE |
6561 SD_BALANCE_NEWIDLE |
6562 SD_BALANCE_FORK |
89c4710e
SS
6563 SD_BALANCE_EXEC |
6564 SD_SHARE_CPUPOWER |
6565 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6566 if (nr_node_ids == 1)
6567 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6568 }
6569 if (~cflags & pflags)
6570 return 0;
6571
6572 return 1;
6573}
6574
c6c4927b
RR
6575static void free_rootdomain(struct root_domain *rd)
6576{
047106ad
PZ
6577 synchronize_sched();
6578
68e74568
RR
6579 cpupri_cleanup(&rd->cpupri);
6580
c6c4927b
RR
6581 free_cpumask_var(rd->rto_mask);
6582 free_cpumask_var(rd->online);
6583 free_cpumask_var(rd->span);
6584 kfree(rd);
6585}
6586
57d885fe
GH
6587static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6588{
a0490fa3 6589 struct root_domain *old_rd = NULL;
57d885fe 6590 unsigned long flags;
57d885fe 6591
05fa785c 6592 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6593
6594 if (rq->rd) {
a0490fa3 6595 old_rd = rq->rd;
57d885fe 6596
c6c4927b 6597 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6598 set_rq_offline(rq);
57d885fe 6599
c6c4927b 6600 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6601
a0490fa3
IM
6602 /*
6603 * If we dont want to free the old_rt yet then
6604 * set old_rd to NULL to skip the freeing later
6605 * in this function:
6606 */
6607 if (!atomic_dec_and_test(&old_rd->refcount))
6608 old_rd = NULL;
57d885fe
GH
6609 }
6610
6611 atomic_inc(&rd->refcount);
6612 rq->rd = rd;
6613
c6c4927b 6614 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6615 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6616 set_rq_online(rq);
57d885fe 6617
05fa785c 6618 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6619
6620 if (old_rd)
6621 free_rootdomain(old_rd);
57d885fe
GH
6622}
6623
68c38fc3 6624static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6625{
6626 memset(rd, 0, sizeof(*rd));
6627
68c38fc3 6628 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6629 goto out;
68c38fc3 6630 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6631 goto free_span;
68c38fc3 6632 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6633 goto free_online;
6e0534f2 6634
68c38fc3 6635 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6636 goto free_rto_mask;
c6c4927b 6637 return 0;
6e0534f2 6638
68e74568
RR
6639free_rto_mask:
6640 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6641free_online:
6642 free_cpumask_var(rd->online);
6643free_span:
6644 free_cpumask_var(rd->span);
0c910d28 6645out:
c6c4927b 6646 return -ENOMEM;
57d885fe
GH
6647}
6648
6649static void init_defrootdomain(void)
6650{
68c38fc3 6651 init_rootdomain(&def_root_domain);
c6c4927b 6652
57d885fe
GH
6653 atomic_set(&def_root_domain.refcount, 1);
6654}
6655
dc938520 6656static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6657{
6658 struct root_domain *rd;
6659
6660 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6661 if (!rd)
6662 return NULL;
6663
68c38fc3 6664 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6665 kfree(rd);
6666 return NULL;
6667 }
57d885fe
GH
6668
6669 return rd;
6670}
6671
1da177e4 6672/*
0eab9146 6673 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6674 * hold the hotplug lock.
6675 */
0eab9146
IM
6676static void
6677cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6678{
70b97a7f 6679 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6680 struct sched_domain *tmp;
6681
6682 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6683 for (tmp = sd; tmp; ) {
245af2c7
SS
6684 struct sched_domain *parent = tmp->parent;
6685 if (!parent)
6686 break;
f29c9b1c 6687
1a848870 6688 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6689 tmp->parent = parent->parent;
1a848870
SS
6690 if (parent->parent)
6691 parent->parent->child = tmp;
f29c9b1c
LZ
6692 } else
6693 tmp = tmp->parent;
245af2c7
SS
6694 }
6695
1a848870 6696 if (sd && sd_degenerate(sd)) {
245af2c7 6697 sd = sd->parent;
1a848870
SS
6698 if (sd)
6699 sd->child = NULL;
6700 }
1da177e4
LT
6701
6702 sched_domain_debug(sd, cpu);
6703
57d885fe 6704 rq_attach_root(rq, rd);
674311d5 6705 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6706}
6707
6708/* cpus with isolated domains */
dcc30a35 6709static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6710
6711/* Setup the mask of cpus configured for isolated domains */
6712static int __init isolated_cpu_setup(char *str)
6713{
bdddd296 6714 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6715 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6716 return 1;
6717}
6718
8927f494 6719__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6720
6721/*
6711cab4
SS
6722 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6723 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6724 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6725 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6726 *
6727 * init_sched_build_groups will build a circular linked list of the groups
6728 * covered by the given span, and will set each group's ->cpumask correctly,
6729 * and ->cpu_power to 0.
6730 */
a616058b 6731static void
96f874e2
RR
6732init_sched_build_groups(const struct cpumask *span,
6733 const struct cpumask *cpu_map,
6734 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6735 struct sched_group **sg,
96f874e2
RR
6736 struct cpumask *tmpmask),
6737 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6738{
6739 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6740 int i;
6741
96f874e2 6742 cpumask_clear(covered);
7c16ec58 6743
abcd083a 6744 for_each_cpu(i, span) {
6711cab4 6745 struct sched_group *sg;
7c16ec58 6746 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6747 int j;
6748
758b2cdc 6749 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6750 continue;
6751
758b2cdc 6752 cpumask_clear(sched_group_cpus(sg));
18a3885f 6753 sg->cpu_power = 0;
1da177e4 6754
abcd083a 6755 for_each_cpu(j, span) {
7c16ec58 6756 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6757 continue;
6758
96f874e2 6759 cpumask_set_cpu(j, covered);
758b2cdc 6760 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6761 }
6762 if (!first)
6763 first = sg;
6764 if (last)
6765 last->next = sg;
6766 last = sg;
6767 }
6768 last->next = first;
6769}
6770
9c1cfda2 6771#define SD_NODES_PER_DOMAIN 16
1da177e4 6772
9c1cfda2 6773#ifdef CONFIG_NUMA
198e2f18 6774
9c1cfda2
JH
6775/**
6776 * find_next_best_node - find the next node to include in a sched_domain
6777 * @node: node whose sched_domain we're building
6778 * @used_nodes: nodes already in the sched_domain
6779 *
41a2d6cf 6780 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6781 * finds the closest node not already in the @used_nodes map.
6782 *
6783 * Should use nodemask_t.
6784 */
c5f59f08 6785static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6786{
6787 int i, n, val, min_val, best_node = 0;
6788
6789 min_val = INT_MAX;
6790
076ac2af 6791 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6792 /* Start at @node */
076ac2af 6793 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6794
6795 if (!nr_cpus_node(n))
6796 continue;
6797
6798 /* Skip already used nodes */
c5f59f08 6799 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6800 continue;
6801
6802 /* Simple min distance search */
6803 val = node_distance(node, n);
6804
6805 if (val < min_val) {
6806 min_val = val;
6807 best_node = n;
6808 }
6809 }
6810
c5f59f08 6811 node_set(best_node, *used_nodes);
9c1cfda2
JH
6812 return best_node;
6813}
6814
6815/**
6816 * sched_domain_node_span - get a cpumask for a node's sched_domain
6817 * @node: node whose cpumask we're constructing
73486722 6818 * @span: resulting cpumask
9c1cfda2 6819 *
41a2d6cf 6820 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6821 * should be one that prevents unnecessary balancing, but also spreads tasks
6822 * out optimally.
6823 */
96f874e2 6824static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6825{
c5f59f08 6826 nodemask_t used_nodes;
48f24c4d 6827 int i;
9c1cfda2 6828
6ca09dfc 6829 cpumask_clear(span);
c5f59f08 6830 nodes_clear(used_nodes);
9c1cfda2 6831
6ca09dfc 6832 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6833 node_set(node, used_nodes);
9c1cfda2
JH
6834
6835 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6836 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6837
6ca09dfc 6838 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6839 }
9c1cfda2 6840}
6d6bc0ad 6841#endif /* CONFIG_NUMA */
9c1cfda2 6842
5c45bf27 6843int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6844
6c99e9ad
RR
6845/*
6846 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6847 *
6848 * ( See the the comments in include/linux/sched.h:struct sched_group
6849 * and struct sched_domain. )
6c99e9ad
RR
6850 */
6851struct static_sched_group {
6852 struct sched_group sg;
6853 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6854};
6855
6856struct static_sched_domain {
6857 struct sched_domain sd;
6858 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6859};
6860
49a02c51
AH
6861struct s_data {
6862#ifdef CONFIG_NUMA
6863 int sd_allnodes;
49a02c51
AH
6864#endif
6865 cpumask_var_t nodemask;
49a02c51
AH
6866 cpumask_var_t send_covered;
6867 cpumask_var_t tmpmask;
21d42ccf 6868 struct sched_domain ** __percpu sd;
49a02c51
AH
6869 struct root_domain *rd;
6870};
6871
2109b99e 6872enum s_alloc {
2109b99e 6873 sa_rootdomain,
21d42ccf 6874 sa_sd,
2109b99e
AH
6875 sa_tmpmask,
6876 sa_send_covered,
2109b99e 6877 sa_nodemask,
2109b99e
AH
6878 sa_none,
6879};
6880
9c1cfda2 6881/*
48f24c4d 6882 * SMT sched-domains:
9c1cfda2 6883 */
1da177e4 6884#ifdef CONFIG_SCHED_SMT
6c99e9ad 6885static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6886static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6887
41a2d6cf 6888static int
96f874e2
RR
6889cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6890 struct sched_group **sg, struct cpumask *unused)
1da177e4 6891{
6711cab4 6892 if (sg)
1871e52c 6893 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6894 return cpu;
6895}
6d6bc0ad 6896#endif /* CONFIG_SCHED_SMT */
1da177e4 6897
48f24c4d
IM
6898/*
6899 * multi-core sched-domains:
6900 */
1e9f28fa 6901#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6902static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6903static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6904
41a2d6cf 6905static int
96f874e2
RR
6906cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6907 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6908{
6711cab4 6909 int group;
f269893c 6910#ifdef CONFIG_SCHED_SMT
c69fc56d 6911 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6912 group = cpumask_first(mask);
f269893c
HC
6913#else
6914 group = cpu;
6915#endif
6711cab4 6916 if (sg)
6c99e9ad 6917 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6918 return group;
1e9f28fa 6919}
f269893c 6920#endif /* CONFIG_SCHED_MC */
1e9f28fa 6921
01a08546
HC
6922/*
6923 * book sched-domains:
6924 */
6925#ifdef CONFIG_SCHED_BOOK
6926static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6927static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6928
41a2d6cf 6929static int
01a08546
HC
6930cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6931 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6932{
01a08546
HC
6933 int group = cpu;
6934#ifdef CONFIG_SCHED_MC
6935 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6936 group = cpumask_first(mask);
6937#elif defined(CONFIG_SCHED_SMT)
6938 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6939 group = cpumask_first(mask);
6940#endif
6711cab4 6941 if (sg)
01a08546
HC
6942 *sg = &per_cpu(sched_group_book, group).sg;
6943 return group;
1e9f28fa 6944}
01a08546 6945#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6946
6c99e9ad
RR
6947static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6948static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6949
41a2d6cf 6950static int
96f874e2
RR
6951cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6952 struct sched_group **sg, struct cpumask *mask)
1da177e4 6953{
6711cab4 6954 int group;
01a08546
HC
6955#ifdef CONFIG_SCHED_BOOK
6956 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6957 group = cpumask_first(mask);
6958#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6959 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6960 group = cpumask_first(mask);
1e9f28fa 6961#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6962 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6963 group = cpumask_first(mask);
1da177e4 6964#else
6711cab4 6965 group = cpu;
1da177e4 6966#endif
6711cab4 6967 if (sg)
6c99e9ad 6968 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6969 return group;
1da177e4
LT
6970}
6971
6972#ifdef CONFIG_NUMA
62ea9ceb 6973static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
cd4ea6ae 6974static DEFINE_PER_CPU(struct static_sched_group, sched_group_node);
9c1cfda2 6975
cd4ea6ae 6976static int cpu_to_node_group(int cpu, const struct cpumask *cpu_map,
96f874e2
RR
6977 struct sched_group **sg,
6978 struct cpumask *nodemask)
9c1cfda2 6979{
6711cab4
SS
6980 int group;
6981
6ca09dfc 6982 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6983 group = cpumask_first(nodemask);
6711cab4
SS
6984
6985 if (sg)
cd4ea6ae 6986 *sg = &per_cpu(sched_group_node, group).sg;
6711cab4 6987 return group;
1da177e4 6988}
6711cab4 6989
cd4ea6ae
PZ
6990static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6991static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
0601a88d 6992
cd4ea6ae
PZ
6993static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6994 struct sched_group **sg,
6995 struct cpumask *nodemask)
0601a88d 6996{
cd4ea6ae 6997 int group;
0601a88d 6998
cd4ea6ae
PZ
6999 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7000 group = cpumask_first(nodemask);
0601a88d 7001
cd4ea6ae
PZ
7002 if (sg)
7003 *sg = &per_cpu(sched_group_allnodes, group).sg;
7004 return group;
0601a88d 7005}
51888ca2 7006
6d6bc0ad 7007#endif /* CONFIG_NUMA */
51888ca2 7008
89c4710e
SS
7009/*
7010 * Initialize sched groups cpu_power.
