sched: refactor try_to_wake_up()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3
SV
308
309/* return group to which a task belongs */
4cf86d77 310static inline struct task_group *task_group(struct task_struct *p)
29f59db3 311{
4cf86d77 312 struct task_group *tg;
9b5b7751 313
7c941438 314#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
24e377a8 317#else
41a2d6cf 318 tg = &init_task_group;
24e377a8 319#endif
9b5b7751 320 return tg;
29f59db3
SV
321}
322
323/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 324static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 325{
8b08ca52
PZ
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
052f1dc7 335#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
052f1dc7 338#endif
6f505b16 339
052f1dc7 340#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 343#endif
8b08ca52 344 rcu_read_unlock();
29f59db3
SV
345}
346
347#else
348
6f505b16 349static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
350static inline struct task_group *task_group(struct task_struct *p)
351{
352 return NULL;
353}
29f59db3 354
7c941438 355#endif /* CONFIG_CGROUP_SCHED */
29f59db3 356
6aa645ea
IM
357/* CFS-related fields in a runqueue */
358struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
6aa645ea 362 u64 exec_clock;
e9acbff6 363 u64 min_vruntime;
6aa645ea
IM
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
4a55bd5e
PZ
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
4793241b 375 struct sched_entity *curr, *next, *last;
ddc97297 376
5ac5c4d6 377 unsigned int nr_spread_over;
ddc97297 378
62160e3f 379#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
41a2d6cf
IM
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
41a2d6cf
IM
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
392
393#ifdef CONFIG_SMP
c09595f6 394 /*
c8cba857 395 * the part of load.weight contributed by tasks
c09595f6 396 */
c8cba857 397 unsigned long task_weight;
c09595f6 398
c8cba857
PZ
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
c09595f6 406
c8cba857
PZ
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
f1d239f7
PZ
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
c09595f6 416#endif
6aa645ea
IM
417#endif
418};
1da177e4 419
6aa645ea
IM
420/* Real-Time classes' related field in a runqueue: */
421struct rt_rq {
422 struct rt_prio_array active;
63489e45 423 unsigned long rt_nr_running;
052f1dc7 424#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
425 struct {
426 int curr; /* highest queued rt task prio */
398a153b 427#ifdef CONFIG_SMP
e864c499 428 int next; /* next highest */
398a153b 429#endif
e864c499 430 } highest_prio;
6f505b16 431#endif
fa85ae24 432#ifdef CONFIG_SMP
73fe6aae 433 unsigned long rt_nr_migratory;
a1ba4d8b 434 unsigned long rt_nr_total;
a22d7fc1 435 int overloaded;
917b627d 436 struct plist_head pushable_tasks;
fa85ae24 437#endif
6f505b16 438 int rt_throttled;
fa85ae24 439 u64 rt_time;
ac086bc2 440 u64 rt_runtime;
ea736ed5 441 /* Nests inside the rq lock: */
0986b11b 442 raw_spinlock_t rt_runtime_lock;
6f505b16 443
052f1dc7 444#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
445 unsigned long rt_nr_boosted;
446
6f505b16
PZ
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
6f505b16 450#endif
6aa645ea
IM
451};
452
57d885fe
GH
453#ifdef CONFIG_SMP
454
455/*
456 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
57d885fe
GH
462 */
463struct root_domain {
464 atomic_t refcount;
c6c4927b
RR
465 cpumask_var_t span;
466 cpumask_var_t online;
637f5085 467
0eab9146 468 /*
637f5085
GH
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
c6c4927b 472 cpumask_var_t rto_mask;
0eab9146 473 atomic_t rto_count;
6e0534f2
GH
474#ifdef CONFIG_SMP
475 struct cpupri cpupri;
476#endif
57d885fe
GH
477};
478
dc938520
GH
479/*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
57d885fe
GH
483static struct root_domain def_root_domain;
484
485#endif
486
1da177e4
LT
487/*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
70b97a7f 494struct rq {
d8016491 495 /* runqueue lock: */
05fa785c 496 raw_spinlock_t lock;
1da177e4
LT
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
6aa645ea
IM
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 505#ifdef CONFIG_NO_HZ
39c0cbe2 506 u64 nohz_stamp;
46cb4b7c
SS
507 unsigned char in_nohz_recently;
508#endif
a64692a3
MG
509 unsigned int skip_clock_update;
510
d8016491
IM
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load;
6aa645ea
IM
513 unsigned long nr_load_updates;
514 u64 nr_switches;
515
516 struct cfs_rq cfs;
6f505b16 517 struct rt_rq rt;
6f505b16 518
6aa645ea 519#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
522#endif
523#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 524 struct list_head leaf_rt_rq_list;
1da177e4 525#endif
1da177e4
LT
526
527 /*
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
532 */
533 unsigned long nr_uninterruptible;
534
36c8b586 535 struct task_struct *curr, *idle;
c9819f45 536 unsigned long next_balance;
1da177e4 537 struct mm_struct *prev_mm;
6aa645ea 538
3e51f33f 539 u64 clock;
6aa645ea 540
1da177e4
LT
541 atomic_t nr_iowait;
542
543#ifdef CONFIG_SMP
0eab9146 544 struct root_domain *rd;
1da177e4
LT
545 struct sched_domain *sd;
546
e51fd5e2
PZ
547 unsigned long cpu_power;
548
a0a522ce 549 unsigned char idle_at_tick;
1da177e4 550 /* For active balancing */
3f029d3c 551 int post_schedule;
1da177e4
LT
552 int active_balance;
553 int push_cpu;
969c7921 554 struct cpu_stop_work active_balance_work;
d8016491
IM
555 /* cpu of this runqueue: */
556 int cpu;
1f11eb6a 557 int online;
1da177e4 558
a8a51d5e 559 unsigned long avg_load_per_task;
1da177e4 560
e9e9250b
PZ
561 u64 rt_avg;
562 u64 age_stamp;
1b9508f6
MG
563 u64 idle_stamp;
564 u64 avg_idle;
1da177e4
LT
565#endif
566
dce48a84
TG
567 /* calc_load related fields */
568 unsigned long calc_load_update;
569 long calc_load_active;
570
8f4d37ec 571#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
572#ifdef CONFIG_SMP
573 int hrtick_csd_pending;
574 struct call_single_data hrtick_csd;
575#endif
8f4d37ec
PZ
576 struct hrtimer hrtick_timer;
577#endif
578
1da177e4
LT
579#ifdef CONFIG_SCHEDSTATS
580 /* latency stats */
581 struct sched_info rq_sched_info;
9c2c4802
KC
582 unsigned long long rq_cpu_time;
583 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
584
585 /* sys_sched_yield() stats */
480b9434 586 unsigned int yld_count;
1da177e4
LT
587
588 /* schedule() stats */
480b9434
KC
589 unsigned int sched_switch;
590 unsigned int sched_count;
591 unsigned int sched_goidle;
1da177e4
LT
592
593 /* try_to_wake_up() stats */
480b9434
KC
594 unsigned int ttwu_count;
595 unsigned int ttwu_local;
b8efb561
IM
596
597 /* BKL stats */
480b9434 598 unsigned int bkl_count;
1da177e4
LT
599#endif
600};
601
f34e3b61 602static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 603
7d478721
PZ
604static inline
605void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 606{
7d478721 607 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
608
609 /*
610 * A queue event has occurred, and we're going to schedule. In
611 * this case, we can save a useless back to back clock update.
612 */
613 if (test_tsk_need_resched(p))
614 rq->skip_clock_update = 1;
dd41f596
IM
615}
616
0a2966b4
CL
617static inline int cpu_of(struct rq *rq)
618{
619#ifdef CONFIG_SMP
620 return rq->cpu;
621#else
622 return 0;
623#endif
624}
625
497f0ab3 626#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
627 rcu_dereference_check((p), \
628 rcu_read_lock_sched_held() || \
629 lockdep_is_held(&sched_domains_mutex))
630
674311d5
NP
631/*
632 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 633 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
634 *
635 * The domain tree of any CPU may only be accessed from within
636 * preempt-disabled sections.
637 */
48f24c4d 638#define for_each_domain(cpu, __sd) \
497f0ab3 639 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
640
641#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
642#define this_rq() (&__get_cpu_var(runqueues))
643#define task_rq(p) cpu_rq(task_cpu(p))
644#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 645#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 646
aa9c4c0f 647inline void update_rq_clock(struct rq *rq)
3e51f33f 648{
a64692a3
MG
649 if (!rq->skip_clock_update)
650 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
651}
652
bf5c91ba
IM
653/*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656#ifdef CONFIG_SCHED_DEBUG
657# define const_debug __read_mostly
658#else
659# define const_debug static const
660#endif
661
017730c1
IM
662/**
663 * runqueue_is_locked
e17b38bf 664 * @cpu: the processor in question.
017730c1
IM
665 *
666 * Returns true if the current cpu runqueue is locked.
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
669 */
89f19f04 670int runqueue_is_locked(int cpu)
017730c1 671{
05fa785c 672 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
673}
674
bf5c91ba
IM
675/*
676 * Debugging: various feature bits
677 */
f00b45c1
PZ
678
679#define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
681
bf5c91ba 682enum {
f00b45c1 683#include "sched_features.h"
bf5c91ba
IM
684};
685
f00b45c1
PZ
686#undef SCHED_FEAT
687
688#define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
690
bf5c91ba 691const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
692#include "sched_features.h"
693 0;
694
695#undef SCHED_FEAT
696
697#ifdef CONFIG_SCHED_DEBUG
698#define SCHED_FEAT(name, enabled) \
699 #name ,
700
983ed7a6 701static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
702#include "sched_features.h"
703 NULL
704};
705
706#undef SCHED_FEAT
707
34f3a814 708static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 709{
f00b45c1
PZ
710 int i;
711
712 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
713 if (!(sysctl_sched_features & (1UL << i)))
714 seq_puts(m, "NO_");
715 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 716 }
34f3a814 717 seq_puts(m, "\n");
f00b45c1 718
34f3a814 719 return 0;
f00b45c1
PZ
720}
721
722static ssize_t
723sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725{
726 char buf[64];
727 char *cmp = buf;
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
738
c24b7c52 739 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 int len = strlen(sched_feat_names[i]);
746
747 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
748 if (neg)
749 sysctl_sched_features &= ~(1UL << i);
750 else
751 sysctl_sched_features |= (1UL << i);
752 break;
753 }
754 }
755
756 if (!sched_feat_names[i])
757 return -EINVAL;
758
42994724 759 *ppos += cnt;
f00b45c1
PZ
760
761 return cnt;
762}
763
34f3a814
LZ
764static int sched_feat_open(struct inode *inode, struct file *filp)
765{
766 return single_open(filp, sched_feat_show, NULL);
767}
768
828c0950 769static const struct file_operations sched_feat_fops = {
34f3a814
LZ
770 .open = sched_feat_open,
771 .write = sched_feat_write,
772 .read = seq_read,
773 .llseek = seq_lseek,
774 .release = single_release,
f00b45c1
PZ
775};
776
777static __init int sched_init_debug(void)
778{
f00b45c1
PZ
779 debugfs_create_file("sched_features", 0644, NULL, NULL,
780 &sched_feat_fops);
781
782 return 0;
783}
784late_initcall(sched_init_debug);
785
786#endif
787
788#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 789
b82d9fdd
PZ
790/*
791 * Number of tasks to iterate in a single balance run.
792 * Limited because this is done with IRQs disabled.
793 */
794const_debug unsigned int sysctl_sched_nr_migrate = 32;
795
2398f2c6
PZ
796/*
797 * ratelimit for updating the group shares.
55cd5340 798 * default: 0.25ms
2398f2c6 799 */
55cd5340 800unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 801unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 802
ffda12a1
PZ
803/*
804 * Inject some fuzzyness into changing the per-cpu group shares
805 * this avoids remote rq-locks at the expense of fairness.
806 * default: 4
807 */
808unsigned int sysctl_sched_shares_thresh = 4;
809
e9e9250b
PZ
810/*
811 * period over which we average the RT time consumption, measured
812 * in ms.
813 *
814 * default: 1s
815 */
816const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
817
fa85ae24 818/*
9f0c1e56 819 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
820 * default: 1s
821 */
9f0c1e56 822unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 823
6892b75e
IM
824static __read_mostly int scheduler_running;
825
9f0c1e56
PZ
826/*
827 * part of the period that we allow rt tasks to run in us.
828 * default: 0.95s
829 */
830int sysctl_sched_rt_runtime = 950000;
fa85ae24 831
d0b27fa7
PZ
832static inline u64 global_rt_period(void)
833{
834 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
835}
836
837static inline u64 global_rt_runtime(void)
838{
e26873bb 839 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
840 return RUNTIME_INF;
841
842 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
843}
fa85ae24 844
1da177e4 845#ifndef prepare_arch_switch
4866cde0
NP
846# define prepare_arch_switch(next) do { } while (0)
847#endif
848#ifndef finish_arch_switch
849# define finish_arch_switch(prev) do { } while (0)
850#endif
851
051a1d1a
DA
852static inline int task_current(struct rq *rq, struct task_struct *p)
853{
854 return rq->curr == p;
855}
856
4866cde0 857#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 858static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 859{
051a1d1a 860 return task_current(rq, p);
4866cde0
NP
861}
862
70b97a7f 863static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
864{
865}
866
70b97a7f 867static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 868{
da04c035
IM
869#ifdef CONFIG_DEBUG_SPINLOCK
870 /* this is a valid case when another task releases the spinlock */
871 rq->lock.owner = current;
872#endif
8a25d5de
IM
873 /*
874 * If we are tracking spinlock dependencies then we have to
875 * fix up the runqueue lock - which gets 'carried over' from
876 * prev into current:
877 */
878 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
879
05fa785c 880 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
881}
882
883#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 884static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
885{
886#ifdef CONFIG_SMP
887 return p->oncpu;
888#else
051a1d1a 889 return task_current(rq, p);
4866cde0
NP
890#endif
891}
892
70b97a7f 893static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
894{
895#ifdef CONFIG_SMP
896 /*
897 * We can optimise this out completely for !SMP, because the
898 * SMP rebalancing from interrupt is the only thing that cares
899 * here.
900 */
901 next->oncpu = 1;
902#endif
903#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 904 raw_spin_unlock_irq(&rq->lock);
4866cde0 905#else
05fa785c 906 raw_spin_unlock(&rq->lock);
4866cde0
NP
907#endif
908}
909
70b97a7f 910static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
911{
912#ifdef CONFIG_SMP
913 /*
914 * After ->oncpu is cleared, the task can be moved to a different CPU.
915 * We must ensure this doesn't happen until the switch is completely
916 * finished.
917 */
918 smp_wmb();
919 prev->oncpu = 0;
920#endif
921#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 local_irq_enable();
1da177e4 923#endif
4866cde0
NP
924}
925#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 926
0970d299 927/*
65cc8e48
PZ
928 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
929 * against ttwu().
0970d299
PZ
930 */
931static inline int task_is_waking(struct task_struct *p)
932{
0017d735 933 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
934}
935
b29739f9
IM
936/*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
70b97a7f 940static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
941 __acquires(rq->lock)
942{
0970d299
PZ
943 struct rq *rq;
944
3a5c359a 945 for (;;) {
0970d299 946 rq = task_rq(p);
05fa785c 947 raw_spin_lock(&rq->lock);
65cc8e48 948 if (likely(rq == task_rq(p)))
3a5c359a 949 return rq;
05fa785c 950 raw_spin_unlock(&rq->lock);
b29739f9 951 }
b29739f9
IM
952}
953
1da177e4
LT
954/*
955 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 956 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
957 * explicitly disabling preemption.
958 */
70b97a7f 959static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
960 __acquires(rq->lock)
961{
70b97a7f 962 struct rq *rq;
1da177e4 963
3a5c359a
AK
964 for (;;) {
965 local_irq_save(*flags);
966 rq = task_rq(p);
05fa785c 967 raw_spin_lock(&rq->lock);
65cc8e48 968 if (likely(rq == task_rq(p)))
3a5c359a 969 return rq;
05fa785c 970 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 971 }
1da177e4
LT
972}
973
a9957449 974static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
975 __releases(rq->lock)
976{
05fa785c 977 raw_spin_unlock(&rq->lock);
b29739f9
IM
978}
979
70b97a7f 980static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
981 __releases(rq->lock)
982{
05fa785c 983 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
984}
985
1da177e4 986/*
cc2a73b5 987 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 988 */
a9957449 989static struct rq *this_rq_lock(void)
1da177e4
LT
990 __acquires(rq->lock)
991{
70b97a7f 992 struct rq *rq;
1da177e4
LT
993
994 local_irq_disable();
995 rq = this_rq();
05fa785c 996 raw_spin_lock(&rq->lock);
1da177e4
LT
997
998 return rq;
999}
1000
8f4d37ec
PZ
1001#ifdef CONFIG_SCHED_HRTICK
1002/*
1003 * Use HR-timers to deliver accurate preemption points.
1004 *
1005 * Its all a bit involved since we cannot program an hrt while holding the
1006 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1007 * reschedule event.
1008 *
1009 * When we get rescheduled we reprogram the hrtick_timer outside of the
1010 * rq->lock.
1011 */
8f4d37ec
PZ
1012
1013/*
1014 * Use hrtick when:
1015 * - enabled by features
1016 * - hrtimer is actually high res
1017 */
1018static inline int hrtick_enabled(struct rq *rq)
1019{
1020 if (!sched_feat(HRTICK))
1021 return 0;
ba42059f 1022 if (!cpu_active(cpu_of(rq)))
b328ca18 1023 return 0;
8f4d37ec
PZ
1024 return hrtimer_is_hres_active(&rq->hrtick_timer);
1025}
1026
8f4d37ec
PZ
1027static void hrtick_clear(struct rq *rq)
1028{
1029 if (hrtimer_active(&rq->hrtick_timer))
1030 hrtimer_cancel(&rq->hrtick_timer);
1031}
1032
8f4d37ec
PZ
1033/*
1034 * High-resolution timer tick.
1035 * Runs from hardirq context with interrupts disabled.
1036 */
1037static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038{
1039 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040
1041 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042
05fa785c 1043 raw_spin_lock(&rq->lock);
3e51f33f 1044 update_rq_clock(rq);
8f4d37ec 1045 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1046 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1047
1048 return HRTIMER_NORESTART;
1049}
1050
95e904c7 1051#ifdef CONFIG_SMP
31656519
PZ
1052/*
1053 * called from hardirq (IPI) context
1054 */
1055static void __hrtick_start(void *arg)
b328ca18 1056{
31656519 1057 struct rq *rq = arg;
b328ca18 1058
05fa785c 1059 raw_spin_lock(&rq->lock);
31656519
PZ
1060 hrtimer_restart(&rq->hrtick_timer);
1061 rq->hrtick_csd_pending = 0;
05fa785c 1062 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1063}
1064
31656519
PZ
1065/*
1066 * Called to set the hrtick timer state.
1067 *
1068 * called with rq->lock held and irqs disabled
1069 */
1070static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1071{
31656519
PZ
1072 struct hrtimer *timer = &rq->hrtick_timer;
1073 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1074
cc584b21 1075 hrtimer_set_expires(timer, time);
31656519
PZ
1076
1077 if (rq == this_rq()) {
1078 hrtimer_restart(timer);
1079 } else if (!rq->hrtick_csd_pending) {
6e275637 1080 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1081 rq->hrtick_csd_pending = 1;
1082 }
b328ca18
PZ
1083}
1084
1085static int
1086hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087{
1088 int cpu = (int)(long)hcpu;
1089
1090 switch (action) {
1091 case CPU_UP_CANCELED:
1092 case CPU_UP_CANCELED_FROZEN:
1093 case CPU_DOWN_PREPARE:
1094 case CPU_DOWN_PREPARE_FROZEN:
1095 case CPU_DEAD:
1096 case CPU_DEAD_FROZEN:
31656519 1097 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1098 return NOTIFY_OK;
1099 }
1100
1101 return NOTIFY_DONE;
1102}
1103
fa748203 1104static __init void init_hrtick(void)
b328ca18
PZ
1105{
1106 hotcpu_notifier(hotplug_hrtick, 0);
1107}
31656519
PZ
1108#else
1109/*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114static void hrtick_start(struct rq *rq, u64 delay)
1115{
7f1e2ca9 1116 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1117 HRTIMER_MODE_REL_PINNED, 0);
31656519 1118}
b328ca18 1119
006c75f1 1120static inline void init_hrtick(void)
8f4d37ec 1121{
8f4d37ec 1122}
31656519 1123#endif /* CONFIG_SMP */
8f4d37ec 1124
31656519 1125static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1126{
31656519
PZ
1127#ifdef CONFIG_SMP
1128 rq->hrtick_csd_pending = 0;
8f4d37ec 1129
31656519
PZ
1130 rq->hrtick_csd.flags = 0;
1131 rq->hrtick_csd.func = __hrtick_start;
1132 rq->hrtick_csd.info = rq;
1133#endif
8f4d37ec 1134
31656519
PZ
1135 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1136 rq->hrtick_timer.function = hrtick;
8f4d37ec 1137}
006c75f1 1138#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1139static inline void hrtick_clear(struct rq *rq)
1140{
1141}
1142
8f4d37ec
PZ
1143static inline void init_rq_hrtick(struct rq *rq)
1144{
1145}
1146
b328ca18
PZ
1147static inline void init_hrtick(void)
1148{
1149}
006c75f1 1150#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1151
c24d20db
IM
1152/*
1153 * resched_task - mark a task 'to be rescheduled now'.
1154 *
1155 * On UP this means the setting of the need_resched flag, on SMP it
1156 * might also involve a cross-CPU call to trigger the scheduler on
1157 * the target CPU.
1158 */
1159#ifdef CONFIG_SMP
1160
1161#ifndef tsk_is_polling
1162#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163#endif
1164
31656519 1165static void resched_task(struct task_struct *p)
c24d20db
IM
1166{
1167 int cpu;
1168
05fa785c 1169 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1170
5ed0cec0 1171 if (test_tsk_need_resched(p))
c24d20db
IM
1172 return;
1173
5ed0cec0 1174 set_tsk_need_resched(p);
c24d20db
IM
1175
1176 cpu = task_cpu(p);
1177 if (cpu == smp_processor_id())
1178 return;
1179
1180 /* NEED_RESCHED must be visible before we test polling */
1181 smp_mb();
1182 if (!tsk_is_polling(p))
1183 smp_send_reschedule(cpu);
1184}
1185
1186static void resched_cpu(int cpu)
1187{
1188 struct rq *rq = cpu_rq(cpu);
1189 unsigned long flags;
1190
05fa785c 1191 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1192 return;
1193 resched_task(cpu_curr(cpu));
05fa785c 1194 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1195}
06d8308c
TG
1196
1197#ifdef CONFIG_NO_HZ
1198/*
1199 * When add_timer_on() enqueues a timer into the timer wheel of an
1200 * idle CPU then this timer might expire before the next timer event
1201 * which is scheduled to wake up that CPU. In case of a completely
1202 * idle system the next event might even be infinite time into the
1203 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1204 * leaves the inner idle loop so the newly added timer is taken into
1205 * account when the CPU goes back to idle and evaluates the timer
1206 * wheel for the next timer event.
1207 */
1208void wake_up_idle_cpu(int cpu)
1209{
1210 struct rq *rq = cpu_rq(cpu);
1211
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /*
1216 * This is safe, as this function is called with the timer
1217 * wheel base lock of (cpu) held. When the CPU is on the way
1218 * to idle and has not yet set rq->curr to idle then it will
1219 * be serialized on the timer wheel base lock and take the new
1220 * timer into account automatically.
1221 */
1222 if (rq->curr != rq->idle)
1223 return;
1224
1225 /*
1226 * We can set TIF_RESCHED on the idle task of the other CPU
1227 * lockless. The worst case is that the other CPU runs the
1228 * idle task through an additional NOOP schedule()
1229 */
5ed0cec0 1230 set_tsk_need_resched(rq->idle);
06d8308c
TG
1231
1232 /* NEED_RESCHED must be visible before we test polling */
1233 smp_mb();
1234 if (!tsk_is_polling(rq->idle))
1235 smp_send_reschedule(cpu);
1236}
39c0cbe2
MG
1237
1238int nohz_ratelimit(int cpu)
1239{
1240 struct rq *rq = cpu_rq(cpu);
1241 u64 diff = rq->clock - rq->nohz_stamp;
1242
1243 rq->nohz_stamp = rq->clock;
1244
1245 return diff < (NSEC_PER_SEC / HZ) >> 1;
1246}
1247
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1262 }
1263}
1264
1265static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266{
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1269}
1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db 1273{
05fa785c 1274 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
e9e9250b
PZ
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280}
6d6bc0ad 1281#endif /* CONFIG_SMP */
c24d20db 1282
45bf76df
IM
1283#if BITS_PER_LONG == 32
1284# define WMULT_CONST (~0UL)
1285#else
1286# define WMULT_CONST (1UL << 32)
1287#endif
1288
1289#define WMULT_SHIFT 32
1290
194081eb
IM
1291/*
1292 * Shift right and round:
1293 */
cf2ab469 1294#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1295
a7be37ac
PZ
1296/*
1297 * delta *= weight / lw
1298 */
cb1c4fc9 1299static unsigned long
45bf76df
IM
1300calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302{
1303 u64 tmp;
1304
7a232e03
LJ
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
45bf76df
IM
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
194081eb 1317 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1319 WMULT_SHIFT/2);
1320 else
cf2ab469 1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1322
ecf691da 1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1327{
1328 lw->weight += inc;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1333{
1334 lw->weight -= dec;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
2dd73a4f
PW
1338/*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
cce7ade8
PZ
1347#define WEIGHT_IDLEPRIO 3
1348#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1349
1350/*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
dd41f596
IM
1361 */
1362static const int prio_to_weight[40] = {
254753dc
IM
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1371};
1372
5714d2de
IM
1373/*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
dd41f596 1380static const u32 prio_to_wmult[40] = {
254753dc
IM
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1389};
2dd73a4f 1390
ef12fefa
BR
1391/* Time spent by the tasks of the cpu accounting group executing in ... */
1392enum cpuacct_stat_index {
1393 CPUACCT_STAT_USER, /* ... user mode */
1394 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1395
1396 CPUACCT_STAT_NSTATS,
1397};
1398
d842de87
SV
1399#ifdef CONFIG_CGROUP_CPUACCT
1400static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1401static void cpuacct_update_stats(struct task_struct *tsk,
1402 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1403#else
1404static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1405static inline void cpuacct_update_stats(struct task_struct *tsk,
1406 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1407#endif
1408
18d95a28
PZ
1409static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1410{
1411 update_load_add(&rq->load, load);
1412}
1413
1414static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1415{
1416 update_load_sub(&rq->load, load);
1417}
1418
7940ca36 1419#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1420typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1421
1422/*
1423 * Iterate the full tree, calling @down when first entering a node and @up when
1424 * leaving it for the final time.
