sched: sched_clock_idle_[sleep|wakeup]_event()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
1da177e4 64
5517d86b 65#include <asm/tlb.h>
1da177e4 66
b035b6de
AD
67/*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
634fa8c9
IM
135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
91fcdd4e 138/*
634fa8c9 139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 140 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 141 */
634fa8c9 142static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 143{
634fa8c9
IM
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
151}
152
e05606d3
IM
153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
1da177e4 165/*
6aa645ea 166 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 167 */
6aa645ea
IM
168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
172
173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
265 u64 idle_clock;
266 unsigned int clock_deep_idle_events;
529c7726 267 u64 tick_timestamp;
6aa645ea 268
1da177e4
LT
269 atomic_t nr_iowait;
270
271#ifdef CONFIG_SMP
272 struct sched_domain *sd;
273
274 /* For active balancing */
275 int active_balance;
276 int push_cpu;
0a2966b4 277 int cpu; /* cpu of this runqueue */
1da177e4 278
36c8b586 279 struct task_struct *migration_thread;
1da177e4
LT
280 struct list_head migration_queue;
281#endif
282
283#ifdef CONFIG_SCHEDSTATS
284 /* latency stats */
285 struct sched_info rq_sched_info;
286
287 /* sys_sched_yield() stats */
288 unsigned long yld_exp_empty;
289 unsigned long yld_act_empty;
290 unsigned long yld_both_empty;
291 unsigned long yld_cnt;
292
293 /* schedule() stats */
294 unsigned long sched_switch;
295 unsigned long sched_cnt;
296 unsigned long sched_goidle;
297
298 /* try_to_wake_up() stats */
299 unsigned long ttwu_cnt;
300 unsigned long ttwu_local;
301#endif
fcb99371 302 struct lock_class_key rq_lock_key;
1da177e4
LT
303};
304
f34e3b61 305static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 306static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 307
dd41f596
IM
308static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
309{
310 rq->curr->sched_class->check_preempt_curr(rq, p);
311}
312
0a2966b4
CL
313static inline int cpu_of(struct rq *rq)
314{
315#ifdef CONFIG_SMP
316 return rq->cpu;
317#else
318 return 0;
319#endif
320}
321
20d315d4 322/*
b04a0f4c
IM
323 * Update the per-runqueue clock, as finegrained as the platform can give
324 * us, but without assuming monotonicity, etc.:
20d315d4 325 */
b04a0f4c 326static void __update_rq_clock(struct rq *rq)
20d315d4
IM
327{
328 u64 prev_raw = rq->prev_clock_raw;
329 u64 now = sched_clock();
330 s64 delta = now - prev_raw;
331 u64 clock = rq->clock;
332
b04a0f4c
IM
333#ifdef CONFIG_SCHED_DEBUG
334 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
335#endif
20d315d4
IM
336 /*
337 * Protect against sched_clock() occasionally going backwards:
338 */
339 if (unlikely(delta < 0)) {
340 clock++;
341 rq->clock_warps++;
342 } else {
343 /*
344 * Catch too large forward jumps too:
345 */
529c7726
IM
346 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
347 if (clock < rq->tick_timestamp + TICK_NSEC)
348 clock = rq->tick_timestamp + TICK_NSEC;
349 else
350 clock++;
20d315d4
IM
351 rq->clock_overflows++;
352 } else {
353 if (unlikely(delta > rq->clock_max_delta))
354 rq->clock_max_delta = delta;
355 clock += delta;
356 }
357 }
358
359 rq->prev_clock_raw = now;
360 rq->clock = clock;
b04a0f4c 361}
20d315d4 362
b04a0f4c
IM
363static void update_rq_clock(struct rq *rq)
364{
365 if (likely(smp_processor_id() == cpu_of(rq)))
366 __update_rq_clock(rq);
20d315d4
IM
367}
368
674311d5
NP
369/*
370 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 371 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
372 *
373 * The domain tree of any CPU may only be accessed from within
374 * preempt-disabled sections.
375 */
48f24c4d
IM
376#define for_each_domain(cpu, __sd) \
377 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
378
379#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
380#define this_rq() (&__get_cpu_var(runqueues))
381#define task_rq(p) cpu_rq(task_cpu(p))
382#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
383
e436d800
IM
384/*
385 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
386 * clock constructed from sched_clock():
387 */
388unsigned long long cpu_clock(int cpu)
389{
e436d800
IM
390 unsigned long long now;
391 unsigned long flags;
b04a0f4c 392 struct rq *rq;
e436d800 393
2cd4d0ea 394 local_irq_save(flags);
b04a0f4c
IM
395 rq = cpu_rq(cpu);
396 update_rq_clock(rq);
397 now = rq->clock;
2cd4d0ea 398 local_irq_restore(flags);
e436d800
IM
399
400 return now;
401}
402
138a8aeb
IM
403#ifdef CONFIG_FAIR_GROUP_SCHED
404/* Change a task's ->cfs_rq if it moves across CPUs */
405static inline void set_task_cfs_rq(struct task_struct *p)
406{
407 p->se.cfs_rq = &task_rq(p)->cfs;
408}
409#else
410static inline void set_task_cfs_rq(struct task_struct *p)
411{
412}
413#endif
414
1da177e4 415#ifndef prepare_arch_switch
4866cde0
NP
416# define prepare_arch_switch(next) do { } while (0)
417#endif
418#ifndef finish_arch_switch
419# define finish_arch_switch(prev) do { } while (0)
420#endif
421
422#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 423static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
424{
425 return rq->curr == p;
426}
427
70b97a7f 428static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
429{
430}
431
70b97a7f 432static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 433{
da04c035
IM
434#ifdef CONFIG_DEBUG_SPINLOCK
435 /* this is a valid case when another task releases the spinlock */
436 rq->lock.owner = current;
437#endif
8a25d5de
IM
438 /*
439 * If we are tracking spinlock dependencies then we have to
440 * fix up the runqueue lock - which gets 'carried over' from
441 * prev into current:
442 */
443 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
444
4866cde0
NP
445 spin_unlock_irq(&rq->lock);
446}
447
448#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 449static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
450{
451#ifdef CONFIG_SMP
452 return p->oncpu;
453#else
454 return rq->curr == p;
455#endif
456}
457
70b97a7f 458static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
459{
460#ifdef CONFIG_SMP
461 /*
462 * We can optimise this out completely for !SMP, because the
463 * SMP rebalancing from interrupt is the only thing that cares
464 * here.
465 */
466 next->oncpu = 1;
467#endif
468#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
469 spin_unlock_irq(&rq->lock);
470#else
471 spin_unlock(&rq->lock);
472#endif
473}
474
70b97a7f 475static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
476{
477#ifdef CONFIG_SMP
478 /*
479 * After ->oncpu is cleared, the task can be moved to a different CPU.
480 * We must ensure this doesn't happen until the switch is completely
481 * finished.
482 */
483 smp_wmb();
484 prev->oncpu = 0;
485#endif
486#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
487 local_irq_enable();
1da177e4 488#endif
4866cde0
NP
489}
490#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 491
b29739f9
IM
492/*
493 * __task_rq_lock - lock the runqueue a given task resides on.
494 * Must be called interrupts disabled.
495 */
70b97a7f 496static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
497 __acquires(rq->lock)
498{
70b97a7f 499 struct rq *rq;
b29739f9
IM
500
501repeat_lock_task:
502 rq = task_rq(p);
503 spin_lock(&rq->lock);
504 if (unlikely(rq != task_rq(p))) {
505 spin_unlock(&rq->lock);
506 goto repeat_lock_task;
507 }
508 return rq;
509}
510
1da177e4
LT
511/*
512 * task_rq_lock - lock the runqueue a given task resides on and disable
513 * interrupts. Note the ordering: we can safely lookup the task_rq without
514 * explicitly disabling preemption.
515 */
70b97a7f 516static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
517 __acquires(rq->lock)
518{
70b97a7f 519 struct rq *rq;
1da177e4
LT
520
521repeat_lock_task:
522 local_irq_save(*flags);
523 rq = task_rq(p);
524 spin_lock(&rq->lock);
525 if (unlikely(rq != task_rq(p))) {
526 spin_unlock_irqrestore(&rq->lock, *flags);
527 goto repeat_lock_task;
528 }
529 return rq;
530}
531
70b97a7f 532static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
533 __releases(rq->lock)
534{
535 spin_unlock(&rq->lock);
536}
537
70b97a7f 538static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
539 __releases(rq->lock)
540{
541 spin_unlock_irqrestore(&rq->lock, *flags);
542}
543
1da177e4 544/*
cc2a73b5 545 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 546 */
70b97a7f 547static inline struct rq *this_rq_lock(void)
1da177e4
LT
548 __acquires(rq->lock)
549{
70b97a7f 550 struct rq *rq;
1da177e4
LT
551
552 local_irq_disable();
553 rq = this_rq();
554 spin_lock(&rq->lock);
555
556 return rq;
557}
558
1b9f19c2 559/*
2aa44d05 560 * We are going deep-idle (irqs are disabled):
1b9f19c2 561 */
2aa44d05 562void sched_clock_idle_sleep_event(void)
1b9f19c2 563{
2aa44d05
IM
564 struct rq *rq = cpu_rq(smp_processor_id());
565
566 spin_lock(&rq->lock);
567 __update_rq_clock(rq);
568 spin_unlock(&rq->lock);
569 rq->clock_deep_idle_events++;
570}
571EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
572
573/*
574 * We just idled delta nanoseconds (called with irqs disabled):
575 */
576void sched_clock_idle_wakeup_event(u64 delta_ns)
577{
578 struct rq *rq = cpu_rq(smp_processor_id());
579 u64 now = sched_clock();
1b9f19c2 580
2aa44d05
IM
581 rq->idle_clock += delta_ns;
582 /*
583 * Override the previous timestamp and ignore all
584 * sched_clock() deltas that occured while we idled,
585 * and use the PM-provided delta_ns to advance the
586 * rq clock:
587 */
588 spin_lock(&rq->lock);
589 rq->prev_clock_raw = now;
590 rq->clock += delta_ns;
591 spin_unlock(&rq->lock);
1b9f19c2 592}
2aa44d05 593EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 594
c24d20db
IM
595/*
596 * resched_task - mark a task 'to be rescheduled now'.
597 *
598 * On UP this means the setting of the need_resched flag, on SMP it
599 * might also involve a cross-CPU call to trigger the scheduler on
600 * the target CPU.
601 */
602#ifdef CONFIG_SMP
603
604#ifndef tsk_is_polling
605#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
606#endif
607
608static void resched_task(struct task_struct *p)
609{
610 int cpu;
611
612 assert_spin_locked(&task_rq(p)->lock);
613
614 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
615 return;
616
617 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
618
619 cpu = task_cpu(p);
620 if (cpu == smp_processor_id())
621 return;
622
623 /* NEED_RESCHED must be visible before we test polling */
624 smp_mb();
625 if (!tsk_is_polling(p))
626 smp_send_reschedule(cpu);
627}
628
629static void resched_cpu(int cpu)
630{
631 struct rq *rq = cpu_rq(cpu);
632 unsigned long flags;
633
634 if (!spin_trylock_irqsave(&rq->lock, flags))
635 return;
636 resched_task(cpu_curr(cpu));
637 spin_unlock_irqrestore(&rq->lock, flags);
638}
639#else
640static inline void resched_task(struct task_struct *p)
641{
642 assert_spin_locked(&task_rq(p)->lock);
643 set_tsk_need_resched(p);
644}
645#endif
646
45bf76df
IM
647static u64 div64_likely32(u64 divident, unsigned long divisor)
648{
649#if BITS_PER_LONG == 32
650 if (likely(divident <= 0xffffffffULL))
651 return (u32)divident / divisor;
652 do_div(divident, divisor);
653
654 return divident;
655#else
656 return divident / divisor;
657#endif
658}
659
660#if BITS_PER_LONG == 32
661# define WMULT_CONST (~0UL)
662#else
663# define WMULT_CONST (1UL << 32)
664#endif
665
666#define WMULT_SHIFT 32
667
194081eb
IM
668/*
669 * Shift right and round:
670 */
671#define RSR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
672
cb1c4fc9 673static unsigned long
45bf76df
IM
674calc_delta_mine(unsigned long delta_exec, unsigned long weight,
675 struct load_weight *lw)
676{
677 u64 tmp;
678
679 if (unlikely(!lw->inv_weight))
194081eb 680 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
681
682 tmp = (u64)delta_exec * weight;
683 /*
684 * Check whether we'd overflow the 64-bit multiplication:
685 */
194081eb
IM
686 if (unlikely(tmp > WMULT_CONST))
687 tmp = RSR(RSR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
688 WMULT_SHIFT/2);
689 else
690 tmp = RSR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 691
ecf691da 692 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
693}
694
695static inline unsigned long
696calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
697{
698 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
699}
700
701static void update_load_add(struct load_weight *lw, unsigned long inc)
702{
703 lw->weight += inc;
704 lw->inv_weight = 0;
705}
706
707static void update_load_sub(struct load_weight *lw, unsigned long dec)
708{
709 lw->weight -= dec;
710 lw->inv_weight = 0;
711}
712
2dd73a4f
PW
713/*
714 * To aid in avoiding the subversion of "niceness" due to uneven distribution
715 * of tasks with abnormal "nice" values across CPUs the contribution that
716 * each task makes to its run queue's load is weighted according to its
717 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
718 * scaled version of the new time slice allocation that they receive on time
719 * slice expiry etc.
720 */
721
dd41f596
IM
722#define WEIGHT_IDLEPRIO 2
723#define WMULT_IDLEPRIO (1 << 31)
724
725/*
726 * Nice levels are multiplicative, with a gentle 10% change for every
727 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
728 * nice 1, it will get ~10% less CPU time than another CPU-bound task
729 * that remained on nice 0.
730 *
731 * The "10% effect" is relative and cumulative: from _any_ nice level,
732 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
733 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
734 * If a task goes up by ~10% and another task goes down by ~10% then
735 * the relative distance between them is ~25%.)
dd41f596
IM
736 */
737static const int prio_to_weight[40] = {
254753dc
IM
738 /* -20 */ 88761, 71755, 56483, 46273, 36291,
739 /* -15 */ 29154, 23254, 18705, 14949, 11916,
740 /* -10 */ 9548, 7620, 6100, 4904, 3906,
741 /* -5 */ 3121, 2501, 1991, 1586, 1277,
742 /* 0 */ 1024, 820, 655, 526, 423,
743 /* 5 */ 335, 272, 215, 172, 137,
744 /* 10 */ 110, 87, 70, 56, 45,
745 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
746};
747
5714d2de
IM
748/*
749 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
750 *
751 * In cases where the weight does not change often, we can use the
752 * precalculated inverse to speed up arithmetics by turning divisions
753 * into multiplications:
754 */
dd41f596 755static const u32 prio_to_wmult[40] = {
254753dc
IM
756 /* -20 */ 48388, 59856, 76040, 92818, 118348,
757 /* -15 */ 147320, 184698, 229616, 287308, 360437,
758 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
759 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
760 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
761 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
762 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
763 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 764};
2dd73a4f 765
dd41f596
IM
766static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
767
768/*
769 * runqueue iterator, to support SMP load-balancing between different
770 * scheduling classes, without having to expose their internal data
771 * structures to the load-balancing proper:
772 */
773struct rq_iterator {
774 void *arg;
775 struct task_struct *(*start)(void *);
776 struct task_struct *(*next)(void *);
777};
778
779static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
780 unsigned long max_nr_move, unsigned long max_load_move,
781 struct sched_domain *sd, enum cpu_idle_type idle,
782 int *all_pinned, unsigned long *load_moved,
a4ac01c3 783 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
784
785#include "sched_stats.h"
786#include "sched_rt.c"
787#include "sched_fair.c"
788#include "sched_idletask.c"
789#ifdef CONFIG_SCHED_DEBUG
790# include "sched_debug.c"
791#endif
792
793#define sched_class_highest (&rt_sched_class)
794
9c217245
IM
795static void __update_curr_load(struct rq *rq, struct load_stat *ls)
796{
797 if (rq->curr != rq->idle && ls->load.weight) {
798 ls->delta_exec += ls->delta_stat;
799 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
800 ls->delta_stat = 0;
801 }
802}
803
804/*
805 * Update delta_exec, delta_fair fields for rq.
806 *
807 * delta_fair clock advances at a rate inversely proportional to
808 * total load (rq->ls.load.weight) on the runqueue, while
809 * delta_exec advances at the same rate as wall-clock (provided
810 * cpu is not idle).
811 *
812 * delta_exec / delta_fair is a measure of the (smoothened) load on this
813 * runqueue over any given interval. This (smoothened) load is used
814 * during load balance.
815 *
816 * This function is called /before/ updating rq->ls.load
817 * and when switching tasks.
818 */
84a1d7a2 819static void update_curr_load(struct rq *rq)
9c217245
IM
820{
821 struct load_stat *ls = &rq->ls;
822 u64 start;
823
824 start = ls->load_update_start;
d281918d
IM
825 ls->load_update_start = rq->clock;
826 ls->delta_stat += rq->clock - start;
9c217245
IM
827 /*
828 * Stagger updates to ls->delta_fair. Very frequent updates
829 * can be expensive.
830 */
831 if (ls->delta_stat >= sysctl_sched_stat_granularity)
832 __update_curr_load(rq, ls);
833}
834
29b4b623 835static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 836{
84a1d7a2 837 update_curr_load(rq);
9c217245
IM
838 update_load_add(&rq->ls.load, p->se.load.weight);
839}
840
79b5dddf 841static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 842{
84a1d7a2 843 update_curr_load(rq);
9c217245
IM
844 update_load_sub(&rq->ls.load, p->se.load.weight);
845}
846
e5fa2237 847static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
848{
849 rq->nr_running++;
29b4b623 850 inc_load(rq, p);
9c217245
IM
851}
852
db53181e 853static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
854{
855 rq->nr_running--;
79b5dddf 856 dec_load(rq, p);
9c217245
IM
857}
858
45bf76df
IM
859static void set_load_weight(struct task_struct *p)
860{
dd41f596
IM
861 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
862 p->se.wait_runtime = 0;
863
45bf76df 864 if (task_has_rt_policy(p)) {
dd41f596
IM
865 p->se.load.weight = prio_to_weight[0] * 2;
866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
867 return;
868 }
45bf76df 869
dd41f596
IM
870 /*
871 * SCHED_IDLE tasks get minimal weight:
872 */
873 if (p->policy == SCHED_IDLE) {
874 p->se.load.weight = WEIGHT_IDLEPRIO;
875 p->se.load.inv_weight = WMULT_IDLEPRIO;
876 return;
877 }
71f8bd46 878
dd41f596
IM
879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
881}
882
8159f87e 883static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 884{
dd41f596 885 sched_info_queued(p);
fd390f6a 886 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 887 p->se.on_rq = 1;
71f8bd46
IM
888}
889
69be72c1 890static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 891{
f02231e5 892 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 893 p->se.on_rq = 0;
71f8bd46
IM
894}
895
14531189 896/*
dd41f596 897 * __normal_prio - return the priority that is based on the static prio
14531189 898 */
14531189
IM
899static inline int __normal_prio(struct task_struct *p)
900{
dd41f596 901 return p->static_prio;
14531189
IM
902}
903
b29739f9
IM
904/*
905 * Calculate the expected normal priority: i.e. priority
906 * without taking RT-inheritance into account. Might be
907 * boosted by interactivity modifiers. Changes upon fork,
908 * setprio syscalls, and whenever the interactivity
909 * estimator recalculates.
910 */
36c8b586 911static inline int normal_prio(struct task_struct *p)
b29739f9
IM
912{
913 int prio;
914
e05606d3 915 if (task_has_rt_policy(p))
b29739f9
IM
916 prio = MAX_RT_PRIO-1 - p->rt_priority;
917 else
918 prio = __normal_prio(p);
919 return prio;
920}
921
922/*
923 * Calculate the current priority, i.e. the priority
924 * taken into account by the scheduler. This value might
925 * be boosted by RT tasks, or might be boosted by
926 * interactivity modifiers. Will be RT if the task got
927 * RT-boosted. If not then it returns p->normal_prio.
928 */
36c8b586 929static int effective_prio(struct task_struct *p)
b29739f9
IM
930{
931 p->normal_prio = normal_prio(p);
932 /*
933 * If we are RT tasks or we were boosted to RT priority,
934 * keep the priority unchanged. Otherwise, update priority
935 * to the normal priority:
936 */
937 if (!rt_prio(p->prio))
938 return p->normal_prio;
939 return p->prio;
940}
941
1da177e4 942/*
dd41f596 943 * activate_task - move a task to the runqueue.
1da177e4 944 */
dd41f596 945static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 946{
dd41f596
IM
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible--;
1da177e4 949
8159f87e 950 enqueue_task(rq, p, wakeup);
e5fa2237 951 inc_nr_running(p, rq);
1da177e4
LT
952}
953
954/*
dd41f596 955 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 956 */
dd41f596 957static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 958{
a8e504d2 959 update_rq_clock(rq);
1da177e4 960
dd41f596
IM
961 if (p->state == TASK_UNINTERRUPTIBLE)
962 rq->nr_uninterruptible--;
ece8a684 963
8159f87e 964 enqueue_task(rq, p, 0);
e5fa2237 965 inc_nr_running(p, rq);
1da177e4
LT
966}
967
968/*
969 * deactivate_task - remove a task from the runqueue.
970 */
2e1cb74a 971static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 972{
dd41f596
IM
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible++;
975
69be72c1 976 dequeue_task(rq, p, sleep);
db53181e 977 dec_nr_running(p, rq);
1da177e4
LT
978}
979
1da177e4
LT
980/**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
983 */
36c8b586 984inline int task_curr(const struct task_struct *p)
1da177e4
LT
985{
986 return cpu_curr(task_cpu(p)) == p;
987}
988
2dd73a4f
PW
989/* Used instead of source_load when we know the type == 0 */
990unsigned long weighted_cpuload(const int cpu)
991{
dd41f596
IM
992 return cpu_rq(cpu)->ls.load.weight;
993}
994
995static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
996{
997#ifdef CONFIG_SMP
998 task_thread_info(p)->cpu = cpu;
999 set_task_cfs_rq(p);
1000#endif
2dd73a4f
PW
1001}
1002
1da177e4 1003#ifdef CONFIG_SMP
c65cc870 1004
dd41f596 1005void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1006{
dd41f596
IM
1007 int old_cpu = task_cpu(p);
1008 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1009 u64 clock_offset, fair_clock_offset;
1010
1011 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1012 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1013
dd41f596
IM
1014 if (p->se.wait_start_fair)
1015 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
1016 if (p->se.sleep_start_fair)
1017 p->se.sleep_start_fair -= fair_clock_offset;
1018
1019#ifdef CONFIG_SCHEDSTATS
1020 if (p->se.wait_start)
1021 p->se.wait_start -= clock_offset;
dd41f596
IM
1022 if (p->se.sleep_start)
1023 p->se.sleep_start -= clock_offset;
1024 if (p->se.block_start)
1025 p->se.block_start -= clock_offset;
6cfb0d5d 1026#endif
dd41f596
IM
1027
1028 __set_task_cpu(p, new_cpu);
c65cc870
IM
1029}
1030
70b97a7f 1031struct migration_req {
1da177e4 1032 struct list_head list;
1da177e4 1033
36c8b586 1034 struct task_struct *task;
1da177e4
LT
1035 int dest_cpu;
1036
1da177e4 1037 struct completion done;
70b97a7f 1038};
1da177e4
LT
1039
1040/*
1041 * The task's runqueue lock must be held.
1042 * Returns true if you have to wait for migration thread.
1043 */
36c8b586 1044static int
70b97a7f 1045migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1046{
70b97a7f 1047 struct rq *rq = task_rq(p);
1da177e4
LT
1048
1049 /*
1050 * If the task is not on a runqueue (and not running), then
1051 * it is sufficient to simply update the task's cpu field.
1052 */
dd41f596 1053 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1054 set_task_cpu(p, dest_cpu);
1055 return 0;
1056 }
1057
1058 init_completion(&req->done);
1da177e4
LT
1059 req->task = p;
1060 req->dest_cpu = dest_cpu;
1061 list_add(&req->list, &rq->migration_queue);
48f24c4d 1062
1da177e4
LT
1063 return 1;
1064}
1065
1066/*
1067 * wait_task_inactive - wait for a thread to unschedule.
1068 *
1069 * The caller must ensure that the task *will* unschedule sometime soon,
1070 * else this function might spin for a *long* time. This function can't
1071 * be called with interrupts off, or it may introduce deadlock with
1072 * smp_call_function() if an IPI is sent by the same process we are
1073 * waiting to become inactive.
1074 */
36c8b586 1075void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1076{
1077 unsigned long flags;
dd41f596 1078 int running, on_rq;
70b97a7f 1079 struct rq *rq;
1da177e4
LT
1080
1081repeat:
fa490cfd
LT
1082 /*
1083 * We do the initial early heuristics without holding
1084 * any task-queue locks at all. We'll only try to get
1085 * the runqueue lock when things look like they will
1086 * work out!
1087 */
1088 rq = task_rq(p);
1089
1090 /*
1091 * If the task is actively running on another CPU
1092 * still, just relax and busy-wait without holding
1093 * any locks.
1094 *
1095 * NOTE! Since we don't hold any locks, it's not
1096 * even sure that "rq" stays as the right runqueue!
1097 * But we don't care, since "task_running()" will
1098 * return false if the runqueue has changed and p
1099 * is actually now running somewhere else!
1100 */
1101 while (task_running(rq, p))
1102 cpu_relax();
1103
1104 /*
1105 * Ok, time to look more closely! We need the rq
1106 * lock now, to be *sure*. If we're wrong, we'll
1107 * just go back and repeat.
1108 */
1da177e4 1109 rq = task_rq_lock(p, &flags);
fa490cfd 1110 running = task_running(rq, p);
dd41f596 1111 on_rq = p->se.on_rq;
fa490cfd
LT
1112 task_rq_unlock(rq, &flags);
1113
1114 /*
1115 * Was it really running after all now that we
1116 * checked with the proper locks actually held?