7011 *
7012 * cpu_power indicates the capacity of sched group, which is used while
7013 * distributing the load between different sched groups in a sched domain.
7014 * Typically cpu_power for all the groups in a sched domain will be same unless
7015 * there are asymmetries in the topology. If there are asymmetries, group
7016 * having more cpu_power will pickup more load compared to the group having
7017 * less cpu_power.
89c4710e
SS
7018 */
7019static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7020{
89c4710e
SS
7021 WARN_ON(!sd || !sd->groups);
7022
13318a71 7023 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7024 return;
7025
aae6d3dd
SS
7026 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7027
d274cb30 7028 update_group_power(sd, cpu);
89c4710e
SS
7029}
7030
7c16ec58
MT
7031/*
7032 * Initializers for schedule domains
7033 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7034 */
7035
a5d8c348
IM
7036#ifdef CONFIG_SCHED_DEBUG
7037# define SD_INIT_NAME(sd, type) sd->name = #type
7038#else
7039# define SD_INIT_NAME(sd, type) do { } while (0)
7040#endif
7041
7c16ec58 7042#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7043
7c16ec58
MT
7044#define SD_INIT_FUNC(type) \
7045static noinline void sd_init_##type(struct sched_domain *sd) \
7046{ \
7047 memset(sd, 0, sizeof(*sd)); \
7048 *sd = SD_##type##_INIT; \
1d3504fc 7049 sd->level = SD_LV_##type; \
a5d8c348 7050 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7051}
7052
7053SD_INIT_FUNC(CPU)
7054#ifdef CONFIG_NUMA
7055 SD_INIT_FUNC(ALLNODES)
7056 SD_INIT_FUNC(NODE)
7057#endif
7058#ifdef CONFIG_SCHED_SMT
7059 SD_INIT_FUNC(SIBLING)
7060#endif
7061#ifdef CONFIG_SCHED_MC
7062 SD_INIT_FUNC(MC)
7063#endif
01a08546
HC
7064#ifdef CONFIG_SCHED_BOOK
7065 SD_INIT_FUNC(BOOK)
7066#endif
7c16ec58 7067
1d3504fc
HS
7068static int default_relax_domain_level = -1;
7069
7070static int __init setup_relax_domain_level(char *str)
7071{
30e0e178
LZ
7072 unsigned long val;
7073
7074 val = simple_strtoul(str, NULL, 0);
7075 if (val < SD_LV_MAX)
7076 default_relax_domain_level = val;
7077
1d3504fc
HS
7078 return 1;
7079}
7080__setup("relax_domain_level=", setup_relax_domain_level);
7081
7082static void set_domain_attribute(struct sched_domain *sd,
7083 struct sched_domain_attr *attr)
7084{
7085 int request;
7086
7087 if (!attr || attr->relax_domain_level < 0) {
7088 if (default_relax_domain_level < 0)
7089 return;
7090 else
7091 request = default_relax_domain_level;
7092 } else
7093 request = attr->relax_domain_level;
7094 if (request < sd->level) {
7095 /* turn off idle balance on this domain */
c88d5910 7096 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7097 } else {
7098 /* turn on idle balance on this domain */
c88d5910 7099 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7100 }
7101}
7102
2109b99e
AH
7103static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7104 const struct cpumask *cpu_map)
7105{
7106 switch (what) {
2109b99e
AH
7107 case sa_rootdomain:
7108 free_rootdomain(d->rd); /* fall through */
21d42ccf
PZ
7109 case sa_sd:
7110 free_percpu(d->sd); /* fall through */
2109b99e
AH
7111 case sa_tmpmask:
7112 free_cpumask_var(d->tmpmask); /* fall through */
7113 case sa_send_covered:
7114 free_cpumask_var(d->send_covered); /* fall through */
2109b99e
AH
7115 case sa_nodemask:
7116 free_cpumask_var(d->nodemask); /* fall through */
2109b99e
AH
7117 case sa_none:
7118 break;
7119 }
7120}
3404c8d9 7121
2109b99e
AH
7122static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7123 const struct cpumask *cpu_map)
7124{
2109b99e 7125 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
cd4ea6ae 7126 return sa_none;
01a08546 7127 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
a06dadbe 7128 return sa_nodemask;
2109b99e
AH
7129 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7130 return sa_send_covered;
21d42ccf
PZ
7131 d->sd = alloc_percpu(struct sched_domain *);
7132 if (!d->sd) {
7133 printk(KERN_WARNING "Cannot alloc per-cpu pointers\n");
7134 return sa_tmpmask;
7135 }
2109b99e
AH
7136 d->rd = alloc_rootdomain();
7137 if (!d->rd) {
3df0fc5b 7138 printk(KERN_WARNING "Cannot alloc root domain\n");
21d42ccf 7139 return sa_sd;
57d885fe 7140 }
2109b99e
AH
7141 return sa_rootdomain;
7142}
57d885fe 7143
7f4588f3
AH
7144static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7145 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7146{
7147 struct sched_domain *sd = NULL;
7c16ec58 7148#ifdef CONFIG_NUMA
7f4588f3 7149 struct sched_domain *parent;
1da177e4 7150
7f4588f3
AH
7151 d->sd_allnodes = 0;
7152 if (cpumask_weight(cpu_map) >
7153 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7154 sd = &per_cpu(allnodes_domains, i).sd;
7155 SD_INIT(sd, ALLNODES);
1d3504fc 7156 set_domain_attribute(sd, attr);
7f4588f3
AH
7157 cpumask_copy(sched_domain_span(sd), cpu_map);
7158 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7159 d->sd_allnodes = 1;
7160 }
7161 parent = sd;
7162
7163 sd = &per_cpu(node_domains, i).sd;
7164 SD_INIT(sd, NODE);
7165 set_domain_attribute(sd, attr);
7166 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7167 sd->parent = parent;
7168 if (parent)
7169 parent->child = sd;
7170 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
cd4ea6ae 7171 cpu_to_node_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7172#endif
7f4588f3
AH
7173 return sd;
7174}
1da177e4 7175
87cce662
AH
7176static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7177 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7178 struct sched_domain *parent, int i)
7179{
7180 struct sched_domain *sd;
7181 sd = &per_cpu(phys_domains, i).sd;
7182 SD_INIT(sd, CPU);
7183 set_domain_attribute(sd, attr);
7184 cpumask_copy(sched_domain_span(sd), d->nodemask);
7185 sd->parent = parent;
7186 if (parent)
7187 parent->child = sd;
7188 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7189 return sd;
7190}
1da177e4 7191
01a08546
HC
7192static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7193 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7194 struct sched_domain *parent, int i)
7195{
7196 struct sched_domain *sd = parent;
7197#ifdef CONFIG_SCHED_BOOK
7198 sd = &per_cpu(book_domains, i).sd;
7199 SD_INIT(sd, BOOK);
7200 set_domain_attribute(sd, attr);
7201 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7202 sd->parent = parent;
7203 parent->child = sd;
7204 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7205#endif
7206 return sd;
7207}
7208
410c4081
AH
7209static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7210 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7211 struct sched_domain *parent, int i)
7212{
7213 struct sched_domain *sd = parent;
1e9f28fa 7214#ifdef CONFIG_SCHED_MC
410c4081
AH
7215 sd = &per_cpu(core_domains, i).sd;
7216 SD_INIT(sd, MC);
7217 set_domain_attribute(sd, attr);
7218 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7219 sd->parent = parent;
7220 parent->child = sd;
7221 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7222#endif
410c4081
AH
7223 return sd;
7224}
1e9f28fa 7225
d8173535
AH
7226static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7227 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7228 struct sched_domain *parent, int i)
7229{
7230 struct sched_domain *sd = parent;
1da177e4 7231#ifdef CONFIG_SCHED_SMT
d8173535
AH
7232 sd = &per_cpu(cpu_domains, i).sd;
7233 SD_INIT(sd, SIBLING);
7234 set_domain_attribute(sd, attr);
7235 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7236 sd->parent = parent;
7237 parent->child = sd;
7238 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7239#endif
d8173535
AH
7240 return sd;
7241}
1da177e4 7242
1cf51902 7243static void build_sched_groups(struct s_data *d, struct sched_domain *sd,
0e8e85c9
AH
7244 const struct cpumask *cpu_map, int cpu)
7245{
1cf51902 7246 switch (sd->level) {
1da177e4 7247#ifdef CONFIG_SCHED_SMT
0e8e85c9 7248 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
a06dadbe
PZ
7249 if (cpu == cpumask_first(sched_domain_span(sd)))
7250 init_sched_build_groups(sched_domain_span(sd), cpu_map,
0e8e85c9
AH
7251 &cpu_to_cpu_group,
7252 d->send_covered, d->tmpmask);
7253 break;
1da177e4 7254#endif
1e9f28fa 7255#ifdef CONFIG_SCHED_MC
a2af04cd 7256 case SD_LV_MC: /* set up multi-core groups */
a06dadbe
PZ
7257 if (cpu == cpumask_first(sched_domain_span(sd)))
7258 init_sched_build_groups(sched_domain_span(sd), cpu_map,
a2af04cd
AH
7259 &cpu_to_core_group,
