[PATCH] sched: multilevel sbe sbf
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
30#include <linux/completion.h>
31#include <linux/kernel_stat.h>
32#include <linux/security.h>
33#include <linux/notifier.h>
34#include <linux/profile.h>
35#include <linux/suspend.h>
36#include <linux/blkdev.h>
37#include <linux/delay.h>
38#include <linux/smp.h>
39#include <linux/threads.h>
40#include <linux/timer.h>
41#include <linux/rcupdate.h>
42#include <linux/cpu.h>
43#include <linux/cpuset.h>
44#include <linux/percpu.h>
45#include <linux/kthread.h>
46#include <linux/seq_file.h>
47#include <linux/syscalls.h>
48#include <linux/times.h>
49#include <linux/acct.h>
50#include <asm/tlb.h>
51
52#include <asm/unistd.h>
53
54/*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63/*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72/*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78/*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86#define DEF_TIMESLICE (100 * HZ / 1000)
87#define ON_RUNQUEUE_WEIGHT 30
88#define CHILD_PENALTY 95
89#define PARENT_PENALTY 100
90#define EXIT_WEIGHT 3
91#define PRIO_BONUS_RATIO 25
92#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93#define INTERACTIVE_DELTA 2
94#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95#define STARVATION_LIMIT (MAX_SLEEP_AVG)
96#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98/*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126#define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130#define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132#ifdef CONFIG_SMP
133#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136#else
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139#endif
140
141#define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144#define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147#define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150#define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154#define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157/*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166#define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
48c08d3f 169static unsigned int task_timeslice(task_t *p)
1da177e4
LT
170{
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175}
176#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179/*
180 * These are the runqueue data structures:
181 */
182
183#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185typedef struct runqueue runqueue_t;
186
187struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191};
192
193/*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208#ifdef CONFIG_SMP
7897986b 209 unsigned long cpu_load[3];
1da177e4
LT
210#endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229#ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238#endif
239
240#ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258#endif
259};
260
261static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263#define for_each_domain(cpu, domain) \
264 for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
265
266#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
267#define this_rq() (&__get_cpu_var(runqueues))
268#define task_rq(p) cpu_rq(task_cpu(p))
269#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
270
1da177e4 271#ifndef prepare_arch_switch
4866cde0
NP
272# define prepare_arch_switch(next) do { } while (0)
273#endif
274#ifndef finish_arch_switch
275# define finish_arch_switch(prev) do { } while (0)
276#endif
277
278#ifndef __ARCH_WANT_UNLOCKED_CTXSW
279static inline int task_running(runqueue_t *rq, task_t *p)
280{
281 return rq->curr == p;
282}
283
284static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
285{
286}
287
288static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
289{
290 spin_unlock_irq(&rq->lock);
291}
292
293#else /* __ARCH_WANT_UNLOCKED_CTXSW */
294static inline int task_running(runqueue_t *rq, task_t *p)
295{
296#ifdef CONFIG_SMP
297 return p->oncpu;
298#else
299 return rq->curr == p;
300#endif
301}
302
303static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
304{
305#ifdef CONFIG_SMP
306 /*
307 * We can optimise this out completely for !SMP, because the
308 * SMP rebalancing from interrupt is the only thing that cares
309 * here.
310 */
311 next->oncpu = 1;
312#endif
313#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
314 spin_unlock_irq(&rq->lock);
315#else
316 spin_unlock(&rq->lock);
317#endif
318}
319
320static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
321{
322#ifdef CONFIG_SMP
323 /*
324 * After ->oncpu is cleared, the task can be moved to a different CPU.
325 * We must ensure this doesn't happen until the switch is completely
326 * finished.
327 */
328 smp_wmb();
329 prev->oncpu = 0;
330#endif
331#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
332 local_irq_enable();
1da177e4 333#endif
4866cde0
NP
334}
335#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
336
337/*
338 * task_rq_lock - lock the runqueue a given task resides on and disable
339 * interrupts. Note the ordering: we can safely lookup the task_rq without
340 * explicitly disabling preemption.
341 */
342static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
343 __acquires(rq->lock)
344{
345 struct runqueue *rq;
346
347repeat_lock_task:
348 local_irq_save(*flags);
349 rq = task_rq(p);
350 spin_lock(&rq->lock);
351 if (unlikely(rq != task_rq(p))) {
352 spin_unlock_irqrestore(&rq->lock, *flags);
353 goto repeat_lock_task;
354 }
355 return rq;
356}
357
358static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
359 __releases(rq->lock)
360{
361 spin_unlock_irqrestore(&rq->lock, *flags);
362}
363
364#ifdef CONFIG_SCHEDSTATS
365/*
366 * bump this up when changing the output format or the meaning of an existing
367 * format, so that tools can adapt (or abort)
368 */
68767a0a 369#define SCHEDSTAT_VERSION 12
1da177e4
LT
370
371static int show_schedstat(struct seq_file *seq, void *v)
372{
373 int cpu;
374
375 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
376 seq_printf(seq, "timestamp %lu\n", jiffies);
377 for_each_online_cpu(cpu) {
378 runqueue_t *rq = cpu_rq(cpu);
379#ifdef CONFIG_SMP
380 struct sched_domain *sd;
381 int dcnt = 0;
382#endif
383
384 /* runqueue-specific stats */
385 seq_printf(seq,
386 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
387 cpu, rq->yld_both_empty,
388 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
389 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
390 rq->ttwu_cnt, rq->ttwu_local,
391 rq->rq_sched_info.cpu_time,
392 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
393
394 seq_printf(seq, "\n");
395
396#ifdef CONFIG_SMP
397 /* domain-specific stats */
398 for_each_domain(cpu, sd) {
399 enum idle_type itype;
400 char mask_str[NR_CPUS];
401
402 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
403 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
404 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
405 itype++) {
406 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
407 sd->lb_cnt[itype],
408 sd->lb_balanced[itype],
409 sd->lb_failed[itype],
410 sd->lb_imbalance[itype],
411 sd->lb_gained[itype],
412 sd->lb_hot_gained[itype],
413 sd->lb_nobusyq[itype],
414 sd->lb_nobusyg[itype]);
415 }
68767a0a 416 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 417 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
418 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
419 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
420 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
421 }
422#endif
423 }
424 return 0;
425}
426
427static int schedstat_open(struct inode *inode, struct file *file)
428{
429 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
430 char *buf = kmalloc(size, GFP_KERNEL);
431 struct seq_file *m;
432 int res;
433
434 if (!buf)
435 return -ENOMEM;
436 res = single_open(file, show_schedstat, NULL);
437 if (!res) {
438 m = file->private_data;
439 m->buf = buf;
440 m->size = size;
441 } else
442 kfree(buf);
443 return res;
444}
445
446struct file_operations proc_schedstat_operations = {
447 .open = schedstat_open,
448 .read = seq_read,
449 .llseek = seq_lseek,
450 .release = single_release,
451};
452
453# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
454# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
455#else /* !CONFIG_SCHEDSTATS */
456# define schedstat_inc(rq, field) do { } while (0)
457# define schedstat_add(rq, field, amt) do { } while (0)
458#endif
459
460/*
461 * rq_lock - lock a given runqueue and disable interrupts.
462 */
463static inline runqueue_t *this_rq_lock(void)
464 __acquires(rq->lock)
465{
466 runqueue_t *rq;
467
468 local_irq_disable();
469 rq = this_rq();
470 spin_lock(&rq->lock);
471
472 return rq;
473}
474
1da177e4
LT
475#ifdef CONFIG_SCHEDSTATS
476/*
477 * Called when a process is dequeued from the active array and given
478 * the cpu. We should note that with the exception of interactive
479 * tasks, the expired queue will become the active queue after the active
480 * queue is empty, without explicitly dequeuing and requeuing tasks in the
481 * expired queue. (Interactive tasks may be requeued directly to the
482 * active queue, thus delaying tasks in the expired queue from running;
483 * see scheduler_tick()).
484 *
485 * This function is only called from sched_info_arrive(), rather than
486 * dequeue_task(). Even though a task may be queued and dequeued multiple
487 * times as it is shuffled about, we're really interested in knowing how
488 * long it was from the *first* time it was queued to the time that it
489 * finally hit a cpu.
490 */
491static inline void sched_info_dequeued(task_t *t)
492{
493 t->sched_info.last_queued = 0;
494}
495
496/*
497 * Called when a task finally hits the cpu. We can now calculate how
498 * long it was waiting to run. We also note when it began so that we
499 * can keep stats on how long its timeslice is.
500 */
501static inline void sched_info_arrive(task_t *t)
502{
503 unsigned long now = jiffies, diff = 0;
504 struct runqueue *rq = task_rq(t);
505
506 if (t->sched_info.last_queued)
507 diff = now - t->sched_info.last_queued;
508 sched_info_dequeued(t);
509 t->sched_info.run_delay += diff;
510 t->sched_info.last_arrival = now;
511 t->sched_info.pcnt++;
512
513 if (!rq)
514 return;
515
516 rq->rq_sched_info.run_delay += diff;
517 rq->rq_sched_info.pcnt++;
518}
519
520/*
521 * Called when a process is queued into either the active or expired
522 * array. The time is noted and later used to determine how long we
523 * had to wait for us to reach the cpu. Since the expired queue will
524 * become the active queue after active queue is empty, without dequeuing
525 * and requeuing any tasks, we are interested in queuing to either. It
526 * is unusual but not impossible for tasks to be dequeued and immediately
527 * requeued in the same or another array: this can happen in sched_yield(),
528 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
529 * to runqueue.
530 *
531 * This function is only called from enqueue_task(), but also only updates
532 * the timestamp if it is already not set. It's assumed that
533 * sched_info_dequeued() will clear that stamp when appropriate.
534 */
535static inline void sched_info_queued(task_t *t)
536{
537 if (!t->sched_info.last_queued)
538 t->sched_info.last_queued = jiffies;
539}
540
541/*
542 * Called when a process ceases being the active-running process, either
543 * voluntarily or involuntarily. Now we can calculate how long we ran.
544 */
545static inline void sched_info_depart(task_t *t)
546{
547 struct runqueue *rq = task_rq(t);
548 unsigned long diff = jiffies - t->sched_info.last_arrival;
549
550 t->sched_info.cpu_time += diff;
551
552 if (rq)
553 rq->rq_sched_info.cpu_time += diff;
554}
555
556/*
557 * Called when tasks are switched involuntarily due, typically, to expiring
558 * their time slice. (This may also be called when switching to or from
559 * the idle task.) We are only called when prev != next.
560 */
561static inline void sched_info_switch(task_t *prev, task_t *next)
562{
563 struct runqueue *rq = task_rq(prev);
564
565 /*
566 * prev now departs the cpu. It's not interesting to record
567 * stats about how efficient we were at scheduling the idle
568 * process, however.
569 */
570 if (prev != rq->idle)
571 sched_info_depart(prev);
572
573 if (next != rq->idle)
574 sched_info_arrive(next);
575}
576#else
577#define sched_info_queued(t) do { } while (0)
578#define sched_info_switch(t, next) do { } while (0)
579#endif /* CONFIG_SCHEDSTATS */
580
581/*
582 * Adding/removing a task to/from a priority array:
583 */
584static void dequeue_task(struct task_struct *p, prio_array_t *array)
585{
586 array->nr_active--;
587 list_del(&p->run_list);
588 if (list_empty(array->queue + p->prio))
589 __clear_bit(p->prio, array->bitmap);
590}
591
592static void enqueue_task(struct task_struct *p, prio_array_t *array)
593{
594 sched_info_queued(p);
595 list_add_tail(&p->run_list, array->queue + p->prio);
596 __set_bit(p->prio, array->bitmap);
597 array->nr_active++;
598 p->array = array;
599}
600
601/*
602 * Put task to the end of the run list without the overhead of dequeue
603 * followed by enqueue.
604 */
605static void requeue_task(struct task_struct *p, prio_array_t *array)
606{
607 list_move_tail(&p->run_list, array->queue + p->prio);
608}
609
610static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
611{
612 list_add(&p->run_list, array->queue + p->prio);
613 __set_bit(p->prio, array->bitmap);
614 array->nr_active++;
615 p->array = array;
616}
617
618/*
619 * effective_prio - return the priority that is based on the static
620 * priority but is modified by bonuses/penalties.
621 *
622 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
623 * into the -5 ... 0 ... +5 bonus/penalty range.
624 *
625 * We use 25% of the full 0...39 priority range so that:
626 *
627 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
628 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
629 *
630 * Both properties are important to certain workloads.
631 */
632static int effective_prio(task_t *p)
633{
634 int bonus, prio;
635
636 if (rt_task(p))
637 return p->prio;
638
639 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
640
641 prio = p->static_prio - bonus;
642 if (prio < MAX_RT_PRIO)
643 prio = MAX_RT_PRIO;
644 if (prio > MAX_PRIO-1)
645 prio = MAX_PRIO-1;
646 return prio;
647}
648
649/*
650 * __activate_task - move a task to the runqueue.
651 */
652static inline void __activate_task(task_t *p, runqueue_t *rq)
653{
654 enqueue_task(p, rq->active);
655 rq->nr_running++;
656}
657
658/*
659 * __activate_idle_task - move idle task to the _front_ of runqueue.
660 */
661static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
662{
663 enqueue_task_head(p, rq->active);
664 rq->nr_running++;
665}
666
667static void recalc_task_prio(task_t *p, unsigned long long now)
668{
669 /* Caller must always ensure 'now >= p->timestamp' */
670 unsigned long long __sleep_time = now - p->timestamp;
671 unsigned long sleep_time;
672
673 if (__sleep_time > NS_MAX_SLEEP_AVG)
674 sleep_time = NS_MAX_SLEEP_AVG;
675 else
676 sleep_time = (unsigned long)__sleep_time;
677
678 if (likely(sleep_time > 0)) {
679 /*
680 * User tasks that sleep a long time are categorised as
681 * idle and will get just interactive status to stay active &
682 * prevent them suddenly becoming cpu hogs and starving
683 * other processes.
684 */
685 if (p->mm && p->activated != -1 &&
686 sleep_time > INTERACTIVE_SLEEP(p)) {
687 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
688 DEF_TIMESLICE);
689 } else {
690 /*
691 * The lower the sleep avg a task has the more
692 * rapidly it will rise with sleep time.
693 */
694 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
695
696 /*
697 * Tasks waking from uninterruptible sleep are
698 * limited in their sleep_avg rise as they
699 * are likely to be waiting on I/O
700 */
701 if (p->activated == -1 && p->mm) {
702 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
703 sleep_time = 0;
704 else if (p->sleep_avg + sleep_time >=
705 INTERACTIVE_SLEEP(p)) {
706 p->sleep_avg = INTERACTIVE_SLEEP(p);
707 sleep_time = 0;
708 }
709 }
710
711 /*
712 * This code gives a bonus to interactive tasks.
713 *
714 * The boost works by updating the 'average sleep time'
715 * value here, based on ->timestamp. The more time a
716 * task spends sleeping, the higher the average gets -
717 * and the higher the priority boost gets as well.
718 */
719 p->sleep_avg += sleep_time;
720
721 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
722 p->sleep_avg = NS_MAX_SLEEP_AVG;
723 }
724 }
725
726 p->prio = effective_prio(p);
727}
728
729/*
730 * activate_task - move a task to the runqueue and do priority recalculation
731 *
732 * Update all the scheduling statistics stuff. (sleep average
733 * calculation, priority modifiers, etc.)
734 */
735static void activate_task(task_t *p, runqueue_t *rq, int local)
736{
737 unsigned long long now;
738
739 now = sched_clock();
740#ifdef CONFIG_SMP
741 if (!local) {
742 /* Compensate for drifting sched_clock */
743 runqueue_t *this_rq = this_rq();
744 now = (now - this_rq->timestamp_last_tick)
745 + rq->timestamp_last_tick;
746 }
747#endif
748
749 recalc_task_prio(p, now);
750
751 /*
752 * This checks to make sure it's not an uninterruptible task
753 * that is now waking up.
754 */
755 if (!p->activated) {
756 /*
757 * Tasks which were woken up by interrupts (ie. hw events)
758 * are most likely of interactive nature. So we give them
759 * the credit of extending their sleep time to the period
760 * of time they spend on the runqueue, waiting for execution
761 * on a CPU, first time around:
762 */
763 if (in_interrupt())
764 p->activated = 2;
765 else {
766 /*
767 * Normal first-time wakeups get a credit too for
768 * on-runqueue time, but it will be weighted down:
769 */
770 p->activated = 1;
771 }
772 }
773 p->timestamp = now;
774
775 __activate_task(p, rq);
776}
777
778/*
779 * deactivate_task - remove a task from the runqueue.
780 */
781static void deactivate_task(struct task_struct *p, runqueue_t *rq)
782{
783 rq->nr_running--;
784 dequeue_task(p, p->array);
785 p->array = NULL;
786}
787
788/*
789 * resched_task - mark a task 'to be rescheduled now'.
790 *
791 * On UP this means the setting of the need_resched flag, on SMP it
792 * might also involve a cross-CPU call to trigger the scheduler on
793 * the target CPU.
794 */
795#ifdef CONFIG_SMP
796static void resched_task(task_t *p)
797{
798 int need_resched, nrpolling;
799
800 assert_spin_locked(&task_rq(p)->lock);
801
802 /* minimise the chance of sending an interrupt to poll_idle() */
803 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
804 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
805 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
806
807 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
808 smp_send_reschedule(task_cpu(p));
809}
810#else
811static inline void resched_task(task_t *p)
812{
813 set_tsk_need_resched(p);
814}
815#endif
816
817/**
818 * task_curr - is this task currently executing on a CPU?
819 * @p: the task in question.
820 */
821inline int task_curr(const task_t *p)
822{
823 return cpu_curr(task_cpu(p)) == p;
824}
825
826#ifdef CONFIG_SMP
827enum request_type {
828 REQ_MOVE_TASK,
829 REQ_SET_DOMAIN,
830};
831
832typedef struct {
833 struct list_head list;
834 enum request_type type;
835
836 /* For REQ_MOVE_TASK */
837 task_t *task;
838 int dest_cpu;
839
840 /* For REQ_SET_DOMAIN */
841 struct sched_domain *sd;
842
843 struct completion done;
844} migration_req_t;
845
846/*
847 * The task's runqueue lock must be held.
848 * Returns true if you have to wait for migration thread.
849 */
850static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
851{
852 runqueue_t *rq = task_rq(p);
853
854 /*
855 * If the task is not on a runqueue (and not running), then
856 * it is sufficient to simply update the task's cpu field.
857 */
858 if (!p->array && !task_running(rq, p)) {
859 set_task_cpu(p, dest_cpu);
860 return 0;
861 }
862
863 init_completion(&req->done);
864 req->type = REQ_MOVE_TASK;
865 req->task = p;
866 req->dest_cpu = dest_cpu;
867 list_add(&req->list, &rq->migration_queue);
868 return 1;
869}
870
871/*
872 * wait_task_inactive - wait for a thread to unschedule.
873 *
874 * The caller must ensure that the task *will* unschedule sometime soon,
875 * else this function might spin for a *long* time. This function can't
876 * be called with interrupts off, or it may introduce deadlock with
877 * smp_call_function() if an IPI is sent by the same process we are
878 * waiting to become inactive.