1117 *
1118 * Oops. Go back and try again..
1119 */
1120 if (unlikely(running)) {
1da177e4 1121 cpu_relax();
1da177e4
LT
1122 goto repeat;
1123 }
fa490cfd
LT
1124
1125 /*
1126 * It's not enough that it's not actively running,
1127 * it must be off the runqueue _entirely_, and not
1128 * preempted!
1129 *
1130 * So if it wa still runnable (but just not actively
1131 * running right now), it's preempted, and we should
1132 * yield - it could be a while.
1133 */
dd41f596 1134 if (unlikely(on_rq)) {
fa490cfd
LT
1135 yield();
1136 goto repeat;
1137 }
1138
1139 /*
1140 * Ahh, all good. It wasn't running, and it wasn't
1141 * runnable, which means that it will never become
1142 * running in the future either. We're all done!
1143 */
1da177e4
LT
1144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesnt have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
36c8b586 1159void kick_process(struct task_struct *p)
1da177e4
LT
1160{
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168}
1169
1170/*
2dd73a4f
PW
1171 * Return a low guess at the load of a migration-source cpu weighted
1172 * according to the scheduling class and "nice" value.
1da177e4
LT
1173 *
1174 * We want to under-estimate the load of migration sources, to
1175 * balance conservatively.
1176 */
a2000572 1177static inline unsigned long source_load(int cpu, int type)
1da177e4 1178{
70b97a7f 1179 struct rq *rq = cpu_rq(cpu);
dd41f596 1180 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1181
3b0bd9bc 1182 if (type == 0)
dd41f596 1183 return total;
b910472d 1184
dd41f596 1185 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1186}
1187
1188/*
2dd73a4f
PW
1189 * Return a high guess at the load of a migration-target cpu weighted
1190 * according to the scheduling class and "nice" value.
1da177e4 1191 */
a2000572 1192static inline unsigned long target_load(int cpu, int type)
1da177e4 1193{
70b97a7f 1194 struct rq *rq = cpu_rq(cpu);
dd41f596 1195 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1196
7897986b 1197 if (type == 0)
dd41f596 1198 return total;
3b0bd9bc 1199
dd41f596 1200 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1201}
1202
1203/*
1204 * Return the average load per task on the cpu's run queue
1205 */
1206static inline unsigned long cpu_avg_load_per_task(int cpu)
1207{
70b97a7f 1208 struct rq *rq = cpu_rq(cpu);
dd41f596 1209 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1210 unsigned long n = rq->nr_running;
1211
dd41f596 1212 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1213}
1214
147cbb4b
NP
1215/*
1216 * find_idlest_group finds and returns the least busy CPU group within the
1217 * domain.
1218 */
1219static struct sched_group *
1220find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1221{
1222 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1223 unsigned long min_load = ULONG_MAX, this_load = 0;
1224 int load_idx = sd->forkexec_idx;
1225 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1226
1227 do {
1228 unsigned long load, avg_load;
1229 int local_group;
1230 int i;
1231
da5a5522
BD
1232 /* Skip over this group if it has no CPUs allowed */
1233 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1234 goto nextgroup;
1235
147cbb4b 1236 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1237
1238 /* Tally up the load of all CPUs in the group */
1239 avg_load = 0;
1240
1241 for_each_cpu_mask(i, group->cpumask) {
1242 /* Bias balancing toward cpus of our domain */
1243 if (local_group)
1244 load = source_load(i, load_idx);
1245 else
1246 load = target_load(i, load_idx);
1247
1248 avg_load += load;
1249 }
1250
1251 /* Adjust by relative CPU power of the group */
5517d86b
ED
1252 avg_load = sg_div_cpu_power(group,
1253 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1254
1255 if (local_group) {
1256 this_load = avg_load;
1257 this = group;
1258 } else if (avg_load < min_load) {
1259 min_load = avg_load;
1260 idlest = group;
1261 }
da5a5522 1262nextgroup:
147cbb4b
NP
1263 group = group->next;
1264 } while (group != sd->groups);
1265
1266 if (!idlest || 100*this_load < imbalance*min_load)
1267 return NULL;
1268 return idlest;
1269}
1270
1271/*
0feaece9 1272 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1273 */
95cdf3b7
IM
1274static int
1275find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1276{
da5a5522 1277 cpumask_t tmp;
147cbb4b
NP
1278 unsigned long load, min_load = ULONG_MAX;
1279 int idlest = -1;
1280 int i;
1281
da5a5522
BD
1282 /* Traverse only the allowed CPUs */
1283 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1284
1285 for_each_cpu_mask(i, tmp) {
2dd73a4f 1286 load = weighted_cpuload(i);
147cbb4b
NP
1287
1288 if (load < min_load || (load == min_load && i == this_cpu)) {
1289 min_load = load;
1290 idlest = i;
1291 }
1292 }
1293
1294 return idlest;
1295}
1296
476d139c
NP
1297/*
1298 * sched_balance_self: balance the current task (running on cpu) in domains
1299 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1300 * SD_BALANCE_EXEC.
1301 *
1302 * Balance, ie. select the least loaded group.
1303 *
1304 * Returns the target CPU number, or the same CPU if no balancing is needed.
1305 *
1306 * preempt must be disabled.
1307 */
1308static int sched_balance_self(int cpu, int flag)
1309{
1310 struct task_struct *t = current;
1311 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1312
c96d145e 1313 for_each_domain(cpu, tmp) {
9761eea8
IM
1314 /*
1315 * If power savings logic is enabled for a domain, stop there.
1316 */
5c45bf27
SS
1317 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1318 break;
476d139c
NP
1319 if (tmp->flags & flag)
1320 sd = tmp;
c96d145e 1321 }
476d139c
NP
1322
1323 while (sd) {
1324 cpumask_t span;
1325 struct sched_group *group;
1a848870
SS
1326 int new_cpu, weight;
1327
1328 if (!(sd->flags & flag)) {
1329 sd = sd->child;
1330 continue;
1331 }
476d139c
NP
1332
1333 span = sd->span;
1334 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1335 if (!group) {
1336 sd = sd->child;
1337 continue;
1338 }
476d139c 1339
da5a5522 1340 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1341 if (new_cpu == -1 || new_cpu == cpu) {
1342 /* Now try balancing at a lower domain level of cpu */
1343 sd = sd->child;
1344 continue;
1345 }
476d139c 1346
1a848870 1347 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1348 cpu = new_cpu;
476d139c
NP
1349 sd = NULL;
1350 weight = cpus_weight(span);
1351 for_each_domain(cpu, tmp) {
1352 if (weight <= cpus_weight(tmp->span))
1353 break;
1354 if (tmp->flags & flag)
1355 sd = tmp;
1356 }
1357 /* while loop will break here if sd == NULL */
1358 }
1359
1360 return cpu;
1361}
1362
1363#endif /* CONFIG_SMP */
1da177e4
LT
1364
1365/*
1366 * wake_idle() will wake a task on an idle cpu if task->cpu is
1367 * not idle and an idle cpu is available. The span of cpus to
1368 * search starts with cpus closest then further out as needed,
1369 * so we always favor a closer, idle cpu.
1370 *
1371 * Returns the CPU we should wake onto.
1372 */
1373#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1374static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1375{
1376 cpumask_t tmp;
1377 struct sched_domain *sd;
1378 int i;
1379
4953198b
SS
1380 /*
1381 * If it is idle, then it is the best cpu to run this task.
1382 *
1383 * This cpu is also the best, if it has more than one task already.
1384 * Siblings must be also busy(in most cases) as they didn't already
1385 * pickup the extra load from this cpu and hence we need not check
1386 * sibling runqueue info. This will avoid the checks and cache miss
1387 * penalities associated with that.
1388 */
1389 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1390 return cpu;
1391
1392 for_each_domain(cpu, sd) {
1393 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1394 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1395 for_each_cpu_mask(i, tmp) {
1396 if (idle_cpu(i))
1397 return i;
1398 }
9761eea8 1399 } else {
e0f364f4 1400 break;
9761eea8 1401 }
1da177e4
LT
1402 }
1403 return cpu;
1404}
1405#else
36c8b586 1406static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1407{
1408 return cpu;
1409}
1410#endif
1411
1412/***
1413 * try_to_wake_up - wake up a thread
1414 * @p: the to-be-woken-up thread
1415 * @state: the mask of task states that can be woken
1416 * @sync: do a synchronous wakeup?
1417 *
1418 * Put it on the run-queue if it's not already there. The "current"
1419 * thread is always on the run-queue (except when the actual
1420 * re-schedule is in progress), and as such you're allowed to do
1421 * the simpler "current->state = TASK_RUNNING" to mark yourself
1422 * runnable without the overhead of this.
1423 *
1424 * returns failure only if the task is already active.
1425 */
36c8b586 1426static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1427{
1428 int cpu, this_cpu, success = 0;
1429 unsigned long flags;
1430 long old_state;
70b97a7f 1431 struct rq *rq;
1da177e4 1432#ifdef CONFIG_SMP
7897986b 1433 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1434 unsigned long load, this_load;
1da177e4
LT
1435 int new_cpu;
1436#endif
1437
1438 rq = task_rq_lock(p, &flags);
1439 old_state = p->state;
1440 if (!(old_state & state))
1441 goto out;
1442
dd41f596 1443 if (p->se.on_rq)
1da177e4
LT
1444 goto out_running;
1445
1446 cpu = task_cpu(p);
1447 this_cpu = smp_processor_id();
1448
1449#ifdef CONFIG_SMP
1450 if (unlikely(task_running(rq, p)))
1451 goto out_activate;
1452
7897986b
NP
1453 new_cpu = cpu;
1454
1da177e4
LT
1455 schedstat_inc(rq, ttwu_cnt);
1456 if (cpu == this_cpu) {
1457 schedstat_inc(rq, ttwu_local);
7897986b
NP
1458 goto out_set_cpu;
1459 }
1460
1461 for_each_domain(this_cpu, sd) {
1462 if (cpu_isset(cpu, sd->span)) {
1463 schedstat_inc(sd, ttwu_wake_remote);
1464 this_sd = sd;
1465 break;
1da177e4
LT
1466 }
1467 }
1da177e4 1468
7897986b 1469 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1470 goto out_set_cpu;
1471
1da177e4 1472 /*
7897986b 1473 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1474 */
7897986b
NP
1475 if (this_sd) {
1476 int idx = this_sd->wake_idx;
1477 unsigned int imbalance;
1da177e4 1478
a3f21bce
NP
1479 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1480
7897986b
NP
1481 load = source_load(cpu, idx);
1482 this_load = target_load(this_cpu, idx);
1da177e4 1483
7897986b
NP
1484 new_cpu = this_cpu; /* Wake to this CPU if we can */
1485
a3f21bce
NP
1486 if (this_sd->flags & SD_WAKE_AFFINE) {
1487 unsigned long tl = this_load;
33859f7f
MOS
1488 unsigned long tl_per_task;
1489
1490 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1491
1da177e4 1492 /*
a3f21bce
NP
1493 * If sync wakeup then subtract the (maximum possible)
1494 * effect of the currently running task from the load
1495 * of the current CPU:
1da177e4 1496 */
a3f21bce 1497 if (sync)
dd41f596 1498 tl -= current->se.load.weight;
a3f21bce
NP
1499
1500 if ((tl <= load &&
2dd73a4f 1501 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1502 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1503 /*
1504 * This domain has SD_WAKE_AFFINE and
1505 * p is cache cold in this domain, and
1506 * there is no bad imbalance.
1507 */
1508 schedstat_inc(this_sd, ttwu_move_affine);
1509 goto out_set_cpu;
1510 }
1511 }
1512
1513 /*
1514 * Start passive balancing when half the imbalance_pct
1515 * limit is reached.
1516 */
1517 if (this_sd->flags & SD_WAKE_BALANCE) {
1518 if (imbalance*this_load <= 100*load) {
1519 schedstat_inc(this_sd, ttwu_move_balance);
1520 goto out_set_cpu;
1521 }
1da177e4
LT
1522 }
1523 }
1524
1525 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1526out_set_cpu:
1527 new_cpu = wake_idle(new_cpu, p);
1528 if (new_cpu != cpu) {
1529 set_task_cpu(p, new_cpu);
1530 task_rq_unlock(rq, &flags);
1531 /* might preempt at this point */
1532 rq = task_rq_lock(p, &flags);
1533 old_state = p->state;
1534 if (!(old_state & state))
1535 goto out;
dd41f596 1536 if (p->se.on_rq)
1da177e4
LT
1537 goto out_running;
1538
1539 this_cpu = smp_processor_id();
1540 cpu = task_cpu(p);
1541 }
1542
1543out_activate:
1544#endif /* CONFIG_SMP */
2daa3577 1545 update_rq_clock(rq);
dd41f596 1546 activate_task(rq, p, 1);
1da177e4
LT
1547 /*
1548 * Sync wakeups (i.e. those types of wakeups where the waker
1549 * has indicated that it will leave the CPU in short order)
1550 * don't trigger a preemption, if the woken up task will run on
1551 * this cpu. (in this case the 'I will reschedule' promise of
1552 * the waker guarantees that the freshly woken up task is going
1553 * to be considered on this CPU.)
1554 */
dd41f596
IM
1555 if (!sync || cpu != this_cpu)
1556 check_preempt_curr(rq, p);
1da177e4
LT
1557 success = 1;
1558
1559out_running:
1560 p->state = TASK_RUNNING;
1561out:
1562 task_rq_unlock(rq, &flags);
1563
1564 return success;
1565}
1566
36c8b586 1567int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1568{
1569 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1570 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1571}
1da177e4
LT
1572EXPORT_SYMBOL(wake_up_process);
1573
36c8b586 1574int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1575{
1576 return try_to_wake_up(p, state, 0);
1577}
1578
1da177e4
LT
1579/*
1580 * Perform scheduler related setup for a newly forked process p.
1581 * p is forked by current.
dd41f596
IM
1582 *
1583 * __sched_fork() is basic setup used by init_idle() too:
1584 */
1585static void __sched_fork(struct task_struct *p)
1586{
1587 p->se.wait_start_fair = 0;
dd41f596
IM
1588 p->se.exec_start = 0;
1589 p->se.sum_exec_runtime = 0;
1590 p->se.delta_exec = 0;
1591 p->se.delta_fair_run = 0;
1592 p->se.delta_fair_sleep = 0;
1593 p->se.wait_runtime = 0;
6cfb0d5d
IM
1594 p->se.sleep_start_fair = 0;
1595
1596#ifdef CONFIG_SCHEDSTATS
1597 p->se.wait_start = 0;
dd41f596
IM
1598 p->se.sum_wait_runtime = 0;
1599 p->se.sum_sleep_runtime = 0;
1600 p->se.sleep_start = 0;
dd41f596
IM
1601 p->se.block_start = 0;
1602 p->se.sleep_max = 0;
1603 p->se.block_max = 0;
1604 p->se.exec_max = 0;
1605 p->se.wait_max = 0;
1606 p->se.wait_runtime_overruns = 0;
1607 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1608#endif
476d139c 1609
dd41f596
IM
1610 INIT_LIST_HEAD(&p->run_list);
1611 p->se.on_rq = 0;
476d139c 1612
e107be36
AK
1613#ifdef CONFIG_PREEMPT_NOTIFIERS
1614 INIT_HLIST_HEAD(&p->preempt_notifiers);
1615#endif
1616
1da177e4
LT
1617 /*
1618 * We mark the process as running here, but have not actually
1619 * inserted it onto the runqueue yet. This guarantees that
1620 * nobody will actually run it, and a signal or other external
1621 * event cannot wake it up and insert it on the runqueue either.
1622 */
1623 p->state = TASK_RUNNING;
dd41f596
IM
1624}
1625
1626/*
1627 * fork()/clone()-time setup:
1628 */
1629void sched_fork(struct task_struct *p, int clone_flags)
1630{
1631 int cpu = get_cpu();
1632
1633 __sched_fork(p);
1634
1635#ifdef CONFIG_SMP
1636 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1637#endif
1638 __set_task_cpu(p, cpu);
b29739f9
IM
1639
1640 /*
1641 * Make sure we do not leak PI boosting priority to the child:
1642 */
1643 p->prio = current->normal_prio;
1644
52f17b6c 1645#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1646 if (likely(sched_info_on()))
52f17b6c 1647 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1648#endif
d6077cb8 1649#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1650 p->oncpu = 0;
1651#endif
1da177e4 1652#ifdef CONFIG_PREEMPT
4866cde0 1653 /* Want to start with kernel preemption disabled. */
a1261f54 1654 task_thread_info(p)->preempt_count = 1;
1da177e4 1655#endif
476d139c 1656 put_cpu();
1da177e4
LT
1657}
1658
dd41f596
IM
1659/*
1660 * After fork, child runs first. (default) If set to 0 then
1661 * parent will (try to) run first.
1662 */
1663unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1664
1da177e4
LT
1665/*
1666 * wake_up_new_task - wake up a newly created task for the first time.
1667 *
1668 * This function will do some initial scheduler statistics housekeeping
1669 * that must be done for every newly created context, then puts the task
1670 * on the runqueue and wakes it.
1671 */
36c8b586 1672void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1673{
1674 unsigned long flags;
dd41f596
IM
1675 struct rq *rq;
1676 int this_cpu;
1da177e4
LT
1677
1678 rq = task_rq_lock(p, &flags);
147cbb4b 1679 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1680 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2 1681 update_rq_clock(rq);
1da177e4
LT
1682
1683 p->prio = effective_prio(p);
1684
cad60d93
IM
1685 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1686 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1687 !current->se.on_rq) {
1688
dd41f596 1689 activate_task(rq, p, 0);
1da177e4 1690 } else {
1da177e4 1691 /*
dd41f596
IM
1692 * Let the scheduling class do new task startup
1693 * management (if any):
1da177e4 1694 */
ee0827d8 1695 p->sched_class->task_new(rq, p);
e5fa2237 1696 inc_nr_running(p, rq);
1da177e4 1697 }
dd41f596
IM
1698 check_preempt_curr(rq, p);
1699 task_rq_unlock(rq, &flags);
1da177e4
LT
1700}
1701
e107be36
AK
1702#ifdef CONFIG_PREEMPT_NOTIFIERS
1703
1704/**
421cee29
RD
1705 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1706 * @notifier: notifier struct to register
e107be36
AK
1707 */
1708void preempt_notifier_register(struct preempt_notifier *notifier)
1709{
1710 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1711}
1712EXPORT_SYMBOL_GPL(preempt_notifier_register);
1713
1714/**
1715 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1716 * @notifier: notifier struct to unregister
e107be36
AK
1717 *
1718 * This is safe to call from within a preemption notifier.
1719 */
1720void preempt_notifier_unregister(struct preempt_notifier *notifier)
1721{
1722 hlist_del(&notifier->link);
1723}
1724EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1725
1726static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1727{
1728 struct preempt_notifier *notifier;
1729 struct hlist_node *node;
1730
1731 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1732 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1733}
1734
1735static void
1736fire_sched_out_preempt_notifiers(struct task_struct *curr,
1737 struct task_struct *next)
1738{
1739 struct preempt_notifier *notifier;
1740 struct hlist_node *node;
1741
1742 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1743 notifier->ops->sched_out(notifier, next);
1744}
1745
1746#else
1747
1748static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1749{
1750}
1751
1752static void
1753fire_sched_out_preempt_notifiers(struct task_struct *curr,
1754 struct task_struct *next)
1755{
1756}
1757
1758#endif
1759
4866cde0
NP
1760/**
1761 * prepare_task_switch - prepare to switch tasks
1762 * @rq: the runqueue preparing to switch
421cee29 1763 * @prev: the current task that is being switched out
4866cde0
NP
1764 * @next: the task we are going to switch to.
1765 *
1766 * This is called with the rq lock held and interrupts off. It must
1767 * be paired with a subsequent finish_task_switch after the context
1768 * switch.
1769 *
1770 * prepare_task_switch sets up locking and calls architecture specific
1771 * hooks.
1772 */
e107be36
AK
1773static inline void
1774prepare_task_switch(struct rq *rq, struct task_struct *prev,
1775 struct task_struct *next)
4866cde0 1776{
e107be36 1777 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1778 prepare_lock_switch(rq, next);
1779 prepare_arch_switch(next);
1780}
1781
1da177e4
LT
1782/**
1783 * finish_task_switch - clean up after a task-switch
344babaa 1784 * @rq: runqueue associated with task-switch
1da177e4
LT
1785 * @prev: the thread we just switched away from.
1786 *
4866cde0
NP
1787 * finish_task_switch must be called after the context switch, paired
1788 * with a prepare_task_switch call before the context switch.
1789 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1790 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1791 *
1792 * Note that we may have delayed dropping an mm in context_switch(). If
1793 * so, we finish that here outside of the runqueue lock. (Doing it
1794 * with the lock held can cause deadlocks; see schedule() for
1795 * details.)
1796 */
70b97a7f 1797static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1798 __releases(rq->lock)
1799{
1da177e4 1800 struct mm_struct *mm = rq->prev_mm;
55a101f8 1801 long prev_state;
1da177e4
LT
1802
1803 rq->prev_mm = NULL;
1804
1805 /*
1806 * A task struct has one reference for the use as "current".
c394cc9f 1807 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1808 * schedule one last time. The schedule call will never return, and
1809 * the scheduled task must drop that reference.
c394cc9f 1810 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1811 * still held, otherwise prev could be scheduled on another cpu, die
1812 * there before we look at prev->state, and then the reference would
1813 * be dropped twice.
1814 * Manfred Spraul <manfred@colorfullife.com>
1815 */
55a101f8 1816 prev_state = prev->state;
4866cde0
NP
1817 finish_arch_switch(prev);
1818 finish_lock_switch(rq, prev);
e107be36 1819 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1820 if (mm)
1821 mmdrop(mm);
c394cc9f 1822 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1823 /*
1824 * Remove function-return probe instances associated with this
1825 * task and put them back on the free list.
9761eea8 1826 */
c6fd91f0 1827 kprobe_flush_task(prev);
1da177e4 1828 put_task_struct(prev);
c6fd91f0 1829 }
1da177e4
LT
1830}
1831
1832/**
1833 * schedule_tail - first thing a freshly forked thread must call.
1834 * @prev: the thread we just switched away from.
1835 */
36c8b586 1836asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1837 __releases(rq->lock)
1838{
70b97a7f
IM
1839 struct rq *rq = this_rq();
1840
4866cde0
NP
1841 finish_task_switch(rq, prev);
1842#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1843 /* In this case, finish_task_switch does not reenable preemption */
1844 preempt_enable();
1845#endif
1da177e4
LT
1846 if (current->set_child_tid)
1847 put_user(current->pid, current->set_child_tid);
1848}
1849
1850/*
1851 * context_switch - switch to the new MM and the new
1852 * thread's register state.
1853 */
dd41f596 1854static inline void
70b97a7f 1855context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1856 struct task_struct *next)
1da177e4 1857{
dd41f596 1858 struct mm_struct *mm, *oldmm;
1da177e4 1859
e107be36 1860 prepare_task_switch(rq, prev, next);
dd41f596
IM
1861 mm = next->mm;
1862 oldmm = prev->active_mm;
9226d125
ZA
1863 /*
1864 * For paravirt, this is coupled with an exit in switch_to to
1865 * combine the page table reload and the switch backend into
1866 * one hypercall.
1867 */
1868 arch_enter_lazy_cpu_mode();
1869
dd41f596 1870 if (unlikely(!mm)) {
1da177e4
LT
1871 next->active_mm = oldmm;
1872 atomic_inc(&oldmm->mm_count);
1873 enter_lazy_tlb(oldmm, next);
1874 } else
1875 switch_mm(oldmm, mm, next);
1876
dd41f596 1877 if (unlikely(!prev->mm)) {
1da177e4 1878 prev->active_mm = NULL;
1da177e4
LT
1879 rq->prev_mm = oldmm;
1880 }
3a5f5e48
IM
1881 /*
1882 * Since the runqueue lock will be released by the next
1883 * task (which is an invalid locking op but in the case
1884 * of the scheduler it's an obvious special-case), so we
1885 * do an early lockdep release here:
1886 */
1887#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1888 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1889#endif
1da177e4
LT
1890
1891 /* Here we just switch the register state and the stack. */
1892 switch_to(prev, next, prev);
1893
dd41f596
IM
1894 barrier();
1895 /*
1896 * this_rq must be evaluated again because prev may have moved
1897 * CPUs since it called schedule(), thus the 'rq' on its stack
1898 * frame will be invalid.
1899 */
1900 finish_task_switch(this_rq(), prev);
1da177e4
LT
1901}
1902
1903/*
1904 * nr_running, nr_uninterruptible and nr_context_switches:
1905 *
1906 * externally visible scheduler statistics: current number of runnable
1907 * threads, current number of uninterruptible-sleeping threads, total
1908 * number of context switches performed since bootup.
1909 */
1910unsigned long nr_running(void)
1911{
1912 unsigned long i, sum = 0;
1913
1914 for_each_online_cpu(i)
1915 sum += cpu_rq(i)->nr_running;
1916
1917 return sum;
1918}
1919
1920unsigned long nr_uninterruptible(void)
1921{
1922 unsigned long i, sum = 0;
1923
0a945022 1924 for_each_possible_cpu(i)
1da177e4
LT
1925 sum += cpu_rq(i)->nr_uninterruptible;
1926
1927 /*
1928 * Since we read the counters lockless, it might be slightly
1929 * inaccurate. Do not allow it to go below zero though:
1930 */
1931 if (unlikely((long)sum < 0))
1932 sum = 0;
1933
1934 return sum;
1935}
1936
1937unsigned long long nr_context_switches(void)
1938{
cc94abfc
SR
1939 int i;
1940 unsigned long long sum = 0;
1da177e4 1941
0a945022 1942 for_each_possible_cpu(i)
1da177e4
LT
1943 sum += cpu_rq(i)->nr_switches;
1944
1945 return sum;
1946}
1947
1948unsigned long nr_iowait(void)
1949{
1950 unsigned long i, sum = 0;
1951
0a945022 1952 for_each_possible_cpu(i)
1da177e4
LT
1953 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1954
1955 return sum;
1956}
1957
db1b1fef
JS
1958unsigned long nr_active(void)
1959{
1960 unsigned long i, running = 0, uninterruptible = 0;
1961
1962 for_each_online_cpu(i) {
1963 running += cpu_rq(i)->nr_running;
1964 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1965 }
1966
1967 if (unlikely((long)uninterruptible < 0))
1968 uninterruptible = 0;
1969
1970 return running + uninterruptible;
1971}
1972
48f24c4d 1973/*
dd41f596
IM
1974 * Update rq->cpu_load[] statistics. This function is usually called every
1975 * scheduler tick (TICK_NSEC).
