sched: Introduce SCHED_RESET_ON_FORK scheduling policy flag
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a22d7fc1 496 int overloaded;
917b627d 497 struct plist_head pushable_tasks;
fa85ae24 498#endif
6f505b16 499 int rt_throttled;
fa85ae24 500 u64 rt_time;
ac086bc2 501 u64 rt_runtime;
ea736ed5 502 /* Nests inside the rq lock: */
ac086bc2 503 spinlock_t rt_runtime_lock;
6f505b16 504
052f1dc7 505#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
506 unsigned long rt_nr_boosted;
507
6f505b16
PZ
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512#endif
6aa645ea
IM
513};
514
57d885fe
GH
515#ifdef CONFIG_SMP
516
517/*
518 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
57d885fe
GH
524 */
525struct root_domain {
526 atomic_t refcount;
c6c4927b
RR
527 cpumask_var_t span;
528 cpumask_var_t online;
637f5085 529
0eab9146 530 /*
637f5085
GH
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
c6c4927b 534 cpumask_var_t rto_mask;
0eab9146 535 atomic_t rto_count;
6e0534f2
GH
536#ifdef CONFIG_SMP
537 struct cpupri cpupri;
538#endif
7a09b1a2
VS
539#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546#endif
57d885fe
GH
547};
548
dc938520
GH
549/*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
57d885fe
GH
553static struct root_domain def_root_domain;
554
555#endif
556
1da177e4
LT
557/*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
70b97a7f 564struct rq {
d8016491
IM
565 /* runqueue lock: */
566 spinlock_t lock;
1da177e4
LT
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
6aa645ea
IM
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 575#ifdef CONFIG_NO_HZ
15934a37 576 unsigned long last_tick_seen;
46cb4b7c
SS
577 unsigned char in_nohz_recently;
578#endif
d8016491
IM
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
6aa645ea
IM
581 unsigned long nr_load_updates;
582 u64 nr_switches;
23a185ca 583 u64 nr_migrations_in;
6aa645ea
IM
584
585 struct cfs_rq cfs;
6f505b16 586 struct rt_rq rt;
6f505b16 587
6aa645ea 588#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
591#endif
592#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 593 struct list_head leaf_rt_rq_list;
1da177e4 594#endif
1da177e4
LT
595
596 /*
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
601 */
602 unsigned long nr_uninterruptible;
603
36c8b586 604 struct task_struct *curr, *idle;
c9819f45 605 unsigned long next_balance;
1da177e4 606 struct mm_struct *prev_mm;
6aa645ea 607
3e51f33f 608 u64 clock;
6aa645ea 609
1da177e4
LT
610 atomic_t nr_iowait;
611
612#ifdef CONFIG_SMP
0eab9146 613 struct root_domain *rd;
1da177e4
LT
614 struct sched_domain *sd;
615
a0a522ce 616 unsigned char idle_at_tick;
1da177e4
LT
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
d8016491
IM
620 /* cpu of this runqueue: */
621 int cpu;
1f11eb6a 622 int online;
1da177e4 623
a8a51d5e 624 unsigned long avg_load_per_task;
1da177e4 625
36c8b586 626 struct task_struct *migration_thread;
1da177e4
LT
627 struct list_head migration_queue;
628#endif
629
dce48a84
TG
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
633
8f4d37ec 634#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
635#ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638#endif
8f4d37ec
PZ
639 struct hrtimer hrtick_timer;
640#endif
641
1da177e4
LT
642#ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
9c2c4802
KC
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
647
648 /* sys_sched_yield() stats */
480b9434 649 unsigned int yld_count;
1da177e4
LT
650
651 /* schedule() stats */
480b9434
KC
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
1da177e4
LT
655
656 /* try_to_wake_up() stats */
480b9434
KC
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
b8efb561
IM
659
660 /* BKL stats */
480b9434 661 unsigned int bkl_count;
1da177e4
LT
662#endif
663};
664
f34e3b61 665static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 666
15afe09b 667static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 668{
15afe09b 669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
670}
671
0a2966b4
CL
672static inline int cpu_of(struct rq *rq)
673{
674#ifdef CONFIG_SMP
675 return rq->cpu;
676#else
677 return 0;
678#endif
679}
680
674311d5
NP
681/*
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 683 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
684 *
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
687 */
48f24c4d
IM
688#define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
690
691#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692#define this_rq() (&__get_cpu_var(runqueues))
693#define task_rq(p) cpu_rq(task_cpu(p))
694#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695
aa9c4c0f 696inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
697{
698 rq->clock = sched_clock_cpu(cpu_of(rq));
699}
700
bf5c91ba
IM
701/*
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 */
704#ifdef CONFIG_SCHED_DEBUG
705# define const_debug __read_mostly
706#else
707# define const_debug static const
708#endif
709
017730c1
IM
710/**
711 * runqueue_is_locked
712 *
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
716 */
717int runqueue_is_locked(void)
718{
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
722
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
726}
727
bf5c91ba
IM
728/*
729 * Debugging: various feature bits
730 */
f00b45c1
PZ
731
732#define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
bf5c91ba 735enum {
f00b45c1 736#include "sched_features.h"
bf5c91ba
IM
737};
738
f00b45c1
PZ
739#undef SCHED_FEAT
740
741#define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
743
bf5c91ba 744const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
745#include "sched_features.h"
746 0;
747
748#undef SCHED_FEAT
749
750#ifdef CONFIG_SCHED_DEBUG
751#define SCHED_FEAT(name, enabled) \
752 #name ,
753
983ed7a6 754static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
755#include "sched_features.h"
756 NULL
757};
758
759#undef SCHED_FEAT
760
34f3a814 761static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 762{
f00b45c1
PZ
763 int i;
764
765 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 769 }
34f3a814 770 seq_puts(m, "\n");
f00b45c1 771
34f3a814 772 return 0;
f00b45c1
PZ
773}
774
775static ssize_t
776sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
778{
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
783
784 if (cnt > 63)
785 cnt = 63;
786
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
789
790 buf[cnt] = 0;
791
c24b7c52 792 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
793 neg = 1;
794 cmp += 3;
795 }
796
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
799
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
806 }
807 }
808
809 if (!sched_feat_names[i])
810 return -EINVAL;
811
812 filp->f_pos += cnt;
813
814 return cnt;
815}
816
34f3a814
LZ
817static int sched_feat_open(struct inode *inode, struct file *filp)
818{
819 return single_open(filp, sched_feat_show, NULL);
820}
821
f00b45c1 822static struct file_operations sched_feat_fops = {
34f3a814
LZ
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
f00b45c1
PZ
828};
829
830static __init int sched_init_debug(void)
831{
f00b45c1
PZ
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
834
835 return 0;
836}
837late_initcall(sched_init_debug);
838
839#endif
840
841#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 842
b82d9fdd
PZ
843/*
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
846 */
847const_debug unsigned int sysctl_sched_nr_migrate = 32;
848
2398f2c6
PZ
849/*
850 * ratelimit for updating the group shares.
55cd5340 851 * default: 0.25ms
2398f2c6 852 */
55cd5340 853unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 854
ffda12a1
PZ
855/*
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
859 */
860unsigned int sysctl_sched_shares_thresh = 4;
861
fa85ae24 862/*
9f0c1e56 863 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
864 * default: 1s
865 */
9f0c1e56 866unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 867
6892b75e
IM
868static __read_mostly int scheduler_running;
869
9f0c1e56
PZ
870/*
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
873 */
874int sysctl_sched_rt_runtime = 950000;
fa85ae24 875
d0b27fa7
PZ
876static inline u64 global_rt_period(void)
877{
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879}
880
881static inline u64 global_rt_runtime(void)
882{
e26873bb 883 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
884 return RUNTIME_INF;
885
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887}
fa85ae24 888
1da177e4 889#ifndef prepare_arch_switch
4866cde0
NP
890# define prepare_arch_switch(next) do { } while (0)
891#endif
892#ifndef finish_arch_switch
893# define finish_arch_switch(prev) do { } while (0)
894#endif
895
051a1d1a
DA
896static inline int task_current(struct rq *rq, struct task_struct *p)
897{
898 return rq->curr == p;
899}
900
4866cde0 901#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 903{
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905}
906
70b97a7f 907static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
908{
909}
910
70b97a7f 911static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 912{
da04c035
IM
913#ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916#endif
8a25d5de
IM
917 /*
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
921 */
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923
4866cde0
NP
924 spin_unlock_irq(&rq->lock);
925}
926
927#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 928static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 return p->oncpu;
932#else
051a1d1a 933 return task_current(rq, p);
4866cde0
NP
934#endif
935}
936
70b97a7f 937static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
938{
939#ifdef CONFIG_SMP
940 /*
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
944 */
945 next->oncpu = 1;
946#endif
947#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949#else
950 spin_unlock(&rq->lock);
951#endif
952}
953
70b97a7f 954static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
955{
956#ifdef CONFIG_SMP
957 /*
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
961 */
962 smp_wmb();
963 prev->oncpu = 0;
964#endif
965#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
1da177e4 967#endif
4866cde0
NP
968}
969#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 970
b29739f9
IM
971/*
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
974 */
70b97a7f 975static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
976 __acquires(rq->lock)
977{
3a5c359a
AK
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
b29739f9 983 spin_unlock(&rq->lock);
b29739f9 984 }
b29739f9
IM
985}
986
1da177e4
LT
987/*
988 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 989 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
990 * explicitly disabling preemption.
991 */
70b97a7f 992static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
993 __acquires(rq->lock)
994{
70b97a7f 995 struct rq *rq;
1da177e4 996
3a5c359a
AK
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1da177e4 1003 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1004 }
1da177e4
LT
1005}
1006
ad474cac
ON
1007void task_rq_unlock_wait(struct task_struct *p)
1008{
1009 struct rq *rq = task_rq(p);
1010
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1013}
1014
a9957449 1015static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1016 __releases(rq->lock)
1017{
1018 spin_unlock(&rq->lock);
1019}
1020
70b97a7f 1021static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1022 __releases(rq->lock)
1023{
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1025}
1026
1da177e4 1027/*
cc2a73b5 1028 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1029 */
a9957449 1030static struct rq *this_rq_lock(void)
1da177e4
LT
1031 __acquires(rq->lock)
1032{
70b97a7f 1033 struct rq *rq;
1da177e4
LT
1034
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1038
1039 return rq;
1040}
1041
8f4d37ec
PZ
1042#ifdef CONFIG_SCHED_HRTICK
1043/*
1044 * Use HR-timers to deliver accurate preemption points.
1045 *
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1049 *
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1052 */
8f4d37ec
PZ
1053
1054/*
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1058 */
1059static inline int hrtick_enabled(struct rq *rq)
1060{
1061 if (!sched_feat(HRTICK))
1062 return 0;
ba42059f 1063 if (!cpu_active(cpu_of(rq)))
b328ca18 1064 return 0;
8f4d37ec
PZ
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1066}
1067
8f4d37ec
PZ
1068static void hrtick_clear(struct rq *rq)
1069{
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1072}
1073
8f4d37ec
PZ
1074/*
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1077 */
1078static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079{
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock(&rq->lock);
3e51f33f 1085 update_rq_clock(rq);
8f4d37ec
PZ
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1088
1089 return HRTIMER_NORESTART;
1090}
1091
95e904c7 1092#ifdef CONFIG_SMP
31656519
PZ
1093/*
1094 * called from hardirq (IPI) context
1095 */
1096static void __hrtick_start(void *arg)
b328ca18 1097{
31656519 1098 struct rq *rq = arg;
b328ca18 1099
31656519
PZ
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
b328ca18
PZ
1104}
1105
31656519
PZ
1106/*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1112{
31656519
PZ
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1115
cc584b21 1116 hrtimer_set_expires(timer, time);
31656519
PZ
1117
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
6e275637 1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1122 rq->hrtick_csd_pending = 1;
1123 }
b328ca18
PZ
1124}
1125
1126static int
1127hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128{
1129 int cpu = (int)(long)hcpu;
1130
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
31656519 1138 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1139 return NOTIFY_OK;
1140 }
1141
1142 return NOTIFY_DONE;
1143}
1144
fa748203 1145static __init void init_hrtick(void)
b328ca18
PZ
1146{
1147 hotcpu_notifier(hotplug_hrtick, 0);
1148}
31656519
PZ
1149#else
1150/*
1151 * Called to set the hrtick timer state.
1152 *
1153 * called with rq->lock held and irqs disabled
1154 */
1155static void hrtick_start(struct rq *rq, u64 delay)
1156{
7f1e2ca9
PZ
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL, 0);
31656519 1159}
b328ca18 1160
006c75f1 1161static inline void init_hrtick(void)
8f4d37ec 1162{
8f4d37ec 1163}
31656519 1164#endif /* CONFIG_SMP */
8f4d37ec 1165
31656519 1166static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1167{
31656519
PZ
1168#ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
8f4d37ec 1170
31656519
PZ
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174#endif
8f4d37ec 1175
31656519
PZ
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
8f4d37ec 1178}
006c75f1 1179#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1180static inline void hrtick_clear(struct rq *rq)
1181{
1182}
1183
8f4d37ec
PZ
1184static inline void init_rq_hrtick(struct rq *rq)
1185{
1186}
1187
b328ca18
PZ
1188static inline void init_hrtick(void)
1189{
1190}
006c75f1 1191#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1192
c24d20db
IM
1193/*
1194 * resched_task - mark a task 'to be rescheduled now'.
1195 *
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1199 */
1200#ifdef CONFIG_SMP
1201
1202#ifndef tsk_is_polling
1203#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204#endif
1205
31656519 1206static void resched_task(struct task_struct *p)
c24d20db
IM
1207{
1208 int cpu;
1209
1210 assert_spin_locked(&task_rq(p)->lock);
1211
5ed0cec0 1212 if (test_tsk_need_resched(p))
c24d20db
IM
1213 return;
1214
5ed0cec0 1215 set_tsk_need_resched(p);
c24d20db
IM
1216
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1225}
1226
1227static void resched_cpu(int cpu)
1228{
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1231
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1236}
06d8308c
TG
1237
1238#ifdef CONFIG_NO_HZ
1239/*
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1248 */
1249void wake_up_idle_cpu(int cpu)
1250{
1251 struct rq *rq = cpu_rq(cpu);
1252
1253 if (cpu == smp_processor_id())
1254 return;
1255
1256 /*
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1262 */
1263 if (rq->curr != rq->idle)
1264 return;
1265
1266 /*
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1270 */
5ed0cec0 1271 set_tsk_need_resched(rq->idle);
06d8308c
TG
1272
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1277}
6d6bc0ad 1278#endif /* CONFIG_NO_HZ */
06d8308c 1279
6d6bc0ad 1280#else /* !CONFIG_SMP */
31656519 1281static void resched_task(struct task_struct *p)
c24d20db
IM
1282{
1283 assert_spin_locked(&task_rq(p)->lock);
31656519 1284 set_tsk_need_resched(p);
c24d20db 1285}
6d6bc0ad 1286#endif /* CONFIG_SMP */
c24d20db 1287
45bf76df
IM
1288#if BITS_PER_LONG == 32
1289# define WMULT_CONST (~0UL)
1290#else
1291# define WMULT_CONST (1UL << 32)
1292#endif
1293
1294#define WMULT_SHIFT 32
1295
194081eb
IM
1296/*
1297 * Shift right and round:
1298 */
cf2ab469 1299#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1300
a7be37ac
PZ
1301/*
1302 * delta *= weight / lw
1303 */
cb1c4fc9 1304static unsigned long
45bf76df
IM
1305calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307{
1308 u64 tmp;
1309
7a232e03
LJ
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
45bf76df
IM
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
194081eb 1322 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1324 WMULT_SHIFT/2);
1325 else
cf2ab469 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1327
ecf691da 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1332{
1333 lw->weight += inc;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1338{
1339 lw->weight -= dec;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
2dd73a4f
PW
1343/*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
cce7ade8
PZ
1352#define WEIGHT_IDLEPRIO 3
1353#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1354
1355/*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
dd41f596
IM
1366 */
1367static const int prio_to_weight[40] = {
254753dc
IM
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1376};
1377
5714d2de
IM
1378/*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
dd41f596 1385static const u32 prio_to_wmult[40] = {
254753dc
IM
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1394};
2dd73a4f 1395
dd41f596
IM
1396static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398/*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407};
1408
e1d1484f
PW
1409#ifdef CONFIG_SMP
1410static unsigned long
1411balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416static int
1417iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
e1d1484f 1420#endif
dd41f596 1421
ef12fefa
BR
1422/* Time spent by the tasks of the cpu accounting group executing in ... */
1423enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428};
1429
d842de87
SV
1430#ifdef CONFIG_CGROUP_CPUACCT
1431static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1432static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1434#else
1435static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1436static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1438#endif
1439
18d95a28
PZ
1440static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_add(&rq->load, load);
1443}
1444
1445static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446{
1447 update_load_sub(&rq->load, load);
1448}
1449
7940ca36 1450#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1451typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1452
1453/*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
eb755805 1457static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1458{
1459 struct task_group *parent, *child;
eb755805 1460 int ret;
c09595f6
PZ
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464down:
eb755805
PZ
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
c09595f6
PZ
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472up:
1473 continue;
1474 }
eb755805
PZ
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
c09595f6
PZ
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
eb755805 1483out_unlock:
c09595f6 1484 rcu_read_unlock();
eb755805
PZ
1485
1486 return ret;
c09595f6
PZ
1487}
1488
eb755805
PZ
1489static int tg_nop(struct task_group *tg, void *data)
1490{
1491 return 0;
c09595f6 1492}
eb755805
PZ
1493#endif
1494
1495#ifdef CONFIG_SMP
1496static unsigned long source_load(int cpu, int type);
1497static unsigned long target_load(int cpu, int type);
1498static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499
1500static unsigned long cpu_avg_load_per_task(int cpu)
1501{
1502 struct rq *rq = cpu_rq(cpu);
af6d596f 1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1504
4cd42620
SR
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1507 else
1508 rq->avg_load_per_task = 0;
eb755805
PZ
1509
1510 return rq->avg_load_per_task;
1511}
1512
1513#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1514
c09595f6
PZ
1515static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516
1517/*
1518 * Calculate and set the cpu's group shares.
1519 */
1520static void
ffda12a1
PZ
1521update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1523{
c09595f6
PZ
1524 unsigned long shares;
1525 unsigned long rq_weight;
1526
c8cba857 1527 if (!tg->se[cpu])
c09595f6
PZ
1528 return;
1529
ec4e0e2f 1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1531
c09595f6
PZ
1532 /*
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1536 *
1537 */
ec4e0e2f 1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1540
ffda12a1
PZ
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
c09595f6 1545
ffda12a1 1546 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1547 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1548
ffda12a1
PZ
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1551 }
18d95a28 1552}
c09595f6
PZ
1553
1554/*
c8cba857
PZ
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
c09595f6 1558 */
eb755805 1559static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1560{
ec4e0e2f 1561 unsigned long weight, rq_weight = 0;
c8cba857 1562 unsigned long shares = 0;
eb755805 1563 struct sched_domain *sd = data;
c8cba857 1564 int i;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1575
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
c8cba857 1578 shares += tg->cfs_rq[i]->shares;
c09595f6 1579 }
c09595f6 1580
c8cba857
PZ
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
c09595f6 1586
758b2cdc 1587 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1588 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1589
1590 return 0;
c09595f6
PZ
1591}
1592
1593/*
c8cba857
PZ
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
c09595f6 1597 */
eb755805 1598static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1599{
c8cba857 1600 unsigned long load;
eb755805 1601 long cpu = (long)data;
c09595f6 1602
c8cba857
PZ
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609 }
c09595f6 1610
c8cba857 1611 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1612
eb755805 1613 return 0;
c09595f6
PZ
1614}
1615
c8cba857 1616static void update_shares(struct sched_domain *sd)
4d8d595d 1617{
2398f2c6
PZ
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1620
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
eb755805 1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1624 }
4d8d595d
PZ
1625}
1626
3e5459b4
PZ
1627static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628{
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1632}
1633
eb755805 1634static void update_h_load(long cpu)
c09595f6 1635{
eb755805 1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1637}
1638
c09595f6
PZ
1639#else
1640
c8cba857 1641static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1642{
1643}
1644
3e5459b4
PZ
1645static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646{
1647}
1648
18d95a28
PZ
1649#endif
1650
8f45e2b5
GH
1651#ifdef CONFIG_PREEMPT
1652
70574a99 1653/*
8f45e2b5
GH
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
70574a99 1660 */
8f45e2b5
GH
1661static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665{
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1668
1669 return 1;
1670}
1671
1672#else
1673/*
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1679 */
1680static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1684{
1685 int ret = 0;
1686
70574a99
AD
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 }
1696 return ret;
1697}
1698
8f45e2b5
GH
1699#endif /* CONFIG_PREEMPT */
1700
1701/*
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 */
1704static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705{
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1710 }
1711
1712 return _double_lock_balance(this_rq, busiest);
1713}
1714
70574a99
AD
1715static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1717{
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720}
18d95a28
PZ
1721#endif
1722
30432094 1723#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1724static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725{
30432094 1726#ifdef CONFIG_SMP
34e83e85
IM
1727 cfs_rq->shares = shares;
1728#endif
1729}
30432094 1730#endif
e7693a36 1731
dce48a84
TG
1732static void calc_load_account_active(struct rq *this_rq);
1733
dd41f596 1734#include "sched_stats.h"
dd41f596 1735#include "sched_idletask.c"
5522d5d5
IM
1736#include "sched_fair.c"
1737#include "sched_rt.c"
dd41f596
IM
1738#ifdef CONFIG_SCHED_DEBUG
1739# include "sched_debug.c"
1740#endif
1741
1742#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1743#define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
dd41f596 1745
c09595f6 1746static void inc_nr_running(struct rq *rq)
9c217245
IM
1747{
1748 rq->nr_running++;
9c217245
IM
1749}
1750
c09595f6 1751static void dec_nr_running(struct rq *rq)
9c217245
IM
1752{
1753 rq->nr_running--;
9c217245
IM
1754}
1755
45bf76df
IM
1756static void set_load_weight(struct task_struct *p)
1757{
1758 if (task_has_rt_policy(p)) {
dd41f596
IM
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1762 }
45bf76df 1763
dd41f596
IM
1764 /*
1765 * SCHED_IDLE tasks get minimal weight:
1766 */
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1771 }
71f8bd46 1772
dd41f596
IM
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1775}
1776
2087a1ad
GH
1777static void update_avg(u64 *avg, u64 sample)
1778{
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1781}
1782
8159f87e 1783static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1784{
831451ac
PZ
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1787
dd41f596 1788 sched_info_queued(p);
fd390f6a 1789 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1790 p->se.on_rq = 1;
71f8bd46
IM
1791}
1792
69be72c1 1793static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1794{
831451ac
PZ
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1803 }
2087a1ad
GH
1804 }
1805
46ac22ba 1806 sched_info_dequeued(p);
f02231e5 1807 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1808 p->se.on_rq = 0;
71f8bd46
IM
1809}
1810
14531189 1811/*
dd41f596 1812 * __normal_prio - return the priority that is based on the static prio
14531189 1813 */
14531189
IM
1814static inline int __normal_prio(struct task_struct *p)
1815{
dd41f596 1816 return p->static_prio;
14531189
IM
1817}
1818
b29739f9
IM
1819/*
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1825 */
36c8b586 1826static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1827{
1828 int prio;
1829
e05606d3 1830 if (task_has_rt_policy(p))
b29739f9
IM
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1835}
1836
1837/*
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1843 */
36c8b586 1844static int effective_prio(struct task_struct *p)
b29739f9
IM
1845{
1846 p->normal_prio = normal_prio(p);
1847 /*
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1851 */
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1855}
1856
1da177e4 1857/*
dd41f596 1858 * activate_task - move a task to the runqueue.
1da177e4 1859 */
dd41f596 1860static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1861{
d9514f6c 1862 if (task_contributes_to_load(p))
dd41f596 1863 rq->nr_uninterruptible--;
1da177e4 1864
8159f87e 1865 enqueue_task(rq, p, wakeup);
c09595f6 1866 inc_nr_running(rq);
1da177e4
LT
1867}
1868
1da177e4
LT
1869/*
1870 * deactivate_task - remove a task from the runqueue.
1871 */
2e1cb74a 1872static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1873{
d9514f6c 1874 if (task_contributes_to_load(p))
dd41f596
IM
1875 rq->nr_uninterruptible++;
1876
69be72c1 1877 dequeue_task(rq, p, sleep);
c09595f6 1878 dec_nr_running(rq);
1da177e4
LT
1879}
1880
1da177e4
LT
1881/**
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1884 */
36c8b586 1885inline int task_curr(const struct task_struct *p)
1da177e4
LT
1886{
1887 return cpu_curr(task_cpu(p)) == p;
1888}
1889
dd41f596
IM
1890static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891{
6f505b16 1892 set_task_rq(p, cpu);
dd41f596 1893#ifdef CONFIG_SMP
ce96b5ac
DA
1894 /*
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1898 */
1899 smp_wmb();
dd41f596 1900 task_thread_info(p)->cpu = cpu;
dd41f596 1901#endif
2dd73a4f
PW
1902}
1903
cb469845
SR
1904static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1907{
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1914}
1915
1da177e4 1916#ifdef CONFIG_SMP
c65cc870 1917
e958b360
TG
1918/* Used instead of source_load when we know the type == 0 */
1919static unsigned long weighted_cpuload(const int cpu)
1920{
1921 return cpu_rq(cpu)->load.weight;
1922}
1923
cc367732
IM
1924/*
1925 * Is this task likely cache-hot:
1926 */
e7693a36 1927static int
cc367732
IM
1928task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929{
1930 s64 delta;
1931
f540a608
IM
1932 /*
1933 * Buddy candidates are cache hot:
1934 */
4793241b
PZ
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1938 return 1;
1939
cc367732
IM
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1942
6bc1665b
IM
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1947
cc367732
IM
1948 delta = now - p->se.exec_start;
1949
1950 return delta < (s64)sysctl_sched_migration_cost;
1951}
1952
1953
dd41f596 1954void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1955{
dd41f596
IM
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1960 u64 clock_offset;
dd41f596
IM
1961
1962 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1963
de1d7286 1964 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1965
6cfb0d5d
IM
1966#ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
dd41f596
IM
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
6c594c21 1973#endif
cc367732 1974 if (old_cpu != new_cpu) {
6c594c21 1975 p->se.nr_migrations++;
23a185ca 1976 new_rq->nr_migrations_in++;
6c594c21 1977#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1980#endif
3f731ca6 1981 perf_counter_task_migration(p, new_cpu);
6c594c21 1982 }
2830cf8c
SV
1983 p->se.vruntime -= old_cfsrq->min_vruntime -
1984 new_cfsrq->min_vruntime;
dd41f596
IM
1985
1986 __set_task_cpu(p, new_cpu);
c65cc870
IM
1987}
1988
70b97a7f 1989struct migration_req {
1da177e4 1990 struct list_head list;
1da177e4 1991
36c8b586 1992 struct task_struct *task;
1da177e4
LT
1993 int dest_cpu;
1994
1da177e4 1995 struct completion done;
70b97a7f 1996};
1da177e4
LT
1997
1998/*
1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread.
2001 */
36c8b586 2002static int
70b97a7f 2003migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2004{
70b97a7f 2005 struct rq *rq = task_rq(p);
1da177e4
LT
2006
2007 /*
2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field.
2010 */
dd41f596 2011 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2012 set_task_cpu(p, dest_cpu);
2013 return 0;
2014 }
2015
2016 init_completion(&req->done);
1da177e4
LT
2017 req->task = p;
2018 req->dest_cpu = dest_cpu;
2019 list_add(&req->list, &rq->migration_queue);
48f24c4d 2020
1da177e4
LT
2021 return 1;
2022}
2023
a26b89f0
MM
2024/*
2025 * wait_task_context_switch - wait for a thread to complete at least one
2026 * context switch.
2027 *
2028 * @p must not be current.
2029 */
2030void wait_task_context_switch(struct task_struct *p)
2031{
2032 unsigned long nvcsw, nivcsw, flags;
2033 int running;
2034 struct rq *rq;
2035
2036 nvcsw = p->nvcsw;
2037 nivcsw = p->nivcsw;
2038 for (;;) {
2039 /*
2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock.
2042 *
2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every
2045 * iteration.
2046 */
2047 rq = task_rq_lock(p, &flags);
2048 running = task_running(rq, p);
2049 task_rq_unlock(rq, &flags);
2050
2051 if (likely(!running))
2052 break;
2053 /*
2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed.
2057 */
2058 if ((p->nvcsw - nvcsw) > 1)
2059 break;
2060 if ((p->nivcsw - nivcsw) > 1)
2061 break;
2062
2063 cpu_relax();
2064 }
2065}
2066
1da177e4
LT
2067/*
2068 * wait_task_inactive - wait for a thread to unschedule.
2069 *
85ba2d86
RM
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2076 *
1da177e4
LT
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2082 */
85ba2d86 2083unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2084{
2085 unsigned long flags;
dd41f596 2086 int running, on_rq;
85ba2d86 2087 unsigned long ncsw;
70b97a7f 2088 struct rq *rq;
1da177e4 2089
3a5c359a
AK
2090 for (;;) {
2091 /*
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2095 * work out!
2096 */
2097 rq = task_rq(p);
fa490cfd 2098
3a5c359a
AK
2099 /*
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2102 * any locks.
2103 *
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2109 */
85ba2d86
RM
2110 while (task_running(rq, p)) {
2111 if (match_state && unlikely(p->state != match_state))
2112 return 0;
3a5c359a 2113 cpu_relax();
85ba2d86 2114 }
fa490cfd 2115
3a5c359a
AK
2116 /*
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2120 */
2121 rq = task_rq_lock(p, &flags);
0a16b607 2122 trace_sched_wait_task(rq, p);
3a5c359a
AK
2123 running = task_running(rq, p);
2124 on_rq = p->se.on_rq;
85ba2d86 2125 ncsw = 0;
f31e11d8 2126 if (!match_state || p->state == match_state)
93dcf55f 2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2128 task_rq_unlock(rq, &flags);
fa490cfd 2129
85ba2d86
RM
2130 /*
2131 * If it changed from the expected state, bail out now.
2132 */
2133 if (unlikely(!ncsw))
2134 break;
2135
3a5c359a
AK
2136 /*
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2139 *
2140 * Oops. Go back and try again..
2141 */
2142 if (unlikely(running)) {
2143 cpu_relax();
2144 continue;
2145 }
fa490cfd 2146
3a5c359a
AK
2147 /*
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2150 * preempted!
2151 *
80dd99b3 2152 * So if it was still runnable (but just not actively
3a5c359a
AK
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2155 */
2156 if (unlikely(on_rq)) {
2157 schedule_timeout_uninterruptible(1);
2158 continue;
2159 }
fa490cfd 2160
3a5c359a
AK
2161 /*
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2165 */
2166 break;
2167 }
85ba2d86
RM
2168
2169 return ncsw;
1da177e4
LT
2170}
2171
2172/***
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2175 *
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2178 *
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2183 * achieved as well.
2184 */
36c8b586 2185void kick_process(struct task_struct *p)
1da177e4
LT
2186{
2187 int cpu;
2188
2189 preempt_disable();
2190 cpu = task_cpu(p);
2191 if ((cpu != smp_processor_id()) && task_curr(p))
2192 smp_send_reschedule(cpu);
2193 preempt_enable();
2194}
b43e3521 2195EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2196
2197/*
2dd73a4f
PW
2198 * Return a low guess at the load of a migration-source cpu weighted
2199 * according to the scheduling class and "nice" value.
1da177e4
LT
2200 *
2201 * We want to under-estimate the load of migration sources, to
2202 * balance conservatively.
2203 */
a9957449 2204static unsigned long source_load(int cpu, int type)
1da177e4 2205{
70b97a7f 2206 struct rq *rq = cpu_rq(cpu);
dd41f596 2207 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2208
93b75217 2209 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2210 return total;
b910472d 2211
dd41f596 2212 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2213}
2214
2215/*
2dd73a4f
PW
2216 * Return a high guess at the load of a migration-target cpu weighted
2217 * according to the scheduling class and "nice" value.
1da177e4 2218 */
a9957449 2219static unsigned long target_load(int cpu, int type)
1da177e4 2220{
70b97a7f 2221 struct rq *rq = cpu_rq(cpu);
dd41f596 2222 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2223
93b75217 2224 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2225 return total;
3b0bd9bc 2226
dd41f596 2227 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2228}
2229
147cbb4b
NP
2230/*
2231 * find_idlest_group finds and returns the least busy CPU group within the
2232 * domain.
2233 */
2234static struct sched_group *
2235find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2236{
2237 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2238 unsigned long min_load = ULONG_MAX, this_load = 0;
2239 int load_idx = sd->forkexec_idx;
2240 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2241
2242 do {
2243 unsigned long load, avg_load;
2244 int local_group;
2245 int i;
2246
da5a5522 2247 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2248 if (!cpumask_intersects(sched_group_cpus(group),
2249 &p->cpus_allowed))
3a5c359a 2250 continue;
da5a5522 2251
758b2cdc
RR
2252 local_group = cpumask_test_cpu(this_cpu,
2253 sched_group_cpus(group));
147cbb4b
NP
2254
2255 /* Tally up the load of all CPUs in the group */
2256 avg_load = 0;
2257
758b2cdc 2258 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2259 /* Bias balancing toward cpus of our domain */
2260 if (local_group)
2261 load = source_load(i, load_idx);
2262 else
2263 load = target_load(i, load_idx);
2264
2265 avg_load += load;
2266 }
2267
2268 /* Adjust by relative CPU power of the group */
5517d86b
ED
2269 avg_load = sg_div_cpu_power(group,
2270 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2271
2272 if (local_group) {
2273 this_load = avg_load;
2274 this = group;
2275 } else if (avg_load < min_load) {
2276 min_load = avg_load;
2277 idlest = group;
2278 }
3a5c359a 2279 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2280
2281 if (!idlest || 100*this_load < imbalance*min_load)
2282 return NULL;
2283 return idlest;
2284}
2285
2286/*
0feaece9 2287 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2288 */
95cdf3b7 2289static int
758b2cdc 2290find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2291{
2292 unsigned long load, min_load = ULONG_MAX;
2293 int idlest = -1;
2294 int i;
2295
da5a5522 2296 /* Traverse only the allowed CPUs */
758b2cdc 2297 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2298 load = weighted_cpuload(i);
147cbb4b
NP
2299
2300 if (load < min_load || (load == min_load && i == this_cpu)) {
2301 min_load = load;
2302 idlest = i;
2303 }
2304 }
2305
2306 return idlest;
2307}
2308
476d139c
NP
2309/*
2310 * sched_balance_self: balance the current task (running on cpu) in domains
2311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2312 * SD_BALANCE_EXEC.
2313 *
2314 * Balance, ie. select the least loaded group.
2315 *
2316 * Returns the target CPU number, or the same CPU if no balancing is needed.
2317 *
2318 * preempt must be disabled.
2319 */
2320static int sched_balance_self(int cpu, int flag)
2321{
2322 struct task_struct *t = current;
2323 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2324
c96d145e 2325 for_each_domain(cpu, tmp) {
9761eea8
IM
2326 /*
2327 * If power savings logic is enabled for a domain, stop there.
2328 */
5c45bf27
SS
2329 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2330 break;
476d139c
NP
2331 if (tmp->flags & flag)
2332 sd = tmp;
c96d145e 2333 }
476d139c 2334
039a1c41
PZ
2335 if (sd)
2336 update_shares(sd);
2337
476d139c 2338 while (sd) {
476d139c 2339 struct sched_group *group;
1a848870
SS
2340 int new_cpu, weight;
2341
2342 if (!(sd->flags & flag)) {
2343 sd = sd->child;
2344 continue;
2345 }
476d139c 2346
476d139c 2347 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2348 if (!group) {
2349 sd = sd->child;
2350 continue;
2351 }
476d139c 2352
758b2cdc 2353 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2354 if (new_cpu == -1 || new_cpu == cpu) {
2355 /* Now try balancing at a lower domain level of cpu */
2356 sd = sd->child;
2357 continue;
2358 }
476d139c 2359
1a848870 2360 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2361 cpu = new_cpu;
758b2cdc 2362 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2363 sd = NULL;
476d139c 2364 for_each_domain(cpu, tmp) {
758b2cdc 2365 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2366 break;
2367 if (tmp->flags & flag)
2368 sd = tmp;
2369 }
2370 /* while loop will break here if sd == NULL */
2371 }
2372
2373 return cpu;
2374}
2375
2376#endif /* CONFIG_SMP */
1da177e4 2377
0793a61d
TG
2378/**
2379 * task_oncpu_function_call - call a function on the cpu on which a task runs
2380 * @p: the task to evaluate
2381 * @func: the function to be called
2382 * @info: the function call argument
2383 *
2384 * Calls the function @func when the task is currently running. This might
2385 * be on the current CPU, which just calls the function directly
2386 */
2387void task_oncpu_function_call(struct task_struct *p,
2388 void (*func) (void *info), void *info)
2389{
2390 int cpu;
2391
2392 preempt_disable();
2393 cpu = task_cpu(p);
2394 if (task_curr(p))
2395 smp_call_function_single(cpu, func, info, 1);
2396 preempt_enable();
2397}
2398
1da177e4
LT
2399/***
2400 * try_to_wake_up - wake up a thread
2401 * @p: the to-be-woken-up thread
2402 * @state: the mask of task states that can be woken
2403 * @sync: do a synchronous wakeup?