879 */
880void wait_task_inactive(task_t * p)
881{
882 unsigned long flags;
883 runqueue_t *rq;
884 int preempted;
885
886repeat:
887 rq = task_rq_lock(p, &flags);
888 /* Must be off runqueue entirely, not preempted. */
889 if (unlikely(p->array || task_running(rq, p))) {
890 /* If it's preempted, we yield. It could be a while. */
891 preempted = !task_running(rq, p);
892 task_rq_unlock(rq, &flags);
893 cpu_relax();
894 if (preempted)
895 yield();
896 goto repeat;
897 }
898 task_rq_unlock(rq, &flags);
899}
900
901/***
902 * kick_process - kick a running thread to enter/exit the kernel
903 * @p: the to-be-kicked thread
904 *
905 * Cause a process which is running on another CPU to enter
906 * kernel-mode, without any delay. (to get signals handled.)
907 *
908 * NOTE: this function doesnt have to take the runqueue lock,
909 * because all it wants to ensure is that the remote task enters
910 * the kernel. If the IPI races and the task has been migrated
911 * to another CPU then no harm is done and the purpose has been
912 * achieved as well.
913 */
914void kick_process(task_t *p)
915{
916 int cpu;
917
918 preempt_disable();
919 cpu = task_cpu(p);
920 if ((cpu != smp_processor_id()) && task_curr(p))
921 smp_send_reschedule(cpu);
922 preempt_enable();
923}
924
925/*
926 * Return a low guess at the load of a migration-source cpu.
927 *
928 * We want to under-estimate the load of migration sources, to
929 * balance conservatively.
930 */
7897986b 931static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
932{
933 runqueue_t *rq = cpu_rq(cpu);
934 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
935 if (type == 0)
936 return load_now;
1da177e4 937
7897986b 938 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
939}
940
941/*
942 * Return a high guess at the load of a migration-target cpu
943 */
7897986b 944static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
945{
946 runqueue_t *rq = cpu_rq(cpu);
947 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
948 if (type == 0)
949 return load_now;
1da177e4 950
7897986b 951 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
952}
953
147cbb4b
NP
954/*
955 * find_idlest_group finds and returns the least busy CPU group within the
956 * domain.
957 */
958static struct sched_group *
959find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
960{
961 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
962 unsigned long min_load = ULONG_MAX, this_load = 0;
963 int load_idx = sd->forkexec_idx;
964 int imbalance = 100 + (sd->imbalance_pct-100)/2;
965
966 do {
967 unsigned long load, avg_load;
968 int local_group;
969 int i;
970
971 local_group = cpu_isset(this_cpu, group->cpumask);
972 /* XXX: put a cpus allowed check */
973
974 /* Tally up the load of all CPUs in the group */
975 avg_load = 0;
976
977 for_each_cpu_mask(i, group->cpumask) {
978 /* Bias balancing toward cpus of our domain */
979 if (local_group)
980 load = source_load(i, load_idx);
981 else
982 load = target_load(i, load_idx);
983
984 avg_load += load;
985 }
986
987 /* Adjust by relative CPU power of the group */
988 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
989
990 if (local_group) {
991 this_load = avg_load;
992 this = group;
993 } else if (avg_load < min_load) {
994 min_load = avg_load;
995 idlest = group;
996 }
997 group = group->next;
998 } while (group != sd->groups);
999
1000 if (!idlest || 100*this_load < imbalance*min_load)
1001 return NULL;
1002 return idlest;
1003}
1004
1005/*
1006 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1007 */
1008static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1009{
1010 unsigned long load, min_load = ULONG_MAX;
1011 int idlest = -1;
1012 int i;
1013
1014 for_each_cpu_mask(i, group->cpumask) {
1015 load = source_load(i, 0);
1016
1017 if (load < min_load || (load == min_load && i == this_cpu)) {
1018 min_load = load;
1019 idlest = i;
1020 }
1021 }
1022
1023 return idlest;
1024}
1025
1026
1da177e4
LT
1027#endif
1028
1029/*
1030 * wake_idle() will wake a task on an idle cpu if task->cpu is
1031 * not idle and an idle cpu is available. The span of cpus to
1032 * search starts with cpus closest then further out as needed,
1033 * so we always favor a closer, idle cpu.
1034 *
1035 * Returns the CPU we should wake onto.
1036 */
1037#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1038static int wake_idle(int cpu, task_t *p)
1039{
1040 cpumask_t tmp;
1041 struct sched_domain *sd;
1042 int i;
1043
1044 if (idle_cpu(cpu))
1045 return cpu;
1046
1047 for_each_domain(cpu, sd) {
1048 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1049 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1050 for_each_cpu_mask(i, tmp) {
1051 if (idle_cpu(i))
1052 return i;
1053 }
1054 }
e0f364f4
NP
1055 else
1056 break;
1da177e4
LT
1057 }
1058 return cpu;
1059}
1060#else
1061static inline int wake_idle(int cpu, task_t *p)
1062{
1063 return cpu;
1064}
1065#endif
1066
1067/***
1068 * try_to_wake_up - wake up a thread
1069 * @p: the to-be-woken-up thread
1070 * @state: the mask of task states that can be woken
1071 * @sync: do a synchronous wakeup?
1072 *
1073 * Put it on the run-queue if it's not already there. The "current"
1074 * thread is always on the run-queue (except when the actual
1075 * re-schedule is in progress), and as such you're allowed to do
1076 * the simpler "current->state = TASK_RUNNING" to mark yourself
1077 * runnable without the overhead of this.
1078 *
1079 * returns failure only if the task is already active.
1080 */
1081static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1082{
1083 int cpu, this_cpu, success = 0;
1084 unsigned long flags;
1085 long old_state;
1086 runqueue_t *rq;
1087#ifdef CONFIG_SMP
1088 unsigned long load, this_load;
7897986b 1089 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1090 int new_cpu;
1091#endif
1092
1093 rq = task_rq_lock(p, &flags);
1094 old_state = p->state;
1095 if (!(old_state & state))
1096 goto out;
1097
1098 if (p->array)
1099 goto out_running;
1100
1101 cpu = task_cpu(p);
1102 this_cpu = smp_processor_id();
1103
1104#ifdef CONFIG_SMP
1105 if (unlikely(task_running(rq, p)))
1106 goto out_activate;
1107
7897986b
NP
1108 new_cpu = cpu;
1109
1da177e4
LT
1110 schedstat_inc(rq, ttwu_cnt);
1111 if (cpu == this_cpu) {
1112 schedstat_inc(rq, ttwu_local);
7897986b
NP
1113 goto out_set_cpu;
1114 }
1115
1116 for_each_domain(this_cpu, sd) {
1117 if (cpu_isset(cpu, sd->span)) {
1118 schedstat_inc(sd, ttwu_wake_remote);
1119 this_sd = sd;
1120 break;
1da177e4
LT
1121 }
1122 }
1da177e4 1123
7897986b 1124 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1125 goto out_set_cpu;
1126
1da177e4 1127 /*
7897986b 1128 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1129 */
7897986b
NP
1130 if (this_sd) {
1131 int idx = this_sd->wake_idx;
1132 unsigned int imbalance;
1da177e4 1133
a3f21bce
NP
1134 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1135
7897986b
NP
1136 load = source_load(cpu, idx);
1137 this_load = target_load(this_cpu, idx);
1da177e4 1138
7897986b
NP
1139 new_cpu = this_cpu; /* Wake to this CPU if we can */
1140
a3f21bce
NP
1141 if (this_sd->flags & SD_WAKE_AFFINE) {
1142 unsigned long tl = this_load;
1da177e4 1143 /*
a3f21bce
NP
1144 * If sync wakeup then subtract the (maximum possible)
1145 * effect of the currently running task from the load
1146 * of the current CPU:
1da177e4 1147 */
a3f21bce
NP
1148 if (sync)
1149 tl -= SCHED_LOAD_SCALE;
1150
1151 if ((tl <= load &&
1152 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1153 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1154 /*
1155 * This domain has SD_WAKE_AFFINE and
1156 * p is cache cold in this domain, and
1157 * there is no bad imbalance.
1158 */
1159 schedstat_inc(this_sd, ttwu_move_affine);
1160 goto out_set_cpu;
1161 }
1162 }
1163
1164 /*
1165 * Start passive balancing when half the imbalance_pct
1166 * limit is reached.
1167 */
1168 if (this_sd->flags & SD_WAKE_BALANCE) {
1169 if (imbalance*this_load <= 100*load) {
1170 schedstat_inc(this_sd, ttwu_move_balance);
1171 goto out_set_cpu;
1172 }
1da177e4
LT
1173 }
1174 }
1175
1176 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1177out_set_cpu:
1178 new_cpu = wake_idle(new_cpu, p);
1179 if (new_cpu != cpu) {
1180 set_task_cpu(p, new_cpu);
1181 task_rq_unlock(rq, &flags);
1182 /* might preempt at this point */
1183 rq = task_rq_lock(p, &flags);
1184 old_state = p->state;
1185 if (!(old_state & state))
1186 goto out;
1187 if (p->array)
1188 goto out_running;
1189
1190 this_cpu = smp_processor_id();
1191 cpu = task_cpu(p);
1192 }
1193
1194out_activate:
1195#endif /* CONFIG_SMP */
1196 if (old_state == TASK_UNINTERRUPTIBLE) {
1197 rq->nr_uninterruptible--;
1198 /*
1199 * Tasks on involuntary sleep don't earn
1200 * sleep_avg beyond just interactive state.
1201 */
1202 p->activated = -1;
1203 }
1204
1205 /*
1206 * Sync wakeups (i.e. those types of wakeups where the waker
1207 * has indicated that it will leave the CPU in short order)
1208 * don't trigger a preemption, if the woken up task will run on
1209 * this cpu. (in this case the 'I will reschedule' promise of
1210 * the waker guarantees that the freshly woken up task is going
1211 * to be considered on this CPU.)
1212 */
1213 activate_task(p, rq, cpu == this_cpu);
1214 if (!sync || cpu != this_cpu) {
1215 if (TASK_PREEMPTS_CURR(p, rq))
1216 resched_task(rq->curr);
1217 }
1218 success = 1;
1219
1220out_running:
1221 p->state = TASK_RUNNING;
1222out:
1223 task_rq_unlock(rq, &flags);
1224
1225 return success;
1226}
1227
1228int fastcall wake_up_process(task_t * p)
1229{
1230 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1231 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1232}
1233
1234EXPORT_SYMBOL(wake_up_process);
1235
1236int fastcall wake_up_state(task_t *p, unsigned int state)
1237{
1238 return try_to_wake_up(p, state, 0);
1239}
1240
1da177e4
LT
1241/*
1242 * Perform scheduler related setup for a newly forked process p.
1243 * p is forked by current.
1244 */
1245void fastcall sched_fork(task_t *p)
1246{
1247 /*
1248 * We mark the process as running here, but have not actually
1249 * inserted it onto the runqueue yet. This guarantees that
1250 * nobody will actually run it, and a signal or other external
1251 * event cannot wake it up and insert it on the runqueue either.
1252 */
1253 p->state = TASK_RUNNING;
1254 INIT_LIST_HEAD(&p->run_list);
1255 p->array = NULL;
1da177e4
LT
1256#ifdef CONFIG_SCHEDSTATS
1257 memset(&p->sched_info, 0, sizeof(p->sched_info));
1258#endif
4866cde0
NP
1259#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1260 p->oncpu = 0;
1261#endif
1da177e4 1262#ifdef CONFIG_PREEMPT
4866cde0 1263 /* Want to start with kernel preemption disabled. */
1da177e4
LT
1264 p->thread_info->preempt_count = 1;
1265#endif
1266 /*
1267 * Share the timeslice between parent and child, thus the
1268 * total amount of pending timeslices in the system doesn't change,
1269 * resulting in more scheduling fairness.
1270 */
1271 local_irq_disable();
1272 p->time_slice = (current->time_slice + 1) >> 1;
1273 /*
1274 * The remainder of the first timeslice might be recovered by
1275 * the parent if the child exits early enough.
1276 */
1277 p->first_time_slice = 1;
1278 current->time_slice >>= 1;
1279 p->timestamp = sched_clock();
1280 if (unlikely(!current->time_slice)) {
1281 /*
1282 * This case is rare, it happens when the parent has only
1283 * a single jiffy left from its timeslice. Taking the
1284 * runqueue lock is not a problem.
1285 */
1286 current->time_slice = 1;
1287 preempt_disable();
1288 scheduler_tick();
1289 local_irq_enable();
1290 preempt_enable();
1291 } else
1292 local_irq_enable();
1293}
1294
1295/*
1296 * wake_up_new_task - wake up a newly created task for the first time.
1297 *
1298 * This function will do some initial scheduler statistics housekeeping
1299 * that must be done for every newly created context, then puts the task
1300 * on the runqueue and wakes it.
1301 */
1302void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1303{
1304 unsigned long flags;
1305 int this_cpu, cpu;
1306 runqueue_t *rq, *this_rq;
147cbb4b
NP
1307#ifdef CONFIG_SMP
1308 struct sched_domain *tmp, *sd = NULL;
1309#endif
1da177e4
LT
1310
1311 rq = task_rq_lock(p, &flags);
147cbb4b 1312 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1313 this_cpu = smp_processor_id();
147cbb4b 1314 cpu = task_cpu(p);
1da177e4 1315
147cbb4b
NP
1316#ifdef CONFIG_SMP
1317 for_each_domain(cpu, tmp)
1318 if (tmp->flags & SD_BALANCE_FORK)
1319 sd = tmp;
1320
1321 if (sd) {
3dbd5342 1322 cpumask_t span;
68767a0a 1323 int new_cpu;
147cbb4b
NP
1324 struct sched_group *group;
1325
3dbd5342 1326again:
68767a0a 1327 schedstat_inc(sd, sbf_cnt);
3dbd5342 1328 span = sd->span;
147cbb4b
NP
1329 cpu = task_cpu(p);
1330 group = find_idlest_group(sd, p, cpu);
68767a0a
NP
1331 if (!group) {
1332 schedstat_inc(sd, sbf_balanced);
3dbd5342 1333 goto nextlevel;
68767a0a
NP
1334 }
1335
1336 new_cpu = find_idlest_cpu(group, cpu);
1337 if (new_cpu == -1 || new_cpu == cpu) {
1338 schedstat_inc(sd, sbf_balanced);
3dbd5342 1339 goto nextlevel;
68767a0a
NP
1340 }
1341
1342 if (cpu_isset(new_cpu, p->cpus_allowed)) {
1343 schedstat_inc(sd, sbf_pushed);
1344 set_task_cpu(p, new_cpu);
1345 task_rq_unlock(rq, &flags);
1346 rq = task_rq_lock(p, &flags);
1347 cpu = task_cpu(p);
147cbb4b 1348 }
3dbd5342
NP
1349
1350 /* Now try balancing at a lower domain level */
1351nextlevel:
1352 sd = NULL;
1353 for_each_domain(cpu, tmp) {
1354 if (cpus_subset(span, tmp->span))
1355 break;
1356 if (tmp->flags & SD_BALANCE_FORK)
1357 sd = tmp;
1358 }
1359
1360 if (sd)
1361 goto again;
147cbb4b 1362 }
1da177e4 1363
68767a0a 1364#endif
1da177e4
LT
1365 /*
1366 * We decrease the sleep average of forking parents
1367 * and children as well, to keep max-interactive tasks
1368 * from forking tasks that are max-interactive. The parent
1369 * (current) is done further down, under its lock.
1370 */
1371 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1372 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1373
1374 p->prio = effective_prio(p);
1375
1376 if (likely(cpu == this_cpu)) {
1377 if (!(clone_flags & CLONE_VM)) {
1378 /*
1379 * The VM isn't cloned, so we're in a good position to
1380 * do child-runs-first in anticipation of an exec. This
1381 * usually avoids a lot of COW overhead.
1382 */
1383 if (unlikely(!current->array))
1384 __activate_task(p, rq);
1385 else {
1386 p->prio = current->prio;
1387 list_add_tail(&p->run_list, &current->run_list);
1388 p->array = current->array;
1389 p->array->nr_active++;
1390 rq->nr_running++;
1391 }
1392 set_need_resched();
1393 } else
1394 /* Run child last */
1395 __activate_task(p, rq);
1396 /*
1397 * We skip the following code due to cpu == this_cpu
1398 *
1399 * task_rq_unlock(rq, &flags);
1400 * this_rq = task_rq_lock(current, &flags);
1401 */
1402 this_rq = rq;
1403 } else {
1404 this_rq = cpu_rq(this_cpu);
1405
1406 /*
1407 * Not the local CPU - must adjust timestamp. This should
1408 * get optimised away in the !CONFIG_SMP case.
1409 */
1410 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1411 + rq->timestamp_last_tick;
1412 __activate_task(p, rq);
1413 if (TASK_PREEMPTS_CURR(p, rq))
1414 resched_task(rq->curr);
1415
1416 /*
1417 * Parent and child are on different CPUs, now get the
1418 * parent runqueue to update the parent's ->sleep_avg:
1419 */
1420 task_rq_unlock(rq, &flags);
1421 this_rq = task_rq_lock(current, &flags);
1422 }
1423 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1424 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1425 task_rq_unlock(this_rq, &flags);
1426}
1427
1428/*
1429 * Potentially available exiting-child timeslices are
1430 * retrieved here - this way the parent does not get
1431 * penalized for creating too many threads.
1432 *
1433 * (this cannot be used to 'generate' timeslices
1434 * artificially, because any timeslice recovered here
1435 * was given away by the parent in the first place.)
1436 */
1437void fastcall sched_exit(task_t * p)
1438{
1439 unsigned long flags;
1440 runqueue_t *rq;
1441
1442 /*
1443 * If the child was a (relative-) CPU hog then decrease
1444 * the sleep_avg of the parent as well.
1445 */
1446 rq = task_rq_lock(p->parent, &flags);
1447 if (p->first_time_slice) {
1448 p->parent->time_slice += p->time_slice;
1449 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1450 p->parent->time_slice = task_timeslice(p);
1451 }
1452 if (p->sleep_avg < p->parent->sleep_avg)
1453 p->parent->sleep_avg = p->parent->sleep_avg /
1454 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1455 (EXIT_WEIGHT + 1);
1456 task_rq_unlock(rq, &flags);
1457}
1458
4866cde0
NP
1459/**
1460 * prepare_task_switch - prepare to switch tasks
1461 * @rq: the runqueue preparing to switch
1462 * @next: the task we are going to switch to.
1463 *
1464 * This is called with the rq lock held and interrupts off. It must
1465 * be paired with a subsequent finish_task_switch after the context
1466 * switch.
1467 *
1468 * prepare_task_switch sets up locking and calls architecture specific
1469 * hooks.
1470 */
1471static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1472{
1473 prepare_lock_switch(rq, next);
1474 prepare_arch_switch(next);
1475}
1476
1da177e4
LT
1477/**
1478 * finish_task_switch - clean up after a task-switch
1479 * @prev: the thread we just switched away from.
1480 *
4866cde0
NP
1481 * finish_task_switch must be called after the context switch, paired
1482 * with a prepare_task_switch call before the context switch.
1483 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1484 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1485 *
1486 * Note that we may have delayed dropping an mm in context_switch(). If
1487 * so, we finish that here outside of the runqueue lock. (Doing it
1488 * with the lock held can cause deadlocks; see schedule() for
1489 * details.)
1490 */
4866cde0 1491static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1492 __releases(rq->lock)
1493{
1da177e4
LT
1494 struct mm_struct *mm = rq->prev_mm;
1495 unsigned long prev_task_flags;
1496
1497 rq->prev_mm = NULL;
1498
1499 /*
1500 * A task struct has one reference for the use as "current".