48f24c4d 1976 */
dd41f596 1977static void update_cpu_load(struct rq *this_rq)
48f24c4d 1978{
dd41f596
IM
1979 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1980 unsigned long total_load = this_rq->ls.load.weight;
1981 unsigned long this_load = total_load;
1982 struct load_stat *ls = &this_rq->ls;
dd41f596
IM
1983 int i, scale;
1984
1985 this_rq->nr_load_updates++;
1986 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1987 goto do_avg;
1988
1989 /* Update delta_fair/delta_exec fields first */
84a1d7a2 1990 update_curr_load(this_rq);
dd41f596
IM
1991
1992 fair_delta64 = ls->delta_fair + 1;
1993 ls->delta_fair = 0;
1994
1995 exec_delta64 = ls->delta_exec + 1;
1996 ls->delta_exec = 0;
1997
d281918d
IM
1998 sample_interval64 = this_rq->clock - ls->load_update_last;
1999 ls->load_update_last = this_rq->clock;
dd41f596
IM
2000
2001 if ((s64)sample_interval64 < (s64)TICK_NSEC)
2002 sample_interval64 = TICK_NSEC;
2003
2004 if (exec_delta64 > sample_interval64)
2005 exec_delta64 = sample_interval64;
2006
2007 idle_delta64 = sample_interval64 - exec_delta64;
2008
2009 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2010 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2011
2012 this_load = (unsigned long)tmp64;
2013
2014do_avg:
2015
2016 /* Update our load: */
2017 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2018 unsigned long old_load, new_load;
2019
2020 /* scale is effectively 1 << i now, and >> i divides by scale */
2021
2022 old_load = this_rq->cpu_load[i];
2023 new_load = this_load;
2024
2025 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2026 }
48f24c4d
IM
2027}
2028
dd41f596
IM
2029#ifdef CONFIG_SMP
2030
1da177e4
LT
2031/*
2032 * double_rq_lock - safely lock two runqueues
2033 *
2034 * Note this does not disable interrupts like task_rq_lock,
2035 * you need to do so manually before calling.
2036 */
70b97a7f 2037static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2038 __acquires(rq1->lock)
2039 __acquires(rq2->lock)
2040{
054b9108 2041 BUG_ON(!irqs_disabled());
1da177e4
LT
2042 if (rq1 == rq2) {
2043 spin_lock(&rq1->lock);
2044 __acquire(rq2->lock); /* Fake it out ;) */
2045 } else {
c96d145e 2046 if (rq1 < rq2) {
1da177e4
LT
2047 spin_lock(&rq1->lock);
2048 spin_lock(&rq2->lock);
2049 } else {
2050 spin_lock(&rq2->lock);
2051 spin_lock(&rq1->lock);
2052 }
2053 }
6e82a3be
IM
2054 update_rq_clock(rq1);
2055 update_rq_clock(rq2);
1da177e4
LT
2056}
2057
2058/*
2059 * double_rq_unlock - safely unlock two runqueues
2060 *
2061 * Note this does not restore interrupts like task_rq_unlock,
2062 * you need to do so manually after calling.
2063 */
70b97a7f 2064static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2065 __releases(rq1->lock)
2066 __releases(rq2->lock)
2067{
2068 spin_unlock(&rq1->lock);
2069 if (rq1 != rq2)
2070 spin_unlock(&rq2->lock);
2071 else
2072 __release(rq2->lock);
2073}
2074
2075/*
2076 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2077 */
70b97a7f 2078static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2079 __releases(this_rq->lock)
2080 __acquires(busiest->lock)
2081 __acquires(this_rq->lock)
2082{
054b9108
KK
2083 if (unlikely(!irqs_disabled())) {
2084 /* printk() doesn't work good under rq->lock */
2085 spin_unlock(&this_rq->lock);
2086 BUG_ON(1);
2087 }
1da177e4 2088 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2089 if (busiest < this_rq) {
1da177e4
LT
2090 spin_unlock(&this_rq->lock);
2091 spin_lock(&busiest->lock);
2092 spin_lock(&this_rq->lock);
2093 } else
2094 spin_lock(&busiest->lock);
2095 }
2096}
2097
1da177e4
LT
2098/*
2099 * If dest_cpu is allowed for this process, migrate the task to it.
2100 * This is accomplished by forcing the cpu_allowed mask to only
2101 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2102 * the cpu_allowed mask is restored.
2103 */
36c8b586 2104static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2105{
70b97a7f 2106 struct migration_req req;
1da177e4 2107 unsigned long flags;
70b97a7f 2108 struct rq *rq;
1da177e4
LT
2109
2110 rq = task_rq_lock(p, &flags);
2111 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2112 || unlikely(cpu_is_offline(dest_cpu)))
2113 goto out;
2114
2115 /* force the process onto the specified CPU */
2116 if (migrate_task(p, dest_cpu, &req)) {
2117 /* Need to wait for migration thread (might exit: take ref). */
2118 struct task_struct *mt = rq->migration_thread;
36c8b586 2119
1da177e4
LT
2120 get_task_struct(mt);
2121 task_rq_unlock(rq, &flags);
2122 wake_up_process(mt);
2123 put_task_struct(mt);
2124 wait_for_completion(&req.done);
36c8b586 2125
1da177e4
LT
2126 return;
2127 }
2128out:
2129 task_rq_unlock(rq, &flags);
2130}
2131
2132/*
476d139c
NP
2133 * sched_exec - execve() is a valuable balancing opportunity, because at
2134 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2135 */
2136void sched_exec(void)
2137{
1da177e4 2138 int new_cpu, this_cpu = get_cpu();
476d139c 2139 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2140 put_cpu();
476d139c
NP
2141 if (new_cpu != this_cpu)
2142 sched_migrate_task(current, new_cpu);
1da177e4
LT
2143}
2144
2145/*
2146 * pull_task - move a task from a remote runqueue to the local runqueue.
2147 * Both runqueues must be locked.
2148 */
dd41f596
IM
2149static void pull_task(struct rq *src_rq, struct task_struct *p,
2150 struct rq *this_rq, int this_cpu)
1da177e4 2151{
2e1cb74a 2152 deactivate_task(src_rq, p, 0);
1da177e4 2153 set_task_cpu(p, this_cpu);
dd41f596 2154 activate_task(this_rq, p, 0);
1da177e4
LT
2155 /*
2156 * Note that idle threads have a prio of MAX_PRIO, for this test
2157 * to be always true for them.
2158 */
dd41f596 2159 check_preempt_curr(this_rq, p);
1da177e4
LT
2160}
2161
2162/*
2163 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2164 */
858119e1 2165static
70b97a7f 2166int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2167 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2168 int *all_pinned)
1da177e4
LT
2169{
2170 /*
2171 * We do not migrate tasks that are:
2172 * 1) running (obviously), or
2173 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2174 * 3) are cache-hot on their current CPU.
2175 */
1da177e4
LT
2176 if (!cpu_isset(this_cpu, p->cpus_allowed))
2177 return 0;
81026794
NP
2178 *all_pinned = 0;
2179
2180 if (task_running(rq, p))
2181 return 0;
1da177e4
LT
2182
2183 /*
dd41f596 2184 * Aggressive migration if too many balance attempts have failed:
1da177e4 2185 */
dd41f596 2186 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2187 return 1;
2188
1da177e4
LT
2189 return 1;
2190}
2191
dd41f596 2192static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2193 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2194 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2195 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2196 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2197{
dd41f596
IM
2198 int pulled = 0, pinned = 0, skip_for_load;
2199 struct task_struct *p;
2200 long rem_load_move = max_load_move;
1da177e4 2201
2dd73a4f 2202 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2203 goto out;
2204
81026794
NP
2205 pinned = 1;
2206
1da177e4 2207 /*
dd41f596 2208 * Start the load-balancing iterator:
1da177e4 2209 */
dd41f596
IM
2210 p = iterator->start(iterator->arg);
2211next:
2212 if (!p)
1da177e4 2213 goto out;
50ddd969
PW
2214 /*
2215 * To help distribute high priority tasks accross CPUs we don't
2216 * skip a task if it will be the highest priority task (i.e. smallest
2217 * prio value) on its new queue regardless of its load weight
2218 */
dd41f596
IM
2219 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2220 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2221 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2222 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2223 p = iterator->next(iterator->arg);
2224 goto next;
1da177e4
LT
2225 }
2226
dd41f596 2227 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2228 pulled++;
dd41f596 2229 rem_load_move -= p->se.load.weight;
1da177e4 2230
2dd73a4f
PW
2231 /*
2232 * We only want to steal up to the prescribed number of tasks
2233 * and the prescribed amount of weighted load.
2234 */
2235 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2236 if (p->prio < *this_best_prio)
2237 *this_best_prio = p->prio;
dd41f596
IM
2238 p = iterator->next(iterator->arg);
2239 goto next;
1da177e4
LT
2240 }
2241out:
2242 /*
2243 * Right now, this is the only place pull_task() is called,
2244 * so we can safely collect pull_task() stats here rather than
2245 * inside pull_task().
2246 */
2247 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2248
2249 if (all_pinned)
2250 *all_pinned = pinned;
dd41f596 2251 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2252 return pulled;
2253}
2254
dd41f596 2255/*
43010659
PW
2256 * move_tasks tries to move up to max_load_move weighted load from busiest to
2257 * this_rq, as part of a balancing operation within domain "sd".
2258 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2259 *
2260 * Called with both runqueues locked.
2261 */
2262static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2263 unsigned long max_load_move,
dd41f596
IM
2264 struct sched_domain *sd, enum cpu_idle_type idle,
2265 int *all_pinned)
2266{
2267 struct sched_class *class = sched_class_highest;
43010659 2268 unsigned long total_load_moved = 0;
a4ac01c3 2269 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2270
2271 do {
43010659
PW
2272 total_load_moved +=
2273 class->load_balance(this_rq, this_cpu, busiest,
2274 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2275 sd, idle, all_pinned, &this_best_prio);
dd41f596 2276 class = class->next;
43010659 2277 } while (class && max_load_move > total_load_moved);
dd41f596 2278
43010659
PW
2279 return total_load_moved > 0;
2280}
2281
2282/*
2283 * move_one_task tries to move exactly one task from busiest to this_rq, as
2284 * part of active balancing operations within "domain".
2285 * Returns 1 if successful and 0 otherwise.
2286 *
2287 * Called with both runqueues locked.
2288 */
2289static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2290 struct sched_domain *sd, enum cpu_idle_type idle)
2291{
2292 struct sched_class *class;
a4ac01c3 2293 int this_best_prio = MAX_PRIO;
43010659
PW
2294
2295 for (class = sched_class_highest; class; class = class->next)
2296 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2297 1, ULONG_MAX, sd, idle, NULL,
2298 &this_best_prio))
43010659
PW
2299 return 1;
2300
2301 return 0;
dd41f596
IM
2302}
2303
1da177e4
LT
2304/*
2305 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2306 * domain. It calculates and returns the amount of weighted load which
2307 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2308 */
2309static struct sched_group *
2310find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2311 unsigned long *imbalance, enum cpu_idle_type idle,
2312 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2313{
2314 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2315 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2316 unsigned long max_pull;
2dd73a4f
PW
2317 unsigned long busiest_load_per_task, busiest_nr_running;
2318 unsigned long this_load_per_task, this_nr_running;
7897986b 2319 int load_idx;
5c45bf27
SS
2320#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2321 int power_savings_balance = 1;
2322 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2323 unsigned long min_nr_running = ULONG_MAX;
2324 struct sched_group *group_min = NULL, *group_leader = NULL;
2325#endif
1da177e4
LT
2326
2327 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2328 busiest_load_per_task = busiest_nr_running = 0;
2329 this_load_per_task = this_nr_running = 0;
d15bcfdb 2330 if (idle == CPU_NOT_IDLE)
7897986b 2331 load_idx = sd->busy_idx;
d15bcfdb 2332 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2333 load_idx = sd->newidle_idx;
2334 else
2335 load_idx = sd->idle_idx;
1da177e4
LT
2336
2337 do {
5c45bf27 2338 unsigned long load, group_capacity;
1da177e4
LT
2339 int local_group;
2340 int i;
783609c6 2341 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2342 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2343
2344 local_group = cpu_isset(this_cpu, group->cpumask);
2345
783609c6
SS
2346 if (local_group)
2347 balance_cpu = first_cpu(group->cpumask);
2348
1da177e4 2349 /* Tally up the load of all CPUs in the group */
2dd73a4f 2350 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2351
2352 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2353 struct rq *rq;
2354
2355 if (!cpu_isset(i, *cpus))
2356 continue;
2357
2358 rq = cpu_rq(i);
2dd73a4f 2359
9439aab8 2360 if (*sd_idle && rq->nr_running)
5969fe06
NP
2361 *sd_idle = 0;
2362
1da177e4 2363 /* Bias balancing toward cpus of our domain */
783609c6
SS
2364 if (local_group) {
2365 if (idle_cpu(i) && !first_idle_cpu) {
2366 first_idle_cpu = 1;
2367 balance_cpu = i;
2368 }
2369
a2000572 2370 load = target_load(i, load_idx);
783609c6 2371 } else
a2000572 2372 load = source_load(i, load_idx);
1da177e4
LT
2373
2374 avg_load += load;
2dd73a4f 2375 sum_nr_running += rq->nr_running;
dd41f596 2376 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2377 }
2378
783609c6
SS
2379 /*
2380 * First idle cpu or the first cpu(busiest) in this sched group
2381 * is eligible for doing load balancing at this and above
9439aab8
SS
2382 * domains. In the newly idle case, we will allow all the cpu's
2383 * to do the newly idle load balance.
783609c6 2384 */
9439aab8
SS
2385 if (idle != CPU_NEWLY_IDLE && local_group &&
2386 balance_cpu != this_cpu && balance) {
783609c6
SS
2387 *balance = 0;
2388 goto ret;
2389 }
2390
1da177e4 2391 total_load += avg_load;
5517d86b 2392 total_pwr += group->__cpu_power;
1da177e4
LT
2393
2394 /* Adjust by relative CPU power of the group */
5517d86b
ED
2395 avg_load = sg_div_cpu_power(group,
2396 avg_load * SCHED_LOAD_SCALE);
1da177e4 2397
5517d86b 2398 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2399
1da177e4
LT
2400 if (local_group) {
2401 this_load = avg_load;
2402 this = group;
2dd73a4f
PW
2403 this_nr_running = sum_nr_running;
2404 this_load_per_task = sum_weighted_load;
2405 } else if (avg_load > max_load &&
5c45bf27 2406 sum_nr_running > group_capacity) {
1da177e4
LT
2407 max_load = avg_load;
2408 busiest = group;
2dd73a4f
PW
2409 busiest_nr_running = sum_nr_running;
2410 busiest_load_per_task = sum_weighted_load;
1da177e4 2411 }
5c45bf27
SS
2412
2413#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2414 /*
2415 * Busy processors will not participate in power savings
2416 * balance.
2417 */
dd41f596
IM
2418 if (idle == CPU_NOT_IDLE ||
2419 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2420 goto group_next;
5c45bf27
SS
2421
2422 /*
2423 * If the local group is idle or completely loaded
2424 * no need to do power savings balance at this domain
2425 */
2426 if (local_group && (this_nr_running >= group_capacity ||
2427 !this_nr_running))
2428 power_savings_balance = 0;
2429
dd41f596 2430 /*
5c45bf27
SS
2431 * If a group is already running at full capacity or idle,
2432 * don't include that group in power savings calculations
dd41f596
IM
2433 */
2434 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2435 || !sum_nr_running)
dd41f596 2436 goto group_next;
5c45bf27 2437
dd41f596 2438 /*
5c45bf27 2439 * Calculate the group which has the least non-idle load.
dd41f596
IM
2440 * This is the group from where we need to pick up the load
2441 * for saving power
2442 */
2443 if ((sum_nr_running < min_nr_running) ||
2444 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2445 first_cpu(group->cpumask) <
2446 first_cpu(group_min->cpumask))) {
dd41f596
IM
2447 group_min = group;
2448 min_nr_running = sum_nr_running;
5c45bf27
SS
2449 min_load_per_task = sum_weighted_load /
2450 sum_nr_running;
dd41f596 2451 }
5c45bf27 2452
dd41f596 2453 /*
5c45bf27 2454 * Calculate the group which is almost near its
dd41f596
IM
2455 * capacity but still has some space to pick up some load
2456 * from other group and save more power
2457 */
2458 if (sum_nr_running <= group_capacity - 1) {
2459 if (sum_nr_running > leader_nr_running ||
2460 (sum_nr_running == leader_nr_running &&
2461 first_cpu(group->cpumask) >
2462 first_cpu(group_leader->cpumask))) {
2463 group_leader = group;
2464 leader_nr_running = sum_nr_running;
2465 }
48f24c4d 2466 }
5c45bf27
SS
2467group_next:
2468#endif
1da177e4
LT
2469 group = group->next;
2470 } while (group != sd->groups);
2471
2dd73a4f 2472 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2473 goto out_balanced;
2474
2475 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2476
2477 if (this_load >= avg_load ||
2478 100*max_load <= sd->imbalance_pct*this_load)
2479 goto out_balanced;
2480
2dd73a4f 2481 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2482 /*
2483 * We're trying to get all the cpus to the average_load, so we don't
2484 * want to push ourselves above the average load, nor do we wish to
2485 * reduce the max loaded cpu below the average load, as either of these
2486 * actions would just result in more rebalancing later, and ping-pong
2487 * tasks around. Thus we look for the minimum possible imbalance.
2488 * Negative imbalances (*we* are more loaded than anyone else) will
2489 * be counted as no imbalance for these purposes -- we can't fix that
2490 * by pulling tasks to us. Be careful of negative numbers as they'll
2491 * appear as very large values with unsigned longs.
2492 */
2dd73a4f
PW
2493 if (max_load <= busiest_load_per_task)
2494 goto out_balanced;
2495
2496 /*
2497 * In the presence of smp nice balancing, certain scenarios can have
2498 * max load less than avg load(as we skip the groups at or below
2499 * its cpu_power, while calculating max_load..)
2500 */
2501 if (max_load < avg_load) {
2502 *imbalance = 0;
2503 goto small_imbalance;
2504 }
0c117f1b
SS
2505
2506 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2507 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2508
1da177e4 2509 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2510 *imbalance = min(max_pull * busiest->__cpu_power,
2511 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2512 / SCHED_LOAD_SCALE;
2513
2dd73a4f
PW
2514 /*
2515 * if *imbalance is less than the average load per runnable task
2516 * there is no gaurantee that any tasks will be moved so we'll have
2517 * a think about bumping its value to force at least one task to be
2518 * moved
2519 */
dd41f596 2520 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2521 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2522 unsigned int imbn;
2523
2524small_imbalance:
2525 pwr_move = pwr_now = 0;
2526 imbn = 2;
2527 if (this_nr_running) {
2528 this_load_per_task /= this_nr_running;
2529 if (busiest_load_per_task > this_load_per_task)
2530 imbn = 1;
2531 } else
2532 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2533
dd41f596
IM
2534 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2535 busiest_load_per_task * imbn) {
2dd73a4f 2536 *imbalance = busiest_load_per_task;
1da177e4
LT
2537 return busiest;
2538 }
2539
2540 /*
2541 * OK, we don't have enough imbalance to justify moving tasks,
2542 * however we may be able to increase total CPU power used by
2543 * moving them.
2544 */
2545
5517d86b
ED
2546 pwr_now += busiest->__cpu_power *
2547 min(busiest_load_per_task, max_load);
2548 pwr_now += this->__cpu_power *
2549 min(this_load_per_task, this_load);
1da177e4
LT
2550 pwr_now /= SCHED_LOAD_SCALE;
2551
2552 /* Amount of load we'd subtract */
5517d86b
ED
2553 tmp = sg_div_cpu_power(busiest,
2554 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2555 if (max_load > tmp)
5517d86b 2556 pwr_move += busiest->__cpu_power *
2dd73a4f 2557 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2558
2559 /* Amount of load we'd add */
5517d86b 2560 if (max_load * busiest->__cpu_power <
33859f7f 2561 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2562 tmp = sg_div_cpu_power(this,
2563 max_load * busiest->__cpu_power);
1da177e4 2564 else
5517d86b
ED
2565 tmp = sg_div_cpu_power(this,
2566 busiest_load_per_task * SCHED_LOAD_SCALE);
2567 pwr_move += this->__cpu_power *
2568 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2569 pwr_move /= SCHED_LOAD_SCALE;
2570
2571 /* Move if we gain throughput */
2572 if (pwr_move <= pwr_now)
2573 goto out_balanced;
2574
2dd73a4f 2575 *imbalance = busiest_load_per_task;
1da177e4
LT
2576 }
2577
1da177e4
LT
2578 return busiest;
2579
2580out_balanced:
5c45bf27 2581#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2582 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2583 goto ret;
1da177e4 2584
5c45bf27
SS
2585 if (this == group_leader && group_leader != group_min) {
2586 *imbalance = min_load_per_task;
2587 return group_min;
2588 }
5c45bf27 2589#endif
783609c6 2590ret:
1da177e4
LT
2591 *imbalance = 0;
2592 return NULL;
2593}
2594
2595/*
2596 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2597 */
70b97a7f 2598static struct rq *
d15bcfdb 2599find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2600 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2601{
70b97a7f 2602 struct rq *busiest = NULL, *rq;
2dd73a4f 2603 unsigned long max_load = 0;
1da177e4
LT
2604 int i;
2605
2606 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2607 unsigned long wl;
0a2966b4
CL
2608
2609 if (!cpu_isset(i, *cpus))
2610 continue;
2611
48f24c4d 2612 rq = cpu_rq(i);
dd41f596 2613 wl = weighted_cpuload(i);
2dd73a4f 2614
dd41f596 2615 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2616 continue;
1da177e4 2617
dd41f596
IM
2618 if (wl > max_load) {
2619 max_load = wl;
48f24c4d 2620 busiest = rq;
1da177e4
LT
2621 }
2622 }
2623
2624 return busiest;
2625}
2626
77391d71
NP
2627/*
2628 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2629 * so long as it is large enough.
2630 */
2631#define MAX_PINNED_INTERVAL 512
2632
1da177e4
LT
2633/*
2634 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2635 * tasks if there is an imbalance.
1da177e4 2636 */
70b97a7f 2637static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2638 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2639 int *balance)
1da177e4 2640{
43010659 2641 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2642 struct sched_group *group;
1da177e4 2643 unsigned long imbalance;
70b97a7f 2644 struct rq *busiest;
0a2966b4 2645 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2646 unsigned long flags;
5969fe06 2647
89c4710e
SS
2648 /*
2649 * When power savings policy is enabled for the parent domain, idle
2650 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2651 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2652 * portraying it as CPU_NOT_IDLE.
89c4710e 2653 */
d15bcfdb 2654 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2655 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2656 sd_idle = 1;
1da177e4 2657
1da177e4
LT
2658 schedstat_inc(sd, lb_cnt[idle]);
2659
0a2966b4
CL
2660redo:
2661 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2662 &cpus, balance);
2663
06066714 2664 if (*balance == 0)
783609c6 2665 goto out_balanced;
783609c6 2666
1da177e4
LT
2667 if (!group) {
2668 schedstat_inc(sd, lb_nobusyg[idle]);
2669 goto out_balanced;
2670 }
2671
0a2966b4 2672 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2673 if (!busiest) {
2674 schedstat_inc(sd, lb_nobusyq[idle]);
2675 goto out_balanced;
2676 }
2677
db935dbd 2678 BUG_ON(busiest == this_rq);
1da177e4
LT
2679
2680 schedstat_add(sd, lb_imbalance[idle], imbalance);
2681
43010659 2682 ld_moved = 0;
1da177e4
LT
2683 if (busiest->nr_running > 1) {
2684 /*
2685 * Attempt to move tasks. If find_busiest_group has found
2686 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2687 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2688 * correctly treated as an imbalance.
2689 */
fe2eea3f 2690 local_irq_save(flags);
e17224bf 2691 double_rq_lock(this_rq, busiest);
43010659 2692 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2693 imbalance, sd, idle, &all_pinned);
e17224bf 2694 double_rq_unlock(this_rq, busiest);
fe2eea3f 2695 local_irq_restore(flags);
81026794 2696
46cb4b7c
SS
2697 /*
2698 * some other cpu did the load balance for us.
2699 */
43010659 2700 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2701 resched_cpu(this_cpu);
2702
81026794 2703 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2704 if (unlikely(all_pinned)) {
2705 cpu_clear(cpu_of(busiest), cpus);
2706 if (!cpus_empty(cpus))
2707 goto redo;
81026794 2708 goto out_balanced;
0a2966b4 2709 }
1da177e4 2710 }
81026794 2711
43010659 2712 if (!ld_moved) {
1da177e4
LT
2713 schedstat_inc(sd, lb_failed[idle]);
2714 sd->nr_balance_failed++;
2715
2716 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2717
fe2eea3f 2718 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2719
2720 /* don't kick the migration_thread, if the curr
2721 * task on busiest cpu can't be moved to this_cpu
2722 */
2723 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2724 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2725 all_pinned = 1;
2726 goto out_one_pinned;
2727 }
2728
1da177e4
LT
2729 if (!busiest->active_balance) {
2730 busiest->active_balance = 1;
2731 busiest->push_cpu = this_cpu;
81026794 2732 active_balance = 1;
1da177e4 2733 }
fe2eea3f 2734 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2735 if (active_balance)
1da177e4
LT
2736 wake_up_process(busiest->migration_thread);
2737
2738 /*
2739 * We've kicked active balancing, reset the failure
2740 * counter.