1425 */
eb755805 1426static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1427{
1428 struct task_group *parent, *child;
eb755805 1429 int ret;
c09595f6
PZ
1430
1431 rcu_read_lock();
1432 parent = &root_task_group;
1433down:
eb755805
PZ
1434 ret = (*down)(parent, data);
1435 if (ret)
1436 goto out_unlock;
c09595f6
PZ
1437 list_for_each_entry_rcu(child, &parent->children, siblings) {
1438 parent = child;
1439 goto down;
1440
1441up:
1442 continue;
1443 }
eb755805
PZ
1444 ret = (*up)(parent, data);
1445 if (ret)
1446 goto out_unlock;
c09595f6
PZ
1447
1448 child = parent;
1449 parent = parent->parent;
1450 if (parent)
1451 goto up;
eb755805 1452out_unlock:
c09595f6 1453 rcu_read_unlock();
eb755805
PZ
1454
1455 return ret;
c09595f6
PZ
1456}
1457
eb755805
PZ
1458static int tg_nop(struct task_group *tg, void *data)
1459{
1460 return 0;
c09595f6 1461}
eb755805
PZ
1462#endif
1463
1464#ifdef CONFIG_SMP
f5f08f39
PZ
1465/* Used instead of source_load when we know the type == 0 */
1466static unsigned long weighted_cpuload(const int cpu)
1467{
1468 return cpu_rq(cpu)->load.weight;
1469}
1470
1471/*
1472 * Return a low guess at the load of a migration-source cpu weighted
1473 * according to the scheduling class and "nice" value.
1474 *
1475 * We want to under-estimate the load of migration sources, to
1476 * balance conservatively.
1477 */
1478static unsigned long source_load(int cpu, int type)
1479{
1480 struct rq *rq = cpu_rq(cpu);
1481 unsigned long total = weighted_cpuload(cpu);
1482
1483 if (type == 0 || !sched_feat(LB_BIAS))
1484 return total;
1485
1486 return min(rq->cpu_load[type-1], total);
1487}
1488
1489/*
1490 * Return a high guess at the load of a migration-target cpu weighted
1491 * according to the scheduling class and "nice" value.
1492 */
1493static unsigned long target_load(int cpu, int type)
1494{
1495 struct rq *rq = cpu_rq(cpu);
1496 unsigned long total = weighted_cpuload(cpu);
1497
1498 if (type == 0 || !sched_feat(LB_BIAS))
1499 return total;
1500
1501 return max(rq->cpu_load[type-1], total);
1502}
1503
ae154be1
PZ
1504static unsigned long power_of(int cpu)
1505{
e51fd5e2 1506 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1507}
1508
eb755805
PZ
1509static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1510
1511static unsigned long cpu_avg_load_per_task(int cpu)
1512{
1513 struct rq *rq = cpu_rq(cpu);
af6d596f 1514 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1515
4cd42620
SR
1516 if (nr_running)
1517 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1518 else
1519 rq->avg_load_per_task = 0;
eb755805
PZ
1520
1521 return rq->avg_load_per_task;
1522}
1523
1524#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1525
43cf38eb 1526static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1527
c09595f6
PZ
1528static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1529
1530/*
1531 * Calculate and set the cpu's group shares.
1532 */
34d76c41
PZ
1533static void update_group_shares_cpu(struct task_group *tg, int cpu,
1534 unsigned long sd_shares,
1535 unsigned long sd_rq_weight,
4a6cc4bd 1536 unsigned long *usd_rq_weight)
18d95a28 1537{
34d76c41 1538 unsigned long shares, rq_weight;
a5004278 1539 int boost = 0;
c09595f6 1540
4a6cc4bd 1541 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1542 if (!rq_weight) {
1543 boost = 1;
1544 rq_weight = NICE_0_LOAD;
1545 }
c8cba857 1546
c09595f6 1547 /*
a8af7246
PZ
1548 * \Sum_j shares_j * rq_weight_i
1549 * shares_i = -----------------------------
1550 * \Sum_j rq_weight_j
c09595f6 1551 */
ec4e0e2f 1552 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1553 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1554
ffda12a1
PZ
1555 if (abs(shares - tg->se[cpu]->load.weight) >
1556 sysctl_sched_shares_thresh) {
1557 struct rq *rq = cpu_rq(cpu);
1558 unsigned long flags;
c09595f6 1559
05fa785c 1560 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1561 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1562 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1563 __set_se_shares(tg->se[cpu], shares);
05fa785c 1564 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1565 }
18d95a28 1566}
c09595f6
PZ
1567
1568/*
c8cba857
PZ
1569 * Re-compute the task group their per cpu shares over the given domain.
1570 * This needs to be done in a bottom-up fashion because the rq weight of a
1571 * parent group depends on the shares of its child groups.
c09595f6 1572 */
eb755805 1573static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1574{
cd8ad40d 1575 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1576 unsigned long *usd_rq_weight;
eb755805 1577 struct sched_domain *sd = data;
34d76c41 1578 unsigned long flags;
c8cba857 1579 int i;
c09595f6 1580
34d76c41
PZ
1581 if (!tg->se[0])
1582 return 0;
1583
1584 local_irq_save(flags);
4a6cc4bd 1585 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1586
758b2cdc 1587 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1588 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1589 usd_rq_weight[i] = weight;
34d76c41 1590
cd8ad40d 1591 rq_weight += weight;
ec4e0e2f
KC
1592 /*
1593 * If there are currently no tasks on the cpu pretend there
1594 * is one of average load so that when a new task gets to
1595 * run here it will not get delayed by group starvation.
1596 */
ec4e0e2f
KC
1597 if (!weight)
1598 weight = NICE_0_LOAD;
1599
cd8ad40d 1600 sum_weight += weight;
c8cba857 1601 shares += tg->cfs_rq[i]->shares;
c09595f6 1602 }
c09595f6 1603
cd8ad40d
PZ
1604 if (!rq_weight)
1605 rq_weight = sum_weight;
1606
c8cba857
PZ
1607 if ((!shares && rq_weight) || shares > tg->shares)
1608 shares = tg->shares;
1609
1610 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1611 shares = tg->shares;
c09595f6 1612
758b2cdc 1613 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1614 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1615
1616 local_irq_restore(flags);
eb755805
PZ
1617
1618 return 0;
c09595f6
PZ
1619}
1620
1621/*
c8cba857
PZ
1622 * Compute the cpu's hierarchical load factor for each task group.
1623 * This needs to be done in a top-down fashion because the load of a child
1624 * group is a fraction of its parents load.
c09595f6 1625 */
eb755805 1626static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1627{
c8cba857 1628 unsigned long load;
eb755805 1629 long cpu = (long)data;
c09595f6 1630
c8cba857
PZ
1631 if (!tg->parent) {
1632 load = cpu_rq(cpu)->load.weight;
1633 } else {
1634 load = tg->parent->cfs_rq[cpu]->h_load;
1635 load *= tg->cfs_rq[cpu]->shares;
1636 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1637 }
c09595f6 1638
c8cba857 1639 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1640
eb755805 1641 return 0;
c09595f6
PZ
1642}
1643
c8cba857 1644static void update_shares(struct sched_domain *sd)
4d8d595d 1645{
e7097159
PZ
1646 s64 elapsed;
1647 u64 now;
1648
1649 if (root_task_group_empty())
1650 return;
1651
1652 now = cpu_clock(raw_smp_processor_id());
1653 elapsed = now - sd->last_update;
2398f2c6
PZ
1654
1655 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1656 sd->last_update = now;
eb755805 1657 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1658 }
4d8d595d
PZ
1659}
1660
eb755805 1661static void update_h_load(long cpu)
c09595f6 1662{
e7097159
PZ
1663 if (root_task_group_empty())
1664 return;
1665
eb755805 1666 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1667}
1668
c09595f6
PZ
1669#else
1670
c8cba857 1671static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1672{
1673}
1674
18d95a28
PZ
1675#endif
1676
8f45e2b5
GH
1677#ifdef CONFIG_PREEMPT
1678
b78bb868
PZ
1679static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1680
70574a99 1681/*
8f45e2b5
GH
1682 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1683 * way at the expense of forcing extra atomic operations in all
1684 * invocations. This assures that the double_lock is acquired using the
1685 * same underlying policy as the spinlock_t on this architecture, which
1686 * reduces latency compared to the unfair variant below. However, it
1687 * also adds more overhead and therefore may reduce throughput.
70574a99 1688 */
8f45e2b5
GH
1689static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1690 __releases(this_rq->lock)
1691 __acquires(busiest->lock)
1692 __acquires(this_rq->lock)
1693{
05fa785c 1694 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1695 double_rq_lock(this_rq, busiest);
1696
1697 return 1;
1698}
1699
1700#else
1701/*
1702 * Unfair double_lock_balance: Optimizes throughput at the expense of
1703 * latency by eliminating extra atomic operations when the locks are
1704 * already in proper order on entry. This favors lower cpu-ids and will
1705 * grant the double lock to lower cpus over higher ids under contention,
1706 * regardless of entry order into the function.
1707 */
1708static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1712{
1713 int ret = 0;
1714
05fa785c 1715 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1716 if (busiest < this_rq) {
05fa785c
TG
1717 raw_spin_unlock(&this_rq->lock);
1718 raw_spin_lock(&busiest->lock);
1719 raw_spin_lock_nested(&this_rq->lock,
1720 SINGLE_DEPTH_NESTING);
70574a99
AD
1721 ret = 1;
1722 } else
05fa785c
TG
1723 raw_spin_lock_nested(&busiest->lock,
1724 SINGLE_DEPTH_NESTING);
70574a99
AD
1725 }
1726 return ret;
1727}
1728
8f45e2b5
GH
1729#endif /* CONFIG_PREEMPT */
1730
1731/*
1732 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 */
1734static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1735{
1736 if (unlikely(!irqs_disabled())) {
1737 /* printk() doesn't work good under rq->lock */
05fa785c 1738 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1739 BUG_ON(1);
1740 }
1741
1742 return _double_lock_balance(this_rq, busiest);
1743}
1744
70574a99
AD
1745static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1746 __releases(busiest->lock)
1747{
05fa785c 1748 raw_spin_unlock(&busiest->lock);
70574a99
AD
1749 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1750}
1e3c88bd
PZ
1751
1752/*
1753 * double_rq_lock - safely lock two runqueues
1754 *
1755 * Note this does not disable interrupts like task_rq_lock,
1756 * you need to do so manually before calling.
1757 */
1758static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1759 __acquires(rq1->lock)
1760 __acquires(rq2->lock)
1761{
1762 BUG_ON(!irqs_disabled());
1763 if (rq1 == rq2) {
1764 raw_spin_lock(&rq1->lock);
1765 __acquire(rq2->lock); /* Fake it out ;) */
1766 } else {
1767 if (rq1 < rq2) {
1768 raw_spin_lock(&rq1->lock);
1769 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1770 } else {
1771 raw_spin_lock(&rq2->lock);
1772 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1773 }
1774 }
1e3c88bd
PZ
1775}
1776
1777/*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786{
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792}
1793
18d95a28
PZ
1794#endif
1795
30432094 1796#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1797static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798{
30432094 1799#ifdef CONFIG_SMP
34e83e85
IM
1800 cfs_rq->shares = shares;
1801#endif
1802}
30432094 1803#endif
e7693a36 1804
74f5187a 1805static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1806static void update_sysctl(void);
acb4a848 1807static int get_update_sysctl_factor(void);
dce48a84 1808
cd29fe6f
PZ
1809static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810{
1811 set_task_rq(p, cpu);
1812#ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820#endif
1821}
dce48a84 1822
1e3c88bd 1823static const struct sched_class rt_sched_class;
dd41f596
IM
1824
1825#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1826#define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
dd41f596 1828
1e3c88bd
PZ
1829#include "sched_stats.h"
1830
c09595f6 1831static void inc_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running++;
9c217245
IM
1834}
1835
c09595f6 1836static void dec_nr_running(struct rq *rq)
9c217245
IM
1837{
1838 rq->nr_running--;
9c217245
IM
1839}
1840
45bf76df
IM
1841static void set_load_weight(struct task_struct *p)
1842{
1843 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1844 p->se.load.weight = 0;
1845 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1846 return;
1847 }
45bf76df 1848
dd41f596
IM
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
71f8bd46 1857
dd41f596
IM
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1860}
1861
371fd7e7 1862static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1863{
a64692a3 1864 update_rq_clock(rq);
dd41f596 1865 sched_info_queued(p);
371fd7e7 1866 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1867 p->se.on_rq = 1;
71f8bd46
IM
1868}
1869
371fd7e7 1870static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1871{
a64692a3 1872 update_rq_clock(rq);
46ac22ba 1873 sched_info_dequeued(p);
371fd7e7 1874 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1875 p->se.on_rq = 0;
71f8bd46
IM
1876}
1877
1e3c88bd
PZ
1878/*
1879 * activate_task - move a task to the runqueue.
1880 */
371fd7e7 1881static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1882{
1883 if (task_contributes_to_load(p))
1884 rq->nr_uninterruptible--;
1885
371fd7e7 1886 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1887 inc_nr_running(rq);
1888}
1889
1890/*
1891 * deactivate_task - remove a task from the runqueue.
1892 */
371fd7e7 1893static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1894{
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible++;
1897
371fd7e7 1898 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1899 dec_nr_running(rq);
1900}
1901
1902#include "sched_idletask.c"
1903#include "sched_fair.c"
1904#include "sched_rt.c"
1905#ifdef CONFIG_SCHED_DEBUG
1906# include "sched_debug.c"
1907#endif
1908
14531189 1909/*
dd41f596 1910 * __normal_prio - return the priority that is based on the static prio
14531189 1911 */
14531189
IM
1912static inline int __normal_prio(struct task_struct *p)
1913{
dd41f596 1914 return p->static_prio;
14531189
IM
1915}
1916
b29739f9
IM
1917/*
1918 * Calculate the expected normal priority: i.e. priority
1919 * without taking RT-inheritance into account. Might be
1920 * boosted by interactivity modifiers. Changes upon fork,
1921 * setprio syscalls, and whenever the interactivity
1922 * estimator recalculates.
1923 */
36c8b586 1924static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1925{
1926 int prio;
1927
e05606d3 1928 if (task_has_rt_policy(p))
b29739f9
IM
1929 prio = MAX_RT_PRIO-1 - p->rt_priority;
1930 else
1931 prio = __normal_prio(p);
1932 return prio;
1933}
1934
1935/*
1936 * Calculate the current priority, i.e. the priority
1937 * taken into account by the scheduler. This value might
1938 * be boosted by RT tasks, or might be boosted by
1939 * interactivity modifiers. Will be RT if the task got
1940 * RT-boosted. If not then it returns p->normal_prio.
1941 */
36c8b586 1942static int effective_prio(struct task_struct *p)
b29739f9
IM
1943{
1944 p->normal_prio = normal_prio(p);
1945 /*
1946 * If we are RT tasks or we were boosted to RT priority,
1947 * keep the priority unchanged. Otherwise, update priority
1948 * to the normal priority:
1949 */
1950 if (!rt_prio(p->prio))
1951 return p->normal_prio;
1952 return p->prio;
1953}
1954
1da177e4
LT
1955/**
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1958 */
36c8b586 1959inline int task_curr(const struct task_struct *p)
1da177e4
LT
1960{
1961 return cpu_curr(task_cpu(p)) == p;
1962}
1963
cb469845
SR
1964static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1965 const struct sched_class *prev_class,
1966 int oldprio, int running)
1967{
1968 if (prev_class != p->sched_class) {
1969 if (prev_class->switched_from)
1970 prev_class->switched_from(rq, p, running);
1971 p->sched_class->switched_to(rq, p, running);
1972 } else
1973 p->sched_class->prio_changed(rq, p, oldprio, running);
1974}
1975
1da177e4 1976#ifdef CONFIG_SMP
cc367732
IM
1977/*
1978 * Is this task likely cache-hot:
1979 */
e7693a36 1980static int
cc367732
IM
1981task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1982{
1983 s64 delta;
1984
e6c8fba7
PZ
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1987
f540a608
IM
1988 /*
1989 * Buddy candidates are cache hot:
1990 */
f685ceac 1991 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
1992 (&p->se == cfs_rq_of(&p->se)->next ||
1993 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1994 return 1;
1995
6bc1665b
IM
1996 if (sysctl_sched_migration_cost == -1)
1997 return 1;
1998 if (sysctl_sched_migration_cost == 0)
1999 return 0;
2000
cc367732
IM
2001 delta = now - p->se.exec_start;
2002
2003 return delta < (s64)sysctl_sched_migration_cost;
2004}
2005
dd41f596 2006void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2007{
e2912009
PZ
2008#ifdef CONFIG_SCHED_DEBUG
2009 /*
2010 * We should never call set_task_cpu() on a blocked task,
2011 * ttwu() will sort out the placement.
2012 */
077614ee
PZ
2013 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2014 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2015#endif
2016
de1d7286 2017 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2018
0c69774e
PZ
2019 if (task_cpu(p) != new_cpu) {
2020 p->se.nr_migrations++;
2021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2022 }
dd41f596
IM
2023
2024 __set_task_cpu(p, new_cpu);
c65cc870
IM
2025}
2026
969c7921 2027struct migration_arg {
36c8b586 2028 struct task_struct *task;
1da177e4 2029 int dest_cpu;
70b97a7f 2030};
1da177e4 2031
969c7921
TH
2032static int migration_cpu_stop(void *data);
2033
1da177e4
LT
2034/*
2035 * The task's runqueue lock must be held.
2036 * Returns true if you have to wait for migration thread.
2037 */
969c7921 2038static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2039{
70b97a7f 2040 struct rq *rq = task_rq(p);
1da177e4
LT
2041
2042 /*
2043 * If the task is not on a runqueue (and not running), then
e2912009 2044 * the next wake-up will properly place the task.
1da177e4 2045 */
969c7921 2046 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2047}
2048
2049/*
2050 * wait_task_inactive - wait for a thread to unschedule.
2051 *
85ba2d86
RM
2052 * If @match_state is nonzero, it's the @p->state value just checked and
2053 * not expected to change. If it changes, i.e. @p might have woken up,
2054 * then return zero. When we succeed in waiting for @p to be off its CPU,
2055 * we return a positive number (its total switch count). If a second call
2056 * a short while later returns the same number, the caller can be sure that
2057 * @p has remained unscheduled the whole time.
2058 *
1da177e4
LT
2059 * The caller must ensure that the task *will* unschedule sometime soon,
2060 * else this function might spin for a *long* time. This function can't
2061 * be called with interrupts off, or it may introduce deadlock with
2062 * smp_call_function() if an IPI is sent by the same process we are
2063 * waiting to become inactive.
2064 */
85ba2d86 2065unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2066{
2067 unsigned long flags;
dd41f596 2068 int running, on_rq;
85ba2d86 2069 unsigned long ncsw;
70b97a7f 2070 struct rq *rq;
1da177e4 2071
3a5c359a
AK
2072 for (;;) {
2073 /*
2074 * We do the initial early heuristics without holding
2075 * any task-queue locks at all. We'll only try to get
2076 * the runqueue lock when things look like they will
2077 * work out!
2078 */
2079 rq = task_rq(p);
fa490cfd 2080
3a5c359a
AK
2081 /*
2082 * If the task is actively running on another CPU
2083 * still, just relax and busy-wait without holding
2084 * any locks.
2085 *
2086 * NOTE! Since we don't hold any locks, it's not
2087 * even sure that "rq" stays as the right runqueue!
2088 * But we don't care, since "task_running()" will
2089 * return false if the runqueue has changed and p
2090 * is actually now running somewhere else!
2091 */
85ba2d86
RM
2092 while (task_running(rq, p)) {
2093 if (match_state && unlikely(p->state != match_state))
2094 return 0;
3a5c359a 2095 cpu_relax();
85ba2d86 2096 }
fa490cfd 2097
3a5c359a
AK
2098 /*
2099 * Ok, time to look more closely! We need the rq
2100 * lock now, to be *sure*. If we're wrong, we'll
2101 * just go back and repeat.
2102 */
2103 rq = task_rq_lock(p, &flags);
27a9da65 2104 trace_sched_wait_task(p);
3a5c359a
AK
2105 running = task_running(rq, p);
2106 on_rq = p->se.on_rq;
85ba2d86 2107 ncsw = 0;
f31e11d8 2108 if (!match_state || p->state == match_state)
93dcf55f 2109 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2110 task_rq_unlock(rq, &flags);
fa490cfd 2111
85ba2d86
RM
2112 /*
2113 * If it changed from the expected state, bail out now.
2114 */
2115 if (unlikely(!ncsw))
2116 break;
2117
3a5c359a
AK
2118 /*
2119 * Was it really running after all now that we
2120 * checked with the proper locks actually held?
2121 *
2122 * Oops. Go back and try again..
2123 */
2124 if (unlikely(running)) {
2125 cpu_relax();
2126 continue;
2127 }
fa490cfd 2128
3a5c359a
AK
2129 /*
2130 * It's not enough that it's not actively running,
2131 * it must be off the runqueue _entirely_, and not
2132 * preempted!
2133 *
80dd99b3 2134 * So if it was still runnable (but just not actively
3a5c359a
AK
2135 * running right now), it's preempted, and we should
2136 * yield - it could be a while.
2137 */
2138 if (unlikely(on_rq)) {
2139 schedule_timeout_uninterruptible(1);
2140 continue;
2141 }
fa490cfd 2142
3a5c359a
AK
2143 /*
2144 * Ahh, all good. It wasn't running, and it wasn't
2145 * runnable, which means that it will never become
2146 * running in the future either. We're all done!
2147 */
2148 break;
2149 }
85ba2d86
RM
2150
2151 return ncsw;
1da177e4
LT
2152}
2153
2154/***
2155 * kick_process - kick a running thread to enter/exit the kernel
2156 * @p: the to-be-kicked thread
2157 *
2158 * Cause a process which is running on another CPU to enter
2159 * kernel-mode, without any delay. (to get signals handled.)
2160 *
2161 * NOTE: this function doesnt have to take the runqueue lock,
2162 * because all it wants to ensure is that the remote task enters
2163 * the kernel. If the IPI races and the task has been migrated
2164 * to another CPU then no harm is done and the purpose has been
2165 * achieved as well.
2166 */
36c8b586 2167void kick_process(struct task_struct *p)
1da177e4
LT
2168{
2169 int cpu;
2170
2171 preempt_disable();
2172 cpu = task_cpu(p);
2173 if ((cpu != smp_processor_id()) && task_curr(p))
2174 smp_send_reschedule(cpu);
2175 preempt_enable();
2176}
b43e3521 2177EXPORT_SYMBOL_GPL(kick_process);
476d139c 2178#endif /* CONFIG_SMP */
1da177e4 2179
0793a61d
TG
2180/**
2181 * task_oncpu_function_call - call a function on the cpu on which a task runs
2182 * @p: the task to evaluate
2183 * @func: the function to be called
2184 * @info: the function call argument
2185 *
2186 * Calls the function @func when the task is currently running. This might
2187 * be on the current CPU, which just calls the function directly
2188 */
2189void task_oncpu_function_call(struct task_struct *p,
2190 void (*func) (void *info), void *info)
2191{
2192 int cpu;
2193
2194 preempt_disable();
2195 cpu = task_cpu(p);
2196 if (task_curr(p))
2197 smp_call_function_single(cpu, func, info, 1);
2198 preempt_enable();
2199}
2200
970b13ba 2201#ifdef CONFIG_SMP
30da688e
ON
2202/*
2203 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2204 */
5da9a0fb
PZ
2205static int select_fallback_rq(int cpu, struct task_struct *p)
2206{
2207 int dest_cpu;
2208 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2209
2210 /* Look for allowed, online CPU in same node. */
2211 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2213 return dest_cpu;
2214
2215 /* Any allowed, online CPU? */
2216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2217 if (dest_cpu < nr_cpu_ids)
2218 return dest_cpu;
2219
2220 /* No more Mr. Nice Guy. */
897f0b3c 2221 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2222 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2223 /*
2224 * Don't tell them about moving exiting tasks or
2225 * kernel threads (both mm NULL), since they never
2226 * leave kernel.
2227 */
2228 if (p->mm && printk_ratelimit()) {
2229 printk(KERN_INFO "process %d (%s) no "
2230 "longer affine to cpu%d\n",
2231 task_pid_nr(p), p->comm, cpu);
2232 }
2233 }
2234
2235 return dest_cpu;
2236}
2237
e2912009 2238/*
30da688e 2239 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2240 */
970b13ba 2241static inline
0017d735 2242int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2243{
0017d735 2244 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2245
2246 /*
2247 * In order not to call set_task_cpu() on a blocking task we need
2248 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * cpu.
2250 *
2251 * Since this is common to all placement strategies, this lives here.
2252 *
2253 * [ this allows ->select_task() to simply return task_cpu(p) and
2254 * not worry about this generic constraint ]
2255 */
2256 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2257 !cpu_online(cpu)))
5da9a0fb 2258 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2259
2260 return cpu;
970b13ba 2261}
09a40af5
MG
2262
2263static void update_avg(u64 *avg, u64 sample)
2264{
2265 s64 diff = sample - *avg;
2266 *avg += diff >> 3;
2267}
970b13ba
PZ
2268#endif
2269
9ed3811a
TH
2270static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2271 bool is_sync, bool is_migrate, bool is_local,
2272 unsigned long en_flags)
2273{
2274 schedstat_inc(p, se.statistics.nr_wakeups);
2275 if (is_sync)
2276 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2277 if (is_migrate)
2278 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2279 if (is_local)
2280 schedstat_inc(p, se.statistics.nr_wakeups_local);
2281 else
2282 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2283
2284 activate_task(rq, p, en_flags);
2285}
2286
2287static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2288 int wake_flags, bool success)
2289{
2290 trace_sched_wakeup(p, success);
2291 check_preempt_curr(rq, p, wake_flags);
2292
2293 p->state = TASK_RUNNING;
2294#ifdef CONFIG_SMP
2295 if (p->sched_class->task_woken)
2296 p->sched_class->task_woken(rq, p);
2297
2298 if (unlikely(rq->idle_stamp)) {
2299 u64 delta = rq->clock - rq->idle_stamp;
2300 u64 max = 2*sysctl_sched_migration_cost;
2301
2302 if (delta > max)
2303 rq->avg_idle = max;
2304 else
2305 update_avg(&rq->avg_idle, delta);
2306 rq->idle_stamp = 0;
2307 }
2308#endif
2309}
2310
2311/**
1da177e4 2312 * try_to_wake_up - wake up a thread
9ed3811a 2313 * @p: the thread to be awakened
1da177e4 2314 * @state: the mask of task states that can be woken
9ed3811a 2315 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2316 *
2317 * Put it on the run-queue if it's not already there. The "current"
2318 * thread is always on the run-queue (except when the actual
2319 * re-schedule is in progress), and as such you're allowed to do
2320 * the simpler "current->state = TASK_RUNNING" to mark yourself
2321 * runnable without the overhead of this.