7260 d->send_covered, d->tmpmask);
7261 break;
01a08546
HC
7262#endif
7263#ifdef CONFIG_SCHED_BOOK
7264 case SD_LV_BOOK: /* set up book groups */
a06dadbe
PZ
7265 if (cpu == cpumask_first(sched_domain_span(sd)))
7266 init_sched_build_groups(sched_domain_span(sd), cpu_map,
01a08546
HC
7267 &cpu_to_book_group,
7268 d->send_covered, d->tmpmask);
7269 break;
1e9f28fa 7270#endif
86548096 7271 case SD_LV_CPU: /* set up physical groups */
a06dadbe
PZ
7272 if (cpu == cpumask_first(sched_domain_span(sd)))
7273 init_sched_build_groups(sched_domain_span(sd), cpu_map,
86548096
AH
7274 &cpu_to_phys_group,
7275 d->send_covered, d->tmpmask);
7276 break;
1da177e4 7277#ifdef CONFIG_NUMA
cd4ea6ae 7278 case SD_LV_NODE:
cd4ea6ae
PZ
7279 if (cpu == cpumask_first(sched_domain_span(sd)))
7280 init_sched_build_groups(sched_domain_span(sd), cpu_map,
7281 &cpu_to_node_group,
7282 d->send_covered, d->tmpmask);
7283
de616e36 7284 case SD_LV_ALLNODES:
3739494e
PZ
7285 if (cpu == cpumask_first(cpu_map))
7286 init_sched_build_groups(cpu_map, cpu_map,
7287 &cpu_to_allnodes_group,
de616e36
AH
7288 d->send_covered, d->tmpmask);
7289 break;
7290#endif
0e8e85c9
AH
7291 default:
7292 break;
7c16ec58 7293 }
0e8e85c9 7294}
9c1cfda2 7295
2109b99e
AH
7296/*
7297 * Build sched domains for a given set of cpus and attach the sched domains
7298 * to the individual cpus
7299 */
7300static int __build_sched_domains(const struct cpumask *cpu_map,
7301 struct sched_domain_attr *attr)
7302{
7303 enum s_alloc alloc_state = sa_none;
7304 struct s_data d;
d274cb30 7305 struct sched_domain *sd, *tmp;
2109b99e 7306 int i;
7c16ec58 7307#ifdef CONFIG_NUMA
2109b99e 7308 d.sd_allnodes = 0;
7c16ec58 7309#endif
9c1cfda2 7310
2109b99e
AH
7311 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7312 if (alloc_state != sa_rootdomain)
7313 goto error;
9c1cfda2 7314
1da177e4 7315 /*
1a20ff27 7316 * Set up domains for cpus specified by the cpu_map.
1da177e4 7317 */
abcd083a 7318 for_each_cpu(i, cpu_map) {
49a02c51
AH
7319 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7320 cpu_map);
9761eea8 7321
7f4588f3 7322 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7323 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7324 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7325 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7326 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
d274cb30 7327
21d42ccf
PZ
7328 *per_cpu_ptr(d.sd, i) = sd;
7329
1cf51902 7330 for (tmp = sd; tmp; tmp = tmp->parent) {
d274cb30 7331 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
1cf51902
PZ
7332 build_sched_groups(&d, tmp, cpu_map, i);
7333 }
a06dadbe 7334 }
9c1cfda2 7335
1da177e4 7336 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7337#ifdef CONFIG_SCHED_SMT
abcd083a 7338 for_each_cpu(i, cpu_map) {
294b0c96 7339 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7340 init_sched_groups_power(i, sd);
5c45bf27 7341 }
1da177e4 7342#endif
1e9f28fa 7343#ifdef CONFIG_SCHED_MC
abcd083a 7344 for_each_cpu(i, cpu_map) {
294b0c96 7345 sd = &per_cpu(core_domains, i).sd;
89c4710e 7346 init_sched_groups_power(i, sd);
5c45bf27
SS
7347 }
7348#endif
01a08546
HC
7349#ifdef CONFIG_SCHED_BOOK
7350 for_each_cpu(i, cpu_map) {
7351 sd = &per_cpu(book_domains, i).sd;
7352 init_sched_groups_power(i, sd);
7353 }
7354#endif
1e9f28fa 7355
abcd083a 7356 for_each_cpu(i, cpu_map) {
294b0c96 7357 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7358 init_sched_groups_power(i, sd);
1da177e4
LT
7359 }
7360
9c1cfda2 7361#ifdef CONFIG_NUMA
cd4ea6ae
PZ
7362 for_each_cpu(i, cpu_map) {
7363 sd = &per_cpu(node_domains, i).sd;
7364 init_sched_groups_power(i, sd);
7365 }
9c1cfda2 7366
49a02c51 7367 if (d.sd_allnodes) {
cd4ea6ae
PZ
7368 for_each_cpu(i, cpu_map) {
7369 sd = &per_cpu(allnodes_domains, i).sd;
7370 init_sched_groups_power(i, sd);
7371 }
f712c0c7 7372 }
9c1cfda2
JH
7373#endif
7374
1da177e4 7375 /* Attach the domains */
abcd083a 7376 for_each_cpu(i, cpu_map) {
21d42ccf 7377 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7378 cpu_attach_domain(sd, d.rd, i);
1da177e4 7379 }
51888ca2 7380
2109b99e
AH
7381 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7382 return 0;
51888ca2 7383
51888ca2 7384error:
2109b99e
AH
7385 __free_domain_allocs(&d, alloc_state, cpu_map);
7386 return -ENOMEM;
1da177e4 7387}
029190c5 7388
96f874e2 7389static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7390{
7391 return __build_sched_domains(cpu_map, NULL);
7392}
7393
acc3f5d7 7394static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7395static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7396static struct sched_domain_attr *dattr_cur;
7397 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7398
7399/*
7400 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7401 * cpumask) fails, then fallback to a single sched domain,
7402 * as determined by the single cpumask fallback_doms.
029190c5 7403 */
4212823f 7404static cpumask_var_t fallback_doms;
029190c5 7405
ee79d1bd
HC
7406/*
7407 * arch_update_cpu_topology lets virtualized architectures update the
7408 * cpu core maps. It is supposed to return 1 if the topology changed
7409 * or 0 if it stayed the same.
7410 */
7411int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7412{
ee79d1bd 7413 return 0;
22e52b07
HC
7414}
7415
acc3f5d7
RR
7416cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7417{
7418 int i;
7419 cpumask_var_t *doms;
7420
7421 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7422 if (!doms)
7423 return NULL;
7424 for (i = 0; i < ndoms; i++) {
7425 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7426 free_sched_domains(doms, i);
7427 return NULL;
7428 }
7429 }
7430 return doms;
7431}
7432
7433void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7434{
7435 unsigned int i;
7436 for (i = 0; i < ndoms; i++)
7437 free_cpumask_var(doms[i]);
7438 kfree(doms);
7439}
7440
1a20ff27 7441/*
41a2d6cf 7442 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7443 * For now this just excludes isolated cpus, but could be used to
7444 * exclude other special cases in the future.
1a20ff27 7445 */
c4a8849a 7446static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7447{
7378547f
MM
7448 int err;
7449
22e52b07 7450 arch_update_cpu_topology();
029190c5 7451 ndoms_cur = 1;
acc3f5d7 7452 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7453 if (!doms_cur)
acc3f5d7
RR
7454 doms_cur = &fallback_doms;
7455 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7456 dattr_cur = NULL;
acc3f5d7 7457 err = build_sched_domains(doms_cur[0]);
6382bc90 7458 register_sched_domain_sysctl();
7378547f
MM
7459
7460 return err;
1a20ff27
DG
7461}
7462
c4a8849a 7463static void destroy_sched_domains(const struct cpumask *cpu_map,
96f874e2 7464 struct cpumask *tmpmask)
1da177e4 7465{
9c1cfda2 7466}
1da177e4 7467
1a20ff27
DG
7468/*
7469 * Detach sched domains from a group of cpus specified in cpu_map
7470 * These cpus will now be attached to the NULL domain
7471 */
96f874e2 7472static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7473{
96f874e2
RR
7474 /* Save because hotplug lock held. */
7475 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7476 int i;
7477
abcd083a 7478 for_each_cpu(i, cpu_map)
57d885fe 7479 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7480 synchronize_sched();
c4a8849a 7481 destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7482}
7483
1d3504fc
HS
7484/* handle null as "default" */
7485static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7486 struct sched_domain_attr *new, int idx_new)
7487{
7488 struct sched_domain_attr tmp;
7489
7490 /* fast path */
7491 if (!new && !cur)
7492 return 1;
7493
7494 tmp = SD_ATTR_INIT;
7495 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7496 new ? (new + idx_new) : &tmp,
7497 sizeof(struct sched_domain_attr));
7498}
7499
029190c5
PJ
7500/*
7501 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7502 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7503 * doms_new[] to the current sched domain partitioning, doms_cur[].
7504 * It destroys each deleted domain and builds each new domain.
7505 *
acc3f5d7 7506 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7507 * The masks don't intersect (don't overlap.) We should setup one
7508 * sched domain for each mask. CPUs not in any of the cpumasks will
7509 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7510 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7511 * it as it is.