2741 */
39507451 2742 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2743 }
81026794 2744 } else
1da177e4
LT
2745 sd->nr_balance_failed = 0;
2746
81026794 2747 if (likely(!active_balance)) {
1da177e4
LT
2748 /* We were unbalanced, so reset the balancing interval */
2749 sd->balance_interval = sd->min_interval;
81026794
NP
2750 } else {
2751 /*
2752 * If we've begun active balancing, start to back off. This
2753 * case may not be covered by the all_pinned logic if there
2754 * is only 1 task on the busy runqueue (because we don't call
2755 * move_tasks).
2756 */
2757 if (sd->balance_interval < sd->max_interval)
2758 sd->balance_interval *= 2;
1da177e4
LT
2759 }
2760
43010659 2761 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2762 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2763 return -1;
43010659 2764 return ld_moved;
1da177e4
LT
2765
2766out_balanced:
1da177e4
LT
2767 schedstat_inc(sd, lb_balanced[idle]);
2768
16cfb1c0 2769 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2770
2771out_one_pinned:
1da177e4 2772 /* tune up the balancing interval */
77391d71
NP
2773 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2774 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2775 sd->balance_interval *= 2;
2776
48f24c4d 2777 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2778 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2779 return -1;
1da177e4
LT
2780 return 0;
2781}
2782
2783/*
2784 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2785 * tasks if there is an imbalance.
2786 *
d15bcfdb 2787 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2788 * this_rq is locked.
2789 */
48f24c4d 2790static int
70b97a7f 2791load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2792{
2793 struct sched_group *group;
70b97a7f 2794 struct rq *busiest = NULL;
1da177e4 2795 unsigned long imbalance;
43010659 2796 int ld_moved = 0;
5969fe06 2797 int sd_idle = 0;
969bb4e4 2798 int all_pinned = 0;
0a2966b4 2799 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2800
89c4710e
SS
2801 /*
2802 * When power savings policy is enabled for the parent domain, idle
2803 * sibling can pick up load irrespective of busy siblings. In this case,
2804 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2805 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2806 */
2807 if (sd->flags & SD_SHARE_CPUPOWER &&
2808 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2809 sd_idle = 1;
1da177e4 2810
d15bcfdb 2811 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2812redo:
d15bcfdb 2813 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2814 &sd_idle, &cpus, NULL);
1da177e4 2815 if (!group) {
d15bcfdb 2816 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2817 goto out_balanced;
1da177e4
LT
2818 }
2819
d15bcfdb 2820 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2821 &cpus);
db935dbd 2822 if (!busiest) {
d15bcfdb 2823 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2824 goto out_balanced;
1da177e4
LT
2825 }
2826
db935dbd
NP
2827 BUG_ON(busiest == this_rq);
2828
d15bcfdb 2829 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2830
43010659 2831 ld_moved = 0;
d6d5cfaf
NP
2832 if (busiest->nr_running > 1) {
2833 /* Attempt to move tasks */
2834 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2835 /* this_rq->clock is already updated */
2836 update_rq_clock(busiest);
43010659 2837 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2838 imbalance, sd, CPU_NEWLY_IDLE,
2839 &all_pinned);
d6d5cfaf 2840 spin_unlock(&busiest->lock);
0a2966b4 2841
969bb4e4 2842 if (unlikely(all_pinned)) {
0a2966b4
CL
2843 cpu_clear(cpu_of(busiest), cpus);
2844 if (!cpus_empty(cpus))
2845 goto redo;
2846 }
d6d5cfaf
NP
2847 }
2848
43010659 2849 if (!ld_moved) {
d15bcfdb 2850 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2851 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2852 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2853 return -1;
2854 } else
16cfb1c0 2855 sd->nr_balance_failed = 0;
1da177e4 2856
43010659 2857 return ld_moved;
16cfb1c0
NP
2858
2859out_balanced:
d15bcfdb 2860 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2861 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2862 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2863 return -1;
16cfb1c0 2864 sd->nr_balance_failed = 0;
48f24c4d 2865
16cfb1c0 2866 return 0;
1da177e4
LT
2867}
2868
2869/*
2870 * idle_balance is called by schedule() if this_cpu is about to become
2871 * idle. Attempts to pull tasks from other CPUs.
2872 */
70b97a7f 2873static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2874{
2875 struct sched_domain *sd;
dd41f596
IM
2876 int pulled_task = -1;
2877 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2878
2879 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2880 unsigned long interval;
2881
2882 if (!(sd->flags & SD_LOAD_BALANCE))
2883 continue;
2884
2885 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2886 /* If we've pulled tasks over stop searching: */
1bd77f2d 2887 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2888 this_rq, sd);
2889
2890 interval = msecs_to_jiffies(sd->balance_interval);
2891 if (time_after(next_balance, sd->last_balance + interval))
2892 next_balance = sd->last_balance + interval;
2893 if (pulled_task)
2894 break;
1da177e4 2895 }
dd41f596 2896 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2897 /*
2898 * We are going idle. next_balance may be set based on
2899 * a busy processor. So reset next_balance.
2900 */
2901 this_rq->next_balance = next_balance;
dd41f596 2902 }
1da177e4
LT
2903}
2904
2905/*
2906 * active_load_balance is run by migration threads. It pushes running tasks
2907 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2908 * running on each physical CPU where possible, and avoids physical /
2909 * logical imbalances.
2910 *
2911 * Called with busiest_rq locked.
2912 */
70b97a7f 2913static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2914{
39507451 2915 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2916 struct sched_domain *sd;
2917 struct rq *target_rq;
39507451 2918
48f24c4d 2919 /* Is there any task to move? */
39507451 2920 if (busiest_rq->nr_running <= 1)
39507451
NP
2921 return;
2922
2923 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2924
2925 /*
39507451
NP
2926 * This condition is "impossible", if it occurs
2927 * we need to fix it. Originally reported by
2928 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2929 */
39507451 2930 BUG_ON(busiest_rq == target_rq);
1da177e4 2931
39507451
NP
2932 /* move a task from busiest_rq to target_rq */
2933 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2934 update_rq_clock(busiest_rq);
2935 update_rq_clock(target_rq);
39507451
NP
2936
2937 /* Search for an sd spanning us and the target CPU. */
c96d145e 2938 for_each_domain(target_cpu, sd) {
39507451 2939 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2940 cpu_isset(busiest_cpu, sd->span))
39507451 2941 break;
c96d145e 2942 }
39507451 2943
48f24c4d
IM
2944 if (likely(sd)) {
2945 schedstat_inc(sd, alb_cnt);
39507451 2946
43010659
PW
2947 if (move_one_task(target_rq, target_cpu, busiest_rq,
2948 sd, CPU_IDLE))
48f24c4d
IM
2949 schedstat_inc(sd, alb_pushed);
2950 else
2951 schedstat_inc(sd, alb_failed);
2952 }
39507451 2953 spin_unlock(&target_rq->lock);
1da177e4
LT
2954}
2955
46cb4b7c
SS
2956#ifdef CONFIG_NO_HZ
2957static struct {
2958 atomic_t load_balancer;
2959 cpumask_t cpu_mask;
2960} nohz ____cacheline_aligned = {
2961 .load_balancer = ATOMIC_INIT(-1),
2962 .cpu_mask = CPU_MASK_NONE,
2963};
2964
7835b98b 2965/*
46cb4b7c
SS
2966 * This routine will try to nominate the ilb (idle load balancing)
2967 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2968 * load balancing on behalf of all those cpus. If all the cpus in the system
2969 * go into this tickless mode, then there will be no ilb owner (as there is
2970 * no need for one) and all the cpus will sleep till the next wakeup event
2971 * arrives...
2972 *
2973 * For the ilb owner, tick is not stopped. And this tick will be used
2974 * for idle load balancing. ilb owner will still be part of
2975 * nohz.cpu_mask..
7835b98b 2976 *
46cb4b7c
SS
2977 * While stopping the tick, this cpu will become the ilb owner if there
2978 * is no other owner. And will be the owner till that cpu becomes busy
2979 * or if all cpus in the system stop their ticks at which point
2980 * there is no need for ilb owner.
2981 *
2982 * When the ilb owner becomes busy, it nominates another owner, during the
2983 * next busy scheduler_tick()
2984 */
2985int select_nohz_load_balancer(int stop_tick)
2986{
2987 int cpu = smp_processor_id();
2988
2989 if (stop_tick) {
2990 cpu_set(cpu, nohz.cpu_mask);
2991 cpu_rq(cpu)->in_nohz_recently = 1;
2992
2993 /*
2994 * If we are going offline and still the leader, give up!
2995 */
2996 if (cpu_is_offline(cpu) &&
2997 atomic_read(&nohz.load_balancer) == cpu) {
2998 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2999 BUG();
3000 return 0;
3001 }
3002
3003 /* time for ilb owner also to sleep */
3004 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3005 if (atomic_read(&nohz.load_balancer) == cpu)
3006 atomic_set(&nohz.load_balancer, -1);
3007 return 0;
3008 }
3009
3010 if (atomic_read(&nohz.load_balancer) == -1) {
3011 /* make me the ilb owner */
3012 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3013 return 1;
3014 } else if (atomic_read(&nohz.load_balancer) == cpu)
3015 return 1;
3016 } else {
3017 if (!cpu_isset(cpu, nohz.cpu_mask))
3018 return 0;
3019
3020 cpu_clear(cpu, nohz.cpu_mask);
3021
3022 if (atomic_read(&nohz.load_balancer) == cpu)
3023 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3024 BUG();
3025 }
3026 return 0;
3027}
3028#endif
3029
3030static DEFINE_SPINLOCK(balancing);
3031
3032/*
7835b98b
CL
3033 * It checks each scheduling domain to see if it is due to be balanced,
3034 * and initiates a balancing operation if so.
3035 *
3036 * Balancing parameters are set up in arch_init_sched_domains.
3037 */
d15bcfdb 3038static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3039{
46cb4b7c
SS
3040 int balance = 1;
3041 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3042 unsigned long interval;
3043 struct sched_domain *sd;
46cb4b7c 3044 /* Earliest time when we have to do rebalance again */
c9819f45 3045 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3046
46cb4b7c 3047 for_each_domain(cpu, sd) {
1da177e4
LT
3048 if (!(sd->flags & SD_LOAD_BALANCE))
3049 continue;
3050
3051 interval = sd->balance_interval;
d15bcfdb 3052 if (idle != CPU_IDLE)
1da177e4
LT
3053 interval *= sd->busy_factor;
3054
3055 /* scale ms to jiffies */
3056 interval = msecs_to_jiffies(interval);
3057 if (unlikely(!interval))
3058 interval = 1;
dd41f596
IM
3059 if (interval > HZ*NR_CPUS/10)
3060 interval = HZ*NR_CPUS/10;
3061
1da177e4 3062
08c183f3
CL
3063 if (sd->flags & SD_SERIALIZE) {
3064 if (!spin_trylock(&balancing))
3065 goto out;
3066 }
3067
c9819f45 3068 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3069 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3070 /*
3071 * We've pulled tasks over so either we're no
5969fe06
NP
3072 * longer idle, or one of our SMT siblings is
3073 * not idle.
3074 */
d15bcfdb 3075 idle = CPU_NOT_IDLE;
1da177e4 3076 }
1bd77f2d 3077 sd->last_balance = jiffies;
1da177e4 3078 }
08c183f3
CL
3079 if (sd->flags & SD_SERIALIZE)
3080 spin_unlock(&balancing);
3081out:
c9819f45
CL
3082 if (time_after(next_balance, sd->last_balance + interval))
3083 next_balance = sd->last_balance + interval;
783609c6
SS
3084
3085 /*
3086 * Stop the load balance at this level. There is another
3087 * CPU in our sched group which is doing load balancing more
3088 * actively.
3089 */
3090 if (!balance)
3091 break;
1da177e4 3092 }
46cb4b7c
SS
3093 rq->next_balance = next_balance;
3094}
3095
3096/*
3097 * run_rebalance_domains is triggered when needed from the scheduler tick.
3098 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3099 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3100 */
3101static void run_rebalance_domains(struct softirq_action *h)
3102{
dd41f596
IM
3103 int this_cpu = smp_processor_id();
3104 struct rq *this_rq = cpu_rq(this_cpu);
3105 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3106 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3107
dd41f596 3108 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3109
3110#ifdef CONFIG_NO_HZ
3111 /*
3112 * If this cpu is the owner for idle load balancing, then do the
3113 * balancing on behalf of the other idle cpus whose ticks are
3114 * stopped.
3115 */
dd41f596
IM
3116 if (this_rq->idle_at_tick &&
3117 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3118 cpumask_t cpus = nohz.cpu_mask;
3119 struct rq *rq;
3120 int balance_cpu;
3121
dd41f596 3122 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3123 for_each_cpu_mask(balance_cpu, cpus) {
3124 /*
3125 * If this cpu gets work to do, stop the load balancing
3126 * work being done for other cpus. Next load
3127 * balancing owner will pick it up.
3128 */
3129 if (need_resched())
3130 break;
3131
de0cf899 3132 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3133
3134 rq = cpu_rq(balance_cpu);
dd41f596
IM
3135 if (time_after(this_rq->next_balance, rq->next_balance))
3136 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3137 }
3138 }
3139#endif
3140}
3141
3142/*
3143 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3144 *
3145 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3146 * idle load balancing owner or decide to stop the periodic load balancing,
3147 * if the whole system is idle.
3148 */
dd41f596 3149static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3150{
46cb4b7c
SS
3151#ifdef CONFIG_NO_HZ
3152 /*
3153 * If we were in the nohz mode recently and busy at the current
3154 * scheduler tick, then check if we need to nominate new idle
3155 * load balancer.
3156 */
3157 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3158 rq->in_nohz_recently = 0;
3159
3160 if (atomic_read(&nohz.load_balancer) == cpu) {
3161 cpu_clear(cpu, nohz.cpu_mask);
3162 atomic_set(&nohz.load_balancer, -1);
3163 }
3164
3165 if (atomic_read(&nohz.load_balancer) == -1) {
3166 /*
3167 * simple selection for now: Nominate the
3168 * first cpu in the nohz list to be the next
3169 * ilb owner.
3170 *
3171 * TBD: Traverse the sched domains and nominate
3172 * the nearest cpu in the nohz.cpu_mask.
3173 */
3174 int ilb = first_cpu(nohz.cpu_mask);
3175
3176 if (ilb != NR_CPUS)
3177 resched_cpu(ilb);
3178 }
3179 }
3180
3181 /*
3182 * If this cpu is idle and doing idle load balancing for all the
3183 * cpus with ticks stopped, is it time for that to stop?
3184 */
3185 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3186 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3187 resched_cpu(cpu);
3188 return;
3189 }
3190
3191 /*
3192 * If this cpu is idle and the idle load balancing is done by
3193 * someone else, then no need raise the SCHED_SOFTIRQ
3194 */
3195 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3196 cpu_isset(cpu, nohz.cpu_mask))
3197 return;
3198#endif
3199 if (time_after_eq(jiffies, rq->next_balance))
3200 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3201}
dd41f596
IM
3202
3203#else /* CONFIG_SMP */
3204
1da177e4
LT
3205/*
3206 * on UP we do not need to balance between CPUs:
3207 */
70b97a7f 3208static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3209{
3210}
dd41f596
IM
3211
3212/* Avoid "used but not defined" warning on UP */
3213static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3214 unsigned long max_nr_move, unsigned long max_load_move,
3215 struct sched_domain *sd, enum cpu_idle_type idle,
3216 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3217 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3218{
3219 *load_moved = 0;
3220
3221 return 0;
3222}
3223
1da177e4
LT
3224#endif
3225
1da177e4
LT
3226DEFINE_PER_CPU(struct kernel_stat, kstat);
3227
3228EXPORT_PER_CPU_SYMBOL(kstat);
3229
3230/*
41b86e9c
IM
3231 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3232 * that have not yet been banked in case the task is currently running.
1da177e4 3233 */
41b86e9c 3234unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3235{
1da177e4 3236 unsigned long flags;
41b86e9c
IM
3237 u64 ns, delta_exec;
3238 struct rq *rq;
48f24c4d 3239
41b86e9c
IM
3240 rq = task_rq_lock(p, &flags);
3241 ns = p->se.sum_exec_runtime;
3242 if (rq->curr == p) {
a8e504d2
IM
3243 update_rq_clock(rq);
3244 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3245 if ((s64)delta_exec > 0)
3246 ns += delta_exec;
3247 }
3248 task_rq_unlock(rq, &flags);
48f24c4d 3249
1da177e4
LT
3250 return ns;
3251}
3252
1da177e4
LT
3253/*
3254 * Account user cpu time to a process.
3255 * @p: the process that the cpu time gets accounted to
3256 * @hardirq_offset: the offset to subtract from hardirq_count()
3257 * @cputime: the cpu time spent in user space since the last update
3258 */
3259void account_user_time(struct task_struct *p, cputime_t cputime)
3260{
3261 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3262 cputime64_t tmp;
3263
3264 p->utime = cputime_add(p->utime, cputime);
3265
3266 /* Add user time to cpustat. */
3267 tmp = cputime_to_cputime64(cputime);
3268 if (TASK_NICE(p) > 0)
3269 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3270 else
3271 cpustat->user = cputime64_add(cpustat->user, tmp);
3272}
3273
3274/*
3275 * Account system cpu time to a process.
3276 * @p: the process that the cpu time gets accounted to
3277 * @hardirq_offset: the offset to subtract from hardirq_count()
3278 * @cputime: the cpu time spent in kernel space since the last update
3279 */
3280void account_system_time(struct task_struct *p, int hardirq_offset,
3281 cputime_t cputime)
3282{
3283 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3284 struct rq *rq = this_rq();
1da177e4
LT
3285 cputime64_t tmp;
3286
3287 p->stime = cputime_add(p->stime, cputime);
3288
3289 /* Add system time to cpustat. */
3290 tmp = cputime_to_cputime64(cputime);
3291 if (hardirq_count() - hardirq_offset)
3292 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3293 else if (softirq_count())
3294 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3295 else if (p != rq->idle)
3296 cpustat->system = cputime64_add(cpustat->system, tmp);
3297 else if (atomic_read(&rq->nr_iowait) > 0)
3298 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3299 else
3300 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3301 /* Account for system time used */
3302 acct_update_integrals(p);
1da177e4
LT
3303}
3304
3305/*
3306 * Account for involuntary wait time.
3307 * @p: the process from which the cpu time has been stolen
3308 * @steal: the cpu time spent in involuntary wait
3309 */
3310void account_steal_time(struct task_struct *p, cputime_t steal)
3311{
3312 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3313 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3314 struct rq *rq = this_rq();
1da177e4
LT
3315
3316 if (p == rq->idle) {
3317 p->stime = cputime_add(p->stime, steal);
3318 if (atomic_read(&rq->nr_iowait) > 0)
3319 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3320 else
3321 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3322 } else
3323 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3324}
3325
7835b98b
CL
3326/*
3327 * This function gets called by the timer code, with HZ frequency.
3328 * We call it with interrupts disabled.
3329 *
3330 * It also gets called by the fork code, when changing the parent's
3331 * timeslices.
3332 */
3333void scheduler_tick(void)
3334{
7835b98b
CL
3335 int cpu = smp_processor_id();
3336 struct rq *rq = cpu_rq(cpu);
dd41f596 3337 struct task_struct *curr = rq->curr;
529c7726 3338 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3339
3340 spin_lock(&rq->lock);
546fe3c9 3341 __update_rq_clock(rq);
529c7726
IM
3342 /*
3343 * Let rq->clock advance by at least TICK_NSEC:
3344 */
3345 if (unlikely(rq->clock < next_tick))
3346 rq->clock = next_tick;
3347 rq->tick_timestamp = rq->clock;
f1a438d8 3348 update_cpu_load(rq);
dd41f596
IM
3349 if (curr != rq->idle) /* FIXME: needed? */
3350 curr->sched_class->task_tick(rq, curr);
dd41f596 3351 spin_unlock(&rq->lock);
7835b98b 3352
e418e1c2 3353#ifdef CONFIG_SMP
dd41f596
IM
3354 rq->idle_at_tick = idle_cpu(cpu);
3355 trigger_load_balance(rq, cpu);
e418e1c2 3356#endif
1da177e4
LT
3357}
3358
1da177e4
LT
3359#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3360
3361void fastcall add_preempt_count(int val)
3362{
3363 /*
3364 * Underflow?
3365 */
9a11b49a
IM
3366 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3367 return;
1da177e4
LT
3368 preempt_count() += val;
3369 /*
3370 * Spinlock count overflowing soon?
3371 */
33859f7f
MOS
3372 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3373 PREEMPT_MASK - 10);
1da177e4
LT
3374}
3375EXPORT_SYMBOL(add_preempt_count);
3376
3377void fastcall sub_preempt_count(int val)
3378{
3379 /*
3380 * Underflow?
3381 */
9a11b49a
IM
3382 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3383 return;
1da177e4
LT
3384 /*
3385 * Is the spinlock portion underflowing?
3386 */
9a11b49a
IM
3387 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3388 !(preempt_count() & PREEMPT_MASK)))
3389 return;
3390
1da177e4
LT
3391 preempt_count() -= val;
3392}
3393EXPORT_SYMBOL(sub_preempt_count);
3394
3395#endif
3396
3397/*
dd41f596 3398 * Print scheduling while atomic bug:
1da177e4 3399 */
dd41f596 3400static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3401{
dd41f596
IM
3402 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3403 prev->comm, preempt_count(), prev->pid);
3404 debug_show_held_locks(prev);
3405 if (irqs_disabled())
3406 print_irqtrace_events(prev);
3407 dump_stack();
3408}
1da177e4 3409
dd41f596
IM
3410/*
3411 * Various schedule()-time debugging checks and statistics:
3412 */
3413static inline void schedule_debug(struct task_struct *prev)
3414{
1da177e4
LT
3415 /*
3416 * Test if we are atomic. Since do_exit() needs to call into
3417 * schedule() atomically, we ignore that path for now.
3418 * Otherwise, whine if we are scheduling when we should not be.
3419 */
dd41f596
IM
3420 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3421 __schedule_bug(prev);
3422
1da177e4
LT
3423 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3424
dd41f596
IM
3425 schedstat_inc(this_rq(), sched_cnt);
3426}
3427
3428/*
3429 * Pick up the highest-prio task:
3430 */
3431static inline struct task_struct *
ff95f3df 3432pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3433{
3434 struct sched_class *class;
3435 struct task_struct *p;
1da177e4
LT
3436
3437 /*
dd41f596
IM
3438 * Optimization: we know that if all tasks are in
3439 * the fair class we can call that function directly:
1da177e4 3440 */
dd41f596 3441 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3442 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3443 if (likely(p))
3444 return p;
1da177e4
LT
3445 }
3446
dd41f596
IM
3447 class = sched_class_highest;
3448 for ( ; ; ) {
fb8d4724 3449 p = class->pick_next_task(rq);
dd41f596
IM
3450 if (p)
3451 return p;
3452 /*
3453 * Will never be NULL as the idle class always
3454 * returns a non-NULL p:
3455 */
3456 class = class->next;
3457 }
3458}
1da177e4 3459
dd41f596
IM
3460/*
3461 * schedule() is the main scheduler function.
3462 */
3463asmlinkage void __sched schedule(void)
3464{
3465 struct task_struct *prev, *next;
3466 long *switch_count;
3467 struct rq *rq;
dd41f596
IM
3468 int cpu;
3469
3470need_resched:
3471 preempt_disable();
3472 cpu = smp_processor_id();
3473 rq = cpu_rq(cpu);
3474 rcu_qsctr_inc(cpu);
3475 prev = rq->curr;
3476 switch_count = &prev->nivcsw;
3477
3478 release_kernel_lock(prev);
3479need_resched_nonpreemptible:
3480
3481 schedule_debug(prev);
1da177e4
LT
3482
3483 spin_lock_irq(&rq->lock);
dd41f596 3484 clear_tsk_need_resched(prev);
c1b3da3e 3485 __update_rq_clock(rq);
1da177e4 3486
1da177e4 3487 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3488 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3489 unlikely(signal_pending(prev)))) {
1da177e4 3490 prev->state = TASK_RUNNING;
dd41f596 3491 } else {
2e1cb74a 3492 deactivate_task(rq, prev, 1);
1da177e4 3493 }
dd41f596 3494 switch_count = &prev->nvcsw;
1da177e4
LT
3495 }
3496
dd41f596 3497 if (unlikely(!rq->nr_running))
1da177e4 3498 idle_balance(cpu, rq);
1da177e4 3499
31ee529c 3500 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3501 next = pick_next_task(rq, prev);
1da177e4
LT
3502
3503 sched_info_switch(prev, next);
dd41f596 3504
1da177e4 3505 if (likely(prev != next)) {
1da177e4
LT
3506 rq->nr_switches++;
3507 rq->curr = next;
3508 ++*switch_count;
3509
dd41f596 3510 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3511 } else
3512 spin_unlock_irq(&rq->lock);
3513
dd41f596
IM
3514 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3515 cpu = smp_processor_id();
3516 rq = cpu_rq(cpu);
1da177e4 3517 goto need_resched_nonpreemptible;
dd41f596 3518 }
1da177e4
LT
3519 preempt_enable_no_resched();
3520 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3521 goto need_resched;
3522}
1da177e4
LT
3523EXPORT_SYMBOL(schedule);
3524
3525#ifdef CONFIG_PREEMPT
3526/*
2ed6e34f 3527 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3528 * off of preempt_enable. Kernel preemptions off return from interrupt
3529 * occur there and call schedule directly.