2322 *
9ed3811a
TH
2323 * Returns %true if @p was woken up, %false if it was already running
2324 * or @state didn't match @p's state.
1da177e4 2325 */
7d478721
PZ
2326static int try_to_wake_up(struct task_struct *p, unsigned int state,
2327 int wake_flags)
1da177e4 2328{
cc367732 2329 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2330 unsigned long flags;
371fd7e7 2331 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2332 struct rq *rq;
1da177e4 2333
e9c84311 2334 this_cpu = get_cpu();
2398f2c6 2335
04e2f174 2336 smp_wmb();
ab3b3aa5 2337 rq = task_rq_lock(p, &flags);
e9c84311 2338 if (!(p->state & state))
1da177e4
LT
2339 goto out;
2340
dd41f596 2341 if (p->se.on_rq)
1da177e4
LT
2342 goto out_running;
2343
2344 cpu = task_cpu(p);
cc367732 2345 orig_cpu = cpu;
1da177e4
LT
2346
2347#ifdef CONFIG_SMP
2348 if (unlikely(task_running(rq, p)))
2349 goto out_activate;
2350
e9c84311
PZ
2351 /*
2352 * In order to handle concurrent wakeups and release the rq->lock
2353 * we put the task in TASK_WAKING state.
eb24073b
IM
2354 *
2355 * First fix up the nr_uninterruptible count:
e9c84311 2356 */
cc87f76a
PZ
2357 if (task_contributes_to_load(p)) {
2358 if (likely(cpu_online(orig_cpu)))
2359 rq->nr_uninterruptible--;
2360 else
2361 this_rq()->nr_uninterruptible--;
2362 }
e9c84311 2363 p->state = TASK_WAKING;
efbbd05a 2364
371fd7e7 2365 if (p->sched_class->task_waking) {
efbbd05a 2366 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2367 en_flags |= ENQUEUE_WAKING;
2368 }
efbbd05a 2369
0017d735
PZ
2370 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2371 if (cpu != orig_cpu)
5d2f5a61 2372 set_task_cpu(p, cpu);
0017d735 2373 __task_rq_unlock(rq);
ab19cb23 2374
0970d299
PZ
2375 rq = cpu_rq(cpu);
2376 raw_spin_lock(&rq->lock);
f5dc3753 2377
0970d299
PZ
2378 /*
2379 * We migrated the task without holding either rq->lock, however
2380 * since the task is not on the task list itself, nobody else
2381 * will try and migrate the task, hence the rq should match the
2382 * cpu we just moved it to.
2383 */
2384 WARN_ON(task_cpu(p) != cpu);
e9c84311 2385 WARN_ON(p->state != TASK_WAKING);
1da177e4 2386
e7693a36
GH
2387#ifdef CONFIG_SCHEDSTATS
2388 schedstat_inc(rq, ttwu_count);
2389 if (cpu == this_cpu)
2390 schedstat_inc(rq, ttwu_local);
2391 else {
2392 struct sched_domain *sd;
2393 for_each_domain(this_cpu, sd) {
758b2cdc 2394 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2395 schedstat_inc(sd, ttwu_wake_remote);
2396 break;
2397 }
2398 }
2399 }
6d6bc0ad 2400#endif /* CONFIG_SCHEDSTATS */
e7693a36 2401
1da177e4
LT
2402out_activate:
2403#endif /* CONFIG_SMP */
9ed3811a
TH
2404 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2405 cpu == this_cpu, en_flags);
1da177e4 2406 success = 1;
1da177e4 2407out_running:
9ed3811a 2408 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2409out:
2410 task_rq_unlock(rq, &flags);
e9c84311 2411 put_cpu();
1da177e4
LT
2412
2413 return success;
2414}
2415
50fa610a
DH
2416/**
2417 * wake_up_process - Wake up a specific process
2418 * @p: The process to be woken up.
2419 *
2420 * Attempt to wake up the nominated process and move it to the set of runnable
2421 * processes. Returns 1 if the process was woken up, 0 if it was already
2422 * running.
2423 *
2424 * It may be assumed that this function implies a write memory barrier before
2425 * changing the task state if and only if any tasks are woken up.
2426 */
7ad5b3a5 2427int wake_up_process(struct task_struct *p)
1da177e4 2428{
d9514f6c 2429 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2430}
1da177e4
LT
2431EXPORT_SYMBOL(wake_up_process);
2432
7ad5b3a5 2433int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2434{
2435 return try_to_wake_up(p, state, 0);
2436}
2437
1da177e4
LT
2438/*
2439 * Perform scheduler related setup for a newly forked process p.
2440 * p is forked by current.
dd41f596
IM
2441 *
2442 * __sched_fork() is basic setup used by init_idle() too:
2443 */
2444static void __sched_fork(struct task_struct *p)
2445{
dd41f596
IM
2446 p->se.exec_start = 0;
2447 p->se.sum_exec_runtime = 0;
f6cf891c 2448 p->se.prev_sum_exec_runtime = 0;
6c594c21 2449 p->se.nr_migrations = 0;
6cfb0d5d
IM
2450
2451#ifdef CONFIG_SCHEDSTATS
41acab88 2452 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2453#endif
476d139c 2454
fa717060 2455 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2456 p->se.on_rq = 0;
4a55bd5e 2457 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2458
e107be36
AK
2459#ifdef CONFIG_PREEMPT_NOTIFIERS
2460 INIT_HLIST_HEAD(&p->preempt_notifiers);
2461#endif
dd41f596
IM
2462}
2463
2464/*
2465 * fork()/clone()-time setup:
2466 */
2467void sched_fork(struct task_struct *p, int clone_flags)
2468{
2469 int cpu = get_cpu();
2470
2471 __sched_fork(p);
06b83b5f 2472 /*
0017d735 2473 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2474 * nobody will actually run it, and a signal or other external
2475 * event cannot wake it up and insert it on the runqueue either.
2476 */
0017d735 2477 p->state = TASK_RUNNING;
dd41f596 2478
b9dc29e7
MG
2479 /*
2480 * Revert to default priority/policy on fork if requested.
2481 */
2482 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2483 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2484 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2485 p->normal_prio = p->static_prio;
2486 }
b9dc29e7 2487
6c697bdf
MG
2488 if (PRIO_TO_NICE(p->static_prio) < 0) {
2489 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2490 p->normal_prio = p->static_prio;
6c697bdf
MG
2491 set_load_weight(p);
2492 }
2493
b9dc29e7
MG
2494 /*
2495 * We don't need the reset flag anymore after the fork. It has
2496 * fulfilled its duty:
2497 */
2498 p->sched_reset_on_fork = 0;
2499 }
ca94c442 2500
f83f9ac2
PW
2501 /*
2502 * Make sure we do not leak PI boosting priority to the child.
2503 */
2504 p->prio = current->normal_prio;
2505
2ddbf952
HS
2506 if (!rt_prio(p->prio))
2507 p->sched_class = &fair_sched_class;
b29739f9 2508
cd29fe6f
PZ
2509 if (p->sched_class->task_fork)
2510 p->sched_class->task_fork(p);
2511
5f3edc1b
PZ
2512 set_task_cpu(p, cpu);
2513
52f17b6c 2514#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2515 if (likely(sched_info_on()))
52f17b6c 2516 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2517#endif
d6077cb8 2518#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2519 p->oncpu = 0;
2520#endif
1da177e4 2521#ifdef CONFIG_PREEMPT
4866cde0 2522 /* Want to start with kernel preemption disabled. */
a1261f54 2523 task_thread_info(p)->preempt_count = 1;
1da177e4 2524#endif
917b627d
GH
2525 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2526
476d139c 2527 put_cpu();
1da177e4
LT
2528}
2529
2530/*
2531 * wake_up_new_task - wake up a newly created task for the first time.
2532 *
2533 * This function will do some initial scheduler statistics housekeeping
2534 * that must be done for every newly created context, then puts the task
2535 * on the runqueue and wakes it.
2536 */
7ad5b3a5 2537void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2538{
2539 unsigned long flags;
dd41f596 2540 struct rq *rq;
c890692b 2541 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2542
2543#ifdef CONFIG_SMP
0017d735
PZ
2544 rq = task_rq_lock(p, &flags);
2545 p->state = TASK_WAKING;
2546
fabf318e
PZ
2547 /*
2548 * Fork balancing, do it here and not earlier because:
2549 * - cpus_allowed can change in the fork path
2550 * - any previously selected cpu might disappear through hotplug
2551 *
0017d735
PZ
2552 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2553 * without people poking at ->cpus_allowed.
fabf318e 2554 */
0017d735 2555 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2556 set_task_cpu(p, cpu);
1da177e4 2557
06b83b5f 2558 p->state = TASK_RUNNING;
0017d735
PZ
2559 task_rq_unlock(rq, &flags);
2560#endif
2561
2562 rq = task_rq_lock(p, &flags);
cd29fe6f 2563 activate_task(rq, p, 0);
27a9da65 2564 trace_sched_wakeup_new(p, 1);
a7558e01 2565 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2566#ifdef CONFIG_SMP
efbbd05a
PZ
2567 if (p->sched_class->task_woken)
2568 p->sched_class->task_woken(rq, p);
9a897c5a 2569#endif
dd41f596 2570 task_rq_unlock(rq, &flags);
fabf318e 2571 put_cpu();
1da177e4
LT
2572}
2573
e107be36
AK
2574#ifdef CONFIG_PREEMPT_NOTIFIERS
2575
2576/**
80dd99b3 2577 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2578 * @notifier: notifier struct to register
e107be36
AK
2579 */
2580void preempt_notifier_register(struct preempt_notifier *notifier)
2581{
2582 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2583}
2584EXPORT_SYMBOL_GPL(preempt_notifier_register);
2585
2586/**
2587 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2588 * @notifier: notifier struct to unregister
e107be36
AK
2589 *
2590 * This is safe to call from within a preemption notifier.
2591 */
2592void preempt_notifier_unregister(struct preempt_notifier *notifier)
2593{
2594 hlist_del(&notifier->link);
2595}
2596EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2597
2598static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2599{
2600 struct preempt_notifier *notifier;
2601 struct hlist_node *node;
2602
2603 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2604 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2605}
2606
2607static void
2608fire_sched_out_preempt_notifiers(struct task_struct *curr,
2609 struct task_struct *next)
2610{
2611 struct preempt_notifier *notifier;
2612 struct hlist_node *node;
2613
2614 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2615 notifier->ops->sched_out(notifier, next);
2616}
2617
6d6bc0ad 2618#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2619
2620static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2621{
2622}
2623
2624static void
2625fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2627{
2628}
2629
6d6bc0ad 2630#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2631
4866cde0
NP
2632/**
2633 * prepare_task_switch - prepare to switch tasks
2634 * @rq: the runqueue preparing to switch
421cee29 2635 * @prev: the current task that is being switched out
4866cde0
NP
2636 * @next: the task we are going to switch to.
2637 *
2638 * This is called with the rq lock held and interrupts off. It must
2639 * be paired with a subsequent finish_task_switch after the context
2640 * switch.
2641 *
2642 * prepare_task_switch sets up locking and calls architecture specific
2643 * hooks.
2644 */
e107be36
AK
2645static inline void
2646prepare_task_switch(struct rq *rq, struct task_struct *prev,
2647 struct task_struct *next)
4866cde0 2648{
e107be36 2649 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2650 prepare_lock_switch(rq, next);
2651 prepare_arch_switch(next);
2652}
2653
1da177e4
LT
2654/**
2655 * finish_task_switch - clean up after a task-switch
344babaa 2656 * @rq: runqueue associated with task-switch
1da177e4
LT
2657 * @prev: the thread we just switched away from.
2658 *
4866cde0
NP
2659 * finish_task_switch must be called after the context switch, paired
2660 * with a prepare_task_switch call before the context switch.
2661 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2662 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2663 *
2664 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2665 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2666 * with the lock held can cause deadlocks; see schedule() for
2667 * details.)
2668 */
a9957449 2669static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2670 __releases(rq->lock)
2671{
1da177e4 2672 struct mm_struct *mm = rq->prev_mm;
55a101f8 2673 long prev_state;
1da177e4
LT
2674
2675 rq->prev_mm = NULL;
2676
2677 /*
2678 * A task struct has one reference for the use as "current".
c394cc9f 2679 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2680 * schedule one last time. The schedule call will never return, and
2681 * the scheduled task must drop that reference.
c394cc9f 2682 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2683 * still held, otherwise prev could be scheduled on another cpu, die
2684 * there before we look at prev->state, and then the reference would
2685 * be dropped twice.
2686 * Manfred Spraul <manfred@colorfullife.com>
2687 */
55a101f8 2688 prev_state = prev->state;
4866cde0 2689 finish_arch_switch(prev);
8381f65d
JI
2690#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2691 local_irq_disable();
2692#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2693 perf_event_task_sched_in(current);
8381f65d
JI
2694#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2695 local_irq_enable();
2696#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2697 finish_lock_switch(rq, prev);
e8fa1362 2698
e107be36 2699 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2700 if (mm)
2701 mmdrop(mm);
c394cc9f 2702 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2703 /*
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
9761eea8 2706 */
c6fd91f0 2707 kprobe_flush_task(prev);
1da177e4 2708 put_task_struct(prev);
c6fd91f0 2709 }
1da177e4
LT
2710}
2711
3f029d3c
GH
2712#ifdef CONFIG_SMP
2713
2714/* assumes rq->lock is held */
2715static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2716{
2717 if (prev->sched_class->pre_schedule)
2718 prev->sched_class->pre_schedule(rq, prev);
2719}
2720
2721/* rq->lock is NOT held, but preemption is disabled */
2722static inline void post_schedule(struct rq *rq)
2723{
2724 if (rq->post_schedule) {
2725 unsigned long flags;
2726
05fa785c 2727 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2728 if (rq->curr->sched_class->post_schedule)
2729 rq->curr->sched_class->post_schedule(rq);
05fa785c 2730 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2731
2732 rq->post_schedule = 0;
2733 }
2734}
2735
2736#else
da19ab51 2737
3f029d3c
GH
2738static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2739{
2740}
2741
2742static inline void post_schedule(struct rq *rq)
2743{
1da177e4
LT
2744}
2745
3f029d3c
GH
2746#endif
2747
1da177e4
LT
2748/**
2749 * schedule_tail - first thing a freshly forked thread must call.
2750 * @prev: the thread we just switched away from.
2751 */
36c8b586 2752asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2753 __releases(rq->lock)
2754{
70b97a7f
IM
2755 struct rq *rq = this_rq();
2756
4866cde0 2757 finish_task_switch(rq, prev);
da19ab51 2758
3f029d3c
GH
2759 /*
2760 * FIXME: do we need to worry about rq being invalidated by the
2761 * task_switch?
2762 */
2763 post_schedule(rq);
70b97a7f 2764
4866cde0
NP
2765#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2766 /* In this case, finish_task_switch does not reenable preemption */
2767 preempt_enable();
2768#endif
1da177e4 2769 if (current->set_child_tid)
b488893a 2770 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2771}
2772
2773/*
2774 * context_switch - switch to the new MM and the new
2775 * thread's register state.
2776 */
dd41f596 2777static inline void
70b97a7f 2778context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2779 struct task_struct *next)
1da177e4 2780{
dd41f596 2781 struct mm_struct *mm, *oldmm;
1da177e4 2782
e107be36 2783 prepare_task_switch(rq, prev, next);
27a9da65 2784 trace_sched_switch(prev, next);
dd41f596
IM
2785 mm = next->mm;
2786 oldmm = prev->active_mm;
9226d125
ZA
2787 /*
2788 * For paravirt, this is coupled with an exit in switch_to to
2789 * combine the page table reload and the switch backend into
2790 * one hypercall.
2791 */
224101ed 2792 arch_start_context_switch(prev);
9226d125 2793
710390d9 2794 if (likely(!mm)) {
1da177e4
LT
2795 next->active_mm = oldmm;
2796 atomic_inc(&oldmm->mm_count);
2797 enter_lazy_tlb(oldmm, next);
2798 } else
2799 switch_mm(oldmm, mm, next);
2800
710390d9 2801 if (likely(!prev->mm)) {
1da177e4 2802 prev->active_mm = NULL;
1da177e4
LT
2803 rq->prev_mm = oldmm;
2804 }
3a5f5e48
IM
2805 /*
2806 * Since the runqueue lock will be released by the next
2807 * task (which is an invalid locking op but in the case
2808 * of the scheduler it's an obvious special-case), so we
2809 * do an early lockdep release here:
2810 */
2811#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2812 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2813#endif
1da177e4
LT
2814
2815 /* Here we just switch the register state and the stack. */
2816 switch_to(prev, next, prev);
2817
dd41f596
IM
2818 barrier();
2819 /*
2820 * this_rq must be evaluated again because prev may have moved
2821 * CPUs since it called schedule(), thus the 'rq' on its stack
2822 * frame will be invalid.
2823 */
2824 finish_task_switch(this_rq(), prev);
1da177e4
LT
2825}
2826
2827/*
2828 * nr_running, nr_uninterruptible and nr_context_switches:
2829 *
2830 * externally visible scheduler statistics: current number of runnable
2831 * threads, current number of uninterruptible-sleeping threads, total
2832 * number of context switches performed since bootup.
2833 */
2834unsigned long nr_running(void)
2835{
2836 unsigned long i, sum = 0;
2837
2838 for_each_online_cpu(i)
2839 sum += cpu_rq(i)->nr_running;
2840
2841 return sum;
f711f609 2842}
1da177e4
LT
2843
2844unsigned long nr_uninterruptible(void)
f711f609 2845{
1da177e4 2846 unsigned long i, sum = 0;
f711f609 2847
0a945022 2848 for_each_possible_cpu(i)
1da177e4 2849 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2850
2851 /*
1da177e4
LT
2852 * Since we read the counters lockless, it might be slightly
2853 * inaccurate. Do not allow it to go below zero though:
f711f609 2854 */
1da177e4
LT
2855 if (unlikely((long)sum < 0))
2856 sum = 0;
f711f609 2857
1da177e4 2858 return sum;
f711f609 2859}
f711f609 2860
1da177e4 2861unsigned long long nr_context_switches(void)
46cb4b7c 2862{
cc94abfc
SR
2863 int i;
2864 unsigned long long sum = 0;
46cb4b7c 2865
0a945022 2866 for_each_possible_cpu(i)
1da177e4 2867 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2868
1da177e4
LT
2869 return sum;
2870}
483b4ee6 2871
1da177e4
LT
2872unsigned long nr_iowait(void)
2873{
2874 unsigned long i, sum = 0;
483b4ee6 2875
0a945022 2876 for_each_possible_cpu(i)
1da177e4 2877 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2878
1da177e4
LT
2879 return sum;
2880}
483b4ee6 2881
69d25870
AV
2882unsigned long nr_iowait_cpu(void)
2883{
2884 struct rq *this = this_rq();
2885 return atomic_read(&this->nr_iowait);
2886}
46cb4b7c 2887
69d25870
AV
2888unsigned long this_cpu_load(void)
2889{
2890 struct rq *this = this_rq();
2891 return this->cpu_load[0];
2892}
e790fb0b 2893
46cb4b7c 2894
dce48a84
TG
2895/* Variables and functions for calc_load */
2896static atomic_long_t calc_load_tasks;
2897static unsigned long calc_load_update;
2898unsigned long avenrun[3];
2899EXPORT_SYMBOL(avenrun);
46cb4b7c 2900
74f5187a
PZ
2901static long calc_load_fold_active(struct rq *this_rq)
2902{
2903 long nr_active, delta = 0;
2904
2905 nr_active = this_rq->nr_running;
2906 nr_active += (long) this_rq->nr_uninterruptible;
2907
2908 if (nr_active != this_rq->calc_load_active) {
2909 delta = nr_active - this_rq->calc_load_active;
2910 this_rq->calc_load_active = nr_active;
2911 }
2912
2913 return delta;
2914}
2915
2916#ifdef CONFIG_NO_HZ
2917/*
2918 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2919 *
2920 * When making the ILB scale, we should try to pull this in as well.
2921 */
2922static atomic_long_t calc_load_tasks_idle;
2923
2924static void calc_load_account_idle(struct rq *this_rq)
2925{
2926 long delta;
2927
2928 delta = calc_load_fold_active(this_rq);
2929 if (delta)
2930 atomic_long_add(delta, &calc_load_tasks_idle);
2931}
2932
2933static long calc_load_fold_idle(void)
2934{
2935 long delta = 0;
2936
2937 /*
2938 * Its got a race, we don't care...
2939 */
2940 if (atomic_long_read(&calc_load_tasks_idle))
2941 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2942
2943 return delta;
2944}
2945#else
2946static void calc_load_account_idle(struct rq *this_rq)
2947{
2948}
2949
2950static inline long calc_load_fold_idle(void)
2951{
2952 return 0;
2953}
2954#endif
2955
2d02494f
TG
2956/**
2957 * get_avenrun - get the load average array
2958 * @loads: pointer to dest load array
2959 * @offset: offset to add
2960 * @shift: shift count to shift the result left
2961 *
2962 * These values are estimates at best, so no need for locking.
2963 */
2964void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2965{
2966 loads[0] = (avenrun[0] + offset) << shift;
2967 loads[1] = (avenrun[1] + offset) << shift;
2968 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2969}
46cb4b7c 2970
dce48a84
TG
2971static unsigned long
2972calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2973{
dce48a84
TG
2974 load *= exp;
2975 load += active * (FIXED_1 - exp);
2976 return load >> FSHIFT;
2977}
46cb4b7c
SS
2978
2979/*
dce48a84
TG
2980 * calc_load - update the avenrun load estimates 10 ticks after the
2981 * CPUs have updated calc_load_tasks.
7835b98b 2982 */
dce48a84 2983void calc_global_load(void)
7835b98b 2984{
dce48a84
TG
2985 unsigned long upd = calc_load_update + 10;
2986 long active;
1da177e4 2987
dce48a84
TG
2988 if (time_before(jiffies, upd))
2989 return;
1da177e4 2990
dce48a84
TG
2991 active = atomic_long_read(&calc_load_tasks);
2992 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2993
dce48a84
TG
2994 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2995 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2996 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2997
dce48a84
TG
2998 calc_load_update += LOAD_FREQ;
2999}
1da177e4 3000
dce48a84 3001/*
74f5187a
PZ
3002 * Called from update_cpu_load() to periodically update this CPU's
3003 * active count.
dce48a84
TG
3004 */
3005static void calc_load_account_active(struct rq *this_rq)
3006{
74f5187a 3007 long delta;
08c183f3 3008
74f5187a
PZ
3009 if (time_before(jiffies, this_rq->calc_load_update))
3010 return;
783609c6 3011
74f5187a
PZ
3012 delta = calc_load_fold_active(this_rq);
3013 delta += calc_load_fold_idle();
3014 if (delta)
dce48a84 3015 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3016
3017 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3018}
3019
3020/*
dd41f596
IM
3021 * Update rq->cpu_load[] statistics. This function is usually called every
3022 * scheduler tick (TICK_NSEC).
46cb4b7c 3023 */
dd41f596 3024static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3025{
495eca49 3026 unsigned long this_load = this_rq->load.weight;
dd41f596 3027 int i, scale;
46cb4b7c 3028
dd41f596 3029 this_rq->nr_load_updates++;
46cb4b7c 3030
dd41f596
IM
3031 /* Update our load: */
3032 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3033 unsigned long old_load, new_load;
7d1e6a9b 3034
dd41f596 3035 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3036
dd41f596
IM
3037 old_load = this_rq->cpu_load[i];
3038 new_load = this_load;
a25707f3
IM
3039 /*
3040 * Round up the averaging division if load is increasing. This
3041 * prevents us from getting stuck on 9 if the load is 10, for
3042 * example.
3043 */
3044 if (new_load > old_load)
3045 new_load += scale-1;
dd41f596
IM
3046 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3047 }
46cb4b7c 3048
74f5187a 3049 calc_load_account_active(this_rq);
46cb4b7c
SS
3050}
3051
dd41f596 3052#ifdef CONFIG_SMP
8a0be9ef 3053
46cb4b7c 3054/*
38022906
PZ
3055 * sched_exec - execve() is a valuable balancing opportunity, because at
3056 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3057 */
38022906 3058void sched_exec(void)
46cb4b7c 3059{
38022906 3060 struct task_struct *p = current;
1da177e4 3061 unsigned long flags;
70b97a7f 3062 struct rq *rq;
0017d735 3063 int dest_cpu;
46cb4b7c 3064
1da177e4 3065 rq = task_rq_lock(p, &flags);
0017d735
PZ
3066 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3067 if (dest_cpu == smp_processor_id())
3068 goto unlock;
38022906 3069
46cb4b7c 3070 /*
38022906 3071 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3072 */
30da688e 3073 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3074 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3075 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3076
1da177e4 3077 task_rq_unlock(rq, &flags);
969c7921 3078 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3079 return;
3080 }
0017d735 3081unlock:
1da177e4 3082 task_rq_unlock(rq, &flags);
1da177e4 3083}
dd41f596 3084
1da177e4
LT
3085#endif
3086
1da177e4
LT
3087DEFINE_PER_CPU(struct kernel_stat, kstat);
3088
3089EXPORT_PER_CPU_SYMBOL(kstat);
3090
3091/*
c5f8d995 3092 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3093 * @p in case that task is currently running.
c5f8d995
HS
3094 *
3095 * Called with task_rq_lock() held on @rq.
1da177e4 3096 */
c5f8d995
HS
3097static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3098{
3099 u64 ns = 0;
3100
3101 if (task_current(rq, p)) {
3102 update_rq_clock(rq);
3103 ns = rq->clock - p->se.exec_start;
3104 if ((s64)ns < 0)
3105 ns = 0;
3106 }
3107
3108 return ns;
3109}
3110
bb34d92f 3111unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3112{
1da177e4 3113 unsigned long flags;
41b86e9c 3114 struct rq *rq;
bb34d92f 3115 u64 ns = 0;
48f24c4d 3116
41b86e9c 3117 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3118 ns = do_task_delta_exec(p, rq);
3119 task_rq_unlock(rq, &flags);
1508487e 3120
c5f8d995
HS
3121 return ns;
3122}
f06febc9 3123
c5f8d995
HS
3124/*
3125 * Return accounted runtime for the task.
3126 * In case the task is currently running, return the runtime plus current's
3127 * pending runtime that have not been accounted yet.
3128 */
3129unsigned long long task_sched_runtime(struct task_struct *p)
3130{
3131 unsigned long flags;
3132 struct rq *rq;
3133 u64 ns = 0;
3134
3135 rq = task_rq_lock(p, &flags);
3136 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3137 task_rq_unlock(rq, &flags);
3138
3139 return ns;
3140}
48f24c4d 3141
c5f8d995
HS
3142/*
3143 * Return sum_exec_runtime for the thread group.