1501 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1502 * calls schedule one last time. The schedule call will never return,
1503 * and the scheduled task must drop that reference.
1504 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1505 * still held, otherwise prev could be scheduled on another cpu, die
1506 * there before we look at prev->state, and then the reference would
1507 * be dropped twice.
1508 * Manfred Spraul <manfred@colorfullife.com>
1509 */
1510 prev_task_flags = prev->flags;
4866cde0
NP
1511 finish_arch_switch(prev);
1512 finish_lock_switch(rq, prev);
1da177e4
LT
1513 if (mm)
1514 mmdrop(mm);
1515 if (unlikely(prev_task_flags & PF_DEAD))
1516 put_task_struct(prev);
1517}
1518
1519/**
1520 * schedule_tail - first thing a freshly forked thread must call.
1521 * @prev: the thread we just switched away from.
1522 */
1523asmlinkage void schedule_tail(task_t *prev)
1524 __releases(rq->lock)
1525{
4866cde0
NP
1526 runqueue_t *rq = this_rq();
1527 finish_task_switch(rq, prev);
1528#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1529 /* In this case, finish_task_switch does not reenable preemption */
1530 preempt_enable();
1531#endif
1da177e4
LT
1532 if (current->set_child_tid)
1533 put_user(current->pid, current->set_child_tid);
1534}
1535
1536/*
1537 * context_switch - switch to the new MM and the new
1538 * thread's register state.
1539 */
1540static inline
1541task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1542{
1543 struct mm_struct *mm = next->mm;
1544 struct mm_struct *oldmm = prev->active_mm;
1545
1546 if (unlikely(!mm)) {
1547 next->active_mm = oldmm;
1548 atomic_inc(&oldmm->mm_count);
1549 enter_lazy_tlb(oldmm, next);
1550 } else
1551 switch_mm(oldmm, mm, next);
1552
1553 if (unlikely(!prev->mm)) {
1554 prev->active_mm = NULL;
1555 WARN_ON(rq->prev_mm);
1556 rq->prev_mm = oldmm;
1557 }
1558
1559 /* Here we just switch the register state and the stack. */
1560 switch_to(prev, next, prev);
1561
1562 return prev;
1563}
1564
1565/*
1566 * nr_running, nr_uninterruptible and nr_context_switches:
1567 *
1568 * externally visible scheduler statistics: current number of runnable
1569 * threads, current number of uninterruptible-sleeping threads, total
1570 * number of context switches performed since bootup.
1571 */
1572unsigned long nr_running(void)
1573{
1574 unsigned long i, sum = 0;
1575
1576 for_each_online_cpu(i)
1577 sum += cpu_rq(i)->nr_running;
1578
1579 return sum;
1580}
1581
1582unsigned long nr_uninterruptible(void)
1583{
1584 unsigned long i, sum = 0;
1585
1586 for_each_cpu(i)
1587 sum += cpu_rq(i)->nr_uninterruptible;
1588
1589 /*
1590 * Since we read the counters lockless, it might be slightly
1591 * inaccurate. Do not allow it to go below zero though:
1592 */
1593 if (unlikely((long)sum < 0))
1594 sum = 0;
1595
1596 return sum;
1597}
1598
1599unsigned long long nr_context_switches(void)
1600{
1601 unsigned long long i, sum = 0;
1602
1603 for_each_cpu(i)
1604 sum += cpu_rq(i)->nr_switches;
1605
1606 return sum;
1607}
1608
1609unsigned long nr_iowait(void)
1610{
1611 unsigned long i, sum = 0;
1612
1613 for_each_cpu(i)
1614 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1615
1616 return sum;
1617}
1618
1619#ifdef CONFIG_SMP
1620
1621/*
1622 * double_rq_lock - safely lock two runqueues
1623 *
1624 * Note this does not disable interrupts like task_rq_lock,
1625 * you need to do so manually before calling.
1626 */
1627static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1628 __acquires(rq1->lock)
1629 __acquires(rq2->lock)
1630{
1631 if (rq1 == rq2) {
1632 spin_lock(&rq1->lock);
1633 __acquire(rq2->lock); /* Fake it out ;) */
1634 } else {
1635 if (rq1 < rq2) {
1636 spin_lock(&rq1->lock);
1637 spin_lock(&rq2->lock);
1638 } else {
1639 spin_lock(&rq2->lock);
1640 spin_lock(&rq1->lock);
1641 }
1642 }
1643}
1644
1645/*
1646 * double_rq_unlock - safely unlock two runqueues
1647 *
1648 * Note this does not restore interrupts like task_rq_unlock,
1649 * you need to do so manually after calling.
1650 */
1651static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1652 __releases(rq1->lock)
1653 __releases(rq2->lock)
1654{
1655 spin_unlock(&rq1->lock);
1656 if (rq1 != rq2)
1657 spin_unlock(&rq2->lock);
1658 else
1659 __release(rq2->lock);
1660}
1661
1662/*
1663 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1664 */
1665static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1666 __releases(this_rq->lock)
1667 __acquires(busiest->lock)
1668 __acquires(this_rq->lock)
1669{
1670 if (unlikely(!spin_trylock(&busiest->lock))) {
1671 if (busiest < this_rq) {
1672 spin_unlock(&this_rq->lock);
1673 spin_lock(&busiest->lock);
1674 spin_lock(&this_rq->lock);
1675 } else
1676 spin_lock(&busiest->lock);
1677 }
1678}
1679
1da177e4
LT
1680/*
1681 * If dest_cpu is allowed for this process, migrate the task to it.
1682 * This is accomplished by forcing the cpu_allowed mask to only
1683 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1684 * the cpu_allowed mask is restored.
1685 */
1686static void sched_migrate_task(task_t *p, int dest_cpu)
1687{
1688 migration_req_t req;
1689 runqueue_t *rq;
1690 unsigned long flags;
1691
1692 rq = task_rq_lock(p, &flags);
1693 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1694 || unlikely(cpu_is_offline(dest_cpu)))
1695 goto out;
1696
1697 /* force the process onto the specified CPU */
1698 if (migrate_task(p, dest_cpu, &req)) {
1699 /* Need to wait for migration thread (might exit: take ref). */
1700 struct task_struct *mt = rq->migration_thread;
1701 get_task_struct(mt);
1702 task_rq_unlock(rq, &flags);
1703 wake_up_process(mt);
1704 put_task_struct(mt);
1705 wait_for_completion(&req.done);
1706 return;
1707 }
1708out:
1709 task_rq_unlock(rq, &flags);
1710}
1711
1712/*
1713 * sched_exec(): find the highest-level, exec-balance-capable
1714 * domain and try to migrate the task to the least loaded CPU.
1715 *
1716 * execve() is a valuable balancing opportunity, because at this point
1717 * the task has the smallest effective memory and cache footprint.
1718 */
1719void sched_exec(void)
1720{
1721 struct sched_domain *tmp, *sd = NULL;
1722 int new_cpu, this_cpu = get_cpu();
1723
1da177e4
LT
1724 for_each_domain(this_cpu, tmp)
1725 if (tmp->flags & SD_BALANCE_EXEC)
1726 sd = tmp;
1727
1728 if (sd) {
3dbd5342 1729 cpumask_t span;
147cbb4b 1730 struct sched_group *group;
3dbd5342 1731again:
68767a0a 1732 schedstat_inc(sd, sbe_cnt);
3dbd5342 1733 span = sd->span;
147cbb4b 1734 group = find_idlest_group(sd, current, this_cpu);
68767a0a
NP
1735 if (!group) {
1736 schedstat_inc(sd, sbe_balanced);
3dbd5342 1737 goto nextlevel;
68767a0a 1738 }
147cbb4b 1739 new_cpu = find_idlest_cpu(group, this_cpu);
68767a0a
NP
1740 if (new_cpu == -1 || new_cpu == this_cpu) {
1741 schedstat_inc(sd, sbe_balanced);
3dbd5342 1742 goto nextlevel;
1da177e4 1743 }
68767a0a
NP
1744
1745 schedstat_inc(sd, sbe_pushed);
1746 put_cpu();
1747 sched_migrate_task(current, new_cpu);
3dbd5342
NP
1748
1749 /* Now try balancing at a lower domain level */
1750 this_cpu = get_cpu();
1751nextlevel:
1752 sd = NULL;
1753 for_each_domain(this_cpu, tmp) {
1754 if (cpus_subset(span, tmp->span))
1755 break;
1756 if (tmp->flags & SD_BALANCE_EXEC)
1757 sd = tmp;
1758 }
1759
1760 if (sd)
1761 goto again;
1da177e4 1762 }
3dbd5342 1763
1da177e4
LT
1764 put_cpu();
1765}
1766
1767/*
1768 * pull_task - move a task from a remote runqueue to the local runqueue.
1769 * Both runqueues must be locked.
1770 */
1771static inline
1772void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1773 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1774{
1775 dequeue_task(p, src_array);
1776 src_rq->nr_running--;
1777 set_task_cpu(p, this_cpu);
1778 this_rq->nr_running++;
1779 enqueue_task(p, this_array);
1780 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1781 + this_rq->timestamp_last_tick;
1782 /*
1783 * Note that idle threads have a prio of MAX_PRIO, for this test
1784 * to be always true for them.
1785 */
1786 if (TASK_PREEMPTS_CURR(p, this_rq))
1787 resched_task(this_rq->curr);
1788}
1789
1790/*
1791 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1792 */
1793static inline
1794int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
81026794 1795 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1da177e4
LT
1796{
1797 /*
1798 * We do not migrate tasks that are:
1799 * 1) running (obviously), or
1800 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1801 * 3) are cache-hot on their current CPU.
1802 */
1da177e4
LT
1803 if (!cpu_isset(this_cpu, p->cpus_allowed))
1804 return 0;
81026794
NP
1805 *all_pinned = 0;
1806
1807 if (task_running(rq, p))
1808 return 0;
1da177e4
LT
1809
1810 /*
1811 * Aggressive migration if:
cafb20c1 1812 * 1) task is cache cold, or
1da177e4
LT
1813 * 2) too many balance attempts have failed.
1814 */
1815
cafb20c1 1816 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1817 return 1;
1818
1819 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1820 return 0;
1da177e4
LT
1821 return 1;
1822}
1823
1824/*
1825 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1826 * as part of a balancing operation within "domain". Returns the number of
1827 * tasks moved.
1828 *
1829 * Called with both runqueues locked.
1830 */
1831static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1832 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1833 enum idle_type idle, int *all_pinned)
1da177e4
LT
1834{
1835 prio_array_t *array, *dst_array;
1836 struct list_head *head, *curr;
81026794 1837 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1838 task_t *tmp;
1839
81026794 1840 if (max_nr_move == 0)
1da177e4
LT
1841 goto out;
1842
81026794
NP
1843 pinned = 1;
1844
1da177e4
LT
1845 /*
1846 * We first consider expired tasks. Those will likely not be
1847 * executed in the near future, and they are most likely to
1848 * be cache-cold, thus switching CPUs has the least effect
1849 * on them.
1850 */
1851 if (busiest->expired->nr_active) {
1852 array = busiest->expired;
1853 dst_array = this_rq->expired;
1854 } else {
1855 array = busiest->active;
1856 dst_array = this_rq->active;
1857 }
1858
1859new_array:
1860 /* Start searching at priority 0: */
1861 idx = 0;
1862skip_bitmap:
1863 if (!idx)
1864 idx = sched_find_first_bit(array->bitmap);
1865 else
1866 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1867 if (idx >= MAX_PRIO) {
1868 if (array == busiest->expired && busiest->active->nr_active) {
1869 array = busiest->active;
1870 dst_array = this_rq->active;
1871 goto new_array;
1872 }
1873 goto out;
1874 }
1875
1876 head = array->queue + idx;
1877 curr = head->prev;
1878skip_queue:
1879 tmp = list_entry(curr, task_t, run_list);
1880
1881 curr = curr->prev;
1882
81026794 1883 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1884 if (curr != head)
1885 goto skip_queue;
1886 idx++;
1887 goto skip_bitmap;
1888 }
1889
1890#ifdef CONFIG_SCHEDSTATS
1891 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1892 schedstat_inc(sd, lb_hot_gained[idle]);
1893#endif
1894
1895 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1896 pulled++;
1897
1898 /* We only want to steal up to the prescribed number of tasks. */
1899 if (pulled < max_nr_move) {
1900 if (curr != head)
1901 goto skip_queue;
1902 idx++;
1903 goto skip_bitmap;
1904 }
1905out:
1906 /*
1907 * Right now, this is the only place pull_task() is called,
1908 * so we can safely collect pull_task() stats here rather than
1909 * inside pull_task().
1910 */
1911 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1912
1913 if (all_pinned)
1914 *all_pinned = pinned;
1da177e4
LT
1915 return pulled;
1916}
1917
1918/*
1919 * find_busiest_group finds and returns the busiest CPU group within the
1920 * domain. It calculates and returns the number of tasks which should be
1921 * moved to restore balance via the imbalance parameter.
1922 */
1923static struct sched_group *
1924find_busiest_group(struct sched_domain *sd, int this_cpu,
1925 unsigned long *imbalance, enum idle_type idle)
1926{
1927 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1928 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
7897986b 1929 int load_idx;
1da177e4
LT
1930
1931 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1932 if (idle == NOT_IDLE)
1933 load_idx = sd->busy_idx;
1934 else if (idle == NEWLY_IDLE)
1935 load_idx = sd->newidle_idx;
1936 else
1937 load_idx = sd->idle_idx;
1da177e4
LT
1938
1939 do {
1940 unsigned long load;
1941 int local_group;
1942 int i;
1943
1944 local_group = cpu_isset(this_cpu, group->cpumask);
1945
1946 /* Tally up the load of all CPUs in the group */
1947 avg_load = 0;
1948
1949 for_each_cpu_mask(i, group->cpumask) {
1950 /* Bias balancing toward cpus of our domain */
1951 if (local_group)
7897986b 1952 load = target_load(i, load_idx);
1da177e4 1953 else
7897986b 1954 load = source_load(i, load_idx);
1da177e4
LT
1955
1956 avg_load += load;
1957 }
1958
1959 total_load += avg_load;
1960 total_pwr += group->cpu_power;
1961
1962 /* Adjust by relative CPU power of the group */
1963 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1964
1965 if (local_group) {
1966 this_load = avg_load;
1967 this = group;
1da177e4
LT
1968 } else if (avg_load > max_load) {
1969 max_load = avg_load;
1970 busiest = group;
1971 }
1da177e4
LT
1972 group = group->next;
1973 } while (group != sd->groups);
1974
1975 if (!busiest || this_load >= max_load)
1976 goto out_balanced;
1977
1978 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1979
1980 if (this_load >= avg_load ||
1981 100*max_load <= sd->imbalance_pct*this_load)
1982 goto out_balanced;
1983
1984 /*
1985 * We're trying to get all the cpus to the average_load, so we don't
1986 * want to push ourselves above the average load, nor do we wish to
1987 * reduce the max loaded cpu below the average load, as either of these
1988 * actions would just result in more rebalancing later, and ping-pong
1989 * tasks around. Thus we look for the minimum possible imbalance.
1990 * Negative imbalances (*we* are more loaded than anyone else) will
1991 * be counted as no imbalance for these purposes -- we can't fix that
1992 * by pulling tasks to us. Be careful of negative numbers as they'll
1993 * appear as very large values with unsigned longs.
1994 */
1995 /* How much load to actually move to equalise the imbalance */
1996 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1997 (avg_load - this_load) * this->cpu_power)
1998 / SCHED_LOAD_SCALE;
1999
2000 if (*imbalance < SCHED_LOAD_SCALE) {
2001 unsigned long pwr_now = 0, pwr_move = 0;
2002 unsigned long tmp;
2003
2004 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2005 *imbalance = 1;
2006 return busiest;
2007 }
2008
2009 /*
2010 * OK, we don't have enough imbalance to justify moving tasks,
2011 * however we may be able to increase total CPU power used by
2012 * moving them.
2013 */
2014
2015 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2016 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2017 pwr_now /= SCHED_LOAD_SCALE;
2018
2019 /* Amount of load we'd subtract */
2020 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2021 if (max_load > tmp)
2022 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2023 max_load - tmp);
2024
2025 /* Amount of load we'd add */
2026 if (max_load*busiest->cpu_power <
2027 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2028 tmp = max_load*busiest->cpu_power/this->cpu_power;
2029 else
2030 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2031 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2032 pwr_move /= SCHED_LOAD_SCALE;
2033
2034 /* Move if we gain throughput */
2035 if (pwr_move <= pwr_now)
2036 goto out_balanced;
2037
2038 *imbalance = 1;
2039 return busiest;
2040 }
2041
2042 /* Get rid of the scaling factor, rounding down as we divide */
2043 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2044 return busiest;
2045
2046out_balanced:
1da177e4
LT
2047
2048 *imbalance = 0;
2049 return NULL;
2050}
2051
2052/*
2053 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2054 */
2055static runqueue_t *find_busiest_queue(struct sched_group *group)
2056{
2057 unsigned long load, max_load = 0;
2058 runqueue_t *busiest = NULL;
2059 int i;
2060
2061 for_each_cpu_mask(i, group->cpumask) {
7897986b 2062 load = source_load(i, 0);
1da177e4
LT
2063
2064 if (load > max_load) {
2065 max_load = load;
2066 busiest = cpu_rq(i);
2067 }
2068 }
2069
2070 return busiest;
2071}
2072
2073/*
2074 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2075 * tasks if there is an imbalance.
2076 *
2077 * Called with this_rq unlocked.
2078 */
2079static int load_balance(int this_cpu, runqueue_t *this_rq,
2080 struct sched_domain *sd, enum idle_type idle)
2081{
2082 struct sched_group *group;
2083 runqueue_t *busiest;
2084 unsigned long imbalance;
81026794
NP
2085 int nr_moved, all_pinned;
2086 int active_balance = 0;
1da177e4
LT
2087
2088 spin_lock(&this_rq->lock);
2089 schedstat_inc(sd, lb_cnt[idle]);
2090
2091 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2092 if (!group) {
2093 schedstat_inc(sd, lb_nobusyg[idle]);
2094 goto out_balanced;
2095 }
2096
2097 busiest = find_busiest_queue(group);
2098 if (!busiest) {
2099 schedstat_inc(sd, lb_nobusyq[idle]);
2100 goto out_balanced;
2101 }
2102
db935dbd 2103 BUG_ON(busiest == this_rq);
1da177e4
LT
2104
2105 schedstat_add(sd, lb_imbalance[idle], imbalance);
2106
2107 nr_moved = 0;
2108 if (busiest->nr_running > 1) {
2109 /*
2110 * Attempt to move tasks. If find_busiest_group has found
2111 * an imbalance but busiest->nr_running <= 1, the group is
2112 * still unbalanced. nr_moved simply stays zero, so it is
2113 * correctly treated as an imbalance.
2114 */
2115 double_lock_balance(this_rq, busiest);
2116 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794
NP
2117 imbalance, sd, idle,
2118 &all_pinned);
1da177e4 2119 spin_unlock(&busiest->lock);
81026794
NP
2120
2121 /* All tasks on this runqueue were pinned by CPU affinity */
2122 if (unlikely(all_pinned))
2123 goto out_balanced;
1da177e4 2124 }
81026794 2125
1da177e4
LT
2126 spin_unlock(&this_rq->lock);
2127
2128 if (!nr_moved) {
2129 schedstat_inc(sd, lb_failed[idle]);
2130 sd->nr_balance_failed++;
2131
2132 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2133
2134 spin_lock(&busiest->lock);
2135 if (!busiest->active_balance) {
2136 busiest->active_balance = 1;
2137 busiest->push_cpu = this_cpu;
81026794 2138 active_balance = 1;
1da177e4
LT
2139 }
2140 spin_unlock(&busiest->lock);
81026794 2141 if (active_balance)
1da177e4
LT
2142 wake_up_process(busiest->migration_thread);
2143
2144 /*
2145 * We've kicked active balancing, reset the failure
2146 * counter.