3530 */
3531asmlinkage void __sched preempt_schedule(void)
3532{
3533 struct thread_info *ti = current_thread_info();
3534#ifdef CONFIG_PREEMPT_BKL
3535 struct task_struct *task = current;
3536 int saved_lock_depth;
3537#endif
3538 /*
3539 * If there is a non-zero preempt_count or interrupts are disabled,
3540 * we do not want to preempt the current task. Just return..
3541 */
beed33a8 3542 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3543 return;
3544
3545need_resched:
3546 add_preempt_count(PREEMPT_ACTIVE);
3547 /*
3548 * We keep the big kernel semaphore locked, but we
3549 * clear ->lock_depth so that schedule() doesnt
3550 * auto-release the semaphore:
3551 */
3552#ifdef CONFIG_PREEMPT_BKL
3553 saved_lock_depth = task->lock_depth;
3554 task->lock_depth = -1;
3555#endif
3556 schedule();
3557#ifdef CONFIG_PREEMPT_BKL
3558 task->lock_depth = saved_lock_depth;
3559#endif
3560 sub_preempt_count(PREEMPT_ACTIVE);
3561
3562 /* we could miss a preemption opportunity between schedule and now */
3563 barrier();
3564 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3565 goto need_resched;
3566}
1da177e4
LT
3567EXPORT_SYMBOL(preempt_schedule);
3568
3569/*
2ed6e34f 3570 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3571 * off of irq context.
3572 * Note, that this is called and return with irqs disabled. This will
3573 * protect us against recursive calling from irq.
3574 */
3575asmlinkage void __sched preempt_schedule_irq(void)
3576{
3577 struct thread_info *ti = current_thread_info();
3578#ifdef CONFIG_PREEMPT_BKL
3579 struct task_struct *task = current;
3580 int saved_lock_depth;
3581#endif
2ed6e34f 3582 /* Catch callers which need to be fixed */
1da177e4
LT
3583 BUG_ON(ti->preempt_count || !irqs_disabled());
3584
3585need_resched:
3586 add_preempt_count(PREEMPT_ACTIVE);
3587 /*
3588 * We keep the big kernel semaphore locked, but we
3589 * clear ->lock_depth so that schedule() doesnt
3590 * auto-release the semaphore:
3591 */
3592#ifdef CONFIG_PREEMPT_BKL
3593 saved_lock_depth = task->lock_depth;
3594 task->lock_depth = -1;
3595#endif
3596 local_irq_enable();
3597 schedule();
3598 local_irq_disable();
3599#ifdef CONFIG_PREEMPT_BKL
3600 task->lock_depth = saved_lock_depth;
3601#endif
3602 sub_preempt_count(PREEMPT_ACTIVE);
3603
3604 /* we could miss a preemption opportunity between schedule and now */
3605 barrier();
3606 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3607 goto need_resched;
3608}
3609
3610#endif /* CONFIG_PREEMPT */
3611
95cdf3b7
IM
3612int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3613 void *key)
1da177e4 3614{
48f24c4d 3615 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3616}
1da177e4
LT
3617EXPORT_SYMBOL(default_wake_function);
3618
3619/*
3620 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3621 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3622 * number) then we wake all the non-exclusive tasks and one exclusive task.
3623 *
3624 * There are circumstances in which we can try to wake a task which has already
3625 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3626 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3627 */
3628static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3629 int nr_exclusive, int sync, void *key)
3630{
3631 struct list_head *tmp, *next;
3632
3633 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3634 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3635 unsigned flags = curr->flags;
3636
1da177e4 3637 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3638 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3639 break;
3640 }
3641}
3642
3643/**
3644 * __wake_up - wake up threads blocked on a waitqueue.
3645 * @q: the waitqueue
3646 * @mode: which threads
3647 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3648 * @key: is directly passed to the wakeup function
1da177e4
LT
3649 */
3650void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3651 int nr_exclusive, void *key)
1da177e4
LT
3652{
3653 unsigned long flags;
3654
3655 spin_lock_irqsave(&q->lock, flags);
3656 __wake_up_common(q, mode, nr_exclusive, 0, key);
3657 spin_unlock_irqrestore(&q->lock, flags);
3658}
1da177e4
LT
3659EXPORT_SYMBOL(__wake_up);
3660
3661/*
3662 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3663 */
3664void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3665{
3666 __wake_up_common(q, mode, 1, 0, NULL);
3667}
3668
3669/**
67be2dd1 3670 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3671 * @q: the waitqueue
3672 * @mode: which threads
3673 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3674 *
3675 * The sync wakeup differs that the waker knows that it will schedule
3676 * away soon, so while the target thread will be woken up, it will not
3677 * be migrated to another CPU - ie. the two threads are 'synchronized'
3678 * with each other. This can prevent needless bouncing between CPUs.
3679 *
3680 * On UP it can prevent extra preemption.
3681 */
95cdf3b7
IM
3682void fastcall
3683__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3684{
3685 unsigned long flags;
3686 int sync = 1;
3687
3688 if (unlikely(!q))
3689 return;
3690
3691 if (unlikely(!nr_exclusive))
3692 sync = 0;
3693
3694 spin_lock_irqsave(&q->lock, flags);
3695 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3696 spin_unlock_irqrestore(&q->lock, flags);
3697}
3698EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3699
3700void fastcall complete(struct completion *x)
3701{
3702 unsigned long flags;
3703
3704 spin_lock_irqsave(&x->wait.lock, flags);
3705 x->done++;
3706 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3707 1, 0, NULL);
3708 spin_unlock_irqrestore(&x->wait.lock, flags);
3709}
3710EXPORT_SYMBOL(complete);
3711
3712void fastcall complete_all(struct completion *x)
3713{
3714 unsigned long flags;
3715
3716 spin_lock_irqsave(&x->wait.lock, flags);
3717 x->done += UINT_MAX/2;
3718 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3719 0, 0, NULL);
3720 spin_unlock_irqrestore(&x->wait.lock, flags);
3721}
3722EXPORT_SYMBOL(complete_all);
3723
3724void fastcall __sched wait_for_completion(struct completion *x)
3725{
3726 might_sleep();
48f24c4d 3727
1da177e4
LT
3728 spin_lock_irq(&x->wait.lock);
3729 if (!x->done) {
3730 DECLARE_WAITQUEUE(wait, current);
3731
3732 wait.flags |= WQ_FLAG_EXCLUSIVE;
3733 __add_wait_queue_tail(&x->wait, &wait);
3734 do {
3735 __set_current_state(TASK_UNINTERRUPTIBLE);
3736 spin_unlock_irq(&x->wait.lock);
3737 schedule();
3738 spin_lock_irq(&x->wait.lock);
3739 } while (!x->done);
3740 __remove_wait_queue(&x->wait, &wait);
3741 }
3742 x->done--;
3743 spin_unlock_irq(&x->wait.lock);
3744}
3745EXPORT_SYMBOL(wait_for_completion);
3746
3747unsigned long fastcall __sched
3748wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3749{
3750 might_sleep();
3751
3752 spin_lock_irq(&x->wait.lock);
3753 if (!x->done) {
3754 DECLARE_WAITQUEUE(wait, current);
3755
3756 wait.flags |= WQ_FLAG_EXCLUSIVE;
3757 __add_wait_queue_tail(&x->wait, &wait);
3758 do {
3759 __set_current_state(TASK_UNINTERRUPTIBLE);
3760 spin_unlock_irq(&x->wait.lock);
3761 timeout = schedule_timeout(timeout);
3762 spin_lock_irq(&x->wait.lock);
3763 if (!timeout) {
3764 __remove_wait_queue(&x->wait, &wait);
3765 goto out;
3766 }
3767 } while (!x->done);
3768 __remove_wait_queue(&x->wait, &wait);
3769 }
3770 x->done--;
3771out:
3772 spin_unlock_irq(&x->wait.lock);
3773 return timeout;
3774}
3775EXPORT_SYMBOL(wait_for_completion_timeout);
3776
3777int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3778{
3779 int ret = 0;
3780
3781 might_sleep();
3782
3783 spin_lock_irq(&x->wait.lock);
3784 if (!x->done) {
3785 DECLARE_WAITQUEUE(wait, current);
3786
3787 wait.flags |= WQ_FLAG_EXCLUSIVE;
3788 __add_wait_queue_tail(&x->wait, &wait);
3789 do {
3790 if (signal_pending(current)) {
3791 ret = -ERESTARTSYS;
3792 __remove_wait_queue(&x->wait, &wait);
3793 goto out;
3794 }
3795 __set_current_state(TASK_INTERRUPTIBLE);
3796 spin_unlock_irq(&x->wait.lock);
3797 schedule();
3798 spin_lock_irq(&x->wait.lock);
3799 } while (!x->done);
3800 __remove_wait_queue(&x->wait, &wait);
3801 }
3802 x->done--;
3803out:
3804 spin_unlock_irq(&x->wait.lock);
3805
3806 return ret;
3807}
3808EXPORT_SYMBOL(wait_for_completion_interruptible);
3809
3810unsigned long fastcall __sched
3811wait_for_completion_interruptible_timeout(struct completion *x,
3812 unsigned long timeout)
3813{
3814 might_sleep();
3815
3816 spin_lock_irq(&x->wait.lock);
3817 if (!x->done) {
3818 DECLARE_WAITQUEUE(wait, current);
3819
3820 wait.flags |= WQ_FLAG_EXCLUSIVE;
3821 __add_wait_queue_tail(&x->wait, &wait);
3822 do {
3823 if (signal_pending(current)) {
3824 timeout = -ERESTARTSYS;
3825 __remove_wait_queue(&x->wait, &wait);
3826 goto out;
3827 }
3828 __set_current_state(TASK_INTERRUPTIBLE);
3829 spin_unlock_irq(&x->wait.lock);
3830 timeout = schedule_timeout(timeout);
3831 spin_lock_irq(&x->wait.lock);
3832 if (!timeout) {
3833 __remove_wait_queue(&x->wait, &wait);
3834 goto out;
3835 }
3836 } while (!x->done);
3837 __remove_wait_queue(&x->wait, &wait);
3838 }
3839 x->done--;
3840out:
3841 spin_unlock_irq(&x->wait.lock);
3842 return timeout;
3843}
3844EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3845
0fec171c
IM
3846static inline void
3847sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3848{
3849 spin_lock_irqsave(&q->lock, *flags);
3850 __add_wait_queue(q, wait);
1da177e4 3851 spin_unlock(&q->lock);
0fec171c 3852}
1da177e4 3853
0fec171c
IM
3854static inline void
3855sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3856{
3857 spin_lock_irq(&q->lock);
3858 __remove_wait_queue(q, wait);
3859 spin_unlock_irqrestore(&q->lock, *flags);
3860}
1da177e4 3861
0fec171c 3862void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3863{
0fec171c
IM
3864 unsigned long flags;
3865 wait_queue_t wait;
3866
3867 init_waitqueue_entry(&wait, current);
1da177e4
LT
3868
3869 current->state = TASK_INTERRUPTIBLE;
3870
0fec171c 3871 sleep_on_head(q, &wait, &flags);
1da177e4 3872 schedule();
0fec171c 3873 sleep_on_tail(q, &wait, &flags);
1da177e4 3874}
1da177e4
LT
3875EXPORT_SYMBOL(interruptible_sleep_on);
3876
0fec171c 3877long __sched
95cdf3b7 3878interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3879{
0fec171c
IM
3880 unsigned long flags;
3881 wait_queue_t wait;
3882
3883 init_waitqueue_entry(&wait, current);
1da177e4
LT
3884
3885 current->state = TASK_INTERRUPTIBLE;
3886
0fec171c 3887 sleep_on_head(q, &wait, &flags);
1da177e4 3888 timeout = schedule_timeout(timeout);
0fec171c 3889 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3890
3891 return timeout;
3892}
1da177e4
LT
3893EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3894
0fec171c 3895void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3896{
0fec171c
IM
3897 unsigned long flags;
3898 wait_queue_t wait;
3899
3900 init_waitqueue_entry(&wait, current);
1da177e4
LT
3901
3902 current->state = TASK_UNINTERRUPTIBLE;
3903
0fec171c 3904 sleep_on_head(q, &wait, &flags);
1da177e4 3905 schedule();
0fec171c 3906 sleep_on_tail(q, &wait, &flags);
1da177e4 3907}
1da177e4
LT
3908EXPORT_SYMBOL(sleep_on);
3909
0fec171c 3910long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3911{
0fec171c
IM
3912 unsigned long flags;
3913 wait_queue_t wait;
3914
3915 init_waitqueue_entry(&wait, current);
1da177e4
LT
3916
3917 current->state = TASK_UNINTERRUPTIBLE;
3918
0fec171c 3919 sleep_on_head(q, &wait, &flags);
1da177e4 3920 timeout = schedule_timeout(timeout);
0fec171c 3921 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3922
3923 return timeout;
3924}
1da177e4
LT
3925EXPORT_SYMBOL(sleep_on_timeout);
3926
b29739f9
IM
3927#ifdef CONFIG_RT_MUTEXES
3928
3929/*
3930 * rt_mutex_setprio - set the current priority of a task
3931 * @p: task
3932 * @prio: prio value (kernel-internal form)
3933 *
3934 * This function changes the 'effective' priority of a task. It does
3935 * not touch ->normal_prio like __setscheduler().
3936 *
3937 * Used by the rt_mutex code to implement priority inheritance logic.
3938 */
36c8b586 3939void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3940{
3941 unsigned long flags;
dd41f596 3942 int oldprio, on_rq;
70b97a7f 3943 struct rq *rq;
b29739f9
IM
3944
3945 BUG_ON(prio < 0 || prio > MAX_PRIO);
3946
3947 rq = task_rq_lock(p, &flags);
a8e504d2 3948 update_rq_clock(rq);
b29739f9 3949
d5f9f942 3950 oldprio = p->prio;
dd41f596
IM
3951 on_rq = p->se.on_rq;
3952 if (on_rq)
69be72c1 3953 dequeue_task(rq, p, 0);
dd41f596
IM
3954
3955 if (rt_prio(prio))
3956 p->sched_class = &rt_sched_class;
3957 else
3958 p->sched_class = &fair_sched_class;
3959
b29739f9
IM
3960 p->prio = prio;
3961
dd41f596 3962 if (on_rq) {
8159f87e 3963 enqueue_task(rq, p, 0);
b29739f9
IM
3964 /*
3965 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3966 * our priority decreased, or if we are not currently running on
3967 * this runqueue and our priority is higher than the current's
b29739f9 3968 */
d5f9f942
AM
3969 if (task_running(rq, p)) {
3970 if (p->prio > oldprio)
3971 resched_task(rq->curr);
dd41f596
IM
3972 } else {
3973 check_preempt_curr(rq, p);
3974 }
b29739f9
IM
3975 }
3976 task_rq_unlock(rq, &flags);
3977}
3978
3979#endif
3980
36c8b586 3981void set_user_nice(struct task_struct *p, long nice)
1da177e4 3982{
dd41f596 3983 int old_prio, delta, on_rq;
1da177e4 3984 unsigned long flags;
70b97a7f 3985 struct rq *rq;
1da177e4
LT
3986
3987 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3988 return;
3989 /*
3990 * We have to be careful, if called from sys_setpriority(),
3991 * the task might be in the middle of scheduling on another CPU.
3992 */
3993 rq = task_rq_lock(p, &flags);
a8e504d2 3994 update_rq_clock(rq);
1da177e4
LT
3995 /*
3996 * The RT priorities are set via sched_setscheduler(), but we still
3997 * allow the 'normal' nice value to be set - but as expected
3998 * it wont have any effect on scheduling until the task is
dd41f596 3999 * SCHED_FIFO/SCHED_RR:
1da177e4 4000 */
e05606d3 4001 if (task_has_rt_policy(p)) {
1da177e4
LT
4002 p->static_prio = NICE_TO_PRIO(nice);
4003 goto out_unlock;
4004 }
dd41f596
IM
4005 on_rq = p->se.on_rq;
4006 if (on_rq) {
69be72c1 4007 dequeue_task(rq, p, 0);
79b5dddf 4008 dec_load(rq, p);
2dd73a4f 4009 }
1da177e4 4010
1da177e4 4011 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4012 set_load_weight(p);
b29739f9
IM
4013 old_prio = p->prio;
4014 p->prio = effective_prio(p);
4015 delta = p->prio - old_prio;
1da177e4 4016
dd41f596 4017 if (on_rq) {
8159f87e 4018 enqueue_task(rq, p, 0);
29b4b623 4019 inc_load(rq, p);
1da177e4 4020 /*
d5f9f942
AM
4021 * If the task increased its priority or is running and
4022 * lowered its priority, then reschedule its CPU:
1da177e4 4023 */
d5f9f942 4024 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4025 resched_task(rq->curr);
4026 }
4027out_unlock:
4028 task_rq_unlock(rq, &flags);
4029}
1da177e4
LT
4030EXPORT_SYMBOL(set_user_nice);
4031
e43379f1
MM
4032/*
4033 * can_nice - check if a task can reduce its nice value
4034 * @p: task
4035 * @nice: nice value
4036 */
36c8b586 4037int can_nice(const struct task_struct *p, const int nice)
e43379f1 4038{
024f4747
MM
4039 /* convert nice value [19,-20] to rlimit style value [1,40] */
4040 int nice_rlim = 20 - nice;
48f24c4d 4041
e43379f1
MM
4042 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4043 capable(CAP_SYS_NICE));
4044}
4045
1da177e4
LT
4046#ifdef __ARCH_WANT_SYS_NICE
4047
4048/*
4049 * sys_nice - change the priority of the current process.
4050 * @increment: priority increment
4051 *
4052 * sys_setpriority is a more generic, but much slower function that
4053 * does similar things.
4054 */
4055asmlinkage long sys_nice(int increment)
4056{
48f24c4d 4057 long nice, retval;
1da177e4
LT
4058
4059 /*
4060 * Setpriority might change our priority at the same moment.
4061 * We don't have to worry. Conceptually one call occurs first
4062 * and we have a single winner.
4063 */
e43379f1
MM
4064 if (increment < -40)
4065 increment = -40;
1da177e4
LT
4066 if (increment > 40)
4067 increment = 40;
4068
4069 nice = PRIO_TO_NICE(current->static_prio) + increment;
4070 if (nice < -20)
4071 nice = -20;
4072 if (nice > 19)
4073 nice = 19;
4074
e43379f1
MM
4075 if (increment < 0 && !can_nice(current, nice))
4076 return -EPERM;
4077
1da177e4
LT
4078 retval = security_task_setnice(current, nice);
4079 if (retval)
4080 return retval;
4081
4082 set_user_nice(current, nice);
4083 return 0;
4084}
4085
4086#endif
4087
4088/**
4089 * task_prio - return the priority value of a given task.
4090 * @p: the task in question.
4091 *
4092 * This is the priority value as seen by users in /proc.
4093 * RT tasks are offset by -200. Normal tasks are centered
4094 * around 0, value goes from -16 to +15.
4095 */
36c8b586 4096int task_prio(const struct task_struct *p)
1da177e4
LT
4097{
4098 return p->prio - MAX_RT_PRIO;
4099}
4100
4101/**
4102 * task_nice - return the nice value of a given task.
4103 * @p: the task in question.
4104 */
36c8b586 4105int task_nice(const struct task_struct *p)
1da177e4
LT
4106{
4107 return TASK_NICE(p);
4108}
1da177e4 4109EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4110
4111/**
4112 * idle_cpu - is a given cpu idle currently?
4113 * @cpu: the processor in question.
4114 */
4115int idle_cpu(int cpu)
4116{
4117 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4118}
4119
1da177e4
LT
4120/**
4121 * idle_task - return the idle task for a given cpu.
4122 * @cpu: the processor in question.
4123 */
36c8b586 4124struct task_struct *idle_task(int cpu)
1da177e4
LT
4125{
4126 return cpu_rq(cpu)->idle;
4127}
4128
4129/**
4130 * find_process_by_pid - find a process with a matching PID value.
4131 * @pid: the pid in question.
4132 */
36c8b586 4133static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4134{
4135 return pid ? find_task_by_pid(pid) : current;
4136}
4137
4138/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4139static void
4140__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4141{
dd41f596 4142 BUG_ON(p->se.on_rq);
48f24c4d 4143
1da177e4 4144 p->policy = policy;
dd41f596
IM
4145 switch (p->policy) {
4146 case SCHED_NORMAL:
4147 case SCHED_BATCH:
4148 case SCHED_IDLE:
4149 p->sched_class = &fair_sched_class;
4150 break;
4151 case SCHED_FIFO:
4152 case SCHED_RR:
4153 p->sched_class = &rt_sched_class;
4154 break;
4155 }
4156
1da177e4 4157 p->rt_priority = prio;
b29739f9
IM
4158 p->normal_prio = normal_prio(p);
4159 /* we are holding p->pi_lock already */
4160 p->prio = rt_mutex_getprio(p);
2dd73a4f 4161 set_load_weight(p);
1da177e4
LT
4162}
4163
4164/**
72fd4a35 4165 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4166 * @p: the task in question.
4167 * @policy: new policy.
4168 * @param: structure containing the new RT priority.
5fe1d75f 4169 *
72fd4a35 4170 * NOTE that the task may be already dead.
1da177e4 4171 */
95cdf3b7
IM
4172int sched_setscheduler(struct task_struct *p, int policy,
4173 struct sched_param *param)
1da177e4 4174{
dd41f596 4175 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4176 unsigned long flags;
70b97a7f 4177 struct rq *rq;
1da177e4 4178
66e5393a
SR
4179 /* may grab non-irq protected spin_locks */
4180 BUG_ON(in_interrupt());
1da177e4
LT
4181recheck:
4182 /* double check policy once rq lock held */
4183 if (policy < 0)
4184 policy = oldpolicy = p->policy;
4185 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4186 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4187 policy != SCHED_IDLE)
b0a9499c 4188 return -EINVAL;
1da177e4
LT
4189 /*
4190 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4191 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4192 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4193 */
4194 if (param->sched_priority < 0 ||
95cdf3b7 4195 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4196 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4197 return -EINVAL;
e05606d3 4198 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4199 return -EINVAL;
4200
37e4ab3f
OC
4201 /*
4202 * Allow unprivileged RT tasks to decrease priority:
4203 */
4204 if (!capable(CAP_SYS_NICE)) {
e05606d3 4205 if (rt_policy(policy)) {
8dc3e909 4206 unsigned long rlim_rtprio;
8dc3e909
ON
4207
4208 if (!lock_task_sighand(p, &flags))
4209 return -ESRCH;
4210 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4211 unlock_task_sighand(p, &flags);
4212
4213 /* can't set/change the rt policy */
4214 if (policy != p->policy && !rlim_rtprio)
4215 return -EPERM;
4216
4217 /* can't increase priority */
4218 if (param->sched_priority > p->rt_priority &&
4219 param->sched_priority > rlim_rtprio)
4220 return -EPERM;
4221 }
dd41f596
IM
4222 /*
4223 * Like positive nice levels, dont allow tasks to
4224 * move out of SCHED_IDLE either:
4225 */
4226 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4227 return -EPERM;
5fe1d75f 4228
37e4ab3f
OC
4229 /* can't change other user's priorities */
4230 if ((current->euid != p->euid) &&
4231 (current->euid != p->uid))
4232 return -EPERM;
4233 }
1da177e4
LT
4234
4235 retval = security_task_setscheduler(p, policy, param);
4236 if (retval)
4237 return retval;
b29739f9
IM
4238 /*
4239 * make sure no PI-waiters arrive (or leave) while we are
4240 * changing the priority of the task:
4241 */
4242 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4243 /*
4244 * To be able to change p->policy safely, the apropriate
4245 * runqueue lock must be held.
4246 */
b29739f9 4247 rq = __task_rq_lock(p);
1da177e4
LT
4248 /* recheck policy now with rq lock held */
4249 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4250 policy = oldpolicy = -1;
b29739f9
IM
4251 __task_rq_unlock(rq);
4252 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4253 goto recheck;
4254 }
2daa3577 4255 update_rq_clock(rq);
dd41f596 4256 on_rq = p->se.on_rq;
2daa3577 4257 if (on_rq)
2e1cb74a 4258 deactivate_task(rq, p, 0);
1da177e4 4259 oldprio = p->prio;
dd41f596
IM
4260 __setscheduler(rq, p, policy, param->sched_priority);
4261 if (on_rq) {
4262 activate_task(rq, p, 0);
1da177e4
LT
4263 /*
4264 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4265 * our priority decreased, or if we are not currently running on
4266 * this runqueue and our priority is higher than the current's
1da177e4 4267 */
d5f9f942
AM
4268 if (task_running(rq, p)) {
4269 if (p->prio > oldprio)
4270 resched_task(rq->curr);
dd41f596
IM
4271 } else {
4272 check_preempt_curr(rq, p);
4273 }
1da177e4 4274 }
b29739f9
IM
4275 __task_rq_unlock(rq);
4276 spin_unlock_irqrestore(&p->pi_lock, flags);
4277
95e02ca9
TG
4278 rt_mutex_adjust_pi(p);
4279
1da177e4
LT
4280 return 0;
4281}
4282EXPORT_SYMBOL_GPL(sched_setscheduler);
4283
95cdf3b7
IM
4284static int
4285do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4286{
1da177e4
LT
4287 struct sched_param lparam;
4288 struct task_struct *p;
36c8b586 4289 int retval;
1da177e4
LT
4290
4291 if (!param || pid < 0)
4292 return -EINVAL;
4293 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4294 return -EFAULT;
5fe1d75f
ON
4295
4296 rcu_read_lock();
4297 retval = -ESRCH;
1da177e4 4298 p = find_process_by_pid(pid);
5fe1d75f
ON
4299 if (p != NULL)
4300 retval = sched_setscheduler(p, policy, &lparam);
4301 rcu_read_unlock();
36c8b586 4302
1da177e4
LT
4303 return retval;
4304}
4305
4306/**
4307 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4308 * @pid: the pid in question.
4309 * @policy: new policy.
4310 * @param: structure containing the new RT priority.