3144 * In case the task is currently running, return the sum plus current's
3145 * pending runtime that have not been accounted yet.
3146 *
3147 * Note that the thread group might have other running tasks as well,
3148 * so the return value not includes other pending runtime that other
3149 * running tasks might have.
3150 */
3151unsigned long long thread_group_sched_runtime(struct task_struct *p)
3152{
3153 struct task_cputime totals;
3154 unsigned long flags;
3155 struct rq *rq;
3156 u64 ns;
3157
3158 rq = task_rq_lock(p, &flags);
3159 thread_group_cputime(p, &totals);
3160 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3161 task_rq_unlock(rq, &flags);
48f24c4d 3162
1da177e4
LT
3163 return ns;
3164}
3165
1da177e4
LT
3166/*
3167 * Account user cpu time to a process.
3168 * @p: the process that the cpu time gets accounted to
1da177e4 3169 * @cputime: the cpu time spent in user space since the last update
457533a7 3170 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3171 */
457533a7
MS
3172void account_user_time(struct task_struct *p, cputime_t cputime,
3173 cputime_t cputime_scaled)
1da177e4
LT
3174{
3175 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3176 cputime64_t tmp;
3177
457533a7 3178 /* Add user time to process. */
1da177e4 3179 p->utime = cputime_add(p->utime, cputime);
457533a7 3180 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3181 account_group_user_time(p, cputime);
1da177e4
LT
3182
3183 /* Add user time to cpustat. */
3184 tmp = cputime_to_cputime64(cputime);
3185 if (TASK_NICE(p) > 0)
3186 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3187 else
3188 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3189
3190 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3191 /* Account for user time used */
3192 acct_update_integrals(p);
1da177e4
LT
3193}
3194
94886b84
LV
3195/*
3196 * Account guest cpu time to a process.
3197 * @p: the process that the cpu time gets accounted to
3198 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3199 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3200 */
457533a7
MS
3201static void account_guest_time(struct task_struct *p, cputime_t cputime,
3202 cputime_t cputime_scaled)
94886b84
LV
3203{
3204 cputime64_t tmp;
3205 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3206
3207 tmp = cputime_to_cputime64(cputime);
3208
457533a7 3209 /* Add guest time to process. */
94886b84 3210 p->utime = cputime_add(p->utime, cputime);
457533a7 3211 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3212 account_group_user_time(p, cputime);
94886b84
LV
3213 p->gtime = cputime_add(p->gtime, cputime);
3214
457533a7 3215 /* Add guest time to cpustat. */
ce0e7b28
RO
3216 if (TASK_NICE(p) > 0) {
3217 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3218 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3219 } else {
3220 cpustat->user = cputime64_add(cpustat->user, tmp);
3221 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3222 }
94886b84
LV
3223}
3224
1da177e4
LT
3225/*
3226 * Account system cpu time to a process.
3227 * @p: the process that the cpu time gets accounted to
3228 * @hardirq_offset: the offset to subtract from hardirq_count()
3229 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3230 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3231 */
3232void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3233 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3234{
3235 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3236 cputime64_t tmp;
3237
983ed7a6 3238 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3239 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3240 return;
3241 }
94886b84 3242
457533a7 3243 /* Add system time to process. */
1da177e4 3244 p->stime = cputime_add(p->stime, cputime);
457533a7 3245 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3246 account_group_system_time(p, cputime);
1da177e4
LT
3247
3248 /* Add system time to cpustat. */
3249 tmp = cputime_to_cputime64(cputime);
3250 if (hardirq_count() - hardirq_offset)
3251 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3252 else if (softirq_count())
3253 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3254 else
79741dd3
MS
3255 cpustat->system = cputime64_add(cpustat->system, tmp);
3256
ef12fefa
BR
3257 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3258
1da177e4
LT
3259 /* Account for system time used */
3260 acct_update_integrals(p);
1da177e4
LT
3261}
3262
c66f08be 3263/*
1da177e4 3264 * Account for involuntary wait time.
1da177e4 3265 * @steal: the cpu time spent in involuntary wait
c66f08be 3266 */
79741dd3 3267void account_steal_time(cputime_t cputime)
c66f08be 3268{
79741dd3
MS
3269 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3270 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3271
3272 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3273}
3274
1da177e4 3275/*
79741dd3
MS
3276 * Account for idle time.
3277 * @cputime: the cpu time spent in idle wait
1da177e4 3278 */
79741dd3 3279void account_idle_time(cputime_t cputime)
1da177e4
LT
3280{
3281 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3282 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3283 struct rq *rq = this_rq();
1da177e4 3284
79741dd3
MS
3285 if (atomic_read(&rq->nr_iowait) > 0)
3286 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3287 else
3288 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3289}
3290
79741dd3
MS
3291#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3292
3293/*
3294 * Account a single tick of cpu time.
3295 * @p: the process that the cpu time gets accounted to
3296 * @user_tick: indicates if the tick is a user or a system tick
3297 */
3298void account_process_tick(struct task_struct *p, int user_tick)
3299{
a42548a1 3300 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3301 struct rq *rq = this_rq();
3302
3303 if (user_tick)
a42548a1 3304 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3305 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3306 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3307 one_jiffy_scaled);
3308 else
a42548a1 3309 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3310}
3311
3312/*
3313 * Account multiple ticks of steal time.
3314 * @p: the process from which the cpu time has been stolen
3315 * @ticks: number of stolen ticks
3316 */
3317void account_steal_ticks(unsigned long ticks)
3318{
3319 account_steal_time(jiffies_to_cputime(ticks));
3320}
3321
3322/*
3323 * Account multiple ticks of idle time.
3324 * @ticks: number of stolen ticks
3325 */
3326void account_idle_ticks(unsigned long ticks)
3327{
3328 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3329}
3330
79741dd3
MS
3331#endif
3332
49048622
BS
3333/*
3334 * Use precise platform statistics if available:
3335 */
3336#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3337void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3338{
d99ca3b9
HS
3339 *ut = p->utime;
3340 *st = p->stime;
49048622
BS
3341}
3342
0cf55e1e 3343void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3344{
0cf55e1e
HS
3345 struct task_cputime cputime;
3346
3347 thread_group_cputime(p, &cputime);
3348
3349 *ut = cputime.utime;
3350 *st = cputime.stime;
49048622
BS
3351}
3352#else
761b1d26
HS
3353
3354#ifndef nsecs_to_cputime
b7b20df9 3355# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3356#endif
3357
d180c5bc 3358void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3359{
d99ca3b9 3360 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3361
3362 /*
3363 * Use CFS's precise accounting:
3364 */
d180c5bc 3365 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3366
3367 if (total) {
d180c5bc
HS
3368 u64 temp;
3369
3370 temp = (u64)(rtime * utime);
49048622 3371 do_div(temp, total);
d180c5bc
HS
3372 utime = (cputime_t)temp;
3373 } else
3374 utime = rtime;
49048622 3375
d180c5bc
HS
3376 /*
3377 * Compare with previous values, to keep monotonicity:
3378 */
761b1d26 3379 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3380 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3381
d99ca3b9
HS
3382 *ut = p->prev_utime;
3383 *st = p->prev_stime;
49048622
BS
3384}
3385
0cf55e1e
HS
3386/*
3387 * Must be called with siglock held.
3388 */
3389void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3390{
0cf55e1e
HS
3391 struct signal_struct *sig = p->signal;
3392 struct task_cputime cputime;
3393 cputime_t rtime, utime, total;
49048622 3394
0cf55e1e 3395 thread_group_cputime(p, &cputime);
49048622 3396
0cf55e1e
HS
3397 total = cputime_add(cputime.utime, cputime.stime);
3398 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3399
0cf55e1e
HS
3400 if (total) {
3401 u64 temp;
49048622 3402
0cf55e1e
HS
3403 temp = (u64)(rtime * cputime.utime);
3404 do_div(temp, total);
3405 utime = (cputime_t)temp;
3406 } else
3407 utime = rtime;
3408
3409 sig->prev_utime = max(sig->prev_utime, utime);
3410 sig->prev_stime = max(sig->prev_stime,
3411 cputime_sub(rtime, sig->prev_utime));
3412
3413 *ut = sig->prev_utime;
3414 *st = sig->prev_stime;
49048622 3415}
49048622 3416#endif
49048622 3417
7835b98b
CL
3418/*
3419 * This function gets called by the timer code, with HZ frequency.
3420 * We call it with interrupts disabled.
3421 *
3422 * It also gets called by the fork code, when changing the parent's
3423 * timeslices.
3424 */
3425void scheduler_tick(void)
3426{
7835b98b
CL
3427 int cpu = smp_processor_id();
3428 struct rq *rq = cpu_rq(cpu);
dd41f596 3429 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3430
3431 sched_clock_tick();
dd41f596 3432
05fa785c 3433 raw_spin_lock(&rq->lock);
3e51f33f 3434 update_rq_clock(rq);
f1a438d8 3435 update_cpu_load(rq);
fa85ae24 3436 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3437 raw_spin_unlock(&rq->lock);
7835b98b 3438
49f47433 3439 perf_event_task_tick(curr);
e220d2dc 3440
e418e1c2 3441#ifdef CONFIG_SMP
dd41f596
IM
3442 rq->idle_at_tick = idle_cpu(cpu);
3443 trigger_load_balance(rq, cpu);
e418e1c2 3444#endif
1da177e4
LT
3445}
3446
132380a0 3447notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3448{
3449 if (in_lock_functions(addr)) {
3450 addr = CALLER_ADDR2;
3451 if (in_lock_functions(addr))
3452 addr = CALLER_ADDR3;
3453 }
3454 return addr;
3455}
1da177e4 3456
7e49fcce
SR
3457#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3458 defined(CONFIG_PREEMPT_TRACER))
3459
43627582 3460void __kprobes add_preempt_count(int val)
1da177e4 3461{
6cd8a4bb 3462#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3463 /*
3464 * Underflow?
3465 */
9a11b49a
IM
3466 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3467 return;
6cd8a4bb 3468#endif
1da177e4 3469 preempt_count() += val;
6cd8a4bb 3470#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3471 /*
3472 * Spinlock count overflowing soon?
3473 */
33859f7f
MOS
3474 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3475 PREEMPT_MASK - 10);
6cd8a4bb
SR
3476#endif
3477 if (preempt_count() == val)
3478 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3479}
3480EXPORT_SYMBOL(add_preempt_count);
3481
43627582 3482void __kprobes sub_preempt_count(int val)
1da177e4 3483{
6cd8a4bb 3484#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3485 /*
3486 * Underflow?
3487 */
01e3eb82 3488 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3489 return;
1da177e4
LT
3490 /*
3491 * Is the spinlock portion underflowing?
3492 */
9a11b49a
IM
3493 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3494 !(preempt_count() & PREEMPT_MASK)))
3495 return;
6cd8a4bb 3496#endif
9a11b49a 3497
6cd8a4bb
SR
3498 if (preempt_count() == val)
3499 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3500 preempt_count() -= val;
3501}
3502EXPORT_SYMBOL(sub_preempt_count);
3503
3504#endif
3505
3506/*
dd41f596 3507 * Print scheduling while atomic bug:
1da177e4 3508 */
dd41f596 3509static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3510{
838225b4
SS
3511 struct pt_regs *regs = get_irq_regs();
3512
3df0fc5b
PZ
3513 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3514 prev->comm, prev->pid, preempt_count());
838225b4 3515
dd41f596 3516 debug_show_held_locks(prev);
e21f5b15 3517 print_modules();
dd41f596
IM
3518 if (irqs_disabled())
3519 print_irqtrace_events(prev);
838225b4
SS
3520
3521 if (regs)
3522 show_regs(regs);
3523 else
3524 dump_stack();
dd41f596 3525}
1da177e4 3526
dd41f596
IM
3527/*
3528 * Various schedule()-time debugging checks and statistics:
3529 */
3530static inline void schedule_debug(struct task_struct *prev)
3531{
1da177e4 3532 /*
41a2d6cf 3533 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3534 * schedule() atomically, we ignore that path for now.
3535 * Otherwise, whine if we are scheduling when we should not be.
3536 */
3f33a7ce 3537 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3538 __schedule_bug(prev);
3539
1da177e4
LT
3540 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3541
2d72376b 3542 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3543#ifdef CONFIG_SCHEDSTATS
3544 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3545 schedstat_inc(this_rq(), bkl_count);
3546 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3547 }
3548#endif
dd41f596
IM
3549}
3550
6cecd084 3551static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3552{
a64692a3
MG
3553 if (prev->se.on_rq)
3554 update_rq_clock(rq);
3555 rq->skip_clock_update = 0;
6cecd084 3556 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3557}
3558
dd41f596
IM
3559/*
3560 * Pick up the highest-prio task:
3561 */
3562static inline struct task_struct *
b67802ea 3563pick_next_task(struct rq *rq)
dd41f596 3564{
5522d5d5 3565 const struct sched_class *class;
dd41f596 3566 struct task_struct *p;
1da177e4
LT
3567
3568 /*
dd41f596
IM
3569 * Optimization: we know that if all tasks are in
3570 * the fair class we can call that function directly:
1da177e4 3571 */
dd41f596 3572 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3573 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3574 if (likely(p))
3575 return p;
1da177e4
LT
3576 }
3577
dd41f596
IM
3578 class = sched_class_highest;
3579 for ( ; ; ) {
fb8d4724 3580 p = class->pick_next_task(rq);
dd41f596
IM
3581 if (p)
3582 return p;
3583 /*
3584 * Will never be NULL as the idle class always
3585 * returns a non-NULL p:
3586 */
3587 class = class->next;
3588 }
3589}
1da177e4 3590
dd41f596
IM
3591/*
3592 * schedule() is the main scheduler function.
3593 */
ff743345 3594asmlinkage void __sched schedule(void)
dd41f596
IM
3595{
3596 struct task_struct *prev, *next;
67ca7bde 3597 unsigned long *switch_count;
dd41f596 3598 struct rq *rq;
31656519 3599 int cpu;
dd41f596 3600
ff743345
PZ
3601need_resched:
3602 preempt_disable();
dd41f596
IM
3603 cpu = smp_processor_id();
3604 rq = cpu_rq(cpu);
25502a6c 3605 rcu_note_context_switch(cpu);
dd41f596
IM
3606 prev = rq->curr;
3607 switch_count = &prev->nivcsw;
3608
3609 release_kernel_lock(prev);
3610need_resched_nonpreemptible:
3611
3612 schedule_debug(prev);
1da177e4 3613
31656519 3614 if (sched_feat(HRTICK))
f333fdc9 3615 hrtick_clear(rq);
8f4d37ec 3616
05fa785c 3617 raw_spin_lock_irq(&rq->lock);
1e819950 3618 clear_tsk_need_resched(prev);
1da177e4 3619
1da177e4 3620 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3621 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3622 prev->state = TASK_RUNNING;
16882c1e 3623 else
371fd7e7 3624 deactivate_task(rq, prev, DEQUEUE_SLEEP);
dd41f596 3625 switch_count = &prev->nvcsw;
1da177e4
LT
3626 }
3627
3f029d3c 3628 pre_schedule(rq, prev);
f65eda4f 3629
dd41f596 3630 if (unlikely(!rq->nr_running))
1da177e4 3631 idle_balance(cpu, rq);
1da177e4 3632
df1c99d4 3633 put_prev_task(rq, prev);
b67802ea 3634 next = pick_next_task(rq);
1da177e4 3635
1da177e4 3636 if (likely(prev != next)) {
673a90a1 3637 sched_info_switch(prev, next);
49f47433 3638 perf_event_task_sched_out(prev, next);
673a90a1 3639
1da177e4
LT
3640 rq->nr_switches++;
3641 rq->curr = next;
3642 ++*switch_count;
3643
dd41f596 3644 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3645 /*
3646 * the context switch might have flipped the stack from under
3647 * us, hence refresh the local variables.
3648 */
3649 cpu = smp_processor_id();
3650 rq = cpu_rq(cpu);
1da177e4 3651 } else
05fa785c 3652 raw_spin_unlock_irq(&rq->lock);
1da177e4 3653
3f029d3c 3654 post_schedule(rq);
1da177e4 3655
6d558c3a
YZ
3656 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3657 prev = rq->curr;
3658 switch_count = &prev->nivcsw;
1da177e4 3659 goto need_resched_nonpreemptible;
6d558c3a 3660 }
8f4d37ec 3661
1da177e4 3662 preempt_enable_no_resched();
ff743345 3663 if (need_resched())
1da177e4
LT
3664 goto need_resched;
3665}
1da177e4
LT
3666EXPORT_SYMBOL(schedule);
3667
c08f7829 3668#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3669/*
3670 * Look out! "owner" is an entirely speculative pointer
3671 * access and not reliable.
3672 */
3673int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3674{
3675 unsigned int cpu;
3676 struct rq *rq;
3677
3678 if (!sched_feat(OWNER_SPIN))
3679 return 0;
3680
3681#ifdef CONFIG_DEBUG_PAGEALLOC
3682 /*
3683 * Need to access the cpu field knowing that
3684 * DEBUG_PAGEALLOC could have unmapped it if
3685 * the mutex owner just released it and exited.
3686 */
3687 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3688 return 0;
0d66bf6d
PZ
3689#else
3690 cpu = owner->cpu;
3691#endif
3692
3693 /*
3694 * Even if the access succeeded (likely case),
3695 * the cpu field may no longer be valid.
3696 */
3697 if (cpu >= nr_cpumask_bits)
4b402210 3698 return 0;
0d66bf6d
PZ
3699
3700 /*
3701 * We need to validate that we can do a
3702 * get_cpu() and that we have the percpu area.
3703 */
3704 if (!cpu_online(cpu))
4b402210 3705 return 0;
0d66bf6d
PZ
3706
3707 rq = cpu_rq(cpu);
3708
3709 for (;;) {
3710 /*
3711 * Owner changed, break to re-assess state.
3712 */
3713 if (lock->owner != owner)
3714 break;
3715
3716 /*
3717 * Is that owner really running on that cpu?
3718 */
3719 if (task_thread_info(rq->curr) != owner || need_resched())
3720 return 0;
3721
3722 cpu_relax();
3723 }
4b402210 3724
0d66bf6d
PZ
3725 return 1;
3726}
3727#endif
3728
1da177e4
LT
3729#ifdef CONFIG_PREEMPT
3730/*
2ed6e34f 3731 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3732 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3733 * occur there and call schedule directly.
3734 */
3735asmlinkage void __sched preempt_schedule(void)
3736{
3737 struct thread_info *ti = current_thread_info();
6478d880 3738
1da177e4
LT
3739 /*
3740 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3741 * we do not want to preempt the current task. Just return..
1da177e4 3742 */
beed33a8 3743 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3744 return;
3745
3a5c359a
AK
3746 do {
3747 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3748 schedule();
3a5c359a 3749 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3750
3a5c359a
AK
3751 /*
3752 * Check again in case we missed a preemption opportunity
3753 * between schedule and now.
3754 */
3755 barrier();
5ed0cec0 3756 } while (need_resched());
1da177e4 3757}
1da177e4
LT
3758EXPORT_SYMBOL(preempt_schedule);
3759
3760/*
2ed6e34f 3761 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3762 * off of irq context.
3763 * Note, that this is called and return with irqs disabled. This will
3764 * protect us against recursive calling from irq.
3765 */
3766asmlinkage void __sched preempt_schedule_irq(void)
3767{
3768 struct thread_info *ti = current_thread_info();
6478d880 3769
2ed6e34f 3770 /* Catch callers which need to be fixed */
1da177e4
LT
3771 BUG_ON(ti->preempt_count || !irqs_disabled());
3772
3a5c359a
AK
3773 do {
3774 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3775 local_irq_enable();
3776 schedule();
3777 local_irq_disable();
3a5c359a 3778 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3779
3a5c359a
AK
3780 /*
3781 * Check again in case we missed a preemption opportunity
3782 * between schedule and now.
3783 */
3784 barrier();
5ed0cec0 3785 } while (need_resched());
1da177e4
LT
3786}
3787
3788#endif /* CONFIG_PREEMPT */
3789
63859d4f 3790int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3791 void *key)
1da177e4 3792{
63859d4f 3793 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3794}
1da177e4
LT
3795EXPORT_SYMBOL(default_wake_function);
3796
3797/*
41a2d6cf
IM
3798 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3799 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3800 * number) then we wake all the non-exclusive tasks and one exclusive task.
3801 *
3802 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3803 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3804 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3805 */
78ddb08f 3806static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3807 int nr_exclusive, int wake_flags, void *key)
1da177e4 3808{
2e45874c 3809 wait_queue_t *curr, *next;
1da177e4 3810
2e45874c 3811 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3812 unsigned flags = curr->flags;
3813
63859d4f 3814 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3815 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3816 break;
3817 }
3818}
3819
3820/**
3821 * __wake_up - wake up threads blocked on a waitqueue.
3822 * @q: the waitqueue
3823 * @mode: which threads
3824 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3825 * @key: is directly passed to the wakeup function
50fa610a
DH
3826 *
3827 * It may be assumed that this function implies a write memory barrier before
3828 * changing the task state if and only if any tasks are woken up.
1da177e4 3829 */
7ad5b3a5 3830void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3831 int nr_exclusive, void *key)
1da177e4
LT
3832{
3833 unsigned long flags;
3834
3835 spin_lock_irqsave(&q->lock, flags);
3836 __wake_up_common(q, mode, nr_exclusive, 0, key);
3837 spin_unlock_irqrestore(&q->lock, flags);
3838}
1da177e4
LT
3839EXPORT_SYMBOL(__wake_up);
3840
3841/*
3842 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3843 */
7ad5b3a5 3844void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3845{
3846 __wake_up_common(q, mode, 1, 0, NULL);
3847}
22c43c81 3848EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3849
4ede816a
DL
3850void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3851{
3852 __wake_up_common(q, mode, 1, 0, key);
3853}
3854
1da177e4 3855/**
4ede816a 3856 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3857 * @q: the waitqueue
3858 * @mode: which threads
3859 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3860 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3861 *
3862 * The sync wakeup differs that the waker knows that it will schedule
3863 * away soon, so while the target thread will be woken up, it will not
3864 * be migrated to another CPU - ie. the two threads are 'synchronized'
3865 * with each other. This can prevent needless bouncing between CPUs.
3866 *
3867 * On UP it can prevent extra preemption.
50fa610a
DH
3868 *
3869 * It may be assumed that this function implies a write memory barrier before
3870 * changing the task state if and only if any tasks are woken up.
1da177e4 3871 */
4ede816a
DL
3872void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3873 int nr_exclusive, void *key)
1da177e4
LT
3874{
3875 unsigned long flags;
7d478721 3876 int wake_flags = WF_SYNC;
1da177e4
LT
3877
3878 if (unlikely(!q))
3879 return;
3880
3881 if (unlikely(!nr_exclusive))
7d478721 3882 wake_flags = 0;
1da177e4
LT
3883
3884 spin_lock_irqsave(&q->lock, flags);
7d478721 3885 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3886 spin_unlock_irqrestore(&q->lock, flags);
3887}
4ede816a
DL
3888EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3889
3890/*
3891 * __wake_up_sync - see __wake_up_sync_key()
3892 */
3893void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3894{
3895 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3896}
1da177e4
LT
3897EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3898
65eb3dc6
KD
3899/**
3900 * complete: - signals a single thread waiting on this completion
3901 * @x: holds the state of this particular completion
3902 *
3903 * This will wake up a single thread waiting on this completion. Threads will be
3904 * awakened in the same order in which they were queued.
3905 *
3906 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3907 *
3908 * It may be assumed that this function implies a write memory barrier before
3909 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3910 */
b15136e9 3911void complete(struct completion *x)
1da177e4
LT
3912{
3913 unsigned long flags;
3914
3915 spin_lock_irqsave(&x->wait.lock, flags);
3916 x->done++;
d9514f6c 3917 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3918 spin_unlock_irqrestore(&x->wait.lock, flags);
3919}
3920EXPORT_SYMBOL(complete);
3921
65eb3dc6
KD
3922/**
3923 * complete_all: - signals all threads waiting on this completion
3924 * @x: holds the state of this particular completion
3925 *
3926 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3927 *
3928 * It may be assumed that this function implies a write memory barrier before
3929 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3930 */
b15136e9 3931void complete_all(struct completion *x)
1da177e4
LT
3932{
3933 unsigned long flags;
3934
3935 spin_lock_irqsave(&x->wait.lock, flags);
3936 x->done += UINT_MAX/2;
d9514f6c 3937 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3938 spin_unlock_irqrestore(&x->wait.lock, flags);
3939}
3940EXPORT_SYMBOL(complete_all);
3941
8cbbe86d
AK
3942static inline long __sched
3943do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3944{
1da177e4
LT
3945 if (!x->done) {
3946 DECLARE_WAITQUEUE(wait, current);
3947
a93d2f17 3948 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3949 do {
94d3d824 3950 if (signal_pending_state(state, current)) {
ea71a546
ON
3951 timeout = -ERESTARTSYS;
3952 break;
8cbbe86d
AK
3953 }
3954 __set_current_state(state);
1da177e4
LT
3955 spin_unlock_irq(&x->wait.lock);
3956 timeout = schedule_timeout(timeout);
3957 spin_lock_irq(&x->wait.lock);
ea71a546 3958 } while (!x->done && timeout);
1da177e4 3959 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3960 if (!x->done)
3961 return timeout;
1da177e4
LT
3962 }
3963 x->done--;
ea71a546 3964 return timeout ?: 1;
1da177e4 3965}
1da177e4 3966
8cbbe86d
AK
3967static long __sched
3968wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3969{
1da177e4
LT
3970 might_sleep();
3971
3972 spin_lock_irq(&x->wait.lock);
8cbbe86d 3973 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3974 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3975 return timeout;
3976}
1da177e4 3977
65eb3dc6
KD
3978/**
3979 * wait_for_completion: - waits for completion of a task
3980 * @x: holds the state of this particular completion
3981 *
3982 * This waits to be signaled for completion of a specific task. It is NOT
3983 * interruptible and there is no timeout.
3984 *
3985 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3986 * and interrupt capability. Also see complete().
3987 */
b15136e9 3988void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3989{
3990 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3991}
8cbbe86d 3992EXPORT_SYMBOL(wait_for_completion);
1da177e4 3993
65eb3dc6
KD
3994/**
3995 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3996 * @x: holds the state of this particular completion
3997 * @timeout: timeout value in jiffies
3998 *
3999 * This waits for either a completion of a specific task to be signaled or for a
4000 * specified timeout to expire. The timeout is in jiffies. It is not
4001 * interruptible.
4002 */
b15136e9 4003unsigned long __sched
8cbbe86d 4004wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4005{
8cbbe86d 4006 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4007}
8cbbe86d 4008EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4009
65eb3dc6
KD
4010/**
4011 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4012 * @x: holds the state of this particular completion
4013 *
4014 * This waits for completion of a specific task to be signaled. It is
4015 * interruptible.