2147 */
39507451 2148 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2149 }
81026794 2150 } else
1da177e4
LT
2151 sd->nr_balance_failed = 0;
2152
81026794 2153 if (likely(!active_balance)) {
1da177e4
LT
2154 /* We were unbalanced, so reset the balancing interval */
2155 sd->balance_interval = sd->min_interval;
81026794
NP
2156 } else {
2157 /*
2158 * If we've begun active balancing, start to back off. This
2159 * case may not be covered by the all_pinned logic if there
2160 * is only 1 task on the busy runqueue (because we don't call
2161 * move_tasks).
2162 */
2163 if (sd->balance_interval < sd->max_interval)
2164 sd->balance_interval *= 2;
1da177e4
LT
2165 }
2166
2167 return nr_moved;
2168
2169out_balanced:
2170 spin_unlock(&this_rq->lock);
2171
2172 schedstat_inc(sd, lb_balanced[idle]);
2173
16cfb1c0 2174 sd->nr_balance_failed = 0;
1da177e4
LT
2175 /* tune up the balancing interval */
2176 if (sd->balance_interval < sd->max_interval)
2177 sd->balance_interval *= 2;
2178
2179 return 0;
2180}
2181
2182/*
2183 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2184 * tasks if there is an imbalance.
2185 *
2186 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2187 * this_rq is locked.
2188 */
2189static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2190 struct sched_domain *sd)
2191{
2192 struct sched_group *group;
2193 runqueue_t *busiest = NULL;
2194 unsigned long imbalance;
2195 int nr_moved = 0;
2196
2197 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2198 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2199 if (!group) {
1da177e4 2200 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2201 goto out_balanced;
1da177e4
LT
2202 }
2203
2204 busiest = find_busiest_queue(group);
db935dbd 2205 if (!busiest) {
1da177e4 2206 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2207 goto out_balanced;
1da177e4
LT
2208 }
2209
db935dbd
NP
2210 BUG_ON(busiest == this_rq);
2211
1da177e4
LT
2212 /* Attempt to move tasks */
2213 double_lock_balance(this_rq, busiest);
2214
2215 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2216 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2217 imbalance, sd, NEWLY_IDLE, NULL);
1da177e4
LT
2218 if (!nr_moved)
2219 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
16cfb1c0
NP
2220 else
2221 sd->nr_balance_failed = 0;
1da177e4
LT
2222
2223 spin_unlock(&busiest->lock);
1da177e4 2224 return nr_moved;
16cfb1c0
NP
2225
2226out_balanced:
2227 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2228 sd->nr_balance_failed = 0;
2229 return 0;
1da177e4
LT
2230}
2231
2232/*
2233 * idle_balance is called by schedule() if this_cpu is about to become
2234 * idle. Attempts to pull tasks from other CPUs.
2235 */
2236static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2237{
2238 struct sched_domain *sd;
2239
2240 for_each_domain(this_cpu, sd) {
2241 if (sd->flags & SD_BALANCE_NEWIDLE) {
2242 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2243 /* We've pulled tasks over so stop searching */
2244 break;
2245 }
2246 }
2247 }
2248}
2249
2250/*
2251 * active_load_balance is run by migration threads. It pushes running tasks
2252 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2253 * running on each physical CPU where possible, and avoids physical /
2254 * logical imbalances.
2255 *
2256 * Called with busiest_rq locked.
2257 */
2258static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2259{
2260 struct sched_domain *sd;
1da177e4 2261 runqueue_t *target_rq;
39507451
NP
2262 int target_cpu = busiest_rq->push_cpu;
2263
2264 if (busiest_rq->nr_running <= 1)
2265 /* no task to move */
2266 return;
2267
2268 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2269
2270 /*
39507451
NP
2271 * This condition is "impossible", if it occurs
2272 * we need to fix it. Originally reported by
2273 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2274 */
39507451 2275 BUG_ON(busiest_rq == target_rq);
1da177e4 2276
39507451
NP
2277 /* move a task from busiest_rq to target_rq */
2278 double_lock_balance(busiest_rq, target_rq);
2279
2280 /* Search for an sd spanning us and the target CPU. */
2281 for_each_domain(target_cpu, sd)
2282 if ((sd->flags & SD_LOAD_BALANCE) &&
2283 cpu_isset(busiest_cpu, sd->span))
2284 break;
2285
2286 if (unlikely(sd == NULL))
2287 goto out;
2288
2289 schedstat_inc(sd, alb_cnt);
2290
2291 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2292 schedstat_inc(sd, alb_pushed);
2293 else
2294 schedstat_inc(sd, alb_failed);
2295out:
2296 spin_unlock(&target_rq->lock);
1da177e4
LT
2297}
2298
2299/*
2300 * rebalance_tick will get called every timer tick, on every CPU.
2301 *
2302 * It checks each scheduling domain to see if it is due to be balanced,
2303 * and initiates a balancing operation if so.
2304 *
2305 * Balancing parameters are set up in arch_init_sched_domains.
2306 */
2307
2308/* Don't have all balancing operations going off at once */
2309#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2310
2311static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2312 enum idle_type idle)
2313{
2314 unsigned long old_load, this_load;
2315 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2316 struct sched_domain *sd;
7897986b 2317 int i;
1da177e4 2318
1da177e4 2319 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2320 /* Update our load */
2321 for (i = 0; i < 3; i++) {
2322 unsigned long new_load = this_load;
2323 int scale = 1 << i;
2324 old_load = this_rq->cpu_load[i];
2325 /*
2326 * Round up the averaging division if load is increasing. This
2327 * prevents us from getting stuck on 9 if the load is 10, for
2328 * example.
2329 */
2330 if (new_load > old_load)
2331 new_load += scale-1;
2332 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2333 }
1da177e4
LT
2334
2335 for_each_domain(this_cpu, sd) {
2336 unsigned long interval;
2337
2338 if (!(sd->flags & SD_LOAD_BALANCE))
2339 continue;
2340
2341 interval = sd->balance_interval;
2342 if (idle != SCHED_IDLE)
2343 interval *= sd->busy_factor;
2344
2345 /* scale ms to jiffies */
2346 interval = msecs_to_jiffies(interval);
2347 if (unlikely(!interval))
2348 interval = 1;
2349
2350 if (j - sd->last_balance >= interval) {
2351 if (load_balance(this_cpu, this_rq, sd, idle)) {
2352 /* We've pulled tasks over so no longer idle */
2353 idle = NOT_IDLE;
2354 }
2355 sd->last_balance += interval;
2356 }
2357 }
2358}
2359#else
2360/*
2361 * on UP we do not need to balance between CPUs:
2362 */
2363static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2364{
2365}
2366static inline void idle_balance(int cpu, runqueue_t *rq)
2367{
2368}
2369#endif
2370
2371static inline int wake_priority_sleeper(runqueue_t *rq)
2372{
2373 int ret = 0;
2374#ifdef CONFIG_SCHED_SMT
2375 spin_lock(&rq->lock);
2376 /*
2377 * If an SMT sibling task has been put to sleep for priority
2378 * reasons reschedule the idle task to see if it can now run.
2379 */
2380 if (rq->nr_running) {
2381 resched_task(rq->idle);
2382 ret = 1;
2383 }
2384 spin_unlock(&rq->lock);
2385#endif
2386 return ret;
2387}
2388
2389DEFINE_PER_CPU(struct kernel_stat, kstat);
2390
2391EXPORT_PER_CPU_SYMBOL(kstat);
2392
2393/*
2394 * This is called on clock ticks and on context switches.
2395 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2396 */
2397static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2398 unsigned long long now)
2399{
2400 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2401 p->sched_time += now - last;
2402}
2403
2404/*
2405 * Return current->sched_time plus any more ns on the sched_clock
2406 * that have not yet been banked.
2407 */
2408unsigned long long current_sched_time(const task_t *tsk)
2409{
2410 unsigned long long ns;
2411 unsigned long flags;
2412 local_irq_save(flags);
2413 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2414 ns = tsk->sched_time + (sched_clock() - ns);
2415 local_irq_restore(flags);
2416 return ns;
2417}
2418
2419/*
2420 * We place interactive tasks back into the active array, if possible.
2421 *
2422 * To guarantee that this does not starve expired tasks we ignore the
2423 * interactivity of a task if the first expired task had to wait more
2424 * than a 'reasonable' amount of time. This deadline timeout is
2425 * load-dependent, as the frequency of array switched decreases with
2426 * increasing number of running tasks. We also ignore the interactivity
2427 * if a better static_prio task has expired:
2428 */
2429#define EXPIRED_STARVING(rq) \
2430 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2431 (jiffies - (rq)->expired_timestamp >= \
2432 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2433 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2434
2435/*
2436 * Account user cpu time to a process.
2437 * @p: the process that the cpu time gets accounted to
2438 * @hardirq_offset: the offset to subtract from hardirq_count()
2439 * @cputime: the cpu time spent in user space since the last update
2440 */
2441void account_user_time(struct task_struct *p, cputime_t cputime)
2442{
2443 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2444 cputime64_t tmp;
2445
2446 p->utime = cputime_add(p->utime, cputime);
2447
2448 /* Add user time to cpustat. */
2449 tmp = cputime_to_cputime64(cputime);
2450 if (TASK_NICE(p) > 0)
2451 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2452 else
2453 cpustat->user = cputime64_add(cpustat->user, tmp);
2454}
2455
2456/*
2457 * Account system cpu time to a process.
2458 * @p: the process that the cpu time gets accounted to
2459 * @hardirq_offset: the offset to subtract from hardirq_count()
2460 * @cputime: the cpu time spent in kernel space since the last update
2461 */
2462void account_system_time(struct task_struct *p, int hardirq_offset,
2463 cputime_t cputime)
2464{
2465 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2466 runqueue_t *rq = this_rq();
2467 cputime64_t tmp;
2468
2469 p->stime = cputime_add(p->stime, cputime);
2470
2471 /* Add system time to cpustat. */
2472 tmp = cputime_to_cputime64(cputime);
2473 if (hardirq_count() - hardirq_offset)
2474 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2475 else if (softirq_count())
2476 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2477 else if (p != rq->idle)
2478 cpustat->system = cputime64_add(cpustat->system, tmp);
2479 else if (atomic_read(&rq->nr_iowait) > 0)
2480 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2481 else
2482 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2483 /* Account for system time used */
2484 acct_update_integrals(p);
2485 /* Update rss highwater mark */
2486 update_mem_hiwater(p);
2487}
2488
2489/*
2490 * Account for involuntary wait time.
2491 * @p: the process from which the cpu time has been stolen
2492 * @steal: the cpu time spent in involuntary wait
2493 */
2494void account_steal_time(struct task_struct *p, cputime_t steal)
2495{
2496 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2497 cputime64_t tmp = cputime_to_cputime64(steal);
2498 runqueue_t *rq = this_rq();
2499
2500 if (p == rq->idle) {
2501 p->stime = cputime_add(p->stime, steal);
2502 if (atomic_read(&rq->nr_iowait) > 0)
2503 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2504 else
2505 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2506 } else
2507 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2508}
2509
2510/*
2511 * This function gets called by the timer code, with HZ frequency.
2512 * We call it with interrupts disabled.
2513 *
2514 * It also gets called by the fork code, when changing the parent's
2515 * timeslices.
2516 */
2517void scheduler_tick(void)
2518{
2519 int cpu = smp_processor_id();
2520 runqueue_t *rq = this_rq();
2521 task_t *p = current;
2522 unsigned long long now = sched_clock();
2523
2524 update_cpu_clock(p, rq, now);
2525
2526 rq->timestamp_last_tick = now;
2527
2528 if (p == rq->idle) {
2529 if (wake_priority_sleeper(rq))
2530 goto out;
2531 rebalance_tick(cpu, rq, SCHED_IDLE);
2532 return;
2533 }
2534
2535 /* Task might have expired already, but not scheduled off yet */
2536 if (p->array != rq->active) {
2537 set_tsk_need_resched(p);
2538 goto out;
2539 }
2540 spin_lock(&rq->lock);
2541 /*
2542 * The task was running during this tick - update the
2543 * time slice counter. Note: we do not update a thread's
2544 * priority until it either goes to sleep or uses up its
2545 * timeslice. This makes it possible for interactive tasks
2546 * to use up their timeslices at their highest priority levels.
2547 */
2548 if (rt_task(p)) {
2549 /*
2550 * RR tasks need a special form of timeslice management.
2551 * FIFO tasks have no timeslices.
2552 */
2553 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2554 p->time_slice = task_timeslice(p);
2555 p->first_time_slice = 0;
2556 set_tsk_need_resched(p);
2557
2558 /* put it at the end of the queue: */
2559 requeue_task(p, rq->active);
2560 }
2561 goto out_unlock;
2562 }
2563 if (!--p->time_slice) {
2564 dequeue_task(p, rq->active);
2565 set_tsk_need_resched(p);
2566 p->prio = effective_prio(p);
2567 p->time_slice = task_timeslice(p);
2568 p->first_time_slice = 0;
2569
2570 if (!rq->expired_timestamp)
2571 rq->expired_timestamp = jiffies;
2572 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2573 enqueue_task(p, rq->expired);
2574 if (p->static_prio < rq->best_expired_prio)
2575 rq->best_expired_prio = p->static_prio;
2576 } else
2577 enqueue_task(p, rq->active);
2578 } else {
2579 /*
2580 * Prevent a too long timeslice allowing a task to monopolize
2581 * the CPU. We do this by splitting up the timeslice into
2582 * smaller pieces.
2583 *
2584 * Note: this does not mean the task's timeslices expire or
2585 * get lost in any way, they just might be preempted by
2586 * another task of equal priority. (one with higher
2587 * priority would have preempted this task already.) We
2588 * requeue this task to the end of the list on this priority
2589 * level, which is in essence a round-robin of tasks with
2590 * equal priority.
2591 *
2592 * This only applies to tasks in the interactive
2593 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2594 */
2595 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2596 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2597 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2598 (p->array == rq->active)) {
2599
2600 requeue_task(p, rq->active);
2601 set_tsk_need_resched(p);
2602 }
2603 }
2604out_unlock:
2605 spin_unlock(&rq->lock);
2606out:
2607 rebalance_tick(cpu, rq, NOT_IDLE);
2608}
2609
2610#ifdef CONFIG_SCHED_SMT
2611static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2612{
41c7ce9a 2613 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2614 cpumask_t sibling_map;
2615 int i;
2616
41c7ce9a
NP
2617 for_each_domain(this_cpu, tmp)
2618 if (tmp->flags & SD_SHARE_CPUPOWER)
2619 sd = tmp;
2620
2621 if (!sd)
1da177e4
LT
2622 return;
2623
2624 /*
2625 * Unlock the current runqueue because we have to lock in
2626 * CPU order to avoid deadlocks. Caller knows that we might
2627 * unlock. We keep IRQs disabled.
2628 */
2629 spin_unlock(&this_rq->lock);
2630
2631 sibling_map = sd->span;
2632
2633 for_each_cpu_mask(i, sibling_map)
2634 spin_lock(&cpu_rq(i)->lock);
2635 /*
2636 * We clear this CPU from the mask. This both simplifies the
2637 * inner loop and keps this_rq locked when we exit:
2638 */
2639 cpu_clear(this_cpu, sibling_map);
2640
2641 for_each_cpu_mask(i, sibling_map) {
2642 runqueue_t *smt_rq = cpu_rq(i);
2643
2644 /*
2645 * If an SMT sibling task is sleeping due to priority
2646 * reasons wake it up now.
2647 */
2648 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2649 resched_task(smt_rq->idle);
2650 }
2651
2652 for_each_cpu_mask(i, sibling_map)
2653 spin_unlock(&cpu_rq(i)->lock);
2654 /*
2655 * We exit with this_cpu's rq still held and IRQs
2656 * still disabled:
2657 */
2658}
2659
2660static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2661{
41c7ce9a 2662 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2663 cpumask_t sibling_map;
2664 prio_array_t *array;
2665 int ret = 0, i;
2666 task_t *p;
2667
41c7ce9a
NP
2668 for_each_domain(this_cpu, tmp)
2669 if (tmp->flags & SD_SHARE_CPUPOWER)
2670 sd = tmp;
2671
2672 if (!sd)
1da177e4
LT
2673 return 0;
2674
2675 /*
2676 * The same locking rules and details apply as for
2677 * wake_sleeping_dependent():
2678 */
2679 spin_unlock(&this_rq->lock);
2680 sibling_map = sd->span;
2681 for_each_cpu_mask(i, sibling_map)
2682 spin_lock(&cpu_rq(i)->lock);
2683 cpu_clear(this_cpu, sibling_map);
2684
2685 /*
2686 * Establish next task to be run - it might have gone away because
2687 * we released the runqueue lock above:
2688 */
2689 if (!this_rq->nr_running)
2690 goto out_unlock;
2691 array = this_rq->active;
2692 if (!array->nr_active)
2693 array = this_rq->expired;
2694 BUG_ON(!array->nr_active);
2695
2696 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2697 task_t, run_list);
2698
2699 for_each_cpu_mask(i, sibling_map) {
2700 runqueue_t *smt_rq = cpu_rq(i);
2701 task_t *smt_curr = smt_rq->curr;
2702
2703 /*
2704 * If a user task with lower static priority than the
2705 * running task on the SMT sibling is trying to schedule,
2706 * delay it till there is proportionately less timeslice
2707 * left of the sibling task to prevent a lower priority
2708 * task from using an unfair proportion of the
2709 * physical cpu's resources. -ck
2710 */
2711 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2712 task_timeslice(p) || rt_task(smt_curr)) &&
2713 p->mm && smt_curr->mm && !rt_task(p))
2714 ret = 1;
2715
2716 /*
2717 * Reschedule a lower priority task on the SMT sibling,
2718 * or wake it up if it has been put to sleep for priority
2719 * reasons.
2720 */
2721 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2722 task_timeslice(smt_curr) || rt_task(p)) &&
2723 smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2724 (smt_curr == smt_rq->idle && smt_rq->nr_running))
2725 resched_task(smt_curr);
2726 }
2727out_unlock:
2728 for_each_cpu_mask(i, sibling_map)
2729 spin_unlock(&cpu_rq(i)->lock);
2730 return ret;
2731}
2732#else
2733static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2734{
2735}
2736
2737static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2738{
2739 return 0;
2740}
2741#endif
2742
2743#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2744
2745void fastcall add_preempt_count(int val)
2746{
2747 /*
2748 * Underflow?
2749 */
be5b4fbd 2750 BUG_ON((preempt_count() < 0));
1da177e4
LT
2751 preempt_count() += val;
2752 /*
2753 * Spinlock count overflowing soon?
2754 */
2755 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2756}
2757EXPORT_SYMBOL(add_preempt_count);
2758
2759void fastcall sub_preempt_count(int val)
2760{
2761 /*
2762 * Underflow?
2763 */
2764 BUG_ON(val > preempt_count());
2765 /*
2766 * Is the spinlock portion underflowing?
2767 */
2768 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2769 preempt_count() -= val;
2770}
2771EXPORT_SYMBOL(sub_preempt_count);
2772
2773#endif
2774
2775/*
2776 * schedule() is the main scheduler function.