7512 *
acc3f5d7
RR
7513 * The passed in 'doms_new' should be allocated using
7514 * alloc_sched_domains. This routine takes ownership of it and will
7515 * free_sched_domains it when done with it. If the caller failed the
7516 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7517 * and partition_sched_domains() will fallback to the single partition
7518 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7519 *
96f874e2 7520 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7521 * ndoms_new == 0 is a special case for destroying existing domains,
7522 * and it will not create the default domain.
dfb512ec 7523 *
029190c5
PJ
7524 * Call with hotplug lock held
7525 */
acc3f5d7 7526void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7527 struct sched_domain_attr *dattr_new)
029190c5 7528{
dfb512ec 7529 int i, j, n;
d65bd5ec 7530 int new_topology;
029190c5 7531
712555ee 7532 mutex_lock(&sched_domains_mutex);
a1835615 7533
7378547f
MM
7534 /* always unregister in case we don't destroy any domains */
7535 unregister_sched_domain_sysctl();
7536
d65bd5ec
HC
7537 /* Let architecture update cpu core mappings. */
7538 new_topology = arch_update_cpu_topology();
7539
dfb512ec 7540 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7541
7542 /* Destroy deleted domains */
7543 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7544 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7545 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7546 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7547 goto match1;
7548 }
7549 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7550 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7551match1:
7552 ;
7553 }
7554
e761b772
MK
7555 if (doms_new == NULL) {
7556 ndoms_cur = 0;
acc3f5d7 7557 doms_new = &fallback_doms;
6ad4c188 7558 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7559 WARN_ON_ONCE(dattr_new);
e761b772
MK
7560 }
7561
029190c5
PJ
7562 /* Build new domains */
7563 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7564 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7565 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7566 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7567 goto match2;
7568 }
7569 /* no match - add a new doms_new */
acc3f5d7 7570 __build_sched_domains(doms_new[i],
1d3504fc 7571 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7572match2:
7573 ;
7574 }
7575
7576 /* Remember the new sched domains */
acc3f5d7
RR
7577 if (doms_cur != &fallback_doms)
7578 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7579 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7580 doms_cur = doms_new;
1d3504fc 7581 dattr_cur = dattr_new;
029190c5 7582 ndoms_cur = ndoms_new;
7378547f
MM
7583
7584 register_sched_domain_sysctl();
a1835615 7585
712555ee 7586 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7587}
7588
5c45bf27 7589#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7590static void reinit_sched_domains(void)
5c45bf27 7591{
95402b38 7592 get_online_cpus();
dfb512ec
MK
7593
7594 /* Destroy domains first to force the rebuild */
7595 partition_sched_domains(0, NULL, NULL);
7596
e761b772 7597 rebuild_sched_domains();
95402b38 7598 put_online_cpus();
5c45bf27
SS
7599}
7600
7601static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7602{
afb8a9b7 7603 unsigned int level = 0;
5c45bf27 7604
afb8a9b7
GS
7605 if (sscanf(buf, "%u", &level) != 1)
7606 return -EINVAL;
7607
7608 /*
7609 * level is always be positive so don't check for
7610 * level < POWERSAVINGS_BALANCE_NONE which is 0
7611 * What happens on 0 or 1 byte write,
7612 * need to check for count as well?
7613 */
7614
7615 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7616 return -EINVAL;
7617
7618 if (smt)
afb8a9b7 7619 sched_smt_power_savings = level;
5c45bf27 7620 else
afb8a9b7 7621 sched_mc_power_savings = level;
5c45bf27 7622
c4a8849a 7623 reinit_sched_domains();
5c45bf27 7624
c70f22d2 7625 return count;
5c45bf27
SS
7626}
7627
5c45bf27 7628#ifdef CONFIG_SCHED_MC
f718cd4a 7629static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7630 struct sysdev_class_attribute *attr,
f718cd4a 7631 char *page)
5c45bf27
SS
7632{
7633 return sprintf(page, "%u\n", sched_mc_power_savings);
7634}
f718cd4a 7635static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7636 struct sysdev_class_attribute *attr,
48f24c4d 7637 const char *buf, size_t count)
5c45bf27
SS
7638{
7639 return sched_power_savings_store(buf, count, 0);
7640}
f718cd4a
AK
7641static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7642 sched_mc_power_savings_show,
7643 sched_mc_power_savings_store);
5c45bf27
SS
7644#endif
7645
7646#ifdef CONFIG_SCHED_SMT
f718cd4a 7647static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7648 struct sysdev_class_attribute *attr,
f718cd4a 7649 char *page)
5c45bf27
SS
7650{
7651 return sprintf(page, "%u\n", sched_smt_power_savings);
7652}
f718cd4a 7653static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7654 struct sysdev_class_attribute *attr,
48f24c4d 7655 const char *buf, size_t count)
5c45bf27
SS
7656{
7657 return sched_power_savings_store(buf, count, 1);
7658}
f718cd4a
AK
7659static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7660 sched_smt_power_savings_show,
6707de00
AB
7661 sched_smt_power_savings_store);
7662#endif
7663
39aac648 7664int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7665{
7666 int err = 0;
7667
7668#ifdef CONFIG_SCHED_SMT
7669 if (smt_capable())
7670 err = sysfs_create_file(&cls->kset.kobj,
7671 &attr_sched_smt_power_savings.attr);
7672#endif
7673#ifdef CONFIG_SCHED_MC
7674 if (!err && mc_capable())
7675 err = sysfs_create_file(&cls->kset.kobj,
7676 &attr_sched_mc_power_savings.attr);
7677#endif
7678 return err;
7679}
6d6bc0ad 7680#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7681
1da177e4 7682/*
3a101d05
TH
7683 * Update cpusets according to cpu_active mask. If cpusets are
7684 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7685 * around partition_sched_domains().
1da177e4 7686 */
0b2e918a
TH
7687static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7688 void *hcpu)
e761b772 7689{
3a101d05 7690 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7691 case CPU_ONLINE:
6ad4c188 7692 case CPU_DOWN_FAILED:
3a101d05 7693 cpuset_update_active_cpus();
e761b772 7694 return NOTIFY_OK;
3a101d05
TH
7695 default:
7696 return NOTIFY_DONE;
7697 }
7698}
e761b772 7699
0b2e918a
TH
7700static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7701 void *hcpu)
3a101d05
TH
7702{
7703 switch (action & ~CPU_TASKS_FROZEN) {
7704 case CPU_DOWN_PREPARE:
7705 cpuset_update_active_cpus();
7706 return NOTIFY_OK;
e761b772
MK
7707 default:
7708 return NOTIFY_DONE;
7709 }
7710}
e761b772
MK
7711
7712static int update_runtime(struct notifier_block *nfb,
7713 unsigned long action, void *hcpu)
1da177e4 7714{
7def2be1
PZ
7715 int cpu = (int)(long)hcpu;
7716
1da177e4 7717 switch (action) {
1da177e4 7718 case CPU_DOWN_PREPARE:
8bb78442 7719 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7720 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7721 return NOTIFY_OK;
7722
1da177e4 7723 case CPU_DOWN_FAILED:
8bb78442 7724 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7725 case CPU_ONLINE:
8bb78442 7726 case CPU_ONLINE_FROZEN:
7def2be1 7727 enable_runtime(cpu_rq(cpu));
e761b772
MK
7728 return NOTIFY_OK;
7729
1da177e4
LT
7730 default:
7731 return NOTIFY_DONE;
7732 }
1da177e4 7733}
1da177e4
LT
7734
7735void __init sched_init_smp(void)
7736{
dcc30a35
RR
7737 cpumask_var_t non_isolated_cpus;
7738
7739 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7740 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7741
95402b38 7742 get_online_cpus();
712555ee 7743 mutex_lock(&sched_domains_mutex);
c4a8849a 7744 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7745 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7746 if (cpumask_empty(non_isolated_cpus))
7747 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7748 mutex_unlock(&sched_domains_mutex);
95402b38 7749 put_online_cpus();
e761b772 7750
3a101d05
TH
7751 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7752 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7753
7754 /* RT runtime code needs to handle some hotplug events */
7755 hotcpu_notifier(update_runtime, 0);
7756
b328ca18 7757 init_hrtick();
5c1e1767
NP
7758
7759 /* Move init over to a non-isolated CPU */
dcc30a35 7760 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7761 BUG();
19978ca6 7762 sched_init_granularity();
dcc30a35 7763 free_cpumask_var(non_isolated_cpus);
4212823f 7764
0e3900e6 7765 init_sched_rt_class();
1da177e4
LT
7766}
7767#else
7768void __init sched_init_smp(void)
7769{
19978ca6 7770 sched_init_granularity();
1da177e4
LT
7771}
7772#endif /* CONFIG_SMP */
7773
cd1bb94b
AB
7774const_debug unsigned int sysctl_timer_migration = 1;
7775
1da177e4
LT
7776int in_sched_functions(unsigned long addr)
7777{
1da177e4
LT
7778 return in_lock_functions(addr) ||
7779 (addr >= (unsigned long)__sched_text_start
7780 && addr < (unsigned long)__sched_text_end);
7781}
7782
a9957449 7783static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7784{
7785 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7786 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7787#ifdef CONFIG_FAIR_GROUP_SCHED
7788 cfs_rq->rq = rq;
f07333bf 7789 /* allow initial update_cfs_load() to truncate */
6ea72f12 7790#ifdef CONFIG_SMP
f07333bf 7791 cfs_rq->load_stamp = 1;
6ea72f12 7792#endif
dd41f596 7793#endif
67e9fb2a 7794 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7795}
7796
fa85ae24
PZ
7797static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7798{
7799 struct rt_prio_array *array;
7800 int i;
7801
7802 array = &rt_rq->active;
7803 for (i = 0; i < MAX_RT_PRIO; i++) {
7804 INIT_LIST_HEAD(array->queue + i);
7805 __clear_bit(i, array->bitmap);
7806 }
7807 /* delimiter for bitsearch: */
7808 __set_bit(MAX_RT_PRIO, array->bitmap);
7809
052f1dc7 7810#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7811 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7812#ifdef CONFIG_SMP
e864c499 7813 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7814#endif
48d5e258 7815#endif
fa85ae24
PZ
7816#ifdef CONFIG_SMP
7817 rt_rq->rt_nr_migratory = 0;
fa85ae24 7818 rt_rq->overloaded = 0;
05fa785c 7819 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7820#endif
7821
7822 rt_rq->rt_time = 0;
7823 rt_rq->rt_throttled = 0;
ac086bc2 7824 rt_rq->rt_runtime = 0;
0986b11b 7825 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7826
052f1dc7 7827#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7828 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7829 rt_rq->rq = rq;
7830#endif
fa85ae24
PZ
7831}
7832
6f505b16 7833#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7834static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7835 struct sched_entity *se, int cpu,
ec7dc8ac 7836 struct sched_entity *parent)
6f505b16 7837{
ec7dc8ac 7838 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7839 tg->cfs_rq[cpu] = cfs_rq;
7840 init_cfs_rq(cfs_rq, rq);
7841 cfs_rq->tg = tg;
6f505b16
PZ
7842
7843 tg->se[cpu] = se;
07e06b01 7844 /* se could be NULL for root_task_group */
354d60c2
DG
7845 if (!se)
7846 return;
7847
ec7dc8ac
DG
7848 if (!parent)