2404 *
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2410 *
2411 * returns failure only if the task is already active.
2412 */
36c8b586 2413static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2414{
cc367732 2415 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2416 unsigned long flags;
2417 long old_state;
70b97a7f 2418 struct rq *rq;
1da177e4 2419
b85d0667
IM
2420 if (!sched_feat(SYNC_WAKEUPS))
2421 sync = 0;
2422
2398f2c6 2423#ifdef CONFIG_SMP
57310a98 2424 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2425 struct sched_domain *sd;
2426
2427 this_cpu = raw_smp_processor_id();
2428 cpu = task_cpu(p);
2429
2430 for_each_domain(this_cpu, sd) {
758b2cdc 2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2432 update_shares(sd);
2433 break;
2434 }
2435 }
2436 }
2437#endif
2438
04e2f174 2439 smp_wmb();
1da177e4 2440 rq = task_rq_lock(p, &flags);
03e89e45 2441 update_rq_clock(rq);
1da177e4
LT
2442 old_state = p->state;
2443 if (!(old_state & state))
2444 goto out;
2445
dd41f596 2446 if (p->se.on_rq)
1da177e4
LT
2447 goto out_running;
2448
2449 cpu = task_cpu(p);
cc367732 2450 orig_cpu = cpu;
1da177e4
LT
2451 this_cpu = smp_processor_id();
2452
2453#ifdef CONFIG_SMP
2454 if (unlikely(task_running(rq, p)))
2455 goto out_activate;
2456
5d2f5a61
DA
2457 cpu = p->sched_class->select_task_rq(p, sync);
2458 if (cpu != orig_cpu) {
2459 set_task_cpu(p, cpu);
1da177e4
LT
2460 task_rq_unlock(rq, &flags);
2461 /* might preempt at this point */
2462 rq = task_rq_lock(p, &flags);
2463 old_state = p->state;
2464 if (!(old_state & state))
2465 goto out;
dd41f596 2466 if (p->se.on_rq)
1da177e4
LT
2467 goto out_running;
2468
2469 this_cpu = smp_processor_id();
2470 cpu = task_cpu(p);
2471 }
2472
e7693a36
GH
2473#ifdef CONFIG_SCHEDSTATS
2474 schedstat_inc(rq, ttwu_count);
2475 if (cpu == this_cpu)
2476 schedstat_inc(rq, ttwu_local);
2477 else {
2478 struct sched_domain *sd;
2479 for_each_domain(this_cpu, sd) {
758b2cdc 2480 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2481 schedstat_inc(sd, ttwu_wake_remote);
2482 break;
2483 }
2484 }
2485 }
6d6bc0ad 2486#endif /* CONFIG_SCHEDSTATS */
e7693a36 2487
1da177e4
LT
2488out_activate:
2489#endif /* CONFIG_SMP */
cc367732
IM
2490 schedstat_inc(p, se.nr_wakeups);
2491 if (sync)
2492 schedstat_inc(p, se.nr_wakeups_sync);
2493 if (orig_cpu != cpu)
2494 schedstat_inc(p, se.nr_wakeups_migrate);
2495 if (cpu == this_cpu)
2496 schedstat_inc(p, se.nr_wakeups_local);
2497 else
2498 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2499 activate_task(rq, p, 1);
1da177e4
LT
2500 success = 1;
2501
831451ac
PZ
2502 /*
2503 * Only attribute actual wakeups done by this task.
2504 */
2505 if (!in_interrupt()) {
2506 struct sched_entity *se = &current->se;
2507 u64 sample = se->sum_exec_runtime;
2508
2509 if (se->last_wakeup)
2510 sample -= se->last_wakeup;
2511 else
2512 sample -= se->start_runtime;
2513 update_avg(&se->avg_wakeup, sample);
2514
2515 se->last_wakeup = se->sum_exec_runtime;
2516 }
2517
1da177e4 2518out_running:
468a15bb 2519 trace_sched_wakeup(rq, p, success);
15afe09b 2520 check_preempt_curr(rq, p, sync);
4ae7d5ce 2521
1da177e4 2522 p->state = TASK_RUNNING;
9a897c5a
SR
2523#ifdef CONFIG_SMP
2524 if (p->sched_class->task_wake_up)
2525 p->sched_class->task_wake_up(rq, p);
2526#endif
1da177e4
LT
2527out:
2528 task_rq_unlock(rq, &flags);
2529
2530 return success;
2531}
2532
50fa610a
DH
2533/**
2534 * wake_up_process - Wake up a specific process
2535 * @p: The process to be woken up.
2536 *
2537 * Attempt to wake up the nominated process and move it to the set of runnable
2538 * processes. Returns 1 if the process was woken up, 0 if it was already
2539 * running.
2540 *
2541 * It may be assumed that this function implies a write memory barrier before
2542 * changing the task state if and only if any tasks are woken up.
2543 */
7ad5b3a5 2544int wake_up_process(struct task_struct *p)
1da177e4 2545{
d9514f6c 2546 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2547}
1da177e4
LT
2548EXPORT_SYMBOL(wake_up_process);
2549
7ad5b3a5 2550int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2551{
2552 return try_to_wake_up(p, state, 0);
2553}
2554
1da177e4
LT
2555/*
2556 * Perform scheduler related setup for a newly forked process p.
2557 * p is forked by current.
dd41f596
IM
2558 *
2559 * __sched_fork() is basic setup used by init_idle() too:
2560 */
2561static void __sched_fork(struct task_struct *p)
2562{
dd41f596
IM
2563 p->se.exec_start = 0;
2564 p->se.sum_exec_runtime = 0;
f6cf891c 2565 p->se.prev_sum_exec_runtime = 0;
6c594c21 2566 p->se.nr_migrations = 0;
4ae7d5ce
IM
2567 p->se.last_wakeup = 0;
2568 p->se.avg_overlap = 0;
831451ac
PZ
2569 p->se.start_runtime = 0;
2570 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2571
2572#ifdef CONFIG_SCHEDSTATS
2573 p->se.wait_start = 0;
dd41f596
IM
2574 p->se.sum_sleep_runtime = 0;
2575 p->se.sleep_start = 0;
dd41f596
IM
2576 p->se.block_start = 0;
2577 p->se.sleep_max = 0;
2578 p->se.block_max = 0;
2579 p->se.exec_max = 0;
eba1ed4b 2580 p->se.slice_max = 0;
dd41f596 2581 p->se.wait_max = 0;
6cfb0d5d 2582#endif
476d139c 2583
fa717060 2584 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2585 p->se.on_rq = 0;
4a55bd5e 2586 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2587
e107be36
AK
2588#ifdef CONFIG_PREEMPT_NOTIFIERS
2589 INIT_HLIST_HEAD(&p->preempt_notifiers);
2590#endif
2591
1da177e4
LT
2592 /*
2593 * We mark the process as running here, but have not actually
2594 * inserted it onto the runqueue yet. This guarantees that
2595 * nobody will actually run it, and a signal or other external
2596 * event cannot wake it up and insert it on the runqueue either.
2597 */
2598 p->state = TASK_RUNNING;
dd41f596
IM
2599}
2600
2601/*
2602 * fork()/clone()-time setup:
2603 */
2604void sched_fork(struct task_struct *p, int clone_flags)
2605{
2606 int cpu = get_cpu();
2607
2608 __sched_fork(p);
2609
2610#ifdef CONFIG_SMP
2611 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2612#endif
02e4bac2 2613 set_task_cpu(p, cpu);
b29739f9
IM
2614
2615 /*
ca94c442
LP
2616 * Revert to default priority/policy on fork if requested. Make sure we
2617 * do not leak PI boosting priority to the child.
b29739f9 2618 */
ca94c442
LP
2619 if (current->sched_reset_on_fork &&
2620 (p->policy == SCHED_FIFO || p->policy == SCHED_RR))
2621 p->policy = SCHED_NORMAL;
2622
2623 if (current->sched_reset_on_fork &&
2624 (current->normal_prio < DEFAULT_PRIO))
2625 p->prio = DEFAULT_PRIO;
2626 else
2627 p->prio = current->normal_prio;
2628
2ddbf952
HS
2629 if (!rt_prio(p->prio))
2630 p->sched_class = &fair_sched_class;
b29739f9 2631
ca94c442
LP
2632 /*
2633 * We don't need the reset flag anymore after the fork. It has
2634 * fulfilled its duty:
2635 */
2636 p->sched_reset_on_fork = 0;
2637
52f17b6c 2638#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2639 if (likely(sched_info_on()))
52f17b6c 2640 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2641#endif
d6077cb8 2642#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2643 p->oncpu = 0;
2644#endif
1da177e4 2645#ifdef CONFIG_PREEMPT
4866cde0 2646 /* Want to start with kernel preemption disabled. */
a1261f54 2647 task_thread_info(p)->preempt_count = 1;
1da177e4 2648#endif
917b627d
GH
2649 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2650
476d139c 2651 put_cpu();
1da177e4
LT
2652}
2653
2654/*
2655 * wake_up_new_task - wake up a newly created task for the first time.
2656 *
2657 * This function will do some initial scheduler statistics housekeeping
2658 * that must be done for every newly created context, then puts the task
2659 * on the runqueue and wakes it.
2660 */
7ad5b3a5 2661void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2662{
2663 unsigned long flags;
dd41f596 2664 struct rq *rq;
1da177e4
LT
2665
2666 rq = task_rq_lock(p, &flags);
147cbb4b 2667 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2668 update_rq_clock(rq);
1da177e4
LT
2669
2670 p->prio = effective_prio(p);
2671
b9dca1e0 2672 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2673 activate_task(rq, p, 0);
1da177e4 2674 } else {
1da177e4 2675 /*
dd41f596
IM
2676 * Let the scheduling class do new task startup
2677 * management (if any):
1da177e4 2678 */
ee0827d8 2679 p->sched_class->task_new(rq, p);
c09595f6 2680 inc_nr_running(rq);
1da177e4 2681 }
c71dd42d 2682 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2683 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2684#ifdef CONFIG_SMP
2685 if (p->sched_class->task_wake_up)
2686 p->sched_class->task_wake_up(rq, p);
2687#endif
dd41f596 2688 task_rq_unlock(rq, &flags);
1da177e4
LT
2689}
2690
e107be36
AK
2691#ifdef CONFIG_PREEMPT_NOTIFIERS
2692
2693/**
80dd99b3 2694 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2695 * @notifier: notifier struct to register
e107be36
AK
2696 */
2697void preempt_notifier_register(struct preempt_notifier *notifier)
2698{
2699 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2700}
2701EXPORT_SYMBOL_GPL(preempt_notifier_register);
2702
2703/**
2704 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2705 * @notifier: notifier struct to unregister
e107be36
AK
2706 *
2707 * This is safe to call from within a preemption notifier.
2708 */
2709void preempt_notifier_unregister(struct preempt_notifier *notifier)
2710{
2711 hlist_del(&notifier->link);
2712}
2713EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2714
2715static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2716{
2717 struct preempt_notifier *notifier;
2718 struct hlist_node *node;
2719
2720 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2721 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2722}
2723
2724static void
2725fire_sched_out_preempt_notifiers(struct task_struct *curr,
2726 struct task_struct *next)
2727{
2728 struct preempt_notifier *notifier;
2729 struct hlist_node *node;
2730
2731 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2732 notifier->ops->sched_out(notifier, next);
2733}
2734
6d6bc0ad 2735#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2736
2737static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2738{
2739}
2740
2741static void
2742fire_sched_out_preempt_notifiers(struct task_struct *curr,
2743 struct task_struct *next)
2744{
2745}
2746
6d6bc0ad 2747#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2748
4866cde0
NP
2749/**
2750 * prepare_task_switch - prepare to switch tasks
2751 * @rq: the runqueue preparing to switch
421cee29 2752 * @prev: the current task that is being switched out
4866cde0
NP
2753 * @next: the task we are going to switch to.
2754 *
2755 * This is called with the rq lock held and interrupts off. It must
2756 * be paired with a subsequent finish_task_switch after the context
2757 * switch.
2758 *
2759 * prepare_task_switch sets up locking and calls architecture specific
2760 * hooks.
2761 */
e107be36
AK
2762static inline void
2763prepare_task_switch(struct rq *rq, struct task_struct *prev,
2764 struct task_struct *next)
4866cde0 2765{
e107be36 2766 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2767 prepare_lock_switch(rq, next);
2768 prepare_arch_switch(next);
2769}
2770
1da177e4
LT
2771/**
2772 * finish_task_switch - clean up after a task-switch
344babaa 2773 * @rq: runqueue associated with task-switch
1da177e4
LT
2774 * @prev: the thread we just switched away from.
2775 *
4866cde0
NP
2776 * finish_task_switch must be called after the context switch, paired
2777 * with a prepare_task_switch call before the context switch.
2778 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2779 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2780 *
2781 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2782 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2783 * with the lock held can cause deadlocks; see schedule() for
2784 * details.)
2785 */
a9957449 2786static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2787 __releases(rq->lock)
2788{
1da177e4 2789 struct mm_struct *mm = rq->prev_mm;
55a101f8 2790 long prev_state;
967fc046
GH
2791#ifdef CONFIG_SMP
2792 int post_schedule = 0;
2793
2794 if (current->sched_class->needs_post_schedule)
2795 post_schedule = current->sched_class->needs_post_schedule(rq);
2796#endif
1da177e4
LT
2797
2798 rq->prev_mm = NULL;
2799
2800 /*
2801 * A task struct has one reference for the use as "current".
c394cc9f 2802 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2803 * schedule one last time. The schedule call will never return, and
2804 * the scheduled task must drop that reference.
c394cc9f 2805 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2806 * still held, otherwise prev could be scheduled on another cpu, die
2807 * there before we look at prev->state, and then the reference would
2808 * be dropped twice.
2809 * Manfred Spraul <manfred@colorfullife.com>
2810 */
55a101f8 2811 prev_state = prev->state;
4866cde0 2812 finish_arch_switch(prev);
0793a61d 2813 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2814 finish_lock_switch(rq, prev);
9a897c5a 2815#ifdef CONFIG_SMP
967fc046 2816 if (post_schedule)
9a897c5a
SR
2817 current->sched_class->post_schedule(rq);
2818#endif
e8fa1362 2819
e107be36 2820 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2821 if (mm)
2822 mmdrop(mm);
c394cc9f 2823 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2824 /*
2825 * Remove function-return probe instances associated with this
2826 * task and put them back on the free list.
9761eea8 2827 */
c6fd91f0 2828 kprobe_flush_task(prev);
1da177e4 2829 put_task_struct(prev);
c6fd91f0 2830 }
1da177e4
LT
2831}
2832
2833/**
2834 * schedule_tail - first thing a freshly forked thread must call.
2835 * @prev: the thread we just switched away from.
2836 */
36c8b586 2837asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2838 __releases(rq->lock)
2839{
70b97a7f
IM
2840 struct rq *rq = this_rq();
2841
4866cde0
NP
2842 finish_task_switch(rq, prev);
2843#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2844 /* In this case, finish_task_switch does not reenable preemption */
2845 preempt_enable();
2846#endif
1da177e4 2847 if (current->set_child_tid)
b488893a 2848 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2849}
2850
2851/*
2852 * context_switch - switch to the new MM and the new
2853 * thread's register state.
2854 */
dd41f596 2855static inline void
70b97a7f 2856context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2857 struct task_struct *next)
1da177e4 2858{
dd41f596 2859 struct mm_struct *mm, *oldmm;
1da177e4 2860
e107be36 2861 prepare_task_switch(rq, prev, next);
0a16b607 2862 trace_sched_switch(rq, prev, next);
dd41f596
IM
2863 mm = next->mm;
2864 oldmm = prev->active_mm;
9226d125
ZA
2865 /*
2866 * For paravirt, this is coupled with an exit in switch_to to
2867 * combine the page table reload and the switch backend into
2868 * one hypercall.
2869 */
224101ed 2870 arch_start_context_switch(prev);
9226d125 2871
dd41f596 2872 if (unlikely(!mm)) {
1da177e4
LT
2873 next->active_mm = oldmm;
2874 atomic_inc(&oldmm->mm_count);
2875 enter_lazy_tlb(oldmm, next);
2876 } else
2877 switch_mm(oldmm, mm, next);
2878
dd41f596 2879 if (unlikely(!prev->mm)) {
1da177e4 2880 prev->active_mm = NULL;
1da177e4
LT
2881 rq->prev_mm = oldmm;
2882 }
3a5f5e48
IM
2883 /*
2884 * Since the runqueue lock will be released by the next
2885 * task (which is an invalid locking op but in the case
2886 * of the scheduler it's an obvious special-case), so we
2887 * do an early lockdep release here:
2888 */
2889#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2890 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2891#endif
1da177e4
LT
2892
2893 /* Here we just switch the register state and the stack. */
2894 switch_to(prev, next, prev);
2895
dd41f596
IM
2896 barrier();
2897 /*
2898 * this_rq must be evaluated again because prev may have moved
2899 * CPUs since it called schedule(), thus the 'rq' on its stack
2900 * frame will be invalid.
2901 */
2902 finish_task_switch(this_rq(), prev);
1da177e4
LT
2903}
2904
2905/*
2906 * nr_running, nr_uninterruptible and nr_context_switches:
2907 *
2908 * externally visible scheduler statistics: current number of runnable
2909 * threads, current number of uninterruptible-sleeping threads, total
2910 * number of context switches performed since bootup.
2911 */
2912unsigned long nr_running(void)
2913{
2914 unsigned long i, sum = 0;
2915
2916 for_each_online_cpu(i)
2917 sum += cpu_rq(i)->nr_running;
2918
2919 return sum;
2920}
2921
2922unsigned long nr_uninterruptible(void)
2923{
2924 unsigned long i, sum = 0;
2925
0a945022 2926 for_each_possible_cpu(i)
1da177e4
LT
2927 sum += cpu_rq(i)->nr_uninterruptible;
2928
2929 /*
2930 * Since we read the counters lockless, it might be slightly
2931 * inaccurate. Do not allow it to go below zero though:
2932 */
2933 if (unlikely((long)sum < 0))
2934 sum = 0;
2935
2936 return sum;
2937}
2938
2939unsigned long long nr_context_switches(void)
2940{
cc94abfc
SR
2941 int i;
2942 unsigned long long sum = 0;
1da177e4 2943
0a945022 2944 for_each_possible_cpu(i)
1da177e4
LT
2945 sum += cpu_rq(i)->nr_switches;
2946
2947 return sum;
2948}
2949
2950unsigned long nr_iowait(void)
2951{
2952 unsigned long i, sum = 0;
2953
0a945022 2954 for_each_possible_cpu(i)
1da177e4
LT
2955 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2956
2957 return sum;
2958}
2959
dce48a84
TG
2960/* Variables and functions for calc_load */
2961static atomic_long_t calc_load_tasks;
2962static unsigned long calc_load_update;
2963unsigned long avenrun[3];
2964EXPORT_SYMBOL(avenrun);
2965
2d02494f
TG
2966/**
2967 * get_avenrun - get the load average array
2968 * @loads: pointer to dest load array
2969 * @offset: offset to add
2970 * @shift: shift count to shift the result left
2971 *
2972 * These values are estimates at best, so no need for locking.
2973 */
2974void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2975{
2976 loads[0] = (avenrun[0] + offset) << shift;
2977 loads[1] = (avenrun[1] + offset) << shift;
2978 loads[2] = (avenrun[2] + offset) << shift;
2979}
2980
dce48a84
TG
2981static unsigned long
2982calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2983{
dce48a84
TG
2984 load *= exp;
2985 load += active * (FIXED_1 - exp);
2986 return load >> FSHIFT;
2987}
db1b1fef 2988
dce48a84
TG
2989/*
2990 * calc_load - update the avenrun load estimates 10 ticks after the
2991 * CPUs have updated calc_load_tasks.
2992 */
2993void calc_global_load(void)
2994{
2995 unsigned long upd = calc_load_update + 10;
2996 long active;
2997
2998 if (time_before(jiffies, upd))
2999 return;
db1b1fef 3000
dce48a84
TG
3001 active = atomic_long_read(&calc_load_tasks);
3002 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3003
dce48a84
TG
3004 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3005 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3006 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3007
3008 calc_load_update += LOAD_FREQ;
3009}
3010
3011/*
3012 * Either called from update_cpu_load() or from a cpu going idle
3013 */
3014static void calc_load_account_active(struct rq *this_rq)
3015{
3016 long nr_active, delta;
3017
3018 nr_active = this_rq->nr_running;
3019 nr_active += (long) this_rq->nr_uninterruptible;
3020
3021 if (nr_active != this_rq->calc_load_active) {
3022 delta = nr_active - this_rq->calc_load_active;
3023 this_rq->calc_load_active = nr_active;
3024 atomic_long_add(delta, &calc_load_tasks);
3025 }
db1b1fef
JS
3026}
3027
23a185ca
PM
3028/*
3029 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3030 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3031 */
23a185ca
PM
3032u64 cpu_nr_migrations(int cpu)
3033{
3034 return cpu_rq(cpu)->nr_migrations_in;
3035}
3036
48f24c4d 3037/*
dd41f596
IM
3038 * Update rq->cpu_load[] statistics. This function is usually called every
3039 * scheduler tick (TICK_NSEC).
48f24c4d 3040 */
dd41f596 3041static void update_cpu_load(struct rq *this_rq)
48f24c4d 3042{
495eca49 3043 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3044 int i, scale;
3045
3046 this_rq->nr_load_updates++;
dd41f596
IM
3047
3048 /* Update our load: */
3049 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3050 unsigned long old_load, new_load;
3051
3052 /* scale is effectively 1 << i now, and >> i divides by scale */
3053
3054 old_load = this_rq->cpu_load[i];
3055 new_load = this_load;
a25707f3
IM
3056 /*
3057 * Round up the averaging division if load is increasing. This
3058 * prevents us from getting stuck on 9 if the load is 10, for
3059 * example.
3060 */
3061 if (new_load > old_load)
3062 new_load += scale-1;
dd41f596
IM
3063 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3064 }
dce48a84
TG
3065
3066 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3067 this_rq->calc_load_update += LOAD_FREQ;
3068 calc_load_account_active(this_rq);
3069 }
48f24c4d
IM
3070}
3071
dd41f596
IM
3072#ifdef CONFIG_SMP
3073
1da177e4
LT
3074/*
3075 * double_rq_lock - safely lock two runqueues
3076 *
3077 * Note this does not disable interrupts like task_rq_lock,
3078 * you need to do so manually before calling.
3079 */
70b97a7f 3080static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3081 __acquires(rq1->lock)
3082 __acquires(rq2->lock)
3083{
054b9108 3084 BUG_ON(!irqs_disabled());
1da177e4
LT
3085 if (rq1 == rq2) {
3086 spin_lock(&rq1->lock);
3087 __acquire(rq2->lock); /* Fake it out ;) */
3088 } else {
c96d145e 3089 if (rq1 < rq2) {
1da177e4 3090 spin_lock(&rq1->lock);
5e710e37 3091 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3092 } else {
3093 spin_lock(&rq2->lock);
5e710e37 3094 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3095 }
3096 }
6e82a3be
IM
3097 update_rq_clock(rq1);
3098 update_rq_clock(rq2);
1da177e4
LT
3099}
3100
3101/*
3102 * double_rq_unlock - safely unlock two runqueues
3103 *
3104 * Note this does not restore interrupts like task_rq_unlock,
3105 * you need to do so manually after calling.
3106 */
70b97a7f 3107static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3108 __releases(rq1->lock)
3109 __releases(rq2->lock)
3110{
3111 spin_unlock(&rq1->lock);
3112 if (rq1 != rq2)
3113 spin_unlock(&rq2->lock);
3114 else
3115 __release(rq2->lock);
3116}
3117
1da177e4
LT
3118/*
3119 * If dest_cpu is allowed for this process, migrate the task to it.
3120 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3121 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3122 * the cpu_allowed mask is restored.
3123 */
36c8b586 3124static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3125{
70b97a7f 3126 struct migration_req req;
1da177e4 3127 unsigned long flags;
70b97a7f 3128 struct rq *rq;
1da177e4
LT
3129
3130 rq = task_rq_lock(p, &flags);
96f874e2 3131 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3132 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3133 goto out;
3134
3135 /* force the process onto the specified CPU */
3136 if (migrate_task(p, dest_cpu, &req)) {
3137 /* Need to wait for migration thread (might exit: take ref). */
3138 struct task_struct *mt = rq->migration_thread;
36c8b586 3139
1da177e4
LT
3140 get_task_struct(mt);
3141 task_rq_unlock(rq, &flags);
3142 wake_up_process(mt);
3143 put_task_struct(mt);
3144 wait_for_completion(&req.done);
36c8b586 3145
1da177e4
LT
3146 return;
3147 }
3148out:
3149 task_rq_unlock(rq, &flags);
3150}
3151
3152/*
476d139c
NP
3153 * sched_exec - execve() is a valuable balancing opportunity, because at
3154 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3155 */
3156void sched_exec(void)
3157{
1da177e4 3158 int new_cpu, this_cpu = get_cpu();
476d139c 3159 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3160 put_cpu();
476d139c
NP
3161 if (new_cpu != this_cpu)
3162 sched_migrate_task(current, new_cpu);
1da177e4
LT
3163}
3164
3165/*
3166 * pull_task - move a task from a remote runqueue to the local runqueue.
3167 * Both runqueues must be locked.
3168 */
dd41f596
IM
3169static void pull_task(struct rq *src_rq, struct task_struct *p,
3170 struct rq *this_rq, int this_cpu)
1da177e4 3171{
2e1cb74a 3172 deactivate_task(src_rq, p, 0);
1da177e4 3173 set_task_cpu(p, this_cpu);
dd41f596 3174 activate_task(this_rq, p, 0);
1da177e4
LT
3175 /*
3176 * Note that idle threads have a prio of MAX_PRIO, for this test
3177 * to be always true for them.
3178 */
15afe09b 3179 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3180}
3181
3182/*
3183 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3184 */
858119e1 3185static
70b97a7f 3186int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3187 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3188 int *all_pinned)
1da177e4 3189{
708dc512 3190 int tsk_cache_hot = 0;
1da177e4
LT
3191 /*
3192 * We do not migrate tasks that are:
3193 * 1) running (obviously), or
3194 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3195 * 3) are cache-hot on their current CPU.
3196 */
96f874e2 3197 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3198 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3199 return 0;
cc367732 3200 }
81026794
NP
3201 *all_pinned = 0;
3202
cc367732
IM
3203 if (task_running(rq, p)) {
3204 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3205 return 0;
cc367732 3206 }
1da177e4 3207
da84d961
IM
3208 /*
3209 * Aggressive migration if:
3210 * 1) task is cache cold, or
3211 * 2) too many balance attempts have failed.
3212 */
3213
708dc512
LH
3214 tsk_cache_hot = task_hot(p, rq->clock, sd);
3215 if (!tsk_cache_hot ||
3216 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3217#ifdef CONFIG_SCHEDSTATS
708dc512 3218 if (tsk_cache_hot) {
da84d961 3219 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3220 schedstat_inc(p, se.nr_forced_migrations);
3221 }
da84d961
IM
3222#endif
3223 return 1;
3224 }
3225
708dc512 3226 if (tsk_cache_hot) {
cc367732 3227 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3228 return 0;
cc367732 3229 }
1da177e4
LT
3230 return 1;
3231}
3232
e1d1484f
PW
3233static unsigned long
3234balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3235 unsigned long max_load_move, struct sched_domain *sd,
3236 enum cpu_idle_type idle, int *all_pinned,
3237 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3238{
051c6764 3239 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3240 struct task_struct *p;
3241 long rem_load_move = max_load_move;
1da177e4 3242
e1d1484f 3243 if (max_load_move == 0)
1da177e4
LT
3244 goto out;
3245
81026794
NP
3246 pinned = 1;
3247
1da177e4 3248 /*
dd41f596 3249 * Start the load-balancing iterator:
1da177e4 3250 */
dd41f596
IM
3251 p = iterator->start(iterator->arg);
3252next:
b82d9fdd 3253 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3254 goto out;
051c6764
PZ
3255
3256 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3257 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3258 p = iterator->next(iterator->arg);
3259 goto next;
1da177e4
LT
3260 }
3261
dd41f596 3262 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3263 pulled++;
dd41f596 3264 rem_load_move -= p->se.load.weight;
1da177e4 3265
7e96fa58
GH
3266#ifdef CONFIG_PREEMPT
3267 /*
3268 * NEWIDLE balancing is a source of latency, so preemptible kernels
3269 * will stop after the first task is pulled to minimize the critical
3270 * section.
3271 */
3272 if (idle == CPU_NEWLY_IDLE)
3273 goto out;
3274#endif
3275
2dd73a4f 3276 /*
b82d9fdd 3277 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3278 */
e1d1484f 3279 if (rem_load_move > 0) {
a4ac01c3
PW
3280 if (p->prio < *this_best_prio)
3281 *this_best_prio = p->prio;
dd41f596
IM
3282 p = iterator->next(iterator->arg);
3283 goto next;
1da177e4
LT
3284 }
3285out:
3286 /*
e1d1484f 3287 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3288 * so we can safely collect pull_task() stats here rather than
3289 * inside pull_task().
3290 */
3291 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3292
3293 if (all_pinned)
3294 *all_pinned = pinned;
e1d1484f
PW
3295
3296 return max_load_move - rem_load_move;
1da177e4
LT
3297}
3298
dd41f596 3299/*
43010659
PW
3300 * move_tasks tries to move up to max_load_move weighted load from busiest to
3301 * this_rq, as part of a balancing operation within domain "sd".
3302 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3303 *
3304 * Called with both runqueues locked.
3305 */
3306static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3307 unsigned long max_load_move,
dd41f596
IM
3308 struct sched_domain *sd, enum cpu_idle_type idle,
3309 int *all_pinned)
3310{
5522d5d5 3311 const struct sched_class *class = sched_class_highest;
43010659 3312 unsigned long total_load_moved = 0;
a4ac01c3 3313 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3314
3315 do {
43010659
PW
3316 total_load_moved +=
3317 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3318 max_load_move - total_load_moved,
a4ac01c3 3319 sd, idle, all_pinned, &this_best_prio);
dd41f596 3320 class = class->next;
c4acb2c0 3321
7e96fa58
GH
3322#ifdef CONFIG_PREEMPT
3323 /*
3324 * NEWIDLE balancing is a source of latency, so preemptible
3325 * kernels will stop after the first task is pulled to minimize
3326 * the critical section.
3327 */
c4acb2c0
GH
3328 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3329 break;
7e96fa58 3330#endif
43010659 3331 } while (class && max_load_move > total_load_moved);
dd41f596 3332
43010659
PW
3333 return total_load_moved > 0;
3334}
3335
e1d1484f
PW
3336static int
3337iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3338 struct sched_domain *sd, enum cpu_idle_type idle,
3339 struct rq_iterator *iterator)
3340{
3341 struct task_struct *p = iterator->start(iterator->arg);
3342 int pinned = 0;
3343
3344 while (p) {
3345 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3346 pull_task(busiest, p, this_rq, this_cpu);
3347 /*
3348 * Right now, this is only the second place pull_task()
3349 * is called, so we can safely collect pull_task()
3350 * stats here rather than inside pull_task().
3351 */
3352 schedstat_inc(sd, lb_gained[idle]);
3353
3354 return 1;
3355 }
3356 p = iterator->next(iterator->arg);
3357 }
3358
3359 return 0;
3360}
3361
43010659
PW
3362/*
3363 * move_one_task tries to move exactly one task from busiest to this_rq, as
3364 * part of active balancing operations within "domain".
3365 * Returns 1 if successful and 0 otherwise.
3366 *
3367 * Called with both runqueues locked.
3368 */
3369static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3370 struct sched_domain *sd, enum cpu_idle_type idle)
3371{
5522d5d5 3372 const struct sched_class *class;
43010659
PW
3373
3374 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3375 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3376 return 1;
3377
3378 return 0;
dd41f596 3379}
67bb6c03 3380/********** Helpers for find_busiest_group ************************/
1da177e4 3381/*
222d656d
GS
3382 * sd_lb_stats - Structure to store the statistics of a sched_domain
3383 * during load balancing.
1da177e4 3384 */
222d656d
GS
3385struct sd_lb_stats {
3386 struct sched_group *busiest; /* Busiest group in this sd */
3387 struct sched_group *this; /* Local group in this sd */
3388 unsigned long total_load; /* Total load of all groups in sd */
3389 unsigned long total_pwr; /* Total power of all groups in sd */
3390 unsigned long avg_load; /* Average load across all groups in sd */
3391
3392 /** Statistics of this group */
3393 unsigned long this_load;
3394 unsigned long this_load_per_task;
3395 unsigned long this_nr_running;
3396
3397 /* Statistics of the busiest group */
3398 unsigned long max_load;
3399 unsigned long busiest_load_per_task;
3400 unsigned long busiest_nr_running;
3401
3402 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3403#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3404 int power_savings_balance; /* Is powersave balance needed for this sd */
3405 struct sched_group *group_min; /* Least loaded group in sd */
3406 struct sched_group *group_leader; /* Group which relieves group_min */
3407 unsigned long min_load_per_task; /* load_per_task in group_min */
3408 unsigned long leader_nr_running; /* Nr running of group_leader */
3409 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3410#endif
222d656d 3411};
1da177e4 3412
d5ac537e 3413/*
381be78f
GS
3414 * sg_lb_stats - stats of a sched_group required for load_balancing
3415 */
3416struct sg_lb_stats {
3417 unsigned long avg_load; /*Avg load across the CPUs of the group */
3418 unsigned long group_load; /* Total load over the CPUs of the group */
3419 unsigned long sum_nr_running; /* Nr tasks running in the group */
3420 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3421 unsigned long group_capacity;
3422 int group_imb; /* Is there an imbalance in the group ? */
3423};
408ed066 3424
67bb6c03
GS
3425/**
3426 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3427 * @group: The group whose first cpu is to be returned.
3428 */
3429static inline unsigned int group_first_cpu(struct sched_group *group)
3430{
3431 return cpumask_first(sched_group_cpus(group));
3432}
3433
3434/**
3435 * get_sd_load_idx - Obtain the load index for a given sched domain.
3436 * @sd: The sched_domain whose load_idx is to be obtained.
3437 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3438 */
3439static inline int get_sd_load_idx(struct sched_domain *sd,
3440 enum cpu_idle_type idle)
3441{
3442 int load_idx;
3443
3444 switch (idle) {
3445 case CPU_NOT_IDLE:
7897986b 3446 load_idx = sd->busy_idx;
67bb6c03
GS
3447 break;
3448
3449 case CPU_NEWLY_IDLE:
7897986b 3450 load_idx = sd->newidle_idx;
67bb6c03
GS
3451 break;
3452 default:
7897986b 3453 load_idx = sd->idle_idx;
67bb6c03
GS
3454 break;
3455 }
1da177e4 3456
67bb6c03
GS
3457 return load_idx;
3458}
1da177e4 3459
1da177e4 3460
c071df18
GS
3461#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3462/**
3463 * init_sd_power_savings_stats - Initialize power savings statistics for
3464 * the given sched_domain, during load balancing.
3465 *
3466 * @sd: Sched domain whose power-savings statistics are to be initialized.
3467 * @sds: Variable containing the statistics for sd.
3468 * @idle: Idle status of the CPU at which we're performing load-balancing.
3469 */
3470static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3471 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3472{
3473 /*
3474 * Busy processors will not participate in power savings
3475 * balance.
3476 */
3477 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3478 sds->power_savings_balance = 0;
3479 else {
3480 sds->power_savings_balance = 1;
3481 sds->min_nr_running = ULONG_MAX;
3482 sds->leader_nr_running = 0;
3483 }
3484}
783609c6 3485
c071df18
GS
3486/**
3487 * update_sd_power_savings_stats - Update the power saving stats for a
3488 * sched_domain while performing load balancing.
3489 *
3490 * @group: sched_group belonging to the sched_domain under consideration.
3491 * @sds: Variable containing the statistics of the sched_domain
3492 * @local_group: Does group contain the CPU for which we're performing
3493 * load balancing ?
3494 * @sgs: Variable containing the statistics of the group.