2777 */
2778asmlinkage void __sched schedule(void)
2779{
2780 long *switch_count;
2781 task_t *prev, *next;
2782 runqueue_t *rq;
2783 prio_array_t *array;
2784 struct list_head *queue;
2785 unsigned long long now;
2786 unsigned long run_time;
2787 int cpu, idx;
2788
2789 /*
2790 * Test if we are atomic. Since do_exit() needs to call into
2791 * schedule() atomically, we ignore that path for now.
2792 * Otherwise, whine if we are scheduling when we should not be.
2793 */
2794 if (likely(!current->exit_state)) {
2795 if (unlikely(in_atomic())) {
2796 printk(KERN_ERR "scheduling while atomic: "
2797 "%s/0x%08x/%d\n",
2798 current->comm, preempt_count(), current->pid);
2799 dump_stack();
2800 }
2801 }
2802 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2803
2804need_resched:
2805 preempt_disable();
2806 prev = current;
2807 release_kernel_lock(prev);
2808need_resched_nonpreemptible:
2809 rq = this_rq();
2810
2811 /*
2812 * The idle thread is not allowed to schedule!
2813 * Remove this check after it has been exercised a bit.
2814 */
2815 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2816 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2817 dump_stack();
2818 }
2819
2820 schedstat_inc(rq, sched_cnt);
2821 now = sched_clock();
238628ed 2822 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2823 run_time = now - prev->timestamp;
238628ed 2824 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2825 run_time = 0;
2826 } else
2827 run_time = NS_MAX_SLEEP_AVG;
2828
2829 /*
2830 * Tasks charged proportionately less run_time at high sleep_avg to
2831 * delay them losing their interactive status
2832 */
2833 run_time /= (CURRENT_BONUS(prev) ? : 1);
2834
2835 spin_lock_irq(&rq->lock);
2836
2837 if (unlikely(prev->flags & PF_DEAD))
2838 prev->state = EXIT_DEAD;
2839
2840 switch_count = &prev->nivcsw;
2841 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2842 switch_count = &prev->nvcsw;
2843 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2844 unlikely(signal_pending(prev))))
2845 prev->state = TASK_RUNNING;
2846 else {
2847 if (prev->state == TASK_UNINTERRUPTIBLE)
2848 rq->nr_uninterruptible++;
2849 deactivate_task(prev, rq);
2850 }
2851 }
2852
2853 cpu = smp_processor_id();
2854 if (unlikely(!rq->nr_running)) {
2855go_idle:
2856 idle_balance(cpu, rq);
2857 if (!rq->nr_running) {
2858 next = rq->idle;
2859 rq->expired_timestamp = 0;
2860 wake_sleeping_dependent(cpu, rq);
2861 /*
2862 * wake_sleeping_dependent() might have released
2863 * the runqueue, so break out if we got new
2864 * tasks meanwhile:
2865 */
2866 if (!rq->nr_running)
2867 goto switch_tasks;
2868 }
2869 } else {
2870 if (dependent_sleeper(cpu, rq)) {
2871 next = rq->idle;
2872 goto switch_tasks;
2873 }
2874 /*
2875 * dependent_sleeper() releases and reacquires the runqueue
2876 * lock, hence go into the idle loop if the rq went
2877 * empty meanwhile:
2878 */
2879 if (unlikely(!rq->nr_running))
2880 goto go_idle;
2881 }
2882
2883 array = rq->active;
2884 if (unlikely(!array->nr_active)) {
2885 /*
2886 * Switch the active and expired arrays.
2887 */
2888 schedstat_inc(rq, sched_switch);
2889 rq->active = rq->expired;
2890 rq->expired = array;
2891 array = rq->active;
2892 rq->expired_timestamp = 0;
2893 rq->best_expired_prio = MAX_PRIO;
2894 }
2895
2896 idx = sched_find_first_bit(array->bitmap);
2897 queue = array->queue + idx;
2898 next = list_entry(queue->next, task_t, run_list);
2899
2900 if (!rt_task(next) && next->activated > 0) {
2901 unsigned long long delta = now - next->timestamp;
238628ed 2902 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
2903 delta = 0;
2904
2905 if (next->activated == 1)
2906 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2907
2908 array = next->array;
2909 dequeue_task(next, array);
2910 recalc_task_prio(next, next->timestamp + delta);
2911 enqueue_task(next, array);
2912 }
2913 next->activated = 0;
2914switch_tasks:
2915 if (next == rq->idle)
2916 schedstat_inc(rq, sched_goidle);
2917 prefetch(next);
2918 clear_tsk_need_resched(prev);
2919 rcu_qsctr_inc(task_cpu(prev));
2920
2921 update_cpu_clock(prev, rq, now);
2922
2923 prev->sleep_avg -= run_time;
2924 if ((long)prev->sleep_avg <= 0)
2925 prev->sleep_avg = 0;
2926 prev->timestamp = prev->last_ran = now;
2927
2928 sched_info_switch(prev, next);
2929 if (likely(prev != next)) {
2930 next->timestamp = now;
2931 rq->nr_switches++;
2932 rq->curr = next;
2933 ++*switch_count;
2934
4866cde0 2935 prepare_task_switch(rq, next);
1da177e4
LT
2936 prev = context_switch(rq, prev, next);
2937 barrier();
4866cde0
NP
2938 /*
2939 * this_rq must be evaluated again because prev may have moved
2940 * CPUs since it called schedule(), thus the 'rq' on its stack
2941 * frame will be invalid.
2942 */
2943 finish_task_switch(this_rq(), prev);
1da177e4
LT
2944 } else
2945 spin_unlock_irq(&rq->lock);
2946
2947 prev = current;
2948 if (unlikely(reacquire_kernel_lock(prev) < 0))
2949 goto need_resched_nonpreemptible;
2950 preempt_enable_no_resched();
2951 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2952 goto need_resched;
2953}
2954
2955EXPORT_SYMBOL(schedule);
2956
2957#ifdef CONFIG_PREEMPT
2958/*
2959 * this is is the entry point to schedule() from in-kernel preemption
2960 * off of preempt_enable. Kernel preemptions off return from interrupt
2961 * occur there and call schedule directly.
2962 */
2963asmlinkage void __sched preempt_schedule(void)
2964{
2965 struct thread_info *ti = current_thread_info();
2966#ifdef CONFIG_PREEMPT_BKL
2967 struct task_struct *task = current;
2968 int saved_lock_depth;
2969#endif
2970 /*
2971 * If there is a non-zero preempt_count or interrupts are disabled,
2972 * we do not want to preempt the current task. Just return..
2973 */
2974 if (unlikely(ti->preempt_count || irqs_disabled()))
2975 return;
2976
2977need_resched:
2978 add_preempt_count(PREEMPT_ACTIVE);
2979 /*
2980 * We keep the big kernel semaphore locked, but we
2981 * clear ->lock_depth so that schedule() doesnt
2982 * auto-release the semaphore:
2983 */
2984#ifdef CONFIG_PREEMPT_BKL
2985 saved_lock_depth = task->lock_depth;
2986 task->lock_depth = -1;
2987#endif
2988 schedule();
2989#ifdef CONFIG_PREEMPT_BKL
2990 task->lock_depth = saved_lock_depth;
2991#endif
2992 sub_preempt_count(PREEMPT_ACTIVE);
2993
2994 /* we could miss a preemption opportunity between schedule and now */
2995 barrier();
2996 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2997 goto need_resched;
2998}
2999
3000EXPORT_SYMBOL(preempt_schedule);
3001
3002/*
3003 * this is is the entry point to schedule() from kernel preemption
3004 * off of irq context.
3005 * Note, that this is called and return with irqs disabled. This will
3006 * protect us against recursive calling from irq.
3007 */
3008asmlinkage void __sched preempt_schedule_irq(void)
3009{
3010 struct thread_info *ti = current_thread_info();
3011#ifdef CONFIG_PREEMPT_BKL
3012 struct task_struct *task = current;
3013 int saved_lock_depth;
3014#endif
3015 /* Catch callers which need to be fixed*/
3016 BUG_ON(ti->preempt_count || !irqs_disabled());
3017
3018need_resched:
3019 add_preempt_count(PREEMPT_ACTIVE);
3020 /*
3021 * We keep the big kernel semaphore locked, but we
3022 * clear ->lock_depth so that schedule() doesnt
3023 * auto-release the semaphore:
3024 */
3025#ifdef CONFIG_PREEMPT_BKL
3026 saved_lock_depth = task->lock_depth;
3027 task->lock_depth = -1;
3028#endif
3029 local_irq_enable();
3030 schedule();
3031 local_irq_disable();
3032#ifdef CONFIG_PREEMPT_BKL
3033 task->lock_depth = saved_lock_depth;
3034#endif
3035 sub_preempt_count(PREEMPT_ACTIVE);
3036
3037 /* we could miss a preemption opportunity between schedule and now */
3038 barrier();
3039 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3040 goto need_resched;
3041}
3042
3043#endif /* CONFIG_PREEMPT */
3044
3045int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3046{
c43dc2fd 3047 task_t *p = curr->private;
1da177e4
LT
3048 return try_to_wake_up(p, mode, sync);
3049}
3050
3051EXPORT_SYMBOL(default_wake_function);
3052
3053/*
3054 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3055 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3056 * number) then we wake all the non-exclusive tasks and one exclusive task.
3057 *
3058 * There are circumstances in which we can try to wake a task which has already
3059 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3060 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3061 */
3062static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3063 int nr_exclusive, int sync, void *key)
3064{
3065 struct list_head *tmp, *next;
3066
3067 list_for_each_safe(tmp, next, &q->task_list) {
3068 wait_queue_t *curr;
3069 unsigned flags;
3070 curr = list_entry(tmp, wait_queue_t, task_list);
3071 flags = curr->flags;
3072 if (curr->func(curr, mode, sync, key) &&
3073 (flags & WQ_FLAG_EXCLUSIVE) &&
3074 !--nr_exclusive)
3075 break;
3076 }
3077}
3078
3079/**
3080 * __wake_up - wake up threads blocked on a waitqueue.
3081 * @q: the waitqueue
3082 * @mode: which threads
3083 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3084 * @key: is directly passed to the wakeup function
1da177e4
LT
3085 */
3086void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3087 int nr_exclusive, void *key)
3088{
3089 unsigned long flags;
3090
3091 spin_lock_irqsave(&q->lock, flags);
3092 __wake_up_common(q, mode, nr_exclusive, 0, key);
3093 spin_unlock_irqrestore(&q->lock, flags);
3094}
3095
3096EXPORT_SYMBOL(__wake_up);
3097
3098/*
3099 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3100 */
3101void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3102{
3103 __wake_up_common(q, mode, 1, 0, NULL);
3104}
3105
3106/**
67be2dd1 3107 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3108 * @q: the waitqueue
3109 * @mode: which threads
3110 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3111 *
3112 * The sync wakeup differs that the waker knows that it will schedule
3113 * away soon, so while the target thread will be woken up, it will not
3114 * be migrated to another CPU - ie. the two threads are 'synchronized'
3115 * with each other. This can prevent needless bouncing between CPUs.
3116 *
3117 * On UP it can prevent extra preemption.
3118 */
3119void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3120{
3121 unsigned long flags;
3122 int sync = 1;
3123
3124 if (unlikely(!q))
3125 return;
3126
3127 if (unlikely(!nr_exclusive))
3128 sync = 0;
3129
3130 spin_lock_irqsave(&q->lock, flags);
3131 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3132 spin_unlock_irqrestore(&q->lock, flags);
3133}
3134EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3135
3136void fastcall complete(struct completion *x)
3137{
3138 unsigned long flags;
3139
3140 spin_lock_irqsave(&x->wait.lock, flags);
3141 x->done++;
3142 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3143 1, 0, NULL);
3144 spin_unlock_irqrestore(&x->wait.lock, flags);
3145}
3146EXPORT_SYMBOL(complete);
3147
3148void fastcall complete_all(struct completion *x)
3149{
3150 unsigned long flags;
3151
3152 spin_lock_irqsave(&x->wait.lock, flags);
3153 x->done += UINT_MAX/2;
3154 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3155 0, 0, NULL);
3156 spin_unlock_irqrestore(&x->wait.lock, flags);
3157}
3158EXPORT_SYMBOL(complete_all);
3159
3160void fastcall __sched wait_for_completion(struct completion *x)
3161{
3162 might_sleep();
3163 spin_lock_irq(&x->wait.lock);
3164 if (!x->done) {
3165 DECLARE_WAITQUEUE(wait, current);
3166
3167 wait.flags |= WQ_FLAG_EXCLUSIVE;
3168 __add_wait_queue_tail(&x->wait, &wait);
3169 do {
3170 __set_current_state(TASK_UNINTERRUPTIBLE);
3171 spin_unlock_irq(&x->wait.lock);
3172 schedule();
3173 spin_lock_irq(&x->wait.lock);
3174 } while (!x->done);
3175 __remove_wait_queue(&x->wait, &wait);
3176 }
3177 x->done--;
3178 spin_unlock_irq(&x->wait.lock);
3179}
3180EXPORT_SYMBOL(wait_for_completion);
3181
3182unsigned long fastcall __sched
3183wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3184{
3185 might_sleep();
3186
3187 spin_lock_irq(&x->wait.lock);
3188 if (!x->done) {
3189 DECLARE_WAITQUEUE(wait, current);
3190
3191 wait.flags |= WQ_FLAG_EXCLUSIVE;
3192 __add_wait_queue_tail(&x->wait, &wait);
3193 do {
3194 __set_current_state(TASK_UNINTERRUPTIBLE);
3195 spin_unlock_irq(&x->wait.lock);
3196 timeout = schedule_timeout(timeout);
3197 spin_lock_irq(&x->wait.lock);
3198 if (!timeout) {
3199 __remove_wait_queue(&x->wait, &wait);
3200 goto out;
3201 }
3202 } while (!x->done);
3203 __remove_wait_queue(&x->wait, &wait);
3204 }
3205 x->done--;
3206out:
3207 spin_unlock_irq(&x->wait.lock);
3208 return timeout;
3209}
3210EXPORT_SYMBOL(wait_for_completion_timeout);
3211
3212int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3213{
3214 int ret = 0;
3215
3216 might_sleep();
3217
3218 spin_lock_irq(&x->wait.lock);
3219 if (!x->done) {
3220 DECLARE_WAITQUEUE(wait, current);
3221
3222 wait.flags |= WQ_FLAG_EXCLUSIVE;
3223 __add_wait_queue_tail(&x->wait, &wait);
3224 do {
3225 if (signal_pending(current)) {
3226 ret = -ERESTARTSYS;
3227 __remove_wait_queue(&x->wait, &wait);
3228 goto out;
3229 }
3230 __set_current_state(TASK_INTERRUPTIBLE);
3231 spin_unlock_irq(&x->wait.lock);
3232 schedule();
3233 spin_lock_irq(&x->wait.lock);
3234 } while (!x->done);
3235 __remove_wait_queue(&x->wait, &wait);
3236 }
3237 x->done--;
3238out:
3239 spin_unlock_irq(&x->wait.lock);
3240
3241 return ret;
3242}
3243EXPORT_SYMBOL(wait_for_completion_interruptible);
3244
3245unsigned long fastcall __sched
3246wait_for_completion_interruptible_timeout(struct completion *x,
3247 unsigned long timeout)
3248{
3249 might_sleep();
3250
3251 spin_lock_irq(&x->wait.lock);
3252 if (!x->done) {
3253 DECLARE_WAITQUEUE(wait, current);
3254
3255 wait.flags |= WQ_FLAG_EXCLUSIVE;
3256 __add_wait_queue_tail(&x->wait, &wait);
3257 do {
3258 if (signal_pending(current)) {
3259 timeout = -ERESTARTSYS;
3260 __remove_wait_queue(&x->wait, &wait);
3261 goto out;
3262 }
3263 __set_current_state(TASK_INTERRUPTIBLE);
3264 spin_unlock_irq(&x->wait.lock);
3265 timeout = schedule_timeout(timeout);
3266 spin_lock_irq(&x->wait.lock);
3267 if (!timeout) {
3268 __remove_wait_queue(&x->wait, &wait);
3269 goto out;
3270 }
3271 } while (!x->done);
3272 __remove_wait_queue(&x->wait, &wait);
3273 }
3274 x->done--;
3275out:
3276 spin_unlock_irq(&x->wait.lock);
3277 return timeout;
3278}
3279EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3280
3281
3282#define SLEEP_ON_VAR \
3283 unsigned long flags; \
3284 wait_queue_t wait; \
3285 init_waitqueue_entry(&wait, current);
3286
3287#define SLEEP_ON_HEAD \
3288 spin_lock_irqsave(&q->lock,flags); \
3289 __add_wait_queue(q, &wait); \
3290 spin_unlock(&q->lock);
3291
3292#define SLEEP_ON_TAIL \
3293 spin_lock_irq(&q->lock); \
3294 __remove_wait_queue(q, &wait); \
3295 spin_unlock_irqrestore(&q->lock, flags);
3296
3297void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3298{
3299 SLEEP_ON_VAR
3300
3301 current->state = TASK_INTERRUPTIBLE;
3302
3303 SLEEP_ON_HEAD
3304 schedule();
3305 SLEEP_ON_TAIL
3306}
3307
3308EXPORT_SYMBOL(interruptible_sleep_on);
3309
3310long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3311{
3312 SLEEP_ON_VAR
3313
3314 current->state = TASK_INTERRUPTIBLE;
3315
3316 SLEEP_ON_HEAD
3317 timeout = schedule_timeout(timeout);
3318 SLEEP_ON_TAIL
3319
3320 return timeout;
3321}
3322
3323EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3324
3325void fastcall __sched sleep_on(wait_queue_head_t *q)
3326{
3327 SLEEP_ON_VAR
3328
3329 current->state = TASK_UNINTERRUPTIBLE;
3330
3331 SLEEP_ON_HEAD
3332 schedule();
3333 SLEEP_ON_TAIL
3334}
3335
3336EXPORT_SYMBOL(sleep_on);
3337
3338long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3339{
3340 SLEEP_ON_VAR
3341
3342 current->state = TASK_UNINTERRUPTIBLE;
3343
3344 SLEEP_ON_HEAD
3345 timeout = schedule_timeout(timeout);
3346 SLEEP_ON_TAIL
3347
3348 return timeout;
3349}
3350
3351EXPORT_SYMBOL(sleep_on_timeout);
3352
3353void set_user_nice(task_t *p, long nice)
3354{
3355 unsigned long flags;
3356 prio_array_t *array;
3357 runqueue_t *rq;
3358 int old_prio, new_prio, delta;
3359
3360 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3361 return;
3362 /*
3363 * We have to be careful, if called from sys_setpriority(),
3364 * the task might be in the middle of scheduling on another CPU.