4016 */
8cbbe86d 4017int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4018{
51e97990
AK
4019 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4020 if (t == -ERESTARTSYS)
4021 return t;
4022 return 0;
0fec171c 4023}
8cbbe86d 4024EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4025
65eb3dc6
KD
4026/**
4027 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4028 * @x: holds the state of this particular completion
4029 * @timeout: timeout value in jiffies
4030 *
4031 * This waits for either a completion of a specific task to be signaled or for a
4032 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4033 */
b15136e9 4034unsigned long __sched
8cbbe86d
AK
4035wait_for_completion_interruptible_timeout(struct completion *x,
4036 unsigned long timeout)
0fec171c 4037{
8cbbe86d 4038 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4039}
8cbbe86d 4040EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4041
65eb3dc6
KD
4042/**
4043 * wait_for_completion_killable: - waits for completion of a task (killable)
4044 * @x: holds the state of this particular completion
4045 *
4046 * This waits to be signaled for completion of a specific task. It can be
4047 * interrupted by a kill signal.
4048 */
009e577e
MW
4049int __sched wait_for_completion_killable(struct completion *x)
4050{
4051 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4052 if (t == -ERESTARTSYS)
4053 return t;
4054 return 0;
4055}
4056EXPORT_SYMBOL(wait_for_completion_killable);
4057
0aa12fb4
SW
4058/**
4059 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4060 * @x: holds the state of this particular completion
4061 * @timeout: timeout value in jiffies
4062 *
4063 * This waits for either a completion of a specific task to be
4064 * signaled or for a specified timeout to expire. It can be
4065 * interrupted by a kill signal. The timeout is in jiffies.
4066 */
4067unsigned long __sched
4068wait_for_completion_killable_timeout(struct completion *x,
4069 unsigned long timeout)
4070{
4071 return wait_for_common(x, timeout, TASK_KILLABLE);
4072}
4073EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4074
be4de352
DC
4075/**
4076 * try_wait_for_completion - try to decrement a completion without blocking
4077 * @x: completion structure
4078 *
4079 * Returns: 0 if a decrement cannot be done without blocking
4080 * 1 if a decrement succeeded.
4081 *
4082 * If a completion is being used as a counting completion,
4083 * attempt to decrement the counter without blocking. This
4084 * enables us to avoid waiting if the resource the completion
4085 * is protecting is not available.
4086 */
4087bool try_wait_for_completion(struct completion *x)
4088{
7539a3b3 4089 unsigned long flags;
be4de352
DC
4090 int ret = 1;
4091
7539a3b3 4092 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4093 if (!x->done)
4094 ret = 0;
4095 else
4096 x->done--;
7539a3b3 4097 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4098 return ret;
4099}
4100EXPORT_SYMBOL(try_wait_for_completion);
4101
4102/**
4103 * completion_done - Test to see if a completion has any waiters
4104 * @x: completion structure
4105 *
4106 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4107 * 1 if there are no waiters.
4108 *
4109 */
4110bool completion_done(struct completion *x)
4111{
7539a3b3 4112 unsigned long flags;
be4de352
DC
4113 int ret = 1;
4114
7539a3b3 4115 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4116 if (!x->done)
4117 ret = 0;
7539a3b3 4118 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4119 return ret;
4120}
4121EXPORT_SYMBOL(completion_done);
4122
8cbbe86d
AK
4123static long __sched
4124sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4125{
0fec171c
IM
4126 unsigned long flags;
4127 wait_queue_t wait;
4128
4129 init_waitqueue_entry(&wait, current);
1da177e4 4130
8cbbe86d 4131 __set_current_state(state);
1da177e4 4132
8cbbe86d
AK
4133 spin_lock_irqsave(&q->lock, flags);
4134 __add_wait_queue(q, &wait);
4135 spin_unlock(&q->lock);
4136 timeout = schedule_timeout(timeout);
4137 spin_lock_irq(&q->lock);
4138 __remove_wait_queue(q, &wait);
4139 spin_unlock_irqrestore(&q->lock, flags);
4140
4141 return timeout;
4142}
4143
4144void __sched interruptible_sleep_on(wait_queue_head_t *q)
4145{
4146 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4147}
1da177e4
LT
4148EXPORT_SYMBOL(interruptible_sleep_on);
4149
0fec171c 4150long __sched
95cdf3b7 4151interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4152{
8cbbe86d 4153 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4154}
1da177e4
LT
4155EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4156
0fec171c 4157void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4158{
8cbbe86d 4159 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4160}
1da177e4
LT
4161EXPORT_SYMBOL(sleep_on);
4162
0fec171c 4163long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4164{
8cbbe86d 4165 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4166}
1da177e4
LT
4167EXPORT_SYMBOL(sleep_on_timeout);
4168
b29739f9
IM
4169#ifdef CONFIG_RT_MUTEXES
4170
4171/*
4172 * rt_mutex_setprio - set the current priority of a task
4173 * @p: task
4174 * @prio: prio value (kernel-internal form)
4175 *
4176 * This function changes the 'effective' priority of a task. It does
4177 * not touch ->normal_prio like __setscheduler().
4178 *
4179 * Used by the rt_mutex code to implement priority inheritance logic.
4180 */
36c8b586 4181void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4182{
4183 unsigned long flags;
83b699ed 4184 int oldprio, on_rq, running;
70b97a7f 4185 struct rq *rq;
83ab0aa0 4186 const struct sched_class *prev_class;
b29739f9
IM
4187
4188 BUG_ON(prio < 0 || prio > MAX_PRIO);
4189
4190 rq = task_rq_lock(p, &flags);
4191
d5f9f942 4192 oldprio = p->prio;
83ab0aa0 4193 prev_class = p->sched_class;
dd41f596 4194 on_rq = p->se.on_rq;
051a1d1a 4195 running = task_current(rq, p);
0e1f3483 4196 if (on_rq)
69be72c1 4197 dequeue_task(rq, p, 0);
0e1f3483
HS
4198 if (running)
4199 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4200
4201 if (rt_prio(prio))
4202 p->sched_class = &rt_sched_class;
4203 else
4204 p->sched_class = &fair_sched_class;
4205
b29739f9
IM
4206 p->prio = prio;
4207
0e1f3483
HS
4208 if (running)
4209 p->sched_class->set_curr_task(rq);
dd41f596 4210 if (on_rq) {
371fd7e7 4211 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4212
4213 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4214 }
4215 task_rq_unlock(rq, &flags);
4216}
4217
4218#endif
4219
36c8b586 4220void set_user_nice(struct task_struct *p, long nice)
1da177e4 4221{
dd41f596 4222 int old_prio, delta, on_rq;
1da177e4 4223 unsigned long flags;
70b97a7f 4224 struct rq *rq;
1da177e4
LT
4225
4226 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4227 return;
4228 /*
4229 * We have to be careful, if called from sys_setpriority(),
4230 * the task might be in the middle of scheduling on another CPU.
4231 */
4232 rq = task_rq_lock(p, &flags);
4233 /*
4234 * The RT priorities are set via sched_setscheduler(), but we still
4235 * allow the 'normal' nice value to be set - but as expected
4236 * it wont have any effect on scheduling until the task is
dd41f596 4237 * SCHED_FIFO/SCHED_RR:
1da177e4 4238 */
e05606d3 4239 if (task_has_rt_policy(p)) {
1da177e4
LT
4240 p->static_prio = NICE_TO_PRIO(nice);
4241 goto out_unlock;
4242 }
dd41f596 4243 on_rq = p->se.on_rq;
c09595f6 4244 if (on_rq)
69be72c1 4245 dequeue_task(rq, p, 0);
1da177e4 4246
1da177e4 4247 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4248 set_load_weight(p);
b29739f9
IM
4249 old_prio = p->prio;
4250 p->prio = effective_prio(p);
4251 delta = p->prio - old_prio;
1da177e4 4252
dd41f596 4253 if (on_rq) {
371fd7e7 4254 enqueue_task(rq, p, 0);
1da177e4 4255 /*
d5f9f942
AM
4256 * If the task increased its priority or is running and
4257 * lowered its priority, then reschedule its CPU:
1da177e4 4258 */
d5f9f942 4259 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4260 resched_task(rq->curr);
4261 }
4262out_unlock:
4263 task_rq_unlock(rq, &flags);
4264}
1da177e4
LT
4265EXPORT_SYMBOL(set_user_nice);
4266
e43379f1
MM
4267/*
4268 * can_nice - check if a task can reduce its nice value
4269 * @p: task
4270 * @nice: nice value
4271 */
36c8b586 4272int can_nice(const struct task_struct *p, const int nice)
e43379f1 4273{
024f4747
MM
4274 /* convert nice value [19,-20] to rlimit style value [1,40] */
4275 int nice_rlim = 20 - nice;
48f24c4d 4276
78d7d407 4277 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4278 capable(CAP_SYS_NICE));
4279}
4280
1da177e4
LT
4281#ifdef __ARCH_WANT_SYS_NICE
4282
4283/*
4284 * sys_nice - change the priority of the current process.
4285 * @increment: priority increment
4286 *
4287 * sys_setpriority is a more generic, but much slower function that
4288 * does similar things.
4289 */
5add95d4 4290SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4291{
48f24c4d 4292 long nice, retval;
1da177e4
LT
4293
4294 /*
4295 * Setpriority might change our priority at the same moment.
4296 * We don't have to worry. Conceptually one call occurs first
4297 * and we have a single winner.
4298 */
e43379f1
MM
4299 if (increment < -40)
4300 increment = -40;
1da177e4
LT
4301 if (increment > 40)
4302 increment = 40;
4303
2b8f836f 4304 nice = TASK_NICE(current) + increment;
1da177e4
LT
4305 if (nice < -20)
4306 nice = -20;
4307 if (nice > 19)
4308 nice = 19;
4309
e43379f1
MM
4310 if (increment < 0 && !can_nice(current, nice))
4311 return -EPERM;
4312
1da177e4
LT
4313 retval = security_task_setnice(current, nice);
4314 if (retval)
4315 return retval;
4316
4317 set_user_nice(current, nice);
4318 return 0;
4319}
4320
4321#endif
4322
4323/**
4324 * task_prio - return the priority value of a given task.
4325 * @p: the task in question.
4326 *
4327 * This is the priority value as seen by users in /proc.
4328 * RT tasks are offset by -200. Normal tasks are centered
4329 * around 0, value goes from -16 to +15.
4330 */
36c8b586 4331int task_prio(const struct task_struct *p)
1da177e4
LT
4332{
4333 return p->prio - MAX_RT_PRIO;
4334}
4335
4336/**
4337 * task_nice - return the nice value of a given task.
4338 * @p: the task in question.
4339 */
36c8b586 4340int task_nice(const struct task_struct *p)
1da177e4
LT
4341{
4342 return TASK_NICE(p);
4343}
150d8bed 4344EXPORT_SYMBOL(task_nice);
1da177e4
LT
4345
4346/**
4347 * idle_cpu - is a given cpu idle currently?
4348 * @cpu: the processor in question.
4349 */
4350int idle_cpu(int cpu)
4351{
4352 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4353}
4354
1da177e4
LT
4355/**
4356 * idle_task - return the idle task for a given cpu.
4357 * @cpu: the processor in question.
4358 */
36c8b586 4359struct task_struct *idle_task(int cpu)
1da177e4
LT
4360{
4361 return cpu_rq(cpu)->idle;
4362}
4363
4364/**
4365 * find_process_by_pid - find a process with a matching PID value.
4366 * @pid: the pid in question.
4367 */
a9957449 4368static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4369{
228ebcbe 4370 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4371}
4372
4373/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4374static void
4375__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4376{
dd41f596 4377 BUG_ON(p->se.on_rq);
48f24c4d 4378
1da177e4
LT
4379 p->policy = policy;
4380 p->rt_priority = prio;
b29739f9
IM
4381 p->normal_prio = normal_prio(p);
4382 /* we are holding p->pi_lock already */
4383 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4384 if (rt_prio(p->prio))
4385 p->sched_class = &rt_sched_class;
4386 else
4387 p->sched_class = &fair_sched_class;
2dd73a4f 4388 set_load_weight(p);
1da177e4
LT
4389}
4390
c69e8d9c
DH
4391/*
4392 * check the target process has a UID that matches the current process's
4393 */
4394static bool check_same_owner(struct task_struct *p)
4395{
4396 const struct cred *cred = current_cred(), *pcred;
4397 bool match;
4398
4399 rcu_read_lock();
4400 pcred = __task_cred(p);
4401 match = (cred->euid == pcred->euid ||
4402 cred->euid == pcred->uid);
4403 rcu_read_unlock();
4404 return match;
4405}
4406
961ccddd
RR
4407static int __sched_setscheduler(struct task_struct *p, int policy,
4408 struct sched_param *param, bool user)
1da177e4 4409{
83b699ed 4410 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4411 unsigned long flags;
83ab0aa0 4412 const struct sched_class *prev_class;
70b97a7f 4413 struct rq *rq;
ca94c442 4414 int reset_on_fork;
1da177e4 4415
66e5393a
SR
4416 /* may grab non-irq protected spin_locks */
4417 BUG_ON(in_interrupt());
1da177e4
LT
4418recheck:
4419 /* double check policy once rq lock held */
ca94c442
LP
4420 if (policy < 0) {
4421 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4422 policy = oldpolicy = p->policy;
ca94c442
LP
4423 } else {
4424 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4425 policy &= ~SCHED_RESET_ON_FORK;
4426
4427 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4428 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4429 policy != SCHED_IDLE)
4430 return -EINVAL;
4431 }
4432
1da177e4
LT
4433 /*
4434 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4435 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4436 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4437 */
4438 if (param->sched_priority < 0 ||
95cdf3b7 4439 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4440 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4441 return -EINVAL;
e05606d3 4442 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4443 return -EINVAL;
4444
37e4ab3f
OC
4445 /*
4446 * Allow unprivileged RT tasks to decrease priority:
4447 */
961ccddd 4448 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4449 if (rt_policy(policy)) {
8dc3e909 4450 unsigned long rlim_rtprio;
8dc3e909
ON
4451
4452 if (!lock_task_sighand(p, &flags))
4453 return -ESRCH;
78d7d407 4454 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4455 unlock_task_sighand(p, &flags);
4456
4457 /* can't set/change the rt policy */
4458 if (policy != p->policy && !rlim_rtprio)
4459 return -EPERM;
4460
4461 /* can't increase priority */
4462 if (param->sched_priority > p->rt_priority &&
4463 param->sched_priority > rlim_rtprio)
4464 return -EPERM;
4465 }
dd41f596
IM
4466 /*
4467 * Like positive nice levels, dont allow tasks to
4468 * move out of SCHED_IDLE either:
4469 */
4470 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4471 return -EPERM;
5fe1d75f 4472
37e4ab3f 4473 /* can't change other user's priorities */
c69e8d9c 4474 if (!check_same_owner(p))
37e4ab3f 4475 return -EPERM;
ca94c442
LP
4476
4477 /* Normal users shall not reset the sched_reset_on_fork flag */
4478 if (p->sched_reset_on_fork && !reset_on_fork)
4479 return -EPERM;
37e4ab3f 4480 }
1da177e4 4481
725aad24 4482 if (user) {
b68aa230 4483#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4484 /*
4485 * Do not allow realtime tasks into groups that have no runtime
4486 * assigned.
4487 */
9a7e0b18
PZ
4488 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4489 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4490 return -EPERM;
b68aa230
PZ
4491#endif
4492
725aad24
JF
4493 retval = security_task_setscheduler(p, policy, param);
4494 if (retval)
4495 return retval;
4496 }
4497
b29739f9
IM
4498 /*
4499 * make sure no PI-waiters arrive (or leave) while we are
4500 * changing the priority of the task:
4501 */
1d615482 4502 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4503 /*
4504 * To be able to change p->policy safely, the apropriate
4505 * runqueue lock must be held.
4506 */
b29739f9 4507 rq = __task_rq_lock(p);
1da177e4
LT
4508 /* recheck policy now with rq lock held */
4509 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4510 policy = oldpolicy = -1;
b29739f9 4511 __task_rq_unlock(rq);
1d615482 4512 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4513 goto recheck;
4514 }
dd41f596 4515 on_rq = p->se.on_rq;
051a1d1a 4516 running = task_current(rq, p);
0e1f3483 4517 if (on_rq)
2e1cb74a 4518 deactivate_task(rq, p, 0);
0e1f3483
HS
4519 if (running)
4520 p->sched_class->put_prev_task(rq, p);
f6b53205 4521
ca94c442
LP
4522 p->sched_reset_on_fork = reset_on_fork;
4523
1da177e4 4524 oldprio = p->prio;
83ab0aa0 4525 prev_class = p->sched_class;
dd41f596 4526 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4527
0e1f3483
HS
4528 if (running)
4529 p->sched_class->set_curr_task(rq);
dd41f596
IM
4530 if (on_rq) {
4531 activate_task(rq, p, 0);
cb469845
SR
4532
4533 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4534 }
b29739f9 4535 __task_rq_unlock(rq);
1d615482 4536 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4537
95e02ca9
TG
4538 rt_mutex_adjust_pi(p);
4539
1da177e4
LT
4540 return 0;
4541}
961ccddd
RR
4542
4543/**
4544 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4545 * @p: the task in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
4548 *
4549 * NOTE that the task may be already dead.
4550 */
4551int sched_setscheduler(struct task_struct *p, int policy,
4552 struct sched_param *param)
4553{
4554 return __sched_setscheduler(p, policy, param, true);
4555}
1da177e4
LT
4556EXPORT_SYMBOL_GPL(sched_setscheduler);
4557
961ccddd
RR
4558/**
4559 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4560 * @p: the task in question.
4561 * @policy: new policy.
4562 * @param: structure containing the new RT priority.
4563 *
4564 * Just like sched_setscheduler, only don't bother checking if the
4565 * current context has permission. For example, this is needed in
4566 * stop_machine(): we create temporary high priority worker threads,
4567 * but our caller might not have that capability.
4568 */
4569int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4570 struct sched_param *param)
4571{
4572 return __sched_setscheduler(p, policy, param, false);
4573}
4574
95cdf3b7
IM
4575static int
4576do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4577{
1da177e4
LT
4578 struct sched_param lparam;
4579 struct task_struct *p;
36c8b586 4580 int retval;
1da177e4
LT
4581
4582 if (!param || pid < 0)
4583 return -EINVAL;
4584 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4585 return -EFAULT;
5fe1d75f
ON
4586
4587 rcu_read_lock();
4588 retval = -ESRCH;
1da177e4 4589 p = find_process_by_pid(pid);
5fe1d75f
ON
4590 if (p != NULL)
4591 retval = sched_setscheduler(p, policy, &lparam);
4592 rcu_read_unlock();
36c8b586 4593
1da177e4
LT
4594 return retval;
4595}
4596
4597/**
4598 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4599 * @pid: the pid in question.
4600 * @policy: new policy.
4601 * @param: structure containing the new RT priority.
4602 */
5add95d4
HC
4603SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4604 struct sched_param __user *, param)
1da177e4 4605{
c21761f1
JB
4606 /* negative values for policy are not valid */
4607 if (policy < 0)
4608 return -EINVAL;
4609
1da177e4
LT
4610 return do_sched_setscheduler(pid, policy, param);
4611}
4612
4613/**
4614 * sys_sched_setparam - set/change the RT priority of a thread
4615 * @pid: the pid in question.
4616 * @param: structure containing the new RT priority.
4617 */
5add95d4 4618SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4619{
4620 return do_sched_setscheduler(pid, -1, param);
4621}
4622
4623/**
4624 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4625 * @pid: the pid in question.
4626 */
5add95d4 4627SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4628{
36c8b586 4629 struct task_struct *p;
3a5c359a 4630 int retval;
1da177e4
LT
4631
4632 if (pid < 0)
3a5c359a 4633 return -EINVAL;
1da177e4
LT
4634
4635 retval = -ESRCH;
5fe85be0 4636 rcu_read_lock();
1da177e4
LT
4637 p = find_process_by_pid(pid);
4638 if (p) {
4639 retval = security_task_getscheduler(p);
4640 if (!retval)
ca94c442
LP
4641 retval = p->policy
4642 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4643 }
5fe85be0 4644 rcu_read_unlock();
1da177e4
LT
4645 return retval;
4646}
4647
4648/**
ca94c442 4649 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4650 * @pid: the pid in question.
4651 * @param: structure containing the RT priority.
4652 */
5add95d4 4653SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4654{
4655 struct sched_param lp;
36c8b586 4656 struct task_struct *p;
3a5c359a 4657 int retval;
1da177e4
LT
4658
4659 if (!param || pid < 0)
3a5c359a 4660 return -EINVAL;
1da177e4 4661
5fe85be0 4662 rcu_read_lock();
1da177e4
LT
4663 p = find_process_by_pid(pid);
4664 retval = -ESRCH;
4665 if (!p)
4666 goto out_unlock;
4667
4668 retval = security_task_getscheduler(p);
4669 if (retval)
4670 goto out_unlock;
4671
4672 lp.sched_priority = p->rt_priority;
5fe85be0 4673 rcu_read_unlock();
1da177e4
LT
4674
4675 /*
4676 * This one might sleep, we cannot do it with a spinlock held ...
4677 */
4678 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4679
1da177e4
LT
4680 return retval;
4681
4682out_unlock:
5fe85be0 4683 rcu_read_unlock();
1da177e4
LT
4684 return retval;
4685}
4686
96f874e2 4687long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4688{
5a16f3d3 4689 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4690 struct task_struct *p;
4691 int retval;
1da177e4 4692
95402b38 4693 get_online_cpus();
23f5d142 4694 rcu_read_lock();
1da177e4
LT
4695
4696 p = find_process_by_pid(pid);
4697 if (!p) {
23f5d142 4698 rcu_read_unlock();
95402b38 4699 put_online_cpus();
1da177e4
LT
4700 return -ESRCH;
4701 }
4702
23f5d142 4703 /* Prevent p going away */
1da177e4 4704 get_task_struct(p);
23f5d142 4705 rcu_read_unlock();
1da177e4 4706
5a16f3d3
RR
4707 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4708 retval = -ENOMEM;
4709 goto out_put_task;
4710 }
4711 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4712 retval = -ENOMEM;
4713 goto out_free_cpus_allowed;
4714 }
1da177e4 4715 retval = -EPERM;
c69e8d9c 4716 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4717 goto out_unlock;
4718
e7834f8f
DQ
4719 retval = security_task_setscheduler(p, 0, NULL);
4720 if (retval)
4721 goto out_unlock;
4722
5a16f3d3
RR
4723 cpuset_cpus_allowed(p, cpus_allowed);
4724 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4725 again:
5a16f3d3 4726 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4727
8707d8b8 4728 if (!retval) {
5a16f3d3
RR
4729 cpuset_cpus_allowed(p, cpus_allowed);
4730 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4731 /*
4732 * We must have raced with a concurrent cpuset
4733 * update. Just reset the cpus_allowed to the
4734 * cpuset's cpus_allowed
4735 */
5a16f3d3 4736 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4737 goto again;
4738 }
4739 }
1da177e4 4740out_unlock:
5a16f3d3
RR
4741 free_cpumask_var(new_mask);
4742out_free_cpus_allowed:
4743 free_cpumask_var(cpus_allowed);
4744out_put_task:
1da177e4 4745 put_task_struct(p);
95402b38 4746 put_online_cpus();
1da177e4
LT
4747 return retval;
4748}
4749
4750static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4751 struct cpumask *new_mask)
1da177e4 4752{
96f874e2
RR
4753 if (len < cpumask_size())
4754 cpumask_clear(new_mask);
4755 else if (len > cpumask_size())
4756 len = cpumask_size();
4757
1da177e4
LT
4758 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4759}
4760
4761/**
4762 * sys_sched_setaffinity - set the cpu affinity of a process
4763 * @pid: pid of the process
4764 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4765 * @user_mask_ptr: user-space pointer to the new cpu mask
4766 */
5add95d4
HC
4767SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4768 unsigned long __user *, user_mask_ptr)
1da177e4 4769{
5a16f3d3 4770 cpumask_var_t new_mask;
1da177e4
LT
4771 int retval;
4772
5a16f3d3
RR
4773 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4774 return -ENOMEM;
1da177e4 4775
5a16f3d3
RR
4776 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4777 if (retval == 0)
4778 retval = sched_setaffinity(pid, new_mask);
4779 free_cpumask_var(new_mask);
4780 return retval;
1da177e4
LT
4781}
4782
96f874e2 4783long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4784{
36c8b586 4785 struct task_struct *p;
31605683
TG
4786 unsigned long flags;
4787 struct rq *rq;
1da177e4 4788 int retval;
1da177e4 4789
95402b38 4790 get_online_cpus();
23f5d142 4791 rcu_read_lock();
1da177e4
LT
4792
4793 retval = -ESRCH;
4794 p = find_process_by_pid(pid);
4795 if (!p)
4796 goto out_unlock;
4797
e7834f8f
DQ
4798 retval = security_task_getscheduler(p);
4799 if (retval)
4800 goto out_unlock;
4801
31605683 4802 rq = task_rq_lock(p, &flags);
96f874e2 4803 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4804 task_rq_unlock(rq, &flags);
1da177e4
LT
4805
4806out_unlock:
23f5d142 4807 rcu_read_unlock();
95402b38 4808 put_online_cpus();
1da177e4 4809
9531b62f 4810 return retval;
1da177e4
LT
4811}
4812
4813/**
4814 * sys_sched_getaffinity - get the cpu affinity of a process
4815 * @pid: pid of the process
4816 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4817 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4818 */
5add95d4
HC
4819SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4820 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4821{
4822 int ret;
f17c8607 4823 cpumask_var_t mask;
1da177e4 4824
84fba5ec 4825 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4826 return -EINVAL;
4827 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4828 return -EINVAL;
4829
f17c8607
RR
4830 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4831 return -ENOMEM;
1da177e4 4832
f17c8607
RR
4833 ret = sched_getaffinity(pid, mask);
4834 if (ret == 0) {
8bc037fb 4835 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4836
4837 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4838 ret = -EFAULT;
4839 else
cd3d8031 4840 ret = retlen;
f17c8607
RR
4841 }
4842 free_cpumask_var(mask);
1da177e4 4843
f17c8607 4844 return ret;
1da177e4
LT
4845}
4846
4847/**
4848 * sys_sched_yield - yield the current processor to other threads.
4849 *
dd41f596
IM
4850 * This function yields the current CPU to other tasks. If there are no
4851 * other threads running on this CPU then this function will return.