7849 se->cfs_rq = &rq->cfs;
7850 else
7851 se->cfs_rq = parent->my_q;
7852
6f505b16 7853 se->my_q = cfs_rq;
9437178f 7854 update_load_set(&se->load, 0);
ec7dc8ac 7855 se->parent = parent;
6f505b16 7856}
052f1dc7 7857#endif
6f505b16 7858
052f1dc7 7859#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7860static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7861 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7862 struct sched_rt_entity *parent)
6f505b16 7863{
ec7dc8ac
DG
7864 struct rq *rq = cpu_rq(cpu);
7865
6f505b16
PZ
7866 tg->rt_rq[cpu] = rt_rq;
7867 init_rt_rq(rt_rq, rq);
7868 rt_rq->tg = tg;
ac086bc2 7869 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7870
7871 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7872 if (!rt_se)
7873 return;
7874
ec7dc8ac
DG
7875 if (!parent)
7876 rt_se->rt_rq = &rq->rt;
7877 else
7878 rt_se->rt_rq = parent->my_q;
7879
6f505b16 7880 rt_se->my_q = rt_rq;
ec7dc8ac 7881 rt_se->parent = parent;
6f505b16
PZ
7882 INIT_LIST_HEAD(&rt_se->run_list);
7883}
7884#endif
7885
1da177e4
LT
7886void __init sched_init(void)
7887{
dd41f596 7888 int i, j;
434d53b0
MT
7889 unsigned long alloc_size = 0, ptr;
7890
7891#ifdef CONFIG_FAIR_GROUP_SCHED
7892 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7893#endif
7894#ifdef CONFIG_RT_GROUP_SCHED
7895 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7896#endif
df7c8e84 7897#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7898 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7899#endif
434d53b0 7900 if (alloc_size) {
36b7b6d4 7901 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7902
7903#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7904 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7905 ptr += nr_cpu_ids * sizeof(void **);
7906
07e06b01 7907 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7908 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7909
6d6bc0ad 7910#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7911#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7912 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7913 ptr += nr_cpu_ids * sizeof(void **);
7914
07e06b01 7915 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7916 ptr += nr_cpu_ids * sizeof(void **);
7917
6d6bc0ad 7918#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7919#ifdef CONFIG_CPUMASK_OFFSTACK
7920 for_each_possible_cpu(i) {
7921 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7922 ptr += cpumask_size();
7923 }
7924#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7925 }
dd41f596 7926
57d885fe
GH
7927#ifdef CONFIG_SMP
7928 init_defrootdomain();
7929#endif
7930
d0b27fa7
PZ
7931 init_rt_bandwidth(&def_rt_bandwidth,
7932 global_rt_period(), global_rt_runtime());
7933
7934#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7935 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7936 global_rt_period(), global_rt_runtime());
6d6bc0ad 7937#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7938
7c941438 7939#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7940 list_add(&root_task_group.list, &task_groups);
7941 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7942 autogroup_init(&init_task);
7c941438 7943#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7944
0a945022 7945 for_each_possible_cpu(i) {
70b97a7f 7946 struct rq *rq;
1da177e4
LT
7947
7948 rq = cpu_rq(i);
05fa785c 7949 raw_spin_lock_init(&rq->lock);
7897986b 7950 rq->nr_running = 0;
dce48a84
TG
7951 rq->calc_load_active = 0;
7952 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7953 init_cfs_rq(&rq->cfs, rq);
6f505b16 7954 init_rt_rq(&rq->rt, rq);
dd41f596 7955#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7956 root_task_group.shares = root_task_group_load;
6f505b16 7957 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7958 /*
07e06b01 7959 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7960 *
7961 * In case of task-groups formed thr' the cgroup filesystem, it
7962 * gets 100% of the cpu resources in the system. This overall
7963 * system cpu resource is divided among the tasks of
07e06b01 7964 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7965 * based on each entity's (task or task-group's) weight
7966 * (se->load.weight).
7967 *
07e06b01 7968 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7969 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7970 * then A0's share of the cpu resource is:
7971 *
0d905bca 7972 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7973 *
07e06b01
YZ
7974 * We achieve this by letting root_task_group's tasks sit
7975 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7976 */
07e06b01 7977 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7978#endif /* CONFIG_FAIR_GROUP_SCHED */
7979
7980 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7981#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7982 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7983 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7984#endif
1da177e4 7985
dd41f596
IM
7986 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7987 rq->cpu_load[j] = 0;
fdf3e95d
VP
7988
7989 rq->last_load_update_tick = jiffies;
7990
1da177e4 7991#ifdef CONFIG_SMP
41c7ce9a 7992 rq->sd = NULL;
57d885fe 7993 rq->rd = NULL;
e51fd5e2 7994 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7995 rq->post_schedule = 0;
1da177e4 7996 rq->active_balance = 0;
dd41f596 7997 rq->next_balance = jiffies;
1da177e4 7998 rq->push_cpu = 0;
0a2966b4 7999 rq->cpu = i;
1f11eb6a 8000 rq->online = 0;
eae0c9df
MG
8001 rq->idle_stamp = 0;
8002 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8003 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8004#ifdef CONFIG_NO_HZ
8005 rq->nohz_balance_kick = 0;
8006 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8007#endif
1da177e4 8008#endif
8f4d37ec 8009 init_rq_hrtick(rq);
1da177e4 8010 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8011 }
8012
2dd73a4f 8013 set_load_weight(&init_task);
b50f60ce 8014
e107be36
AK
8015#ifdef CONFIG_PREEMPT_NOTIFIERS
8016 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8017#endif
8018
c9819f45 8019#ifdef CONFIG_SMP
962cf36c 8020 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8021#endif
8022
b50f60ce 8023#ifdef CONFIG_RT_MUTEXES
1d615482 8024 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8025#endif
8026
1da177e4
LT
8027 /*
8028 * The boot idle thread does lazy MMU switching as well:
8029 */
8030 atomic_inc(&init_mm.mm_count);
8031 enter_lazy_tlb(&init_mm, current);
8032
8033 /*
8034 * Make us the idle thread. Technically, schedule() should not be
8035 * called from this thread, however somewhere below it might be,
8036 * but because we are the idle thread, we just pick up running again
8037 * when this runqueue becomes "idle".
8038 */
8039 init_idle(current, smp_processor_id());
dce48a84
TG
8040
8041 calc_load_update = jiffies + LOAD_FREQ;
8042
dd41f596
IM
8043 /*
8044 * During early bootup we pretend to be a normal task:
8045 */
8046 current->sched_class = &fair_sched_class;
6892b75e 8047
6a7b3dc3 8048 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8049 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8050#ifdef CONFIG_SMP
7d1e6a9b 8051#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8052 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8053 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8054 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8055 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8056 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8057#endif
bdddd296
RR
8058 /* May be allocated at isolcpus cmdline parse time */
8059 if (cpu_isolated_map == NULL)
8060 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8061#endif /* SMP */
6a7b3dc3 8062
6892b75e 8063 scheduler_running = 1;
1da177e4
LT
8064}
8065
8066#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8067static inline int preempt_count_equals(int preempt_offset)
8068{
234da7bc 8069 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8070
4ba8216c 8071 return (nested == preempt_offset);
e4aafea2
FW
8072}
8073
d894837f 8074void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8075{
48f24c4d 8076#ifdef in_atomic
1da177e4
LT
8077 static unsigned long prev_jiffy; /* ratelimiting */
8078
e4aafea2
FW
8079 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8080 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8081 return;
8082 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8083 return;
8084 prev_jiffy = jiffies;
8085
3df0fc5b
PZ
8086 printk(KERN_ERR
8087 "BUG: sleeping function called from invalid context at %s:%d\n",
8088 file, line);
8089 printk(KERN_ERR
8090 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8091 in_atomic(), irqs_disabled(),
8092 current->pid, current->comm);
aef745fc
IM
8093
8094 debug_show_held_locks(current);
8095 if (irqs_disabled())
8096 print_irqtrace_events(current);
8097 dump_stack();
1da177e4
LT
8098#endif
8099}
8100EXPORT_SYMBOL(__might_sleep);
8101#endif
8102
8103#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8104static void normalize_task(struct rq *rq, struct task_struct *p)
8105{
da7a735e
PZ
8106 const struct sched_class *prev_class = p->sched_class;
8107 int old_prio = p->prio;
3a5e4dc1 8108 int on_rq;
3e51f33f 8109
3a5e4dc1
AK
8110 on_rq = p->se.on_rq;
8111 if (on_rq)
8112 deactivate_task(rq, p, 0);
8113 __setscheduler(rq, p, SCHED_NORMAL, 0);
8114 if (on_rq) {
8115 activate_task(rq, p, 0);
8116 resched_task(rq->curr);
8117 }
da7a735e
PZ
8118
8119 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8120}
8121
1da177e4
LT
8122void normalize_rt_tasks(void)
8123{
a0f98a1c 8124 struct task_struct *g, *p;
1da177e4 8125 unsigned long flags;
70b97a7f 8126 struct rq *rq;
1da177e4 8127
4cf5d77a 8128 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8129 do_each_thread(g, p) {
178be793
IM
8130 /*
8131 * Only normalize user tasks:
8132 */
8133 if (!p->mm)
8134 continue;
8135
6cfb0d5d 8136 p->se.exec_start = 0;
6cfb0d5d 8137#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8138 p->se.statistics.wait_start = 0;
8139 p->se.statistics.sleep_start = 0;
8140 p->se.statistics.block_start = 0;
6cfb0d5d 8141#endif
dd41f596
IM
8142
8143 if (!rt_task(p)) {
8144 /*
8145 * Renice negative nice level userspace
8146 * tasks back to 0:
8147 */
8148 if (TASK_NICE(p) < 0 && p->mm)
8149 set_user_nice(p, 0);
1da177e4 8150 continue;
dd41f596 8151 }
1da177e4 8152
1d615482 8153 raw_spin_lock(&p->pi_lock);
b29739f9 8154 rq = __task_rq_lock(p);
1da177e4 8155
178be793 8156 normalize_task(rq, p);
3a5e4dc1 8157
b29739f9 8158 __task_rq_unlock(rq);
1d615482 8159 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8160 } while_each_thread(g, p);
8161
4cf5d77a 8162 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8163}
8164
8165#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8166
67fc4e0c 8167#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8168/*
67fc4e0c 8169 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8170 *
8171 * They can only be called when the whole system has been
8172 * stopped - every CPU needs to be quiescent, and no scheduling
8173 * activity can take place. Using them for anything else would
8174 * be a serious bug, and as a result, they aren't even visible
8175 * under any other configuration.