3365 */
3366 rq = task_rq_lock(p, &flags);
3367 /*
3368 * The RT priorities are set via sched_setscheduler(), but we still
3369 * allow the 'normal' nice value to be set - but as expected
3370 * it wont have any effect on scheduling until the task is
3371 * not SCHED_NORMAL:
3372 */
3373 if (rt_task(p)) {
3374 p->static_prio = NICE_TO_PRIO(nice);
3375 goto out_unlock;
3376 }
3377 array = p->array;
3378 if (array)
3379 dequeue_task(p, array);
3380
3381 old_prio = p->prio;
3382 new_prio = NICE_TO_PRIO(nice);
3383 delta = new_prio - old_prio;
3384 p->static_prio = NICE_TO_PRIO(nice);
3385 p->prio += delta;
3386
3387 if (array) {
3388 enqueue_task(p, array);
3389 /*
3390 * If the task increased its priority or is running and
3391 * lowered its priority, then reschedule its CPU:
3392 */
3393 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3394 resched_task(rq->curr);
3395 }
3396out_unlock:
3397 task_rq_unlock(rq, &flags);
3398}
3399
3400EXPORT_SYMBOL(set_user_nice);
3401
e43379f1
MM
3402/*
3403 * can_nice - check if a task can reduce its nice value
3404 * @p: task
3405 * @nice: nice value
3406 */
3407int can_nice(const task_t *p, const int nice)
3408{
3409 /* convert nice value [19,-20] to rlimit style value [0,39] */
3410 int nice_rlim = 19 - nice;
3411 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3412 capable(CAP_SYS_NICE));
3413}
3414
1da177e4
LT
3415#ifdef __ARCH_WANT_SYS_NICE
3416
3417/*
3418 * sys_nice - change the priority of the current process.
3419 * @increment: priority increment
3420 *
3421 * sys_setpriority is a more generic, but much slower function that
3422 * does similar things.
3423 */
3424asmlinkage long sys_nice(int increment)
3425{
3426 int retval;
3427 long nice;
3428
3429 /*
3430 * Setpriority might change our priority at the same moment.
3431 * We don't have to worry. Conceptually one call occurs first
3432 * and we have a single winner.
3433 */
e43379f1
MM
3434 if (increment < -40)
3435 increment = -40;
1da177e4
LT
3436 if (increment > 40)
3437 increment = 40;
3438
3439 nice = PRIO_TO_NICE(current->static_prio) + increment;
3440 if (nice < -20)
3441 nice = -20;
3442 if (nice > 19)
3443 nice = 19;
3444
e43379f1
MM
3445 if (increment < 0 && !can_nice(current, nice))
3446 return -EPERM;
3447
1da177e4
LT
3448 retval = security_task_setnice(current, nice);
3449 if (retval)
3450 return retval;
3451
3452 set_user_nice(current, nice);
3453 return 0;
3454}
3455
3456#endif
3457
3458/**
3459 * task_prio - return the priority value of a given task.
3460 * @p: the task in question.
3461 *
3462 * This is the priority value as seen by users in /proc.
3463 * RT tasks are offset by -200. Normal tasks are centered
3464 * around 0, value goes from -16 to +15.
3465 */
3466int task_prio(const task_t *p)
3467{
3468 return p->prio - MAX_RT_PRIO;
3469}
3470
3471/**
3472 * task_nice - return the nice value of a given task.
3473 * @p: the task in question.
3474 */
3475int task_nice(const task_t *p)
3476{
3477 return TASK_NICE(p);
3478}
3479
3480/*
3481 * The only users of task_nice are binfmt_elf and binfmt_elf32.
3482 * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3483 * Therefore, task_nice is needed if there is a compat_mode.
3484 */
3485#ifdef CONFIG_COMPAT
3486EXPORT_SYMBOL_GPL(task_nice);
3487#endif
3488
3489/**
3490 * idle_cpu - is a given cpu idle currently?
3491 * @cpu: the processor in question.
3492 */
3493int idle_cpu(int cpu)
3494{
3495 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3496}
3497
3498EXPORT_SYMBOL_GPL(idle_cpu);
3499
3500/**
3501 * idle_task - return the idle task for a given cpu.
3502 * @cpu: the processor in question.
3503 */
3504task_t *idle_task(int cpu)
3505{
3506 return cpu_rq(cpu)->idle;
3507}
3508
3509/**
3510 * find_process_by_pid - find a process with a matching PID value.
3511 * @pid: the pid in question.
3512 */
3513static inline task_t *find_process_by_pid(pid_t pid)
3514{
3515 return pid ? find_task_by_pid(pid) : current;
3516}
3517
3518/* Actually do priority change: must hold rq lock. */
3519static void __setscheduler(struct task_struct *p, int policy, int prio)
3520{
3521 BUG_ON(p->array);
3522 p->policy = policy;
3523 p->rt_priority = prio;
3524 if (policy != SCHED_NORMAL)
3525 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3526 else
3527 p->prio = p->static_prio;
3528}
3529
3530/**
3531 * sched_setscheduler - change the scheduling policy and/or RT priority of
3532 * a thread.
3533 * @p: the task in question.
3534 * @policy: new policy.
3535 * @param: structure containing the new RT priority.
3536 */
3537int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3538{
3539 int retval;
3540 int oldprio, oldpolicy = -1;
3541 prio_array_t *array;
3542 unsigned long flags;
3543 runqueue_t *rq;
3544
3545recheck:
3546 /* double check policy once rq lock held */
3547 if (policy < 0)
3548 policy = oldpolicy = p->policy;
3549 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3550 policy != SCHED_NORMAL)
3551 return -EINVAL;
3552 /*
3553 * Valid priorities for SCHED_FIFO and SCHED_RR are
3554 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3555 */
3556 if (param->sched_priority < 0 ||
3557 param->sched_priority > MAX_USER_RT_PRIO-1)
3558 return -EINVAL;
3559 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3560 return -EINVAL;
3561
3562 if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
e43379f1 3563 param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
1da177e4
LT
3564 !capable(CAP_SYS_NICE))
3565 return -EPERM;
3566 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3567 !capable(CAP_SYS_NICE))
3568 return -EPERM;
3569
3570 retval = security_task_setscheduler(p, policy, param);
3571 if (retval)
3572 return retval;
3573 /*
3574 * To be able to change p->policy safely, the apropriate
3575 * runqueue lock must be held.
3576 */
3577 rq = task_rq_lock(p, &flags);
3578 /* recheck policy now with rq lock held */
3579 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3580 policy = oldpolicy = -1;
3581 task_rq_unlock(rq, &flags);
3582 goto recheck;
3583 }
3584 array = p->array;
3585 if (array)
3586 deactivate_task(p, rq);
3587 oldprio = p->prio;
3588 __setscheduler(p, policy, param->sched_priority);
3589 if (array) {
3590 __activate_task(p, rq);
3591 /*
3592 * Reschedule if we are currently running on this runqueue and
3593 * our priority decreased, or if we are not currently running on
3594 * this runqueue and our priority is higher than the current's
3595 */
3596 if (task_running(rq, p)) {
3597 if (p->prio > oldprio)
3598 resched_task(rq->curr);
3599 } else if (TASK_PREEMPTS_CURR(p, rq))
3600 resched_task(rq->curr);
3601 }
3602 task_rq_unlock(rq, &flags);
3603 return 0;
3604}
3605EXPORT_SYMBOL_GPL(sched_setscheduler);
3606
3607static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3608{
3609 int retval;
3610 struct sched_param lparam;
3611 struct task_struct *p;
3612
3613 if (!param || pid < 0)
3614 return -EINVAL;
3615 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3616 return -EFAULT;
3617 read_lock_irq(&tasklist_lock);
3618 p = find_process_by_pid(pid);
3619 if (!p) {
3620 read_unlock_irq(&tasklist_lock);
3621 return -ESRCH;
3622 }
3623 retval = sched_setscheduler(p, policy, &lparam);
3624 read_unlock_irq(&tasklist_lock);
3625 return retval;
3626}
3627
3628/**
3629 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3630 * @pid: the pid in question.
3631 * @policy: new policy.
3632 * @param: structure containing the new RT priority.
3633 */
3634asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3635 struct sched_param __user *param)
3636{
3637 return do_sched_setscheduler(pid, policy, param);
3638}
3639
3640/**
3641 * sys_sched_setparam - set/change the RT priority of a thread
3642 * @pid: the pid in question.
3643 * @param: structure containing the new RT priority.
3644 */
3645asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3646{
3647 return do_sched_setscheduler(pid, -1, param);
3648}
3649
3650/**
3651 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3652 * @pid: the pid in question.
3653 */
3654asmlinkage long sys_sched_getscheduler(pid_t pid)
3655{
3656 int retval = -EINVAL;
3657 task_t *p;
3658
3659 if (pid < 0)
3660 goto out_nounlock;
3661
3662 retval = -ESRCH;
3663 read_lock(&tasklist_lock);
3664 p = find_process_by_pid(pid);
3665 if (p) {
3666 retval = security_task_getscheduler(p);
3667 if (!retval)
3668 retval = p->policy;
3669 }
3670 read_unlock(&tasklist_lock);
3671
3672out_nounlock:
3673 return retval;
3674}
3675
3676/**
3677 * sys_sched_getscheduler - get the RT priority of a thread
3678 * @pid: the pid in question.
3679 * @param: structure containing the RT priority.
3680 */
3681asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3682{
3683 struct sched_param lp;
3684 int retval = -EINVAL;
3685 task_t *p;
3686
3687 if (!param || pid < 0)
3688 goto out_nounlock;
3689
3690 read_lock(&tasklist_lock);
3691 p = find_process_by_pid(pid);
3692 retval = -ESRCH;
3693 if (!p)
3694 goto out_unlock;
3695
3696 retval = security_task_getscheduler(p);
3697 if (retval)
3698 goto out_unlock;
3699
3700 lp.sched_priority = p->rt_priority;
3701 read_unlock(&tasklist_lock);
3702
3703 /*
3704 * This one might sleep, we cannot do it with a spinlock held ...
3705 */
3706 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3707
3708out_nounlock:
3709 return retval;
3710
3711out_unlock:
3712 read_unlock(&tasklist_lock);
3713 return retval;
3714}
3715
3716long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3717{
3718 task_t *p;
3719 int retval;
3720 cpumask_t cpus_allowed;
3721
3722 lock_cpu_hotplug();
3723 read_lock(&tasklist_lock);
3724
3725 p = find_process_by_pid(pid);
3726 if (!p) {
3727 read_unlock(&tasklist_lock);
3728 unlock_cpu_hotplug();
3729 return -ESRCH;
3730 }
3731
3732 /*
3733 * It is not safe to call set_cpus_allowed with the
3734 * tasklist_lock held. We will bump the task_struct's
3735 * usage count and then drop tasklist_lock.
3736 */
3737 get_task_struct(p);
3738 read_unlock(&tasklist_lock);
3739
3740 retval = -EPERM;
3741 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3742 !capable(CAP_SYS_NICE))
3743 goto out_unlock;
3744
3745 cpus_allowed = cpuset_cpus_allowed(p);
3746 cpus_and(new_mask, new_mask, cpus_allowed);
3747 retval = set_cpus_allowed(p, new_mask);
3748
3749out_unlock:
3750 put_task_struct(p);
3751 unlock_cpu_hotplug();
3752 return retval;
3753}
3754
3755static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3756 cpumask_t *new_mask)
3757{
3758 if (len < sizeof(cpumask_t)) {
3759 memset(new_mask, 0, sizeof(cpumask_t));
3760 } else if (len > sizeof(cpumask_t)) {
3761 len = sizeof(cpumask_t);
3762 }
3763 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3764}
3765
3766/**
3767 * sys_sched_setaffinity - set the cpu affinity of a process
3768 * @pid: pid of the process
3769 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3770 * @user_mask_ptr: user-space pointer to the new cpu mask
3771 */
3772asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3773 unsigned long __user *user_mask_ptr)
3774{
3775 cpumask_t new_mask;
3776 int retval;
3777
3778 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3779 if (retval)
3780 return retval;
3781
3782 return sched_setaffinity(pid, new_mask);
3783}
3784
3785/*
3786 * Represents all cpu's present in the system
3787 * In systems capable of hotplug, this map could dynamically grow
3788 * as new cpu's are detected in the system via any platform specific
3789 * method, such as ACPI for e.g.
3790 */
3791
3792cpumask_t cpu_present_map;
3793EXPORT_SYMBOL(cpu_present_map);
3794
3795#ifndef CONFIG_SMP
3796cpumask_t cpu_online_map = CPU_MASK_ALL;
3797cpumask_t cpu_possible_map = CPU_MASK_ALL;
3798#endif
3799
3800long sched_getaffinity(pid_t pid, cpumask_t *mask)
3801{
3802 int retval;
3803 task_t *p;
3804
3805 lock_cpu_hotplug();
3806 read_lock(&tasklist_lock);
3807
3808 retval = -ESRCH;
3809 p = find_process_by_pid(pid);
3810 if (!p)
3811 goto out_unlock;
3812
3813 retval = 0;
3814 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3815
3816out_unlock:
3817 read_unlock(&tasklist_lock);
3818 unlock_cpu_hotplug();
3819 if (retval)
3820 return retval;
3821
3822 return 0;
3823}
3824
3825/**
3826 * sys_sched_getaffinity - get the cpu affinity of a process
3827 * @pid: pid of the process
3828 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3829 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3830 */
3831asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3832 unsigned long __user *user_mask_ptr)
3833{
3834 int ret;
3835 cpumask_t mask;
3836
3837 if (len < sizeof(cpumask_t))
3838 return -EINVAL;
3839
3840 ret = sched_getaffinity(pid, &mask);
3841 if (ret < 0)
3842 return ret;
3843
3844 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3845 return -EFAULT;
3846
3847 return sizeof(cpumask_t);
3848}
3849
3850/**
3851 * sys_sched_yield - yield the current processor to other threads.
3852 *
3853 * this function yields the current CPU by moving the calling thread
3854 * to the expired array. If there are no other threads running on this
3855 * CPU then this function will return.
3856 */
3857asmlinkage long sys_sched_yield(void)
3858{
3859 runqueue_t *rq = this_rq_lock();
3860 prio_array_t *array = current->array;
3861 prio_array_t *target = rq->expired;
3862
3863 schedstat_inc(rq, yld_cnt);
3864 /*
3865 * We implement yielding by moving the task into the expired
3866 * queue.
3867 *
3868 * (special rule: RT tasks will just roundrobin in the active
3869 * array.)
3870 */
3871 if (rt_task(current))
3872 target = rq->active;
3873
3874 if (current->array->nr_active == 1) {
3875 schedstat_inc(rq, yld_act_empty);
3876 if (!rq->expired->nr_active)
3877 schedstat_inc(rq, yld_both_empty);
3878 } else if (!rq->expired->nr_active)
3879 schedstat_inc(rq, yld_exp_empty);
3880
3881 if (array != target) {
3882 dequeue_task(current, array);
3883 enqueue_task(current, target);
3884 } else
3885 /*
3886 * requeue_task is cheaper so perform that if possible.
3887 */
3888 requeue_task(current, array);
3889
3890 /*
3891 * Since we are going to call schedule() anyway, there's
3892 * no need to preempt or enable interrupts:
3893 */
3894 __release(rq->lock);
3895 _raw_spin_unlock(&rq->lock);
3896 preempt_enable_no_resched();
3897
3898 schedule();
3899
3900 return 0;
3901}
3902
3903static inline void __cond_resched(void)
3904{
3905 do {
3906 add_preempt_count(PREEMPT_ACTIVE);
3907 schedule();
3908 sub_preempt_count(PREEMPT_ACTIVE);
3909 } while (need_resched());
3910}
3911
3912int __sched cond_resched(void)
3913{
3914 if (need_resched()) {
3915 __cond_resched();
3916 return 1;
3917 }
3918 return 0;
3919}
3920
3921EXPORT_SYMBOL(cond_resched);
3922
3923/*
3924 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3925 * call schedule, and on return reacquire the lock.
3926 *
3927 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3928 * operations here to prevent schedule() from being called twice (once via
3929 * spin_unlock(), once by hand).
3930 */
3931int cond_resched_lock(spinlock_t * lock)
3932{
6df3cecb
JK
3933 int ret = 0;
3934
1da177e4
LT
3935 if (need_lockbreak(lock)) {
3936 spin_unlock(lock);
3937 cpu_relax();
6df3cecb 3938 ret = 1;
1da177e4
LT
3939 spin_lock(lock);
3940 }
3941 if (need_resched()) {
3942 _raw_spin_unlock(lock);
3943 preempt_enable_no_resched();
3944 __cond_resched();
6df3cecb 3945 ret = 1;
1da177e4 3946 spin_lock(lock);
1da177e4 3947 }
6df3cecb 3948 return ret;
1da177e4
LT
3949}
3950
3951EXPORT_SYMBOL(cond_resched_lock);
3952
3953int __sched cond_resched_softirq(void)
3954{
3955 BUG_ON(!in_softirq());
3956
3957 if (need_resched()) {
3958 __local_bh_enable();
3959 __cond_resched();
3960 local_bh_disable();
3961 return 1;
3962 }
3963 return 0;
3964}
3965
3966EXPORT_SYMBOL(cond_resched_softirq);
3967
3968
3969/**
3970 * yield - yield the current processor to other threads.
3971 *
3972 * this is a shortcut for kernel-space yielding - it marks the
3973 * thread runnable and calls sys_sched_yield().
3974 */
3975void __sched yield(void)
3976{
3977 set_current_state(TASK_RUNNING);
3978 sys_sched_yield();
3979}
3980
3981EXPORT_SYMBOL(yield);
3982
3983/*
3984 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3985 * that process accounting knows that this is a task in IO wait state.
3986 *
3987 * But don't do that if it is a deliberate, throttling IO wait (this task
3988 * has set its backing_dev_info: the queue against which it should throttle)
3989 */
3990void __sched io_schedule(void)
3991{
39c715b7 3992 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
3993
3994 atomic_inc(&rq->nr_iowait);
3995 schedule();
3996 atomic_dec(&rq->nr_iowait);
3997}
3998
3999EXPORT_SYMBOL(io_schedule);
4000
4001long __sched io_schedule_timeout(long timeout)
4002{
39c715b7 4003 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4004 long ret;
4005
4006 atomic_inc(&rq->nr_iowait);
4007 ret = schedule_timeout(timeout);
4008 atomic_dec(&rq->nr_iowait);
4009 return ret;
4010}
4011
4012/**
4013 * sys_sched_get_priority_max - return maximum RT priority.
4014 * @policy: scheduling class.
4015 *
4016 * this syscall returns the maximum rt_priority that can be used
4017 * by a given scheduling class.
4018 */
4019asmlinkage long sys_sched_get_priority_max(int policy)
4020{
4021 int ret = -EINVAL;
4022
4023 switch (policy) {
4024 case SCHED_FIFO:
4025 case SCHED_RR:
4026 ret = MAX_USER_RT_PRIO-1;
4027 break;
4028 case SCHED_NORMAL:
4029 ret = 0;
4030 break;
4031 }
4032 return ret;
4033}
4034
4035/**
4036 * sys_sched_get_priority_min - return minimum RT priority.
4037 * @policy: scheduling class.
4038 *
4039 * this syscall returns the minimum rt_priority that can be used
4040 * by a given scheduling class.
4041 */
4042asmlinkage long sys_sched_get_priority_min(int policy)
4043{
4044 int ret = -EINVAL;
4045
4046 switch (policy) {
4047 case SCHED_FIFO:
4048 case SCHED_RR:
4049 ret = 1;
4050 break;
4051 case SCHED_NORMAL:
4052 ret = 0;
4053 }
4054 return ret;
4055}
4056
4057/**
4058 * sys_sched_rr_get_interval - return the default timeslice of a process.
4059 * @pid: pid of the process.
4060 * @interval: userspace pointer to the timeslice value.
4061 *
4062 * this syscall writes the default timeslice value of a given process
4063 * into the user-space timespec buffer. A value of '0' means infinity.