1da177e4 4852 */
5add95d4 4853SYSCALL_DEFINE0(sched_yield)
1da177e4 4854{
70b97a7f 4855 struct rq *rq = this_rq_lock();
1da177e4 4856
2d72376b 4857 schedstat_inc(rq, yld_count);
4530d7ab 4858 current->sched_class->yield_task(rq);
1da177e4
LT
4859
4860 /*
4861 * Since we are going to call schedule() anyway, there's
4862 * no need to preempt or enable interrupts:
4863 */
4864 __release(rq->lock);
8a25d5de 4865 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4866 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4867 preempt_enable_no_resched();
4868
4869 schedule();
4870
4871 return 0;
4872}
4873
d86ee480
PZ
4874static inline int should_resched(void)
4875{
4876 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4877}
4878
e7b38404 4879static void __cond_resched(void)
1da177e4 4880{
e7aaaa69
FW
4881 add_preempt_count(PREEMPT_ACTIVE);
4882 schedule();
4883 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4884}
4885
02b67cc3 4886int __sched _cond_resched(void)
1da177e4 4887{
d86ee480 4888 if (should_resched()) {
1da177e4
LT
4889 __cond_resched();
4890 return 1;
4891 }
4892 return 0;
4893}
02b67cc3 4894EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4895
4896/*
613afbf8 4897 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4898 * call schedule, and on return reacquire the lock.
4899 *
41a2d6cf 4900 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4901 * operations here to prevent schedule() from being called twice (once via
4902 * spin_unlock(), once by hand).
4903 */
613afbf8 4904int __cond_resched_lock(spinlock_t *lock)
1da177e4 4905{
d86ee480 4906 int resched = should_resched();
6df3cecb
JK
4907 int ret = 0;
4908
f607c668
PZ
4909 lockdep_assert_held(lock);
4910
95c354fe 4911 if (spin_needbreak(lock) || resched) {
1da177e4 4912 spin_unlock(lock);
d86ee480 4913 if (resched)
95c354fe
NP
4914 __cond_resched();
4915 else
4916 cpu_relax();
6df3cecb 4917 ret = 1;
1da177e4 4918 spin_lock(lock);
1da177e4 4919 }
6df3cecb 4920 return ret;
1da177e4 4921}
613afbf8 4922EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4923
613afbf8 4924int __sched __cond_resched_softirq(void)
1da177e4
LT
4925{
4926 BUG_ON(!in_softirq());
4927
d86ee480 4928 if (should_resched()) {
98d82567 4929 local_bh_enable();
1da177e4
LT
4930 __cond_resched();
4931 local_bh_disable();
4932 return 1;
4933 }
4934 return 0;
4935}
613afbf8 4936EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4937
1da177e4
LT
4938/**
4939 * yield - yield the current processor to other threads.
4940 *
72fd4a35 4941 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4942 * thread runnable and calls sys_sched_yield().
4943 */
4944void __sched yield(void)
4945{
4946 set_current_state(TASK_RUNNING);
4947 sys_sched_yield();
4948}
1da177e4
LT
4949EXPORT_SYMBOL(yield);
4950
4951/*
41a2d6cf 4952 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4953 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4954 */
4955void __sched io_schedule(void)
4956{
54d35f29 4957 struct rq *rq = raw_rq();
1da177e4 4958
0ff92245 4959 delayacct_blkio_start();
1da177e4 4960 atomic_inc(&rq->nr_iowait);
8f0dfc34 4961 current->in_iowait = 1;
1da177e4 4962 schedule();
8f0dfc34 4963 current->in_iowait = 0;
1da177e4 4964 atomic_dec(&rq->nr_iowait);
0ff92245 4965 delayacct_blkio_end();
1da177e4 4966}
1da177e4
LT
4967EXPORT_SYMBOL(io_schedule);
4968
4969long __sched io_schedule_timeout(long timeout)
4970{
54d35f29 4971 struct rq *rq = raw_rq();
1da177e4
LT
4972 long ret;
4973
0ff92245 4974 delayacct_blkio_start();
1da177e4 4975 atomic_inc(&rq->nr_iowait);
8f0dfc34 4976 current->in_iowait = 1;
1da177e4 4977 ret = schedule_timeout(timeout);
8f0dfc34 4978 current->in_iowait = 0;
1da177e4 4979 atomic_dec(&rq->nr_iowait);
0ff92245 4980 delayacct_blkio_end();
1da177e4
LT
4981 return ret;
4982}
4983
4984/**
4985 * sys_sched_get_priority_max - return maximum RT priority.
4986 * @policy: scheduling class.
4987 *
4988 * this syscall returns the maximum rt_priority that can be used
4989 * by a given scheduling class.
4990 */
5add95d4 4991SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4992{
4993 int ret = -EINVAL;
4994
4995 switch (policy) {
4996 case SCHED_FIFO:
4997 case SCHED_RR:
4998 ret = MAX_USER_RT_PRIO-1;
4999 break;
5000 case SCHED_NORMAL:
b0a9499c 5001 case SCHED_BATCH:
dd41f596 5002 case SCHED_IDLE:
1da177e4
LT
5003 ret = 0;
5004 break;
5005 }
5006 return ret;
5007}
5008
5009/**
5010 * sys_sched_get_priority_min - return minimum RT priority.
5011 * @policy: scheduling class.
5012 *
5013 * this syscall returns the minimum rt_priority that can be used
5014 * by a given scheduling class.
5015 */
5add95d4 5016SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5017{
5018 int ret = -EINVAL;
5019
5020 switch (policy) {
5021 case SCHED_FIFO:
5022 case SCHED_RR:
5023 ret = 1;
5024 break;
5025 case SCHED_NORMAL:
b0a9499c 5026 case SCHED_BATCH:
dd41f596 5027 case SCHED_IDLE:
1da177e4
LT
5028 ret = 0;
5029 }
5030 return ret;
5031}
5032
5033/**
5034 * sys_sched_rr_get_interval - return the default timeslice of a process.
5035 * @pid: pid of the process.
5036 * @interval: userspace pointer to the timeslice value.
5037 *
5038 * this syscall writes the default timeslice value of a given process
5039 * into the user-space timespec buffer. A value of '0' means infinity.
5040 */
17da2bd9 5041SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5042 struct timespec __user *, interval)
1da177e4 5043{
36c8b586 5044 struct task_struct *p;
a4ec24b4 5045 unsigned int time_slice;
dba091b9
TG
5046 unsigned long flags;
5047 struct rq *rq;
3a5c359a 5048 int retval;
1da177e4 5049 struct timespec t;
1da177e4
LT
5050
5051 if (pid < 0)
3a5c359a 5052 return -EINVAL;
1da177e4
LT
5053
5054 retval = -ESRCH;
1a551ae7 5055 rcu_read_lock();
1da177e4
LT
5056 p = find_process_by_pid(pid);
5057 if (!p)
5058 goto out_unlock;
5059
5060 retval = security_task_getscheduler(p);
5061 if (retval)
5062 goto out_unlock;
5063
dba091b9
TG
5064 rq = task_rq_lock(p, &flags);
5065 time_slice = p->sched_class->get_rr_interval(rq, p);
5066 task_rq_unlock(rq, &flags);
a4ec24b4 5067
1a551ae7 5068 rcu_read_unlock();
a4ec24b4 5069 jiffies_to_timespec(time_slice, &t);
1da177e4 5070 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5071 return retval;
3a5c359a 5072
1da177e4 5073out_unlock:
1a551ae7 5074 rcu_read_unlock();
1da177e4
LT
5075 return retval;
5076}
5077
7c731e0a 5078static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5079
82a1fcb9 5080void sched_show_task(struct task_struct *p)
1da177e4 5081{
1da177e4 5082 unsigned long free = 0;
36c8b586 5083 unsigned state;
1da177e4 5084
1da177e4 5085 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5086 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5087 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5088#if BITS_PER_LONG == 32
1da177e4 5089 if (state == TASK_RUNNING)
3df0fc5b 5090 printk(KERN_CONT " running ");
1da177e4 5091 else
3df0fc5b 5092 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5093#else
5094 if (state == TASK_RUNNING)
3df0fc5b 5095 printk(KERN_CONT " running task ");
1da177e4 5096 else
3df0fc5b 5097 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5098#endif
5099#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5100 free = stack_not_used(p);
1da177e4 5101#endif
3df0fc5b 5102 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5103 task_pid_nr(p), task_pid_nr(p->real_parent),
5104 (unsigned long)task_thread_info(p)->flags);
1da177e4 5105
5fb5e6de 5106 show_stack(p, NULL);
1da177e4
LT
5107}
5108
e59e2ae2 5109void show_state_filter(unsigned long state_filter)
1da177e4 5110{
36c8b586 5111 struct task_struct *g, *p;
1da177e4 5112
4bd77321 5113#if BITS_PER_LONG == 32
3df0fc5b
PZ
5114 printk(KERN_INFO
5115 " task PC stack pid father\n");
1da177e4 5116#else
3df0fc5b
PZ
5117 printk(KERN_INFO
5118 " task PC stack pid father\n");
1da177e4
LT
5119#endif
5120 read_lock(&tasklist_lock);
5121 do_each_thread(g, p) {
5122 /*
5123 * reset the NMI-timeout, listing all files on a slow
5124 * console might take alot of time:
5125 */
5126 touch_nmi_watchdog();
39bc89fd 5127 if (!state_filter || (p->state & state_filter))
82a1fcb9 5128 sched_show_task(p);
1da177e4
LT
5129 } while_each_thread(g, p);
5130
04c9167f
JF
5131 touch_all_softlockup_watchdogs();
5132
dd41f596
IM
5133#ifdef CONFIG_SCHED_DEBUG
5134 sysrq_sched_debug_show();
5135#endif
1da177e4 5136 read_unlock(&tasklist_lock);
e59e2ae2
IM
5137 /*
5138 * Only show locks if all tasks are dumped:
5139 */
93335a21 5140 if (!state_filter)
e59e2ae2 5141 debug_show_all_locks();
1da177e4
LT
5142}
5143
1df21055
IM
5144void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5145{
dd41f596 5146 idle->sched_class = &idle_sched_class;
1df21055
IM
5147}
5148
f340c0d1
IM
5149/**
5150 * init_idle - set up an idle thread for a given CPU
5151 * @idle: task in question
5152 * @cpu: cpu the idle task belongs to
5153 *
5154 * NOTE: this function does not set the idle thread's NEED_RESCHED
5155 * flag, to make booting more robust.
5156 */
5c1e1767 5157void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5158{
70b97a7f 5159 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5160 unsigned long flags;
5161
05fa785c 5162 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5163
dd41f596 5164 __sched_fork(idle);
06b83b5f 5165 idle->state = TASK_RUNNING;
dd41f596
IM
5166 idle->se.exec_start = sched_clock();
5167
96f874e2 5168 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5169 __set_task_cpu(idle, cpu);
1da177e4 5170
1da177e4 5171 rq->curr = rq->idle = idle;
4866cde0
NP
5172#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5173 idle->oncpu = 1;
5174#endif
05fa785c 5175 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5176
5177 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5178#if defined(CONFIG_PREEMPT)
5179 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5180#else
a1261f54 5181 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5182#endif
dd41f596
IM
5183 /*
5184 * The idle tasks have their own, simple scheduling class:
5185 */
5186 idle->sched_class = &idle_sched_class;
fb52607a 5187 ftrace_graph_init_task(idle);
1da177e4
LT
5188}
5189
5190/*
5191 * In a system that switches off the HZ timer nohz_cpu_mask
5192 * indicates which cpus entered this state. This is used
5193 * in the rcu update to wait only for active cpus. For system
5194 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5195 * always be CPU_BITS_NONE.
1da177e4 5196 */
6a7b3dc3 5197cpumask_var_t nohz_cpu_mask;
1da177e4 5198
19978ca6
IM
5199/*
5200 * Increase the granularity value when there are more CPUs,
5201 * because with more CPUs the 'effective latency' as visible
5202 * to users decreases. But the relationship is not linear,
5203 * so pick a second-best guess by going with the log2 of the
5204 * number of CPUs.
5205 *
5206 * This idea comes from the SD scheduler of Con Kolivas:
5207 */
acb4a848 5208static int get_update_sysctl_factor(void)
19978ca6 5209{
4ca3ef71 5210 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5211 unsigned int factor;
5212
5213 switch (sysctl_sched_tunable_scaling) {
5214 case SCHED_TUNABLESCALING_NONE:
5215 factor = 1;
5216 break;
5217 case SCHED_TUNABLESCALING_LINEAR:
5218 factor = cpus;
5219 break;
5220 case SCHED_TUNABLESCALING_LOG:
5221 default:
5222 factor = 1 + ilog2(cpus);
5223 break;
5224 }
19978ca6 5225
acb4a848
CE
5226 return factor;
5227}
19978ca6 5228
acb4a848
CE
5229static void update_sysctl(void)
5230{
5231 unsigned int factor = get_update_sysctl_factor();
19978ca6 5232
0bcdcf28
CE
5233#define SET_SYSCTL(name) \
5234 (sysctl_##name = (factor) * normalized_sysctl_##name)
5235 SET_SYSCTL(sched_min_granularity);
5236 SET_SYSCTL(sched_latency);
5237 SET_SYSCTL(sched_wakeup_granularity);
5238 SET_SYSCTL(sched_shares_ratelimit);
5239#undef SET_SYSCTL
5240}
55cd5340 5241
0bcdcf28
CE
5242static inline void sched_init_granularity(void)
5243{
5244 update_sysctl();
19978ca6
IM
5245}
5246
1da177e4
LT
5247#ifdef CONFIG_SMP
5248/*
5249 * This is how migration works:
5250 *
969c7921
TH
5251 * 1) we invoke migration_cpu_stop() on the target CPU using
5252 * stop_one_cpu().
5253 * 2) stopper starts to run (implicitly forcing the migrated thread
5254 * off the CPU)
5255 * 3) it checks whether the migrated task is still in the wrong runqueue.
5256 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5257 * it and puts it into the right queue.
969c7921
TH
5258 * 5) stopper completes and stop_one_cpu() returns and the migration
5259 * is done.
1da177e4
LT
5260 */
5261
5262/*
5263 * Change a given task's CPU affinity. Migrate the thread to a
5264 * proper CPU and schedule it away if the CPU it's executing on
5265 * is removed from the allowed bitmask.
5266 *
5267 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5268 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5269 * call is not atomic; no spinlocks may be held.
5270 */
96f874e2 5271int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5272{
5273 unsigned long flags;
70b97a7f 5274 struct rq *rq;
969c7921 5275 unsigned int dest_cpu;
48f24c4d 5276 int ret = 0;
1da177e4 5277
65cc8e48
PZ
5278 /*
5279 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5280 * drop the rq->lock and still rely on ->cpus_allowed.
5281 */
5282again:
5283 while (task_is_waking(p))
5284 cpu_relax();
1da177e4 5285 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5286 if (task_is_waking(p)) {
5287 task_rq_unlock(rq, &flags);
5288 goto again;
5289 }
e2912009 5290
6ad4c188 5291 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5292 ret = -EINVAL;
5293 goto out;
5294 }
5295
9985b0ba 5296 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5297 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5298 ret = -EINVAL;
5299 goto out;
5300 }
5301
73fe6aae 5302 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5303 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5304 else {
96f874e2
RR
5305 cpumask_copy(&p->cpus_allowed, new_mask);
5306 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5307 }
5308
1da177e4 5309 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5310 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5311 goto out;
5312
969c7921
TH
5313 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5314 if (migrate_task(p, dest_cpu)) {
5315 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5316 /* Need help from migration thread: drop lock and wait. */
5317 task_rq_unlock(rq, &flags);
969c7921 5318 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5319 tlb_migrate_finish(p->mm);
5320 return 0;
5321 }
5322out:
5323 task_rq_unlock(rq, &flags);
48f24c4d 5324
1da177e4
LT
5325 return ret;
5326}
cd8ba7cd 5327EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5328
5329/*
41a2d6cf 5330 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5331 * this because either it can't run here any more (set_cpus_allowed()
5332 * away from this CPU, or CPU going down), or because we're
5333 * attempting to rebalance this task on exec (sched_exec).
5334 *
5335 * So we race with normal scheduler movements, but that's OK, as long
5336 * as the task is no longer on this CPU.
efc30814
KK
5337 *
5338 * Returns non-zero if task was successfully migrated.
1da177e4 5339 */
efc30814 5340static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5341{
70b97a7f 5342 struct rq *rq_dest, *rq_src;
e2912009 5343 int ret = 0;
1da177e4 5344
e761b772 5345 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5346 return ret;
1da177e4
LT
5347
5348 rq_src = cpu_rq(src_cpu);
5349 rq_dest = cpu_rq(dest_cpu);
5350
5351 double_rq_lock(rq_src, rq_dest);
5352 /* Already moved. */
5353 if (task_cpu(p) != src_cpu)
b1e38734 5354 goto done;
1da177e4 5355 /* Affinity changed (again). */
96f874e2 5356 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5357 goto fail;
1da177e4 5358
e2912009
PZ
5359 /*
5360 * If we're not on a rq, the next wake-up will ensure we're
5361 * placed properly.
5362 */
5363 if (p->se.on_rq) {
2e1cb74a 5364 deactivate_task(rq_src, p, 0);
e2912009 5365 set_task_cpu(p, dest_cpu);
dd41f596 5366 activate_task(rq_dest, p, 0);
15afe09b 5367 check_preempt_curr(rq_dest, p, 0);
1da177e4 5368 }
b1e38734 5369done:
efc30814 5370 ret = 1;
b1e38734 5371fail:
1da177e4 5372 double_rq_unlock(rq_src, rq_dest);
efc30814 5373 return ret;
1da177e4
LT
5374}
5375
5376/*
969c7921
TH
5377 * migration_cpu_stop - this will be executed by a highprio stopper thread
5378 * and performs thread migration by bumping thread off CPU then
5379 * 'pushing' onto another runqueue.
1da177e4 5380 */
969c7921 5381static int migration_cpu_stop(void *data)
1da177e4 5382{
969c7921 5383 struct migration_arg *arg = data;
f7b4cddc 5384
969c7921
TH
5385 /*
5386 * The original target cpu might have gone down and we might
5387 * be on another cpu but it doesn't matter.
5388 */
f7b4cddc 5389 local_irq_disable();
969c7921 5390 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5391 local_irq_enable();
1da177e4 5392 return 0;
f7b4cddc
ON
5393}
5394
1da177e4 5395#ifdef CONFIG_HOTPLUG_CPU
054b9108 5396/*
3a4fa0a2 5397 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5398 */
6a1bdc1b 5399void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5400{
1445c08d
ON
5401 struct rq *rq = cpu_rq(dead_cpu);
5402 int needs_cpu, uninitialized_var(dest_cpu);
5403 unsigned long flags;
e76bd8d9 5404
1445c08d 5405 local_irq_save(flags);
e76bd8d9 5406
1445c08d
ON
5407 raw_spin_lock(&rq->lock);
5408 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5409 if (needs_cpu)
5410 dest_cpu = select_fallback_rq(dead_cpu, p);
5411 raw_spin_unlock(&rq->lock);
c1804d54
ON
5412 /*
5413 * It can only fail if we race with set_cpus_allowed(),
5414 * in the racer should migrate the task anyway.
5415 */
1445c08d 5416 if (needs_cpu)
c1804d54 5417 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5418 local_irq_restore(flags);
1da177e4
LT
5419}
5420
5421/*
5422 * While a dead CPU has no uninterruptible tasks queued at this point,
5423 * it might still have a nonzero ->nr_uninterruptible counter, because
5424 * for performance reasons the counter is not stricly tracking tasks to
5425 * their home CPUs. So we just add the counter to another CPU's counter,
5426 * to keep the global sum constant after CPU-down:
5427 */
70b97a7f 5428static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5429{
6ad4c188 5430 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5431 unsigned long flags;
5432
5433 local_irq_save(flags);
5434 double_rq_lock(rq_src, rq_dest);
5435 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5436 rq_src->nr_uninterruptible = 0;
5437 double_rq_unlock(rq_src, rq_dest);
5438 local_irq_restore(flags);
5439}
5440
5441/* Run through task list and migrate tasks from the dead cpu. */
5442static void migrate_live_tasks(int src_cpu)
5443{
48f24c4d 5444 struct task_struct *p, *t;
1da177e4 5445
f7b4cddc 5446 read_lock(&tasklist_lock);
1da177e4 5447
48f24c4d
IM
5448 do_each_thread(t, p) {
5449 if (p == current)
1da177e4
LT
5450 continue;
5451
48f24c4d
IM
5452 if (task_cpu(p) == src_cpu)
5453 move_task_off_dead_cpu(src_cpu, p);
5454 } while_each_thread(t, p);
1da177e4 5455
f7b4cddc 5456 read_unlock(&tasklist_lock);
1da177e4
LT
5457}
5458
dd41f596
IM
5459/*
5460 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5461 * It does so by boosting its priority to highest possible.
5462 * Used by CPU offline code.
1da177e4
LT
5463 */
5464void sched_idle_next(void)
5465{
48f24c4d 5466 int this_cpu = smp_processor_id();
70b97a7f 5467 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5468 struct task_struct *p = rq->idle;
5469 unsigned long flags;
5470
5471 /* cpu has to be offline */
48f24c4d 5472 BUG_ON(cpu_online(this_cpu));
1da177e4 5473
48f24c4d
IM
5474 /*
5475 * Strictly not necessary since rest of the CPUs are stopped by now
5476 * and interrupts disabled on the current cpu.
1da177e4 5477 */
05fa785c 5478 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5479
dd41f596 5480 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5481
94bc9a7b 5482 activate_task(rq, p, 0);
1da177e4 5483
05fa785c 5484 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5485}
5486
48f24c4d
IM
5487/*
5488 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5489 * offline.
5490 */
5491void idle_task_exit(void)
5492{
5493 struct mm_struct *mm = current->active_mm;
5494
5495 BUG_ON(cpu_online(smp_processor_id()));
5496
5497 if (mm != &init_mm)
5498 switch_mm(mm, &init_mm, current);
5499 mmdrop(mm);
5500}
5501
054b9108 5502/* called under rq->lock with disabled interrupts */
36c8b586 5503static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5504{
70b97a7f 5505 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5506
5507 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5508 BUG_ON(!p->exit_state);
1da177e4
LT
5509
5510 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5511 BUG_ON(p->state == TASK_DEAD);
1da177e4 5512
48f24c4d 5513 get_task_struct(p);
1da177e4
LT
5514
5515 /*
5516 * Drop lock around migration; if someone else moves it,
41a2d6cf 5517 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5518 * fine.
5519 */
05fa785c 5520 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5521 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5522 raw_spin_lock_irq(&rq->lock);
1da177e4 5523
48f24c4d 5524 put_task_struct(p);
1da177e4
LT
5525}
5526
5527/* release_task() removes task from tasklist, so we won't find dead tasks. */
5528static void migrate_dead_tasks(unsigned int dead_cpu)
5529{
70b97a7f 5530 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5531 struct task_struct *next;
48f24c4d 5532
dd41f596
IM
5533 for ( ; ; ) {
5534 if (!rq->nr_running)
5535 break;
b67802ea 5536 next = pick_next_task(rq);
dd41f596
IM
5537 if (!next)
5538 break;
79c53799 5539 next->sched_class->put_prev_task(rq, next);
dd41f596 5540 migrate_dead(dead_cpu, next);
e692ab53 5541
1da177e4
LT
5542 }
5543}
dce48a84
TG
5544
5545/*
5546 * remove the tasks which were accounted by rq from calc_load_tasks.
5547 */
5548static void calc_global_load_remove(struct rq *rq)
5549{
5550 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5551 rq->calc_load_active = 0;
dce48a84 5552}
1da177e4
LT
5553#endif /* CONFIG_HOTPLUG_CPU */
5554
e692ab53
NP
5555#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5556
5557static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5558 {
5559 .procname = "sched_domain",
c57baf1e 5560 .mode = 0555,
e0361851 5561 },
56992309 5562 {}
e692ab53
NP
5563};
5564
5565static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5566 {
5567 .procname = "kernel",
c57baf1e 5568 .mode = 0555,
e0361851
AD
5569 .child = sd_ctl_dir,
5570 },
56992309 5571 {}
e692ab53
NP
5572};
5573
5574static struct ctl_table *sd_alloc_ctl_entry(int n)
5575{
5576 struct ctl_table *entry =
5cf9f062 5577 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5578
e692ab53
NP
5579 return entry;
5580}
5581
6382bc90
MM
5582static void sd_free_ctl_entry(struct ctl_table **tablep)
5583{
cd790076 5584 struct ctl_table *entry;
6382bc90 5585
cd790076
MM
5586 /*
5587 * In the intermediate directories, both the child directory and
5588 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5589 * will always be set. In the lowest directory the names are
cd790076
MM
5590 * static strings and all have proc handlers.
5591 */
5592 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5593 if (entry->child)
5594 sd_free_ctl_entry(&entry->child);
cd790076
MM
5595 if (entry->proc_handler == NULL)
5596 kfree(entry->procname);
5597 }
6382bc90
MM
5598
5599 kfree(*tablep);
5600 *tablep = NULL;
5601}
5602
e692ab53 5603static void
e0361851 5604set_table_entry(struct ctl_table *entry,
e692ab53
NP
5605 const char *procname, void *data, int maxlen,
5606 mode_t mode, proc_handler *proc_handler)
5607{
e692ab53
NP
5608 entry->procname = procname;
5609 entry->data = data;
5610 entry->maxlen = maxlen;
5611 entry->mode = mode;
5612 entry->proc_handler = proc_handler;
5613}
5614
5615static struct ctl_table *
5616sd_alloc_ctl_domain_table(struct sched_domain *sd)
5617{
a5d8c348 5618 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5619
ad1cdc1d
MM
5620 if (table == NULL)
5621 return NULL;
5622
e0361851 5623 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5624 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5625 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5626 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5627 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5628 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5629 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5630 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5631 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5632 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5633 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5634 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5635 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5636 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5637 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5638 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5639 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5640 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5641 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5642 &sd->cache_nice_tries,
5643 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5644 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5645 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5646 set_table_entry(&table[11], "name", sd->name,
5647 CORENAME_MAX_SIZE, 0444, proc_dostring);
5648 /* &table[12] is terminator */
e692ab53
NP
5649
5650 return table;
5651}
5652
9a4e7159 5653static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5654{
5655 struct ctl_table *entry, *table;
5656 struct sched_domain *sd;
5657 int domain_num = 0, i;
5658 char buf[32];
5659
5660 for_each_domain(cpu, sd)
5661 domain_num++;
5662 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5663 if (table == NULL)
5664 return NULL;
e692ab53
NP
5665
5666 i = 0;
5667 for_each_domain(cpu, sd) {
5668 snprintf(buf, 32, "domain%d", i);
e692ab53 5669 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5670 entry->mode = 0555;
e692ab53
NP
5671 entry->child = sd_alloc_ctl_domain_table(sd);
5672 entry++;
5673 i++;
5674 }
5675 return table;
5676}
5677
5678static struct ctl_table_header *sd_sysctl_header;
6382bc90 5679static void register_sched_domain_sysctl(void)
e692ab53 5680{
6ad4c188 5681 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5682 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5683 char buf[32];
5684
7378547f
MM
5685 WARN_ON(sd_ctl_dir[0].child);
5686 sd_ctl_dir[0].child = entry;
5687
ad1cdc1d
MM
5688 if (entry == NULL)
5689 return;
5690
6ad4c188 5691 for_each_possible_cpu(i) {
e692ab53 5692 snprintf(buf, 32, "cpu%d", i);
e692ab53 5693 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5694 entry->mode = 0555;
e692ab53 5695 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5696 entry++;
e692ab53 5697 }
7378547f
MM
5698
5699 WARN_ON(sd_sysctl_header);
e692ab53
NP
5700 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5701}
6382bc90 5702
7378547f 5703/* may be called multiple times per register */
6382bc90
MM
5704static void unregister_sched_domain_sysctl(void)
5705{
7378547f
MM
5706 if (sd_sysctl_header)
5707 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5708 sd_sysctl_header = NULL;
7378547f
MM
5709 if (sd_ctl_dir[0].child)
5710 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5711}
e692ab53 5712#else
6382bc90
MM
5713static void register_sched_domain_sysctl(void)
5714{
5715}
5716static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5717{
5718}
5719#endif
5720
1f11eb6a
GH
5721static void set_rq_online(struct rq *rq)
5722{
5723 if (!rq->online) {
5724 const struct sched_class *class;
5725
c6c4927b 5726 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5727 rq->online = 1;
5728
5729 for_each_class(class) {
5730 if (class->rq_online)
5731 class->rq_online(rq);
5732 }
5733 }
5734}
5735
5736static void set_rq_offline(struct rq *rq)
5737{
5738 if (rq->online) {
5739 const struct sched_class *class;
5740
5741 for_each_class(class) {
5742 if (class->rq_offline)
5743 class->rq_offline(rq);
5744 }
5745
c6c4927b 5746 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5747 rq->online = 0;
5748 }
5749}
5750
1da177e4
LT
5751/*
5752 * migration_call - callback that gets triggered when a CPU is added.