3495 */
3496static inline void update_sd_power_savings_stats(struct sched_group *group,
3497 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3498{
408ed066 3499
c071df18
GS
3500 if (!sds->power_savings_balance)
3501 return;
1da177e4 3502
c071df18
GS
3503 /*
3504 * If the local group is idle or completely loaded
3505 * no need to do power savings balance at this domain
3506 */
3507 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3508 !sds->this_nr_running))
3509 sds->power_savings_balance = 0;
2dd73a4f 3510
c071df18
GS
3511 /*
3512 * If a group is already running at full capacity or idle,
3513 * don't include that group in power savings calculations
3514 */
3515 if (!sds->power_savings_balance ||
3516 sgs->sum_nr_running >= sgs->group_capacity ||
3517 !sgs->sum_nr_running)
3518 return;
5969fe06 3519
c071df18
GS
3520 /*
3521 * Calculate the group which has the least non-idle load.
3522 * This is the group from where we need to pick up the load
3523 * for saving power
3524 */
3525 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3526 (sgs->sum_nr_running == sds->min_nr_running &&
3527 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3528 sds->group_min = group;
3529 sds->min_nr_running = sgs->sum_nr_running;
3530 sds->min_load_per_task = sgs->sum_weighted_load /
3531 sgs->sum_nr_running;
3532 }
783609c6 3533
c071df18
GS
3534 /*
3535 * Calculate the group which is almost near its
3536 * capacity but still has some space to pick up some load
3537 * from other group and save more power
3538 */
3539 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3540 return;
1da177e4 3541
c071df18
GS
3542 if (sgs->sum_nr_running > sds->leader_nr_running ||
3543 (sgs->sum_nr_running == sds->leader_nr_running &&
3544 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3545 sds->group_leader = group;
3546 sds->leader_nr_running = sgs->sum_nr_running;
3547 }
3548}
408ed066 3549
c071df18 3550/**
d5ac537e 3551 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3552 * @sds: Variable containing the statistics of the sched_domain
3553 * under consideration.
3554 * @this_cpu: Cpu at which we're currently performing load-balancing.
3555 * @imbalance: Variable to store the imbalance.
3556 *
d5ac537e
RD
3557 * Description:
3558 * Check if we have potential to perform some power-savings balance.
3559 * If yes, set the busiest group to be the least loaded group in the
3560 * sched_domain, so that it's CPUs can be put to idle.
3561 *
c071df18
GS
3562 * Returns 1 if there is potential to perform power-savings balance.
3563 * Else returns 0.
3564 */
3565static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3566 int this_cpu, unsigned long *imbalance)
3567{
3568 if (!sds->power_savings_balance)
3569 return 0;
1da177e4 3570
c071df18
GS
3571 if (sds->this != sds->group_leader ||
3572 sds->group_leader == sds->group_min)
3573 return 0;
783609c6 3574
c071df18
GS
3575 *imbalance = sds->min_load_per_task;
3576 sds->busiest = sds->group_min;
1da177e4 3577
c071df18
GS
3578 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3579 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3580 group_first_cpu(sds->group_leader);
3581 }
3582
3583 return 1;
1da177e4 3584
c071df18
GS
3585}
3586#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3587static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3588 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3589{
3590 return;
3591}
408ed066 3592
c071df18
GS
3593static inline void update_sd_power_savings_stats(struct sched_group *group,
3594 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3595{
3596 return;
3597}
3598
3599static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3600 int this_cpu, unsigned long *imbalance)
3601{
3602 return 0;
3603}
3604#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3605
3606
1f8c553d
GS
3607/**
3608 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3609 * @group: sched_group whose statistics are to be updated.
3610 * @this_cpu: Cpu for which load balance is currently performed.
3611 * @idle: Idle status of this_cpu
3612 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3613 * @sd_idle: Idle status of the sched_domain containing group.
3614 * @local_group: Does group contain this_cpu.
3615 * @cpus: Set of cpus considered for load balancing.
3616 * @balance: Should we balance.
3617 * @sgs: variable to hold the statistics for this group.
3618 */
3619static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3620 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3621 int local_group, const struct cpumask *cpus,
3622 int *balance, struct sg_lb_stats *sgs)
3623{
3624 unsigned long load, max_cpu_load, min_cpu_load;
3625 int i;
3626 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3627 unsigned long sum_avg_load_per_task;
3628 unsigned long avg_load_per_task;
3629
3630 if (local_group)
3631 balance_cpu = group_first_cpu(group);
3632
3633 /* Tally up the load of all CPUs in the group */
3634 sum_avg_load_per_task = avg_load_per_task = 0;
3635 max_cpu_load = 0;
3636 min_cpu_load = ~0UL;
408ed066 3637
1f8c553d
GS
3638 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3639 struct rq *rq = cpu_rq(i);
908a7c1b 3640
1f8c553d
GS
3641 if (*sd_idle && rq->nr_running)
3642 *sd_idle = 0;
5c45bf27 3643
1f8c553d 3644 /* Bias balancing toward cpus of our domain */
1da177e4 3645 if (local_group) {
1f8c553d
GS
3646 if (idle_cpu(i) && !first_idle_cpu) {
3647 first_idle_cpu = 1;
3648 balance_cpu = i;
3649 }
3650
3651 load = target_load(i, load_idx);
3652 } else {
3653 load = source_load(i, load_idx);
3654 if (load > max_cpu_load)
3655 max_cpu_load = load;
3656 if (min_cpu_load > load)
3657 min_cpu_load = load;
1da177e4 3658 }
5c45bf27 3659
1f8c553d
GS
3660 sgs->group_load += load;
3661 sgs->sum_nr_running += rq->nr_running;
3662 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3663
1f8c553d
GS
3664 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3665 }
5c45bf27 3666
1f8c553d
GS
3667 /*
3668 * First idle cpu or the first cpu(busiest) in this sched group
3669 * is eligible for doing load balancing at this and above
3670 * domains. In the newly idle case, we will allow all the cpu's
3671 * to do the newly idle load balance.
3672 */
3673 if (idle != CPU_NEWLY_IDLE && local_group &&
3674 balance_cpu != this_cpu && balance) {
3675 *balance = 0;
3676 return;
3677 }
5c45bf27 3678
1f8c553d
GS
3679 /* Adjust by relative CPU power of the group */
3680 sgs->avg_load = sg_div_cpu_power(group,
3681 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3682
1f8c553d
GS
3683
3684 /*
3685 * Consider the group unbalanced when the imbalance is larger
3686 * than the average weight of two tasks.
3687 *
3688 * APZ: with cgroup the avg task weight can vary wildly and
3689 * might not be a suitable number - should we keep a
3690 * normalized nr_running number somewhere that negates
3691 * the hierarchy?
3692 */
3693 avg_load_per_task = sg_div_cpu_power(group,
3694 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3695
3696 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3697 sgs->group_imb = 1;
3698
3699 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3700
3701}
dd41f596 3702
37abe198
GS
3703/**
3704 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3705 * @sd: sched_domain whose statistics are to be updated.
3706 * @this_cpu: Cpu for which load balance is currently performed.
3707 * @idle: Idle status of this_cpu
3708 * @sd_idle: Idle status of the sched_domain containing group.
3709 * @cpus: Set of cpus considered for load balancing.
3710 * @balance: Should we balance.
3711 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3712 */
37abe198
GS
3713static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3714 enum cpu_idle_type idle, int *sd_idle,
3715 const struct cpumask *cpus, int *balance,
3716 struct sd_lb_stats *sds)
1da177e4 3717{
222d656d 3718 struct sched_group *group = sd->groups;
37abe198 3719 struct sg_lb_stats sgs;
222d656d
GS
3720 int load_idx;
3721
c071df18 3722 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3723 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3724
3725 do {
1da177e4 3726 int local_group;
1da177e4 3727
758b2cdc
RR
3728 local_group = cpumask_test_cpu(this_cpu,
3729 sched_group_cpus(group));
381be78f 3730 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3731 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3732 local_group, cpus, balance, &sgs);
1da177e4 3733
37abe198
GS
3734 if (local_group && balance && !(*balance))
3735 return;
783609c6 3736
37abe198
GS
3737 sds->total_load += sgs.group_load;
3738 sds->total_pwr += group->__cpu_power;
1da177e4 3739
1da177e4 3740 if (local_group) {
37abe198
GS
3741 sds->this_load = sgs.avg_load;
3742 sds->this = group;
3743 sds->this_nr_running = sgs.sum_nr_running;
3744 sds->this_load_per_task = sgs.sum_weighted_load;
3745 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3746 (sgs.sum_nr_running > sgs.group_capacity ||
3747 sgs.group_imb)) {
37abe198
GS
3748 sds->max_load = sgs.avg_load;
3749 sds->busiest = group;
3750 sds->busiest_nr_running = sgs.sum_nr_running;
3751 sds->busiest_load_per_task = sgs.sum_weighted_load;
3752 sds->group_imb = sgs.group_imb;
48f24c4d 3753 }
5c45bf27 3754
c071df18 3755 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3756 group = group->next;
3757 } while (group != sd->groups);
3758
37abe198 3759}
1da177e4 3760
2e6f44ae
GS
3761/**
3762 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3763 * amongst the groups of a sched_domain, during
3764 * load balancing.
2e6f44ae
GS
3765 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3766 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3767 * @imbalance: Variable to store the imbalance.
3768 */
3769static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3770 int this_cpu, unsigned long *imbalance)
3771{
3772 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3773 unsigned int imbn = 2;
3774
3775 if (sds->this_nr_running) {
3776 sds->this_load_per_task /= sds->this_nr_running;
3777 if (sds->busiest_load_per_task >
3778 sds->this_load_per_task)
3779 imbn = 1;
3780 } else
3781 sds->this_load_per_task =
3782 cpu_avg_load_per_task(this_cpu);
1da177e4 3783
2e6f44ae
GS
3784 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3785 sds->busiest_load_per_task * imbn) {
3786 *imbalance = sds->busiest_load_per_task;
3787 return;
3788 }
908a7c1b 3789
1da177e4 3790 /*
2e6f44ae
GS
3791 * OK, we don't have enough imbalance to justify moving tasks,
3792 * however we may be able to increase total CPU power used by
3793 * moving them.
1da177e4 3794 */
2dd73a4f 3795
2e6f44ae
GS
3796 pwr_now += sds->busiest->__cpu_power *
3797 min(sds->busiest_load_per_task, sds->max_load);
3798 pwr_now += sds->this->__cpu_power *
3799 min(sds->this_load_per_task, sds->this_load);
3800 pwr_now /= SCHED_LOAD_SCALE;
3801
3802 /* Amount of load we'd subtract */
3803 tmp = sg_div_cpu_power(sds->busiest,
3804 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3805 if (sds->max_load > tmp)
3806 pwr_move += sds->busiest->__cpu_power *
3807 min(sds->busiest_load_per_task, sds->max_load - tmp);
3808
3809 /* Amount of load we'd add */
3810 if (sds->max_load * sds->busiest->__cpu_power <
3811 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3812 tmp = sg_div_cpu_power(sds->this,
3813 sds->max_load * sds->busiest->__cpu_power);
3814 else
3815 tmp = sg_div_cpu_power(sds->this,
3816 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3817 pwr_move += sds->this->__cpu_power *
3818 min(sds->this_load_per_task, sds->this_load + tmp);
3819 pwr_move /= SCHED_LOAD_SCALE;
3820
3821 /* Move if we gain throughput */
3822 if (pwr_move > pwr_now)
3823 *imbalance = sds->busiest_load_per_task;
3824}
dbc523a3
GS
3825
3826/**
3827 * calculate_imbalance - Calculate the amount of imbalance present within the
3828 * groups of a given sched_domain during load balance.
3829 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3830 * @this_cpu: Cpu for which currently load balance is being performed.
3831 * @imbalance: The variable to store the imbalance.
3832 */
3833static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3834 unsigned long *imbalance)
3835{
3836 unsigned long max_pull;
2dd73a4f
PW
3837 /*
3838 * In the presence of smp nice balancing, certain scenarios can have
3839 * max load less than avg load(as we skip the groups at or below
3840 * its cpu_power, while calculating max_load..)
3841 */
dbc523a3 3842 if (sds->max_load < sds->avg_load) {
2dd73a4f 3843 *imbalance = 0;
dbc523a3 3844 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3845 }
0c117f1b
SS
3846
3847 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3848 max_pull = min(sds->max_load - sds->avg_load,
3849 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3850
1da177e4 3851 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3852 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3853 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3854 / SCHED_LOAD_SCALE;
3855
2dd73a4f
PW
3856 /*
3857 * if *imbalance is less than the average load per runnable task
3858 * there is no gaurantee that any tasks will be moved so we'll have
3859 * a think about bumping its value to force at least one task to be
3860 * moved
3861 */
dbc523a3
GS
3862 if (*imbalance < sds->busiest_load_per_task)
3863 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3864
dbc523a3 3865}
37abe198 3866/******* find_busiest_group() helpers end here *********************/
1da177e4 3867
b7bb4c9b
GS
3868/**
3869 * find_busiest_group - Returns the busiest group within the sched_domain
3870 * if there is an imbalance. If there isn't an imbalance, and
3871 * the user has opted for power-savings, it returns a group whose
3872 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3873 * such a group exists.
3874 *
3875 * Also calculates the amount of weighted load which should be moved
3876 * to restore balance.
3877 *
3878 * @sd: The sched_domain whose busiest group is to be returned.
3879 * @this_cpu: The cpu for which load balancing is currently being performed.
3880 * @imbalance: Variable which stores amount of weighted load which should
3881 * be moved to restore balance/put a group to idle.
3882 * @idle: The idle status of this_cpu.
3883 * @sd_idle: The idleness of sd
3884 * @cpus: The set of CPUs under consideration for load-balancing.
3885 * @balance: Pointer to a variable indicating if this_cpu
3886 * is the appropriate cpu to perform load balancing at this_level.
3887 *
3888 * Returns: - the busiest group if imbalance exists.
3889 * - If no imbalance and user has opted for power-savings balance,
3890 * return the least loaded group whose CPUs can be
3891 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3892 */
3893static struct sched_group *
3894find_busiest_group(struct sched_domain *sd, int this_cpu,
3895 unsigned long *imbalance, enum cpu_idle_type idle,
3896 int *sd_idle, const struct cpumask *cpus, int *balance)
3897{
3898 struct sd_lb_stats sds;
1da177e4 3899
37abe198 3900 memset(&sds, 0, sizeof(sds));
1da177e4 3901
37abe198
GS
3902 /*
3903 * Compute the various statistics relavent for load balancing at
3904 * this level.
3905 */
3906 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3907 balance, &sds);
3908
b7bb4c9b
GS
3909 /* Cases where imbalance does not exist from POV of this_cpu */
3910 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3911 * at this level.
3912 * 2) There is no busy sibling group to pull from.
3913 * 3) This group is the busiest group.
3914 * 4) This group is more busy than the avg busieness at this
3915 * sched_domain.
3916 * 5) The imbalance is within the specified limit.
3917 * 6) Any rebalance would lead to ping-pong
3918 */
37abe198
GS
3919 if (balance && !(*balance))
3920 goto ret;
1da177e4 3921
b7bb4c9b
GS
3922 if (!sds.busiest || sds.busiest_nr_running == 0)
3923 goto out_balanced;
1da177e4 3924
b7bb4c9b 3925 if (sds.this_load >= sds.max_load)
1da177e4 3926 goto out_balanced;
1da177e4 3927
222d656d 3928 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3929
b7bb4c9b
GS
3930 if (sds.this_load >= sds.avg_load)
3931 goto out_balanced;
3932
3933 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3934 goto out_balanced;
3935
222d656d
GS
3936 sds.busiest_load_per_task /= sds.busiest_nr_running;
3937 if (sds.group_imb)
3938 sds.busiest_load_per_task =
3939 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3940
1da177e4
LT
3941 /*
3942 * We're trying to get all the cpus to the average_load, so we don't
3943 * want to push ourselves above the average load, nor do we wish to
3944 * reduce the max loaded cpu below the average load, as either of these
3945 * actions would just result in more rebalancing later, and ping-pong
3946 * tasks around. Thus we look for the minimum possible imbalance.
3947 * Negative imbalances (*we* are more loaded than anyone else) will
3948 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3949 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3950 * appear as very large values with unsigned longs.
3951 */
222d656d 3952 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3953 goto out_balanced;
3954
dbc523a3
GS
3955 /* Looks like there is an imbalance. Compute it */
3956 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3957 return sds.busiest;
1da177e4
LT
3958
3959out_balanced:
c071df18
GS
3960 /*
3961 * There is no obvious imbalance. But check if we can do some balancing
3962 * to save power.
3963 */
3964 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3965 return sds.busiest;
783609c6 3966ret:
1da177e4
LT
3967 *imbalance = 0;
3968 return NULL;
3969}
3970
3971/*
3972 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3973 */
70b97a7f 3974static struct rq *
d15bcfdb 3975find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3976 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3977{
70b97a7f 3978 struct rq *busiest = NULL, *rq;
2dd73a4f 3979 unsigned long max_load = 0;
1da177e4
LT
3980 int i;
3981
758b2cdc 3982 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3983 unsigned long wl;
0a2966b4 3984
96f874e2 3985 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3986 continue;
3987
48f24c4d 3988 rq = cpu_rq(i);
dd41f596 3989 wl = weighted_cpuload(i);
2dd73a4f 3990
dd41f596 3991 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3992 continue;
1da177e4 3993
dd41f596
IM
3994 if (wl > max_load) {
3995 max_load = wl;
48f24c4d 3996 busiest = rq;
1da177e4
LT
3997 }
3998 }
3999
4000 return busiest;
4001}
4002
77391d71
NP
4003/*
4004 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4005 * so long as it is large enough.
4006 */
4007#define MAX_PINNED_INTERVAL 512
4008
df7c8e84
RR
4009/* Working cpumask for load_balance and load_balance_newidle. */
4010static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4011
1da177e4
LT
4012/*
4013 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4014 * tasks if there is an imbalance.
1da177e4 4015 */
70b97a7f 4016static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4017 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4018 int *balance)
1da177e4 4019{
43010659 4020 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4021 struct sched_group *group;
1da177e4 4022 unsigned long imbalance;
70b97a7f 4023 struct rq *busiest;
fe2eea3f 4024 unsigned long flags;
df7c8e84 4025 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4026
96f874e2 4027 cpumask_setall(cpus);
7c16ec58 4028
89c4710e
SS
4029 /*
4030 * When power savings policy is enabled for the parent domain, idle
4031 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4032 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4033 * portraying it as CPU_NOT_IDLE.
89c4710e 4034 */
d15bcfdb 4035 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4036 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4037 sd_idle = 1;
1da177e4 4038
2d72376b 4039 schedstat_inc(sd, lb_count[idle]);
1da177e4 4040
0a2966b4 4041redo:
c8cba857 4042 update_shares(sd);
0a2966b4 4043 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4044 cpus, balance);
783609c6 4045
06066714 4046 if (*balance == 0)
783609c6 4047 goto out_balanced;
783609c6 4048
1da177e4
LT
4049 if (!group) {
4050 schedstat_inc(sd, lb_nobusyg[idle]);
4051 goto out_balanced;
4052 }
4053
7c16ec58 4054 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4055 if (!busiest) {
4056 schedstat_inc(sd, lb_nobusyq[idle]);
4057 goto out_balanced;
4058 }
4059
db935dbd 4060 BUG_ON(busiest == this_rq);
1da177e4
LT
4061
4062 schedstat_add(sd, lb_imbalance[idle], imbalance);
4063
43010659 4064 ld_moved = 0;
1da177e4
LT
4065 if (busiest->nr_running > 1) {
4066 /*
4067 * Attempt to move tasks. If find_busiest_group has found
4068 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4069 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4070 * correctly treated as an imbalance.
4071 */
fe2eea3f 4072 local_irq_save(flags);
e17224bf 4073 double_rq_lock(this_rq, busiest);
43010659 4074 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4075 imbalance, sd, idle, &all_pinned);
e17224bf 4076 double_rq_unlock(this_rq, busiest);
fe2eea3f 4077 local_irq_restore(flags);
81026794 4078
46cb4b7c
SS
4079 /*
4080 * some other cpu did the load balance for us.
4081 */
43010659 4082 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4083 resched_cpu(this_cpu);
4084
81026794 4085 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4086 if (unlikely(all_pinned)) {
96f874e2
RR
4087 cpumask_clear_cpu(cpu_of(busiest), cpus);
4088 if (!cpumask_empty(cpus))
0a2966b4 4089 goto redo;
81026794 4090 goto out_balanced;
0a2966b4 4091 }
1da177e4 4092 }
81026794 4093
43010659 4094 if (!ld_moved) {
1da177e4
LT
4095 schedstat_inc(sd, lb_failed[idle]);
4096 sd->nr_balance_failed++;
4097
4098 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4099
fe2eea3f 4100 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4101
4102 /* don't kick the migration_thread, if the curr
4103 * task on busiest cpu can't be moved to this_cpu
4104 */
96f874e2
RR
4105 if (!cpumask_test_cpu(this_cpu,
4106 &busiest->curr->cpus_allowed)) {
fe2eea3f 4107 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4108 all_pinned = 1;
4109 goto out_one_pinned;
4110 }
4111
1da177e4
LT
4112 if (!busiest->active_balance) {
4113 busiest->active_balance = 1;
4114 busiest->push_cpu = this_cpu;
81026794 4115 active_balance = 1;
1da177e4 4116 }
fe2eea3f 4117 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4118 if (active_balance)
1da177e4
LT
4119 wake_up_process(busiest->migration_thread);
4120
4121 /*
4122 * We've kicked active balancing, reset the failure
4123 * counter.
4124 */
39507451 4125 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4126 }
81026794 4127 } else
1da177e4
LT
4128 sd->nr_balance_failed = 0;
4129
81026794 4130 if (likely(!active_balance)) {
1da177e4
LT
4131 /* We were unbalanced, so reset the balancing interval */
4132 sd->balance_interval = sd->min_interval;
81026794
NP
4133 } else {
4134 /*
4135 * If we've begun active balancing, start to back off. This
4136 * case may not be covered by the all_pinned logic if there
4137 * is only 1 task on the busy runqueue (because we don't call
4138 * move_tasks).
4139 */
4140 if (sd->balance_interval < sd->max_interval)
4141 sd->balance_interval *= 2;
1da177e4
LT
4142 }
4143
43010659 4144 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4145 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4146 ld_moved = -1;
4147
4148 goto out;
1da177e4
LT
4149
4150out_balanced:
1da177e4
LT
4151 schedstat_inc(sd, lb_balanced[idle]);
4152
16cfb1c0 4153 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4154
4155out_one_pinned:
1da177e4 4156 /* tune up the balancing interval */
77391d71
NP
4157 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4158 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4159 sd->balance_interval *= 2;
4160
48f24c4d 4161 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4162 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4163 ld_moved = -1;
4164 else
4165 ld_moved = 0;
4166out:
c8cba857
PZ
4167 if (ld_moved)
4168 update_shares(sd);
c09595f6 4169 return ld_moved;
1da177e4
LT
4170}
4171
4172/*
4173 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4174 * tasks if there is an imbalance.
4175 *
d15bcfdb 4176 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4177 * this_rq is locked.
4178 */
48f24c4d 4179static int
df7c8e84 4180load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4181{
4182 struct sched_group *group;
70b97a7f 4183 struct rq *busiest = NULL;
1da177e4 4184 unsigned long imbalance;
43010659 4185 int ld_moved = 0;
5969fe06 4186 int sd_idle = 0;
969bb4e4 4187 int all_pinned = 0;
df7c8e84 4188 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4189
96f874e2 4190 cpumask_setall(cpus);
5969fe06 4191
89c4710e
SS
4192 /*
4193 * When power savings policy is enabled for the parent domain, idle
4194 * sibling can pick up load irrespective of busy siblings. In this case,
4195 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4196 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4197 */
4198 if (sd->flags & SD_SHARE_CPUPOWER &&
4199 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4200 sd_idle = 1;
1da177e4 4201
2d72376b 4202 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4203redo:
3e5459b4 4204 update_shares_locked(this_rq, sd);
d15bcfdb 4205 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4206 &sd_idle, cpus, NULL);
1da177e4 4207 if (!group) {
d15bcfdb 4208 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4209 goto out_balanced;
1da177e4
LT
4210 }
4211
7c16ec58 4212 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4213 if (!busiest) {
d15bcfdb 4214 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4215 goto out_balanced;
1da177e4
LT
4216 }
4217
db935dbd
NP
4218 BUG_ON(busiest == this_rq);
4219
d15bcfdb 4220 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4221
43010659 4222 ld_moved = 0;
d6d5cfaf
NP
4223 if (busiest->nr_running > 1) {
4224 /* Attempt to move tasks */
4225 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4226 /* this_rq->clock is already updated */
4227 update_rq_clock(busiest);
43010659 4228 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4229 imbalance, sd, CPU_NEWLY_IDLE,
4230 &all_pinned);
1b12bbc7 4231 double_unlock_balance(this_rq, busiest);
0a2966b4 4232
969bb4e4 4233 if (unlikely(all_pinned)) {
96f874e2
RR
4234 cpumask_clear_cpu(cpu_of(busiest), cpus);
4235 if (!cpumask_empty(cpus))
0a2966b4
CL
4236 goto redo;
4237 }
d6d5cfaf
NP
4238 }
4239
43010659 4240 if (!ld_moved) {
36dffab6 4241 int active_balance = 0;
ad273b32 4242
d15bcfdb 4243 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4244 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4245 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4246 return -1;
ad273b32
VS
4247
4248 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4249 return -1;
4250
4251 if (sd->nr_balance_failed++ < 2)
4252 return -1;
4253
4254 /*
4255 * The only task running in a non-idle cpu can be moved to this
4256 * cpu in an attempt to completely freeup the other CPU
4257 * package. The same method used to move task in load_balance()
4258 * have been extended for load_balance_newidle() to speedup
4259 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4260 *
4261 * The package power saving logic comes from
4262 * find_busiest_group(). If there are no imbalance, then
4263 * f_b_g() will return NULL. However when sched_mc={1,2} then
4264 * f_b_g() will select a group from which a running task may be
4265 * pulled to this cpu in order to make the other package idle.
4266 * If there is no opportunity to make a package idle and if
4267 * there are no imbalance, then f_b_g() will return NULL and no
4268 * action will be taken in load_balance_newidle().
4269 *
4270 * Under normal task pull operation due to imbalance, there
4271 * will be more than one task in the source run queue and
4272 * move_tasks() will succeed. ld_moved will be true and this
4273 * active balance code will not be triggered.
4274 */
4275
4276 /* Lock busiest in correct order while this_rq is held */
4277 double_lock_balance(this_rq, busiest);
4278
4279 /*
4280 * don't kick the migration_thread, if the curr
4281 * task on busiest cpu can't be moved to this_cpu
4282 */
6ca09dfc 4283 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4284 double_unlock_balance(this_rq, busiest);
4285 all_pinned = 1;
4286 return ld_moved;
4287 }
4288
4289 if (!busiest->active_balance) {
4290 busiest->active_balance = 1;
4291 busiest->push_cpu = this_cpu;
4292 active_balance = 1;
4293 }
4294
4295 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4296 /*
4297 * Should not call ttwu while holding a rq->lock
4298 */
4299 spin_unlock(&this_rq->lock);
ad273b32
VS
4300 if (active_balance)
4301 wake_up_process(busiest->migration_thread);
da8d5089 4302 spin_lock(&this_rq->lock);
ad273b32 4303
5969fe06 4304 } else
16cfb1c0 4305 sd->nr_balance_failed = 0;
1da177e4 4306
3e5459b4 4307 update_shares_locked(this_rq, sd);
43010659 4308 return ld_moved;
16cfb1c0
NP
4309
4310out_balanced:
d15bcfdb 4311 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4312 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4313 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4314 return -1;
16cfb1c0 4315 sd->nr_balance_failed = 0;
48f24c4d 4316
16cfb1c0 4317 return 0;
1da177e4
LT
4318}
4319
4320/*
4321 * idle_balance is called by schedule() if this_cpu is about to become
4322 * idle. Attempts to pull tasks from other CPUs.
4323 */
70b97a7f 4324static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4325{
4326 struct sched_domain *sd;
efbe027e 4327 int pulled_task = 0;
dd41f596 4328 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4329
4330 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4331 unsigned long interval;
4332
4333 if (!(sd->flags & SD_LOAD_BALANCE))
4334 continue;
4335
4336 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4337 /* If we've pulled tasks over stop searching: */
7c16ec58 4338 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4339 sd);
92c4ca5c
CL
4340
4341 interval = msecs_to_jiffies(sd->balance_interval);
4342 if (time_after(next_balance, sd->last_balance + interval))
4343 next_balance = sd->last_balance + interval;
4344 if (pulled_task)
4345 break;
1da177e4 4346 }
dd41f596 4347 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4348 /*
4349 * We are going idle. next_balance may be set based on
4350 * a busy processor. So reset next_balance.
4351 */
4352 this_rq->next_balance = next_balance;
dd41f596 4353 }
1da177e4
LT
4354}
4355
4356/*
4357 * active_load_balance is run by migration threads. It pushes running tasks
4358 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4359 * running on each physical CPU where possible, and avoids physical /
4360 * logical imbalances.
4361 *
4362 * Called with busiest_rq locked.
4363 */
70b97a7f 4364static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4365{
39507451 4366 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4367 struct sched_domain *sd;
4368 struct rq *target_rq;
39507451 4369
48f24c4d 4370 /* Is there any task to move? */
39507451 4371 if (busiest_rq->nr_running <= 1)
39507451
NP
4372 return;
4373
4374 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4375
4376 /*
39507451 4377 * This condition is "impossible", if it occurs
41a2d6cf 4378 * we need to fix it. Originally reported by
39507451 4379 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4380 */
39507451 4381 BUG_ON(busiest_rq == target_rq);
1da177e4 4382
39507451
NP
4383 /* move a task from busiest_rq to target_rq */
4384 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4385 update_rq_clock(busiest_rq);
4386 update_rq_clock(target_rq);
39507451
NP
4387
4388 /* Search for an sd spanning us and the target CPU. */
c96d145e 4389 for_each_domain(target_cpu, sd) {
39507451 4390 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4391 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4392 break;
c96d145e 4393 }
39507451 4394
48f24c4d 4395 if (likely(sd)) {
2d72376b 4396 schedstat_inc(sd, alb_count);
39507451 4397
43010659
PW
4398 if (move_one_task(target_rq, target_cpu, busiest_rq,
4399 sd, CPU_IDLE))
48f24c4d
IM
4400 schedstat_inc(sd, alb_pushed);
4401 else
4402 schedstat_inc(sd, alb_failed);
4403 }
1b12bbc7 4404 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4405}
4406
46cb4b7c
SS
4407#ifdef CONFIG_NO_HZ
4408static struct {
4409 atomic_t load_balancer;
7d1e6a9b 4410 cpumask_var_t cpu_mask;
f711f609 4411 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4412} nohz ____cacheline_aligned = {
4413 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4414};
4415
f711f609
GS
4416#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4417/**
4418 * lowest_flag_domain - Return lowest sched_domain containing flag.
4419 * @cpu: The cpu whose lowest level of sched domain is to
4420 * be returned.
4421 * @flag: The flag to check for the lowest sched_domain
4422 * for the given cpu.
4423 *
4424 * Returns the lowest sched_domain of a cpu which contains the given flag.
4425 */
4426static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4427{
4428 struct sched_domain *sd;
4429
4430 for_each_domain(cpu, sd)
4431 if (sd && (sd->flags & flag))
4432 break;
4433
4434 return sd;
4435}
4436
4437/**
4438 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4439 * @cpu: The cpu whose domains we're iterating over.
4440 * @sd: variable holding the value of the power_savings_sd
4441 * for cpu.
4442 * @flag: The flag to filter the sched_domains to be iterated.
4443 *
4444 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4445 * set, starting from the lowest sched_domain to the highest.
4446 */
4447#define for_each_flag_domain(cpu, sd, flag) \
4448 for (sd = lowest_flag_domain(cpu, flag); \
4449 (sd && (sd->flags & flag)); sd = sd->parent)
4450
4451/**
4452 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4453 * @ilb_group: group to be checked for semi-idleness
4454 *
4455 * Returns: 1 if the group is semi-idle. 0 otherwise.
4456 *
4457 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4458 * and atleast one non-idle CPU. This helper function checks if the given
4459 * sched_group is semi-idle or not.
4460 */
4461static inline int is_semi_idle_group(struct sched_group *ilb_group)
4462{
4463 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4464 sched_group_cpus(ilb_group));
4465
4466 /*
4467 * A sched_group is semi-idle when it has atleast one busy cpu
4468 * and atleast one idle cpu.
4469 */
4470 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4471 return 0;
4472
4473 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4474 return 0;
4475
4476 return 1;
4477}
4478/**
4479 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4480 * @cpu: The cpu which is nominating a new idle_load_balancer.
4481 *
4482 * Returns: Returns the id of the idle load balancer if it exists,
4483 * Else, returns >= nr_cpu_ids.
4484 *
4485 * This algorithm picks the idle load balancer such that it belongs to a
4486 * semi-idle powersavings sched_domain. The idea is to try and avoid
4487 * completely idle packages/cores just for the purpose of idle load balancing
4488 * when there are other idle cpu's which are better suited for that job.
4489 */
4490static int find_new_ilb(int cpu)
4491{
4492 struct sched_domain *sd;
4493 struct sched_group *ilb_group;
4494
4495 /*
4496 * Have idle load balancer selection from semi-idle packages only
4497 * when power-aware load balancing is enabled
4498 */
4499 if (!(sched_smt_power_savings || sched_mc_power_savings))
4500 goto out_done;
4501
4502 /*
4503 * Optimize for the case when we have no idle CPUs or only one
4504 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4505 */
4506 if (cpumask_weight(nohz.cpu_mask) < 2)
4507 goto out_done;
4508
4509 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4510 ilb_group = sd->groups;
4511
4512 do {
4513 if (is_semi_idle_group(ilb_group))
4514 return cpumask_first(nohz.ilb_grp_nohz_mask);
4515
4516 ilb_group = ilb_group->next;
4517
4518 } while (ilb_group != sd->groups);
4519 }
4520
4521out_done:
4522 return cpumask_first(nohz.cpu_mask);
4523}
4524#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4525static inline int find_new_ilb(int call_cpu)
4526{
6e29ec57 4527 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4528}
4529#endif
4530
7835b98b 4531/*
46cb4b7c
SS
4532 * This routine will try to nominate the ilb (idle load balancing)
4533 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4534 * load balancing on behalf of all those cpus. If all the cpus in the system
4535 * go into this tickless mode, then there will be no ilb owner (as there is
4536 * no need for one) and all the cpus will sleep till the next wakeup event
4537 * arrives...
4538 *
4539 * For the ilb owner, tick is not stopped. And this tick will be used
4540 * for idle load balancing. ilb owner will still be part of
4541 * nohz.cpu_mask..
7835b98b 4542 *
46cb4b7c
SS
4543 * While stopping the tick, this cpu will become the ilb owner if there
4544 * is no other owner. And will be the owner till that cpu becomes busy
4545 * or if all cpus in the system stop their ticks at which point
4546 * there is no need for ilb owner.
4547 *
4548 * When the ilb owner becomes busy, it nominates another owner, during the
4549 * next busy scheduler_tick()
4550 */
4551int select_nohz_load_balancer(int stop_tick)
4552{
4553 int cpu = smp_processor_id();
4554
4555 if (stop_tick) {
46cb4b7c
SS
4556 cpu_rq(cpu)->in_nohz_recently = 1;
4557
483b4ee6
SS
4558 if (!cpu_active(cpu)) {
4559 if (atomic_read(&nohz.load_balancer) != cpu)
4560 return 0;
4561
4562 /*
4563 * If we are going offline and still the leader,
4564 * give up!
4565 */
46cb4b7c
SS
4566 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4567 BUG();
483b4ee6 4568
46cb4b7c
SS
4569 return 0;
4570 }
4571
483b4ee6
SS
4572 cpumask_set_cpu(cpu, nohz.cpu_mask);
4573
46cb4b7c 4574 /* time for ilb owner also to sleep */
7d1e6a9b 4575 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4576 if (atomic_read(&nohz.load_balancer) == cpu)
4577 atomic_set(&nohz.load_balancer, -1);
4578 return 0;
4579 }
4580
4581 if (atomic_read(&nohz.load_balancer) == -1) {
4582 /* make me the ilb owner */
4583 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4584 return 1;
e790fb0b
GS
4585 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4586 int new_ilb;
4587
4588 if (!(sched_smt_power_savings ||
4589 sched_mc_power_savings))
4590 return 1;
4591 /*
4592 * Check to see if there is a more power-efficient
4593 * ilb.
4594 */
4595 new_ilb = find_new_ilb(cpu);
4596 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4597 atomic_set(&nohz.load_balancer, -1);
4598 resched_cpu(new_ilb);
4599 return 0;
4600 }
46cb4b7c 4601 return 1;
e790fb0b 4602 }
46cb4b7c 4603 } else {
7d1e6a9b 4604 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4605 return 0;
4606
7d1e6a9b 4607 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4608
4609 if (atomic_read(&nohz.load_balancer) == cpu)
4610 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4611 BUG();
4612 }
4613 return 0;
4614}
4615#endif
4616
4617static DEFINE_SPINLOCK(balancing);
4618
4619/*
7835b98b
CL
4620 * It checks each scheduling domain to see if it is due to be balanced,
4621 * and initiates a balancing operation if so.