8176 */
8177
8178/**
8179 * curr_task - return the current task for a given cpu.
8180 * @cpu: the processor in question.
8181 *
8182 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8183 */
36c8b586 8184struct task_struct *curr_task(int cpu)
1df5c10a
LT
8185{
8186 return cpu_curr(cpu);
8187}
8188
67fc4e0c
JW
8189#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8190
8191#ifdef CONFIG_IA64
1df5c10a
LT
8192/**
8193 * set_curr_task - set the current task for a given cpu.
8194 * @cpu: the processor in question.
8195 * @p: the task pointer to set.
8196 *
8197 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8198 * are serviced on a separate stack. It allows the architecture to switch the
8199 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8200 * must be called with all CPU's synchronized, and interrupts disabled, the
8201 * and caller must save the original value of the current task (see
8202 * curr_task() above) and restore that value before reenabling interrupts and
8203 * re-starting the system.
8204 *
8205 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8206 */
36c8b586 8207void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8208{
8209 cpu_curr(cpu) = p;
8210}
8211
8212#endif
29f59db3 8213
bccbe08a
PZ
8214#ifdef CONFIG_FAIR_GROUP_SCHED
8215static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8216{
8217 int i;
8218
8219 for_each_possible_cpu(i) {
8220 if (tg->cfs_rq)
8221 kfree(tg->cfs_rq[i]);
8222 if (tg->se)
8223 kfree(tg->se[i]);
6f505b16
PZ
8224 }
8225
8226 kfree(tg->cfs_rq);
8227 kfree(tg->se);
6f505b16
PZ
8228}
8229
ec7dc8ac
DG
8230static
8231int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8232{
29f59db3 8233 struct cfs_rq *cfs_rq;
eab17229 8234 struct sched_entity *se;
29f59db3
SV
8235 int i;
8236
434d53b0 8237 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8238 if (!tg->cfs_rq)
8239 goto err;
434d53b0 8240 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8241 if (!tg->se)
8242 goto err;
052f1dc7
PZ
8243
8244 tg->shares = NICE_0_LOAD;
29f59db3
SV
8245
8246 for_each_possible_cpu(i) {
eab17229
LZ
8247 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8248 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8249 if (!cfs_rq)
8250 goto err;
8251
eab17229
LZ
8252 se = kzalloc_node(sizeof(struct sched_entity),
8253 GFP_KERNEL, cpu_to_node(i));
29f59db3 8254 if (!se)
dfc12eb2 8255 goto err_free_rq;
29f59db3 8256
3d4b47b4 8257 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8258 }
8259
8260 return 1;
8261
49246274 8262err_free_rq:
dfc12eb2 8263 kfree(cfs_rq);
49246274 8264err:
bccbe08a
PZ
8265 return 0;
8266}
8267
bccbe08a
PZ
8268static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8269{
3d4b47b4
PZ
8270 struct rq *rq = cpu_rq(cpu);
8271 unsigned long flags;
3d4b47b4
PZ
8272
8273 /*
8274 * Only empty task groups can be destroyed; so we can speculatively
8275 * check on_list without danger of it being re-added.
8276 */
8277 if (!tg->cfs_rq[cpu]->on_list)
8278 return;
8279
8280 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8281 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8282 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8283}
6d6bc0ad 8284#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8285static inline void free_fair_sched_group(struct task_group *tg)
8286{
8287}
8288
ec7dc8ac
DG
8289static inline
8290int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8291{
8292 return 1;
8293}
8294
bccbe08a
PZ
8295static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8296{
8297}
6d6bc0ad 8298#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8299
8300#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8301static void free_rt_sched_group(struct task_group *tg)
8302{
8303 int i;
8304
d0b27fa7
PZ
8305 destroy_rt_bandwidth(&tg->rt_bandwidth);
8306
bccbe08a
PZ
8307 for_each_possible_cpu(i) {
8308 if (tg->rt_rq)
8309 kfree(tg->rt_rq[i]);
8310 if (tg->rt_se)
8311 kfree(tg->rt_se[i]);
8312 }
8313
8314 kfree(tg->rt_rq);
8315 kfree(tg->rt_se);
8316}
8317
ec7dc8ac
DG
8318static
8319int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8320{
8321 struct rt_rq *rt_rq;
eab17229 8322 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8323 struct rq *rq;
8324 int i;
8325
434d53b0 8326 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8327 if (!tg->rt_rq)
8328 goto err;
434d53b0 8329 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8330 if (!tg->rt_se)
8331 goto err;
8332
d0b27fa7
PZ
8333 init_rt_bandwidth(&tg->rt_bandwidth,
8334 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8335
8336 for_each_possible_cpu(i) {
8337 rq = cpu_rq(i);
8338
eab17229
LZ
8339 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8340 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8341 if (!rt_rq)
8342 goto err;
29f59db3 8343
eab17229
LZ
8344 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8345 GFP_KERNEL, cpu_to_node(i));
6f505b16 8346 if (!rt_se)
dfc12eb2 8347 goto err_free_rq;
29f59db3 8348
3d4b47b4 8349 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8350 }
8351
bccbe08a
PZ
8352 return 1;
8353
49246274 8354err_free_rq:
dfc12eb2 8355 kfree(rt_rq);
49246274 8356err:
bccbe08a
PZ
8357 return 0;
8358}
6d6bc0ad 8359#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8360static inline void free_rt_sched_group(struct task_group *tg)
8361{
8362}
8363
ec7dc8ac
DG
8364static inline
8365int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8366{
8367 return 1;
8368}
6d6bc0ad 8369#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8370
7c941438 8371#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8372static void free_sched_group(struct task_group *tg)
8373{
8374 free_fair_sched_group(tg);
8375 free_rt_sched_group(tg);
e9aa1dd1 8376 autogroup_free(tg);
bccbe08a
PZ
8377 kfree(tg);
8378}
8379
8380/* allocate runqueue etc for a new task group */
ec7dc8ac 8381struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8382{
8383 struct task_group *tg;
8384 unsigned long flags;
bccbe08a
PZ
8385
8386 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8387 if (!tg)
8388 return ERR_PTR(-ENOMEM);
8389
ec7dc8ac 8390 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8391 goto err;
8392
ec7dc8ac 8393 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8394 goto err;
8395
8ed36996 8396 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8397 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8398
8399 WARN_ON(!parent); /* root should already exist */
8400
8401 tg->parent = parent;
f473aa5e 8402 INIT_LIST_HEAD(&tg->children);
09f2724a 8403 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8404 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8405
9b5b7751 8406 return tg;
29f59db3
SV
8407
8408err:
6f505b16 8409 free_sched_group(tg);
29f59db3
SV
8410 return ERR_PTR(-ENOMEM);
8411}
8412
9b5b7751 8413/* rcu callback to free various structures associated with a task group */
6f505b16 8414static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8415{
29f59db3 8416 /* now it should be safe to free those cfs_rqs */
6f505b16 8417 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8418}
8419
9b5b7751 8420/* Destroy runqueue etc associated with a task group */
4cf86d77 8421void sched_destroy_group(struct task_group *tg)
29f59db3 8422{
8ed36996 8423 unsigned long flags;
9b5b7751 8424 int i;
29f59db3 8425
3d4b47b4
PZ
8426 /* end participation in shares distribution */
8427 for_each_possible_cpu(i)
bccbe08a 8428 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8429
8430 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8431 list_del_rcu(&tg->list);
f473aa5e 8432 list_del_rcu(&tg->siblings);
8ed36996 8433 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8434
9b5b7751 8435 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8436 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8437}
8438
9b5b7751 8439/* change task's runqueue when it moves between groups.
3a252015
IM
8440 * The caller of this function should have put the task in its new group
8441 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8442 * reflect its new group.
9b5b7751
SV
8443 */
8444void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8445{
8446 int on_rq, running;
8447 unsigned long flags;
8448 struct rq *rq;
8449
8450 rq = task_rq_lock(tsk, &flags);
8451
051a1d1a 8452 running = task_current(rq, tsk);
29f59db3
SV
8453 on_rq = tsk->se.on_rq;
8454
0e1f3483 8455 if (on_rq)
29f59db3 8456 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8457 if (unlikely(running))
8458 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8459
810b3817 8460#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8461 if (tsk->sched_class->task_move_group)
8462 tsk->sched_class->task_move_group(tsk, on_rq);
8463 else
810b3817 8464#endif
b2b5ce02 8465 set_task_rq(tsk, task_cpu(tsk));
810b3817 8466
0e1f3483
HS
8467 if (unlikely(running))
8468 tsk->sched_class->set_curr_task(rq);
8469 if (on_rq)
371fd7e7 8470 enqueue_task(rq, tsk, 0);
29f59db3 8471
29f59db3
SV
8472 task_rq_unlock(rq, &flags);
8473}
7c941438 8474#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8475
052f1dc7 8476#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8477static DEFINE_MUTEX(shares_mutex);
8478
4cf86d77 8479int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8480{
8481 int i;
8ed36996 8482 unsigned long flags;
c61935fd 8483
ec7dc8ac
DG
8484 /*
8485 * We can't change the weight of the root cgroup.