5753 * Here we can start up the necessary migration thread for the new CPU.
5754 */
48f24c4d
IM
5755static int __cpuinit
5756migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5757{
48f24c4d 5758 int cpu = (long)hcpu;
1da177e4 5759 unsigned long flags;
969c7921 5760 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5761
5762 switch (action) {
5be9361c 5763
1da177e4 5764 case CPU_UP_PREPARE:
8bb78442 5765 case CPU_UP_PREPARE_FROZEN:
a468d389 5766 rq->calc_load_update = calc_load_update;
1da177e4 5767 break;
48f24c4d 5768
1da177e4 5769 case CPU_ONLINE:
8bb78442 5770 case CPU_ONLINE_FROZEN:
1f94ef59 5771 /* Update our root-domain */
05fa785c 5772 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5773 if (rq->rd) {
c6c4927b 5774 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5775
5776 set_rq_online(rq);
1f94ef59 5777 }
05fa785c 5778 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5779 break;
48f24c4d 5780
1da177e4 5781#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5782 case CPU_DEAD:
8bb78442 5783 case CPU_DEAD_FROZEN:
1da177e4 5784 migrate_live_tasks(cpu);
1da177e4 5785 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5786 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5787 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5788 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5789 rq->idle->sched_class = &idle_sched_class;
1da177e4 5790 migrate_dead_tasks(cpu);
05fa785c 5791 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5792 migrate_nr_uninterruptible(rq);
5793 BUG_ON(rq->nr_running != 0);
dce48a84 5794 calc_global_load_remove(rq);
1da177e4 5795 break;
57d885fe 5796
08f503b0
GH
5797 case CPU_DYING:
5798 case CPU_DYING_FROZEN:
57d885fe 5799 /* Update our root-domain */
05fa785c 5800 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5801 if (rq->rd) {
c6c4927b 5802 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5803 set_rq_offline(rq);
57d885fe 5804 }
05fa785c 5805 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5806 break;
1da177e4
LT
5807#endif
5808 }
5809 return NOTIFY_OK;
5810}
5811
f38b0820
PM
5812/*
5813 * Register at high priority so that task migration (migrate_all_tasks)
5814 * happens before everything else. This has to be lower priority than
cdd6c482 5815 * the notifier in the perf_event subsystem, though.
1da177e4 5816 */
26c2143b 5817static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5818 .notifier_call = migration_call,
50a323b7 5819 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5820};
5821
3a101d05
TH
5822static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5823 unsigned long action, void *hcpu)
5824{
5825 switch (action & ~CPU_TASKS_FROZEN) {
5826 case CPU_ONLINE:
5827 case CPU_DOWN_FAILED:
5828 set_cpu_active((long)hcpu, true);
5829 return NOTIFY_OK;
5830 default:
5831 return NOTIFY_DONE;
5832 }
5833}
5834
5835static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5836 unsigned long action, void *hcpu)
5837{
5838 switch (action & ~CPU_TASKS_FROZEN) {
5839 case CPU_DOWN_PREPARE:
5840 set_cpu_active((long)hcpu, false);
5841 return NOTIFY_OK;
5842 default:
5843 return NOTIFY_DONE;
5844 }
5845}
5846
7babe8db 5847static int __init migration_init(void)
1da177e4
LT
5848{
5849 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5850 int err;
48f24c4d 5851
3a101d05 5852 /* Initialize migration for the boot CPU */
07dccf33
AM
5853 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5854 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5855 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5856 register_cpu_notifier(&migration_notifier);
7babe8db 5857
3a101d05
TH
5858 /* Register cpu active notifiers */
5859 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5860 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5861
a004cd42 5862 return 0;
1da177e4 5863}
7babe8db 5864early_initcall(migration_init);
1da177e4
LT
5865#endif
5866
5867#ifdef CONFIG_SMP
476f3534 5868
3e9830dc 5869#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5870
f6630114
MT
5871static __read_mostly int sched_domain_debug_enabled;
5872
5873static int __init sched_domain_debug_setup(char *str)
5874{
5875 sched_domain_debug_enabled = 1;
5876
5877 return 0;
5878}
5879early_param("sched_debug", sched_domain_debug_setup);
5880
7c16ec58 5881static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5882 struct cpumask *groupmask)
1da177e4 5883{
4dcf6aff 5884 struct sched_group *group = sd->groups;
434d53b0 5885 char str[256];
1da177e4 5886
968ea6d8 5887 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5888 cpumask_clear(groupmask);
4dcf6aff
IM
5889
5890 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5891
5892 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5893 printk("does not load-balance\n");
4dcf6aff 5894 if (sd->parent)
3df0fc5b
PZ
5895 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5896 " has parent");
4dcf6aff 5897 return -1;
41c7ce9a
NP
5898 }
5899
3df0fc5b 5900 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5901
758b2cdc 5902 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5903 printk(KERN_ERR "ERROR: domain->span does not contain "
5904 "CPU%d\n", cpu);
4dcf6aff 5905 }
758b2cdc 5906 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5907 printk(KERN_ERR "ERROR: domain->groups does not contain"
5908 " CPU%d\n", cpu);
4dcf6aff 5909 }
1da177e4 5910
4dcf6aff 5911 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5912 do {
4dcf6aff 5913 if (!group) {
3df0fc5b
PZ
5914 printk("\n");
5915 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5916 break;
5917 }
5918
18a3885f 5919 if (!group->cpu_power) {
3df0fc5b
PZ
5920 printk(KERN_CONT "\n");
5921 printk(KERN_ERR "ERROR: domain->cpu_power not "
5922 "set\n");
4dcf6aff
IM
5923 break;
5924 }
1da177e4 5925
758b2cdc 5926 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5927 printk(KERN_CONT "\n");
5928 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5929 break;
5930 }
1da177e4 5931
758b2cdc 5932 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5933 printk(KERN_CONT "\n");
5934 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5935 break;
5936 }
1da177e4 5937
758b2cdc 5938 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5939
968ea6d8 5940 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5941
3df0fc5b 5942 printk(KERN_CONT " %s", str);
18a3885f 5943 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
5944 printk(KERN_CONT " (cpu_power = %d)",
5945 group->cpu_power);
381512cf 5946 }
1da177e4 5947
4dcf6aff
IM
5948 group = group->next;
5949 } while (group != sd->groups);
3df0fc5b 5950 printk(KERN_CONT "\n");
1da177e4 5951
758b2cdc 5952 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5953 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5954
758b2cdc
RR
5955 if (sd->parent &&
5956 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5957 printk(KERN_ERR "ERROR: parent span is not a superset "
5958 "of domain->span\n");
4dcf6aff
IM
5959 return 0;
5960}
1da177e4 5961
4dcf6aff
IM
5962static void sched_domain_debug(struct sched_domain *sd, int cpu)
5963{
d5dd3db1 5964 cpumask_var_t groupmask;
4dcf6aff 5965 int level = 0;
1da177e4 5966
f6630114
MT
5967 if (!sched_domain_debug_enabled)
5968 return;
5969
4dcf6aff
IM
5970 if (!sd) {
5971 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5972 return;
5973 }
1da177e4 5974
4dcf6aff
IM
5975 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5976
d5dd3db1 5977 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
5978 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5979 return;
5980 }
5981
4dcf6aff 5982 for (;;) {
7c16ec58 5983 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 5984 break;
1da177e4
LT
5985 level++;
5986 sd = sd->parent;
33859f7f 5987 if (!sd)
4dcf6aff
IM
5988 break;
5989 }
d5dd3db1 5990 free_cpumask_var(groupmask);
1da177e4 5991}
6d6bc0ad 5992#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5993# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5994#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5995
1a20ff27 5996static int sd_degenerate(struct sched_domain *sd)
245af2c7 5997{
758b2cdc 5998 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5999 return 1;
6000
6001 /* Following flags need at least 2 groups */
6002 if (sd->flags & (SD_LOAD_BALANCE |
6003 SD_BALANCE_NEWIDLE |
6004 SD_BALANCE_FORK |
89c4710e
SS
6005 SD_BALANCE_EXEC |
6006 SD_SHARE_CPUPOWER |
6007 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6008 if (sd->groups != sd->groups->next)
6009 return 0;
6010 }
6011
6012 /* Following flags don't use groups */
c88d5910 6013 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6014 return 0;
6015
6016 return 1;
6017}
6018
48f24c4d
IM
6019static int
6020sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6021{
6022 unsigned long cflags = sd->flags, pflags = parent->flags;
6023
6024 if (sd_degenerate(parent))
6025 return 1;
6026
758b2cdc 6027 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6028 return 0;
6029
245af2c7
SS
6030 /* Flags needing groups don't count if only 1 group in parent */
6031 if (parent->groups == parent->groups->next) {
6032 pflags &= ~(SD_LOAD_BALANCE |
6033 SD_BALANCE_NEWIDLE |
6034 SD_BALANCE_FORK |
89c4710e
SS
6035 SD_BALANCE_EXEC |
6036 SD_SHARE_CPUPOWER |
6037 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6038 if (nr_node_ids == 1)
6039 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6040 }
6041 if (~cflags & pflags)
6042 return 0;
6043
6044 return 1;
6045}
6046
c6c4927b
RR
6047static void free_rootdomain(struct root_domain *rd)
6048{
047106ad
PZ
6049 synchronize_sched();
6050
68e74568
RR
6051 cpupri_cleanup(&rd->cpupri);
6052
c6c4927b
RR
6053 free_cpumask_var(rd->rto_mask);
6054 free_cpumask_var(rd->online);
6055 free_cpumask_var(rd->span);
6056 kfree(rd);
6057}
6058
57d885fe
GH
6059static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6060{
a0490fa3 6061 struct root_domain *old_rd = NULL;
57d885fe 6062 unsigned long flags;
57d885fe 6063
05fa785c 6064 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6065
6066 if (rq->rd) {
a0490fa3 6067 old_rd = rq->rd;
57d885fe 6068
c6c4927b 6069 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6070 set_rq_offline(rq);
57d885fe 6071
c6c4927b 6072 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6073
a0490fa3
IM
6074 /*
6075 * If we dont want to free the old_rt yet then
6076 * set old_rd to NULL to skip the freeing later
6077 * in this function:
6078 */
6079 if (!atomic_dec_and_test(&old_rd->refcount))
6080 old_rd = NULL;
57d885fe
GH
6081 }
6082
6083 atomic_inc(&rd->refcount);
6084 rq->rd = rd;
6085
c6c4927b 6086 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6087 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6088 set_rq_online(rq);
57d885fe 6089
05fa785c 6090 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6091
6092 if (old_rd)
6093 free_rootdomain(old_rd);
57d885fe
GH
6094}
6095
fd5e1b5d 6096static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6097{
36b7b6d4
PE
6098 gfp_t gfp = GFP_KERNEL;
6099
57d885fe
GH
6100 memset(rd, 0, sizeof(*rd));
6101
36b7b6d4
PE
6102 if (bootmem)
6103 gfp = GFP_NOWAIT;
c6c4927b 6104
36b7b6d4 6105 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6106 goto out;
36b7b6d4 6107 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6108 goto free_span;
36b7b6d4 6109 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6110 goto free_online;
6e0534f2 6111
0fb53029 6112 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6113 goto free_rto_mask;
c6c4927b 6114 return 0;
6e0534f2 6115
68e74568
RR
6116free_rto_mask:
6117 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6118free_online:
6119 free_cpumask_var(rd->online);
6120free_span:
6121 free_cpumask_var(rd->span);
0c910d28 6122out:
c6c4927b 6123 return -ENOMEM;
57d885fe
GH
6124}
6125
6126static void init_defrootdomain(void)
6127{
c6c4927b
RR
6128 init_rootdomain(&def_root_domain, true);
6129
57d885fe
GH
6130 atomic_set(&def_root_domain.refcount, 1);
6131}
6132
dc938520 6133static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6134{
6135 struct root_domain *rd;
6136
6137 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6138 if (!rd)
6139 return NULL;
6140
c6c4927b
RR
6141 if (init_rootdomain(rd, false) != 0) {
6142 kfree(rd);
6143 return NULL;
6144 }
57d885fe
GH
6145
6146 return rd;
6147}
6148
1da177e4 6149/*
0eab9146 6150 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6151 * hold the hotplug lock.
6152 */
0eab9146
IM
6153static void
6154cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6155{
70b97a7f 6156 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6157 struct sched_domain *tmp;
6158
669c55e9
PZ
6159 for (tmp = sd; tmp; tmp = tmp->parent)
6160 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6161
245af2c7 6162 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6163 for (tmp = sd; tmp; ) {
245af2c7
SS
6164 struct sched_domain *parent = tmp->parent;
6165 if (!parent)
6166 break;
f29c9b1c 6167
1a848870 6168 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6169 tmp->parent = parent->parent;
1a848870
SS
6170 if (parent->parent)
6171 parent->parent->child = tmp;
f29c9b1c
LZ
6172 } else
6173 tmp = tmp->parent;
245af2c7
SS
6174 }
6175
1a848870 6176 if (sd && sd_degenerate(sd)) {
245af2c7 6177 sd = sd->parent;
1a848870
SS
6178 if (sd)
6179 sd->child = NULL;
6180 }
1da177e4
LT
6181
6182 sched_domain_debug(sd, cpu);
6183
57d885fe 6184 rq_attach_root(rq, rd);
674311d5 6185 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6186}
6187
6188/* cpus with isolated domains */
dcc30a35 6189static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6190
6191/* Setup the mask of cpus configured for isolated domains */
6192static int __init isolated_cpu_setup(char *str)
6193{
bdddd296 6194 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6195 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6196 return 1;
6197}
6198
8927f494 6199__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6200
6201/*
6711cab4
SS
6202 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6203 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6204 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6205 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6206 *
6207 * init_sched_build_groups will build a circular linked list of the groups
6208 * covered by the given span, and will set each group's ->cpumask correctly,
6209 * and ->cpu_power to 0.
6210 */
a616058b 6211static void
96f874e2
RR
6212init_sched_build_groups(const struct cpumask *span,
6213 const struct cpumask *cpu_map,
6214 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6215 struct sched_group **sg,
96f874e2
RR
6216 struct cpumask *tmpmask),
6217 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6218{
6219 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6220 int i;
6221
96f874e2 6222 cpumask_clear(covered);
7c16ec58 6223
abcd083a 6224 for_each_cpu(i, span) {
6711cab4 6225 struct sched_group *sg;
7c16ec58 6226 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6227 int j;
6228
758b2cdc 6229 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6230 continue;
6231
758b2cdc 6232 cpumask_clear(sched_group_cpus(sg));
18a3885f 6233 sg->cpu_power = 0;
1da177e4 6234
abcd083a 6235 for_each_cpu(j, span) {
7c16ec58 6236 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6237 continue;
6238
96f874e2 6239 cpumask_set_cpu(j, covered);
758b2cdc 6240 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6241 }
6242 if (!first)
6243 first = sg;
6244 if (last)
6245 last->next = sg;
6246 last = sg;
6247 }
6248 last->next = first;
6249}
6250
9c1cfda2 6251#define SD_NODES_PER_DOMAIN 16
1da177e4 6252
9c1cfda2 6253#ifdef CONFIG_NUMA
198e2f18 6254
9c1cfda2
JH
6255/**
6256 * find_next_best_node - find the next node to include in a sched_domain
6257 * @node: node whose sched_domain we're building
6258 * @used_nodes: nodes already in the sched_domain
6259 *
41a2d6cf 6260 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6261 * finds the closest node not already in the @used_nodes map.
6262 *
6263 * Should use nodemask_t.
6264 */
c5f59f08 6265static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6266{
6267 int i, n, val, min_val, best_node = 0;
6268
6269 min_val = INT_MAX;
6270
076ac2af 6271 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6272 /* Start at @node */
076ac2af 6273 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6274
6275 if (!nr_cpus_node(n))
6276 continue;
6277
6278 /* Skip already used nodes */
c5f59f08 6279 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6280 continue;
6281
6282 /* Simple min distance search */
6283 val = node_distance(node, n);
6284
6285 if (val < min_val) {
6286 min_val = val;
6287 best_node = n;
6288 }
6289 }
6290
c5f59f08 6291 node_set(best_node, *used_nodes);
9c1cfda2
JH
6292 return best_node;
6293}
6294
6295/**
6296 * sched_domain_node_span - get a cpumask for a node's sched_domain
6297 * @node: node whose cpumask we're constructing
73486722 6298 * @span: resulting cpumask
9c1cfda2 6299 *
41a2d6cf 6300 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6301 * should be one that prevents unnecessary balancing, but also spreads tasks
6302 * out optimally.
6303 */
96f874e2 6304static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6305{
c5f59f08 6306 nodemask_t used_nodes;
48f24c4d 6307 int i;
9c1cfda2 6308
6ca09dfc 6309 cpumask_clear(span);
c5f59f08 6310 nodes_clear(used_nodes);
9c1cfda2 6311
6ca09dfc 6312 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6313 node_set(node, used_nodes);
9c1cfda2
JH
6314
6315 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6316 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6317
6ca09dfc 6318 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6319 }
9c1cfda2 6320}
6d6bc0ad 6321#endif /* CONFIG_NUMA */
9c1cfda2 6322
5c45bf27 6323int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6324
6c99e9ad
RR
6325/*
6326 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6327 *
6328 * ( See the the comments in include/linux/sched.h:struct sched_group
6329 * and struct sched_domain. )
6c99e9ad
RR
6330 */
6331struct static_sched_group {
6332 struct sched_group sg;
6333 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6334};
6335
6336struct static_sched_domain {
6337 struct sched_domain sd;
6338 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6339};
6340
49a02c51
AH
6341struct s_data {
6342#ifdef CONFIG_NUMA
6343 int sd_allnodes;
6344 cpumask_var_t domainspan;
6345 cpumask_var_t covered;
6346 cpumask_var_t notcovered;
6347#endif
6348 cpumask_var_t nodemask;
6349 cpumask_var_t this_sibling_map;
6350 cpumask_var_t this_core_map;
6351 cpumask_var_t send_covered;
6352 cpumask_var_t tmpmask;
6353 struct sched_group **sched_group_nodes;
6354 struct root_domain *rd;
6355};
6356
2109b99e
AH
6357enum s_alloc {
6358 sa_sched_groups = 0,
6359 sa_rootdomain,
6360 sa_tmpmask,
6361 sa_send_covered,
6362 sa_this_core_map,
6363 sa_this_sibling_map,
6364 sa_nodemask,
6365 sa_sched_group_nodes,
6366#ifdef CONFIG_NUMA
6367 sa_notcovered,
6368 sa_covered,
6369 sa_domainspan,
6370#endif
6371 sa_none,
6372};
6373
9c1cfda2 6374/*
48f24c4d 6375 * SMT sched-domains:
9c1cfda2 6376 */
1da177e4 6377#ifdef CONFIG_SCHED_SMT
6c99e9ad 6378static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6379static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6380
41a2d6cf 6381static int
96f874e2
RR
6382cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6383 struct sched_group **sg, struct cpumask *unused)
1da177e4 6384{
6711cab4 6385 if (sg)
1871e52c 6386 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6387 return cpu;
6388}
6d6bc0ad 6389#endif /* CONFIG_SCHED_SMT */
1da177e4 6390
48f24c4d
IM
6391/*
6392 * multi-core sched-domains:
6393 */
1e9f28fa 6394#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6395static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6396static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6397#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6398
6399#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6400static int
96f874e2
RR
6401cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6402 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6403{
6711cab4 6404 int group;
7c16ec58 6405
c69fc56d 6406 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6407 group = cpumask_first(mask);
6711cab4 6408 if (sg)
6c99e9ad 6409 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6410 return group;
1e9f28fa
SS
6411}
6412#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6413static int
96f874e2
RR
6414cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6415 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6416{
6711cab4 6417 if (sg)
6c99e9ad 6418 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6419 return cpu;
6420}
6421#endif
6422
6c99e9ad
RR
6423static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6424static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6425
41a2d6cf 6426static int
96f874e2
RR
6427cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6428 struct sched_group **sg, struct cpumask *mask)
1da177e4 6429{
6711cab4 6430 int group;
48f24c4d 6431#ifdef CONFIG_SCHED_MC
6ca09dfc 6432 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6433 group = cpumask_first(mask);
1e9f28fa 6434#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6435 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6436 group = cpumask_first(mask);
1da177e4 6437#else
6711cab4 6438 group = cpu;
1da177e4 6439#endif
6711cab4 6440 if (sg)
6c99e9ad 6441 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6442 return group;
1da177e4
LT
6443}
6444
6445#ifdef CONFIG_NUMA
1da177e4 6446/*
9c1cfda2
JH
6447 * The init_sched_build_groups can't handle what we want to do with node
6448 * groups, so roll our own. Now each node has its own list of groups which
6449 * gets dynamically allocated.
1da177e4 6450 */
62ea9ceb 6451static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6452static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6453
62ea9ceb 6454static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6455static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6456
96f874e2
RR
6457static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6458 struct sched_group **sg,
6459 struct cpumask *nodemask)
9c1cfda2 6460{
6711cab4
SS
6461 int group;
6462
6ca09dfc 6463 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6464 group = cpumask_first(nodemask);
6711cab4
SS
6465
6466 if (sg)
6c99e9ad 6467 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6468 return group;
1da177e4 6469}
6711cab4 6470
08069033
SS
6471static void init_numa_sched_groups_power(struct sched_group *group_head)
6472{
6473 struct sched_group *sg = group_head;
6474 int j;
6475
6476 if (!sg)
6477 return;
3a5c359a 6478 do {
758b2cdc 6479 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6480 struct sched_domain *sd;
08069033 6481
6c99e9ad 6482 sd = &per_cpu(phys_domains, j).sd;
13318a71 6483 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6484 /*
6485 * Only add "power" once for each
6486 * physical package.
6487 */
6488 continue;
6489 }
08069033 6490
18a3885f 6491 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6492 }
6493 sg = sg->next;
6494 } while (sg != group_head);
08069033 6495}
0601a88d
AH
6496
6497static int build_numa_sched_groups(struct s_data *d,
6498 const struct cpumask *cpu_map, int num)
6499{
6500 struct sched_domain *sd;
6501 struct sched_group *sg, *prev;
6502 int n, j;
6503
6504 cpumask_clear(d->covered);
6505 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6506 if (cpumask_empty(d->nodemask)) {
6507 d->sched_group_nodes[num] = NULL;
6508 goto out;
6509 }
6510
6511 sched_domain_node_span(num, d->domainspan);
6512 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6513
6514 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6515 GFP_KERNEL, num);
6516 if (!sg) {
3df0fc5b
PZ
6517 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6518 num);
0601a88d
AH
6519 return -ENOMEM;
6520 }
6521 d->sched_group_nodes[num] = sg;
6522
6523 for_each_cpu(j, d->nodemask) {
6524 sd = &per_cpu(node_domains, j).sd;
6525 sd->groups = sg;
6526 }
6527
18a3885f 6528 sg->cpu_power = 0;
0601a88d
AH
6529 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6530 sg->next = sg;
6531 cpumask_or(d->covered, d->covered, d->nodemask);
6532
6533 prev = sg;
6534 for (j = 0; j < nr_node_ids; j++) {
6535 n = (num + j) % nr_node_ids;
6536 cpumask_complement(d->notcovered, d->covered);
6537 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6538 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6539 if (cpumask_empty(d->tmpmask))
6540 break;
6541 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6542 if (cpumask_empty(d->tmpmask))
6543 continue;
6544 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6545 GFP_KERNEL, num);
6546 if (!sg) {
3df0fc5b
PZ
6547 printk(KERN_WARNING
6548 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6549 return -ENOMEM;
6550 }
18a3885f 6551 sg->cpu_power = 0;
0601a88d
AH
6552 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6553 sg->next = prev->next;
6554 cpumask_or(d->covered, d->covered, d->tmpmask);
6555 prev->next = sg;
6556 prev = sg;
6557 }
6558out:
6559 return 0;
6560}
6d6bc0ad 6561#endif /* CONFIG_NUMA */
1da177e4 6562
a616058b 6563#ifdef CONFIG_NUMA
51888ca2 6564/* Free memory allocated for various sched_group structures */
96f874e2
RR
6565static void free_sched_groups(const struct cpumask *cpu_map,
6566 struct cpumask *nodemask)
51888ca2 6567{
a616058b 6568 int cpu, i;
51888ca2 6569
abcd083a 6570 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6571 struct sched_group **sched_group_nodes
6572 = sched_group_nodes_bycpu[cpu];
6573
51888ca2
SV
6574 if (!sched_group_nodes)
6575 continue;
6576
076ac2af 6577 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6578 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6579
6ca09dfc 6580 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6581 if (cpumask_empty(nodemask))
51888ca2
SV
6582 continue;
6583
6584 if (sg == NULL)
6585 continue;
6586 sg = sg->next;
6587next_sg:
6588 oldsg = sg;
6589 sg = sg->next;
6590 kfree(oldsg);
6591 if (oldsg != sched_group_nodes[i])
6592 goto next_sg;
6593 }
6594 kfree(sched_group_nodes);
6595 sched_group_nodes_bycpu[cpu] = NULL;
6596 }
51888ca2 6597}
6d6bc0ad 6598#else /* !CONFIG_NUMA */
96f874e2
RR
6599static void free_sched_groups(const struct cpumask *cpu_map,
6600 struct cpumask *nodemask)
a616058b
SS
6601{
6602}
6d6bc0ad 6603#endif /* CONFIG_NUMA */
51888ca2 6604
89c4710e
SS
6605/*
6606 * Initialize sched groups cpu_power.