4622 *
4623 * Balancing parameters are set up in arch_init_sched_domains.
4624 */
a9957449 4625static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4626{
46cb4b7c
SS
4627 int balance = 1;
4628 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4629 unsigned long interval;
4630 struct sched_domain *sd;
46cb4b7c 4631 /* Earliest time when we have to do rebalance again */
c9819f45 4632 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4633 int update_next_balance = 0;
d07355f5 4634 int need_serialize;
1da177e4 4635
46cb4b7c 4636 for_each_domain(cpu, sd) {
1da177e4
LT
4637 if (!(sd->flags & SD_LOAD_BALANCE))
4638 continue;
4639
4640 interval = sd->balance_interval;
d15bcfdb 4641 if (idle != CPU_IDLE)
1da177e4
LT
4642 interval *= sd->busy_factor;
4643
4644 /* scale ms to jiffies */
4645 interval = msecs_to_jiffies(interval);
4646 if (unlikely(!interval))
4647 interval = 1;
dd41f596
IM
4648 if (interval > HZ*NR_CPUS/10)
4649 interval = HZ*NR_CPUS/10;
4650
d07355f5 4651 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4652
d07355f5 4653 if (need_serialize) {
08c183f3
CL
4654 if (!spin_trylock(&balancing))
4655 goto out;
4656 }
4657
c9819f45 4658 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4659 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4660 /*
4661 * We've pulled tasks over so either we're no
5969fe06
NP
4662 * longer idle, or one of our SMT siblings is
4663 * not idle.
4664 */
d15bcfdb 4665 idle = CPU_NOT_IDLE;
1da177e4 4666 }
1bd77f2d 4667 sd->last_balance = jiffies;
1da177e4 4668 }
d07355f5 4669 if (need_serialize)
08c183f3
CL
4670 spin_unlock(&balancing);
4671out:
f549da84 4672 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4673 next_balance = sd->last_balance + interval;
f549da84
SS
4674 update_next_balance = 1;
4675 }
783609c6
SS
4676
4677 /*
4678 * Stop the load balance at this level. There is another
4679 * CPU in our sched group which is doing load balancing more
4680 * actively.
4681 */
4682 if (!balance)
4683 break;
1da177e4 4684 }
f549da84
SS
4685
4686 /*
4687 * next_balance will be updated only when there is a need.
4688 * When the cpu is attached to null domain for ex, it will not be
4689 * updated.
4690 */
4691 if (likely(update_next_balance))
4692 rq->next_balance = next_balance;
46cb4b7c
SS
4693}
4694
4695/*
4696 * run_rebalance_domains is triggered when needed from the scheduler tick.
4697 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4698 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4699 */
4700static void run_rebalance_domains(struct softirq_action *h)
4701{
dd41f596
IM
4702 int this_cpu = smp_processor_id();
4703 struct rq *this_rq = cpu_rq(this_cpu);
4704 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4705 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4706
dd41f596 4707 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4708
4709#ifdef CONFIG_NO_HZ
4710 /*
4711 * If this cpu is the owner for idle load balancing, then do the
4712 * balancing on behalf of the other idle cpus whose ticks are
4713 * stopped.
4714 */
dd41f596
IM
4715 if (this_rq->idle_at_tick &&
4716 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4717 struct rq *rq;
4718 int balance_cpu;
4719
7d1e6a9b
RR
4720 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4721 if (balance_cpu == this_cpu)
4722 continue;
4723
46cb4b7c
SS
4724 /*
4725 * If this cpu gets work to do, stop the load balancing
4726 * work being done for other cpus. Next load
4727 * balancing owner will pick it up.
4728 */
4729 if (need_resched())
4730 break;
4731
de0cf899 4732 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4733
4734 rq = cpu_rq(balance_cpu);
dd41f596
IM
4735 if (time_after(this_rq->next_balance, rq->next_balance))
4736 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4737 }
4738 }
4739#endif
4740}
4741
8a0be9ef
FW
4742static inline int on_null_domain(int cpu)
4743{
4744 return !rcu_dereference(cpu_rq(cpu)->sd);
4745}
4746
46cb4b7c
SS
4747/*
4748 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4749 *
4750 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4751 * idle load balancing owner or decide to stop the periodic load balancing,
4752 * if the whole system is idle.
4753 */
dd41f596 4754static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4755{
46cb4b7c
SS
4756#ifdef CONFIG_NO_HZ
4757 /*
4758 * If we were in the nohz mode recently and busy at the current
4759 * scheduler tick, then check if we need to nominate new idle
4760 * load balancer.
4761 */
4762 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4763 rq->in_nohz_recently = 0;
4764
4765 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4766 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4767 atomic_set(&nohz.load_balancer, -1);
4768 }
4769
4770 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4771 int ilb = find_new_ilb(cpu);
46cb4b7c 4772
434d53b0 4773 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4774 resched_cpu(ilb);
4775 }
4776 }
4777
4778 /*
4779 * If this cpu is idle and doing idle load balancing for all the
4780 * cpus with ticks stopped, is it time for that to stop?
4781 */
4782 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4783 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4784 resched_cpu(cpu);
4785 return;
4786 }
4787
4788 /*
4789 * If this cpu is idle and the idle load balancing is done by
4790 * someone else, then no need raise the SCHED_SOFTIRQ
4791 */
4792 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4793 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4794 return;
4795#endif
8a0be9ef
FW
4796 /* Don't need to rebalance while attached to NULL domain */
4797 if (time_after_eq(jiffies, rq->next_balance) &&
4798 likely(!on_null_domain(cpu)))
46cb4b7c 4799 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4800}
dd41f596
IM
4801
4802#else /* CONFIG_SMP */
4803
1da177e4
LT
4804/*
4805 * on UP we do not need to balance between CPUs:
4806 */
70b97a7f 4807static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4808{
4809}
dd41f596 4810
1da177e4
LT
4811#endif
4812
1da177e4
LT
4813DEFINE_PER_CPU(struct kernel_stat, kstat);
4814
4815EXPORT_PER_CPU_SYMBOL(kstat);
4816
4817/*
c5f8d995 4818 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4819 * @p in case that task is currently running.
c5f8d995
HS
4820 *
4821 * Called with task_rq_lock() held on @rq.
1da177e4 4822 */
c5f8d995
HS
4823static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4824{
4825 u64 ns = 0;
4826
4827 if (task_current(rq, p)) {
4828 update_rq_clock(rq);
4829 ns = rq->clock - p->se.exec_start;
4830 if ((s64)ns < 0)
4831 ns = 0;
4832 }
4833
4834 return ns;
4835}
4836
bb34d92f 4837unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4838{
1da177e4 4839 unsigned long flags;
41b86e9c 4840 struct rq *rq;
bb34d92f 4841 u64 ns = 0;
48f24c4d 4842
41b86e9c 4843 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4844 ns = do_task_delta_exec(p, rq);
4845 task_rq_unlock(rq, &flags);
1508487e 4846
c5f8d995
HS
4847 return ns;
4848}
f06febc9 4849
c5f8d995
HS
4850/*
4851 * Return accounted runtime for the task.
4852 * In case the task is currently running, return the runtime plus current's
4853 * pending runtime that have not been accounted yet.
4854 */
4855unsigned long long task_sched_runtime(struct task_struct *p)
4856{
4857 unsigned long flags;
4858 struct rq *rq;
4859 u64 ns = 0;
4860
4861 rq = task_rq_lock(p, &flags);
4862 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4863 task_rq_unlock(rq, &flags);
4864
4865 return ns;
4866}
48f24c4d 4867
c5f8d995
HS
4868/*
4869 * Return sum_exec_runtime for the thread group.
4870 * In case the task is currently running, return the sum plus current's
4871 * pending runtime that have not been accounted yet.
4872 *
4873 * Note that the thread group might have other running tasks as well,
4874 * so the return value not includes other pending runtime that other
4875 * running tasks might have.
4876 */
4877unsigned long long thread_group_sched_runtime(struct task_struct *p)
4878{
4879 struct task_cputime totals;
4880 unsigned long flags;
4881 struct rq *rq;
4882 u64 ns;
4883
4884 rq = task_rq_lock(p, &flags);
4885 thread_group_cputime(p, &totals);
4886 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4887 task_rq_unlock(rq, &flags);
48f24c4d 4888
1da177e4
LT
4889 return ns;
4890}
4891
1da177e4
LT
4892/*
4893 * Account user cpu time to a process.
4894 * @p: the process that the cpu time gets accounted to
1da177e4 4895 * @cputime: the cpu time spent in user space since the last update
457533a7 4896 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4897 */
457533a7
MS
4898void account_user_time(struct task_struct *p, cputime_t cputime,
4899 cputime_t cputime_scaled)
1da177e4
LT
4900{
4901 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4902 cputime64_t tmp;
4903
457533a7 4904 /* Add user time to process. */
1da177e4 4905 p->utime = cputime_add(p->utime, cputime);
457533a7 4906 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4907 account_group_user_time(p, cputime);
1da177e4
LT
4908
4909 /* Add user time to cpustat. */
4910 tmp = cputime_to_cputime64(cputime);
4911 if (TASK_NICE(p) > 0)
4912 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4913 else
4914 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4915
4916 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4917 /* Account for user time used */
4918 acct_update_integrals(p);
1da177e4
LT
4919}
4920
94886b84
LV
4921/*
4922 * Account guest cpu time to a process.
4923 * @p: the process that the cpu time gets accounted to
4924 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4925 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4926 */
457533a7
MS
4927static void account_guest_time(struct task_struct *p, cputime_t cputime,
4928 cputime_t cputime_scaled)
94886b84
LV
4929{
4930 cputime64_t tmp;
4931 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4932
4933 tmp = cputime_to_cputime64(cputime);
4934
457533a7 4935 /* Add guest time to process. */
94886b84 4936 p->utime = cputime_add(p->utime, cputime);
457533a7 4937 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4938 account_group_user_time(p, cputime);
94886b84
LV
4939 p->gtime = cputime_add(p->gtime, cputime);
4940
457533a7 4941 /* Add guest time to cpustat. */
94886b84
LV
4942 cpustat->user = cputime64_add(cpustat->user, tmp);
4943 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4944}
4945
1da177e4
LT
4946/*
4947 * Account system cpu time to a process.
4948 * @p: the process that the cpu time gets accounted to
4949 * @hardirq_offset: the offset to subtract from hardirq_count()
4950 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4951 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4952 */
4953void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4954 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4955{
4956 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4957 cputime64_t tmp;
4958
983ed7a6 4959 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4960 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4961 return;
4962 }
94886b84 4963
457533a7 4964 /* Add system time to process. */
1da177e4 4965 p->stime = cputime_add(p->stime, cputime);
457533a7 4966 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4967 account_group_system_time(p, cputime);
1da177e4
LT
4968
4969 /* Add system time to cpustat. */
4970 tmp = cputime_to_cputime64(cputime);
4971 if (hardirq_count() - hardirq_offset)
4972 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4973 else if (softirq_count())
4974 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4975 else
79741dd3
MS
4976 cpustat->system = cputime64_add(cpustat->system, tmp);
4977
ef12fefa
BR
4978 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4979
1da177e4
LT
4980 /* Account for system time used */
4981 acct_update_integrals(p);
1da177e4
LT
4982}
4983
c66f08be 4984/*
1da177e4 4985 * Account for involuntary wait time.
1da177e4 4986 * @steal: the cpu time spent in involuntary wait
c66f08be 4987 */
79741dd3 4988void account_steal_time(cputime_t cputime)
c66f08be 4989{
79741dd3
MS
4990 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4991 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4992
4993 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4994}
4995
1da177e4 4996/*
79741dd3
MS
4997 * Account for idle time.
4998 * @cputime: the cpu time spent in idle wait
1da177e4 4999 */
79741dd3 5000void account_idle_time(cputime_t cputime)
1da177e4
LT
5001{
5002 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5003 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5004 struct rq *rq = this_rq();
1da177e4 5005
79741dd3
MS
5006 if (atomic_read(&rq->nr_iowait) > 0)
5007 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5008 else
5009 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5010}
5011
79741dd3
MS
5012#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5013
5014/*
5015 * Account a single tick of cpu time.
5016 * @p: the process that the cpu time gets accounted to
5017 * @user_tick: indicates if the tick is a user or a system tick
5018 */
5019void account_process_tick(struct task_struct *p, int user_tick)
5020{
5021 cputime_t one_jiffy = jiffies_to_cputime(1);
5022 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5023 struct rq *rq = this_rq();
5024
5025 if (user_tick)
5026 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5027 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5028 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5029 one_jiffy_scaled);
5030 else
5031 account_idle_time(one_jiffy);
5032}
5033
5034/*
5035 * Account multiple ticks of steal time.
5036 * @p: the process from which the cpu time has been stolen
5037 * @ticks: number of stolen ticks
5038 */
5039void account_steal_ticks(unsigned long ticks)
5040{
5041 account_steal_time(jiffies_to_cputime(ticks));
5042}
5043
5044/*
5045 * Account multiple ticks of idle time.
5046 * @ticks: number of stolen ticks
5047 */
5048void account_idle_ticks(unsigned long ticks)
5049{
5050 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5051}
5052
79741dd3
MS
5053#endif
5054
49048622
BS
5055/*
5056 * Use precise platform statistics if available:
5057 */
5058#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5059cputime_t task_utime(struct task_struct *p)
5060{
5061 return p->utime;
5062}
5063
5064cputime_t task_stime(struct task_struct *p)
5065{
5066 return p->stime;
5067}
5068#else
5069cputime_t task_utime(struct task_struct *p)
5070{
5071 clock_t utime = cputime_to_clock_t(p->utime),
5072 total = utime + cputime_to_clock_t(p->stime);
5073 u64 temp;
5074
5075 /*
5076 * Use CFS's precise accounting:
5077 */
5078 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5079
5080 if (total) {
5081 temp *= utime;
5082 do_div(temp, total);
5083 }
5084 utime = (clock_t)temp;
5085
5086 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5087 return p->prev_utime;
5088}
5089
5090cputime_t task_stime(struct task_struct *p)
5091{
5092 clock_t stime;
5093
5094 /*
5095 * Use CFS's precise accounting. (we subtract utime from
5096 * the total, to make sure the total observed by userspace
5097 * grows monotonically - apps rely on that):
5098 */
5099 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5100 cputime_to_clock_t(task_utime(p));
5101
5102 if (stime >= 0)
5103 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5104
5105 return p->prev_stime;
5106}
5107#endif
5108
5109inline cputime_t task_gtime(struct task_struct *p)
5110{
5111 return p->gtime;
5112}
5113
7835b98b
CL
5114/*
5115 * This function gets called by the timer code, with HZ frequency.
5116 * We call it with interrupts disabled.
5117 *
5118 * It also gets called by the fork code, when changing the parent's
5119 * timeslices.
5120 */
5121void scheduler_tick(void)
5122{
7835b98b
CL
5123 int cpu = smp_processor_id();
5124 struct rq *rq = cpu_rq(cpu);
dd41f596 5125 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5126
5127 sched_clock_tick();
dd41f596
IM
5128
5129 spin_lock(&rq->lock);
3e51f33f 5130 update_rq_clock(rq);
f1a438d8 5131 update_cpu_load(rq);
fa85ae24 5132 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5133 spin_unlock(&rq->lock);
7835b98b 5134
e220d2dc
PZ
5135 perf_counter_task_tick(curr, cpu);
5136
e418e1c2 5137#ifdef CONFIG_SMP
dd41f596
IM
5138 rq->idle_at_tick = idle_cpu(cpu);
5139 trigger_load_balance(rq, cpu);
e418e1c2 5140#endif
1da177e4
LT
5141}
5142
132380a0 5143notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5144{
5145 if (in_lock_functions(addr)) {
5146 addr = CALLER_ADDR2;
5147 if (in_lock_functions(addr))
5148 addr = CALLER_ADDR3;
5149 }
5150 return addr;
5151}
1da177e4 5152
7e49fcce
SR
5153#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5154 defined(CONFIG_PREEMPT_TRACER))
5155
43627582 5156void __kprobes add_preempt_count(int val)
1da177e4 5157{
6cd8a4bb 5158#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5159 /*
5160 * Underflow?
5161 */
9a11b49a
IM
5162 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5163 return;
6cd8a4bb 5164#endif
1da177e4 5165 preempt_count() += val;
6cd8a4bb 5166#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5167 /*
5168 * Spinlock count overflowing soon?
5169 */
33859f7f
MOS
5170 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5171 PREEMPT_MASK - 10);
6cd8a4bb
SR
5172#endif
5173 if (preempt_count() == val)
5174 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5175}
5176EXPORT_SYMBOL(add_preempt_count);
5177
43627582 5178void __kprobes sub_preempt_count(int val)
1da177e4 5179{
6cd8a4bb 5180#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5181 /*
5182 * Underflow?
5183 */
01e3eb82 5184 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5185 return;
1da177e4
LT
5186 /*
5187 * Is the spinlock portion underflowing?
5188 */
9a11b49a
IM
5189 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5190 !(preempt_count() & PREEMPT_MASK)))
5191 return;
6cd8a4bb 5192#endif
9a11b49a 5193
6cd8a4bb
SR
5194 if (preempt_count() == val)
5195 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5196 preempt_count() -= val;
5197}
5198EXPORT_SYMBOL(sub_preempt_count);
5199
5200#endif
5201
5202/*
dd41f596 5203 * Print scheduling while atomic bug:
1da177e4 5204 */
dd41f596 5205static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5206{
838225b4
SS
5207 struct pt_regs *regs = get_irq_regs();
5208
5209 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5210 prev->comm, prev->pid, preempt_count());
5211
dd41f596 5212 debug_show_held_locks(prev);
e21f5b15 5213 print_modules();
dd41f596
IM
5214 if (irqs_disabled())
5215 print_irqtrace_events(prev);
838225b4
SS
5216
5217 if (regs)
5218 show_regs(regs);
5219 else
5220 dump_stack();
dd41f596 5221}
1da177e4 5222
dd41f596
IM
5223/*
5224 * Various schedule()-time debugging checks and statistics:
5225 */
5226static inline void schedule_debug(struct task_struct *prev)
5227{
1da177e4 5228 /*
41a2d6cf 5229 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5230 * schedule() atomically, we ignore that path for now.
5231 * Otherwise, whine if we are scheduling when we should not be.
5232 */
3f33a7ce 5233 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5234 __schedule_bug(prev);
5235
1da177e4
LT
5236 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5237
2d72376b 5238 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5239#ifdef CONFIG_SCHEDSTATS
5240 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5241 schedstat_inc(this_rq(), bkl_count);
5242 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5243 }
5244#endif
dd41f596
IM
5245}
5246
df1c99d4
MG
5247static void put_prev_task(struct rq *rq, struct task_struct *prev)
5248{
5249 if (prev->state == TASK_RUNNING) {
5250 u64 runtime = prev->se.sum_exec_runtime;
5251
5252 runtime -= prev->se.prev_sum_exec_runtime;
5253 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5254
5255 /*
5256 * In order to avoid avg_overlap growing stale when we are
5257 * indeed overlapping and hence not getting put to sleep, grow
5258 * the avg_overlap on preemption.
5259 *
5260 * We use the average preemption runtime because that
5261 * correlates to the amount of cache footprint a task can
5262 * build up.
5263 */
5264 update_avg(&prev->se.avg_overlap, runtime);
5265 }
5266 prev->sched_class->put_prev_task(rq, prev);
5267}
5268
dd41f596
IM
5269/*
5270 * Pick up the highest-prio task:
5271 */
5272static inline struct task_struct *
b67802ea 5273pick_next_task(struct rq *rq)
dd41f596 5274{
5522d5d5 5275 const struct sched_class *class;
dd41f596 5276 struct task_struct *p;
1da177e4
LT
5277
5278 /*
dd41f596
IM
5279 * Optimization: we know that if all tasks are in
5280 * the fair class we can call that function directly:
1da177e4 5281 */
dd41f596 5282 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5283 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5284 if (likely(p))
5285 return p;
1da177e4
LT
5286 }
5287
dd41f596
IM
5288 class = sched_class_highest;
5289 for ( ; ; ) {
fb8d4724 5290 p = class->pick_next_task(rq);
dd41f596
IM
5291 if (p)
5292 return p;
5293 /*
5294 * Will never be NULL as the idle class always
5295 * returns a non-NULL p:
5296 */
5297 class = class->next;
5298 }
5299}
1da177e4 5300
dd41f596
IM
5301/*
5302 * schedule() is the main scheduler function.
5303 */
ff743345 5304asmlinkage void __sched schedule(void)
dd41f596
IM
5305{
5306 struct task_struct *prev, *next;
67ca7bde 5307 unsigned long *switch_count;
dd41f596 5308 struct rq *rq;
31656519 5309 int cpu;
dd41f596 5310
ff743345
PZ
5311need_resched:
5312 preempt_disable();
dd41f596
IM
5313 cpu = smp_processor_id();
5314 rq = cpu_rq(cpu);
5315 rcu_qsctr_inc(cpu);
5316 prev = rq->curr;
5317 switch_count = &prev->nivcsw;
5318
5319 release_kernel_lock(prev);
5320need_resched_nonpreemptible:
5321
5322 schedule_debug(prev);
1da177e4 5323
31656519 5324 if (sched_feat(HRTICK))
f333fdc9 5325 hrtick_clear(rq);
8f4d37ec 5326
8cd162ce 5327 spin_lock_irq(&rq->lock);
3e51f33f 5328 update_rq_clock(rq);
1e819950 5329 clear_tsk_need_resched(prev);
1da177e4 5330
1da177e4 5331 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5332 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5333 prev->state = TASK_RUNNING;
16882c1e 5334 else
2e1cb74a 5335 deactivate_task(rq, prev, 1);
dd41f596 5336 switch_count = &prev->nvcsw;
1da177e4
LT
5337 }
5338
9a897c5a
SR
5339#ifdef CONFIG_SMP
5340 if (prev->sched_class->pre_schedule)
5341 prev->sched_class->pre_schedule(rq, prev);
5342#endif
f65eda4f 5343
dd41f596 5344 if (unlikely(!rq->nr_running))
1da177e4 5345 idle_balance(cpu, rq);
1da177e4 5346
df1c99d4 5347 put_prev_task(rq, prev);
b67802ea 5348 next = pick_next_task(rq);
1da177e4 5349
1da177e4 5350 if (likely(prev != next)) {
673a90a1 5351 sched_info_switch(prev, next);
564c2b21 5352 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5353
1da177e4
LT
5354 rq->nr_switches++;
5355 rq->curr = next;
5356 ++*switch_count;
5357
dd41f596 5358 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5359 /*
5360 * the context switch might have flipped the stack from under
5361 * us, hence refresh the local variables.
5362 */
5363 cpu = smp_processor_id();
5364 rq = cpu_rq(cpu);
1da177e4
LT
5365 } else
5366 spin_unlock_irq(&rq->lock);
5367
8f4d37ec 5368 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5369 goto need_resched_nonpreemptible;
8f4d37ec 5370
1da177e4 5371 preempt_enable_no_resched();
ff743345 5372 if (need_resched())
1da177e4
LT
5373 goto need_resched;
5374}
1da177e4
LT
5375EXPORT_SYMBOL(schedule);
5376
0d66bf6d
PZ
5377#ifdef CONFIG_SMP
5378/*
5379 * Look out! "owner" is an entirely speculative pointer
5380 * access and not reliable.
5381 */
5382int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5383{
5384 unsigned int cpu;
5385 struct rq *rq;
5386
5387 if (!sched_feat(OWNER_SPIN))
5388 return 0;
5389
5390#ifdef CONFIG_DEBUG_PAGEALLOC
5391 /*
5392 * Need to access the cpu field knowing that
5393 * DEBUG_PAGEALLOC could have unmapped it if
5394 * the mutex owner just released it and exited.
5395 */
5396 if (probe_kernel_address(&owner->cpu, cpu))
5397 goto out;
5398#else
5399 cpu = owner->cpu;
5400#endif
5401
5402 /*
5403 * Even if the access succeeded (likely case),
5404 * the cpu field may no longer be valid.
5405 */
5406 if (cpu >= nr_cpumask_bits)
5407 goto out;
5408
5409 /*
5410 * We need to validate that we can do a
5411 * get_cpu() and that we have the percpu area.
5412 */
5413 if (!cpu_online(cpu))
5414 goto out;
5415
5416 rq = cpu_rq(cpu);
5417
5418 for (;;) {
5419 /*
5420 * Owner changed, break to re-assess state.
5421 */
5422 if (lock->owner != owner)
5423 break;
5424
5425 /*
5426 * Is that owner really running on that cpu?
5427 */
5428 if (task_thread_info(rq->curr) != owner || need_resched())
5429 return 0;
5430
5431 cpu_relax();
5432 }
5433out:
5434 return 1;
5435}
5436#endif
5437
1da177e4
LT
5438#ifdef CONFIG_PREEMPT
5439/*
2ed6e34f 5440 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5441 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5442 * occur there and call schedule directly.
5443 */
5444asmlinkage void __sched preempt_schedule(void)
5445{
5446 struct thread_info *ti = current_thread_info();
6478d880 5447
1da177e4
LT
5448 /*
5449 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5450 * we do not want to preempt the current task. Just return..
1da177e4 5451 */
beed33a8 5452 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5453 return;
5454
3a5c359a
AK
5455 do {
5456 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5457 schedule();
3a5c359a 5458 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5459
3a5c359a
AK
5460 /*
5461 * Check again in case we missed a preemption opportunity
5462 * between schedule and now.
5463 */
5464 barrier();
5ed0cec0 5465 } while (need_resched());
1da177e4 5466}
1da177e4
LT
5467EXPORT_SYMBOL(preempt_schedule);
5468
5469/*
2ed6e34f 5470 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5471 * off of irq context.
5472 * Note, that this is called and return with irqs disabled. This will
5473 * protect us against recursive calling from irq.
5474 */
5475asmlinkage void __sched preempt_schedule_irq(void)
5476{
5477 struct thread_info *ti = current_thread_info();
6478d880 5478
2ed6e34f 5479 /* Catch callers which need to be fixed */
1da177e4
LT
5480 BUG_ON(ti->preempt_count || !irqs_disabled());
5481
3a5c359a
AK
5482 do {
5483 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5484 local_irq_enable();
5485 schedule();
5486 local_irq_disable();
3a5c359a 5487 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5488
3a5c359a
AK
5489 /*
5490 * Check again in case we missed a preemption opportunity
5491 * between schedule and now.
5492 */
5493 barrier();
5ed0cec0 5494 } while (need_resched());
1da177e4
LT
5495}
5496
5497#endif /* CONFIG_PREEMPT */
5498
95cdf3b7
IM
5499int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5500 void *key)
1da177e4 5501{
48f24c4d 5502 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5503}
1da177e4
LT
5504EXPORT_SYMBOL(default_wake_function);
5505
5506/*
41a2d6cf
IM
5507 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5508 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5509 * number) then we wake all the non-exclusive tasks and one exclusive task.
5510 *
5511 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5512 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5513 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5514 */
78ddb08f 5515static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5516 int nr_exclusive, int sync, void *key)
1da177e4 5517{
2e45874c 5518 wait_queue_t *curr, *next;
1da177e4 5519
2e45874c 5520 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5521 unsigned flags = curr->flags;
5522
1da177e4 5523 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5524 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5525 break;
5526 }
5527}
5528
5529/**
5530 * __wake_up - wake up threads blocked on a waitqueue.
5531 * @q: the waitqueue
5532 * @mode: which threads
5533 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5534 * @key: is directly passed to the wakeup function
50fa610a
DH
5535 *
5536 * It may be assumed that this function implies a write memory barrier before
5537 * changing the task state if and only if any tasks are woken up.
1da177e4 5538 */
7ad5b3a5 5539void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5540 int nr_exclusive, void *key)
1da177e4
LT
5541{
5542 unsigned long flags;
5543
5544 spin_lock_irqsave(&q->lock, flags);
5545 __wake_up_common(q, mode, nr_exclusive, 0, key);
5546 spin_unlock_irqrestore(&q->lock, flags);
5547}
1da177e4
LT
5548EXPORT_SYMBOL(__wake_up);
5549
5550/*
5551 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5552 */
7ad5b3a5 5553void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5554{
5555 __wake_up_common(q, mode, 1, 0, NULL);
5556}
5557
4ede816a
DL
5558void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5559{
5560 __wake_up_common(q, mode, 1, 0, key);
5561}
5562
1da177e4 5563/**
4ede816a 5564 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5565 * @q: the waitqueue
5566 * @mode: which threads
5567 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5568 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5569 *
5570 * The sync wakeup differs that the waker knows that it will schedule
5571 * away soon, so while the target thread will be woken up, it will not
5572 * be migrated to another CPU - ie. the two threads are 'synchronized'
5573 * with each other. This can prevent needless bouncing between CPUs.
5574 *
5575 * On UP it can prevent extra preemption.
50fa610a
DH
5576 *
5577 * It may be assumed that this function implies a write memory barrier before
5578 * changing the task state if and only if any tasks are woken up.
1da177e4 5579 */
4ede816a
DL
5580void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5581 int nr_exclusive, void *key)
1da177e4
LT
5582{
5583 unsigned long flags;
5584 int sync = 1;
5585
5586 if (unlikely(!q))
5587 return;
5588
5589 if (unlikely(!nr_exclusive))
5590 sync = 0;
5591
5592 spin_lock_irqsave(&q->lock, flags);
4ede816a 5593 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5594 spin_unlock_irqrestore(&q->lock, flags);
5595}
4ede816a
DL
5596EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5597
5598/*
5599 * __wake_up_sync - see __wake_up_sync_key()
5600 */
5601void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5602{
5603 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5604}
1da177e4
LT
5605EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5606
65eb3dc6
KD
5607/**
5608 * complete: - signals a single thread waiting on this completion
5609 * @x: holds the state of this particular completion
5610 *
5611 * This will wake up a single thread waiting on this completion. Threads will be
5612 * awakened in the same order in which they were queued.
5613 *
5614 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5615 *
5616 * It may be assumed that this function implies a write memory barrier before
5617 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5618 */
b15136e9 5619void complete(struct completion *x)
1da177e4
LT
5620{
5621 unsigned long flags;
5622
5623 spin_lock_irqsave(&x->wait.lock, flags);
5624 x->done++;
d9514f6c 5625 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5626 spin_unlock_irqrestore(&x->wait.lock, flags);
5627}
5628EXPORT_SYMBOL(complete);
5629
65eb3dc6
KD
5630/**
5631 * complete_all: - signals all threads waiting on this completion
5632 * @x: holds the state of this particular completion
5633 *
5634 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5635 *
5636 * It may be assumed that this function implies a write memory barrier before
5637 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5638 */
b15136e9 5639void complete_all(struct completion *x)
1da177e4
LT
5640{
5641 unsigned long flags;
5642
5643 spin_lock_irqsave(&x->wait.lock, flags);
5644 x->done += UINT_MAX/2;
d9514f6c 5645 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5646 spin_unlock_irqrestore(&x->wait.lock, flags);
5647}
5648EXPORT_SYMBOL(complete_all);
5649
8cbbe86d
AK
5650static inline long __sched
5651do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5652{
1da177e4
LT
5653 if (!x->done) {
5654 DECLARE_WAITQUEUE(wait, current);
5655
5656 wait.flags |= WQ_FLAG_EXCLUSIVE;
5657 __add_wait_queue_tail(&x->wait, &wait);
5658 do {
94d3d824 5659 if (signal_pending_state(state, current)) {
ea71a546
ON
5660 timeout = -ERESTARTSYS;
5661 break;
8cbbe86d
AK
5662 }
5663 __set_current_state(state);
1da177e4
LT
5664 spin_unlock_irq(&x->wait.lock);
5665 timeout = schedule_timeout(timeout);
5666 spin_lock_irq(&x->wait.lock);
ea71a546 5667 } while (!x->done && timeout);
1da177e4 5668 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5669 if (!x->done)
5670 return timeout;
1da177e4
LT
5671 }
5672 x->done--;
ea71a546 5673 return timeout ?: 1;
1da177e4 5674}
1da177e4 5675
8cbbe86d
AK
5676static long __sched
5677wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5678{
1da177e4
LT
5679 might_sleep();
5680
5681 spin_lock_irq(&x->wait.lock);
8cbbe86d 5682 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5683 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5684 return timeout;
5685}
1da177e4 5686
65eb3dc6
KD
5687/**
5688 * wait_for_completion: - waits for completion of a task
5689 * @x: holds the state of this particular completion
5690 *
5691 * This waits to be signaled for completion of a specific task. It is NOT
5692 * interruptible and there is no timeout.
5693 *
5694 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5695 * and interrupt capability. Also see complete().
5696 */
b15136e9 5697void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5698{
5699 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5700}
8cbbe86d 5701EXPORT_SYMBOL(wait_for_completion);
1da177e4 5702
65eb3dc6
KD
5703/**
5704 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5705 * @x: holds the state of this particular completion
5706 * @timeout: timeout value in jiffies
5707 *
5708 * This waits for either a completion of a specific task to be signaled or for a
5709 * specified timeout to expire. The timeout is in jiffies. It is not
5710 * interruptible.
5711 */
b15136e9 5712unsigned long __sched
8cbbe86d 5713wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5714{
8cbbe86d 5715 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5716}
8cbbe86d 5717EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5718
65eb3dc6
KD
5719/**
5720 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5721 * @x: holds the state of this particular completion
5722 *
5723 * This waits for completion of a specific task to be signaled. It is
5724 * interruptible.
5725 */
8cbbe86d 5726int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5727{
51e97990
AK
5728 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5729 if (t == -ERESTARTSYS)
5730 return t;
5731 return 0;
0fec171c 5732}
8cbbe86d 5733EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5734
65eb3dc6
KD
5735/**
5736 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5737 * @x: holds the state of this particular completion
5738 * @timeout: timeout value in jiffies
5739 *
5740 * This waits for either a completion of a specific task to be signaled or for a
5741 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5742 */
b15136e9 5743unsigned long __sched
8cbbe86d
AK
5744wait_for_completion_interruptible_timeout(struct completion *x,
5745 unsigned long timeout)
0fec171c 5746{
8cbbe86d 5747 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5748}
8cbbe86d 5749EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5750
65eb3dc6
KD
5751/**
5752 * wait_for_completion_killable: - waits for completion of a task (killable)
5753 * @x: holds the state of this particular completion
5754 *
5755 * This waits to be signaled for completion of a specific task. It can be
5756 * interrupted by a kill signal.
5757 */
009e577e
MW
5758int __sched wait_for_completion_killable(struct completion *x)
5759{
5760 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5761 if (t == -ERESTARTSYS)
5762 return t;
5763 return 0;
5764}
5765EXPORT_SYMBOL(wait_for_completion_killable);
5766
be4de352
DC
5767/**
5768 * try_wait_for_completion - try to decrement a completion without blocking
5769 * @x: completion structure
5770 *
5771 * Returns: 0 if a decrement cannot be done without blocking
5772 * 1 if a decrement succeeded.
5773 *
5774 * If a completion is being used as a counting completion,
5775 * attempt to decrement the counter without blocking. This
5776 * enables us to avoid waiting if the resource the completion
5777 * is protecting is not available.
5778 */
5779bool try_wait_for_completion(struct completion *x)
5780{
5781 int ret = 1;
5782
5783 spin_lock_irq(&x->wait.lock);
5784 if (!x->done)
5785 ret = 0;
5786 else
5787 x->done--;
5788 spin_unlock_irq(&x->wait.lock);
5789 return ret;
5790}
5791EXPORT_SYMBOL(try_wait_for_completion);
5792
5793/**
5794 * completion_done - Test to see if a completion has any waiters
5795 * @x: completion structure
5796 *
5797 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5798 * 1 if there are no waiters.
5799 *
5800 */
5801bool completion_done(struct completion *x)
5802{
5803 int ret = 1;
5804
5805 spin_lock_irq(&x->wait.lock);
5806 if (!x->done)
5807 ret = 0;
5808 spin_unlock_irq(&x->wait.lock);
5809 return ret;
5810}
5811EXPORT_SYMBOL(completion_done);
5812
8cbbe86d
AK
5813static long __sched
5814sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5815{
0fec171c
IM
5816 unsigned long flags;
5817 wait_queue_t wait;
5818
5819 init_waitqueue_entry(&wait, current);
1da177e4 5820
8cbbe86d 5821 __set_current_state(state);
1da177e4 5822
8cbbe86d
AK
5823 spin_lock_irqsave(&q->lock, flags);
5824 __add_wait_queue(q, &wait);
5825 spin_unlock(&q->lock);
5826 timeout = schedule_timeout(timeout);
5827 spin_lock_irq(&q->lock);
5828 __remove_wait_queue(q, &wait);
5829 spin_unlock_irqrestore(&q->lock, flags);
5830
5831 return timeout;
5832}
5833
5834void __sched interruptible_sleep_on(wait_queue_head_t *q)
5835{
5836 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5837}
1da177e4
LT
5838EXPORT_SYMBOL(interruptible_sleep_on);
5839
0fec171c 5840long __sched
95cdf3b7 5841interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5842{
8cbbe86d 5843 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5844}
1da177e4
LT
5845EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5846
0fec171c 5847void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5848{
8cbbe86d 5849 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5850}
1da177e4
LT
5851EXPORT_SYMBOL(sleep_on);
5852
0fec171c 5853long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5854{
8cbbe86d 5855 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5856}
1da177e4
LT
5857EXPORT_SYMBOL(sleep_on_timeout);
5858
b29739f9
IM
5859#ifdef CONFIG_RT_MUTEXES
5860
5861/*
5862 * rt_mutex_setprio - set the current priority of a task
5863 * @p: task
5864 * @prio: prio value (kernel-internal form)
5865 *
5866 * This function changes the 'effective' priority of a task. It does
5867 * not touch ->normal_prio like __setscheduler().