8486 */
8487 if (!tg->se[0])
8488 return -EINVAL;
8489
18d95a28
PZ
8490 if (shares < MIN_SHARES)
8491 shares = MIN_SHARES;
cb4ad1ff
MX
8492 else if (shares > MAX_SHARES)
8493 shares = MAX_SHARES;
62fb1851 8494
8ed36996 8495 mutex_lock(&shares_mutex);
9b5b7751 8496 if (tg->shares == shares)
5cb350ba 8497 goto done;
29f59db3 8498
9b5b7751 8499 tg->shares = shares;
c09595f6 8500 for_each_possible_cpu(i) {
9437178f
PT
8501 struct rq *rq = cpu_rq(i);
8502 struct sched_entity *se;
8503
8504 se = tg->se[i];
8505 /* Propagate contribution to hierarchy */
8506 raw_spin_lock_irqsave(&rq->lock, flags);
8507 for_each_sched_entity(se)
6d5ab293 8508 update_cfs_shares(group_cfs_rq(se));
9437178f 8509 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8510 }
29f59db3 8511
5cb350ba 8512done:
8ed36996 8513 mutex_unlock(&shares_mutex);
9b5b7751 8514 return 0;
29f59db3
SV
8515}
8516
5cb350ba
DG
8517unsigned long sched_group_shares(struct task_group *tg)
8518{
8519 return tg->shares;
8520}
052f1dc7 8521#endif
5cb350ba 8522
052f1dc7 8523#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8524/*
9f0c1e56 8525 * Ensure that the real time constraints are schedulable.
6f505b16 8526 */
9f0c1e56
PZ
8527static DEFINE_MUTEX(rt_constraints_mutex);
8528
8529static unsigned long to_ratio(u64 period, u64 runtime)
8530{
8531 if (runtime == RUNTIME_INF)
9a7e0b18 8532 return 1ULL << 20;
9f0c1e56 8533
9a7e0b18 8534 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8535}
8536
9a7e0b18
PZ
8537/* Must be called with tasklist_lock held */
8538static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8539{
9a7e0b18 8540 struct task_struct *g, *p;
b40b2e8e 8541
9a7e0b18
PZ
8542 do_each_thread(g, p) {
8543 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8544 return 1;
8545 } while_each_thread(g, p);
b40b2e8e 8546
9a7e0b18
PZ
8547 return 0;
8548}
b40b2e8e 8549
9a7e0b18
PZ
8550struct rt_schedulable_data {
8551 struct task_group *tg;
8552 u64 rt_period;
8553 u64 rt_runtime;
8554};
b40b2e8e 8555
9a7e0b18
PZ
8556static int tg_schedulable(struct task_group *tg, void *data)
8557{
8558 struct rt_schedulable_data *d = data;
8559 struct task_group *child;
8560 unsigned long total, sum = 0;
8561 u64 period, runtime;
b40b2e8e 8562
9a7e0b18
PZ
8563 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8564 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8565
9a7e0b18
PZ
8566 if (tg == d->tg) {
8567 period = d->rt_period;
8568 runtime = d->rt_runtime;
b40b2e8e 8569 }
b40b2e8e 8570
4653f803
PZ
8571 /*
8572 * Cannot have more runtime than the period.
8573 */
8574 if (runtime > period && runtime != RUNTIME_INF)
8575 return -EINVAL;
6f505b16 8576
4653f803
PZ
8577 /*
8578 * Ensure we don't starve existing RT tasks.
8579 */
9a7e0b18
PZ
8580 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8581 return -EBUSY;
6f505b16 8582
9a7e0b18 8583 total = to_ratio(period, runtime);
6f505b16 8584
4653f803
PZ
8585 /*
8586 * Nobody can have more than the global setting allows.
8587 */
8588 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8589 return -EINVAL;
6f505b16 8590
4653f803
PZ
8591 /*
8592 * The sum of our children's runtime should not exceed our own.
8593 */
9a7e0b18
PZ
8594 list_for_each_entry_rcu(child, &tg->children, siblings) {
8595 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8596 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8597
9a7e0b18
PZ
8598 if (child == d->tg) {
8599 period = d->rt_period;
8600 runtime = d->rt_runtime;
8601 }
6f505b16 8602
9a7e0b18 8603 sum += to_ratio(period, runtime);
9f0c1e56 8604 }
6f505b16 8605
9a7e0b18
PZ
8606 if (sum > total)
8607 return -EINVAL;
8608
8609 return 0;
6f505b16
PZ
8610}
8611
9a7e0b18 8612static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8613{
9a7e0b18
PZ
8614 struct rt_schedulable_data data = {
8615 .tg = tg,
8616 .rt_period = period,
8617 .rt_runtime = runtime,
8618 };
8619
8620 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8621}
8622
d0b27fa7
PZ
8623static int tg_set_bandwidth(struct task_group *tg,
8624 u64 rt_period, u64 rt_runtime)
6f505b16 8625{
ac086bc2 8626 int i, err = 0;
9f0c1e56 8627
9f0c1e56 8628 mutex_lock(&rt_constraints_mutex);
521f1a24 8629 read_lock(&tasklist_lock);
9a7e0b18
PZ
8630 err = __rt_schedulable(tg, rt_period, rt_runtime);
8631 if (err)
9f0c1e56 8632 goto unlock;
ac086bc2 8633
0986b11b 8634 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8635 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8636 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8637
8638 for_each_possible_cpu(i) {
8639 struct rt_rq *rt_rq = tg->rt_rq[i];
8640
0986b11b 8641 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8642 rt_rq->rt_runtime = rt_runtime;
0986b11b 8643 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8644 }
0986b11b 8645 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8646unlock:
521f1a24 8647 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8648 mutex_unlock(&rt_constraints_mutex);
8649
8650 return err;
6f505b16
PZ
8651}
8652
d0b27fa7
PZ
8653int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8654{
8655 u64 rt_runtime, rt_period;
8656
8657 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8658 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8659 if (rt_runtime_us < 0)
8660 rt_runtime = RUNTIME_INF;
8661
8662 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8663}
8664
9f0c1e56
PZ
8665long sched_group_rt_runtime(struct task_group *tg)
8666{
8667 u64 rt_runtime_us;
8668
d0b27fa7 8669 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8670 return -1;
8671
d0b27fa7 8672 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8673 do_div(rt_runtime_us, NSEC_PER_USEC);
8674 return rt_runtime_us;
8675}
d0b27fa7
PZ
8676
8677int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8678{
8679 u64 rt_runtime, rt_period;
8680
8681 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8682 rt_runtime = tg->rt_bandwidth.rt_runtime;
8683
619b0488
R
8684 if (rt_period == 0)
8685 return -EINVAL;
8686
d0b27fa7
PZ
8687 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8688}
8689
8690long sched_group_rt_period(struct task_group *tg)
8691{
8692 u64 rt_period_us;
8693
8694 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8695 do_div(rt_period_us, NSEC_PER_USEC);
8696 return rt_period_us;
8697}
8698
8699static int sched_rt_global_constraints(void)
8700{
4653f803 8701 u64 runtime, period;
d0b27fa7
PZ
8702 int ret = 0;
8703
ec5d4989
HS
8704 if (sysctl_sched_rt_period <= 0)
8705 return -EINVAL;
8706
4653f803
PZ
8707 runtime = global_rt_runtime();
8708 period = global_rt_period();
8709
8710 /*
8711 * Sanity check on the sysctl variables.
8712 */
8713 if (runtime > period && runtime != RUNTIME_INF)
8714 return -EINVAL;
10b612f4 8715
d0b27fa7 8716 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8717 read_lock(&tasklist_lock);
4653f803 8718 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8719 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8720 mutex_unlock(&rt_constraints_mutex);
8721
8722 return ret;
8723}
54e99124
DG
8724
8725int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8726{
8727 /* Don't accept realtime tasks when there is no way for them to run */
8728 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8729 return 0;
8730
8731 return 1;
8732}
8733
6d6bc0ad 8734#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8735static int sched_rt_global_constraints(void)
8736{
ac086bc2
PZ
8737 unsigned long flags;
8738 int i;
8739
ec5d4989
HS
8740 if (sysctl_sched_rt_period <= 0)
8741 return -EINVAL;
8742
60aa605d
PZ
8743 /*
8744 * There's always some RT tasks in the root group
8745 * -- migration, kstopmachine etc..
8746 */
8747 if (sysctl_sched_rt_runtime == 0)
8748 return -EBUSY;
8749
0986b11b 8750 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8751 for_each_possible_cpu(i) {
8752 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8753
0986b11b 8754 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8755 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8756 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8757 }
0986b11b 8758 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8759
d0b27fa7
PZ
8760 return 0;
8761}
6d6bc0ad 8762#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8763
8764int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8765 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8766 loff_t *ppos)
8767{
8768 int ret;
8769 int old_period, old_runtime;
8770 static DEFINE_MUTEX(mutex);
8771
8772 mutex_lock(&mutex);
8773 old_period = sysctl_sched_rt_period;
8774 old_runtime = sysctl_sched_rt_runtime;
8775
8d65af78 8776 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8777
8778 if (!ret && write) {
8779 ret = sched_rt_global_constraints();
8780 if (ret) {
8781 sysctl_sched_rt_period = old_period;
8782 sysctl_sched_rt_runtime = old_runtime;
8783 } else {
8784 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8785 def_rt_bandwidth.rt_period =
8786 ns_to_ktime(global_rt_period());
8787 }
8788 }
8789 mutex_unlock(&mutex);
8790
8791 return ret;
8792}
68318b8e 8793
052f1dc7 8794#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8795
8796/* return corresponding task_group object of a cgroup */
2b01dfe3 8797static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8798{
2b01dfe3
PM
8799 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8800 struct task_group, css);
68318b8e
SV
8801}
8802
8803static struct cgroup_subsys_state *
2b01dfe3 8804cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8805{
ec7dc8ac 8806 struct task_group *tg, *parent;
68318b8e 8807
2b01dfe3 8808 if (!cgrp->parent) {
68318b8e 8809 /* This is early initialization for the top cgroup */
07e06b01 8810 return &root_task_group.css;
68318b8e
SV
8811 }
8812
ec7dc8ac
DG
8813 parent = cgroup_tg(cgrp->parent);
8814 tg = sched_create_group(parent);
68318b8e
SV
8815 if (IS_ERR(tg))
8816 return ERR_PTR(-ENOMEM);
8817
68318b8e
SV
8818 return &tg->css;
8819}
8820
41a2d6cf
IM
8821static void
8822cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8823{
2b01dfe3 8824 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8825
8826 sched_destroy_group(tg);
8827}
8828
41a2d6cf 8829static int
be367d09 8830cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8831{
b68aa230 8832#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8833 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8834 return -EINVAL;
8835#else
68318b8e
SV
8836 /* We don't support RT-tasks being in separate groups */
8837 if (tsk->sched_class != &fair_sched_class)
8838 return -EINVAL;
b68aa230 8839#endif
be367d09
BB
8840 return 0;
8841}
68318b8e 8842
be367d09
BB
8843static int
8844cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8845 struct task_struct *tsk, bool threadgroup)
8846{
8847 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8848 if (retval)
8849 return retval;
8850 if (threadgroup) {
8851 struct task_struct *c;
8852 rcu_read_lock();
8853 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8854 retval = cpu_cgroup_can_attach_task(cgrp, c);
8855 if (retval) {
8856 rcu_read_unlock();
8857 return retval;
8858 }
8859 }
8860 rcu_read_unlock();
8861 }
68318b8e
SV
8862 return 0;
8863}
8864
8865static void
2b01dfe3 8866cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8867 struct cgroup *old_cont, struct task_struct *tsk,
8868 bool threadgroup)
68318b8e
SV
8869{
8870 sched_move_task(tsk);
be367d09
BB
8871 if (threadgroup) {
8872 struct task_struct *c;
8873 rcu_read_lock();
8874 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8875 sched_move_task(c);
8876 }
8877 rcu_read_unlock();
8878 }
68318b8e
SV
8879}
8880
068c5cc5 8881static void
d41d5a01
PZ
8882cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8883 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8884{
8885 /*
8886 * cgroup_exit() is called in the copy_process() failure path.