4064 */
4065asmlinkage
4066long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4067{
4068 int retval = -EINVAL;
4069 struct timespec t;
4070 task_t *p;
4071
4072 if (pid < 0)
4073 goto out_nounlock;
4074
4075 retval = -ESRCH;
4076 read_lock(&tasklist_lock);
4077 p = find_process_by_pid(pid);
4078 if (!p)
4079 goto out_unlock;
4080
4081 retval = security_task_getscheduler(p);
4082 if (retval)
4083 goto out_unlock;
4084
4085 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4086 0 : task_timeslice(p), &t);
4087 read_unlock(&tasklist_lock);
4088 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4089out_nounlock:
4090 return retval;
4091out_unlock:
4092 read_unlock(&tasklist_lock);
4093 return retval;
4094}
4095
4096static inline struct task_struct *eldest_child(struct task_struct *p)
4097{
4098 if (list_empty(&p->children)) return NULL;
4099 return list_entry(p->children.next,struct task_struct,sibling);
4100}
4101
4102static inline struct task_struct *older_sibling(struct task_struct *p)
4103{
4104 if (p->sibling.prev==&p->parent->children) return NULL;
4105 return list_entry(p->sibling.prev,struct task_struct,sibling);
4106}
4107
4108static inline struct task_struct *younger_sibling(struct task_struct *p)
4109{
4110 if (p->sibling.next==&p->parent->children) return NULL;
4111 return list_entry(p->sibling.next,struct task_struct,sibling);
4112}
4113
4114static void show_task(task_t * p)
4115{
4116 task_t *relative;
4117 unsigned state;
4118 unsigned long free = 0;
4119 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4120
4121 printk("%-13.13s ", p->comm);
4122 state = p->state ? __ffs(p->state) + 1 : 0;
4123 if (state < ARRAY_SIZE(stat_nam))
4124 printk(stat_nam[state]);
4125 else
4126 printk("?");
4127#if (BITS_PER_LONG == 32)
4128 if (state == TASK_RUNNING)
4129 printk(" running ");
4130 else
4131 printk(" %08lX ", thread_saved_pc(p));
4132#else
4133 if (state == TASK_RUNNING)
4134 printk(" running task ");
4135 else
4136 printk(" %016lx ", thread_saved_pc(p));
4137#endif
4138#ifdef CONFIG_DEBUG_STACK_USAGE
4139 {
4140 unsigned long * n = (unsigned long *) (p->thread_info+1);
4141 while (!*n)
4142 n++;
4143 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4144 }
4145#endif
4146 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4147 if ((relative = eldest_child(p)))
4148 printk("%5d ", relative->pid);
4149 else
4150 printk(" ");
4151 if ((relative = younger_sibling(p)))
4152 printk("%7d", relative->pid);
4153 else
4154 printk(" ");
4155 if ((relative = older_sibling(p)))
4156 printk(" %5d", relative->pid);
4157 else
4158 printk(" ");
4159 if (!p->mm)
4160 printk(" (L-TLB)\n");
4161 else
4162 printk(" (NOTLB)\n");
4163
4164 if (state != TASK_RUNNING)
4165 show_stack(p, NULL);
4166}
4167
4168void show_state(void)
4169{
4170 task_t *g, *p;
4171
4172#if (BITS_PER_LONG == 32)
4173 printk("\n"
4174 " sibling\n");
4175 printk(" task PC pid father child younger older\n");
4176#else
4177 printk("\n"
4178 " sibling\n");
4179 printk(" task PC pid father child younger older\n");
4180#endif
4181 read_lock(&tasklist_lock);
4182 do_each_thread(g, p) {
4183 /*
4184 * reset the NMI-timeout, listing all files on a slow
4185 * console might take alot of time:
4186 */
4187 touch_nmi_watchdog();
4188 show_task(p);
4189 } while_each_thread(g, p);
4190
4191 read_unlock(&tasklist_lock);
4192}
4193
4194void __devinit init_idle(task_t *idle, int cpu)
4195{
4196 runqueue_t *rq = cpu_rq(cpu);
4197 unsigned long flags;
4198
4199 idle->sleep_avg = 0;
4200 idle->array = NULL;
4201 idle->prio = MAX_PRIO;
4202 idle->state = TASK_RUNNING;
4203 idle->cpus_allowed = cpumask_of_cpu(cpu);
4204 set_task_cpu(idle, cpu);
4205
4206 spin_lock_irqsave(&rq->lock, flags);
4207 rq->curr = rq->idle = idle;
4866cde0
NP
4208#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4209 idle->oncpu = 1;
4210#endif
1da177e4
LT
4211 set_tsk_need_resched(idle);
4212 spin_unlock_irqrestore(&rq->lock, flags);
4213
4214 /* Set the preempt count _outside_ the spinlocks! */
4215#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4216 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4217#else
4218 idle->thread_info->preempt_count = 0;
4219#endif
4220}
4221
4222/*
4223 * In a system that switches off the HZ timer nohz_cpu_mask
4224 * indicates which cpus entered this state. This is used
4225 * in the rcu update to wait only for active cpus. For system
4226 * which do not switch off the HZ timer nohz_cpu_mask should
4227 * always be CPU_MASK_NONE.
4228 */
4229cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4230
4231#ifdef CONFIG_SMP
4232/*
4233 * This is how migration works:
4234 *
4235 * 1) we queue a migration_req_t structure in the source CPU's
4236 * runqueue and wake up that CPU's migration thread.
4237 * 2) we down() the locked semaphore => thread blocks.
4238 * 3) migration thread wakes up (implicitly it forces the migrated
4239 * thread off the CPU)
4240 * 4) it gets the migration request and checks whether the migrated
4241 * task is still in the wrong runqueue.
4242 * 5) if it's in the wrong runqueue then the migration thread removes
4243 * it and puts it into the right queue.
4244 * 6) migration thread up()s the semaphore.
4245 * 7) we wake up and the migration is done.
4246 */
4247
4248/*
4249 * Change a given task's CPU affinity. Migrate the thread to a
4250 * proper CPU and schedule it away if the CPU it's executing on
4251 * is removed from the allowed bitmask.
4252 *
4253 * NOTE: the caller must have a valid reference to the task, the
4254 * task must not exit() & deallocate itself prematurely. The
4255 * call is not atomic; no spinlocks may be held.
4256 */
4257int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4258{
4259 unsigned long flags;
4260 int ret = 0;
4261 migration_req_t req;
4262 runqueue_t *rq;
4263
4264 rq = task_rq_lock(p, &flags);
4265 if (!cpus_intersects(new_mask, cpu_online_map)) {
4266 ret = -EINVAL;
4267 goto out;
4268 }
4269
4270 p->cpus_allowed = new_mask;
4271 /* Can the task run on the task's current CPU? If so, we're done */
4272 if (cpu_isset(task_cpu(p), new_mask))
4273 goto out;
4274
4275 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4276 /* Need help from migration thread: drop lock and wait. */
4277 task_rq_unlock(rq, &flags);
4278 wake_up_process(rq->migration_thread);
4279 wait_for_completion(&req.done);
4280 tlb_migrate_finish(p->mm);
4281 return 0;
4282 }
4283out:
4284 task_rq_unlock(rq, &flags);
4285 return ret;
4286}
4287
4288EXPORT_SYMBOL_GPL(set_cpus_allowed);
4289
4290/*
4291 * Move (not current) task off this cpu, onto dest cpu. We're doing
4292 * this because either it can't run here any more (set_cpus_allowed()
4293 * away from this CPU, or CPU going down), or because we're
4294 * attempting to rebalance this task on exec (sched_exec).
4295 *
4296 * So we race with normal scheduler movements, but that's OK, as long
4297 * as the task is no longer on this CPU.
4298 */
4299static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4300{
4301 runqueue_t *rq_dest, *rq_src;
4302
4303 if (unlikely(cpu_is_offline(dest_cpu)))
4304 return;
4305
4306 rq_src = cpu_rq(src_cpu);
4307 rq_dest = cpu_rq(dest_cpu);
4308
4309 double_rq_lock(rq_src, rq_dest);
4310 /* Already moved. */
4311 if (task_cpu(p) != src_cpu)
4312 goto out;
4313 /* Affinity changed (again). */
4314 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4315 goto out;
4316
4317 set_task_cpu(p, dest_cpu);
4318 if (p->array) {
4319 /*
4320 * Sync timestamp with rq_dest's before activating.
4321 * The same thing could be achieved by doing this step
4322 * afterwards, and pretending it was a local activate.
4323 * This way is cleaner and logically correct.
4324 */
4325 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4326 + rq_dest->timestamp_last_tick;
4327 deactivate_task(p, rq_src);
4328 activate_task(p, rq_dest, 0);
4329 if (TASK_PREEMPTS_CURR(p, rq_dest))
4330 resched_task(rq_dest->curr);
4331 }
4332
4333out:
4334 double_rq_unlock(rq_src, rq_dest);
4335}
4336
4337/*
4338 * migration_thread - this is a highprio system thread that performs
4339 * thread migration by bumping thread off CPU then 'pushing' onto
4340 * another runqueue.
4341 */
4342static int migration_thread(void * data)
4343{
4344 runqueue_t *rq;
4345 int cpu = (long)data;
4346
4347 rq = cpu_rq(cpu);
4348 BUG_ON(rq->migration_thread != current);
4349
4350 set_current_state(TASK_INTERRUPTIBLE);
4351 while (!kthread_should_stop()) {
4352 struct list_head *head;
4353 migration_req_t *req;
4354
4355 if (current->flags & PF_FREEZE)
4356 refrigerator(PF_FREEZE);
4357
4358 spin_lock_irq(&rq->lock);
4359
4360 if (cpu_is_offline(cpu)) {
4361 spin_unlock_irq(&rq->lock);
4362 goto wait_to_die;
4363 }
4364
4365 if (rq->active_balance) {
4366 active_load_balance(rq, cpu);
4367 rq->active_balance = 0;
4368 }
4369
4370 head = &rq->migration_queue;
4371
4372 if (list_empty(head)) {
4373 spin_unlock_irq(&rq->lock);
4374 schedule();
4375 set_current_state(TASK_INTERRUPTIBLE);
4376 continue;
4377 }
4378 req = list_entry(head->next, migration_req_t, list);
4379 list_del_init(head->next);
4380
4381 if (req->type == REQ_MOVE_TASK) {
4382 spin_unlock(&rq->lock);
4383 __migrate_task(req->task, cpu, req->dest_cpu);
4384 local_irq_enable();
4385 } else if (req->type == REQ_SET_DOMAIN) {
4386 rq->sd = req->sd;
4387 spin_unlock_irq(&rq->lock);
4388 } else {
4389 spin_unlock_irq(&rq->lock);
4390 WARN_ON(1);
4391 }
4392
4393 complete(&req->done);
4394 }
4395 __set_current_state(TASK_RUNNING);
4396 return 0;
4397
4398wait_to_die:
4399 /* Wait for kthread_stop */
4400 set_current_state(TASK_INTERRUPTIBLE);
4401 while (!kthread_should_stop()) {
4402 schedule();
4403 set_current_state(TASK_INTERRUPTIBLE);
4404 }
4405 __set_current_state(TASK_RUNNING);
4406 return 0;
4407}
4408
4409#ifdef CONFIG_HOTPLUG_CPU
4410/* Figure out where task on dead CPU should go, use force if neccessary. */
4411static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4412{
4413 int dest_cpu;
4414 cpumask_t mask;
4415
4416 /* On same node? */
4417 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4418 cpus_and(mask, mask, tsk->cpus_allowed);
4419 dest_cpu = any_online_cpu(mask);
4420
4421 /* On any allowed CPU? */
4422 if (dest_cpu == NR_CPUS)
4423 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4424
4425 /* No more Mr. Nice Guy. */
4426 if (dest_cpu == NR_CPUS) {
b39c4fab 4427 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4428 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4429
4430 /*
4431 * Don't tell them about moving exiting tasks or
4432 * kernel threads (both mm NULL), since they never
4433 * leave kernel.
4434 */
4435 if (tsk->mm && printk_ratelimit())
4436 printk(KERN_INFO "process %d (%s) no "
4437 "longer affine to cpu%d\n",
4438 tsk->pid, tsk->comm, dead_cpu);
4439 }
4440 __migrate_task(tsk, dead_cpu, dest_cpu);
4441}
4442
4443/*
4444 * While a dead CPU has no uninterruptible tasks queued at this point,
4445 * it might still have a nonzero ->nr_uninterruptible counter, because
4446 * for performance reasons the counter is not stricly tracking tasks to
4447 * their home CPUs. So we just add the counter to another CPU's counter,
4448 * to keep the global sum constant after CPU-down:
4449 */
4450static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4451{
4452 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4453 unsigned long flags;
4454
4455 local_irq_save(flags);
4456 double_rq_lock(rq_src, rq_dest);
4457 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4458 rq_src->nr_uninterruptible = 0;
4459 double_rq_unlock(rq_src, rq_dest);
4460 local_irq_restore(flags);
4461}
4462
4463/* Run through task list and migrate tasks from the dead cpu. */
4464static void migrate_live_tasks(int src_cpu)
4465{
4466 struct task_struct *tsk, *t;
4467
4468 write_lock_irq(&tasklist_lock);
4469
4470 do_each_thread(t, tsk) {
4471 if (tsk == current)
4472 continue;
4473
4474 if (task_cpu(tsk) == src_cpu)
4475 move_task_off_dead_cpu(src_cpu, tsk);
4476 } while_each_thread(t, tsk);
4477
4478 write_unlock_irq(&tasklist_lock);
4479}
4480
4481/* Schedules idle task to be the next runnable task on current CPU.
4482 * It does so by boosting its priority to highest possible and adding it to
4483 * the _front_ of runqueue. Used by CPU offline code.
4484 */
4485void sched_idle_next(void)
4486{
4487 int cpu = smp_processor_id();
4488 runqueue_t *rq = this_rq();
4489 struct task_struct *p = rq->idle;
4490 unsigned long flags;
4491
4492 /* cpu has to be offline */
4493 BUG_ON(cpu_online(cpu));
4494
4495 /* Strictly not necessary since rest of the CPUs are stopped by now
4496 * and interrupts disabled on current cpu.
4497 */
4498 spin_lock_irqsave(&rq->lock, flags);
4499
4500 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4501 /* Add idle task to _front_ of it's priority queue */
4502 __activate_idle_task(p, rq);
4503
4504 spin_unlock_irqrestore(&rq->lock, flags);
4505}
4506
4507/* Ensures that the idle task is using init_mm right before its cpu goes
4508 * offline.
4509 */
4510void idle_task_exit(void)
4511{
4512 struct mm_struct *mm = current->active_mm;
4513
4514 BUG_ON(cpu_online(smp_processor_id()));
4515
4516 if (mm != &init_mm)
4517 switch_mm(mm, &init_mm, current);
4518 mmdrop(mm);
4519}
4520
4521static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4522{
4523 struct runqueue *rq = cpu_rq(dead_cpu);
4524
4525 /* Must be exiting, otherwise would be on tasklist. */
4526 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4527
4528 /* Cannot have done final schedule yet: would have vanished. */
4529 BUG_ON(tsk->flags & PF_DEAD);
4530
4531 get_task_struct(tsk);
4532
4533 /*
4534 * Drop lock around migration; if someone else moves it,
4535 * that's OK. No task can be added to this CPU, so iteration is
4536 * fine.
4537 */
4538 spin_unlock_irq(&rq->lock);
4539 move_task_off_dead_cpu(dead_cpu, tsk);
4540 spin_lock_irq(&rq->lock);
4541
4542 put_task_struct(tsk);
4543}
4544
4545/* release_task() removes task from tasklist, so we won't find dead tasks. */
4546static void migrate_dead_tasks(unsigned int dead_cpu)
4547{
4548 unsigned arr, i;
4549 struct runqueue *rq = cpu_rq(dead_cpu);
4550
4551 for (arr = 0; arr < 2; arr++) {
4552 for (i = 0; i < MAX_PRIO; i++) {
4553 struct list_head *list = &rq->arrays[arr].queue[i];
4554 while (!list_empty(list))
4555 migrate_dead(dead_cpu,
4556 list_entry(list->next, task_t,
4557 run_list));
4558 }
4559 }
4560}
4561#endif /* CONFIG_HOTPLUG_CPU */
4562
4563/*
4564 * migration_call - callback that gets triggered when a CPU is added.
4565 * Here we can start up the necessary migration thread for the new CPU.
4566 */
4567static int migration_call(struct notifier_block *nfb, unsigned long action,
4568 void *hcpu)
4569{
4570 int cpu = (long)hcpu;
4571 struct task_struct *p;
4572 struct runqueue *rq;
4573 unsigned long flags;
4574
4575 switch (action) {
4576 case CPU_UP_PREPARE:
4577 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4578 if (IS_ERR(p))
4579 return NOTIFY_BAD;
4580 p->flags |= PF_NOFREEZE;
4581 kthread_bind(p, cpu);
4582 /* Must be high prio: stop_machine expects to yield to it. */
4583 rq = task_rq_lock(p, &flags);
4584 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4585 task_rq_unlock(rq, &flags);
4586 cpu_rq(cpu)->migration_thread = p;
4587 break;
4588 case CPU_ONLINE:
4589 /* Strictly unneccessary, as first user will wake it. */
4590 wake_up_process(cpu_rq(cpu)->migration_thread);
4591 break;
4592#ifdef CONFIG_HOTPLUG_CPU
4593 case CPU_UP_CANCELED:
4594 /* Unbind it from offline cpu so it can run. Fall thru. */
4595 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4596 kthread_stop(cpu_rq(cpu)->migration_thread);
4597 cpu_rq(cpu)->migration_thread = NULL;
4598 break;
4599 case CPU_DEAD:
4600 migrate_live_tasks(cpu);
4601 rq = cpu_rq(cpu);
4602 kthread_stop(rq->migration_thread);
4603 rq->migration_thread = NULL;
4604 /* Idle task back to normal (off runqueue, low prio) */
4605 rq = task_rq_lock(rq->idle, &flags);
4606 deactivate_task(rq->idle, rq);
4607 rq->idle->static_prio = MAX_PRIO;
4608 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4609 migrate_dead_tasks(cpu);
4610 task_rq_unlock(rq, &flags);
4611 migrate_nr_uninterruptible(rq);
4612 BUG_ON(rq->nr_running != 0);
4613
4614 /* No need to migrate the tasks: it was best-effort if
4615 * they didn't do lock_cpu_hotplug(). Just wake up
4616 * the requestors. */
4617 spin_lock_irq(&rq->lock);
4618 while (!list_empty(&rq->migration_queue)) {
4619 migration_req_t *req;
4620 req = list_entry(rq->migration_queue.next,
4621 migration_req_t, list);
4622 BUG_ON(req->type != REQ_MOVE_TASK);
4623 list_del_init(&req->list);
4624 complete(&req->done);
4625 }
4626 spin_unlock_irq(&rq->lock);
4627 break;
4628#endif
4629 }
4630 return NOTIFY_OK;
4631}
4632
4633/* Register at highest priority so that task migration (migrate_all_tasks)
4634 * happens before everything else.