5868 *
5869 * Used by the rt_mutex code to implement priority inheritance logic.
5870 */
36c8b586 5871void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5872{
5873 unsigned long flags;
83b699ed 5874 int oldprio, on_rq, running;
70b97a7f 5875 struct rq *rq;
cb469845 5876 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5877
5878 BUG_ON(prio < 0 || prio > MAX_PRIO);
5879
5880 rq = task_rq_lock(p, &flags);
a8e504d2 5881 update_rq_clock(rq);
b29739f9 5882
d5f9f942 5883 oldprio = p->prio;
dd41f596 5884 on_rq = p->se.on_rq;
051a1d1a 5885 running = task_current(rq, p);
0e1f3483 5886 if (on_rq)
69be72c1 5887 dequeue_task(rq, p, 0);
0e1f3483
HS
5888 if (running)
5889 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5890
5891 if (rt_prio(prio))
5892 p->sched_class = &rt_sched_class;
5893 else
5894 p->sched_class = &fair_sched_class;
5895
b29739f9
IM
5896 p->prio = prio;
5897
0e1f3483
HS
5898 if (running)
5899 p->sched_class->set_curr_task(rq);
dd41f596 5900 if (on_rq) {
8159f87e 5901 enqueue_task(rq, p, 0);
cb469845
SR
5902
5903 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5904 }
5905 task_rq_unlock(rq, &flags);
5906}
5907
5908#endif
5909
36c8b586 5910void set_user_nice(struct task_struct *p, long nice)
1da177e4 5911{
dd41f596 5912 int old_prio, delta, on_rq;
1da177e4 5913 unsigned long flags;
70b97a7f 5914 struct rq *rq;
1da177e4
LT
5915
5916 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5917 return;
5918 /*
5919 * We have to be careful, if called from sys_setpriority(),
5920 * the task might be in the middle of scheduling on another CPU.
5921 */
5922 rq = task_rq_lock(p, &flags);
a8e504d2 5923 update_rq_clock(rq);
1da177e4
LT
5924 /*
5925 * The RT priorities are set via sched_setscheduler(), but we still
5926 * allow the 'normal' nice value to be set - but as expected
5927 * it wont have any effect on scheduling until the task is
dd41f596 5928 * SCHED_FIFO/SCHED_RR:
1da177e4 5929 */
e05606d3 5930 if (task_has_rt_policy(p)) {
1da177e4
LT
5931 p->static_prio = NICE_TO_PRIO(nice);
5932 goto out_unlock;
5933 }
dd41f596 5934 on_rq = p->se.on_rq;
c09595f6 5935 if (on_rq)
69be72c1 5936 dequeue_task(rq, p, 0);
1da177e4 5937
1da177e4 5938 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5939 set_load_weight(p);
b29739f9
IM
5940 old_prio = p->prio;
5941 p->prio = effective_prio(p);
5942 delta = p->prio - old_prio;
1da177e4 5943
dd41f596 5944 if (on_rq) {
8159f87e 5945 enqueue_task(rq, p, 0);
1da177e4 5946 /*
d5f9f942
AM
5947 * If the task increased its priority or is running and
5948 * lowered its priority, then reschedule its CPU:
1da177e4 5949 */
d5f9f942 5950 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5951 resched_task(rq->curr);
5952 }
5953out_unlock:
5954 task_rq_unlock(rq, &flags);
5955}
1da177e4
LT
5956EXPORT_SYMBOL(set_user_nice);
5957
e43379f1
MM
5958/*
5959 * can_nice - check if a task can reduce its nice value
5960 * @p: task
5961 * @nice: nice value
5962 */
36c8b586 5963int can_nice(const struct task_struct *p, const int nice)
e43379f1 5964{
024f4747
MM
5965 /* convert nice value [19,-20] to rlimit style value [1,40] */
5966 int nice_rlim = 20 - nice;
48f24c4d 5967
e43379f1
MM
5968 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5969 capable(CAP_SYS_NICE));
5970}
5971
1da177e4
LT
5972#ifdef __ARCH_WANT_SYS_NICE
5973
5974/*
5975 * sys_nice - change the priority of the current process.
5976 * @increment: priority increment
5977 *
5978 * sys_setpriority is a more generic, but much slower function that
5979 * does similar things.
5980 */
5add95d4 5981SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5982{
48f24c4d 5983 long nice, retval;
1da177e4
LT
5984
5985 /*
5986 * Setpriority might change our priority at the same moment.
5987 * We don't have to worry. Conceptually one call occurs first
5988 * and we have a single winner.
5989 */
e43379f1
MM
5990 if (increment < -40)
5991 increment = -40;
1da177e4
LT
5992 if (increment > 40)
5993 increment = 40;
5994
2b8f836f 5995 nice = TASK_NICE(current) + increment;
1da177e4
LT
5996 if (nice < -20)
5997 nice = -20;
5998 if (nice > 19)
5999 nice = 19;
6000
e43379f1
MM
6001 if (increment < 0 && !can_nice(current, nice))
6002 return -EPERM;
6003
1da177e4
LT
6004 retval = security_task_setnice(current, nice);
6005 if (retval)
6006 return retval;
6007
6008 set_user_nice(current, nice);
6009 return 0;
6010}
6011
6012#endif
6013
6014/**
6015 * task_prio - return the priority value of a given task.
6016 * @p: the task in question.
6017 *
6018 * This is the priority value as seen by users in /proc.
6019 * RT tasks are offset by -200. Normal tasks are centered
6020 * around 0, value goes from -16 to +15.
6021 */
36c8b586 6022int task_prio(const struct task_struct *p)
1da177e4
LT
6023{
6024 return p->prio - MAX_RT_PRIO;
6025}
6026
6027/**
6028 * task_nice - return the nice value of a given task.
6029 * @p: the task in question.
6030 */
36c8b586 6031int task_nice(const struct task_struct *p)
1da177e4
LT
6032{
6033 return TASK_NICE(p);
6034}
150d8bed 6035EXPORT_SYMBOL(task_nice);
1da177e4
LT
6036
6037/**
6038 * idle_cpu - is a given cpu idle currently?
6039 * @cpu: the processor in question.
6040 */
6041int idle_cpu(int cpu)
6042{
6043 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6044}
6045
1da177e4
LT
6046/**
6047 * idle_task - return the idle task for a given cpu.
6048 * @cpu: the processor in question.
6049 */
36c8b586 6050struct task_struct *idle_task(int cpu)
1da177e4
LT
6051{
6052 return cpu_rq(cpu)->idle;
6053}
6054
6055/**
6056 * find_process_by_pid - find a process with a matching PID value.
6057 * @pid: the pid in question.
6058 */
a9957449 6059static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6060{
228ebcbe 6061 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6062}
6063
6064/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6065static void
6066__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6067{
dd41f596 6068 BUG_ON(p->se.on_rq);
48f24c4d 6069
1da177e4 6070 p->policy = policy;
dd41f596
IM
6071 switch (p->policy) {
6072 case SCHED_NORMAL:
6073 case SCHED_BATCH:
6074 case SCHED_IDLE:
6075 p->sched_class = &fair_sched_class;
6076 break;
6077 case SCHED_FIFO:
6078 case SCHED_RR:
6079 p->sched_class = &rt_sched_class;
6080 break;
6081 }
6082
1da177e4 6083 p->rt_priority = prio;
b29739f9
IM
6084 p->normal_prio = normal_prio(p);
6085 /* we are holding p->pi_lock already */
6086 p->prio = rt_mutex_getprio(p);
2dd73a4f 6087 set_load_weight(p);
1da177e4
LT
6088}
6089
c69e8d9c
DH
6090/*
6091 * check the target process has a UID that matches the current process's
6092 */
6093static bool check_same_owner(struct task_struct *p)
6094{
6095 const struct cred *cred = current_cred(), *pcred;
6096 bool match;
6097
6098 rcu_read_lock();
6099 pcred = __task_cred(p);
6100 match = (cred->euid == pcred->euid ||
6101 cred->euid == pcred->uid);
6102 rcu_read_unlock();
6103 return match;
6104}
6105
961ccddd
RR
6106static int __sched_setscheduler(struct task_struct *p, int policy,
6107 struct sched_param *param, bool user)
1da177e4 6108{
83b699ed 6109 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6110 unsigned long flags;
cb469845 6111 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6112 struct rq *rq;
ca94c442 6113 int reset_on_fork;
1da177e4 6114
66e5393a
SR
6115 /* may grab non-irq protected spin_locks */
6116 BUG_ON(in_interrupt());
1da177e4
LT
6117recheck:
6118 /* double check policy once rq lock held */
ca94c442
LP
6119 if (policy < 0) {
6120 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6121 policy = oldpolicy = p->policy;
ca94c442
LP
6122 } else {
6123 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6124 policy &= ~SCHED_RESET_ON_FORK;
6125
6126 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6127 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6128 policy != SCHED_IDLE)
6129 return -EINVAL;
6130 }
6131
1da177e4
LT
6132 /*
6133 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6134 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6135 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6136 */
6137 if (param->sched_priority < 0 ||
95cdf3b7 6138 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6139 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6140 return -EINVAL;
e05606d3 6141 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6142 return -EINVAL;
6143
37e4ab3f
OC
6144 /*
6145 * Allow unprivileged RT tasks to decrease priority:
6146 */
961ccddd 6147 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6148 if (rt_policy(policy)) {
8dc3e909 6149 unsigned long rlim_rtprio;
8dc3e909
ON
6150
6151 if (!lock_task_sighand(p, &flags))
6152 return -ESRCH;
6153 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6154 unlock_task_sighand(p, &flags);
6155
6156 /* can't set/change the rt policy */
6157 if (policy != p->policy && !rlim_rtprio)
6158 return -EPERM;
6159
6160 /* can't increase priority */
6161 if (param->sched_priority > p->rt_priority &&
6162 param->sched_priority > rlim_rtprio)
6163 return -EPERM;
6164 }
dd41f596
IM
6165 /*
6166 * Like positive nice levels, dont allow tasks to
6167 * move out of SCHED_IDLE either:
6168 */
6169 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6170 return -EPERM;
5fe1d75f 6171
37e4ab3f 6172 /* can't change other user's priorities */
c69e8d9c 6173 if (!check_same_owner(p))
37e4ab3f 6174 return -EPERM;
ca94c442
LP
6175
6176 /* Normal users shall not reset the sched_reset_on_fork flag */
6177 if (p->sched_reset_on_fork && !reset_on_fork)
6178 return -EPERM;
37e4ab3f 6179 }
1da177e4 6180
725aad24 6181 if (user) {
b68aa230 6182#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6183 /*
6184 * Do not allow realtime tasks into groups that have no runtime
6185 * assigned.
6186 */
9a7e0b18
PZ
6187 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6188 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6189 return -EPERM;
b68aa230
PZ
6190#endif
6191
725aad24
JF
6192 retval = security_task_setscheduler(p, policy, param);
6193 if (retval)
6194 return retval;
6195 }
6196
b29739f9
IM
6197 /*
6198 * make sure no PI-waiters arrive (or leave) while we are
6199 * changing the priority of the task:
6200 */
6201 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6202 /*
6203 * To be able to change p->policy safely, the apropriate
6204 * runqueue lock must be held.
6205 */
b29739f9 6206 rq = __task_rq_lock(p);
1da177e4
LT
6207 /* recheck policy now with rq lock held */
6208 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6209 policy = oldpolicy = -1;
b29739f9
IM
6210 __task_rq_unlock(rq);
6211 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6212 goto recheck;
6213 }
2daa3577 6214 update_rq_clock(rq);
dd41f596 6215 on_rq = p->se.on_rq;
051a1d1a 6216 running = task_current(rq, p);
0e1f3483 6217 if (on_rq)
2e1cb74a 6218 deactivate_task(rq, p, 0);
0e1f3483
HS
6219 if (running)
6220 p->sched_class->put_prev_task(rq, p);
f6b53205 6221
ca94c442
LP
6222 p->sched_reset_on_fork = reset_on_fork;
6223
1da177e4 6224 oldprio = p->prio;
dd41f596 6225 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6226
0e1f3483
HS
6227 if (running)
6228 p->sched_class->set_curr_task(rq);
dd41f596
IM
6229 if (on_rq) {
6230 activate_task(rq, p, 0);
cb469845
SR
6231
6232 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6233 }
b29739f9
IM
6234 __task_rq_unlock(rq);
6235 spin_unlock_irqrestore(&p->pi_lock, flags);
6236
95e02ca9
TG
6237 rt_mutex_adjust_pi(p);
6238
1da177e4
LT
6239 return 0;
6240}
961ccddd
RR
6241
6242/**
6243 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6244 * @p: the task in question.
6245 * @policy: new policy.
6246 * @param: structure containing the new RT priority.
6247 *
6248 * NOTE that the task may be already dead.
6249 */
6250int sched_setscheduler(struct task_struct *p, int policy,
6251 struct sched_param *param)
6252{
6253 return __sched_setscheduler(p, policy, param, true);
6254}
1da177e4
LT
6255EXPORT_SYMBOL_GPL(sched_setscheduler);
6256
961ccddd
RR
6257/**
6258 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6259 * @p: the task in question.
6260 * @policy: new policy.
6261 * @param: structure containing the new RT priority.
6262 *
6263 * Just like sched_setscheduler, only don't bother checking if the
6264 * current context has permission. For example, this is needed in
6265 * stop_machine(): we create temporary high priority worker threads,
6266 * but our caller might not have that capability.
6267 */
6268int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6269 struct sched_param *param)
6270{
6271 return __sched_setscheduler(p, policy, param, false);
6272}
6273
95cdf3b7
IM
6274static int
6275do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6276{
1da177e4
LT
6277 struct sched_param lparam;
6278 struct task_struct *p;
36c8b586 6279 int retval;
1da177e4
LT
6280
6281 if (!param || pid < 0)
6282 return -EINVAL;
6283 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6284 return -EFAULT;
5fe1d75f
ON
6285
6286 rcu_read_lock();
6287 retval = -ESRCH;
1da177e4 6288 p = find_process_by_pid(pid);
5fe1d75f
ON
6289 if (p != NULL)
6290 retval = sched_setscheduler(p, policy, &lparam);
6291 rcu_read_unlock();
36c8b586 6292
1da177e4
LT
6293 return retval;
6294}
6295
6296/**
6297 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6298 * @pid: the pid in question.
6299 * @policy: new policy.
6300 * @param: structure containing the new RT priority.
6301 */
5add95d4
HC
6302SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6303 struct sched_param __user *, param)
1da177e4 6304{
c21761f1
JB
6305 /* negative values for policy are not valid */
6306 if (policy < 0)
6307 return -EINVAL;
6308
1da177e4
LT
6309 return do_sched_setscheduler(pid, policy, param);
6310}
6311
6312/**
6313 * sys_sched_setparam - set/change the RT priority of a thread
6314 * @pid: the pid in question.
6315 * @param: structure containing the new RT priority.
6316 */
5add95d4 6317SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6318{
6319 return do_sched_setscheduler(pid, -1, param);
6320}
6321
6322/**
6323 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6324 * @pid: the pid in question.
6325 */
5add95d4 6326SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6327{
36c8b586 6328 struct task_struct *p;
3a5c359a 6329 int retval;
1da177e4
LT
6330
6331 if (pid < 0)
3a5c359a 6332 return -EINVAL;
1da177e4
LT
6333
6334 retval = -ESRCH;
6335 read_lock(&tasklist_lock);
6336 p = find_process_by_pid(pid);
6337 if (p) {
6338 retval = security_task_getscheduler(p);
6339 if (!retval)
ca94c442
LP
6340 retval = p->policy
6341 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6342 }
6343 read_unlock(&tasklist_lock);
1da177e4
LT
6344 return retval;
6345}
6346
6347/**
ca94c442 6348 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6349 * @pid: the pid in question.
6350 * @param: structure containing the RT priority.
6351 */
5add95d4 6352SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6353{
6354 struct sched_param lp;
36c8b586 6355 struct task_struct *p;
3a5c359a 6356 int retval;
1da177e4
LT
6357
6358 if (!param || pid < 0)
3a5c359a 6359 return -EINVAL;
1da177e4
LT
6360
6361 read_lock(&tasklist_lock);
6362 p = find_process_by_pid(pid);
6363 retval = -ESRCH;
6364 if (!p)
6365 goto out_unlock;
6366
6367 retval = security_task_getscheduler(p);
6368 if (retval)
6369 goto out_unlock;
6370
6371 lp.sched_priority = p->rt_priority;
6372 read_unlock(&tasklist_lock);
6373
6374 /*
6375 * This one might sleep, we cannot do it with a spinlock held ...
6376 */
6377 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6378
1da177e4
LT
6379 return retval;
6380
6381out_unlock:
6382 read_unlock(&tasklist_lock);
6383 return retval;
6384}
6385
96f874e2 6386long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6387{
5a16f3d3 6388 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6389 struct task_struct *p;
6390 int retval;
1da177e4 6391
95402b38 6392 get_online_cpus();
1da177e4
LT
6393 read_lock(&tasklist_lock);
6394
6395 p = find_process_by_pid(pid);
6396 if (!p) {
6397 read_unlock(&tasklist_lock);
95402b38 6398 put_online_cpus();
1da177e4
LT
6399 return -ESRCH;
6400 }
6401
6402 /*
6403 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6404 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6405 * usage count and then drop tasklist_lock.
6406 */
6407 get_task_struct(p);
6408 read_unlock(&tasklist_lock);
6409
5a16f3d3
RR
6410 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6411 retval = -ENOMEM;
6412 goto out_put_task;
6413 }
6414 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6415 retval = -ENOMEM;
6416 goto out_free_cpus_allowed;
6417 }
1da177e4 6418 retval = -EPERM;
c69e8d9c 6419 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6420 goto out_unlock;
6421
e7834f8f
DQ
6422 retval = security_task_setscheduler(p, 0, NULL);
6423 if (retval)
6424 goto out_unlock;
6425
5a16f3d3
RR
6426 cpuset_cpus_allowed(p, cpus_allowed);
6427 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6428 again:
5a16f3d3 6429 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6430
8707d8b8 6431 if (!retval) {
5a16f3d3
RR
6432 cpuset_cpus_allowed(p, cpus_allowed);
6433 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6434 /*
6435 * We must have raced with a concurrent cpuset
6436 * update. Just reset the cpus_allowed to the
6437 * cpuset's cpus_allowed
6438 */
5a16f3d3 6439 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6440 goto again;
6441 }
6442 }
1da177e4 6443out_unlock:
5a16f3d3
RR
6444 free_cpumask_var(new_mask);
6445out_free_cpus_allowed:
6446 free_cpumask_var(cpus_allowed);
6447out_put_task:
1da177e4 6448 put_task_struct(p);
95402b38 6449 put_online_cpus();
1da177e4
LT
6450 return retval;
6451}
6452
6453static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6454 struct cpumask *new_mask)
1da177e4 6455{
96f874e2
RR
6456 if (len < cpumask_size())
6457 cpumask_clear(new_mask);
6458 else if (len > cpumask_size())
6459 len = cpumask_size();
6460
1da177e4
LT
6461 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6462}
6463
6464/**
6465 * sys_sched_setaffinity - set the cpu affinity of a process
6466 * @pid: pid of the process
6467 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6468 * @user_mask_ptr: user-space pointer to the new cpu mask
6469 */
5add95d4
HC
6470SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6471 unsigned long __user *, user_mask_ptr)
1da177e4 6472{
5a16f3d3 6473 cpumask_var_t new_mask;
1da177e4
LT
6474 int retval;
6475
5a16f3d3
RR
6476 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6477 return -ENOMEM;
1da177e4 6478
5a16f3d3
RR
6479 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6480 if (retval == 0)
6481 retval = sched_setaffinity(pid, new_mask);
6482 free_cpumask_var(new_mask);
6483 return retval;
1da177e4
LT
6484}
6485
96f874e2 6486long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6487{
36c8b586 6488 struct task_struct *p;
1da177e4 6489 int retval;
1da177e4 6490
95402b38 6491 get_online_cpus();
1da177e4
LT
6492 read_lock(&tasklist_lock);
6493
6494 retval = -ESRCH;
6495 p = find_process_by_pid(pid);
6496 if (!p)
6497 goto out_unlock;
6498
e7834f8f
DQ
6499 retval = security_task_getscheduler(p);
6500 if (retval)
6501 goto out_unlock;
6502
96f874e2 6503 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6504
6505out_unlock:
6506 read_unlock(&tasklist_lock);
95402b38 6507 put_online_cpus();
1da177e4 6508
9531b62f 6509 return retval;
1da177e4
LT
6510}
6511
6512/**
6513 * sys_sched_getaffinity - get the cpu affinity of a process
6514 * @pid: pid of the process
6515 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6516 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6517 */
5add95d4
HC
6518SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6519 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6520{
6521 int ret;
f17c8607 6522 cpumask_var_t mask;
1da177e4 6523
f17c8607 6524 if (len < cpumask_size())
1da177e4
LT
6525 return -EINVAL;
6526
f17c8607
RR
6527 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6528 return -ENOMEM;
1da177e4 6529
f17c8607
RR
6530 ret = sched_getaffinity(pid, mask);
6531 if (ret == 0) {
6532 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6533 ret = -EFAULT;
6534 else
6535 ret = cpumask_size();
6536 }
6537 free_cpumask_var(mask);
1da177e4 6538
f17c8607 6539 return ret;
1da177e4
LT
6540}
6541
6542/**
6543 * sys_sched_yield - yield the current processor to other threads.
6544 *
dd41f596
IM
6545 * This function yields the current CPU to other tasks. If there are no
6546 * other threads running on this CPU then this function will return.
1da177e4 6547 */
5add95d4 6548SYSCALL_DEFINE0(sched_yield)
1da177e4 6549{
70b97a7f 6550 struct rq *rq = this_rq_lock();
1da177e4 6551
2d72376b 6552 schedstat_inc(rq, yld_count);
4530d7ab 6553 current->sched_class->yield_task(rq);
1da177e4
LT
6554
6555 /*
6556 * Since we are going to call schedule() anyway, there's
6557 * no need to preempt or enable interrupts:
6558 */
6559 __release(rq->lock);
8a25d5de 6560 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6561 _raw_spin_unlock(&rq->lock);
6562 preempt_enable_no_resched();
6563
6564 schedule();
6565
6566 return 0;
6567}
6568
e7b38404 6569static void __cond_resched(void)
1da177e4 6570{
8e0a43d8
IM
6571#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6572 __might_sleep(__FILE__, __LINE__);
6573#endif
5bbcfd90
IM
6574 /*
6575 * The BKS might be reacquired before we have dropped
6576 * PREEMPT_ACTIVE, which could trigger a second
6577 * cond_resched() call.
6578 */
1da177e4
LT
6579 do {
6580 add_preempt_count(PREEMPT_ACTIVE);
6581 schedule();
6582 sub_preempt_count(PREEMPT_ACTIVE);
6583 } while (need_resched());
6584}
6585
02b67cc3 6586int __sched _cond_resched(void)
1da177e4 6587{
9414232f
IM
6588 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6589 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6590 __cond_resched();
6591 return 1;
6592 }
6593 return 0;
6594}
02b67cc3 6595EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6596
6597/*
6598 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6599 * call schedule, and on return reacquire the lock.
6600 *
41a2d6cf 6601 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6602 * operations here to prevent schedule() from being called twice (once via
6603 * spin_unlock(), once by hand).
6604 */
95cdf3b7 6605int cond_resched_lock(spinlock_t *lock)
1da177e4 6606{
95c354fe 6607 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6608 int ret = 0;
6609
95c354fe 6610 if (spin_needbreak(lock) || resched) {
1da177e4 6611 spin_unlock(lock);
95c354fe
NP
6612 if (resched && need_resched())
6613 __cond_resched();
6614 else
6615 cpu_relax();
6df3cecb 6616 ret = 1;
1da177e4 6617 spin_lock(lock);
1da177e4 6618 }
6df3cecb 6619 return ret;
1da177e4 6620}
1da177e4
LT
6621EXPORT_SYMBOL(cond_resched_lock);
6622
6623int __sched cond_resched_softirq(void)
6624{
6625 BUG_ON(!in_softirq());
6626
9414232f 6627 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6628 local_bh_enable();
1da177e4
LT
6629 __cond_resched();
6630 local_bh_disable();
6631 return 1;
6632 }
6633 return 0;
6634}
1da177e4
LT
6635EXPORT_SYMBOL(cond_resched_softirq);
6636
1da177e4
LT
6637/**
6638 * yield - yield the current processor to other threads.
6639 *
72fd4a35 6640 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6641 * thread runnable and calls sys_sched_yield().
6642 */
6643void __sched yield(void)
6644{
6645 set_current_state(TASK_RUNNING);
6646 sys_sched_yield();
6647}
1da177e4
LT
6648EXPORT_SYMBOL(yield);
6649
6650/*
41a2d6cf 6651 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6652 * that process accounting knows that this is a task in IO wait state.
6653 *
6654 * But don't do that if it is a deliberate, throttling IO wait (this task
6655 * has set its backing_dev_info: the queue against which it should throttle)
6656 */
6657void __sched io_schedule(void)
6658{
70b97a7f 6659 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6660
0ff92245 6661 delayacct_blkio_start();
1da177e4
LT
6662 atomic_inc(&rq->nr_iowait);
6663 schedule();
6664 atomic_dec(&rq->nr_iowait);
0ff92245 6665 delayacct_blkio_end();
1da177e4 6666}
1da177e4
LT
6667EXPORT_SYMBOL(io_schedule);
6668
6669long __sched io_schedule_timeout(long timeout)
6670{
70b97a7f 6671 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6672 long ret;
6673
0ff92245 6674 delayacct_blkio_start();
1da177e4
LT
6675 atomic_inc(&rq->nr_iowait);
6676 ret = schedule_timeout(timeout);
6677 atomic_dec(&rq->nr_iowait);
0ff92245 6678 delayacct_blkio_end();
1da177e4
LT
6679 return ret;
6680}
6681
6682/**
6683 * sys_sched_get_priority_max - return maximum RT priority.
6684 * @policy: scheduling class.
6685 *
6686 * this syscall returns the maximum rt_priority that can be used
6687 * by a given scheduling class.
6688 */
5add95d4 6689SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6690{
6691 int ret = -EINVAL;
6692
6693 switch (policy) {
6694 case SCHED_FIFO:
6695 case SCHED_RR:
6696 ret = MAX_USER_RT_PRIO-1;
6697 break;
6698 case SCHED_NORMAL:
b0a9499c 6699 case SCHED_BATCH:
dd41f596 6700 case SCHED_IDLE:
1da177e4
LT
6701 ret = 0;
6702 break;
6703 }
6704 return ret;
6705}
6706
6707/**
6708 * sys_sched_get_priority_min - return minimum RT priority.
6709 * @policy: scheduling class.
6710 *
6711 * this syscall returns the minimum rt_priority that can be used
6712 * by a given scheduling class.
6713 */
5add95d4 6714SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6715{
6716 int ret = -EINVAL;
6717
6718 switch (policy) {
6719 case SCHED_FIFO:
6720 case SCHED_RR:
6721 ret = 1;
6722 break;
6723 case SCHED_NORMAL:
b0a9499c 6724 case SCHED_BATCH:
dd41f596 6725 case SCHED_IDLE:
1da177e4
LT
6726 ret = 0;
6727 }
6728 return ret;
6729}
6730
6731/**
6732 * sys_sched_rr_get_interval - return the default timeslice of a process.
6733 * @pid: pid of the process.
6734 * @interval: userspace pointer to the timeslice value.
6735 *
6736 * this syscall writes the default timeslice value of a given process
6737 * into the user-space timespec buffer. A value of '0' means infinity.
6738 */
17da2bd9 6739SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6740 struct timespec __user *, interval)
1da177e4 6741{
36c8b586 6742 struct task_struct *p;
a4ec24b4 6743 unsigned int time_slice;
3a5c359a 6744 int retval;
1da177e4 6745 struct timespec t;
1da177e4
LT
6746
6747 if (pid < 0)
3a5c359a 6748 return -EINVAL;
1da177e4
LT
6749
6750 retval = -ESRCH;
6751 read_lock(&tasklist_lock);
6752 p = find_process_by_pid(pid);
6753 if (!p)
6754 goto out_unlock;
6755
6756 retval = security_task_getscheduler(p);
6757 if (retval)
6758 goto out_unlock;
6759
77034937
IM
6760 /*
6761 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6762 * tasks that are on an otherwise idle runqueue:
6763 */
6764 time_slice = 0;
6765 if (p->policy == SCHED_RR) {
a4ec24b4 6766 time_slice = DEF_TIMESLICE;
1868f958 6767 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6768 struct sched_entity *se = &p->se;
6769 unsigned long flags;
6770 struct rq *rq;
6771
6772 rq = task_rq_lock(p, &flags);
77034937
IM
6773 if (rq->cfs.load.weight)
6774 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6775 task_rq_unlock(rq, &flags);
6776 }
1da177e4 6777 read_unlock(&tasklist_lock);
a4ec24b4 6778 jiffies_to_timespec(time_slice, &t);
1da177e4 6779 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6780 return retval;
3a5c359a 6781
1da177e4
LT
6782out_unlock:
6783 read_unlock(&tasklist_lock);
6784 return retval;
6785}
6786
7c731e0a 6787static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6788
82a1fcb9 6789void sched_show_task(struct task_struct *p)
1da177e4 6790{
1da177e4 6791 unsigned long free = 0;
36c8b586 6792 unsigned state;
1da177e4 6793
1da177e4 6794 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6795 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6796 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6797#if BITS_PER_LONG == 32
1da177e4 6798 if (state == TASK_RUNNING)
cc4ea795 6799 printk(KERN_CONT " running ");
1da177e4 6800 else
cc4ea795 6801 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6802#else
6803 if (state == TASK_RUNNING)
cc4ea795 6804 printk(KERN_CONT " running task ");
1da177e4 6805 else
cc4ea795 6806 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6807#endif
6808#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6809 free = stack_not_used(p);
1da177e4 6810#endif
aa47b7e0
DR
6811 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6812 task_pid_nr(p), task_pid_nr(p->real_parent),
6813 (unsigned long)task_thread_info(p)->flags);
1da177e4 6814
5fb5e6de 6815 show_stack(p, NULL);
1da177e4
LT
6816}
6817
e59e2ae2 6818void show_state_filter(unsigned long state_filter)
1da177e4 6819{
36c8b586 6820 struct task_struct *g, *p;
1da177e4 6821
4bd77321
IM
6822#if BITS_PER_LONG == 32
6823 printk(KERN_INFO
6824 " task PC stack pid father\n");
1da177e4 6825#else
4bd77321
IM
6826 printk(KERN_INFO
6827 " task PC stack pid father\n");
1da177e4
LT
6828#endif
6829 read_lock(&tasklist_lock);
6830 do_each_thread(g, p) {
6831 /*
6832 * reset the NMI-timeout, listing all files on a slow
6833 * console might take alot of time:
6834 */
6835 touch_nmi_watchdog();
39bc89fd 6836 if (!state_filter || (p->state & state_filter))
82a1fcb9 6837 sched_show_task(p);
1da177e4
LT
6838 } while_each_thread(g, p);
6839
04c9167f
JF
6840 touch_all_softlockup_watchdogs();
6841
dd41f596
IM
6842#ifdef CONFIG_SCHED_DEBUG
6843 sysrq_sched_debug_show();
6844#endif
1da177e4 6845 read_unlock(&tasklist_lock);
e59e2ae2
IM
6846 /*
6847 * Only show locks if all tasks are dumped:
6848 */
6849 if (state_filter == -1)
6850 debug_show_all_locks();
1da177e4
LT
6851}
6852
1df21055
IM
6853void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6854{
dd41f596 6855 idle->sched_class = &idle_sched_class;
1df21055
IM
6856}
6857
f340c0d1
IM
6858/**
6859 * init_idle - set up an idle thread for a given CPU
6860 * @idle: task in question
6861 * @cpu: cpu the idle task belongs to
6862 *
6863 * NOTE: this function does not set the idle thread's NEED_RESCHED
6864 * flag, to make booting more robust.
6865 */
5c1e1767 6866void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6867{
70b97a7f 6868 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6869 unsigned long flags;
6870
5cbd54ef
IM
6871 spin_lock_irqsave(&rq->lock, flags);
6872
dd41f596
IM
6873 __sched_fork(idle);
6874 idle->se.exec_start = sched_clock();
6875
b29739f9 6876 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6877 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6878 __set_task_cpu(idle, cpu);
1da177e4 6879
1da177e4 6880 rq->curr = rq->idle = idle;
4866cde0
NP
6881#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6882 idle->oncpu = 1;
6883#endif
1da177e4
LT
6884 spin_unlock_irqrestore(&rq->lock, flags);
6885
6886 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6887#if defined(CONFIG_PREEMPT)
6888 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6889#else
a1261f54 6890 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6891#endif
dd41f596
IM
6892 /*
6893 * The idle tasks have their own, simple scheduling class:
6894 */
6895 idle->sched_class = &idle_sched_class;
fb52607a 6896 ftrace_graph_init_task(idle);
1da177e4
LT
6897}
6898
6899/*
6900 * In a system that switches off the HZ timer nohz_cpu_mask
6901 * indicates which cpus entered this state. This is used
6902 * in the rcu update to wait only for active cpus. For system
6903 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6904 * always be CPU_BITS_NONE.
1da177e4 6905 */
6a7b3dc3 6906cpumask_var_t nohz_cpu_mask;
1da177e4 6907
19978ca6
IM
6908/*
6909 * Increase the granularity value when there are more CPUs,
6910 * because with more CPUs the 'effective latency' as visible
6911 * to users decreases. But the relationship is not linear,
6912 * so pick a second-best guess by going with the log2 of the
6913 * number of CPUs.
6914 *
6915 * This idea comes from the SD scheduler of Con Kolivas:
6916 */
6917static inline void sched_init_granularity(void)
6918{
6919 unsigned int factor = 1 + ilog2(num_online_cpus());
6920 const unsigned long limit = 200000000;
6921
6922 sysctl_sched_min_granularity *= factor;
6923 if (sysctl_sched_min_granularity > limit)
6924 sysctl_sched_min_granularity = limit;
6925
6926 sysctl_sched_latency *= factor;
6927 if (sysctl_sched_latency > limit)
6928 sysctl_sched_latency = limit;
6929
6930 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6931
6932 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6933}
6934
1da177e4
LT
6935#ifdef CONFIG_SMP
6936/*
6937 * This is how migration works:
6938 *
70b97a7f 6939 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6940 * runqueue and wake up that CPU's migration thread.
6941 * 2) we down() the locked semaphore => thread blocks.
6942 * 3) migration thread wakes up (implicitly it forces the migrated
6943 * thread off the CPU)
6944 * 4) it gets the migration request and checks whether the migrated
6945 * task is still in the wrong runqueue.
6946 * 5) if it's in the wrong runqueue then the migration thread removes
6947 * it and puts it into the right queue.
6948 * 6) migration thread up()s the semaphore.
6949 * 7) we wake up and the migration is done.
6950 */
6951
6952/*
6953 * Change a given task's CPU affinity. Migrate the thread to a
6954 * proper CPU and schedule it away if the CPU it's executing on
6955 * is removed from the allowed bitmask.
6956 *
6957 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6958 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6959 * call is not atomic; no spinlocks may be held.
6960 */
96f874e2 6961int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6962{
70b97a7f 6963 struct migration_req req;
1da177e4 6964 unsigned long flags;
70b97a7f 6965 struct rq *rq;
48f24c4d 6966 int ret = 0;
1da177e4
LT
6967
6968 rq = task_rq_lock(p, &flags);
96f874e2 6969 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6970 ret = -EINVAL;
6971 goto out;
6972 }
6973
9985b0ba 6974 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6975 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6976 ret = -EINVAL;
6977 goto out;
6978 }
6979
73fe6aae 6980 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6981 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6982 else {
96f874e2
RR
6983 cpumask_copy(&p->cpus_allowed, new_mask);
6984 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6985 }
6986
1da177e4 6987 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6988 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6989 goto out;
6990
1e5ce4f4 6991 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6992 /* Need help from migration thread: drop lock and wait. */
6993 task_rq_unlock(rq, &flags);
6994 wake_up_process(rq->migration_thread);
6995 wait_for_completion(&req.done);
6996 tlb_migrate_finish(p->mm);
6997 return 0;
6998 }
6999out:
7000 task_rq_unlock(rq, &flags);
48f24c4d 7001
1da177e4
LT
7002 return ret;
7003}
cd8ba7cd 7004EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7005
7006/*
41a2d6cf 7007 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7008 * this because either it can't run here any more (set_cpus_allowed()
7009 * away from this CPU, or CPU going down), or because we're
7010 * attempting to rebalance this task on exec (sched_exec).