4311 */
4312asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4313 struct sched_param __user *param)
4314{
c21761f1
JB
4315 /* negative values for policy are not valid */
4316 if (policy < 0)
4317 return -EINVAL;
4318
1da177e4
LT
4319 return do_sched_setscheduler(pid, policy, param);
4320}
4321
4322/**
4323 * sys_sched_setparam - set/change the RT priority of a thread
4324 * @pid: the pid in question.
4325 * @param: structure containing the new RT priority.
4326 */
4327asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4328{
4329 return do_sched_setscheduler(pid, -1, param);
4330}
4331
4332/**
4333 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4334 * @pid: the pid in question.
4335 */
4336asmlinkage long sys_sched_getscheduler(pid_t pid)
4337{
36c8b586 4338 struct task_struct *p;
1da177e4 4339 int retval = -EINVAL;
1da177e4
LT
4340
4341 if (pid < 0)
4342 goto out_nounlock;
4343
4344 retval = -ESRCH;
4345 read_lock(&tasklist_lock);
4346 p = find_process_by_pid(pid);
4347 if (p) {
4348 retval = security_task_getscheduler(p);
4349 if (!retval)
4350 retval = p->policy;
4351 }
4352 read_unlock(&tasklist_lock);
4353
4354out_nounlock:
4355 return retval;
4356}
4357
4358/**
4359 * sys_sched_getscheduler - get the RT priority of a thread
4360 * @pid: the pid in question.
4361 * @param: structure containing the RT priority.
4362 */
4363asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4364{
4365 struct sched_param lp;
36c8b586 4366 struct task_struct *p;
1da177e4 4367 int retval = -EINVAL;
1da177e4
LT
4368
4369 if (!param || pid < 0)
4370 goto out_nounlock;
4371
4372 read_lock(&tasklist_lock);
4373 p = find_process_by_pid(pid);
4374 retval = -ESRCH;
4375 if (!p)
4376 goto out_unlock;
4377
4378 retval = security_task_getscheduler(p);
4379 if (retval)
4380 goto out_unlock;
4381
4382 lp.sched_priority = p->rt_priority;
4383 read_unlock(&tasklist_lock);
4384
4385 /*
4386 * This one might sleep, we cannot do it with a spinlock held ...
4387 */
4388 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4389
4390out_nounlock:
4391 return retval;
4392
4393out_unlock:
4394 read_unlock(&tasklist_lock);
4395 return retval;
4396}
4397
4398long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4399{
1da177e4 4400 cpumask_t cpus_allowed;
36c8b586
IM
4401 struct task_struct *p;
4402 int retval;
1da177e4 4403
5be9361c 4404 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4405 read_lock(&tasklist_lock);
4406
4407 p = find_process_by_pid(pid);
4408 if (!p) {
4409 read_unlock(&tasklist_lock);
5be9361c 4410 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4411 return -ESRCH;
4412 }
4413
4414 /*
4415 * It is not safe to call set_cpus_allowed with the
4416 * tasklist_lock held. We will bump the task_struct's
4417 * usage count and then drop tasklist_lock.
4418 */
4419 get_task_struct(p);
4420 read_unlock(&tasklist_lock);
4421
4422 retval = -EPERM;
4423 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4424 !capable(CAP_SYS_NICE))
4425 goto out_unlock;
4426
e7834f8f
DQ
4427 retval = security_task_setscheduler(p, 0, NULL);
4428 if (retval)
4429 goto out_unlock;
4430
1da177e4
LT
4431 cpus_allowed = cpuset_cpus_allowed(p);
4432 cpus_and(new_mask, new_mask, cpus_allowed);
4433 retval = set_cpus_allowed(p, new_mask);
4434
4435out_unlock:
4436 put_task_struct(p);
5be9361c 4437 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4438 return retval;
4439}
4440
4441static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4442 cpumask_t *new_mask)
4443{
4444 if (len < sizeof(cpumask_t)) {
4445 memset(new_mask, 0, sizeof(cpumask_t));
4446 } else if (len > sizeof(cpumask_t)) {
4447 len = sizeof(cpumask_t);
4448 }
4449 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4450}
4451
4452/**
4453 * sys_sched_setaffinity - set the cpu affinity of a process
4454 * @pid: pid of the process
4455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4456 * @user_mask_ptr: user-space pointer to the new cpu mask
4457 */
4458asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4459 unsigned long __user *user_mask_ptr)
4460{
4461 cpumask_t new_mask;
4462 int retval;
4463
4464 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4465 if (retval)
4466 return retval;
4467
4468 return sched_setaffinity(pid, new_mask);
4469}
4470
4471/*
4472 * Represents all cpu's present in the system
4473 * In systems capable of hotplug, this map could dynamically grow
4474 * as new cpu's are detected in the system via any platform specific
4475 * method, such as ACPI for e.g.
4476 */
4477
4cef0c61 4478cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4479EXPORT_SYMBOL(cpu_present_map);
4480
4481#ifndef CONFIG_SMP
4cef0c61 4482cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4483EXPORT_SYMBOL(cpu_online_map);
4484
4cef0c61 4485cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4486EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4487#endif
4488
4489long sched_getaffinity(pid_t pid, cpumask_t *mask)
4490{
36c8b586 4491 struct task_struct *p;
1da177e4 4492 int retval;
1da177e4 4493
5be9361c 4494 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4495 read_lock(&tasklist_lock);
4496
4497 retval = -ESRCH;
4498 p = find_process_by_pid(pid);
4499 if (!p)
4500 goto out_unlock;
4501
e7834f8f
DQ
4502 retval = security_task_getscheduler(p);
4503 if (retval)
4504 goto out_unlock;
4505
2f7016d9 4506 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4507
4508out_unlock:
4509 read_unlock(&tasklist_lock);
5be9361c 4510 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4511
9531b62f 4512 return retval;
1da177e4
LT
4513}
4514
4515/**
4516 * sys_sched_getaffinity - get the cpu affinity of a process
4517 * @pid: pid of the process
4518 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4519 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4520 */
4521asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4522 unsigned long __user *user_mask_ptr)
4523{
4524 int ret;
4525 cpumask_t mask;
4526
4527 if (len < sizeof(cpumask_t))
4528 return -EINVAL;
4529
4530 ret = sched_getaffinity(pid, &mask);
4531 if (ret < 0)
4532 return ret;
4533
4534 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4535 return -EFAULT;
4536
4537 return sizeof(cpumask_t);
4538}
4539
4540/**
4541 * sys_sched_yield - yield the current processor to other threads.
4542 *
dd41f596
IM
4543 * This function yields the current CPU to other tasks. If there are no
4544 * other threads running on this CPU then this function will return.
1da177e4
LT
4545 */
4546asmlinkage long sys_sched_yield(void)
4547{
70b97a7f 4548 struct rq *rq = this_rq_lock();
1da177e4
LT
4549
4550 schedstat_inc(rq, yld_cnt);
dd41f596 4551 if (unlikely(rq->nr_running == 1))
1da177e4 4552 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4553 else
4554 current->sched_class->yield_task(rq, current);
1da177e4
LT
4555
4556 /*
4557 * Since we are going to call schedule() anyway, there's
4558 * no need to preempt or enable interrupts:
4559 */
4560 __release(rq->lock);
8a25d5de 4561 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4562 _raw_spin_unlock(&rq->lock);
4563 preempt_enable_no_resched();
4564
4565 schedule();
4566
4567 return 0;
4568}
4569
e7b38404 4570static void __cond_resched(void)
1da177e4 4571{
8e0a43d8
IM
4572#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4573 __might_sleep(__FILE__, __LINE__);
4574#endif
5bbcfd90
IM
4575 /*
4576 * The BKS might be reacquired before we have dropped
4577 * PREEMPT_ACTIVE, which could trigger a second
4578 * cond_resched() call.
4579 */
1da177e4
LT
4580 do {
4581 add_preempt_count(PREEMPT_ACTIVE);
4582 schedule();
4583 sub_preempt_count(PREEMPT_ACTIVE);
4584 } while (need_resched());
4585}
4586
4587int __sched cond_resched(void)
4588{
9414232f
IM
4589 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4590 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4591 __cond_resched();
4592 return 1;
4593 }
4594 return 0;
4595}
1da177e4
LT
4596EXPORT_SYMBOL(cond_resched);
4597
4598/*
4599 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4600 * call schedule, and on return reacquire the lock.
4601 *
4602 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4603 * operations here to prevent schedule() from being called twice (once via
4604 * spin_unlock(), once by hand).
4605 */
95cdf3b7 4606int cond_resched_lock(spinlock_t *lock)
1da177e4 4607{
6df3cecb
JK
4608 int ret = 0;
4609
1da177e4
LT
4610 if (need_lockbreak(lock)) {
4611 spin_unlock(lock);
4612 cpu_relax();
6df3cecb 4613 ret = 1;
1da177e4
LT
4614 spin_lock(lock);
4615 }
9414232f 4616 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4617 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4618 _raw_spin_unlock(lock);
4619 preempt_enable_no_resched();
4620 __cond_resched();
6df3cecb 4621 ret = 1;
1da177e4 4622 spin_lock(lock);
1da177e4 4623 }
6df3cecb 4624 return ret;
1da177e4 4625}
1da177e4
LT
4626EXPORT_SYMBOL(cond_resched_lock);
4627
4628int __sched cond_resched_softirq(void)
4629{
4630 BUG_ON(!in_softirq());
4631
9414232f 4632 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4633 local_bh_enable();
1da177e4
LT
4634 __cond_resched();
4635 local_bh_disable();
4636 return 1;
4637 }
4638 return 0;
4639}
1da177e4
LT
4640EXPORT_SYMBOL(cond_resched_softirq);
4641
1da177e4
LT
4642/**
4643 * yield - yield the current processor to other threads.
4644 *
72fd4a35 4645 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4646 * thread runnable and calls sys_sched_yield().
4647 */
4648void __sched yield(void)
4649{
4650 set_current_state(TASK_RUNNING);
4651 sys_sched_yield();
4652}
1da177e4
LT
4653EXPORT_SYMBOL(yield);
4654
4655/*
4656 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4657 * that process accounting knows that this is a task in IO wait state.
4658 *
4659 * But don't do that if it is a deliberate, throttling IO wait (this task
4660 * has set its backing_dev_info: the queue against which it should throttle)
4661 */
4662void __sched io_schedule(void)
4663{
70b97a7f 4664 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4665
0ff92245 4666 delayacct_blkio_start();
1da177e4
LT
4667 atomic_inc(&rq->nr_iowait);
4668 schedule();
4669 atomic_dec(&rq->nr_iowait);
0ff92245 4670 delayacct_blkio_end();
1da177e4 4671}
1da177e4
LT
4672EXPORT_SYMBOL(io_schedule);
4673
4674long __sched io_schedule_timeout(long timeout)
4675{
70b97a7f 4676 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4677 long ret;
4678
0ff92245 4679 delayacct_blkio_start();
1da177e4
LT
4680 atomic_inc(&rq->nr_iowait);
4681 ret = schedule_timeout(timeout);
4682 atomic_dec(&rq->nr_iowait);
0ff92245 4683 delayacct_blkio_end();
1da177e4
LT
4684 return ret;
4685}
4686
4687/**
4688 * sys_sched_get_priority_max - return maximum RT priority.
4689 * @policy: scheduling class.
4690 *
4691 * this syscall returns the maximum rt_priority that can be used
4692 * by a given scheduling class.
4693 */
4694asmlinkage long sys_sched_get_priority_max(int policy)
4695{
4696 int ret = -EINVAL;
4697
4698 switch (policy) {
4699 case SCHED_FIFO:
4700 case SCHED_RR:
4701 ret = MAX_USER_RT_PRIO-1;
4702 break;
4703 case SCHED_NORMAL:
b0a9499c 4704 case SCHED_BATCH:
dd41f596 4705 case SCHED_IDLE:
1da177e4
LT
4706 ret = 0;
4707 break;
4708 }
4709 return ret;
4710}
4711
4712/**
4713 * sys_sched_get_priority_min - return minimum RT priority.
4714 * @policy: scheduling class.
4715 *
4716 * this syscall returns the minimum rt_priority that can be used
4717 * by a given scheduling class.
4718 */
4719asmlinkage long sys_sched_get_priority_min(int policy)
4720{
4721 int ret = -EINVAL;
4722
4723 switch (policy) {
4724 case SCHED_FIFO:
4725 case SCHED_RR:
4726 ret = 1;
4727 break;
4728 case SCHED_NORMAL:
b0a9499c 4729 case SCHED_BATCH:
dd41f596 4730 case SCHED_IDLE:
1da177e4
LT
4731 ret = 0;
4732 }
4733 return ret;
4734}
4735
4736/**
4737 * sys_sched_rr_get_interval - return the default timeslice of a process.
4738 * @pid: pid of the process.
4739 * @interval: userspace pointer to the timeslice value.
4740 *
4741 * this syscall writes the default timeslice value of a given process
4742 * into the user-space timespec buffer. A value of '0' means infinity.
4743 */
4744asmlinkage
4745long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4746{
36c8b586 4747 struct task_struct *p;
1da177e4
LT
4748 int retval = -EINVAL;
4749 struct timespec t;
1da177e4
LT
4750
4751 if (pid < 0)
4752 goto out_nounlock;
4753
4754 retval = -ESRCH;
4755 read_lock(&tasklist_lock);
4756 p = find_process_by_pid(pid);
4757 if (!p)
4758 goto out_unlock;
4759
4760 retval = security_task_getscheduler(p);
4761 if (retval)
4762 goto out_unlock;
4763
b78709cf 4764 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4765 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4766 read_unlock(&tasklist_lock);
4767 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4768out_nounlock:
4769 return retval;
4770out_unlock:
4771 read_unlock(&tasklist_lock);
4772 return retval;
4773}
4774
2ed6e34f 4775static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4776
4777static void show_task(struct task_struct *p)
1da177e4 4778{
1da177e4 4779 unsigned long free = 0;
36c8b586 4780 unsigned state;
1da177e4 4781
1da177e4 4782 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4783 printk("%-13.13s %c", p->comm,
4784 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4785#if BITS_PER_LONG == 32
1da177e4 4786 if (state == TASK_RUNNING)
4bd77321 4787 printk(" running ");
1da177e4 4788 else
4bd77321 4789 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4790#else
4791 if (state == TASK_RUNNING)
4bd77321 4792 printk(" running task ");
1da177e4
LT
4793 else
4794 printk(" %016lx ", thread_saved_pc(p));
4795#endif
4796#ifdef CONFIG_DEBUG_STACK_USAGE
4797 {
10ebffde 4798 unsigned long *n = end_of_stack(p);
1da177e4
LT
4799 while (!*n)
4800 n++;
10ebffde 4801 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4802 }
4803#endif
4bd77321 4804 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4805
4806 if (state != TASK_RUNNING)
4807 show_stack(p, NULL);
4808}
4809
e59e2ae2 4810void show_state_filter(unsigned long state_filter)
1da177e4 4811{
36c8b586 4812 struct task_struct *g, *p;
1da177e4 4813
4bd77321
IM
4814#if BITS_PER_LONG == 32
4815 printk(KERN_INFO
4816 " task PC stack pid father\n");
1da177e4 4817#else
4bd77321
IM
4818 printk(KERN_INFO
4819 " task PC stack pid father\n");
1da177e4
LT
4820#endif
4821 read_lock(&tasklist_lock);
4822 do_each_thread(g, p) {
4823 /*
4824 * reset the NMI-timeout, listing all files on a slow
4825 * console might take alot of time:
4826 */
4827 touch_nmi_watchdog();
39bc89fd 4828 if (!state_filter || (p->state & state_filter))
e59e2ae2 4829 show_task(p);
1da177e4
LT
4830 } while_each_thread(g, p);
4831
04c9167f
JF
4832 touch_all_softlockup_watchdogs();
4833
dd41f596
IM
4834#ifdef CONFIG_SCHED_DEBUG
4835 sysrq_sched_debug_show();
4836#endif
1da177e4 4837 read_unlock(&tasklist_lock);
e59e2ae2
IM
4838 /*
4839 * Only show locks if all tasks are dumped:
4840 */
4841 if (state_filter == -1)
4842 debug_show_all_locks();
1da177e4
LT
4843}
4844
1df21055
IM
4845void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4846{
dd41f596 4847 idle->sched_class = &idle_sched_class;
1df21055
IM
4848}
4849
f340c0d1
IM
4850/**
4851 * init_idle - set up an idle thread for a given CPU
4852 * @idle: task in question
4853 * @cpu: cpu the idle task belongs to
4854 *
4855 * NOTE: this function does not set the idle thread's NEED_RESCHED
4856 * flag, to make booting more robust.
4857 */
5c1e1767 4858void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4859{
70b97a7f 4860 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4861 unsigned long flags;
4862
dd41f596
IM
4863 __sched_fork(idle);
4864 idle->se.exec_start = sched_clock();
4865
b29739f9 4866 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4867 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4868 __set_task_cpu(idle, cpu);
1da177e4
LT
4869
4870 spin_lock_irqsave(&rq->lock, flags);
4871 rq->curr = rq->idle = idle;
4866cde0
NP
4872#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4873 idle->oncpu = 1;
4874#endif
1da177e4
LT
4875 spin_unlock_irqrestore(&rq->lock, flags);
4876
4877 /* Set the preempt count _outside_ the spinlocks! */
4878#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4879 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4880#else
a1261f54 4881 task_thread_info(idle)->preempt_count = 0;
1da177e4 4882#endif
dd41f596
IM
4883 /*
4884 * The idle tasks have their own, simple scheduling class:
4885 */
4886 idle->sched_class = &idle_sched_class;
1da177e4
LT
4887}
4888
4889/*
4890 * In a system that switches off the HZ timer nohz_cpu_mask
4891 * indicates which cpus entered this state. This is used
4892 * in the rcu update to wait only for active cpus. For system
4893 * which do not switch off the HZ timer nohz_cpu_mask should
4894 * always be CPU_MASK_NONE.
4895 */
4896cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4897
dd41f596
IM
4898/*
4899 * Increase the granularity value when there are more CPUs,
4900 * because with more CPUs the 'effective latency' as visible
4901 * to users decreases. But the relationship is not linear,
4902 * so pick a second-best guess by going with the log2 of the
4903 * number of CPUs.
4904 *
4905 * This idea comes from the SD scheduler of Con Kolivas:
4906 */
4907static inline void sched_init_granularity(void)
4908{
4909 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4910 const unsigned long gran_limit = 100000000;
dd41f596
IM
4911
4912 sysctl_sched_granularity *= factor;
4913 if (sysctl_sched_granularity > gran_limit)
4914 sysctl_sched_granularity = gran_limit;
4915
4916 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4917 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4918}
4919
1da177e4
LT
4920#ifdef CONFIG_SMP
4921/*
4922 * This is how migration works:
4923 *
70b97a7f 4924 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4925 * runqueue and wake up that CPU's migration thread.
4926 * 2) we down() the locked semaphore => thread blocks.
4927 * 3) migration thread wakes up (implicitly it forces the migrated
4928 * thread off the CPU)
4929 * 4) it gets the migration request and checks whether the migrated
4930 * task is still in the wrong runqueue.
4931 * 5) if it's in the wrong runqueue then the migration thread removes
4932 * it and puts it into the right queue.
4933 * 6) migration thread up()s the semaphore.
4934 * 7) we wake up and the migration is done.
4935 */
4936
4937/*
4938 * Change a given task's CPU affinity. Migrate the thread to a
4939 * proper CPU and schedule it away if the CPU it's executing on
4940 * is removed from the allowed bitmask.
4941 *
4942 * NOTE: the caller must have a valid reference to the task, the
4943 * task must not exit() & deallocate itself prematurely. The
4944 * call is not atomic; no spinlocks may be held.
4945 */
36c8b586 4946int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4947{
70b97a7f 4948 struct migration_req req;
1da177e4 4949 unsigned long flags;
70b97a7f 4950 struct rq *rq;
48f24c4d 4951 int ret = 0;
1da177e4
LT
4952
4953 rq = task_rq_lock(p, &flags);
4954 if (!cpus_intersects(new_mask, cpu_online_map)) {
4955 ret = -EINVAL;
4956 goto out;
4957 }
4958
4959 p->cpus_allowed = new_mask;
4960 /* Can the task run on the task's current CPU? If so, we're done */
4961 if (cpu_isset(task_cpu(p), new_mask))
4962 goto out;
4963
4964 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4965 /* Need help from migration thread: drop lock and wait. */
4966 task_rq_unlock(rq, &flags);
4967 wake_up_process(rq->migration_thread);
4968 wait_for_completion(&req.done);
4969 tlb_migrate_finish(p->mm);
4970 return 0;
4971 }
4972out:
4973 task_rq_unlock(rq, &flags);
48f24c4d 4974
1da177e4
LT
4975 return ret;
4976}
1da177e4
LT
4977EXPORT_SYMBOL_GPL(set_cpus_allowed);
4978
4979/*
4980 * Move (not current) task off this cpu, onto dest cpu. We're doing
4981 * this because either it can't run here any more (set_cpus_allowed()
4982 * away from this CPU, or CPU going down), or because we're
4983 * attempting to rebalance this task on exec (sched_exec).
4984 *
4985 * So we race with normal scheduler movements, but that's OK, as long
4986 * as the task is no longer on this CPU.
efc30814
KK
4987 *
4988 * Returns non-zero if task was successfully migrated.
1da177e4 4989 */
efc30814 4990static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4991{
70b97a7f 4992 struct rq *rq_dest, *rq_src;
dd41f596 4993 int ret = 0, on_rq;
1da177e4
LT
4994
4995 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4996 return ret;
1da177e4
LT
4997
4998 rq_src = cpu_rq(src_cpu);
4999 rq_dest = cpu_rq(dest_cpu);
5000
5001 double_rq_lock(rq_src, rq_dest);
5002 /* Already moved. */
5003 if (task_cpu(p) != src_cpu)
5004 goto out;
5005 /* Affinity changed (again). */
5006 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5007 goto out;
5008
dd41f596 5009 on_rq = p->se.on_rq;
6e82a3be 5010 if (on_rq)
2e1cb74a 5011 deactivate_task(rq_src, p, 0);
6e82a3be 5012
1da177e4 5013 set_task_cpu(p, dest_cpu);
dd41f596
IM
5014 if (on_rq) {
5015 activate_task(rq_dest, p, 0);
5016 check_preempt_curr(rq_dest, p);
1da177e4 5017 }
efc30814 5018 ret = 1;
1da177e4
LT
5019out:
5020 double_rq_unlock(rq_src, rq_dest);
efc30814 5021 return ret;
1da177e4
LT
5022}
5023
5024/*
5025 * migration_thread - this is a highprio system thread that performs
5026 * thread migration by bumping thread off CPU then 'pushing' onto
5027 * another runqueue.
5028 */
95cdf3b7 5029static int migration_thread(void *data)
1da177e4 5030{
1da177e4 5031 int cpu = (long)data;
70b97a7f 5032 struct rq *rq;
1da177e4
LT
5033
5034 rq = cpu_rq(cpu);
5035 BUG_ON(rq->migration_thread != current);
5036
5037 set_current_state(TASK_INTERRUPTIBLE);
5038 while (!kthread_should_stop()) {
70b97a7f 5039 struct migration_req *req;
1da177e4 5040 struct list_head *head;
1da177e4 5041
1da177e4
LT
5042 spin_lock_irq(&rq->lock);
5043
5044 if (cpu_is_offline(cpu)) {
5045 spin_unlock_irq(&rq->lock);
5046 goto wait_to_die;
5047 }
5048
5049 if (rq->active_balance) {
5050 active_load_balance(rq, cpu);
5051 rq->active_balance = 0;
5052 }
5053
5054 head = &rq->migration_queue;
5055
5056 if (list_empty(head)) {
5057 spin_unlock_irq(&rq->lock);
5058 schedule();
5059 set_current_state(TASK_INTERRUPTIBLE);
5060 continue;
5061 }
70b97a7f 5062 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5063 list_del_init(head->next);
5064
674311d5
NP
5065 spin_unlock(&rq->lock);
5066 __migrate_task(req->task, cpu, req->dest_cpu);
5067 local_irq_enable();
1da177e4
LT
5068
5069 complete(&req->done);
5070 }
5071 __set_current_state(TASK_RUNNING);
5072 return 0;
5073
5074wait_to_die:
5075 /* Wait for kthread_stop */
5076 set_current_state(TASK_INTERRUPTIBLE);
5077 while (!kthread_should_stop()) {
5078 schedule();
5079 set_current_state(TASK_INTERRUPTIBLE);
5080 }
5081 __set_current_state(TASK_RUNNING);
5082 return 0;
5083}
5084
5085#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5086/*
5087 * Figure out where task on dead CPU should go, use force if neccessary.
5088 * NOTE: interrupts should be disabled by the caller
5089 */
48f24c4d 5090static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5091{
efc30814 5092 unsigned long flags;
1da177e4 5093 cpumask_t mask;
70b97a7f
IM
5094 struct rq *rq;
5095 int dest_cpu;
1da177e4 5096
efc30814 5097restart:
1da177e4
LT
5098 /* On same node? */
5099 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5100 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5101 dest_cpu = any_online_cpu(mask);
5102
5103 /* On any allowed CPU? */
5104 if (dest_cpu == NR_CPUS)
48f24c4d 5105 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5106
5107 /* No more Mr. Nice Guy. */
5108 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5109 rq = task_rq_lock(p, &flags);
5110 cpus_setall(p->cpus_allowed);
5111 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5112 task_rq_unlock(rq, &flags);
1da177e4
LT
5113
5114 /*
5115 * Don't tell them about moving exiting tasks or
5116 * kernel threads (both mm NULL), since they never
5117 * leave kernel.