8887 * Ignore this case since the task hasn't ran yet, this avoids
8888 * trying to poke a half freed task state from generic code.
8889 */
8890 if (!(task->flags & PF_EXITING))
8891 return;
8892
8893 sched_move_task(task);
8894}
8895
052f1dc7 8896#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8897static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8898 u64 shareval)
68318b8e 8899{
2b01dfe3 8900 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8901}
8902
f4c753b7 8903static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8904{
2b01dfe3 8905 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8906
8907 return (u64) tg->shares;
8908}
6d6bc0ad 8909#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8910
052f1dc7 8911#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8912static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8913 s64 val)
6f505b16 8914{
06ecb27c 8915 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8916}
8917
06ecb27c 8918static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8919{
06ecb27c 8920 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8921}
d0b27fa7
PZ
8922
8923static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8924 u64 rt_period_us)
8925{
8926 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8927}
8928
8929static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8930{
8931 return sched_group_rt_period(cgroup_tg(cgrp));
8932}
6d6bc0ad 8933#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8934
fe5c7cc2 8935static struct cftype cpu_files[] = {
052f1dc7 8936#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8937 {
8938 .name = "shares",
f4c753b7
PM
8939 .read_u64 = cpu_shares_read_u64,
8940 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8941 },
052f1dc7
PZ
8942#endif
8943#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8944 {
9f0c1e56 8945 .name = "rt_runtime_us",
06ecb27c
PM
8946 .read_s64 = cpu_rt_runtime_read,
8947 .write_s64 = cpu_rt_runtime_write,
6f505b16 8948 },
d0b27fa7
PZ
8949 {
8950 .name = "rt_period_us",
f4c753b7
PM
8951 .read_u64 = cpu_rt_period_read_uint,
8952 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8953 },
052f1dc7 8954#endif
68318b8e
SV
8955};
8956
8957static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8958{
fe5c7cc2 8959 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8960}
8961
8962struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8963 .name = "cpu",
8964 .create = cpu_cgroup_create,
8965 .destroy = cpu_cgroup_destroy,
8966 .can_attach = cpu_cgroup_can_attach,
8967 .attach = cpu_cgroup_attach,
068c5cc5 8968 .exit = cpu_cgroup_exit,
38605cae
IM
8969 .populate = cpu_cgroup_populate,
8970 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8971 .early_init = 1,
8972};
8973
052f1dc7 8974#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8975
8976#ifdef CONFIG_CGROUP_CPUACCT
8977
8978/*
8979 * CPU accounting code for task groups.
8980 *
8981 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8982 * (balbir@in.ibm.com).
8983 */
8984
934352f2 8985/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8986struct cpuacct {
8987 struct cgroup_subsys_state css;
8988 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8989 u64 __percpu *cpuusage;
ef12fefa 8990 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8991 struct cpuacct *parent;
d842de87
SV
8992};
8993
8994struct cgroup_subsys cpuacct_subsys;
8995
8996/* return cpu accounting group corresponding to this container */
32cd756a 8997static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8998{
32cd756a 8999 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9000 struct cpuacct, css);
9001}
9002
9003/* return cpu accounting group to which this task belongs */
9004static inline struct cpuacct *task_ca(struct task_struct *tsk)
9005{
9006 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9007 struct cpuacct, css);
9008}
9009
9010/* create a new cpu accounting group */
9011static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9012 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9013{
9014 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9015 int i;
d842de87
SV
9016
9017 if (!ca)
ef12fefa 9018 goto out;
d842de87
SV
9019
9020 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9021 if (!ca->cpuusage)
9022 goto out_free_ca;
9023
9024 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9025 if (percpu_counter_init(&ca->cpustat[i], 0))
9026 goto out_free_counters;
d842de87 9027
934352f2
BR
9028 if (cgrp->parent)
9029 ca->parent = cgroup_ca(cgrp->parent);
9030
d842de87 9031 return &ca->css;
ef12fefa
BR
9032
9033out_free_counters:
9034 while (--i >= 0)
9035 percpu_counter_destroy(&ca->cpustat[i]);
9036 free_percpu(ca->cpuusage);
9037out_free_ca:
9038 kfree(ca);
9039out:
9040 return ERR_PTR(-ENOMEM);
d842de87
SV
9041}
9042
9043/* destroy an existing cpu accounting group */
41a2d6cf 9044static void
32cd756a 9045cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9046{
32cd756a 9047 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9048 int i;
d842de87 9049
ef12fefa
BR
9050 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9051 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9052 free_percpu(ca->cpuusage);
9053 kfree(ca);
9054}
9055
720f5498
KC
9056static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9057{
b36128c8 9058 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9059 u64 data;
9060
9061#ifndef CONFIG_64BIT
9062 /*
9063 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9064 */
05fa785c 9065 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9066 data = *cpuusage;
05fa785c 9067 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9068#else
9069 data = *cpuusage;
9070#endif
9071
9072 return data;
9073}
9074
9075static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9076{
b36128c8 9077 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9078
9079#ifndef CONFIG_64BIT
9080 /*
9081 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9082 */
05fa785c 9083 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9084 *cpuusage = val;
05fa785c 9085 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9086#else
9087 *cpuusage = val;
9088#endif
9089}
9090
d842de87 9091/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9092static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9093{
32cd756a 9094 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9095 u64 totalcpuusage = 0;
9096 int i;
9097
720f5498
KC
9098 for_each_present_cpu(i)
9099 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9100
9101 return totalcpuusage;
9102}
9103
0297b803
DG
9104static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9105 u64 reset)
9106{
9107 struct cpuacct *ca = cgroup_ca(cgrp);
9108 int err = 0;
9109 int i;
9110
9111 if (reset) {
9112 err = -EINVAL;
9113 goto out;
9114 }
9115
720f5498
KC
9116 for_each_present_cpu(i)
9117 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9118
0297b803
DG
9119out:
9120 return err;
9121}
9122
e9515c3c
KC
9123static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9124 struct seq_file *m)
9125{
9126 struct cpuacct *ca = cgroup_ca(cgroup);
9127 u64 percpu;
9128 int i;
9129
9130 for_each_present_cpu(i) {
9131 percpu = cpuacct_cpuusage_read(ca, i);
9132 seq_printf(m, "%llu ", (unsigned long long) percpu);
9133 }
9134 seq_printf(m, "\n");
9135 return 0;
9136}
9137
ef12fefa
BR
9138static const char *cpuacct_stat_desc[] = {
9139 [CPUACCT_STAT_USER] = "user",
9140 [CPUACCT_STAT_SYSTEM] = "system",
9141};
9142
9143static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9144 struct cgroup_map_cb *cb)
9145{
9146 struct cpuacct *ca = cgroup_ca(cgrp);
9147 int i;
9148
9149 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9150 s64 val = percpu_counter_read(&ca->cpustat[i]);
9151 val = cputime64_to_clock_t(val);
9152 cb->fill(cb, cpuacct_stat_desc[i], val);
9153 }
9154 return 0;
9155}
9156
d842de87
SV
9157static struct cftype files[] = {
9158 {
9159 .name = "usage",
f4c753b7
PM
9160 .read_u64 = cpuusage_read,
9161 .write_u64 = cpuusage_write,
d842de87 9162 },
e9515c3c
KC
9163 {
9164 .name = "usage_percpu",
9165 .read_seq_string = cpuacct_percpu_seq_read,
9166 },
ef12fefa
BR
9167 {
9168 .name = "stat",
9169 .read_map = cpuacct_stats_show,
9170 },
d842de87
SV
9171};
9172
32cd756a 9173static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9174{
32cd756a 9175 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9176}
9177
9178/*
9179 * charge this task's execution time to its accounting group.
9180 *
9181 * called with rq->lock held.
9182 */
9183static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9184{
9185 struct cpuacct *ca;
934352f2 9186 int cpu;
d842de87 9187
c40c6f85 9188 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9189 return;
9190
934352f2 9191 cpu = task_cpu(tsk);
a18b83b7
BR
9192
9193 rcu_read_lock();
9194
d842de87 9195 ca = task_ca(tsk);
d842de87 9196
934352f2 9197 for (; ca; ca = ca->parent) {
b36128c8 9198 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9199 *cpuusage += cputime;
9200 }
a18b83b7
BR
9201
9202 rcu_read_unlock();
d842de87
SV
9203}
9204
fa535a77
AB
9205/*
9206 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9207 * in cputime_t units. As a result, cpuacct_update_stats calls
9208 * percpu_counter_add with values large enough to always overflow the
9209 * per cpu batch limit causing bad SMP scalability.
9210 *
9211 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9212 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9213 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9214 */
9215#ifdef CONFIG_SMP
9216#define CPUACCT_BATCH \
9217 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9218#else
9219#define CPUACCT_BATCH 0
9220#endif
9221
ef12fefa
BR
9222/*
9223 * Charge the system/user time to the task's accounting group.
9224 */
9225static void cpuacct_update_stats(struct task_struct *tsk,
9226 enum cpuacct_stat_index idx, cputime_t val)
9227{
9228 struct cpuacct *ca;
fa535a77 9229 int batch = CPUACCT_BATCH;
ef12fefa
BR
9230
9231 if (unlikely(!cpuacct_subsys.active))
9232 return;
9233
9234 rcu_read_lock();
9235 ca = task_ca(tsk);
9236
9237 do {
fa535a77 9238 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9239 ca = ca->parent;
9240 } while (ca);
9241 rcu_read_unlock();
9242}
9243
d842de87
SV
9244struct cgroup_subsys cpuacct_subsys = {
9245 .name = "cpuacct",
9246 .create = cpuacct_create,
9247 .destroy = cpuacct_destroy,
9248 .populate = cpuacct_populate,
9249 .subsys_id = cpuacct_subsys_id,
9250};
9251#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9252