7011 *
7012 * So we race with normal scheduler movements, but that's OK, as long
7013 * as the task is no longer on this CPU.
efc30814
KK
7014 *
7015 * Returns non-zero if task was successfully migrated.
1da177e4 7016 */
efc30814 7017static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7018{
70b97a7f 7019 struct rq *rq_dest, *rq_src;
dd41f596 7020 int ret = 0, on_rq;
1da177e4 7021
e761b772 7022 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7023 return ret;
1da177e4
LT
7024
7025 rq_src = cpu_rq(src_cpu);
7026 rq_dest = cpu_rq(dest_cpu);
7027
7028 double_rq_lock(rq_src, rq_dest);
7029 /* Already moved. */
7030 if (task_cpu(p) != src_cpu)
b1e38734 7031 goto done;
1da177e4 7032 /* Affinity changed (again). */
96f874e2 7033 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7034 goto fail;
1da177e4 7035
dd41f596 7036 on_rq = p->se.on_rq;
6e82a3be 7037 if (on_rq)
2e1cb74a 7038 deactivate_task(rq_src, p, 0);
6e82a3be 7039
1da177e4 7040 set_task_cpu(p, dest_cpu);
dd41f596
IM
7041 if (on_rq) {
7042 activate_task(rq_dest, p, 0);
15afe09b 7043 check_preempt_curr(rq_dest, p, 0);
1da177e4 7044 }
b1e38734 7045done:
efc30814 7046 ret = 1;
b1e38734 7047fail:
1da177e4 7048 double_rq_unlock(rq_src, rq_dest);
efc30814 7049 return ret;
1da177e4
LT
7050}
7051
7052/*
7053 * migration_thread - this is a highprio system thread that performs
7054 * thread migration by bumping thread off CPU then 'pushing' onto
7055 * another runqueue.
7056 */
95cdf3b7 7057static int migration_thread(void *data)
1da177e4 7058{
1da177e4 7059 int cpu = (long)data;
70b97a7f 7060 struct rq *rq;
1da177e4
LT
7061
7062 rq = cpu_rq(cpu);
7063 BUG_ON(rq->migration_thread != current);
7064
7065 set_current_state(TASK_INTERRUPTIBLE);
7066 while (!kthread_should_stop()) {
70b97a7f 7067 struct migration_req *req;
1da177e4 7068 struct list_head *head;
1da177e4 7069
1da177e4
LT
7070 spin_lock_irq(&rq->lock);
7071
7072 if (cpu_is_offline(cpu)) {
7073 spin_unlock_irq(&rq->lock);
7074 goto wait_to_die;
7075 }
7076
7077 if (rq->active_balance) {
7078 active_load_balance(rq, cpu);
7079 rq->active_balance = 0;
7080 }
7081
7082 head = &rq->migration_queue;
7083
7084 if (list_empty(head)) {
7085 spin_unlock_irq(&rq->lock);
7086 schedule();
7087 set_current_state(TASK_INTERRUPTIBLE);
7088 continue;
7089 }
70b97a7f 7090 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7091 list_del_init(head->next);
7092
674311d5
NP
7093 spin_unlock(&rq->lock);
7094 __migrate_task(req->task, cpu, req->dest_cpu);
7095 local_irq_enable();
1da177e4
LT
7096
7097 complete(&req->done);
7098 }
7099 __set_current_state(TASK_RUNNING);
7100 return 0;
7101
7102wait_to_die:
7103 /* Wait for kthread_stop */
7104 set_current_state(TASK_INTERRUPTIBLE);
7105 while (!kthread_should_stop()) {
7106 schedule();
7107 set_current_state(TASK_INTERRUPTIBLE);
7108 }
7109 __set_current_state(TASK_RUNNING);
7110 return 0;
7111}
7112
7113#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7114
7115static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7116{
7117 int ret;
7118
7119 local_irq_disable();
7120 ret = __migrate_task(p, src_cpu, dest_cpu);
7121 local_irq_enable();
7122 return ret;
7123}
7124
054b9108 7125/*
3a4fa0a2 7126 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7127 */
48f24c4d 7128static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7129{
70b97a7f 7130 int dest_cpu;
6ca09dfc 7131 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7132
7133again:
7134 /* Look for allowed, online CPU in same node. */
7135 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7136 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7137 goto move;
7138
7139 /* Any allowed, online CPU? */
7140 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7141 if (dest_cpu < nr_cpu_ids)
7142 goto move;
7143
7144 /* No more Mr. Nice Guy. */
7145 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7146 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7147 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7148
e76bd8d9
RR
7149 /*
7150 * Don't tell them about moving exiting tasks or
7151 * kernel threads (both mm NULL), since they never
7152 * leave kernel.
7153 */
7154 if (p->mm && printk_ratelimit()) {
7155 printk(KERN_INFO "process %d (%s) no "
7156 "longer affine to cpu%d\n",
7157 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7158 }
e76bd8d9
RR
7159 }
7160
7161move:
7162 /* It can have affinity changed while we were choosing. */
7163 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7164 goto again;
1da177e4
LT
7165}
7166
7167/*
7168 * While a dead CPU has no uninterruptible tasks queued at this point,
7169 * it might still have a nonzero ->nr_uninterruptible counter, because
7170 * for performance reasons the counter is not stricly tracking tasks to
7171 * their home CPUs. So we just add the counter to another CPU's counter,
7172 * to keep the global sum constant after CPU-down:
7173 */
70b97a7f 7174static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7175{
1e5ce4f4 7176 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7177 unsigned long flags;
7178
7179 local_irq_save(flags);
7180 double_rq_lock(rq_src, rq_dest);
7181 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7182 rq_src->nr_uninterruptible = 0;
7183 double_rq_unlock(rq_src, rq_dest);
7184 local_irq_restore(flags);
7185}
7186
7187/* Run through task list and migrate tasks from the dead cpu. */
7188static void migrate_live_tasks(int src_cpu)
7189{
48f24c4d 7190 struct task_struct *p, *t;
1da177e4 7191
f7b4cddc 7192 read_lock(&tasklist_lock);
1da177e4 7193
48f24c4d
IM
7194 do_each_thread(t, p) {
7195 if (p == current)
1da177e4
LT
7196 continue;
7197
48f24c4d
IM
7198 if (task_cpu(p) == src_cpu)
7199 move_task_off_dead_cpu(src_cpu, p);
7200 } while_each_thread(t, p);
1da177e4 7201
f7b4cddc 7202 read_unlock(&tasklist_lock);
1da177e4
LT
7203}
7204
dd41f596
IM
7205/*
7206 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7207 * It does so by boosting its priority to highest possible.
7208 * Used by CPU offline code.
1da177e4
LT
7209 */
7210void sched_idle_next(void)
7211{
48f24c4d 7212 int this_cpu = smp_processor_id();
70b97a7f 7213 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7214 struct task_struct *p = rq->idle;
7215 unsigned long flags;
7216
7217 /* cpu has to be offline */
48f24c4d 7218 BUG_ON(cpu_online(this_cpu));
1da177e4 7219
48f24c4d
IM
7220 /*
7221 * Strictly not necessary since rest of the CPUs are stopped by now
7222 * and interrupts disabled on the current cpu.
1da177e4
LT
7223 */
7224 spin_lock_irqsave(&rq->lock, flags);
7225
dd41f596 7226 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7227
94bc9a7b
DA
7228 update_rq_clock(rq);
7229 activate_task(rq, p, 0);
1da177e4
LT
7230
7231 spin_unlock_irqrestore(&rq->lock, flags);
7232}
7233
48f24c4d
IM
7234/*
7235 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7236 * offline.
7237 */
7238void idle_task_exit(void)
7239{
7240 struct mm_struct *mm = current->active_mm;
7241
7242 BUG_ON(cpu_online(smp_processor_id()));
7243
7244 if (mm != &init_mm)
7245 switch_mm(mm, &init_mm, current);
7246 mmdrop(mm);
7247}
7248
054b9108 7249/* called under rq->lock with disabled interrupts */
36c8b586 7250static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7251{
70b97a7f 7252 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7253
7254 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7255 BUG_ON(!p->exit_state);
1da177e4
LT
7256
7257 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7258 BUG_ON(p->state == TASK_DEAD);
1da177e4 7259
48f24c4d 7260 get_task_struct(p);
1da177e4
LT
7261
7262 /*
7263 * Drop lock around migration; if someone else moves it,
41a2d6cf 7264 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7265 * fine.
7266 */
f7b4cddc 7267 spin_unlock_irq(&rq->lock);
48f24c4d 7268 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7269 spin_lock_irq(&rq->lock);
1da177e4 7270
48f24c4d 7271 put_task_struct(p);
1da177e4
LT
7272}
7273
7274/* release_task() removes task from tasklist, so we won't find dead tasks. */
7275static void migrate_dead_tasks(unsigned int dead_cpu)
7276{
70b97a7f 7277 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7278 struct task_struct *next;
48f24c4d 7279
dd41f596
IM
7280 for ( ; ; ) {
7281 if (!rq->nr_running)
7282 break;
a8e504d2 7283 update_rq_clock(rq);
b67802ea 7284 next = pick_next_task(rq);
dd41f596
IM
7285 if (!next)
7286 break;
79c53799 7287 next->sched_class->put_prev_task(rq, next);
dd41f596 7288 migrate_dead(dead_cpu, next);
e692ab53 7289
1da177e4
LT
7290 }
7291}
dce48a84
TG
7292
7293/*
7294 * remove the tasks which were accounted by rq from calc_load_tasks.
7295 */
7296static void calc_global_load_remove(struct rq *rq)
7297{
7298 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7299}
1da177e4
LT
7300#endif /* CONFIG_HOTPLUG_CPU */
7301
e692ab53
NP
7302#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7303
7304static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7305 {
7306 .procname = "sched_domain",
c57baf1e 7307 .mode = 0555,
e0361851 7308 },
38605cae 7309 {0, },
e692ab53
NP
7310};
7311
7312static struct ctl_table sd_ctl_root[] = {
e0361851 7313 {
c57baf1e 7314 .ctl_name = CTL_KERN,
e0361851 7315 .procname = "kernel",
c57baf1e 7316 .mode = 0555,
e0361851
AD
7317 .child = sd_ctl_dir,
7318 },
38605cae 7319 {0, },
e692ab53
NP
7320};
7321
7322static struct ctl_table *sd_alloc_ctl_entry(int n)
7323{
7324 struct ctl_table *entry =
5cf9f062 7325 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7326
e692ab53
NP
7327 return entry;
7328}
7329
6382bc90
MM
7330static void sd_free_ctl_entry(struct ctl_table **tablep)
7331{
cd790076 7332 struct ctl_table *entry;
6382bc90 7333
cd790076
MM
7334 /*
7335 * In the intermediate directories, both the child directory and
7336 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7337 * will always be set. In the lowest directory the names are
cd790076
MM
7338 * static strings and all have proc handlers.
7339 */
7340 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7341 if (entry->child)
7342 sd_free_ctl_entry(&entry->child);
cd790076
MM
7343 if (entry->proc_handler == NULL)
7344 kfree(entry->procname);
7345 }
6382bc90
MM
7346
7347 kfree(*tablep);
7348 *tablep = NULL;
7349}
7350
e692ab53 7351static void
e0361851 7352set_table_entry(struct ctl_table *entry,
e692ab53
NP
7353 const char *procname, void *data, int maxlen,
7354 mode_t mode, proc_handler *proc_handler)
7355{
e692ab53
NP
7356 entry->procname = procname;
7357 entry->data = data;
7358 entry->maxlen = maxlen;
7359 entry->mode = mode;
7360 entry->proc_handler = proc_handler;
7361}
7362
7363static struct ctl_table *
7364sd_alloc_ctl_domain_table(struct sched_domain *sd)
7365{
a5d8c348 7366 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7367
ad1cdc1d
MM
7368 if (table == NULL)
7369 return NULL;
7370
e0361851 7371 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7372 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7373 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7374 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7375 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7376 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7377 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7378 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7379 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7380 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7381 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7382 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7383 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7384 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7385 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7386 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7387 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7388 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7389 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7390 &sd->cache_nice_tries,
7391 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7392 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7393 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7394 set_table_entry(&table[11], "name", sd->name,
7395 CORENAME_MAX_SIZE, 0444, proc_dostring);
7396 /* &table[12] is terminator */
e692ab53
NP
7397
7398 return table;
7399}
7400
9a4e7159 7401static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7402{
7403 struct ctl_table *entry, *table;
7404 struct sched_domain *sd;
7405 int domain_num = 0, i;
7406 char buf[32];
7407
7408 for_each_domain(cpu, sd)
7409 domain_num++;
7410 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7411 if (table == NULL)
7412 return NULL;
e692ab53
NP
7413
7414 i = 0;
7415 for_each_domain(cpu, sd) {
7416 snprintf(buf, 32, "domain%d", i);
e692ab53 7417 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7418 entry->mode = 0555;
e692ab53
NP
7419 entry->child = sd_alloc_ctl_domain_table(sd);
7420 entry++;
7421 i++;
7422 }
7423 return table;
7424}
7425
7426static struct ctl_table_header *sd_sysctl_header;
6382bc90 7427static void register_sched_domain_sysctl(void)
e692ab53
NP
7428{
7429 int i, cpu_num = num_online_cpus();
7430 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7431 char buf[32];
7432
7378547f
MM
7433 WARN_ON(sd_ctl_dir[0].child);
7434 sd_ctl_dir[0].child = entry;
7435
ad1cdc1d
MM
7436 if (entry == NULL)
7437 return;
7438
97b6ea7b 7439 for_each_online_cpu(i) {
e692ab53 7440 snprintf(buf, 32, "cpu%d", i);
e692ab53 7441 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7442 entry->mode = 0555;
e692ab53 7443 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7444 entry++;
e692ab53 7445 }
7378547f
MM
7446
7447 WARN_ON(sd_sysctl_header);
e692ab53
NP
7448 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7449}
6382bc90 7450
7378547f 7451/* may be called multiple times per register */
6382bc90
MM
7452static void unregister_sched_domain_sysctl(void)
7453{
7378547f
MM
7454 if (sd_sysctl_header)
7455 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7456 sd_sysctl_header = NULL;
7378547f
MM
7457 if (sd_ctl_dir[0].child)
7458 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7459}
e692ab53 7460#else
6382bc90
MM
7461static void register_sched_domain_sysctl(void)
7462{
7463}
7464static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7465{
7466}
7467#endif
7468
1f11eb6a
GH
7469static void set_rq_online(struct rq *rq)
7470{
7471 if (!rq->online) {
7472 const struct sched_class *class;
7473
c6c4927b 7474 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7475 rq->online = 1;
7476
7477 for_each_class(class) {
7478 if (class->rq_online)
7479 class->rq_online(rq);
7480 }
7481 }
7482}
7483
7484static void set_rq_offline(struct rq *rq)
7485{
7486 if (rq->online) {
7487 const struct sched_class *class;
7488
7489 for_each_class(class) {
7490 if (class->rq_offline)
7491 class->rq_offline(rq);
7492 }
7493
c6c4927b 7494 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7495 rq->online = 0;
7496 }
7497}
7498
1da177e4
LT
7499/*
7500 * migration_call - callback that gets triggered when a CPU is added.
7501 * Here we can start up the necessary migration thread for the new CPU.
7502 */
48f24c4d
IM
7503static int __cpuinit
7504migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7505{
1da177e4 7506 struct task_struct *p;
48f24c4d 7507 int cpu = (long)hcpu;
1da177e4 7508 unsigned long flags;
70b97a7f 7509 struct rq *rq;
1da177e4
LT
7510
7511 switch (action) {
5be9361c 7512
1da177e4 7513 case CPU_UP_PREPARE:
8bb78442 7514 case CPU_UP_PREPARE_FROZEN:
dd41f596 7515 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7516 if (IS_ERR(p))
7517 return NOTIFY_BAD;
1da177e4
LT
7518 kthread_bind(p, cpu);
7519 /* Must be high prio: stop_machine expects to yield to it. */
7520 rq = task_rq_lock(p, &flags);
dd41f596 7521 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7522 task_rq_unlock(rq, &flags);
7523 cpu_rq(cpu)->migration_thread = p;
7524 break;
48f24c4d 7525
1da177e4 7526 case CPU_ONLINE:
8bb78442 7527 case CPU_ONLINE_FROZEN:
3a4fa0a2 7528 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7529 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7530
7531 /* Update our root-domain */
7532 rq = cpu_rq(cpu);
7533 spin_lock_irqsave(&rq->lock, flags);
dce48a84
TG
7534 rq->calc_load_update = calc_load_update;
7535 rq->calc_load_active = 0;
1f94ef59 7536 if (rq->rd) {
c6c4927b 7537 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7538
7539 set_rq_online(rq);
1f94ef59
GH
7540 }
7541 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7542 break;
48f24c4d 7543
1da177e4
LT
7544#ifdef CONFIG_HOTPLUG_CPU
7545 case CPU_UP_CANCELED:
8bb78442 7546 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7547 if (!cpu_rq(cpu)->migration_thread)
7548 break;
41a2d6cf 7549 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7550 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7551 cpumask_any(cpu_online_mask));
1da177e4
LT
7552 kthread_stop(cpu_rq(cpu)->migration_thread);
7553 cpu_rq(cpu)->migration_thread = NULL;
7554 break;
48f24c4d 7555
1da177e4 7556 case CPU_DEAD:
8bb78442 7557 case CPU_DEAD_FROZEN:
470fd646 7558 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7559 migrate_live_tasks(cpu);
7560 rq = cpu_rq(cpu);
7561 kthread_stop(rq->migration_thread);
7562 rq->migration_thread = NULL;
7563 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7564 spin_lock_irq(&rq->lock);
a8e504d2 7565 update_rq_clock(rq);
2e1cb74a 7566 deactivate_task(rq, rq->idle, 0);
1da177e4 7567 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7568 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7569 rq->idle->sched_class = &idle_sched_class;
1da177e4 7570 migrate_dead_tasks(cpu);
d2da272a 7571 spin_unlock_irq(&rq->lock);
470fd646 7572 cpuset_unlock();
1da177e4
LT
7573 migrate_nr_uninterruptible(rq);
7574 BUG_ON(rq->nr_running != 0);
dce48a84 7575 calc_global_load_remove(rq);
41a2d6cf
IM
7576 /*
7577 * No need to migrate the tasks: it was best-effort if
7578 * they didn't take sched_hotcpu_mutex. Just wake up
7579 * the requestors.
7580 */
1da177e4
LT
7581 spin_lock_irq(&rq->lock);
7582 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7583 struct migration_req *req;
7584
1da177e4 7585 req = list_entry(rq->migration_queue.next,
70b97a7f 7586 struct migration_req, list);
1da177e4 7587 list_del_init(&req->list);
9a2bd244 7588 spin_unlock_irq(&rq->lock);
1da177e4 7589 complete(&req->done);
9a2bd244 7590 spin_lock_irq(&rq->lock);
1da177e4
LT
7591 }
7592 spin_unlock_irq(&rq->lock);
7593 break;
57d885fe 7594
08f503b0
GH
7595 case CPU_DYING:
7596 case CPU_DYING_FROZEN:
57d885fe
GH
7597 /* Update our root-domain */
7598 rq = cpu_rq(cpu);
7599 spin_lock_irqsave(&rq->lock, flags);
7600 if (rq->rd) {
c6c4927b 7601 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7602 set_rq_offline(rq);
57d885fe
GH
7603 }
7604 spin_unlock_irqrestore(&rq->lock, flags);
7605 break;
1da177e4
LT
7606#endif
7607 }
7608 return NOTIFY_OK;
7609}
7610
f38b0820
PM
7611/*
7612 * Register at high priority so that task migration (migrate_all_tasks)
7613 * happens before everything else. This has to be lower priority than
7614 * the notifier in the perf_counter subsystem, though.
1da177e4 7615 */
26c2143b 7616static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7617 .notifier_call = migration_call,
7618 .priority = 10
7619};
7620
7babe8db 7621static int __init migration_init(void)
1da177e4
LT
7622{
7623 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7624 int err;
48f24c4d
IM
7625
7626 /* Start one for the boot CPU: */
07dccf33
AM
7627 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7628 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7629 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7630 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7631
7632 return err;
1da177e4 7633}
7babe8db 7634early_initcall(migration_init);
1da177e4
LT
7635#endif
7636
7637#ifdef CONFIG_SMP
476f3534 7638
3e9830dc 7639#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7640
7c16ec58 7641static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7642 struct cpumask *groupmask)
1da177e4 7643{
4dcf6aff 7644 struct sched_group *group = sd->groups;
434d53b0 7645 char str[256];
1da177e4 7646
968ea6d8 7647 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7648 cpumask_clear(groupmask);
4dcf6aff
IM
7649
7650 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7651
7652 if (!(sd->flags & SD_LOAD_BALANCE)) {
7653 printk("does not load-balance\n");
7654 if (sd->parent)
7655 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7656 " has parent");
7657 return -1;
41c7ce9a
NP
7658 }
7659
eefd796a 7660 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7661
758b2cdc 7662 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7663 printk(KERN_ERR "ERROR: domain->span does not contain "
7664 "CPU%d\n", cpu);
7665 }
758b2cdc 7666 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7667 printk(KERN_ERR "ERROR: domain->groups does not contain"
7668 " CPU%d\n", cpu);
7669 }
1da177e4 7670
4dcf6aff 7671 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7672 do {
4dcf6aff
IM
7673 if (!group) {
7674 printk("\n");
7675 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7676 break;
7677 }
7678
4dcf6aff
IM
7679 if (!group->__cpu_power) {
7680 printk(KERN_CONT "\n");
7681 printk(KERN_ERR "ERROR: domain->cpu_power not "
7682 "set\n");
7683 break;
7684 }
1da177e4 7685
758b2cdc 7686 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7687 printk(KERN_CONT "\n");
7688 printk(KERN_ERR "ERROR: empty group\n");
7689 break;
7690 }
1da177e4 7691
758b2cdc 7692 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7693 printk(KERN_CONT "\n");
7694 printk(KERN_ERR "ERROR: repeated CPUs\n");
7695 break;
7696 }
1da177e4 7697
758b2cdc 7698 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7699
968ea6d8 7700 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7701
7702 printk(KERN_CONT " %s", str);
7703 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7704 printk(KERN_CONT " (__cpu_power = %d)",
7705 group->__cpu_power);
7706 }
1da177e4 7707
4dcf6aff
IM
7708 group = group->next;
7709 } while (group != sd->groups);
7710 printk(KERN_CONT "\n");
1da177e4 7711
758b2cdc 7712 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7713 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7714
758b2cdc
RR
7715 if (sd->parent &&
7716 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7717 printk(KERN_ERR "ERROR: parent span is not a superset "
7718 "of domain->span\n");
7719 return 0;
7720}
1da177e4 7721
4dcf6aff
IM
7722static void sched_domain_debug(struct sched_domain *sd, int cpu)
7723{
d5dd3db1 7724 cpumask_var_t groupmask;
4dcf6aff 7725 int level = 0;
1da177e4 7726
4dcf6aff
IM
7727 if (!sd) {
7728 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7729 return;
7730 }
1da177e4 7731
4dcf6aff
IM
7732 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7733
d5dd3db1 7734 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7735 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7736 return;
7737 }
7738
4dcf6aff 7739 for (;;) {
7c16ec58 7740 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7741 break;
1da177e4
LT
7742 level++;
7743 sd = sd->parent;
33859f7f 7744 if (!sd)
4dcf6aff
IM
7745 break;
7746 }
d5dd3db1 7747 free_cpumask_var(groupmask);
1da177e4 7748}
6d6bc0ad 7749#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7750# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7751#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7752
1a20ff27 7753static int sd_degenerate(struct sched_domain *sd)
245af2c7 7754{
758b2cdc 7755 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7756 return 1;
7757
7758 /* Following flags need at least 2 groups */
7759 if (sd->flags & (SD_LOAD_BALANCE |
7760 SD_BALANCE_NEWIDLE |
7761 SD_BALANCE_FORK |
89c4710e
SS
7762 SD_BALANCE_EXEC |
7763 SD_SHARE_CPUPOWER |
7764 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7765 if (sd->groups != sd->groups->next)
7766 return 0;
7767 }
7768
7769 /* Following flags don't use groups */
7770 if (sd->flags & (SD_WAKE_IDLE |
7771 SD_WAKE_AFFINE |
7772 SD_WAKE_BALANCE))
7773 return 0;
7774
7775 return 1;
7776}
7777
48f24c4d
IM
7778static int
7779sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7780{
7781 unsigned long cflags = sd->flags, pflags = parent->flags;
7782
7783 if (sd_degenerate(parent))
7784 return 1;
7785
758b2cdc 7786 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7787 return 0;
7788
7789 /* Does parent contain flags not in child? */
7790 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7791 if (cflags & SD_WAKE_AFFINE)
7792 pflags &= ~SD_WAKE_BALANCE;
7793 /* Flags needing groups don't count if only 1 group in parent */
7794 if (parent->groups == parent->groups->next) {
7795 pflags &= ~(SD_LOAD_BALANCE |
7796 SD_BALANCE_NEWIDLE |
7797 SD_BALANCE_FORK |
89c4710e
SS
7798 SD_BALANCE_EXEC |
7799 SD_SHARE_CPUPOWER |
7800 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7801 if (nr_node_ids == 1)
7802 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7803 }
7804 if (~cflags & pflags)
7805 return 0;
7806
7807 return 1;
7808}
7809
c6c4927b
RR
7810static void free_rootdomain(struct root_domain *rd)
7811{
68e74568
RR
7812 cpupri_cleanup(&rd->cpupri);
7813
c6c4927b
RR
7814 free_cpumask_var(rd->rto_mask);
7815 free_cpumask_var(rd->online);
7816 free_cpumask_var(rd->span);
7817 kfree(rd);
7818}
7819
57d885fe
GH
7820static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7821{
a0490fa3 7822 struct root_domain *old_rd = NULL;
57d885fe 7823 unsigned long flags;
57d885fe
GH
7824
7825 spin_lock_irqsave(&rq->lock, flags);
7826
7827 if (rq->rd) {
a0490fa3 7828 old_rd = rq->rd;
57d885fe 7829
c6c4927b 7830 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7831 set_rq_offline(rq);
57d885fe 7832
c6c4927b 7833 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7834
a0490fa3
IM
7835 /*
7836 * If we dont want to free the old_rt yet then
7837 * set old_rd to NULL to skip the freeing later
7838 * in this function:
7839 */
7840 if (!atomic_dec_and_test(&old_rd->refcount))
7841 old_rd = NULL;
57d885fe
GH
7842 }
7843
7844 atomic_inc(&rd->refcount);
7845 rq->rd = rd;
7846
c6c4927b
RR
7847 cpumask_set_cpu(rq->cpu, rd->span);
7848 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7849 set_rq_online(rq);
57d885fe
GH
7850
7851 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7852
7853 if (old_rd)
7854 free_rootdomain(old_rd);
57d885fe
GH
7855}
7856
db2f59c8 7857static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7858{
36b7b6d4
PE
7859 gfp_t gfp = GFP_KERNEL;
7860
57d885fe
GH
7861 memset(rd, 0, sizeof(*rd));
7862
36b7b6d4
PE
7863 if (bootmem)
7864 gfp = GFP_NOWAIT;
c6c4927b 7865
36b7b6d4 7866 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7867 goto out;
36b7b6d4 7868 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7869 goto free_span;
36b7b6d4 7870 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7871 goto free_online;
6e0534f2 7872
0fb53029 7873 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7874 goto free_rto_mask;
c6c4927b 7875 return 0;
6e0534f2 7876
68e74568
RR
7877free_rto_mask:
7878 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7879free_online:
7880 free_cpumask_var(rd->online);
7881free_span:
7882 free_cpumask_var(rd->span);
0c910d28 7883out:
c6c4927b 7884 return -ENOMEM;
57d885fe
GH
7885}
7886
7887static void init_defrootdomain(void)
7888{
c6c4927b
RR
7889 init_rootdomain(&def_root_domain, true);
7890
57d885fe
GH
7891 atomic_set(&def_root_domain.refcount, 1);
7892}
7893
dc938520 7894static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7895{
7896 struct root_domain *rd;
7897
7898 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7899 if (!rd)
7900 return NULL;
7901
c6c4927b
RR
7902 if (init_rootdomain(rd, false) != 0) {
7903 kfree(rd);
7904 return NULL;
7905 }
57d885fe
GH
7906
7907 return rd;
7908}
7909
1da177e4 7910/*
0eab9146 7911 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7912 * hold the hotplug lock.
7913 */
0eab9146
IM
7914static void
7915cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7916{
70b97a7f 7917 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7918 struct sched_domain *tmp;
7919
7920 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7921 for (tmp = sd; tmp; ) {
245af2c7
SS
7922 struct sched_domain *parent = tmp->parent;
7923 if (!parent)
7924 break;
f29c9b1c 7925
1a848870 7926 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7927 tmp->parent = parent->parent;
1a848870
SS
7928 if (parent->parent)
7929 parent->parent->child = tmp;
f29c9b1c
LZ
7930 } else
7931 tmp = tmp->parent;
245af2c7
SS
7932 }
7933
1a848870 7934 if (sd && sd_degenerate(sd)) {
245af2c7 7935 sd = sd->parent;
1a848870
SS
7936 if (sd)
7937 sd->child = NULL;
7938 }
1da177e4
LT
7939
7940 sched_domain_debug(sd, cpu);
7941
57d885fe 7942 rq_attach_root(rq, rd);
674311d5 7943 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7944}
7945
7946/* cpus with isolated domains */
dcc30a35 7947static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7948
7949/* Setup the mask of cpus configured for isolated domains */
7950static int __init isolated_cpu_setup(char *str)
7951{
968ea6d8 7952 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7953 return 1;
7954}
7955
8927f494 7956__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7957
7958/*
6711cab4
SS
7959 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7960 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7961 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7962 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7963 *
7964 * init_sched_build_groups will build a circular linked list of the groups
7965 * covered by the given span, and will set each group's ->cpumask correctly,
7966 * and ->cpu_power to 0.
7967 */
a616058b 7968static void
96f874e2
RR
7969init_sched_build_groups(const struct cpumask *span,
7970 const struct cpumask *cpu_map,
7971 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7972 struct sched_group **sg,
96f874e2
RR
7973 struct cpumask *tmpmask),
7974 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7975{
7976 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7977 int i;
7978
96f874e2 7979 cpumask_clear(covered);
7c16ec58 7980
abcd083a 7981 for_each_cpu(i, span) {
6711cab4 7982 struct sched_group *sg;
7c16ec58 7983 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7984 int j;
7985
758b2cdc 7986 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7987 continue;
7988
758b2cdc 7989 cpumask_clear(sched_group_cpus(sg));
5517d86b 7990 sg->__cpu_power = 0;
1da177e4 7991
abcd083a 7992 for_each_cpu(j, span) {
7c16ec58 7993 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7994 continue;
7995
96f874e2 7996 cpumask_set_cpu(j, covered);
758b2cdc 7997 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7998 }
7999 if (!first)
8000 first = sg;
8001 if (last)
8002 last->next = sg;
8003 last = sg;
8004 }
8005 last->next = first;
8006}
8007
9c1cfda2 8008#define SD_NODES_PER_DOMAIN 16
1da177e4 8009
9c1cfda2 8010#ifdef CONFIG_NUMA
198e2f18 8011
9c1cfda2
JH
8012/**
8013 * find_next_best_node - find the next node to include in a sched_domain
8014 * @node: node whose sched_domain we're building
8015 * @used_nodes: nodes already in the sched_domain
8016 *
41a2d6cf 8017 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8018 * finds the closest node not already in the @used_nodes map.
8019 *
8020 * Should use nodemask_t.
8021 */
c5f59f08 8022static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8023{
8024 int i, n, val, min_val, best_node = 0;
8025
8026 min_val = INT_MAX;
8027
076ac2af 8028 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8029 /* Start at @node */
076ac2af 8030 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8031
8032 if (!nr_cpus_node(n))
8033 continue;
8034
8035 /* Skip already used nodes */
c5f59f08 8036 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8037 continue;
8038
8039 /* Simple min distance search */
8040 val = node_distance(node, n);
8041
8042 if (val < min_val) {
8043 min_val = val;
8044 best_node = n;
8045 }
8046 }
8047
c5f59f08 8048 node_set(best_node, *used_nodes);
9c1cfda2
JH
8049 return best_node;
8050}
8051
8052/**
8053 * sched_domain_node_span - get a cpumask for a node's sched_domain
8054 * @node: node whose cpumask we're constructing
73486722 8055 * @span: resulting cpumask
9c1cfda2 8056 *
41a2d6cf 8057 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8058 * should be one that prevents unnecessary balancing, but also spreads tasks
8059 * out optimally.
8060 */
96f874e2 8061static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8062{
c5f59f08 8063 nodemask_t used_nodes;
48f24c4d 8064 int i;
9c1cfda2 8065
6ca09dfc 8066 cpumask_clear(span);
c5f59f08 8067 nodes_clear(used_nodes);
9c1cfda2 8068
6ca09dfc 8069 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8070 node_set(node, used_nodes);
9c1cfda2
JH
8071
8072 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8073 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8074
6ca09dfc 8075 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8076 }
9c1cfda2 8077}
6d6bc0ad 8078#endif /* CONFIG_NUMA */
9c1cfda2 8079
5c45bf27 8080int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8081
6c99e9ad
RR
8082/*
8083 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8084 *
8085 * ( See the the comments in include/linux/sched.h:struct sched_group
8086 * and struct sched_domain. )
6c99e9ad
RR
8087 */
8088struct static_sched_group {
8089 struct sched_group sg;
8090 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8091};
8092
8093struct static_sched_domain {
8094 struct sched_domain sd;
8095 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8096};
8097
9c1cfda2 8098/*
48f24c4d 8099 * SMT sched-domains:
9c1cfda2 8100 */
1da177e4 8101#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8102static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8103static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8104
41a2d6cf 8105static int
96f874e2
RR
8106cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8107 struct sched_group **sg, struct cpumask *unused)
1da177e4 8108{
6711cab4 8109 if (sg)
6c99e9ad 8110 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8111 return cpu;
8112}
6d6bc0ad 8113#endif /* CONFIG_SCHED_SMT */
1da177e4 8114
48f24c4d
IM
8115/*
8116 * multi-core sched-domains:
8117 */
1e9f28fa 8118#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8119static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8120static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8121#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8122
8123#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8124static int
96f874e2
RR
8125cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8126 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8127{
6711cab4 8128 int group;
7c16ec58 8129
c69fc56d 8130 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8131 group = cpumask_first(mask);
6711cab4 8132 if (sg)
6c99e9ad 8133 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8134 return group;
1e9f28fa
SS
8135}
8136#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8137static int
96f874e2
RR
8138cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8139 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8140{
6711cab4 8141 if (sg)
6c99e9ad 8142 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8143 return cpu;
8144}
8145#endif
8146
6c99e9ad
RR
8147static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8148static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8149
41a2d6cf 8150static int
96f874e2
RR
8151cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8152 struct sched_group **sg, struct cpumask *mask)
1da177e4 8153{
6711cab4 8154 int group;
48f24c4d 8155#ifdef CONFIG_SCHED_MC
6ca09dfc 8156 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8157 group = cpumask_first(mask);
1e9f28fa 8158#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8159 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8160 group = cpumask_first(mask);
1da177e4 8161#else
6711cab4 8162 group = cpu;
1da177e4 8163#endif
6711cab4 8164 if (sg)
6c99e9ad 8165 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8166 return group;
1da177e4
LT
8167}
8168
8169#ifdef CONFIG_NUMA
1da177e4 8170/*
9c1cfda2
JH
8171 * The init_sched_build_groups can't handle what we want to do with node
8172 * groups, so roll our own. Now each node has its own list of groups which
8173 * gets dynamically allocated.
1da177e4 8174 */
62ea9ceb 8175static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8176static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8177
62ea9ceb 8178static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8179static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8180
96f874e2
RR
8181static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8182 struct sched_group **sg,
8183 struct cpumask *nodemask)
9c1cfda2 8184{
6711cab4
SS
8185 int group;
8186
6ca09dfc 8187 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8188 group = cpumask_first(nodemask);
6711cab4
SS
8189
8190 if (sg)
6c99e9ad 8191 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8192 return group;
1da177e4 8193}
6711cab4 8194
08069033
SS
8195static void init_numa_sched_groups_power(struct sched_group *group_head)
8196{
8197 struct sched_group *sg = group_head;
8198 int j;
8199
8200 if (!sg)
8201 return;
3a5c359a 8202 do {
758b2cdc 8203 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8204 struct sched_domain *sd;
08069033 8205
6c99e9ad 8206 sd = &per_cpu(phys_domains, j).sd;
13318a71 8207 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8208 /*
8209 * Only add "power" once for each
8210 * physical package.