5118 */
48f24c4d 5119 if (p->mm && printk_ratelimit())
1da177e4
LT
5120 printk(KERN_INFO "process %d (%s) no "
5121 "longer affine to cpu%d\n",
48f24c4d 5122 p->pid, p->comm, dead_cpu);
1da177e4 5123 }
48f24c4d 5124 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5125 goto restart;
1da177e4
LT
5126}
5127
5128/*
5129 * While a dead CPU has no uninterruptible tasks queued at this point,
5130 * it might still have a nonzero ->nr_uninterruptible counter, because
5131 * for performance reasons the counter is not stricly tracking tasks to
5132 * their home CPUs. So we just add the counter to another CPU's counter,
5133 * to keep the global sum constant after CPU-down:
5134 */
70b97a7f 5135static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5136{
70b97a7f 5137 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5138 unsigned long flags;
5139
5140 local_irq_save(flags);
5141 double_rq_lock(rq_src, rq_dest);
5142 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5143 rq_src->nr_uninterruptible = 0;
5144 double_rq_unlock(rq_src, rq_dest);
5145 local_irq_restore(flags);
5146}
5147
5148/* Run through task list and migrate tasks from the dead cpu. */
5149static void migrate_live_tasks(int src_cpu)
5150{
48f24c4d 5151 struct task_struct *p, *t;
1da177e4
LT
5152
5153 write_lock_irq(&tasklist_lock);
5154
48f24c4d
IM
5155 do_each_thread(t, p) {
5156 if (p == current)
1da177e4
LT
5157 continue;
5158
48f24c4d
IM
5159 if (task_cpu(p) == src_cpu)
5160 move_task_off_dead_cpu(src_cpu, p);
5161 } while_each_thread(t, p);
1da177e4
LT
5162
5163 write_unlock_irq(&tasklist_lock);
5164}
5165
dd41f596
IM
5166/*
5167 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5168 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5169 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5170 */
5171void sched_idle_next(void)
5172{
48f24c4d 5173 int this_cpu = smp_processor_id();
70b97a7f 5174 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5175 struct task_struct *p = rq->idle;
5176 unsigned long flags;
5177
5178 /* cpu has to be offline */
48f24c4d 5179 BUG_ON(cpu_online(this_cpu));
1da177e4 5180
48f24c4d
IM
5181 /*
5182 * Strictly not necessary since rest of the CPUs are stopped by now
5183 * and interrupts disabled on the current cpu.
1da177e4
LT
5184 */
5185 spin_lock_irqsave(&rq->lock, flags);
5186
dd41f596 5187 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5188
5189 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5190 activate_idle_task(p, rq);
1da177e4
LT
5191
5192 spin_unlock_irqrestore(&rq->lock, flags);
5193}
5194
48f24c4d
IM
5195/*
5196 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5197 * offline.
5198 */
5199void idle_task_exit(void)
5200{
5201 struct mm_struct *mm = current->active_mm;
5202
5203 BUG_ON(cpu_online(smp_processor_id()));
5204
5205 if (mm != &init_mm)
5206 switch_mm(mm, &init_mm, current);
5207 mmdrop(mm);
5208}
5209
054b9108 5210/* called under rq->lock with disabled interrupts */
36c8b586 5211static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5212{
70b97a7f 5213 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5214
5215 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5216 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5217
5218 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5219 BUG_ON(p->state == TASK_DEAD);
1da177e4 5220
48f24c4d 5221 get_task_struct(p);
1da177e4
LT
5222
5223 /*
5224 * Drop lock around migration; if someone else moves it,
5225 * that's OK. No task can be added to this CPU, so iteration is
5226 * fine.
054b9108 5227 * NOTE: interrupts should be left disabled --dev@
1da177e4 5228 */
054b9108 5229 spin_unlock(&rq->lock);
48f24c4d 5230 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5231 spin_lock(&rq->lock);
1da177e4 5232
48f24c4d 5233 put_task_struct(p);
1da177e4
LT
5234}
5235
5236/* release_task() removes task from tasklist, so we won't find dead tasks. */
5237static void migrate_dead_tasks(unsigned int dead_cpu)
5238{
70b97a7f 5239 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5240 struct task_struct *next;
48f24c4d 5241
dd41f596
IM
5242 for ( ; ; ) {
5243 if (!rq->nr_running)
5244 break;
a8e504d2 5245 update_rq_clock(rq);
ff95f3df 5246 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5247 if (!next)
5248 break;
5249 migrate_dead(dead_cpu, next);
e692ab53 5250
1da177e4
LT
5251 }
5252}
5253#endif /* CONFIG_HOTPLUG_CPU */
5254
e692ab53
NP
5255#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5256
5257static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5258 {
5259 .procname = "sched_domain",
5260 .mode = 0755,
5261 },
e692ab53
NP
5262 {0,},
5263};
5264
5265static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5266 {
5267 .procname = "kernel",
5268 .mode = 0755,
5269 .child = sd_ctl_dir,
5270 },
e692ab53
NP
5271 {0,},
5272};
5273
5274static struct ctl_table *sd_alloc_ctl_entry(int n)
5275{
5276 struct ctl_table *entry =
5277 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5278
5279 BUG_ON(!entry);
5280 memset(entry, 0, n * sizeof(struct ctl_table));
5281
5282 return entry;
5283}
5284
5285static void
e0361851 5286set_table_entry(struct ctl_table *entry,
e692ab53
NP
5287 const char *procname, void *data, int maxlen,
5288 mode_t mode, proc_handler *proc_handler)
5289{
e692ab53
NP
5290 entry->procname = procname;
5291 entry->data = data;
5292 entry->maxlen = maxlen;
5293 entry->mode = mode;
5294 entry->proc_handler = proc_handler;
5295}
5296
5297static struct ctl_table *
5298sd_alloc_ctl_domain_table(struct sched_domain *sd)
5299{
5300 struct ctl_table *table = sd_alloc_ctl_entry(14);
5301
e0361851 5302 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5303 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5304 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5305 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5306 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5307 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5308 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5309 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5310 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5311 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5312 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5313 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5314 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5315 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5316 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5317 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5318 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5319 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5320 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5321 &sd->cache_nice_tries,
5322 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5323 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5324 sizeof(int), 0644, proc_dointvec_minmax);
5325
5326 return table;
5327}
5328
5329static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5330{
5331 struct ctl_table *entry, *table;
5332 struct sched_domain *sd;
5333 int domain_num = 0, i;
5334 char buf[32];
5335
5336 for_each_domain(cpu, sd)
5337 domain_num++;
5338 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5339
5340 i = 0;
5341 for_each_domain(cpu, sd) {
5342 snprintf(buf, 32, "domain%d", i);
e692ab53
NP
5343 entry->procname = kstrdup(buf, GFP_KERNEL);
5344 entry->mode = 0755;
5345 entry->child = sd_alloc_ctl_domain_table(sd);
5346 entry++;
5347 i++;
5348 }
5349 return table;
5350}
5351
5352static struct ctl_table_header *sd_sysctl_header;
5353static void init_sched_domain_sysctl(void)
5354{
5355 int i, cpu_num = num_online_cpus();
5356 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5357 char buf[32];
5358
5359 sd_ctl_dir[0].child = entry;
5360
5361 for (i = 0; i < cpu_num; i++, entry++) {
5362 snprintf(buf, 32, "cpu%d", i);
e692ab53
NP
5363 entry->procname = kstrdup(buf, GFP_KERNEL);
5364 entry->mode = 0755;
5365 entry->child = sd_alloc_ctl_cpu_table(i);
5366 }
5367 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5368}
5369#else
5370static void init_sched_domain_sysctl(void)
5371{
5372}
5373#endif
5374
1da177e4
LT
5375/*
5376 * migration_call - callback that gets triggered when a CPU is added.
5377 * Here we can start up the necessary migration thread for the new CPU.
5378 */
48f24c4d
IM
5379static int __cpuinit
5380migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5381{
1da177e4 5382 struct task_struct *p;
48f24c4d 5383 int cpu = (long)hcpu;
1da177e4 5384 unsigned long flags;
70b97a7f 5385 struct rq *rq;
1da177e4
LT
5386
5387 switch (action) {
5be9361c
GS
5388 case CPU_LOCK_ACQUIRE:
5389 mutex_lock(&sched_hotcpu_mutex);
5390 break;
5391
1da177e4 5392 case CPU_UP_PREPARE:
8bb78442 5393 case CPU_UP_PREPARE_FROZEN:
dd41f596 5394 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5395 if (IS_ERR(p))
5396 return NOTIFY_BAD;
1da177e4
LT
5397 kthread_bind(p, cpu);
5398 /* Must be high prio: stop_machine expects to yield to it. */
5399 rq = task_rq_lock(p, &flags);
dd41f596 5400 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5401 task_rq_unlock(rq, &flags);
5402 cpu_rq(cpu)->migration_thread = p;
5403 break;
48f24c4d 5404
1da177e4 5405 case CPU_ONLINE:
8bb78442 5406 case CPU_ONLINE_FROZEN:
1da177e4
LT
5407 /* Strictly unneccessary, as first user will wake it. */
5408 wake_up_process(cpu_rq(cpu)->migration_thread);
5409 break;
48f24c4d 5410
1da177e4
LT
5411#ifdef CONFIG_HOTPLUG_CPU
5412 case CPU_UP_CANCELED:
8bb78442 5413 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5414 if (!cpu_rq(cpu)->migration_thread)
5415 break;
1da177e4 5416 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5417 kthread_bind(cpu_rq(cpu)->migration_thread,
5418 any_online_cpu(cpu_online_map));
1da177e4
LT
5419 kthread_stop(cpu_rq(cpu)->migration_thread);
5420 cpu_rq(cpu)->migration_thread = NULL;
5421 break;
48f24c4d 5422
1da177e4 5423 case CPU_DEAD:
8bb78442 5424 case CPU_DEAD_FROZEN:
1da177e4
LT
5425 migrate_live_tasks(cpu);
5426 rq = cpu_rq(cpu);
5427 kthread_stop(rq->migration_thread);
5428 rq->migration_thread = NULL;
5429 /* Idle task back to normal (off runqueue, low prio) */
5430 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5431 update_rq_clock(rq);
2e1cb74a 5432 deactivate_task(rq, rq->idle, 0);
1da177e4 5433 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5434 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5435 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5436 migrate_dead_tasks(cpu);
5437 task_rq_unlock(rq, &flags);
5438 migrate_nr_uninterruptible(rq);
5439 BUG_ON(rq->nr_running != 0);
5440
5441 /* No need to migrate the tasks: it was best-effort if
5be9361c 5442 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5443 * the requestors. */
5444 spin_lock_irq(&rq->lock);
5445 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5446 struct migration_req *req;
5447
1da177e4 5448 req = list_entry(rq->migration_queue.next,
70b97a7f 5449 struct migration_req, list);
1da177e4
LT
5450 list_del_init(&req->list);
5451 complete(&req->done);
5452 }
5453 spin_unlock_irq(&rq->lock);
5454 break;
5455#endif
5be9361c
GS
5456 case CPU_LOCK_RELEASE:
5457 mutex_unlock(&sched_hotcpu_mutex);
5458 break;
1da177e4
LT
5459 }
5460 return NOTIFY_OK;
5461}
5462
5463/* Register at highest priority so that task migration (migrate_all_tasks)
5464 * happens before everything else.
5465 */
26c2143b 5466static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5467 .notifier_call = migration_call,
5468 .priority = 10
5469};
5470
5471int __init migration_init(void)
5472{
5473 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5474 int err;
48f24c4d
IM
5475
5476 /* Start one for the boot CPU: */
07dccf33
AM
5477 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5478 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5479 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5480 register_cpu_notifier(&migration_notifier);
48f24c4d 5481
1da177e4
LT
5482 return 0;
5483}
5484#endif
5485
5486#ifdef CONFIG_SMP
476f3534
CL
5487
5488/* Number of possible processor ids */
5489int nr_cpu_ids __read_mostly = NR_CPUS;
5490EXPORT_SYMBOL(nr_cpu_ids);
5491
1a20ff27 5492#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5493#ifdef SCHED_DOMAIN_DEBUG
5494static void sched_domain_debug(struct sched_domain *sd, int cpu)
5495{
5496 int level = 0;
5497
41c7ce9a
NP
5498 if (!sd) {
5499 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5500 return;
5501 }
5502
1da177e4
LT
5503 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5504
5505 do {
5506 int i;
5507 char str[NR_CPUS];
5508 struct sched_group *group = sd->groups;
5509 cpumask_t groupmask;
5510
5511 cpumask_scnprintf(str, NR_CPUS, sd->span);
5512 cpus_clear(groupmask);
5513
5514 printk(KERN_DEBUG);
5515 for (i = 0; i < level + 1; i++)
5516 printk(" ");
5517 printk("domain %d: ", level);
5518
5519 if (!(sd->flags & SD_LOAD_BALANCE)) {
5520 printk("does not load-balance\n");
5521 if (sd->parent)
33859f7f
MOS
5522 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5523 " has parent");
1da177e4
LT
5524 break;
5525 }
5526
5527 printk("span %s\n", str);
5528
5529 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5530 printk(KERN_ERR "ERROR: domain->span does not contain "
5531 "CPU%d\n", cpu);
1da177e4 5532 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5533 printk(KERN_ERR "ERROR: domain->groups does not contain"
5534 " CPU%d\n", cpu);
1da177e4
LT
5535
5536 printk(KERN_DEBUG);
5537 for (i = 0; i < level + 2; i++)
5538 printk(" ");
5539 printk("groups:");
5540 do {
5541 if (!group) {
5542 printk("\n");
5543 printk(KERN_ERR "ERROR: group is NULL\n");
5544 break;
5545 }
5546
5517d86b 5547 if (!group->__cpu_power) {
1da177e4 5548 printk("\n");
33859f7f
MOS
5549 printk(KERN_ERR "ERROR: domain->cpu_power not "
5550 "set\n");
1da177e4
LT
5551 }
5552
5553 if (!cpus_weight(group->cpumask)) {
5554 printk("\n");
5555 printk(KERN_ERR "ERROR: empty group\n");
5556 }
5557
5558 if (cpus_intersects(groupmask, group->cpumask)) {
5559 printk("\n");
5560 printk(KERN_ERR "ERROR: repeated CPUs\n");
5561 }
5562
5563 cpus_or(groupmask, groupmask, group->cpumask);
5564
5565 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5566 printk(" %s", str);
5567
5568 group = group->next;
5569 } while (group != sd->groups);
5570 printk("\n");
5571
5572 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5573 printk(KERN_ERR "ERROR: groups don't span "
5574 "domain->span\n");
1da177e4
LT
5575
5576 level++;
5577 sd = sd->parent;
33859f7f
MOS
5578 if (!sd)
5579 continue;
1da177e4 5580
33859f7f
MOS
5581 if (!cpus_subset(groupmask, sd->span))
5582 printk(KERN_ERR "ERROR: parent span is not a superset "
5583 "of domain->span\n");
1da177e4
LT
5584
5585 } while (sd);
5586}
5587#else
48f24c4d 5588# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5589#endif
5590
1a20ff27 5591static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5592{
5593 if (cpus_weight(sd->span) == 1)
5594 return 1;
5595
5596 /* Following flags need at least 2 groups */
5597 if (sd->flags & (SD_LOAD_BALANCE |
5598 SD_BALANCE_NEWIDLE |
5599 SD_BALANCE_FORK |
89c4710e
SS
5600 SD_BALANCE_EXEC |
5601 SD_SHARE_CPUPOWER |
5602 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5603 if (sd->groups != sd->groups->next)
5604 return 0;
5605 }
5606
5607 /* Following flags don't use groups */
5608 if (sd->flags & (SD_WAKE_IDLE |
5609 SD_WAKE_AFFINE |
5610 SD_WAKE_BALANCE))
5611 return 0;
5612
5613 return 1;
5614}
5615
48f24c4d
IM
5616static int
5617sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5618{
5619 unsigned long cflags = sd->flags, pflags = parent->flags;
5620
5621 if (sd_degenerate(parent))
5622 return 1;
5623
5624 if (!cpus_equal(sd->span, parent->span))
5625 return 0;
5626
5627 /* Does parent contain flags not in child? */
5628 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5629 if (cflags & SD_WAKE_AFFINE)
5630 pflags &= ~SD_WAKE_BALANCE;
5631 /* Flags needing groups don't count if only 1 group in parent */
5632 if (parent->groups == parent->groups->next) {
5633 pflags &= ~(SD_LOAD_BALANCE |
5634 SD_BALANCE_NEWIDLE |
5635 SD_BALANCE_FORK |
89c4710e
SS
5636 SD_BALANCE_EXEC |
5637 SD_SHARE_CPUPOWER |
5638 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5639 }
5640 if (~cflags & pflags)
5641 return 0;
5642
5643 return 1;
5644}
5645
1da177e4
LT
5646/*
5647 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5648 * hold the hotplug lock.
5649 */
9c1cfda2 5650static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5651{
70b97a7f 5652 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5653 struct sched_domain *tmp;
5654
5655 /* Remove the sched domains which do not contribute to scheduling. */
5656 for (tmp = sd; tmp; tmp = tmp->parent) {
5657 struct sched_domain *parent = tmp->parent;
5658 if (!parent)
5659 break;
1a848870 5660 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5661 tmp->parent = parent->parent;
1a848870
SS
5662 if (parent->parent)
5663 parent->parent->child = tmp;
5664 }
245af2c7
SS
5665 }
5666
1a848870 5667 if (sd && sd_degenerate(sd)) {
245af2c7 5668 sd = sd->parent;
1a848870
SS
5669 if (sd)
5670 sd->child = NULL;
5671 }
1da177e4
LT
5672
5673 sched_domain_debug(sd, cpu);
5674
674311d5 5675 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5676}
5677
5678/* cpus with isolated domains */
67af63a6 5679static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5680
5681/* Setup the mask of cpus configured for isolated domains */
5682static int __init isolated_cpu_setup(char *str)
5683{
5684 int ints[NR_CPUS], i;
5685
5686 str = get_options(str, ARRAY_SIZE(ints), ints);
5687 cpus_clear(cpu_isolated_map);
5688 for (i = 1; i <= ints[0]; i++)
5689 if (ints[i] < NR_CPUS)
5690 cpu_set(ints[i], cpu_isolated_map);
5691 return 1;
5692}
5693
5694__setup ("isolcpus=", isolated_cpu_setup);
5695
5696/*
6711cab4
SS
5697 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5698 * to a function which identifies what group(along with sched group) a CPU
5699 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5700 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5701 *
5702 * init_sched_build_groups will build a circular linked list of the groups
5703 * covered by the given span, and will set each group's ->cpumask correctly,
5704 * and ->cpu_power to 0.
5705 */
a616058b 5706static void
6711cab4
SS
5707init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5708 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5709 struct sched_group **sg))
1da177e4
LT
5710{
5711 struct sched_group *first = NULL, *last = NULL;
5712 cpumask_t covered = CPU_MASK_NONE;
5713 int i;
5714
5715 for_each_cpu_mask(i, span) {
6711cab4
SS
5716 struct sched_group *sg;
5717 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5718 int j;
5719
5720 if (cpu_isset(i, covered))
5721 continue;
5722
5723 sg->cpumask = CPU_MASK_NONE;
5517d86b 5724 sg->__cpu_power = 0;
1da177e4
LT
5725
5726 for_each_cpu_mask(j, span) {
6711cab4 5727 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5728 continue;
5729
5730 cpu_set(j, covered);
5731 cpu_set(j, sg->cpumask);
5732 }
5733 if (!first)
5734 first = sg;
5735 if (last)
5736 last->next = sg;
5737 last = sg;
5738 }
5739 last->next = first;
5740}
5741
9c1cfda2 5742#define SD_NODES_PER_DOMAIN 16
1da177e4 5743
9c1cfda2 5744#ifdef CONFIG_NUMA
198e2f18 5745
9c1cfda2
JH
5746/**
5747 * find_next_best_node - find the next node to include in a sched_domain
5748 * @node: node whose sched_domain we're building
5749 * @used_nodes: nodes already in the sched_domain
5750 *
5751 * Find the next node to include in a given scheduling domain. Simply
5752 * finds the closest node not already in the @used_nodes map.
5753 *
5754 * Should use nodemask_t.
5755 */
5756static int find_next_best_node(int node, unsigned long *used_nodes)
5757{
5758 int i, n, val, min_val, best_node = 0;
5759
5760 min_val = INT_MAX;
5761
5762 for (i = 0; i < MAX_NUMNODES; i++) {
5763 /* Start at @node */
5764 n = (node + i) % MAX_NUMNODES;
5765
5766 if (!nr_cpus_node(n))
5767 continue;
5768
5769 /* Skip already used nodes */
5770 if (test_bit(n, used_nodes))
5771 continue;
5772
5773 /* Simple min distance search */
5774 val = node_distance(node, n);
5775
5776 if (val < min_val) {
5777 min_val = val;
5778 best_node = n;
5779 }
5780 }
5781
5782 set_bit(best_node, used_nodes);
5783 return best_node;
5784}
5785
5786/**
5787 * sched_domain_node_span - get a cpumask for a node's sched_domain
5788 * @node: node whose cpumask we're constructing
5789 * @size: number of nodes to include in this span
5790 *
5791 * Given a node, construct a good cpumask for its sched_domain to span. It
5792 * should be one that prevents unnecessary balancing, but also spreads tasks
5793 * out optimally.
5794 */
5795static cpumask_t sched_domain_node_span(int node)
5796{
9c1cfda2 5797 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5798 cpumask_t span, nodemask;
5799 int i;
9c1cfda2
JH
5800
5801 cpus_clear(span);
5802 bitmap_zero(used_nodes, MAX_NUMNODES);
5803
5804 nodemask = node_to_cpumask(node);
5805 cpus_or(span, span, nodemask);
5806 set_bit(node, used_nodes);
5807
5808 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5809 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5810
9c1cfda2
JH
5811 nodemask = node_to_cpumask(next_node);
5812 cpus_or(span, span, nodemask);
5813 }
5814
5815 return span;
5816}
5817#endif
5818
5c45bf27 5819int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5820
9c1cfda2 5821/*
48f24c4d 5822 * SMT sched-domains:
9c1cfda2 5823 */
1da177e4
LT
5824#ifdef CONFIG_SCHED_SMT
5825static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5826static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5827
6711cab4
SS
5828static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5829 struct sched_group **sg)
1da177e4 5830{
6711cab4
SS
5831 if (sg)
5832 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5833 return cpu;
5834}
5835#endif
5836
48f24c4d
IM
5837/*
5838 * multi-core sched-domains:
5839 */
1e9f28fa
SS
5840#ifdef CONFIG_SCHED_MC
5841static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5842static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5843#endif
5844
5845#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5846static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5847 struct sched_group **sg)
1e9f28fa 5848{
6711cab4 5849 int group;
a616058b
SS
5850 cpumask_t mask = cpu_sibling_map[cpu];
5851 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5852 group = first_cpu(mask);
5853 if (sg)
5854 *sg = &per_cpu(sched_group_core, group);
5855 return group;
1e9f28fa
SS
5856}
5857#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5858static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5859 struct sched_group **sg)
1e9f28fa 5860{
6711cab4
SS
5861 if (sg)
5862 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5863 return cpu;
5864}
5865#endif
5866
1da177e4 5867static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5868static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5869
6711cab4
SS
5870static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5871 struct sched_group **sg)
1da177e4 5872{
6711cab4 5873 int group;
48f24c4d 5874#ifdef CONFIG_SCHED_MC
1e9f28fa 5875 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5876 cpus_and(mask, mask, *cpu_map);
6711cab4 5877 group = first_cpu(mask);
1e9f28fa 5878#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5879 cpumask_t mask = cpu_sibling_map[cpu];
5880 cpus_and(mask, mask, *cpu_map);
6711cab4 5881 group = first_cpu(mask);
1da177e4 5882#else
6711cab4 5883 group = cpu;
1da177e4 5884#endif
6711cab4
SS
5885 if (sg)
5886 *sg = &per_cpu(sched_group_phys, group);
5887 return group;
1da177e4
LT
5888}
5889
5890#ifdef CONFIG_NUMA
1da177e4 5891/*
9c1cfda2
JH
5892 * The init_sched_build_groups can't handle what we want to do with node
5893 * groups, so roll our own. Now each node has its own list of groups which
5894 * gets dynamically allocated.
1da177e4 5895 */
9c1cfda2 5896static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5897static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5898
9c1cfda2 5899static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5900static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5901
6711cab4
SS
5902static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5903 struct sched_group **sg)
9c1cfda2 5904{
6711cab4
SS
5905 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5906 int group;
5907
5908 cpus_and(nodemask, nodemask, *cpu_map);
5909 group = first_cpu(nodemask);
5910
5911 if (sg)
5912 *sg = &per_cpu(sched_group_allnodes, group);
5913 return group;
1da177e4 5914}
6711cab4 5915
08069033
SS
5916static void init_numa_sched_groups_power(struct sched_group *group_head)
5917{
5918 struct sched_group *sg = group_head;
5919 int j;
5920
5921 if (!sg)
5922 return;
5923next_sg:
5924 for_each_cpu_mask(j, sg->cpumask) {
5925 struct sched_domain *sd;
5926
5927 sd = &per_cpu(phys_domains, j);
5928 if (j != first_cpu(sd->groups->cpumask)) {
5929 /*
5930 * Only add "power" once for each
5931 * physical package.
5932 */
5933 continue;
5934 }
5935
5517d86b 5936 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5937 }
5938 sg = sg->next;
5939 if (sg != group_head)
5940 goto next_sg;
5941}
1da177e4
LT
5942#endif
5943
a616058b 5944#ifdef CONFIG_NUMA
51888ca2
SV
5945/* Free memory allocated for various sched_group structures */
5946static void free_sched_groups(const cpumask_t *cpu_map)
5947{
a616058b 5948 int cpu, i;
51888ca2
SV
5949
5950 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5951 struct sched_group **sched_group_nodes
5952 = sched_group_nodes_bycpu[cpu];
5953
51888ca2
SV
5954 if (!sched_group_nodes)
5955 continue;
5956
5957 for (i = 0; i < MAX_NUMNODES; i++) {
5958 cpumask_t nodemask = node_to_cpumask(i);
5959 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5960
5961 cpus_and(nodemask, nodemask, *cpu_map);
5962 if (cpus_empty(nodemask))
5963 continue;
5964
5965 if (sg == NULL)
5966 continue;
5967 sg = sg->next;
5968next_sg:
5969 oldsg = sg;
5970 sg = sg->next;
5971 kfree(oldsg);
5972 if (oldsg != sched_group_nodes[i])
5973 goto next_sg;
5974 }
5975 kfree(sched_group_nodes);
5976 sched_group_nodes_bycpu[cpu] = NULL;
5977 }
51888ca2 5978}
a616058b
SS
5979#else
5980static void free_sched_groups(const cpumask_t *cpu_map)
5981{
5982}
5983#endif
51888ca2 5984
89c4710e
SS
5985/*
5986 * Initialize sched groups cpu_power.