4635 */
4636static struct notifier_block __devinitdata migration_notifier = {
4637 .notifier_call = migration_call,
4638 .priority = 10
4639};
4640
4641int __init migration_init(void)
4642{
4643 void *cpu = (void *)(long)smp_processor_id();
4644 /* Start one for boot CPU. */
4645 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4646 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4647 register_cpu_notifier(&migration_notifier);
4648 return 0;
4649}
4650#endif
4651
4652#ifdef CONFIG_SMP
4653#define SCHED_DOMAIN_DEBUG
4654#ifdef SCHED_DOMAIN_DEBUG
4655static void sched_domain_debug(struct sched_domain *sd, int cpu)
4656{
4657 int level = 0;
4658
41c7ce9a
NP
4659 if (!sd) {
4660 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4661 return;
4662 }
4663
1da177e4
LT
4664 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4665
4666 do {
4667 int i;
4668 char str[NR_CPUS];
4669 struct sched_group *group = sd->groups;
4670 cpumask_t groupmask;
4671
4672 cpumask_scnprintf(str, NR_CPUS, sd->span);
4673 cpus_clear(groupmask);
4674
4675 printk(KERN_DEBUG);
4676 for (i = 0; i < level + 1; i++)
4677 printk(" ");
4678 printk("domain %d: ", level);
4679
4680 if (!(sd->flags & SD_LOAD_BALANCE)) {
4681 printk("does not load-balance\n");
4682 if (sd->parent)
4683 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4684 break;
4685 }
4686
4687 printk("span %s\n", str);
4688
4689 if (!cpu_isset(cpu, sd->span))
4690 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4691 if (!cpu_isset(cpu, group->cpumask))
4692 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4693
4694 printk(KERN_DEBUG);
4695 for (i = 0; i < level + 2; i++)
4696 printk(" ");
4697 printk("groups:");
4698 do {
4699 if (!group) {
4700 printk("\n");
4701 printk(KERN_ERR "ERROR: group is NULL\n");
4702 break;
4703 }
4704
4705 if (!group->cpu_power) {
4706 printk("\n");
4707 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4708 }
4709
4710 if (!cpus_weight(group->cpumask)) {
4711 printk("\n");
4712 printk(KERN_ERR "ERROR: empty group\n");
4713 }
4714
4715 if (cpus_intersects(groupmask, group->cpumask)) {
4716 printk("\n");
4717 printk(KERN_ERR "ERROR: repeated CPUs\n");
4718 }
4719
4720 cpus_or(groupmask, groupmask, group->cpumask);
4721
4722 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4723 printk(" %s", str);
4724
4725 group = group->next;
4726 } while (group != sd->groups);
4727 printk("\n");
4728
4729 if (!cpus_equal(sd->span, groupmask))
4730 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4731
4732 level++;
4733 sd = sd->parent;
4734
4735 if (sd) {
4736 if (!cpus_subset(groupmask, sd->span))
4737 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4738 }
4739
4740 } while (sd);
4741}
4742#else
4743#define sched_domain_debug(sd, cpu) {}
4744#endif
4745
245af2c7
SS
4746static int __devinit sd_degenerate(struct sched_domain *sd)
4747{
4748 if (cpus_weight(sd->span) == 1)
4749 return 1;
4750
4751 /* Following flags need at least 2 groups */
4752 if (sd->flags & (SD_LOAD_BALANCE |
4753 SD_BALANCE_NEWIDLE |
4754 SD_BALANCE_FORK |
4755 SD_BALANCE_EXEC)) {
4756 if (sd->groups != sd->groups->next)
4757 return 0;
4758 }
4759
4760 /* Following flags don't use groups */
4761 if (sd->flags & (SD_WAKE_IDLE |
4762 SD_WAKE_AFFINE |
4763 SD_WAKE_BALANCE))
4764 return 0;
4765
4766 return 1;
4767}
4768
4769static int __devinit sd_parent_degenerate(struct sched_domain *sd,
4770 struct sched_domain *parent)
4771{
4772 unsigned long cflags = sd->flags, pflags = parent->flags;
4773
4774 if (sd_degenerate(parent))
4775 return 1;
4776
4777 if (!cpus_equal(sd->span, parent->span))
4778 return 0;
4779
4780 /* Does parent contain flags not in child? */
4781 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4782 if (cflags & SD_WAKE_AFFINE)
4783 pflags &= ~SD_WAKE_BALANCE;
4784 /* Flags needing groups don't count if only 1 group in parent */
4785 if (parent->groups == parent->groups->next) {
4786 pflags &= ~(SD_LOAD_BALANCE |
4787 SD_BALANCE_NEWIDLE |
4788 SD_BALANCE_FORK |
4789 SD_BALANCE_EXEC);
4790 }
4791 if (~cflags & pflags)
4792 return 0;
4793
4794 return 1;
4795}
4796
1da177e4
LT
4797/*
4798 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4799 * hold the hotplug lock.
4800 */
4801void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4802{
4803 migration_req_t req;
4804 unsigned long flags;
4805 runqueue_t *rq = cpu_rq(cpu);
4806 int local = 1;
245af2c7
SS
4807 struct sched_domain *tmp;
4808
4809 /* Remove the sched domains which do not contribute to scheduling. */
4810 for (tmp = sd; tmp; tmp = tmp->parent) {
4811 struct sched_domain *parent = tmp->parent;
4812 if (!parent)
4813 break;
4814 if (sd_parent_degenerate(tmp, parent))
4815 tmp->parent = parent->parent;
4816 }
4817
4818 if (sd && sd_degenerate(sd))
4819 sd = sd->parent;
1da177e4
LT
4820
4821 sched_domain_debug(sd, cpu);
4822
4823 spin_lock_irqsave(&rq->lock, flags);
4824
4825 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4826 rq->sd = sd;
4827 } else {
4828 init_completion(&req.done);
4829 req.type = REQ_SET_DOMAIN;
4830 req.sd = sd;
4831 list_add(&req.list, &rq->migration_queue);
4832 local = 0;
4833 }
4834
4835 spin_unlock_irqrestore(&rq->lock, flags);
4836
4837 if (!local) {
4838 wake_up_process(rq->migration_thread);
4839 wait_for_completion(&req.done);
4840 }
4841}
4842
4843/* cpus with isolated domains */
4844cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4845
4846/* Setup the mask of cpus configured for isolated domains */
4847static int __init isolated_cpu_setup(char *str)
4848{
4849 int ints[NR_CPUS], i;
4850
4851 str = get_options(str, ARRAY_SIZE(ints), ints);
4852 cpus_clear(cpu_isolated_map);
4853 for (i = 1; i <= ints[0]; i++)
4854 if (ints[i] < NR_CPUS)
4855 cpu_set(ints[i], cpu_isolated_map);
4856 return 1;
4857}
4858
4859__setup ("isolcpus=", isolated_cpu_setup);
4860
4861/*
4862 * init_sched_build_groups takes an array of groups, the cpumask we wish
4863 * to span, and a pointer to a function which identifies what group a CPU
4864 * belongs to. The return value of group_fn must be a valid index into the
4865 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4866 * keep track of groups covered with a cpumask_t).
4867 *
4868 * init_sched_build_groups will build a circular linked list of the groups
4869 * covered by the given span, and will set each group's ->cpumask correctly,
4870 * and ->cpu_power to 0.
4871 */
4872void __devinit init_sched_build_groups(struct sched_group groups[],
4873 cpumask_t span, int (*group_fn)(int cpu))
4874{
4875 struct sched_group *first = NULL, *last = NULL;
4876 cpumask_t covered = CPU_MASK_NONE;
4877 int i;
4878
4879 for_each_cpu_mask(i, span) {
4880 int group = group_fn(i);
4881 struct sched_group *sg = &groups[group];
4882 int j;
4883
4884 if (cpu_isset(i, covered))
4885 continue;
4886
4887 sg->cpumask = CPU_MASK_NONE;
4888 sg->cpu_power = 0;
4889
4890 for_each_cpu_mask(j, span) {
4891 if (group_fn(j) != group)
4892 continue;
4893
4894 cpu_set(j, covered);
4895 cpu_set(j, sg->cpumask);
4896 }
4897 if (!first)
4898 first = sg;
4899 if (last)
4900 last->next = sg;
4901 last = sg;
4902 }
4903 last->next = first;
4904}
4905
4906
4907#ifdef ARCH_HAS_SCHED_DOMAIN
4908extern void __devinit arch_init_sched_domains(void);
4909extern void __devinit arch_destroy_sched_domains(void);
4910#else
4911#ifdef CONFIG_SCHED_SMT
4912static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4913static struct sched_group sched_group_cpus[NR_CPUS];
4914static int __devinit cpu_to_cpu_group(int cpu)
4915{
4916 return cpu;
4917}
4918#endif
4919
4920static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4921static struct sched_group sched_group_phys[NR_CPUS];
4922static int __devinit cpu_to_phys_group(int cpu)
4923{
4924#ifdef CONFIG_SCHED_SMT
4925 return first_cpu(cpu_sibling_map[cpu]);
4926#else
4927 return cpu;
4928#endif
4929}
4930
4931#ifdef CONFIG_NUMA
4932
4933static DEFINE_PER_CPU(struct sched_domain, node_domains);
4934static struct sched_group sched_group_nodes[MAX_NUMNODES];
4935static int __devinit cpu_to_node_group(int cpu)
4936{
4937 return cpu_to_node(cpu);
4938}
4939#endif
4940
4941#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4942/*
4943 * The domains setup code relies on siblings not spanning
4944 * multiple nodes. Make sure the architecture has a proper
4945 * siblings map:
4946 */
4947static void check_sibling_maps(void)
4948{
4949 int i, j;
4950
4951 for_each_online_cpu(i) {
4952 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4953 if (cpu_to_node(i) != cpu_to_node(j)) {
4954 printk(KERN_INFO "warning: CPU %d siblings map "
4955 "to different node - isolating "
4956 "them.\n", i);
4957 cpu_sibling_map[i] = cpumask_of_cpu(i);
4958 break;
4959 }
4960 }
4961 }
4962}
4963#endif
4964
4965/*
4966 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
4967 */
4968static void __devinit arch_init_sched_domains(void)
4969{
4970 int i;
4971 cpumask_t cpu_default_map;
4972
4973#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4974 check_sibling_maps();
4975#endif
4976 /*
4977 * Setup mask for cpus without special case scheduling requirements.
4978 * For now this just excludes isolated cpus, but could be used to
4979 * exclude other special cases in the future.
4980 */
4981 cpus_complement(cpu_default_map, cpu_isolated_map);
4982 cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4983
4984 /*
41c7ce9a 4985 * Set up domains. Isolated domains just stay on the NULL domain.
1da177e4
LT
4986 */
4987 for_each_cpu_mask(i, cpu_default_map) {
4988 int group;
4989 struct sched_domain *sd = NULL, *p;
4990 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4991
4992 cpus_and(nodemask, nodemask, cpu_default_map);
4993
4994#ifdef CONFIG_NUMA
4995 sd = &per_cpu(node_domains, i);
4996 group = cpu_to_node_group(i);
4997 *sd = SD_NODE_INIT;
4998 sd->span = cpu_default_map;
4999 sd->groups = &sched_group_nodes[group];
5000#endif
5001
5002 p = sd;
5003 sd = &per_cpu(phys_domains, i);
5004 group = cpu_to_phys_group(i);
5005 *sd = SD_CPU_INIT;
5006 sd->span = nodemask;
5007 sd->parent = p;
5008 sd->groups = &sched_group_phys[group];
5009
5010#ifdef CONFIG_SCHED_SMT
5011 p = sd;
5012 sd = &per_cpu(cpu_domains, i);
5013 group = cpu_to_cpu_group(i);
5014 *sd = SD_SIBLING_INIT;
5015 sd->span = cpu_sibling_map[i];
5016 cpus_and(sd->span, sd->span, cpu_default_map);
5017 sd->parent = p;
5018 sd->groups = &sched_group_cpus[group];
5019#endif
5020 }
5021
5022#ifdef CONFIG_SCHED_SMT
5023 /* Set up CPU (sibling) groups */
5024 for_each_online_cpu(i) {
5025 cpumask_t this_sibling_map = cpu_sibling_map[i];
5026 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
5027 if (i != first_cpu(this_sibling_map))
5028 continue;
5029
5030 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5031 &cpu_to_cpu_group);
5032 }
5033#endif
5034
5035 /* Set up physical groups */
5036 for (i = 0; i < MAX_NUMNODES; i++) {
5037 cpumask_t nodemask = node_to_cpumask(i);
5038
5039 cpus_and(nodemask, nodemask, cpu_default_map);
5040 if (cpus_empty(nodemask))
5041 continue;
5042
5043 init_sched_build_groups(sched_group_phys, nodemask,
5044 &cpu_to_phys_group);
5045 }
5046
5047#ifdef CONFIG_NUMA
5048 /* Set up node groups */
5049 init_sched_build_groups(sched_group_nodes, cpu_default_map,
5050 &cpu_to_node_group);
5051#endif
5052
5053 /* Calculate CPU power for physical packages and nodes */
5054 for_each_cpu_mask(i, cpu_default_map) {
5055 int power;
5056 struct sched_domain *sd;
5057#ifdef CONFIG_SCHED_SMT
5058 sd = &per_cpu(cpu_domains, i);
5059 power = SCHED_LOAD_SCALE;
5060 sd->groups->cpu_power = power;
5061#endif
5062
5063 sd = &per_cpu(phys_domains, i);
5064 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5065 (cpus_weight(sd->groups->cpumask)-1) / 10;
5066 sd->groups->cpu_power = power;
5067
5068#ifdef CONFIG_NUMA
5069 if (i == first_cpu(sd->groups->cpumask)) {
5070 /* Only add "power" once for each physical package. */
5071 sd = &per_cpu(node_domains, i);
5072 sd->groups->cpu_power += power;
5073 }
5074#endif
5075 }
5076
5077 /* Attach the domains */
5078 for_each_online_cpu(i) {
5079 struct sched_domain *sd;
5080#ifdef CONFIG_SCHED_SMT
5081 sd = &per_cpu(cpu_domains, i);
5082#else
5083 sd = &per_cpu(phys_domains, i);
5084#endif
5085 cpu_attach_domain(sd, i);
5086 }
5087}
5088
5089#ifdef CONFIG_HOTPLUG_CPU
5090static void __devinit arch_destroy_sched_domains(void)
5091{
5092 /* Do nothing: everything is statically allocated. */
5093}
5094#endif
5095
5096#endif /* ARCH_HAS_SCHED_DOMAIN */
5097
1da177e4
LT
5098#ifdef CONFIG_HOTPLUG_CPU
5099/*
5100 * Force a reinitialization of the sched domains hierarchy. The domains
5101 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 5102 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
5103 * which will prevent rebalancing while the sched domains are recalculated.
5104 */
5105static int update_sched_domains(struct notifier_block *nfb,
5106 unsigned long action, void *hcpu)
5107{
5108 int i;
5109
5110 switch (action) {
5111 case CPU_UP_PREPARE:
5112 case CPU_DOWN_PREPARE:
5113 for_each_online_cpu(i)
41c7ce9a 5114 cpu_attach_domain(NULL, i);
1da177e4
LT
5115 arch_destroy_sched_domains();
5116 return NOTIFY_OK;
5117
5118 case CPU_UP_CANCELED:
5119 case CPU_DOWN_FAILED:
5120 case CPU_ONLINE:
5121 case CPU_DEAD:
5122 /*
5123 * Fall through and re-initialise the domains.
5124 */
5125 break;
5126 default:
5127 return NOTIFY_DONE;
5128 }
5129
5130 /* The hotplug lock is already held by cpu_up/cpu_down */
5131 arch_init_sched_domains();
5132
5133 return NOTIFY_OK;
5134}
5135#endif
5136
5137void __init sched_init_smp(void)
5138{
5139 lock_cpu_hotplug();
5140 arch_init_sched_domains();
5141 unlock_cpu_hotplug();
5142 /* XXX: Theoretical race here - CPU may be hotplugged now */
5143 hotcpu_notifier(update_sched_domains, 0);
5144}
5145#else
5146void __init sched_init_smp(void)
5147{
5148}
5149#endif /* CONFIG_SMP */
5150
5151int in_sched_functions(unsigned long addr)
5152{
5153 /* Linker adds these: start and end of __sched functions */
5154 extern char __sched_text_start[], __sched_text_end[];
5155 return in_lock_functions(addr) ||
5156 (addr >= (unsigned long)__sched_text_start
5157 && addr < (unsigned long)__sched_text_end);
5158}
5159
5160void __init sched_init(void)
5161{
5162 runqueue_t *rq;
5163 int i, j, k;
5164
5165 for (i = 0; i < NR_CPUS; i++) {
5166 prio_array_t *array;
5167
5168 rq = cpu_rq(i);
5169 spin_lock_init(&rq->lock);
7897986b 5170 rq->nr_running = 0;
1da177e4
LT
5171 rq->active = rq->arrays;
5172 rq->expired = rq->arrays + 1;
5173 rq->best_expired_prio = MAX_PRIO;
5174
5175#ifdef CONFIG_SMP
41c7ce9a 5176 rq->sd = NULL;
7897986b
NP
5177 for (j = 1; j < 3; j++)
5178 rq->cpu_load[j] = 0;
1da177e4
LT
5179 rq->active_balance = 0;
5180 rq->push_cpu = 0;
5181 rq->migration_thread = NULL;
5182 INIT_LIST_HEAD(&rq->migration_queue);
5183#endif
5184 atomic_set(&rq->nr_iowait, 0);
5185
5186 for (j = 0; j < 2; j++) {
5187 array = rq->arrays + j;
5188 for (k = 0; k < MAX_PRIO; k++) {
5189 INIT_LIST_HEAD(array->queue + k);
5190 __clear_bit(k, array->bitmap);
5191 }
5192 // delimiter for bitsearch
5193 __set_bit(MAX_PRIO, array->bitmap);
5194 }
5195 }
5196
5197 /*
5198 * The boot idle thread does lazy MMU switching as well:
5199 */
5200 atomic_inc(&init_mm.mm_count);
5201 enter_lazy_tlb(&init_mm, current);
5202
5203 /*
5204 * Make us the idle thread. Technically, schedule() should not be
5205 * called from this thread, however somewhere below it might be,
5206 * but because we are the idle thread, we just pick up running again
5207 * when this runqueue becomes "idle".
5208 */
5209 init_idle(current, smp_processor_id());
5210}
5211
5212#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5213void __might_sleep(char *file, int line)
5214{
5215#if defined(in_atomic)
5216 static unsigned long prev_jiffy; /* ratelimiting */
5217
5218 if ((in_atomic() || irqs_disabled()) &&
5219 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5220 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5221 return;
5222 prev_jiffy = jiffies;
5223 printk(KERN_ERR "Debug: sleeping function called from invalid"
5224 " context at %s:%d\n", file, line);
5225 printk("in_atomic():%d, irqs_disabled():%d\n",
5226 in_atomic(), irqs_disabled());
5227 dump_stack();
5228 }
5229#endif
5230}
5231EXPORT_SYMBOL(__might_sleep);
5232#endif
5233
5234#ifdef CONFIG_MAGIC_SYSRQ
5235void normalize_rt_tasks(void)
5236{
5237 struct task_struct *p;
5238 prio_array_t *array;
5239 unsigned long flags;
5240 runqueue_t *rq;
5241
5242 read_lock_irq(&tasklist_lock);
5243 for_each_process (p) {
5244 if (!rt_task(p))
5245 continue;
5246
5247 rq = task_rq_lock(p, &flags);
5248
5249 array = p->array;
5250 if (array)
5251 deactivate_task(p, task_rq(p));
5252 __setscheduler(p, SCHED_NORMAL, 0);
5253 if (array) {
5254 __activate_task(p, task_rq(p));
5255 resched_task(rq->curr);
5256 }
5257
5258 task_rq_unlock(rq, &flags);
5259 }
5260 read_unlock_irq(&tasklist_lock);
5261}
5262
5263#endif /* CONFIG_MAGIC_SYSRQ */