8211 */
8212 continue;
8213 }
08069033 8214
3a5c359a
AK
8215 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8216 }
8217 sg = sg->next;
8218 } while (sg != group_head);
08069033 8219}
6d6bc0ad 8220#endif /* CONFIG_NUMA */
1da177e4 8221
a616058b 8222#ifdef CONFIG_NUMA
51888ca2 8223/* Free memory allocated for various sched_group structures */
96f874e2
RR
8224static void free_sched_groups(const struct cpumask *cpu_map,
8225 struct cpumask *nodemask)
51888ca2 8226{
a616058b 8227 int cpu, i;
51888ca2 8228
abcd083a 8229 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8230 struct sched_group **sched_group_nodes
8231 = sched_group_nodes_bycpu[cpu];
8232
51888ca2
SV
8233 if (!sched_group_nodes)
8234 continue;
8235
076ac2af 8236 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8237 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8238
6ca09dfc 8239 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8240 if (cpumask_empty(nodemask))
51888ca2
SV
8241 continue;
8242
8243 if (sg == NULL)
8244 continue;
8245 sg = sg->next;
8246next_sg:
8247 oldsg = sg;
8248 sg = sg->next;
8249 kfree(oldsg);
8250 if (oldsg != sched_group_nodes[i])
8251 goto next_sg;
8252 }
8253 kfree(sched_group_nodes);
8254 sched_group_nodes_bycpu[cpu] = NULL;
8255 }
51888ca2 8256}
6d6bc0ad 8257#else /* !CONFIG_NUMA */
96f874e2
RR
8258static void free_sched_groups(const struct cpumask *cpu_map,
8259 struct cpumask *nodemask)
a616058b
SS
8260{
8261}
6d6bc0ad 8262#endif /* CONFIG_NUMA */
51888ca2 8263
89c4710e
SS
8264/*
8265 * Initialize sched groups cpu_power.
8266 *
8267 * cpu_power indicates the capacity of sched group, which is used while
8268 * distributing the load between different sched groups in a sched domain.
8269 * Typically cpu_power for all the groups in a sched domain will be same unless
8270 * there are asymmetries in the topology. If there are asymmetries, group
8271 * having more cpu_power will pickup more load compared to the group having
8272 * less cpu_power.
8273 *
8274 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8275 * the maximum number of tasks a group can handle in the presence of other idle
8276 * or lightly loaded groups in the same sched domain.
8277 */
8278static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8279{
8280 struct sched_domain *child;
8281 struct sched_group *group;
8282
8283 WARN_ON(!sd || !sd->groups);
8284
13318a71 8285 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8286 return;
8287
8288 child = sd->child;
8289
5517d86b
ED
8290 sd->groups->__cpu_power = 0;
8291
89c4710e
SS
8292 /*
8293 * For perf policy, if the groups in child domain share resources
8294 * (for example cores sharing some portions of the cache hierarchy
8295 * or SMT), then set this domain groups cpu_power such that each group
8296 * can handle only one task, when there are other idle groups in the
8297 * same sched domain.
8298 */
8299 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8300 (child->flags &
8301 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8302 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8303 return;
8304 }
8305
89c4710e
SS
8306 /*
8307 * add cpu_power of each child group to this groups cpu_power
8308 */
8309 group = child->groups;
8310 do {
5517d86b 8311 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8312 group = group->next;
8313 } while (group != child->groups);
8314}
8315
7c16ec58
MT
8316/*
8317 * Initializers for schedule domains
8318 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8319 */
8320
a5d8c348
IM
8321#ifdef CONFIG_SCHED_DEBUG
8322# define SD_INIT_NAME(sd, type) sd->name = #type
8323#else
8324# define SD_INIT_NAME(sd, type) do { } while (0)
8325#endif
8326
7c16ec58 8327#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8328
7c16ec58
MT
8329#define SD_INIT_FUNC(type) \
8330static noinline void sd_init_##type(struct sched_domain *sd) \
8331{ \
8332 memset(sd, 0, sizeof(*sd)); \
8333 *sd = SD_##type##_INIT; \
1d3504fc 8334 sd->level = SD_LV_##type; \
a5d8c348 8335 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8336}
8337
8338SD_INIT_FUNC(CPU)
8339#ifdef CONFIG_NUMA
8340 SD_INIT_FUNC(ALLNODES)
8341 SD_INIT_FUNC(NODE)
8342#endif
8343#ifdef CONFIG_SCHED_SMT
8344 SD_INIT_FUNC(SIBLING)
8345#endif
8346#ifdef CONFIG_SCHED_MC
8347 SD_INIT_FUNC(MC)
8348#endif
8349
1d3504fc
HS
8350static int default_relax_domain_level = -1;
8351
8352static int __init setup_relax_domain_level(char *str)
8353{
30e0e178
LZ
8354 unsigned long val;
8355
8356 val = simple_strtoul(str, NULL, 0);
8357 if (val < SD_LV_MAX)
8358 default_relax_domain_level = val;
8359
1d3504fc
HS
8360 return 1;
8361}
8362__setup("relax_domain_level=", setup_relax_domain_level);
8363
8364static void set_domain_attribute(struct sched_domain *sd,
8365 struct sched_domain_attr *attr)
8366{
8367 int request;
8368
8369 if (!attr || attr->relax_domain_level < 0) {
8370 if (default_relax_domain_level < 0)
8371 return;
8372 else
8373 request = default_relax_domain_level;
8374 } else
8375 request = attr->relax_domain_level;
8376 if (request < sd->level) {
8377 /* turn off idle balance on this domain */
8378 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8379 } else {
8380 /* turn on idle balance on this domain */
8381 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8382 }
8383}
8384
1da177e4 8385/*
1a20ff27
DG
8386 * Build sched domains for a given set of cpus and attach the sched domains
8387 * to the individual cpus
1da177e4 8388 */
96f874e2 8389static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8390 struct sched_domain_attr *attr)
1da177e4 8391{
3404c8d9 8392 int i, err = -ENOMEM;
57d885fe 8393 struct root_domain *rd;
3404c8d9
RR
8394 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8395 tmpmask;
d1b55138 8396#ifdef CONFIG_NUMA
3404c8d9 8397 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8398 struct sched_group **sched_group_nodes = NULL;
6711cab4 8399 int sd_allnodes = 0;
d1b55138 8400
3404c8d9
RR
8401 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8402 goto out;
8403 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8404 goto free_domainspan;
8405 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8406 goto free_covered;
8407#endif
8408
8409 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8410 goto free_notcovered;
8411 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8412 goto free_nodemask;
8413 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8414 goto free_this_sibling_map;
8415 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8416 goto free_this_core_map;
8417 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8418 goto free_send_covered;
8419
8420#ifdef CONFIG_NUMA
d1b55138
JH
8421 /*
8422 * Allocate the per-node list of sched groups
8423 */
076ac2af 8424 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8425 GFP_KERNEL);
d1b55138
JH
8426 if (!sched_group_nodes) {
8427 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8428 goto free_tmpmask;
d1b55138 8429 }
d1b55138 8430#endif
1da177e4 8431
dc938520 8432 rd = alloc_rootdomain();
57d885fe
GH
8433 if (!rd) {
8434 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8435 goto free_sched_groups;
57d885fe
GH
8436 }
8437
7c16ec58 8438#ifdef CONFIG_NUMA
96f874e2 8439 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8440#endif
8441
1da177e4 8442 /*
1a20ff27 8443 * Set up domains for cpus specified by the cpu_map.
1da177e4 8444 */
abcd083a 8445 for_each_cpu(i, cpu_map) {
1da177e4 8446 struct sched_domain *sd = NULL, *p;
1da177e4 8447
6ca09dfc 8448 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8449
8450#ifdef CONFIG_NUMA
96f874e2
RR
8451 if (cpumask_weight(cpu_map) >
8452 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8453 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8454 SD_INIT(sd, ALLNODES);
1d3504fc 8455 set_domain_attribute(sd, attr);
758b2cdc 8456 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8457 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8458 p = sd;
6711cab4 8459 sd_allnodes = 1;
9c1cfda2
JH
8460 } else
8461 p = NULL;
8462
62ea9ceb 8463 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8464 SD_INIT(sd, NODE);
1d3504fc 8465 set_domain_attribute(sd, attr);
758b2cdc 8466 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8467 sd->parent = p;
1a848870
SS
8468 if (p)
8469 p->child = sd;
758b2cdc
RR
8470 cpumask_and(sched_domain_span(sd),
8471 sched_domain_span(sd), cpu_map);
1da177e4
LT
8472#endif
8473
8474 p = sd;
6c99e9ad 8475 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8476 SD_INIT(sd, CPU);
1d3504fc 8477 set_domain_attribute(sd, attr);
758b2cdc 8478 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8479 sd->parent = p;
1a848870
SS
8480 if (p)
8481 p->child = sd;
7c16ec58 8482 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8483
1e9f28fa
SS
8484#ifdef CONFIG_SCHED_MC
8485 p = sd;
6c99e9ad 8486 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8487 SD_INIT(sd, MC);
1d3504fc 8488 set_domain_attribute(sd, attr);
6ca09dfc
MT
8489 cpumask_and(sched_domain_span(sd), cpu_map,
8490 cpu_coregroup_mask(i));
1e9f28fa 8491 sd->parent = p;
1a848870 8492 p->child = sd;
7c16ec58 8493 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8494#endif
8495
1da177e4
LT
8496#ifdef CONFIG_SCHED_SMT
8497 p = sd;
6c99e9ad 8498 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8499 SD_INIT(sd, SIBLING);
1d3504fc 8500 set_domain_attribute(sd, attr);
758b2cdc 8501 cpumask_and(sched_domain_span(sd),
c69fc56d 8502 topology_thread_cpumask(i), cpu_map);
1da177e4 8503 sd->parent = p;
1a848870 8504 p->child = sd;
7c16ec58 8505 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8506#endif
8507 }
8508
8509#ifdef CONFIG_SCHED_SMT
8510 /* Set up CPU (sibling) groups */
abcd083a 8511 for_each_cpu(i, cpu_map) {
96f874e2 8512 cpumask_and(this_sibling_map,
c69fc56d 8513 topology_thread_cpumask(i), cpu_map);
96f874e2 8514 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8515 continue;
8516
dd41f596 8517 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8518 &cpu_to_cpu_group,
8519 send_covered, tmpmask);
1da177e4
LT
8520 }
8521#endif
8522
1e9f28fa
SS
8523#ifdef CONFIG_SCHED_MC
8524 /* Set up multi-core groups */
abcd083a 8525 for_each_cpu(i, cpu_map) {
6ca09dfc 8526 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8527 if (i != cpumask_first(this_core_map))
1e9f28fa 8528 continue;
7c16ec58 8529
dd41f596 8530 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8531 &cpu_to_core_group,
8532 send_covered, tmpmask);
1e9f28fa
SS
8533 }
8534#endif
8535
1da177e4 8536 /* Set up physical groups */
076ac2af 8537 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8538 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8539 if (cpumask_empty(nodemask))
1da177e4
LT
8540 continue;
8541
7c16ec58
MT
8542 init_sched_build_groups(nodemask, cpu_map,
8543 &cpu_to_phys_group,
8544 send_covered, tmpmask);
1da177e4
LT
8545 }
8546
8547#ifdef CONFIG_NUMA
8548 /* Set up node groups */
7c16ec58 8549 if (sd_allnodes) {
7c16ec58
MT
8550 init_sched_build_groups(cpu_map, cpu_map,
8551 &cpu_to_allnodes_group,
8552 send_covered, tmpmask);
8553 }
9c1cfda2 8554
076ac2af 8555 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8556 /* Set up node groups */
8557 struct sched_group *sg, *prev;
9c1cfda2
JH
8558 int j;
8559
96f874e2 8560 cpumask_clear(covered);
6ca09dfc 8561 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8562 if (cpumask_empty(nodemask)) {
d1b55138 8563 sched_group_nodes[i] = NULL;
9c1cfda2 8564 continue;
d1b55138 8565 }
9c1cfda2 8566
4bdbaad3 8567 sched_domain_node_span(i, domainspan);
96f874e2 8568 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8569
6c99e9ad
RR
8570 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8571 GFP_KERNEL, i);
51888ca2
SV
8572 if (!sg) {
8573 printk(KERN_WARNING "Can not alloc domain group for "
8574 "node %d\n", i);
8575 goto error;
8576 }
9c1cfda2 8577 sched_group_nodes[i] = sg;
abcd083a 8578 for_each_cpu(j, nodemask) {
9c1cfda2 8579 struct sched_domain *sd;
9761eea8 8580
62ea9ceb 8581 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8582 sd->groups = sg;
9c1cfda2 8583 }
5517d86b 8584 sg->__cpu_power = 0;
758b2cdc 8585 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8586 sg->next = sg;
96f874e2 8587 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8588 prev = sg;
8589
076ac2af 8590 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8591 int n = (i + j) % nr_node_ids;
9c1cfda2 8592
96f874e2
RR
8593 cpumask_complement(notcovered, covered);
8594 cpumask_and(tmpmask, notcovered, cpu_map);
8595 cpumask_and(tmpmask, tmpmask, domainspan);
8596 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8597 break;
8598
6ca09dfc 8599 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8600 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8601 continue;
8602
6c99e9ad
RR
8603 sg = kmalloc_node(sizeof(struct sched_group) +
8604 cpumask_size(),
15f0b676 8605 GFP_KERNEL, i);
9c1cfda2
JH
8606 if (!sg) {
8607 printk(KERN_WARNING
8608 "Can not alloc domain group for node %d\n", j);
51888ca2 8609 goto error;
9c1cfda2 8610 }
5517d86b 8611 sg->__cpu_power = 0;
758b2cdc 8612 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8613 sg->next = prev->next;
96f874e2 8614 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8615 prev->next = sg;
8616 prev = sg;
8617 }
9c1cfda2 8618 }
1da177e4
LT
8619#endif
8620
8621 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8622#ifdef CONFIG_SCHED_SMT
abcd083a 8623 for_each_cpu(i, cpu_map) {
6c99e9ad 8624 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8625
89c4710e 8626 init_sched_groups_power(i, sd);
5c45bf27 8627 }
1da177e4 8628#endif
1e9f28fa 8629#ifdef CONFIG_SCHED_MC
abcd083a 8630 for_each_cpu(i, cpu_map) {
6c99e9ad 8631 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8632
89c4710e 8633 init_sched_groups_power(i, sd);
5c45bf27
SS
8634 }
8635#endif
1e9f28fa 8636
abcd083a 8637 for_each_cpu(i, cpu_map) {
6c99e9ad 8638 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8639
89c4710e 8640 init_sched_groups_power(i, sd);
1da177e4
LT
8641 }
8642
9c1cfda2 8643#ifdef CONFIG_NUMA
076ac2af 8644 for (i = 0; i < nr_node_ids; i++)
08069033 8645 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8646
6711cab4
SS
8647 if (sd_allnodes) {
8648 struct sched_group *sg;
f712c0c7 8649
96f874e2 8650 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8651 tmpmask);
f712c0c7
SS
8652 init_numa_sched_groups_power(sg);
8653 }
9c1cfda2
JH
8654#endif
8655
1da177e4 8656 /* Attach the domains */
abcd083a 8657 for_each_cpu(i, cpu_map) {
1da177e4
LT
8658 struct sched_domain *sd;
8659#ifdef CONFIG_SCHED_SMT
6c99e9ad 8660 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8661#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8662 sd = &per_cpu(core_domains, i).sd;
1da177e4 8663#else
6c99e9ad 8664 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8665#endif
57d885fe 8666 cpu_attach_domain(sd, rd, i);
1da177e4 8667 }
51888ca2 8668
3404c8d9
RR
8669 err = 0;
8670
8671free_tmpmask:
8672 free_cpumask_var(tmpmask);
8673free_send_covered:
8674 free_cpumask_var(send_covered);
8675free_this_core_map:
8676 free_cpumask_var(this_core_map);
8677free_this_sibling_map:
8678 free_cpumask_var(this_sibling_map);
8679free_nodemask:
8680 free_cpumask_var(nodemask);
8681free_notcovered:
8682#ifdef CONFIG_NUMA
8683 free_cpumask_var(notcovered);
8684free_covered:
8685 free_cpumask_var(covered);
8686free_domainspan:
8687 free_cpumask_var(domainspan);
8688out:
8689#endif
8690 return err;
8691
8692free_sched_groups:
8693#ifdef CONFIG_NUMA
8694 kfree(sched_group_nodes);
8695#endif
8696 goto free_tmpmask;
51888ca2 8697
a616058b 8698#ifdef CONFIG_NUMA
51888ca2 8699error:
7c16ec58 8700 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8701 free_rootdomain(rd);
3404c8d9 8702 goto free_tmpmask;
a616058b 8703#endif
1da177e4 8704}
029190c5 8705
96f874e2 8706static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8707{
8708 return __build_sched_domains(cpu_map, NULL);
8709}
8710
96f874e2 8711static struct cpumask *doms_cur; /* current sched domains */
029190c5 8712static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8713static struct sched_domain_attr *dattr_cur;
8714 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8715
8716/*
8717 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8718 * cpumask) fails, then fallback to a single sched domain,
8719 * as determined by the single cpumask fallback_doms.
029190c5 8720 */
4212823f 8721static cpumask_var_t fallback_doms;
029190c5 8722
ee79d1bd
HC
8723/*
8724 * arch_update_cpu_topology lets virtualized architectures update the
8725 * cpu core maps. It is supposed to return 1 if the topology changed
8726 * or 0 if it stayed the same.
8727 */
8728int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8729{
ee79d1bd 8730 return 0;
22e52b07
HC
8731}
8732
1a20ff27 8733/*
41a2d6cf 8734 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8735 * For now this just excludes isolated cpus, but could be used to
8736 * exclude other special cases in the future.
1a20ff27 8737 */
96f874e2 8738static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8739{
7378547f
MM
8740 int err;
8741
22e52b07 8742 arch_update_cpu_topology();
029190c5 8743 ndoms_cur = 1;
96f874e2 8744 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8745 if (!doms_cur)
4212823f 8746 doms_cur = fallback_doms;
dcc30a35 8747 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8748 dattr_cur = NULL;
7378547f 8749 err = build_sched_domains(doms_cur);
6382bc90 8750 register_sched_domain_sysctl();
7378547f
MM
8751
8752 return err;
1a20ff27
DG
8753}
8754
96f874e2
RR
8755static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8756 struct cpumask *tmpmask)
1da177e4 8757{
7c16ec58 8758 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8759}
1da177e4 8760
1a20ff27
DG
8761/*
8762 * Detach sched domains from a group of cpus specified in cpu_map
8763 * These cpus will now be attached to the NULL domain
8764 */
96f874e2 8765static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8766{
96f874e2
RR
8767 /* Save because hotplug lock held. */
8768 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8769 int i;
8770
abcd083a 8771 for_each_cpu(i, cpu_map)
57d885fe 8772 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8773 synchronize_sched();
96f874e2 8774 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8775}
8776
1d3504fc
HS
8777/* handle null as "default" */
8778static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8779 struct sched_domain_attr *new, int idx_new)
8780{
8781 struct sched_domain_attr tmp;
8782
8783 /* fast path */
8784 if (!new && !cur)
8785 return 1;
8786
8787 tmp = SD_ATTR_INIT;
8788 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8789 new ? (new + idx_new) : &tmp,
8790 sizeof(struct sched_domain_attr));
8791}
8792
029190c5
PJ
8793/*
8794 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8795 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8796 * doms_new[] to the current sched domain partitioning, doms_cur[].
8797 * It destroys each deleted domain and builds each new domain.
8798 *
96f874e2 8799 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8800 * The masks don't intersect (don't overlap.) We should setup one
8801 * sched domain for each mask. CPUs not in any of the cpumasks will
8802 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8803 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8804 * it as it is.
8805 *
41a2d6cf
IM
8806 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8807 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8808 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8809 * ndoms_new == 1, and partition_sched_domains() will fallback to
8810 * the single partition 'fallback_doms', it also forces the domains
8811 * to be rebuilt.
029190c5 8812 *
96f874e2 8813 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8814 * ndoms_new == 0 is a special case for destroying existing domains,
8815 * and it will not create the default domain.
dfb512ec 8816 *
029190c5
PJ
8817 * Call with hotplug lock held
8818 */
96f874e2
RR
8819/* FIXME: Change to struct cpumask *doms_new[] */
8820void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8821 struct sched_domain_attr *dattr_new)
029190c5 8822{
dfb512ec 8823 int i, j, n;
d65bd5ec 8824 int new_topology;
029190c5 8825
712555ee 8826 mutex_lock(&sched_domains_mutex);
a1835615 8827
7378547f
MM
8828 /* always unregister in case we don't destroy any domains */
8829 unregister_sched_domain_sysctl();
8830
d65bd5ec
HC
8831 /* Let architecture update cpu core mappings. */
8832 new_topology = arch_update_cpu_topology();
8833
dfb512ec 8834 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8835
8836 /* Destroy deleted domains */
8837 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8838 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8839 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8840 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8841 goto match1;
8842 }
8843 /* no match - a current sched domain not in new doms_new[] */
8844 detach_destroy_domains(doms_cur + i);
8845match1:
8846 ;
8847 }
8848
e761b772
MK
8849 if (doms_new == NULL) {
8850 ndoms_cur = 0;
4212823f 8851 doms_new = fallback_doms;
dcc30a35 8852 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8853 WARN_ON_ONCE(dattr_new);
e761b772
MK
8854 }
8855
029190c5
PJ
8856 /* Build new domains */
8857 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8858 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8859 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8860 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8861 goto match2;
8862 }
8863 /* no match - add a new doms_new */
1d3504fc
HS
8864 __build_sched_domains(doms_new + i,
8865 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8866match2:
8867 ;
8868 }
8869
8870 /* Remember the new sched domains */
4212823f 8871 if (doms_cur != fallback_doms)
029190c5 8872 kfree(doms_cur);
1d3504fc 8873 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8874 doms_cur = doms_new;
1d3504fc 8875 dattr_cur = dattr_new;
029190c5 8876 ndoms_cur = ndoms_new;
7378547f
MM
8877
8878 register_sched_domain_sysctl();
a1835615 8879
712555ee 8880 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8881}
8882
5c45bf27 8883#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8884static void arch_reinit_sched_domains(void)
5c45bf27 8885{
95402b38 8886 get_online_cpus();
dfb512ec
MK
8887
8888 /* Destroy domains first to force the rebuild */
8889 partition_sched_domains(0, NULL, NULL);
8890
e761b772 8891 rebuild_sched_domains();
95402b38 8892 put_online_cpus();
5c45bf27
SS
8893}
8894
8895static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8896{
afb8a9b7 8897 unsigned int level = 0;
5c45bf27 8898
afb8a9b7
GS
8899 if (sscanf(buf, "%u", &level) != 1)
8900 return -EINVAL;
8901
8902 /*
8903 * level is always be positive so don't check for
8904 * level < POWERSAVINGS_BALANCE_NONE which is 0
8905 * What happens on 0 or 1 byte write,
8906 * need to check for count as well?
8907 */
8908
8909 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8910 return -EINVAL;
8911
8912 if (smt)
afb8a9b7 8913 sched_smt_power_savings = level;
5c45bf27 8914 else
afb8a9b7 8915 sched_mc_power_savings = level;
5c45bf27 8916
c70f22d2 8917 arch_reinit_sched_domains();
5c45bf27 8918
c70f22d2 8919 return count;
5c45bf27
SS
8920}
8921
5c45bf27 8922#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8923static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8924 char *page)
5c45bf27
SS
8925{
8926 return sprintf(page, "%u\n", sched_mc_power_savings);
8927}
f718cd4a 8928static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8929 const char *buf, size_t count)
5c45bf27
SS
8930{
8931 return sched_power_savings_store(buf, count, 0);
8932}
f718cd4a
AK
8933static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8934 sched_mc_power_savings_show,
8935 sched_mc_power_savings_store);
5c45bf27
SS
8936#endif
8937
8938#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8939static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8940 char *page)
5c45bf27
SS
8941{
8942 return sprintf(page, "%u\n", sched_smt_power_savings);
8943}
f718cd4a 8944static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8945 const char *buf, size_t count)
5c45bf27
SS
8946{
8947 return sched_power_savings_store(buf, count, 1);
8948}
f718cd4a
AK
8949static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8950 sched_smt_power_savings_show,
6707de00
AB
8951 sched_smt_power_savings_store);
8952#endif
8953
39aac648 8954int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8955{
8956 int err = 0;
8957
8958#ifdef CONFIG_SCHED_SMT
8959 if (smt_capable())
8960 err = sysfs_create_file(&cls->kset.kobj,
8961 &attr_sched_smt_power_savings.attr);
8962#endif
8963#ifdef CONFIG_SCHED_MC
8964 if (!err && mc_capable())
8965 err = sysfs_create_file(&cls->kset.kobj,
8966 &attr_sched_mc_power_savings.attr);
8967#endif
8968 return err;
8969}
6d6bc0ad 8970#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8971
e761b772 8972#ifndef CONFIG_CPUSETS
1da177e4 8973/*
e761b772
MK
8974 * Add online and remove offline CPUs from the scheduler domains.
8975 * When cpusets are enabled they take over this function.
1da177e4
LT
8976 */
8977static int update_sched_domains(struct notifier_block *nfb,
8978 unsigned long action, void *hcpu)
e761b772
MK
8979{
8980 switch (action) {
8981 case CPU_ONLINE:
8982 case CPU_ONLINE_FROZEN:
8983 case CPU_DEAD:
8984 case CPU_DEAD_FROZEN:
dfb512ec 8985 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8986 return NOTIFY_OK;
8987
8988 default:
8989 return NOTIFY_DONE;
8990 }
8991}
8992#endif
8993
8994static int update_runtime(struct notifier_block *nfb,
8995 unsigned long action, void *hcpu)
1da177e4 8996{
7def2be1
PZ
8997 int cpu = (int)(long)hcpu;
8998
1da177e4 8999 switch (action) {
1da177e4 9000 case CPU_DOWN_PREPARE:
8bb78442 9001 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9002 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9003 return NOTIFY_OK;
9004
1da177e4 9005 case CPU_DOWN_FAILED:
8bb78442 9006 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9007 case CPU_ONLINE:
8bb78442 9008 case CPU_ONLINE_FROZEN:
7def2be1 9009 enable_runtime(cpu_rq(cpu));
e761b772
MK
9010 return NOTIFY_OK;
9011
1da177e4
LT
9012 default:
9013 return NOTIFY_DONE;
9014 }
1da177e4 9015}
1da177e4
LT
9016
9017void __init sched_init_smp(void)
9018{
dcc30a35
RR
9019 cpumask_var_t non_isolated_cpus;
9020
9021 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9022
434d53b0
MT
9023#if defined(CONFIG_NUMA)
9024 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9025 GFP_KERNEL);
9026 BUG_ON(sched_group_nodes_bycpu == NULL);
9027#endif
95402b38 9028 get_online_cpus();
712555ee 9029 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9030 arch_init_sched_domains(cpu_online_mask);
9031 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9032 if (cpumask_empty(non_isolated_cpus))
9033 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9034 mutex_unlock(&sched_domains_mutex);
95402b38 9035 put_online_cpus();
e761b772
MK
9036
9037#ifndef CONFIG_CPUSETS
1da177e4
LT
9038 /* XXX: Theoretical race here - CPU may be hotplugged now */
9039 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9040#endif
9041
9042 /* RT runtime code needs to handle some hotplug events */
9043 hotcpu_notifier(update_runtime, 0);
9044
b328ca18 9045 init_hrtick();
5c1e1767
NP
9046
9047 /* Move init over to a non-isolated CPU */
dcc30a35 9048 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9049 BUG();
19978ca6 9050 sched_init_granularity();
dcc30a35 9051 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9052
9053 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9054 init_sched_rt_class();
1da177e4
LT
9055}
9056#else
9057void __init sched_init_smp(void)
9058{
19978ca6 9059 sched_init_granularity();
1da177e4
LT
9060}
9061#endif /* CONFIG_SMP */
9062
9063int in_sched_functions(unsigned long addr)
9064{
1da177e4
LT
9065 return in_lock_functions(addr) ||
9066 (addr >= (unsigned long)__sched_text_start
9067 && addr < (unsigned long)__sched_text_end);
9068}
9069
a9957449 9070static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9071{
9072 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9073 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9074#ifdef CONFIG_FAIR_GROUP_SCHED
9075 cfs_rq->rq = rq;
9076#endif
67e9fb2a 9077 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9078}
9079
fa85ae24
PZ
9080static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9081{
9082 struct rt_prio_array *array;
9083 int i;
9084
9085 array = &rt_rq->active;
9086 for (i = 0; i < MAX_RT_PRIO; i++) {
9087 INIT_LIST_HEAD(array->queue + i);
9088 __clear_bit(i, array->bitmap);
9089 }
9090 /* delimiter for bitsearch: */
9091 __set_bit(MAX_RT_PRIO, array->bitmap);
9092
052f1dc7 9093#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9094 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9095#ifdef CONFIG_SMP
e864c499 9096 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9097#endif
48d5e258 9098#endif
fa85ae24
PZ
9099#ifdef CONFIG_SMP
9100 rt_rq->rt_nr_migratory = 0;
fa85ae24 9101 rt_rq->overloaded = 0;
917b627d 9102 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
9103#endif
9104
9105 rt_rq->rt_time = 0;
9106 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9107 rt_rq->rt_runtime = 0;
9108 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9109
052f1dc7 9110#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9111 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9112 rt_rq->rq = rq;
9113#endif
fa85ae24
PZ
9114}
9115
6f505b16 9116#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9117static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9118 struct sched_entity *se, int cpu, int add,
9119 struct sched_entity *parent)
6f505b16 9120{
ec7dc8ac 9121 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9122 tg->cfs_rq[cpu] = cfs_rq;
9123 init_cfs_rq(cfs_rq, rq);
9124 cfs_rq->tg = tg;
9125 if (add)
9126 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9127
9128 tg->se[cpu] = se;
354d60c2
DG
9129 /* se could be NULL for init_task_group */
9130 if (!se)
9131 return;
9132
ec7dc8ac
DG
9133 if (!parent)
9134 se->cfs_rq = &rq->cfs;
9135 else
9136 se->cfs_rq = parent->my_q;
9137
6f505b16
PZ
9138 se->my_q = cfs_rq;
9139 se->load.weight = tg->shares;
e05510d0 9140 se->load.inv_weight = 0;
ec7dc8ac 9141 se->parent = parent;
6f505b16 9142}
052f1dc7 9143#endif
6f505b16 9144
052f1dc7 9145#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9146static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9147 struct sched_rt_entity *rt_se, int cpu, int add,
9148 struct sched_rt_entity *parent)
6f505b16 9149{
ec7dc8ac
DG
9150 struct rq *rq = cpu_rq(cpu);
9151
6f505b16
PZ
9152 tg->rt_rq[cpu] = rt_rq;
9153 init_rt_rq(rt_rq, rq);
9154 rt_rq->tg = tg;
9155 rt_rq->rt_se = rt_se;
ac086bc2 9156 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9157 if (add)
9158 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9159
9160 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9161 if (!rt_se)
9162 return;
9163
ec7dc8ac
DG
9164 if (!parent)
9165 rt_se->rt_rq = &rq->rt;
9166 else
9167 rt_se->rt_rq = parent->my_q;
9168
6f505b16 9169 rt_se->my_q = rt_rq;
ec7dc8ac 9170 rt_se->parent = parent;
6f505b16
PZ
9171 INIT_LIST_HEAD(&rt_se->run_list);
9172}
9173#endif
9174
1da177e4
LT
9175void __init sched_init(void)
9176{
dd41f596 9177 int i, j;
434d53b0
MT
9178 unsigned long alloc_size = 0, ptr;
9179
9180#ifdef CONFIG_FAIR_GROUP_SCHED
9181 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9182#endif
9183#ifdef CONFIG_RT_GROUP_SCHED
9184 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9185#endif
9186#ifdef CONFIG_USER_SCHED
9187 alloc_size *= 2;
df7c8e84
RR
9188#endif
9189#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9190 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9191#endif
9192 /*
9193 * As sched_init() is called before page_alloc is setup,
9194 * we use alloc_bootmem().
9195 */
9196 if (alloc_size) {
36b7b6d4 9197 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9198
9199#ifdef CONFIG_FAIR_GROUP_SCHED
9200 init_task_group.se = (struct sched_entity **)ptr;
9201 ptr += nr_cpu_ids * sizeof(void **);
9202
9203 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9204 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9205
9206#ifdef CONFIG_USER_SCHED
9207 root_task_group.se = (struct sched_entity **)ptr;
9208 ptr += nr_cpu_ids * sizeof(void **);
9209
9210 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9211 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9212#endif /* CONFIG_USER_SCHED */
9213#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9214#ifdef CONFIG_RT_GROUP_SCHED
9215 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9216 ptr += nr_cpu_ids * sizeof(void **);
9217
9218 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9219 ptr += nr_cpu_ids * sizeof(void **);
9220
9221#ifdef CONFIG_USER_SCHED
9222 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9223 ptr += nr_cpu_ids * sizeof(void **);
9224
9225 root_task_group.rt_rq = (struct rt_rq **)ptr;
9226 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9227#endif /* CONFIG_USER_SCHED */
9228#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9229#ifdef CONFIG_CPUMASK_OFFSTACK
9230 for_each_possible_cpu(i) {
9231 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9232 ptr += cpumask_size();
9233 }
9234#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9235 }
dd41f596 9236
57d885fe
GH
9237#ifdef CONFIG_SMP
9238 init_defrootdomain();
9239#endif
9240
d0b27fa7
PZ
9241 init_rt_bandwidth(&def_rt_bandwidth,
9242 global_rt_period(), global_rt_runtime());
9243
9244#ifdef CONFIG_RT_GROUP_SCHED
9245 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9246 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9247#ifdef CONFIG_USER_SCHED
9248 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9249 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9250#endif /* CONFIG_USER_SCHED */
9251#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9252
052f1dc7 9253#ifdef CONFIG_GROUP_SCHED
6f505b16 9254 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9255 INIT_LIST_HEAD(&init_task_group.children);
9256
9257#ifdef CONFIG_USER_SCHED
9258 INIT_LIST_HEAD(&root_task_group.children);
9259 init_task_group.parent = &root_task_group;
9260 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9261#endif /* CONFIG_USER_SCHED */
9262#endif /* CONFIG_GROUP_SCHED */
6f505b16 9263
0a945022 9264 for_each_possible_cpu(i) {
70b97a7f 9265 struct rq *rq;
1da177e4
LT
9266
9267 rq = cpu_rq(i);
9268 spin_lock_init(&rq->lock);
7897986b 9269 rq->nr_running = 0;
dce48a84
TG
9270 rq->calc_load_active = 0;
9271 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9272 init_cfs_rq(&rq->cfs, rq);
6f505b16 9273 init_rt_rq(&rq->rt, rq);
dd41f596 9274#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9275 init_task_group.shares = init_task_group_load;
6f505b16 9276 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9277#ifdef CONFIG_CGROUP_SCHED
9278 /*
9279 * How much cpu bandwidth does init_task_group get?
9280 *
9281 * In case of task-groups formed thr' the cgroup filesystem, it
9282 * gets 100% of the cpu resources in the system. This overall
9283 * system cpu resource is divided among the tasks of
9284 * init_task_group and its child task-groups in a fair manner,
9285 * based on each entity's (task or task-group's) weight
9286 * (se->load.weight).
9287 *
9288 * In other words, if init_task_group has 10 tasks of weight
9289 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9290 * then A0's share of the cpu resource is:
9291 *
0d905bca 9292 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9293 *
9294 * We achieve this by letting init_task_group's tasks sit
9295 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9296 */
ec7dc8ac 9297 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9298#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9299 root_task_group.shares = NICE_0_LOAD;
9300 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9301 /*
9302 * In case of task-groups formed thr' the user id of tasks,
9303 * init_task_group represents tasks belonging to root user.
9304 * Hence it forms a sibling of all subsequent groups formed.