5987 *
5988 * cpu_power indicates the capacity of sched group, which is used while
5989 * distributing the load between different sched groups in a sched domain.
5990 * Typically cpu_power for all the groups in a sched domain will be same unless
5991 * there are asymmetries in the topology. If there are asymmetries, group
5992 * having more cpu_power will pickup more load compared to the group having
5993 * less cpu_power.
5994 *
5995 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5996 * the maximum number of tasks a group can handle in the presence of other idle
5997 * or lightly loaded groups in the same sched domain.
5998 */
5999static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6000{
6001 struct sched_domain *child;
6002 struct sched_group *group;
6003
6004 WARN_ON(!sd || !sd->groups);
6005
6006 if (cpu != first_cpu(sd->groups->cpumask))
6007 return;
6008
6009 child = sd->child;
6010
5517d86b
ED
6011 sd->groups->__cpu_power = 0;
6012
89c4710e
SS
6013 /*
6014 * For perf policy, if the groups in child domain share resources
6015 * (for example cores sharing some portions of the cache hierarchy
6016 * or SMT), then set this domain groups cpu_power such that each group
6017 * can handle only one task, when there are other idle groups in the
6018 * same sched domain.
6019 */
6020 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6021 (child->flags &
6022 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6023 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6024 return;
6025 }
6026
89c4710e
SS
6027 /*
6028 * add cpu_power of each child group to this groups cpu_power
6029 */
6030 group = child->groups;
6031 do {
5517d86b 6032 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6033 group = group->next;
6034 } while (group != child->groups);
6035}
6036
1da177e4 6037/*
1a20ff27
DG
6038 * Build sched domains for a given set of cpus and attach the sched domains
6039 * to the individual cpus
1da177e4 6040 */
51888ca2 6041static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6042{
6043 int i;
d1b55138
JH
6044#ifdef CONFIG_NUMA
6045 struct sched_group **sched_group_nodes = NULL;
6711cab4 6046 int sd_allnodes = 0;
d1b55138
JH
6047
6048 /*
6049 * Allocate the per-node list of sched groups
6050 */
dd41f596 6051 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6052 GFP_KERNEL);
d1b55138
JH
6053 if (!sched_group_nodes) {
6054 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6055 return -ENOMEM;
d1b55138
JH
6056 }
6057 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6058#endif
1da177e4
LT
6059
6060 /*
1a20ff27 6061 * Set up domains for cpus specified by the cpu_map.
1da177e4 6062 */
1a20ff27 6063 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6064 struct sched_domain *sd = NULL, *p;
6065 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6066
1a20ff27 6067 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6068
6069#ifdef CONFIG_NUMA
dd41f596
IM
6070 if (cpus_weight(*cpu_map) >
6071 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6072 sd = &per_cpu(allnodes_domains, i);
6073 *sd = SD_ALLNODES_INIT;
6074 sd->span = *cpu_map;
6711cab4 6075 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6076 p = sd;
6711cab4 6077 sd_allnodes = 1;
9c1cfda2
JH
6078 } else
6079 p = NULL;
6080
1da177e4 6081 sd = &per_cpu(node_domains, i);
1da177e4 6082 *sd = SD_NODE_INIT;
9c1cfda2
JH
6083 sd->span = sched_domain_node_span(cpu_to_node(i));
6084 sd->parent = p;
1a848870
SS
6085 if (p)
6086 p->child = sd;
9c1cfda2 6087 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6088#endif
6089
6090 p = sd;
6091 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6092 *sd = SD_CPU_INIT;
6093 sd->span = nodemask;
6094 sd->parent = p;
1a848870
SS
6095 if (p)
6096 p->child = sd;
6711cab4 6097 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6098
1e9f28fa
SS
6099#ifdef CONFIG_SCHED_MC
6100 p = sd;
6101 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6102 *sd = SD_MC_INIT;
6103 sd->span = cpu_coregroup_map(i);
6104 cpus_and(sd->span, sd->span, *cpu_map);
6105 sd->parent = p;
1a848870 6106 p->child = sd;
6711cab4 6107 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6108#endif
6109
1da177e4
LT
6110#ifdef CONFIG_SCHED_SMT
6111 p = sd;
6112 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6113 *sd = SD_SIBLING_INIT;
6114 sd->span = cpu_sibling_map[i];
1a20ff27 6115 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6116 sd->parent = p;
1a848870 6117 p->child = sd;
6711cab4 6118 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6119#endif
6120 }
6121
6122#ifdef CONFIG_SCHED_SMT
6123 /* Set up CPU (sibling) groups */
9c1cfda2 6124 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6125 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6126 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6127 if (i != first_cpu(this_sibling_map))
6128 continue;
6129
dd41f596
IM
6130 init_sched_build_groups(this_sibling_map, cpu_map,
6131 &cpu_to_cpu_group);
1da177e4
LT
6132 }
6133#endif
6134
1e9f28fa
SS
6135#ifdef CONFIG_SCHED_MC
6136 /* Set up multi-core groups */
6137 for_each_cpu_mask(i, *cpu_map) {
6138 cpumask_t this_core_map = cpu_coregroup_map(i);
6139 cpus_and(this_core_map, this_core_map, *cpu_map);
6140 if (i != first_cpu(this_core_map))
6141 continue;
dd41f596
IM
6142 init_sched_build_groups(this_core_map, cpu_map,
6143 &cpu_to_core_group);
1e9f28fa
SS
6144 }
6145#endif
6146
1da177e4
LT
6147 /* Set up physical groups */
6148 for (i = 0; i < MAX_NUMNODES; i++) {
6149 cpumask_t nodemask = node_to_cpumask(i);
6150
1a20ff27 6151 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6152 if (cpus_empty(nodemask))
6153 continue;
6154
6711cab4 6155 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6156 }
6157
6158#ifdef CONFIG_NUMA
6159 /* Set up node groups */
6711cab4 6160 if (sd_allnodes)
dd41f596
IM
6161 init_sched_build_groups(*cpu_map, cpu_map,
6162 &cpu_to_allnodes_group);
9c1cfda2
JH
6163
6164 for (i = 0; i < MAX_NUMNODES; i++) {
6165 /* Set up node groups */
6166 struct sched_group *sg, *prev;
6167 cpumask_t nodemask = node_to_cpumask(i);
6168 cpumask_t domainspan;
6169 cpumask_t covered = CPU_MASK_NONE;
6170 int j;
6171
6172 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6173 if (cpus_empty(nodemask)) {
6174 sched_group_nodes[i] = NULL;
9c1cfda2 6175 continue;
d1b55138 6176 }
9c1cfda2
JH
6177
6178 domainspan = sched_domain_node_span(i);
6179 cpus_and(domainspan, domainspan, *cpu_map);
6180
15f0b676 6181 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6182 if (!sg) {
6183 printk(KERN_WARNING "Can not alloc domain group for "
6184 "node %d\n", i);
6185 goto error;
6186 }
9c1cfda2
JH
6187 sched_group_nodes[i] = sg;
6188 for_each_cpu_mask(j, nodemask) {
6189 struct sched_domain *sd;
9761eea8 6190
9c1cfda2
JH
6191 sd = &per_cpu(node_domains, j);
6192 sd->groups = sg;
9c1cfda2 6193 }
5517d86b 6194 sg->__cpu_power = 0;
9c1cfda2 6195 sg->cpumask = nodemask;
51888ca2 6196 sg->next = sg;
9c1cfda2
JH
6197 cpus_or(covered, covered, nodemask);
6198 prev = sg;
6199
6200 for (j = 0; j < MAX_NUMNODES; j++) {
6201 cpumask_t tmp, notcovered;
6202 int n = (i + j) % MAX_NUMNODES;
6203
6204 cpus_complement(notcovered, covered);
6205 cpus_and(tmp, notcovered, *cpu_map);
6206 cpus_and(tmp, tmp, domainspan);
6207 if (cpus_empty(tmp))
6208 break;
6209
6210 nodemask = node_to_cpumask(n);
6211 cpus_and(tmp, tmp, nodemask);
6212 if (cpus_empty(tmp))
6213 continue;
6214
15f0b676
SV
6215 sg = kmalloc_node(sizeof(struct sched_group),
6216 GFP_KERNEL, i);
9c1cfda2
JH
6217 if (!sg) {
6218 printk(KERN_WARNING
6219 "Can not alloc domain group for node %d\n", j);
51888ca2 6220 goto error;
9c1cfda2 6221 }
5517d86b 6222 sg->__cpu_power = 0;
9c1cfda2 6223 sg->cpumask = tmp;
51888ca2 6224 sg->next = prev->next;
9c1cfda2
JH
6225 cpus_or(covered, covered, tmp);
6226 prev->next = sg;
6227 prev = sg;
6228 }
9c1cfda2 6229 }
1da177e4
LT
6230#endif
6231
6232 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6233#ifdef CONFIG_SCHED_SMT
1a20ff27 6234 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6235 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6236
89c4710e 6237 init_sched_groups_power(i, sd);
5c45bf27 6238 }
1da177e4 6239#endif
1e9f28fa 6240#ifdef CONFIG_SCHED_MC
5c45bf27 6241 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6242 struct sched_domain *sd = &per_cpu(core_domains, i);
6243
89c4710e 6244 init_sched_groups_power(i, sd);
5c45bf27
SS
6245 }
6246#endif
1e9f28fa 6247
5c45bf27 6248 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6249 struct sched_domain *sd = &per_cpu(phys_domains, i);
6250
89c4710e 6251 init_sched_groups_power(i, sd);
1da177e4
LT
6252 }
6253
9c1cfda2 6254#ifdef CONFIG_NUMA
08069033
SS
6255 for (i = 0; i < MAX_NUMNODES; i++)
6256 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6257
6711cab4
SS
6258 if (sd_allnodes) {
6259 struct sched_group *sg;
f712c0c7 6260
6711cab4 6261 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6262 init_numa_sched_groups_power(sg);
6263 }
9c1cfda2
JH
6264#endif
6265
1da177e4 6266 /* Attach the domains */
1a20ff27 6267 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6268 struct sched_domain *sd;
6269#ifdef CONFIG_SCHED_SMT
6270 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6271#elif defined(CONFIG_SCHED_MC)
6272 sd = &per_cpu(core_domains, i);
1da177e4
LT
6273#else
6274 sd = &per_cpu(phys_domains, i);
6275#endif
6276 cpu_attach_domain(sd, i);
6277 }
51888ca2
SV
6278
6279 return 0;
6280
a616058b 6281#ifdef CONFIG_NUMA
51888ca2
SV
6282error:
6283 free_sched_groups(cpu_map);
6284 return -ENOMEM;
a616058b 6285#endif
1da177e4 6286}
1a20ff27
DG
6287/*
6288 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6289 */
51888ca2 6290static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6291{
6292 cpumask_t cpu_default_map;
51888ca2 6293 int err;
1da177e4 6294
1a20ff27
DG
6295 /*
6296 * Setup mask for cpus without special case scheduling requirements.
6297 * For now this just excludes isolated cpus, but could be used to
6298 * exclude other special cases in the future.
6299 */
6300 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6301
51888ca2
SV
6302 err = build_sched_domains(&cpu_default_map);
6303
6304 return err;
1a20ff27
DG
6305}
6306
6307static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6308{
51888ca2 6309 free_sched_groups(cpu_map);
9c1cfda2 6310}
1da177e4 6311
1a20ff27
DG
6312/*
6313 * Detach sched domains from a group of cpus specified in cpu_map
6314 * These cpus will now be attached to the NULL domain
6315 */
858119e1 6316static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6317{
6318 int i;
6319
6320 for_each_cpu_mask(i, *cpu_map)
6321 cpu_attach_domain(NULL, i);
6322 synchronize_sched();
6323 arch_destroy_sched_domains(cpu_map);
6324}
6325
6326/*
6327 * Partition sched domains as specified by the cpumasks below.
6328 * This attaches all cpus from the cpumasks to the NULL domain,
6329 * waits for a RCU quiescent period, recalculates sched
6330 * domain information and then attaches them back to the
6331 * correct sched domains
6332 * Call with hotplug lock held
6333 */
51888ca2 6334int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6335{
6336 cpumask_t change_map;
51888ca2 6337 int err = 0;
1a20ff27
DG
6338
6339 cpus_and(*partition1, *partition1, cpu_online_map);
6340 cpus_and(*partition2, *partition2, cpu_online_map);
6341 cpus_or(change_map, *partition1, *partition2);
6342
6343 /* Detach sched domains from all of the affected cpus */
6344 detach_destroy_domains(&change_map);
6345 if (!cpus_empty(*partition1))
51888ca2
SV
6346 err = build_sched_domains(partition1);
6347 if (!err && !cpus_empty(*partition2))
6348 err = build_sched_domains(partition2);
6349
6350 return err;
1a20ff27
DG
6351}
6352
5c45bf27 6353#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6354static int arch_reinit_sched_domains(void)
5c45bf27
SS
6355{
6356 int err;
6357
5be9361c 6358 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6359 detach_destroy_domains(&cpu_online_map);
6360 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6361 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6362
6363 return err;
6364}
6365
6366static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6367{
6368 int ret;
6369
6370 if (buf[0] != '0' && buf[0] != '1')
6371 return -EINVAL;
6372
6373 if (smt)
6374 sched_smt_power_savings = (buf[0] == '1');
6375 else
6376 sched_mc_power_savings = (buf[0] == '1');
6377
6378 ret = arch_reinit_sched_domains();
6379
6380 return ret ? ret : count;
6381}
6382
5c45bf27
SS
6383#ifdef CONFIG_SCHED_MC
6384static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6385{
6386 return sprintf(page, "%u\n", sched_mc_power_savings);
6387}
48f24c4d
IM
6388static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6389 const char *buf, size_t count)
5c45bf27
SS
6390{
6391 return sched_power_savings_store(buf, count, 0);
6392}
6707de00
AB
6393static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6394 sched_mc_power_savings_store);
5c45bf27
SS
6395#endif
6396
6397#ifdef CONFIG_SCHED_SMT
6398static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6399{
6400 return sprintf(page, "%u\n", sched_smt_power_savings);
6401}
48f24c4d
IM
6402static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6403 const char *buf, size_t count)
5c45bf27
SS
6404{
6405 return sched_power_savings_store(buf, count, 1);
6406}
6707de00
AB
6407static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6408 sched_smt_power_savings_store);
6409#endif
6410
6411int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6412{
6413 int err = 0;
6414
6415#ifdef CONFIG_SCHED_SMT
6416 if (smt_capable())
6417 err = sysfs_create_file(&cls->kset.kobj,
6418 &attr_sched_smt_power_savings.attr);
6419#endif
6420#ifdef CONFIG_SCHED_MC
6421 if (!err && mc_capable())
6422 err = sysfs_create_file(&cls->kset.kobj,
6423 &attr_sched_mc_power_savings.attr);
6424#endif
6425 return err;
6426}
5c45bf27
SS
6427#endif
6428
1da177e4
LT
6429/*
6430 * Force a reinitialization of the sched domains hierarchy. The domains
6431 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6432 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6433 * which will prevent rebalancing while the sched domains are recalculated.
6434 */
6435static int update_sched_domains(struct notifier_block *nfb,
6436 unsigned long action, void *hcpu)
6437{
1da177e4
LT
6438 switch (action) {
6439 case CPU_UP_PREPARE:
8bb78442 6440 case CPU_UP_PREPARE_FROZEN:
1da177e4 6441 case CPU_DOWN_PREPARE:
8bb78442 6442 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6443 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6444 return NOTIFY_OK;
6445
6446 case CPU_UP_CANCELED:
8bb78442 6447 case CPU_UP_CANCELED_FROZEN:
1da177e4 6448 case CPU_DOWN_FAILED:
8bb78442 6449 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6450 case CPU_ONLINE:
8bb78442 6451 case CPU_ONLINE_FROZEN:
1da177e4 6452 case CPU_DEAD:
8bb78442 6453 case CPU_DEAD_FROZEN:
1da177e4
LT
6454 /*
6455 * Fall through and re-initialise the domains.
6456 */
6457 break;
6458 default:
6459 return NOTIFY_DONE;
6460 }
6461
6462 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6463 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6464
6465 return NOTIFY_OK;
6466}
1da177e4
LT
6467
6468void __init sched_init_smp(void)
6469{
5c1e1767
NP
6470 cpumask_t non_isolated_cpus;
6471
5be9361c 6472 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6473 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6474 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6475 if (cpus_empty(non_isolated_cpus))
6476 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6477 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6478 /* XXX: Theoretical race here - CPU may be hotplugged now */
6479 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6480
e692ab53
NP
6481 init_sched_domain_sysctl();
6482
5c1e1767
NP
6483 /* Move init over to a non-isolated CPU */
6484 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6485 BUG();
dd41f596 6486 sched_init_granularity();
1da177e4
LT
6487}
6488#else
6489void __init sched_init_smp(void)
6490{
dd41f596 6491 sched_init_granularity();
1da177e4
LT
6492}
6493#endif /* CONFIG_SMP */
6494
6495int in_sched_functions(unsigned long addr)
6496{
6497 /* Linker adds these: start and end of __sched functions */
6498 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6499
1da177e4
LT
6500 return in_lock_functions(addr) ||
6501 (addr >= (unsigned long)__sched_text_start
6502 && addr < (unsigned long)__sched_text_end);
6503}
6504
dd41f596
IM
6505static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6506{
6507 cfs_rq->tasks_timeline = RB_ROOT;
6508 cfs_rq->fair_clock = 1;
6509#ifdef CONFIG_FAIR_GROUP_SCHED
6510 cfs_rq->rq = rq;
6511#endif
6512}
6513
1da177e4
LT
6514void __init sched_init(void)
6515{
dd41f596 6516 u64 now = sched_clock();
476f3534 6517 int highest_cpu = 0;
dd41f596
IM
6518 int i, j;
6519
6520 /*
6521 * Link up the scheduling class hierarchy:
6522 */
6523 rt_sched_class.next = &fair_sched_class;
6524 fair_sched_class.next = &idle_sched_class;
6525 idle_sched_class.next = NULL;
1da177e4 6526
0a945022 6527 for_each_possible_cpu(i) {
dd41f596 6528 struct rt_prio_array *array;
70b97a7f 6529 struct rq *rq;
1da177e4
LT
6530
6531 rq = cpu_rq(i);
6532 spin_lock_init(&rq->lock);
fcb99371 6533 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6534 rq->nr_running = 0;
dd41f596
IM
6535 rq->clock = 1;
6536 init_cfs_rq(&rq->cfs, rq);
6537#ifdef CONFIG_FAIR_GROUP_SCHED
6538 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6539 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6540#endif
6541 rq->ls.load_update_last = now;
6542 rq->ls.load_update_start = now;
1da177e4 6543
dd41f596
IM
6544 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6545 rq->cpu_load[j] = 0;
1da177e4 6546#ifdef CONFIG_SMP
41c7ce9a 6547 rq->sd = NULL;
1da177e4 6548 rq->active_balance = 0;
dd41f596 6549 rq->next_balance = jiffies;
1da177e4 6550 rq->push_cpu = 0;
0a2966b4 6551 rq->cpu = i;
1da177e4
LT
6552 rq->migration_thread = NULL;
6553 INIT_LIST_HEAD(&rq->migration_queue);
6554#endif
6555 atomic_set(&rq->nr_iowait, 0);
6556
dd41f596
IM
6557 array = &rq->rt.active;
6558 for (j = 0; j < MAX_RT_PRIO; j++) {
6559 INIT_LIST_HEAD(array->queue + j);
6560 __clear_bit(j, array->bitmap);
1da177e4 6561 }
476f3534 6562 highest_cpu = i;
dd41f596
IM
6563 /* delimiter for bitsearch: */
6564 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6565 }
6566
2dd73a4f 6567 set_load_weight(&init_task);
b50f60ce 6568
e107be36
AK
6569#ifdef CONFIG_PREEMPT_NOTIFIERS
6570 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6571#endif
6572
c9819f45 6573#ifdef CONFIG_SMP
476f3534 6574 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6575 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6576#endif
6577
b50f60ce
HC
6578#ifdef CONFIG_RT_MUTEXES
6579 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6580#endif
6581
1da177e4
LT
6582 /*
6583 * The boot idle thread does lazy MMU switching as well:
6584 */
6585 atomic_inc(&init_mm.mm_count);
6586 enter_lazy_tlb(&init_mm, current);
6587
6588 /*
6589 * Make us the idle thread. Technically, schedule() should not be
6590 * called from this thread, however somewhere below it might be,
6591 * but because we are the idle thread, we just pick up running again
6592 * when this runqueue becomes "idle".
6593 */
6594 init_idle(current, smp_processor_id());
dd41f596
IM
6595 /*
6596 * During early bootup we pretend to be a normal task:
6597 */
6598 current->sched_class = &fair_sched_class;
1da177e4
LT
6599}
6600
6601#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6602void __might_sleep(char *file, int line)
6603{
48f24c4d 6604#ifdef in_atomic
1da177e4
LT
6605 static unsigned long prev_jiffy; /* ratelimiting */
6606
6607 if ((in_atomic() || irqs_disabled()) &&
6608 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6609 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6610 return;
6611 prev_jiffy = jiffies;
91368d73 6612 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6613 " context at %s:%d\n", file, line);
6614 printk("in_atomic():%d, irqs_disabled():%d\n",
6615 in_atomic(), irqs_disabled());
a4c410f0 6616 debug_show_held_locks(current);
3117df04
IM
6617 if (irqs_disabled())
6618 print_irqtrace_events(current);
1da177e4
LT
6619 dump_stack();
6620 }
6621#endif
6622}
6623EXPORT_SYMBOL(__might_sleep);
6624#endif
6625
6626#ifdef CONFIG_MAGIC_SYSRQ
6627void normalize_rt_tasks(void)
6628{
a0f98a1c 6629 struct task_struct *g, *p;
1da177e4 6630 unsigned long flags;
70b97a7f 6631 struct rq *rq;
dd41f596 6632 int on_rq;
1da177e4
LT
6633
6634 read_lock_irq(&tasklist_lock);
a0f98a1c 6635 do_each_thread(g, p) {
dd41f596
IM
6636 p->se.fair_key = 0;
6637 p->se.wait_runtime = 0;
6cfb0d5d 6638 p->se.exec_start = 0;
dd41f596 6639 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6640 p->se.sleep_start_fair = 0;
6641#ifdef CONFIG_SCHEDSTATS
dd41f596 6642 p->se.wait_start = 0;
dd41f596 6643 p->se.sleep_start = 0;
dd41f596 6644 p->se.block_start = 0;
6cfb0d5d 6645#endif
dd41f596
IM
6646 task_rq(p)->cfs.fair_clock = 0;
6647 task_rq(p)->clock = 0;
6648
6649 if (!rt_task(p)) {
6650 /*
6651 * Renice negative nice level userspace
6652 * tasks back to 0:
6653 */
6654 if (TASK_NICE(p) < 0 && p->mm)
6655 set_user_nice(p, 0);
1da177e4 6656 continue;
dd41f596 6657 }
1da177e4 6658
b29739f9
IM
6659 spin_lock_irqsave(&p->pi_lock, flags);
6660 rq = __task_rq_lock(p);
dd41f596
IM
6661#ifdef CONFIG_SMP
6662 /*
6663 * Do not touch the migration thread:
6664 */
6665 if (p == rq->migration_thread)
6666 goto out_unlock;
6667#endif
1da177e4 6668
2daa3577 6669 update_rq_clock(rq);
dd41f596 6670 on_rq = p->se.on_rq;
2daa3577
IM
6671 if (on_rq)
6672 deactivate_task(rq, p, 0);
dd41f596
IM
6673 __setscheduler(rq, p, SCHED_NORMAL, 0);
6674 if (on_rq) {
2daa3577 6675 activate_task(rq, p, 0);
1da177e4
LT
6676 resched_task(rq->curr);
6677 }
dd41f596
IM
6678#ifdef CONFIG_SMP
6679 out_unlock:
6680#endif
b29739f9
IM
6681 __task_rq_unlock(rq);
6682 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6683 } while_each_thread(g, p);
6684
1da177e4
LT
6685 read_unlock_irq(&tasklist_lock);
6686}
6687
6688#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6689
6690#ifdef CONFIG_IA64
6691/*
6692 * These functions are only useful for the IA64 MCA handling.
6693 *
6694 * They can only be called when the whole system has been
6695 * stopped - every CPU needs to be quiescent, and no scheduling
6696 * activity can take place. Using them for anything else would
6697 * be a serious bug, and as a result, they aren't even visible
6698 * under any other configuration.
6699 */
6700
6701/**
6702 * curr_task - return the current task for a given cpu.
6703 * @cpu: the processor in question.
6704 *
6705 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6706 */
36c8b586 6707struct task_struct *curr_task(int cpu)
1df5c10a
LT
6708{
6709 return cpu_curr(cpu);
6710}
6711
6712/**
6713 * set_curr_task - set the current task for a given cpu.
6714 * @cpu: the processor in question.
6715 * @p: the task pointer to set.
6716 *
6717 * Description: This function must only be used when non-maskable interrupts
6718 * are serviced on a separate stack. It allows the architecture to switch the
6719 * notion of the current task on a cpu in a non-blocking manner. This function
6720 * must be called with all CPU's synchronized, and interrupts disabled, the
6721 * and caller must save the original value of the current task (see
6722 * curr_task() above) and restore that value before reenabling interrupts and
6723 * re-starting the system.
6724 *
6725 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6726 */
36c8b586 6727void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6728{
6729 cpu_curr(cpu) = p;
6730}
6731
6732#endif