9305 * In this case, init_task_group gets only a fraction of overall
9306 * system cpu resource, based on the weight assigned to root
9307 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9308 * by letting tasks of init_task_group sit in a separate cfs_rq
9309 * (init_cfs_rq) and having one entity represent this group of
9310 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9311 */
ec7dc8ac 9312 init_tg_cfs_entry(&init_task_group,
6f505b16 9313 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9314 &per_cpu(init_sched_entity, i), i, 1,
9315 root_task_group.se[i]);
6f505b16 9316
052f1dc7 9317#endif
354d60c2
DG
9318#endif /* CONFIG_FAIR_GROUP_SCHED */
9319
9320 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9321#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9322 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9323#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9324 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9325#elif defined CONFIG_USER_SCHED
eff766a6 9326 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9327 init_tg_rt_entry(&init_task_group,
6f505b16 9328 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9329 &per_cpu(init_sched_rt_entity, i), i, 1,
9330 root_task_group.rt_se[i]);
354d60c2 9331#endif
dd41f596 9332#endif
1da177e4 9333
dd41f596
IM
9334 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9335 rq->cpu_load[j] = 0;
1da177e4 9336#ifdef CONFIG_SMP
41c7ce9a 9337 rq->sd = NULL;
57d885fe 9338 rq->rd = NULL;
1da177e4 9339 rq->active_balance = 0;
dd41f596 9340 rq->next_balance = jiffies;
1da177e4 9341 rq->push_cpu = 0;
0a2966b4 9342 rq->cpu = i;
1f11eb6a 9343 rq->online = 0;
1da177e4
LT
9344 rq->migration_thread = NULL;
9345 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9346 rq_attach_root(rq, &def_root_domain);
1da177e4 9347#endif
8f4d37ec 9348 init_rq_hrtick(rq);
1da177e4 9349 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9350 }
9351
2dd73a4f 9352 set_load_weight(&init_task);
b50f60ce 9353
e107be36
AK
9354#ifdef CONFIG_PREEMPT_NOTIFIERS
9355 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9356#endif
9357
c9819f45 9358#ifdef CONFIG_SMP
962cf36c 9359 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9360#endif
9361
b50f60ce
HC
9362#ifdef CONFIG_RT_MUTEXES
9363 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9364#endif
9365
1da177e4
LT
9366 /*
9367 * The boot idle thread does lazy MMU switching as well:
9368 */
9369 atomic_inc(&init_mm.mm_count);
9370 enter_lazy_tlb(&init_mm, current);
9371
9372 /*
9373 * Make us the idle thread. Technically, schedule() should not be
9374 * called from this thread, however somewhere below it might be,
9375 * but because we are the idle thread, we just pick up running again
9376 * when this runqueue becomes "idle".
9377 */
9378 init_idle(current, smp_processor_id());
dce48a84
TG
9379
9380 calc_load_update = jiffies + LOAD_FREQ;
9381
dd41f596
IM
9382 /*
9383 * During early bootup we pretend to be a normal task:
9384 */
9385 current->sched_class = &fair_sched_class;
6892b75e 9386
6a7b3dc3 9387 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9388 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9389#ifdef CONFIG_SMP
7d1e6a9b 9390#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9391 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9392 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9393#endif
4bdddf8f 9394 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9395#endif /* SMP */
6a7b3dc3 9396
0d905bca
IM
9397 perf_counter_init();
9398
6892b75e 9399 scheduler_running = 1;
1da177e4
LT
9400}
9401
9402#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9403void __might_sleep(char *file, int line)
9404{
48f24c4d 9405#ifdef in_atomic
1da177e4
LT
9406 static unsigned long prev_jiffy; /* ratelimiting */
9407
aef745fc
IM
9408 if ((!in_atomic() && !irqs_disabled()) ||
9409 system_state != SYSTEM_RUNNING || oops_in_progress)
9410 return;
9411 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9412 return;
9413 prev_jiffy = jiffies;
9414
9415 printk(KERN_ERR
9416 "BUG: sleeping function called from invalid context at %s:%d\n",
9417 file, line);
9418 printk(KERN_ERR
9419 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9420 in_atomic(), irqs_disabled(),
9421 current->pid, current->comm);
9422
9423 debug_show_held_locks(current);
9424 if (irqs_disabled())
9425 print_irqtrace_events(current);
9426 dump_stack();
1da177e4
LT
9427#endif
9428}
9429EXPORT_SYMBOL(__might_sleep);
9430#endif
9431
9432#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9433static void normalize_task(struct rq *rq, struct task_struct *p)
9434{
9435 int on_rq;
3e51f33f 9436
3a5e4dc1
AK
9437 update_rq_clock(rq);
9438 on_rq = p->se.on_rq;
9439 if (on_rq)
9440 deactivate_task(rq, p, 0);
9441 __setscheduler(rq, p, SCHED_NORMAL, 0);
9442 if (on_rq) {
9443 activate_task(rq, p, 0);
9444 resched_task(rq->curr);
9445 }
9446}
9447
1da177e4
LT
9448void normalize_rt_tasks(void)
9449{
a0f98a1c 9450 struct task_struct *g, *p;
1da177e4 9451 unsigned long flags;
70b97a7f 9452 struct rq *rq;
1da177e4 9453
4cf5d77a 9454 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9455 do_each_thread(g, p) {
178be793
IM
9456 /*
9457 * Only normalize user tasks:
9458 */
9459 if (!p->mm)
9460 continue;
9461
6cfb0d5d 9462 p->se.exec_start = 0;
6cfb0d5d 9463#ifdef CONFIG_SCHEDSTATS
dd41f596 9464 p->se.wait_start = 0;
dd41f596 9465 p->se.sleep_start = 0;
dd41f596 9466 p->se.block_start = 0;
6cfb0d5d 9467#endif
dd41f596
IM
9468
9469 if (!rt_task(p)) {
9470 /*
9471 * Renice negative nice level userspace
9472 * tasks back to 0:
9473 */
9474 if (TASK_NICE(p) < 0 && p->mm)
9475 set_user_nice(p, 0);
1da177e4 9476 continue;
dd41f596 9477 }
1da177e4 9478
4cf5d77a 9479 spin_lock(&p->pi_lock);
b29739f9 9480 rq = __task_rq_lock(p);
1da177e4 9481
178be793 9482 normalize_task(rq, p);
3a5e4dc1 9483
b29739f9 9484 __task_rq_unlock(rq);
4cf5d77a 9485 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9486 } while_each_thread(g, p);
9487
4cf5d77a 9488 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9489}
9490
9491#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9492
9493#ifdef CONFIG_IA64
9494/*
9495 * These functions are only useful for the IA64 MCA handling.
9496 *
9497 * They can only be called when the whole system has been
9498 * stopped - every CPU needs to be quiescent, and no scheduling
9499 * activity can take place. Using them for anything else would
9500 * be a serious bug, and as a result, they aren't even visible
9501 * under any other configuration.
9502 */
9503
9504/**
9505 * curr_task - return the current task for a given cpu.
9506 * @cpu: the processor in question.
9507 *
9508 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9509 */
36c8b586 9510struct task_struct *curr_task(int cpu)
1df5c10a
LT
9511{
9512 return cpu_curr(cpu);
9513}
9514
9515/**
9516 * set_curr_task - set the current task for a given cpu.
9517 * @cpu: the processor in question.
9518 * @p: the task pointer to set.
9519 *
9520 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9521 * are serviced on a separate stack. It allows the architecture to switch the
9522 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9523 * must be called with all CPU's synchronized, and interrupts disabled, the
9524 * and caller must save the original value of the current task (see
9525 * curr_task() above) and restore that value before reenabling interrupts and
9526 * re-starting the system.
9527 *
9528 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9529 */
36c8b586 9530void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9531{
9532 cpu_curr(cpu) = p;
9533}
9534
9535#endif
29f59db3 9536
bccbe08a
PZ
9537#ifdef CONFIG_FAIR_GROUP_SCHED
9538static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9539{
9540 int i;
9541
9542 for_each_possible_cpu(i) {
9543 if (tg->cfs_rq)
9544 kfree(tg->cfs_rq[i]);
9545 if (tg->se)
9546 kfree(tg->se[i]);
6f505b16
PZ
9547 }
9548
9549 kfree(tg->cfs_rq);
9550 kfree(tg->se);
6f505b16
PZ
9551}
9552
ec7dc8ac
DG
9553static
9554int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9555{
29f59db3 9556 struct cfs_rq *cfs_rq;
eab17229 9557 struct sched_entity *se;
9b5b7751 9558 struct rq *rq;
29f59db3
SV
9559 int i;
9560
434d53b0 9561 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9562 if (!tg->cfs_rq)
9563 goto err;
434d53b0 9564 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9565 if (!tg->se)
9566 goto err;
052f1dc7
PZ
9567
9568 tg->shares = NICE_0_LOAD;
29f59db3
SV
9569
9570 for_each_possible_cpu(i) {
9b5b7751 9571 rq = cpu_rq(i);
29f59db3 9572
eab17229
LZ
9573 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9574 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9575 if (!cfs_rq)
9576 goto err;
9577
eab17229
LZ
9578 se = kzalloc_node(sizeof(struct sched_entity),
9579 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9580 if (!se)
9581 goto err;
9582
eab17229 9583 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9584 }
9585
9586 return 1;
9587
9588 err:
9589 return 0;
9590}
9591
9592static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9593{
9594 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9595 &cpu_rq(cpu)->leaf_cfs_rq_list);
9596}
9597
9598static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9599{
9600 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9601}
6d6bc0ad 9602#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9603static inline void free_fair_sched_group(struct task_group *tg)
9604{
9605}
9606
ec7dc8ac
DG
9607static inline
9608int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9609{
9610 return 1;
9611}
9612
9613static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9614{
9615}
9616
9617static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9618{
9619}
6d6bc0ad 9620#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9621
9622#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9623static void free_rt_sched_group(struct task_group *tg)
9624{
9625 int i;
9626
d0b27fa7
PZ
9627 destroy_rt_bandwidth(&tg->rt_bandwidth);
9628
bccbe08a
PZ
9629 for_each_possible_cpu(i) {
9630 if (tg->rt_rq)
9631 kfree(tg->rt_rq[i]);
9632 if (tg->rt_se)
9633 kfree(tg->rt_se[i]);
9634 }
9635
9636 kfree(tg->rt_rq);
9637 kfree(tg->rt_se);
9638}
9639
ec7dc8ac
DG
9640static
9641int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9642{
9643 struct rt_rq *rt_rq;
eab17229 9644 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9645 struct rq *rq;
9646 int i;
9647
434d53b0 9648 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9649 if (!tg->rt_rq)
9650 goto err;
434d53b0 9651 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9652 if (!tg->rt_se)
9653 goto err;
9654
d0b27fa7
PZ
9655 init_rt_bandwidth(&tg->rt_bandwidth,
9656 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9657
9658 for_each_possible_cpu(i) {
9659 rq = cpu_rq(i);
9660
eab17229
LZ
9661 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9662 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9663 if (!rt_rq)
9664 goto err;
29f59db3 9665
eab17229
LZ
9666 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9667 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9668 if (!rt_se)
9669 goto err;
29f59db3 9670
eab17229 9671 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9672 }
9673
bccbe08a
PZ
9674 return 1;
9675
9676 err:
9677 return 0;
9678}
9679
9680static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9681{
9682 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9683 &cpu_rq(cpu)->leaf_rt_rq_list);
9684}
9685
9686static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9687{
9688 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9689}
6d6bc0ad 9690#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9691static inline void free_rt_sched_group(struct task_group *tg)
9692{
9693}
9694
ec7dc8ac
DG
9695static inline
9696int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9697{
9698 return 1;
9699}
9700
9701static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9702{
9703}
9704
9705static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9706{
9707}
6d6bc0ad 9708#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9709
d0b27fa7 9710#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9711static void free_sched_group(struct task_group *tg)
9712{
9713 free_fair_sched_group(tg);
9714 free_rt_sched_group(tg);
9715 kfree(tg);
9716}
9717
9718/* allocate runqueue etc for a new task group */
ec7dc8ac 9719struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9720{
9721 struct task_group *tg;
9722 unsigned long flags;
9723 int i;
9724
9725 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9726 if (!tg)
9727 return ERR_PTR(-ENOMEM);
9728
ec7dc8ac 9729 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9730 goto err;
9731
ec7dc8ac 9732 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9733 goto err;
9734
8ed36996 9735 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9736 for_each_possible_cpu(i) {
bccbe08a
PZ
9737 register_fair_sched_group(tg, i);
9738 register_rt_sched_group(tg, i);
9b5b7751 9739 }
6f505b16 9740 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9741
9742 WARN_ON(!parent); /* root should already exist */
9743
9744 tg->parent = parent;
f473aa5e 9745 INIT_LIST_HEAD(&tg->children);
09f2724a 9746 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9747 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9748
9b5b7751 9749 return tg;
29f59db3
SV
9750
9751err:
6f505b16 9752 free_sched_group(tg);
29f59db3
SV
9753 return ERR_PTR(-ENOMEM);
9754}
9755
9b5b7751 9756/* rcu callback to free various structures associated with a task group */
6f505b16 9757static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9758{
29f59db3 9759 /* now it should be safe to free those cfs_rqs */
6f505b16 9760 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9761}
9762
9b5b7751 9763/* Destroy runqueue etc associated with a task group */
4cf86d77 9764void sched_destroy_group(struct task_group *tg)
29f59db3 9765{
8ed36996 9766 unsigned long flags;
9b5b7751 9767 int i;
29f59db3 9768
8ed36996 9769 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9770 for_each_possible_cpu(i) {
bccbe08a
PZ
9771 unregister_fair_sched_group(tg, i);
9772 unregister_rt_sched_group(tg, i);
9b5b7751 9773 }
6f505b16 9774 list_del_rcu(&tg->list);
f473aa5e 9775 list_del_rcu(&tg->siblings);
8ed36996 9776 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9777
9b5b7751 9778 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9779 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9780}
9781
9b5b7751 9782/* change task's runqueue when it moves between groups.
3a252015
IM
9783 * The caller of this function should have put the task in its new group
9784 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9785 * reflect its new group.
9b5b7751
SV
9786 */
9787void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9788{
9789 int on_rq, running;
9790 unsigned long flags;
9791 struct rq *rq;
9792
9793 rq = task_rq_lock(tsk, &flags);
9794
29f59db3
SV
9795 update_rq_clock(rq);
9796
051a1d1a 9797 running = task_current(rq, tsk);
29f59db3
SV
9798 on_rq = tsk->se.on_rq;
9799
0e1f3483 9800 if (on_rq)
29f59db3 9801 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9802 if (unlikely(running))
9803 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9804
6f505b16 9805 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9806
810b3817
PZ
9807#ifdef CONFIG_FAIR_GROUP_SCHED
9808 if (tsk->sched_class->moved_group)
9809 tsk->sched_class->moved_group(tsk);
9810#endif
9811
0e1f3483
HS
9812 if (unlikely(running))
9813 tsk->sched_class->set_curr_task(rq);
9814 if (on_rq)
7074badb 9815 enqueue_task(rq, tsk, 0);
29f59db3 9816
29f59db3
SV
9817 task_rq_unlock(rq, &flags);
9818}
6d6bc0ad 9819#endif /* CONFIG_GROUP_SCHED */
29f59db3 9820
052f1dc7 9821#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9822static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9823{
9824 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9825 int on_rq;
9826
29f59db3 9827 on_rq = se->on_rq;
62fb1851 9828 if (on_rq)
29f59db3
SV
9829 dequeue_entity(cfs_rq, se, 0);
9830
9831 se->load.weight = shares;
e05510d0 9832 se->load.inv_weight = 0;
29f59db3 9833
62fb1851 9834 if (on_rq)
29f59db3 9835 enqueue_entity(cfs_rq, se, 0);
c09595f6 9836}
62fb1851 9837
c09595f6
PZ
9838static void set_se_shares(struct sched_entity *se, unsigned long shares)
9839{
9840 struct cfs_rq *cfs_rq = se->cfs_rq;
9841 struct rq *rq = cfs_rq->rq;
9842 unsigned long flags;
9843
9844 spin_lock_irqsave(&rq->lock, flags);
9845 __set_se_shares(se, shares);
9846 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9847}
9848
8ed36996
PZ
9849static DEFINE_MUTEX(shares_mutex);
9850
4cf86d77 9851int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9852{
9853 int i;
8ed36996 9854 unsigned long flags;
c61935fd 9855
ec7dc8ac
DG
9856 /*
9857 * We can't change the weight of the root cgroup.
9858 */
9859 if (!tg->se[0])
9860 return -EINVAL;
9861
18d95a28
PZ
9862 if (shares < MIN_SHARES)
9863 shares = MIN_SHARES;
cb4ad1ff
MX
9864 else if (shares > MAX_SHARES)
9865 shares = MAX_SHARES;
62fb1851 9866
8ed36996 9867 mutex_lock(&shares_mutex);
9b5b7751 9868 if (tg->shares == shares)
5cb350ba 9869 goto done;
29f59db3 9870
8ed36996 9871 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9872 for_each_possible_cpu(i)
9873 unregister_fair_sched_group(tg, i);
f473aa5e 9874 list_del_rcu(&tg->siblings);
8ed36996 9875 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9876
9877 /* wait for any ongoing reference to this group to finish */
9878 synchronize_sched();
9879
9880 /*
9881 * Now we are free to modify the group's share on each cpu
9882 * w/o tripping rebalance_share or load_balance_fair.
9883 */
9b5b7751 9884 tg->shares = shares;
c09595f6
PZ
9885 for_each_possible_cpu(i) {
9886 /*
9887 * force a rebalance
9888 */
9889 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9890 set_se_shares(tg->se[i], shares);
c09595f6 9891 }
29f59db3 9892
6b2d7700
SV
9893 /*
9894 * Enable load balance activity on this group, by inserting it back on
9895 * each cpu's rq->leaf_cfs_rq_list.
9896 */
8ed36996 9897 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9898 for_each_possible_cpu(i)
9899 register_fair_sched_group(tg, i);
f473aa5e 9900 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9901 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9902done:
8ed36996 9903 mutex_unlock(&shares_mutex);
9b5b7751 9904 return 0;
29f59db3
SV
9905}
9906
5cb350ba
DG
9907unsigned long sched_group_shares(struct task_group *tg)
9908{
9909 return tg->shares;
9910}
052f1dc7 9911#endif
5cb350ba 9912
052f1dc7 9913#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9914/*
9f0c1e56 9915 * Ensure that the real time constraints are schedulable.
6f505b16 9916 */
9f0c1e56
PZ
9917static DEFINE_MUTEX(rt_constraints_mutex);
9918
9919static unsigned long to_ratio(u64 period, u64 runtime)
9920{
9921 if (runtime == RUNTIME_INF)
9a7e0b18 9922 return 1ULL << 20;
9f0c1e56 9923
9a7e0b18 9924 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9925}
9926
9a7e0b18
PZ
9927/* Must be called with tasklist_lock held */
9928static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9929{
9a7e0b18 9930 struct task_struct *g, *p;
b40b2e8e 9931
9a7e0b18
PZ
9932 do_each_thread(g, p) {
9933 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9934 return 1;
9935 } while_each_thread(g, p);
b40b2e8e 9936
9a7e0b18
PZ
9937 return 0;
9938}
b40b2e8e 9939
9a7e0b18
PZ
9940struct rt_schedulable_data {
9941 struct task_group *tg;
9942 u64 rt_period;
9943 u64 rt_runtime;
9944};
b40b2e8e 9945
9a7e0b18
PZ
9946static int tg_schedulable(struct task_group *tg, void *data)
9947{
9948 struct rt_schedulable_data *d = data;
9949 struct task_group *child;
9950 unsigned long total, sum = 0;
9951 u64 period, runtime;
b40b2e8e 9952
9a7e0b18
PZ
9953 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9954 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9955
9a7e0b18
PZ
9956 if (tg == d->tg) {
9957 period = d->rt_period;
9958 runtime = d->rt_runtime;
b40b2e8e 9959 }
b40b2e8e 9960
98a4826b
PZ
9961#ifdef CONFIG_USER_SCHED
9962 if (tg == &root_task_group) {
9963 period = global_rt_period();
9964 runtime = global_rt_runtime();
9965 }
9966#endif
9967
4653f803
PZ
9968 /*
9969 * Cannot have more runtime than the period.
9970 */
9971 if (runtime > period && runtime != RUNTIME_INF)
9972 return -EINVAL;
6f505b16 9973
4653f803
PZ
9974 /*
9975 * Ensure we don't starve existing RT tasks.
9976 */
9a7e0b18
PZ
9977 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9978 return -EBUSY;
6f505b16 9979
9a7e0b18 9980 total = to_ratio(period, runtime);
6f505b16 9981
4653f803
PZ
9982 /*
9983 * Nobody can have more than the global setting allows.
9984 */
9985 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9986 return -EINVAL;
6f505b16 9987
4653f803
PZ
9988 /*
9989 * The sum of our children's runtime should not exceed our own.
9990 */
9a7e0b18
PZ
9991 list_for_each_entry_rcu(child, &tg->children, siblings) {
9992 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9993 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9994
9a7e0b18
PZ
9995 if (child == d->tg) {
9996 period = d->rt_period;
9997 runtime = d->rt_runtime;
9998 }
6f505b16 9999
9a7e0b18 10000 sum += to_ratio(period, runtime);
9f0c1e56 10001 }
6f505b16 10002
9a7e0b18
PZ
10003 if (sum > total)
10004 return -EINVAL;
10005
10006 return 0;
6f505b16
PZ
10007}
10008
9a7e0b18 10009static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10010{
9a7e0b18
PZ
10011 struct rt_schedulable_data data = {
10012 .tg = tg,
10013 .rt_period = period,
10014 .rt_runtime = runtime,
10015 };
10016
10017 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10018}
10019
d0b27fa7
PZ
10020static int tg_set_bandwidth(struct task_group *tg,
10021 u64 rt_period, u64 rt_runtime)
6f505b16 10022{
ac086bc2 10023 int i, err = 0;
9f0c1e56 10024
9f0c1e56 10025 mutex_lock(&rt_constraints_mutex);
521f1a24 10026 read_lock(&tasklist_lock);
9a7e0b18
PZ
10027 err = __rt_schedulable(tg, rt_period, rt_runtime);
10028 if (err)
9f0c1e56 10029 goto unlock;
ac086bc2
PZ
10030
10031 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10032 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10033 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10034
10035 for_each_possible_cpu(i) {
10036 struct rt_rq *rt_rq = tg->rt_rq[i];
10037
10038 spin_lock(&rt_rq->rt_runtime_lock);
10039 rt_rq->rt_runtime = rt_runtime;
10040 spin_unlock(&rt_rq->rt_runtime_lock);
10041 }
10042 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10043 unlock:
521f1a24 10044 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10045 mutex_unlock(&rt_constraints_mutex);
10046
10047 return err;
6f505b16
PZ
10048}
10049
d0b27fa7
PZ
10050int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10051{
10052 u64 rt_runtime, rt_period;
10053
10054 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10055 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10056 if (rt_runtime_us < 0)
10057 rt_runtime = RUNTIME_INF;
10058
10059 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10060}
10061
9f0c1e56
PZ
10062long sched_group_rt_runtime(struct task_group *tg)
10063{
10064 u64 rt_runtime_us;
10065
d0b27fa7 10066 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10067 return -1;
10068
d0b27fa7 10069 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10070 do_div(rt_runtime_us, NSEC_PER_USEC);
10071 return rt_runtime_us;
10072}
d0b27fa7
PZ
10073
10074int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10075{
10076 u64 rt_runtime, rt_period;
10077
10078 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10079 rt_runtime = tg->rt_bandwidth.rt_runtime;
10080
619b0488
R
10081 if (rt_period == 0)
10082 return -EINVAL;
10083
d0b27fa7
PZ
10084 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10085}
10086
10087long sched_group_rt_period(struct task_group *tg)
10088{
10089 u64 rt_period_us;
10090
10091 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10092 do_div(rt_period_us, NSEC_PER_USEC);
10093 return rt_period_us;
10094}
10095
10096static int sched_rt_global_constraints(void)
10097{
4653f803 10098 u64 runtime, period;
d0b27fa7
PZ
10099 int ret = 0;
10100
ec5d4989
HS
10101 if (sysctl_sched_rt_period <= 0)
10102 return -EINVAL;
10103
4653f803
PZ
10104 runtime = global_rt_runtime();
10105 period = global_rt_period();
10106
10107 /*
10108 * Sanity check on the sysctl variables.
10109 */
10110 if (runtime > period && runtime != RUNTIME_INF)
10111 return -EINVAL;
10b612f4 10112
d0b27fa7 10113 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10114 read_lock(&tasklist_lock);
4653f803 10115 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10116 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10117 mutex_unlock(&rt_constraints_mutex);
10118
10119 return ret;
10120}
54e99124
DG
10121
10122int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10123{
10124 /* Don't accept realtime tasks when there is no way for them to run */
10125 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10126 return 0;
10127
10128 return 1;
10129}
10130
6d6bc0ad 10131#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10132static int sched_rt_global_constraints(void)
10133{
ac086bc2
PZ
10134 unsigned long flags;
10135 int i;
10136
ec5d4989
HS
10137 if (sysctl_sched_rt_period <= 0)
10138 return -EINVAL;
10139
60aa605d
PZ
10140 /*
10141 * There's always some RT tasks in the root group
10142 * -- migration, kstopmachine etc..
10143 */
10144 if (sysctl_sched_rt_runtime == 0)
10145 return -EBUSY;
10146
ac086bc2
PZ
10147 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10148 for_each_possible_cpu(i) {
10149 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10150
10151 spin_lock(&rt_rq->rt_runtime_lock);
10152 rt_rq->rt_runtime = global_rt_runtime();
10153 spin_unlock(&rt_rq->rt_runtime_lock);
10154 }
10155 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10156
d0b27fa7
PZ
10157 return 0;
10158}
6d6bc0ad 10159#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10160
10161int sched_rt_handler(struct ctl_table *table, int write,
10162 struct file *filp, void __user *buffer, size_t *lenp,
10163 loff_t *ppos)
10164{
10165 int ret;
10166 int old_period, old_runtime;
10167 static DEFINE_MUTEX(mutex);
10168
10169 mutex_lock(&mutex);
10170 old_period = sysctl_sched_rt_period;
10171 old_runtime = sysctl_sched_rt_runtime;
10172
10173 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10174
10175 if (!ret && write) {
10176 ret = sched_rt_global_constraints();
10177 if (ret) {
10178 sysctl_sched_rt_period = old_period;
10179 sysctl_sched_rt_runtime = old_runtime;
10180 } else {
10181 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10182 def_rt_bandwidth.rt_period =
10183 ns_to_ktime(global_rt_period());
10184 }
10185 }
10186 mutex_unlock(&mutex);
10187
10188 return ret;
10189}
68318b8e 10190
052f1dc7 10191#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10192
10193/* return corresponding task_group object of a cgroup */
2b01dfe3 10194static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10195{
2b01dfe3
PM
10196 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10197 struct task_group, css);
68318b8e
SV
10198}
10199
10200static struct cgroup_subsys_state *
2b01dfe3 10201cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10202{
ec7dc8ac 10203 struct task_group *tg, *parent;
68318b8e 10204
2b01dfe3 10205 if (!cgrp->parent) {
68318b8e 10206 /* This is early initialization for the top cgroup */
68318b8e
SV
10207 return &init_task_group.css;
10208 }
10209
ec7dc8ac
DG
10210 parent = cgroup_tg(cgrp->parent);
10211 tg = sched_create_group(parent);
68318b8e
SV
10212 if (IS_ERR(tg))
10213 return ERR_PTR(-ENOMEM);
10214
68318b8e
SV
10215 return &tg->css;
10216}
10217
41a2d6cf
IM
10218static void
10219cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10220{
2b01dfe3 10221 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10222
10223 sched_destroy_group(tg);
10224}
10225
41a2d6cf
IM
10226static int
10227cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10228 struct task_struct *tsk)
68318b8e 10229{
b68aa230 10230#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10231 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10232 return -EINVAL;
10233#else
68318b8e
SV
10234 /* We don't support RT-tasks being in separate groups */
10235 if (tsk->sched_class != &fair_sched_class)
10236 return -EINVAL;
b68aa230 10237#endif
68318b8e
SV
10238
10239 return 0;
10240}
10241
10242static void
2b01dfe3 10243cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10244 struct cgroup *old_cont, struct task_struct *tsk)
10245{
10246 sched_move_task(tsk);
10247}
10248
052f1dc7 10249#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10250static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10251 u64 shareval)
68318b8e 10252{
2b01dfe3 10253 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10254}
10255
f4c753b7 10256static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10257{
2b01dfe3 10258 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10259
10260 return (u64) tg->shares;
10261}
6d6bc0ad 10262#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10263
052f1dc7 10264#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10265static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10266 s64 val)
6f505b16 10267{
06ecb27c 10268 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10269}
10270
06ecb27c 10271static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10272{
06ecb27c 10273 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10274}
d0b27fa7
PZ
10275
10276static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10277 u64 rt_period_us)
10278{
10279 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10280}
10281
10282static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10283{
10284 return sched_group_rt_period(cgroup_tg(cgrp));
10285}
6d6bc0ad 10286#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10287
fe5c7cc2 10288static struct cftype cpu_files[] = {
052f1dc7 10289#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10290 {
10291 .name = "shares",
f4c753b7
PM
10292 .read_u64 = cpu_shares_read_u64,
10293 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10294 },
052f1dc7
PZ
10295#endif
10296#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10297 {
9f0c1e56 10298 .name = "rt_runtime_us",
06ecb27c
PM
10299 .read_s64 = cpu_rt_runtime_read,
10300 .write_s64 = cpu_rt_runtime_write,
6f505b16 10301 },
d0b27fa7
PZ
10302 {
10303 .name = "rt_period_us",
f4c753b7
PM
10304 .read_u64 = cpu_rt_period_read_uint,
10305 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10306 },
052f1dc7 10307#endif
68318b8e
SV
10308};
10309
10310static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10311{
fe5c7cc2 10312 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10313}
10314
10315struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10316 .name = "cpu",
10317 .create = cpu_cgroup_create,
10318 .destroy = cpu_cgroup_destroy,
10319 .can_attach = cpu_cgroup_can_attach,
10320 .attach = cpu_cgroup_attach,
10321 .populate = cpu_cgroup_populate,
10322 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10323 .early_init = 1,
10324};
10325
052f1dc7 10326#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10327
10328#ifdef CONFIG_CGROUP_CPUACCT
10329
10330/*
10331 * CPU accounting code for task groups.
10332 *
10333 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10334 * (balbir@in.ibm.com).
10335 */
10336
934352f2 10337/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10338struct cpuacct {
10339 struct cgroup_subsys_state css;
10340 /* cpuusage holds pointer to a u64-type object on every cpu */
10341 u64 *cpuusage;
ef12fefa 10342 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10343 struct cpuacct *parent;
d842de87
SV
10344};
10345
10346struct cgroup_subsys cpuacct_subsys;
10347
10348/* return cpu accounting group corresponding to this container */
32cd756a 10349static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10350{
32cd756a 10351 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10352 struct cpuacct, css);
10353}
10354
10355/* return cpu accounting group to which this task belongs */
10356static inline struct cpuacct *task_ca(struct task_struct *tsk)
10357{
10358 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10359 struct cpuacct, css);
10360}
10361
10362/* create a new cpu accounting group */
10363static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10364 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10365{
10366 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10367 int i;
d842de87
SV
10368
10369 if (!ca)
ef12fefa 10370 goto out;
d842de87
SV
10371
10372 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10373 if (!ca->cpuusage)
10374 goto out_free_ca;
10375
10376 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10377 if (percpu_counter_init(&ca->cpustat[i], 0))
10378 goto out_free_counters;
d842de87 10379
934352f2
BR
10380 if (cgrp->parent)
10381 ca->parent = cgroup_ca(cgrp->parent);
10382
d842de87 10383 return &ca->css;
ef12fefa
BR
10384
10385out_free_counters:
10386 while (--i >= 0)
10387 percpu_counter_destroy(&ca->cpustat[i]);
10388 free_percpu(ca->cpuusage);
10389out_free_ca:
10390 kfree(ca);
10391out:
10392 return ERR_PTR(-ENOMEM);
d842de87
SV
10393}
10394
10395/* destroy an existing cpu accounting group */
41a2d6cf 10396static void
32cd756a 10397cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10398{
32cd756a 10399 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10400 int i;
d842de87 10401
ef12fefa
BR
10402 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10403 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10404 free_percpu(ca->cpuusage);
10405 kfree(ca);
10406}
10407
720f5498
KC
10408static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10409{
b36128c8 10410 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10411 u64 data;
10412
10413#ifndef CONFIG_64BIT
10414 /*
10415 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10416 */
10417 spin_lock_irq(&cpu_rq(cpu)->lock);
10418 data = *cpuusage;
10419 spin_unlock_irq(&cpu_rq(cpu)->lock);
10420#else
10421 data = *cpuusage;
10422#endif
10423
10424 return data;
10425}
10426
10427static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10428{
b36128c8 10429 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10430
10431#ifndef CONFIG_64BIT
10432 /*
10433 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10434 */
10435 spin_lock_irq(&cpu_rq(cpu)->lock);
10436 *cpuusage = val;
10437 spin_unlock_irq(&cpu_rq(cpu)->lock);
10438#else
10439 *cpuusage = val;
10440#endif
10441}
10442
d842de87 10443/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10444static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10445{
32cd756a 10446 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10447 u64 totalcpuusage = 0;
10448 int i;
10449
720f5498
KC
10450 for_each_present_cpu(i)
10451 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10452
10453 return totalcpuusage;
10454}
10455
0297b803
DG
10456static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10457 u64 reset)
10458{
10459 struct cpuacct *ca = cgroup_ca(cgrp);
10460 int err = 0;
10461 int i;
10462
10463 if (reset) {
10464 err = -EINVAL;
10465 goto out;
10466 }
10467
720f5498
KC
10468 for_each_present_cpu(i)
10469 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10470
0297b803
DG
10471out:
10472 return err;
10473}
10474
e9515c3c
KC
10475static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10476 struct seq_file *m)
10477{
10478 struct cpuacct *ca = cgroup_ca(cgroup);
10479 u64 percpu;
10480 int i;
10481
10482 for_each_present_cpu(i) {
10483 percpu = cpuacct_cpuusage_read(ca, i);
10484 seq_printf(m, "%llu ", (unsigned long long) percpu);
10485 }
10486 seq_printf(m, "\n");
10487 return 0;
10488}
10489
ef12fefa
BR
10490static const char *cpuacct_stat_desc[] = {
10491 [CPUACCT_STAT_USER] = "user",
10492 [CPUACCT_STAT_SYSTEM] = "system",
10493};
10494
10495static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10496 struct cgroup_map_cb *cb)
10497{
10498 struct cpuacct *ca = cgroup_ca(cgrp);
10499 int i;
10500
10501 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10502 s64 val = percpu_counter_read(&ca->cpustat[i]);
10503 val = cputime64_to_clock_t(val);
10504 cb->fill(cb, cpuacct_stat_desc[i], val);
10505 }
10506 return 0;
10507}
10508
d842de87
SV
10509static struct cftype files[] = {
10510 {
10511 .name = "usage",
f4c753b7
PM
10512 .read_u64 = cpuusage_read,
10513 .write_u64 = cpuusage_write,
d842de87 10514 },
e9515c3c
KC
10515 {
10516 .name = "usage_percpu",
10517 .read_seq_string = cpuacct_percpu_seq_read,
10518 },
ef12fefa
BR
10519 {
10520 .name = "stat",
10521 .read_map = cpuacct_stats_show,
10522 },
d842de87
SV
10523};
10524
32cd756a 10525static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10526{
32cd756a 10527 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10528}
10529
10530/*
10531 * charge this task's execution time to its accounting group.
10532 *
10533 * called with rq->lock held.
10534 */
10535static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10536{
10537 struct cpuacct *ca;
934352f2 10538 int cpu;
d842de87 10539
c40c6f85 10540 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10541 return;
10542
934352f2 10543 cpu = task_cpu(tsk);
a18b83b7
BR
10544
10545 rcu_read_lock();
10546
d842de87 10547 ca = task_ca(tsk);
d842de87 10548
934352f2 10549 for (; ca; ca = ca->parent) {
b36128c8 10550 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10551 *cpuusage += cputime;
10552 }
a18b83b7
BR
10553
10554 rcu_read_unlock();
d842de87
SV
10555}
10556
ef12fefa
BR
10557/*
10558 * Charge the system/user time to the task's accounting group.
10559 */
10560static void cpuacct_update_stats(struct task_struct *tsk,
10561 enum cpuacct_stat_index idx, cputime_t val)
10562{
10563 struct cpuacct *ca;
10564
10565 if (unlikely(!cpuacct_subsys.active))
10566 return;
10567
10568 rcu_read_lock();
10569 ca = task_ca(tsk);
10570
10571 do {
10572 percpu_counter_add(&ca->cpustat[idx], val);
10573 ca = ca->parent;
10574 } while (ca);
10575 rcu_read_unlock();
10576}
10577
d842de87
SV
10578struct cgroup_subsys cpuacct_subsys = {
10579 .name = "cpuacct",
10580 .create = cpuacct_create,
10581 .destroy = cpuacct_destroy,
10582 .populate = cpuacct_populate,
10583 .subsys_id = cpuacct_subsys_id,
10584};
10585#endif /* CONFIG_CGROUP_CPUACCT */