6607 *
6608 * cpu_power indicates the capacity of sched group, which is used while
6609 * distributing the load between different sched groups in a sched domain.
6610 * Typically cpu_power for all the groups in a sched domain will be same unless
6611 * there are asymmetries in the topology. If there are asymmetries, group
6612 * having more cpu_power will pickup more load compared to the group having
6613 * less cpu_power.
89c4710e
SS
6614 */
6615static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6616{
6617 struct sched_domain *child;
6618 struct sched_group *group;
f93e65c1
PZ
6619 long power;
6620 int weight;
89c4710e
SS
6621
6622 WARN_ON(!sd || !sd->groups);
6623
13318a71 6624 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6625 return;
6626
6627 child = sd->child;
6628
18a3885f 6629 sd->groups->cpu_power = 0;
5517d86b 6630
f93e65c1
PZ
6631 if (!child) {
6632 power = SCHED_LOAD_SCALE;
6633 weight = cpumask_weight(sched_domain_span(sd));
6634 /*
6635 * SMT siblings share the power of a single core.
a52bfd73
PZ
6636 * Usually multiple threads get a better yield out of
6637 * that one core than a single thread would have,
6638 * reflect that in sd->smt_gain.
f93e65c1 6639 */
a52bfd73
PZ
6640 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6641 power *= sd->smt_gain;
f93e65c1 6642 power /= weight;
a52bfd73
PZ
6643 power >>= SCHED_LOAD_SHIFT;
6644 }
18a3885f 6645 sd->groups->cpu_power += power;
89c4710e
SS
6646 return;
6647 }
6648
89c4710e 6649 /*
f93e65c1 6650 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6651 */
6652 group = child->groups;
6653 do {
18a3885f 6654 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6655 group = group->next;
6656 } while (group != child->groups);
6657}
6658
7c16ec58
MT
6659/*
6660 * Initializers for schedule domains
6661 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6662 */
6663
a5d8c348
IM
6664#ifdef CONFIG_SCHED_DEBUG
6665# define SD_INIT_NAME(sd, type) sd->name = #type
6666#else
6667# define SD_INIT_NAME(sd, type) do { } while (0)
6668#endif
6669
7c16ec58 6670#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6671
7c16ec58
MT
6672#define SD_INIT_FUNC(type) \
6673static noinline void sd_init_##type(struct sched_domain *sd) \
6674{ \
6675 memset(sd, 0, sizeof(*sd)); \
6676 *sd = SD_##type##_INIT; \
1d3504fc 6677 sd->level = SD_LV_##type; \
a5d8c348 6678 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6679}
6680
6681SD_INIT_FUNC(CPU)
6682#ifdef CONFIG_NUMA
6683 SD_INIT_FUNC(ALLNODES)
6684 SD_INIT_FUNC(NODE)
6685#endif
6686#ifdef CONFIG_SCHED_SMT
6687 SD_INIT_FUNC(SIBLING)
6688#endif
6689#ifdef CONFIG_SCHED_MC
6690 SD_INIT_FUNC(MC)
6691#endif
6692
1d3504fc
HS
6693static int default_relax_domain_level = -1;
6694
6695static int __init setup_relax_domain_level(char *str)
6696{
30e0e178
LZ
6697 unsigned long val;
6698
6699 val = simple_strtoul(str, NULL, 0);
6700 if (val < SD_LV_MAX)
6701 default_relax_domain_level = val;
6702
1d3504fc
HS
6703 return 1;
6704}
6705__setup("relax_domain_level=", setup_relax_domain_level);
6706
6707static void set_domain_attribute(struct sched_domain *sd,
6708 struct sched_domain_attr *attr)
6709{
6710 int request;
6711
6712 if (!attr || attr->relax_domain_level < 0) {
6713 if (default_relax_domain_level < 0)
6714 return;
6715 else
6716 request = default_relax_domain_level;
6717 } else
6718 request = attr->relax_domain_level;
6719 if (request < sd->level) {
6720 /* turn off idle balance on this domain */
c88d5910 6721 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6722 } else {
6723 /* turn on idle balance on this domain */
c88d5910 6724 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6725 }
6726}
6727
2109b99e
AH
6728static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6729 const struct cpumask *cpu_map)
6730{
6731 switch (what) {
6732 case sa_sched_groups:
6733 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6734 d->sched_group_nodes = NULL;
6735 case sa_rootdomain:
6736 free_rootdomain(d->rd); /* fall through */
6737 case sa_tmpmask:
6738 free_cpumask_var(d->tmpmask); /* fall through */
6739 case sa_send_covered:
6740 free_cpumask_var(d->send_covered); /* fall through */
6741 case sa_this_core_map:
6742 free_cpumask_var(d->this_core_map); /* fall through */
6743 case sa_this_sibling_map:
6744 free_cpumask_var(d->this_sibling_map); /* fall through */
6745 case sa_nodemask:
6746 free_cpumask_var(d->nodemask); /* fall through */
6747 case sa_sched_group_nodes:
d1b55138 6748#ifdef CONFIG_NUMA
2109b99e
AH
6749 kfree(d->sched_group_nodes); /* fall through */
6750 case sa_notcovered:
6751 free_cpumask_var(d->notcovered); /* fall through */
6752 case sa_covered:
6753 free_cpumask_var(d->covered); /* fall through */
6754 case sa_domainspan:
6755 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6756#endif
2109b99e
AH
6757 case sa_none:
6758 break;
6759 }
6760}
3404c8d9 6761
2109b99e
AH
6762static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6763 const struct cpumask *cpu_map)
6764{
3404c8d9 6765#ifdef CONFIG_NUMA
2109b99e
AH
6766 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6767 return sa_none;
6768 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6769 return sa_domainspan;
6770 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6771 return sa_covered;
6772 /* Allocate the per-node list of sched groups */
6773 d->sched_group_nodes = kcalloc(nr_node_ids,
6774 sizeof(struct sched_group *), GFP_KERNEL);
6775 if (!d->sched_group_nodes) {
3df0fc5b 6776 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6777 return sa_notcovered;
d1b55138 6778 }
2109b99e 6779 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6780#endif
2109b99e
AH
6781 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6782 return sa_sched_group_nodes;
6783 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6784 return sa_nodemask;
6785 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6786 return sa_this_sibling_map;
6787 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6788 return sa_this_core_map;
6789 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6790 return sa_send_covered;
6791 d->rd = alloc_rootdomain();
6792 if (!d->rd) {
3df0fc5b 6793 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6794 return sa_tmpmask;
57d885fe 6795 }
2109b99e
AH
6796 return sa_rootdomain;
6797}
57d885fe 6798
7f4588f3
AH
6799static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6800 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6801{
6802 struct sched_domain *sd = NULL;
7c16ec58 6803#ifdef CONFIG_NUMA
7f4588f3 6804 struct sched_domain *parent;
1da177e4 6805
7f4588f3
AH
6806 d->sd_allnodes = 0;
6807 if (cpumask_weight(cpu_map) >
6808 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6809 sd = &per_cpu(allnodes_domains, i).sd;
6810 SD_INIT(sd, ALLNODES);
1d3504fc 6811 set_domain_attribute(sd, attr);
7f4588f3
AH
6812 cpumask_copy(sched_domain_span(sd), cpu_map);
6813 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6814 d->sd_allnodes = 1;
6815 }
6816 parent = sd;
6817
6818 sd = &per_cpu(node_domains, i).sd;
6819 SD_INIT(sd, NODE);
6820 set_domain_attribute(sd, attr);
6821 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6822 sd->parent = parent;
6823 if (parent)
6824 parent->child = sd;
6825 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6826#endif
7f4588f3
AH
6827 return sd;
6828}
1da177e4 6829
87cce662
AH
6830static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6831 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6832 struct sched_domain *parent, int i)
6833{
6834 struct sched_domain *sd;
6835 sd = &per_cpu(phys_domains, i).sd;
6836 SD_INIT(sd, CPU);
6837 set_domain_attribute(sd, attr);
6838 cpumask_copy(sched_domain_span(sd), d->nodemask);
6839 sd->parent = parent;
6840 if (parent)
6841 parent->child = sd;
6842 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6843 return sd;
6844}
1da177e4 6845
410c4081
AH
6846static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6847 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6848 struct sched_domain *parent, int i)
6849{
6850 struct sched_domain *sd = parent;
1e9f28fa 6851#ifdef CONFIG_SCHED_MC
410c4081
AH
6852 sd = &per_cpu(core_domains, i).sd;
6853 SD_INIT(sd, MC);
6854 set_domain_attribute(sd, attr);
6855 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6856 sd->parent = parent;
6857 parent->child = sd;
6858 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6859#endif
410c4081
AH
6860 return sd;
6861}
1e9f28fa 6862
d8173535
AH
6863static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6864 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6865 struct sched_domain *parent, int i)
6866{
6867 struct sched_domain *sd = parent;
1da177e4 6868#ifdef CONFIG_SCHED_SMT
d8173535
AH
6869 sd = &per_cpu(cpu_domains, i).sd;
6870 SD_INIT(sd, SIBLING);
6871 set_domain_attribute(sd, attr);
6872 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6873 sd->parent = parent;
6874 parent->child = sd;
6875 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6876#endif
d8173535
AH
6877 return sd;
6878}
1da177e4 6879
0e8e85c9
AH
6880static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6881 const struct cpumask *cpu_map, int cpu)
6882{
6883 switch (l) {
1da177e4 6884#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6885 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6886 cpumask_and(d->this_sibling_map, cpu_map,
6887 topology_thread_cpumask(cpu));
6888 if (cpu == cpumask_first(d->this_sibling_map))
6889 init_sched_build_groups(d->this_sibling_map, cpu_map,
6890 &cpu_to_cpu_group,
6891 d->send_covered, d->tmpmask);
6892 break;
1da177e4 6893#endif
1e9f28fa 6894#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6895 case SD_LV_MC: /* set up multi-core groups */
6896 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6897 if (cpu == cpumask_first(d->this_core_map))
6898 init_sched_build_groups(d->this_core_map, cpu_map,
6899 &cpu_to_core_group,
6900 d->send_covered, d->tmpmask);
6901 break;
1e9f28fa 6902#endif
86548096
AH
6903 case SD_LV_CPU: /* set up physical groups */
6904 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6905 if (!cpumask_empty(d->nodemask))
6906 init_sched_build_groups(d->nodemask, cpu_map,
6907 &cpu_to_phys_group,
6908 d->send_covered, d->tmpmask);
6909 break;
1da177e4 6910#ifdef CONFIG_NUMA
de616e36
AH
6911 case SD_LV_ALLNODES:
6912 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6913 d->send_covered, d->tmpmask);
6914 break;
6915#endif
0e8e85c9
AH
6916 default:
6917 break;
7c16ec58 6918 }
0e8e85c9 6919}
9c1cfda2 6920
2109b99e
AH
6921/*
6922 * Build sched domains for a given set of cpus and attach the sched domains
6923 * to the individual cpus
6924 */
6925static int __build_sched_domains(const struct cpumask *cpu_map,
6926 struct sched_domain_attr *attr)
6927{
6928 enum s_alloc alloc_state = sa_none;
6929 struct s_data d;
294b0c96 6930 struct sched_domain *sd;
2109b99e 6931 int i;
7c16ec58 6932#ifdef CONFIG_NUMA
2109b99e 6933 d.sd_allnodes = 0;
7c16ec58 6934#endif
9c1cfda2 6935
2109b99e
AH
6936 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6937 if (alloc_state != sa_rootdomain)
6938 goto error;
6939 alloc_state = sa_sched_groups;
9c1cfda2 6940
1da177e4 6941 /*
1a20ff27 6942 * Set up domains for cpus specified by the cpu_map.
1da177e4 6943 */
abcd083a 6944 for_each_cpu(i, cpu_map) {
49a02c51
AH
6945 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6946 cpu_map);
9761eea8 6947
7f4588f3 6948 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 6949 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 6950 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 6951 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 6952 }
9c1cfda2 6953
abcd083a 6954 for_each_cpu(i, cpu_map) {
0e8e85c9 6955 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 6956 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 6957 }
9c1cfda2 6958
1da177e4 6959 /* Set up physical groups */
86548096
AH
6960 for (i = 0; i < nr_node_ids; i++)
6961 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 6962
1da177e4
LT
6963#ifdef CONFIG_NUMA
6964 /* Set up node groups */
de616e36
AH
6965 if (d.sd_allnodes)
6966 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 6967
0601a88d
AH
6968 for (i = 0; i < nr_node_ids; i++)
6969 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 6970 goto error;
1da177e4
LT
6971#endif
6972
6973 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6974#ifdef CONFIG_SCHED_SMT
abcd083a 6975 for_each_cpu(i, cpu_map) {
294b0c96 6976 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 6977 init_sched_groups_power(i, sd);
5c45bf27 6978 }
1da177e4 6979#endif
1e9f28fa 6980#ifdef CONFIG_SCHED_MC
abcd083a 6981 for_each_cpu(i, cpu_map) {
294b0c96 6982 sd = &per_cpu(core_domains, i).sd;
89c4710e 6983 init_sched_groups_power(i, sd);
5c45bf27
SS
6984 }
6985#endif
1e9f28fa 6986
abcd083a 6987 for_each_cpu(i, cpu_map) {
294b0c96 6988 sd = &per_cpu(phys_domains, i).sd;
89c4710e 6989 init_sched_groups_power(i, sd);
1da177e4
LT
6990 }
6991
9c1cfda2 6992#ifdef CONFIG_NUMA
076ac2af 6993 for (i = 0; i < nr_node_ids; i++)
49a02c51 6994 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 6995
49a02c51 6996 if (d.sd_allnodes) {
6711cab4 6997 struct sched_group *sg;
f712c0c7 6998
96f874e2 6999 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7000 d.tmpmask);
f712c0c7
SS
7001 init_numa_sched_groups_power(sg);
7002 }
9c1cfda2
JH
7003#endif
7004
1da177e4 7005 /* Attach the domains */
abcd083a 7006 for_each_cpu(i, cpu_map) {
1da177e4 7007#ifdef CONFIG_SCHED_SMT
6c99e9ad 7008 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7009#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7010 sd = &per_cpu(core_domains, i).sd;
1da177e4 7011#else
6c99e9ad 7012 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7013#endif
49a02c51 7014 cpu_attach_domain(sd, d.rd, i);
1da177e4 7015 }
51888ca2 7016
2109b99e
AH
7017 d.sched_group_nodes = NULL; /* don't free this we still need it */
7018 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7019 return 0;
51888ca2 7020
51888ca2 7021error:
2109b99e
AH
7022 __free_domain_allocs(&d, alloc_state, cpu_map);
7023 return -ENOMEM;
1da177e4 7024}
029190c5 7025
96f874e2 7026static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7027{
7028 return __build_sched_domains(cpu_map, NULL);
7029}
7030
acc3f5d7 7031static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7032static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7033static struct sched_domain_attr *dattr_cur;
7034 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7035
7036/*
7037 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7038 * cpumask) fails, then fallback to a single sched domain,
7039 * as determined by the single cpumask fallback_doms.
029190c5 7040 */
4212823f 7041static cpumask_var_t fallback_doms;
029190c5 7042
ee79d1bd
HC
7043/*
7044 * arch_update_cpu_topology lets virtualized architectures update the
7045 * cpu core maps. It is supposed to return 1 if the topology changed
7046 * or 0 if it stayed the same.
7047 */
7048int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7049{
ee79d1bd 7050 return 0;
22e52b07
HC
7051}
7052
acc3f5d7
RR
7053cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7054{
7055 int i;
7056 cpumask_var_t *doms;
7057
7058 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7059 if (!doms)
7060 return NULL;
7061 for (i = 0; i < ndoms; i++) {
7062 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7063 free_sched_domains(doms, i);
7064 return NULL;
7065 }
7066 }
7067 return doms;
7068}
7069
7070void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7071{
7072 unsigned int i;
7073 for (i = 0; i < ndoms; i++)
7074 free_cpumask_var(doms[i]);
7075 kfree(doms);
7076}
7077
1a20ff27 7078/*
41a2d6cf 7079 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7080 * For now this just excludes isolated cpus, but could be used to
7081 * exclude other special cases in the future.
1a20ff27 7082 */
96f874e2 7083static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7084{
7378547f
MM
7085 int err;
7086
22e52b07 7087 arch_update_cpu_topology();
029190c5 7088 ndoms_cur = 1;
acc3f5d7 7089 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7090 if (!doms_cur)
acc3f5d7
RR
7091 doms_cur = &fallback_doms;
7092 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7093 dattr_cur = NULL;
acc3f5d7 7094 err = build_sched_domains(doms_cur[0]);
6382bc90 7095 register_sched_domain_sysctl();
7378547f
MM
7096
7097 return err;
1a20ff27
DG
7098}
7099
96f874e2
RR
7100static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7101 struct cpumask *tmpmask)
1da177e4 7102{
7c16ec58 7103 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7104}
1da177e4 7105
1a20ff27
DG
7106/*
7107 * Detach sched domains from a group of cpus specified in cpu_map
7108 * These cpus will now be attached to the NULL domain
7109 */
96f874e2 7110static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7111{
96f874e2
RR
7112 /* Save because hotplug lock held. */
7113 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7114 int i;
7115
abcd083a 7116 for_each_cpu(i, cpu_map)
57d885fe 7117 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7118 synchronize_sched();
96f874e2 7119 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7120}
7121
1d3504fc
HS
7122/* handle null as "default" */
7123static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7124 struct sched_domain_attr *new, int idx_new)
7125{
7126 struct sched_domain_attr tmp;
7127
7128 /* fast path */
7129 if (!new && !cur)
7130 return 1;
7131
7132 tmp = SD_ATTR_INIT;
7133 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7134 new ? (new + idx_new) : &tmp,
7135 sizeof(struct sched_domain_attr));
7136}
7137
029190c5
PJ
7138/*
7139 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7140 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7141 * doms_new[] to the current sched domain partitioning, doms_cur[].
7142 * It destroys each deleted domain and builds each new domain.
7143 *
acc3f5d7 7144 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7145 * The masks don't intersect (don't overlap.) We should setup one
7146 * sched domain for each mask. CPUs not in any of the cpumasks will
7147 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7148 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7149 * it as it is.
7150 *
acc3f5d7
RR
7151 * The passed in 'doms_new' should be allocated using
7152 * alloc_sched_domains. This routine takes ownership of it and will
7153 * free_sched_domains it when done with it. If the caller failed the
7154 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7155 * and partition_sched_domains() will fallback to the single partition
7156 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7157 *
96f874e2 7158 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7159 * ndoms_new == 0 is a special case for destroying existing domains,
7160 * and it will not create the default domain.
dfb512ec 7161 *
029190c5
PJ
7162 * Call with hotplug lock held
7163 */
acc3f5d7 7164void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7165 struct sched_domain_attr *dattr_new)
029190c5 7166{
dfb512ec 7167 int i, j, n;
d65bd5ec 7168 int new_topology;
029190c5 7169
712555ee 7170 mutex_lock(&sched_domains_mutex);
a1835615 7171
7378547f
MM
7172 /* always unregister in case we don't destroy any domains */
7173 unregister_sched_domain_sysctl();
7174
d65bd5ec
HC
7175 /* Let architecture update cpu core mappings. */
7176 new_topology = arch_update_cpu_topology();
7177
dfb512ec 7178 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7179
7180 /* Destroy deleted domains */
7181 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7182 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7183 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7184 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7185 goto match1;
7186 }
7187 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7188 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7189match1:
7190 ;
7191 }
7192
e761b772
MK
7193 if (doms_new == NULL) {
7194 ndoms_cur = 0;
acc3f5d7 7195 doms_new = &fallback_doms;
6ad4c188 7196 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7197 WARN_ON_ONCE(dattr_new);
e761b772
MK
7198 }
7199
029190c5
PJ
7200 /* Build new domains */
7201 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7202 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7203 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7204 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7205 goto match2;
7206 }
7207 /* no match - add a new doms_new */
acc3f5d7 7208 __build_sched_domains(doms_new[i],
1d3504fc 7209 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7210match2:
7211 ;
7212 }
7213
7214 /* Remember the new sched domains */
acc3f5d7
RR
7215 if (doms_cur != &fallback_doms)
7216 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7217 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7218 doms_cur = doms_new;
1d3504fc 7219 dattr_cur = dattr_new;
029190c5 7220 ndoms_cur = ndoms_new;
7378547f
MM
7221
7222 register_sched_domain_sysctl();
a1835615 7223
712555ee 7224 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7225}
7226
5c45bf27 7227#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7228static void arch_reinit_sched_domains(void)
5c45bf27 7229{
95402b38 7230 get_online_cpus();
dfb512ec
MK
7231
7232 /* Destroy domains first to force the rebuild */
7233 partition_sched_domains(0, NULL, NULL);
7234
e761b772 7235 rebuild_sched_domains();
95402b38 7236 put_online_cpus();
5c45bf27
SS
7237}
7238
7239static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7240{
afb8a9b7 7241 unsigned int level = 0;
5c45bf27 7242
afb8a9b7
GS
7243 if (sscanf(buf, "%u", &level) != 1)
7244 return -EINVAL;
7245
7246 /*
7247 * level is always be positive so don't check for
7248 * level < POWERSAVINGS_BALANCE_NONE which is 0
7249 * What happens on 0 or 1 byte write,
7250 * need to check for count as well?
7251 */
7252
7253 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7254 return -EINVAL;
7255
7256 if (smt)
afb8a9b7 7257 sched_smt_power_savings = level;
5c45bf27 7258 else
afb8a9b7 7259 sched_mc_power_savings = level;
5c45bf27 7260
c70f22d2 7261 arch_reinit_sched_domains();
5c45bf27 7262
c70f22d2 7263 return count;
5c45bf27
SS
7264}
7265
5c45bf27 7266#ifdef CONFIG_SCHED_MC
f718cd4a 7267static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7268 struct sysdev_class_attribute *attr,
f718cd4a 7269 char *page)
5c45bf27
SS
7270{
7271 return sprintf(page, "%u\n", sched_mc_power_savings);
7272}
f718cd4a 7273static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7274 struct sysdev_class_attribute *attr,
48f24c4d 7275 const char *buf, size_t count)
5c45bf27
SS
7276{
7277 return sched_power_savings_store(buf, count, 0);
7278}
f718cd4a
AK
7279static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7280 sched_mc_power_savings_show,
7281 sched_mc_power_savings_store);
5c45bf27
SS
7282#endif
7283
7284#ifdef CONFIG_SCHED_SMT
f718cd4a 7285static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7286 struct sysdev_class_attribute *attr,
f718cd4a 7287 char *page)
5c45bf27
SS
7288{
7289 return sprintf(page, "%u\n", sched_smt_power_savings);
7290}
f718cd4a 7291static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7292 struct sysdev_class_attribute *attr,
48f24c4d 7293 const char *buf, size_t count)
5c45bf27
SS
7294{
7295 return sched_power_savings_store(buf, count, 1);
7296}
f718cd4a
AK
7297static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7298 sched_smt_power_savings_show,
6707de00
AB
7299 sched_smt_power_savings_store);
7300#endif
7301
39aac648 7302int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7303{
7304 int err = 0;
7305
7306#ifdef CONFIG_SCHED_SMT
7307 if (smt_capable())
7308 err = sysfs_create_file(&cls->kset.kobj,
7309 &attr_sched_smt_power_savings.attr);
7310#endif
7311#ifdef CONFIG_SCHED_MC
7312 if (!err && mc_capable())
7313 err = sysfs_create_file(&cls->kset.kobj,
7314 &attr_sched_mc_power_savings.attr);
7315#endif
7316 return err;
7317}
6d6bc0ad 7318#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7319
1da177e4 7320/*
3a101d05
TH
7321 * Update cpusets according to cpu_active mask. If cpusets are
7322 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7323 * around partition_sched_domains().
1da177e4 7324 */
3a101d05
TH
7325static int __cpuexit cpuset_cpu_active(struct notifier_block *nfb,
7326 unsigned long action, void *hcpu)
e761b772 7327{
3a101d05 7328 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7329 case CPU_ONLINE:
6ad4c188 7330 case CPU_DOWN_FAILED:
3a101d05 7331 cpuset_update_active_cpus();
e761b772 7332 return NOTIFY_OK;
3a101d05
TH
7333 default:
7334 return NOTIFY_DONE;
7335 }
7336}
e761b772 7337
3a101d05
TH
7338static int __cpuexit cpuset_cpu_inactive(struct notifier_block *nfb,
7339 unsigned long action, void *hcpu)
7340{
7341 switch (action & ~CPU_TASKS_FROZEN) {
7342 case CPU_DOWN_PREPARE:
7343 cpuset_update_active_cpus();
7344 return NOTIFY_OK;
e761b772
MK
7345 default:
7346 return NOTIFY_DONE;
7347 }
7348}
e761b772
MK
7349
7350static int update_runtime(struct notifier_block *nfb,
7351 unsigned long action, void *hcpu)
1da177e4 7352{
7def2be1
PZ
7353 int cpu = (int)(long)hcpu;
7354
1da177e4 7355 switch (action) {
1da177e4 7356 case CPU_DOWN_PREPARE:
8bb78442 7357 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7358 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7359 return NOTIFY_OK;
7360
1da177e4 7361 case CPU_DOWN_FAILED:
8bb78442 7362 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7363 case CPU_ONLINE:
8bb78442 7364 case CPU_ONLINE_FROZEN:
7def2be1 7365 enable_runtime(cpu_rq(cpu));
e761b772
MK
7366 return NOTIFY_OK;
7367
1da177e4
LT
7368 default:
7369 return NOTIFY_DONE;
7370 }
1da177e4 7371}
1da177e4
LT
7372
7373void __init sched_init_smp(void)
7374{
dcc30a35
RR
7375 cpumask_var_t non_isolated_cpus;
7376
7377 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7378 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7379
434d53b0
MT
7380#if defined(CONFIG_NUMA)
7381 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7382 GFP_KERNEL);
7383 BUG_ON(sched_group_nodes_bycpu == NULL);
7384#endif
95402b38 7385 get_online_cpus();
712555ee 7386 mutex_lock(&sched_domains_mutex);
6ad4c188 7387 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7388 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7389 if (cpumask_empty(non_isolated_cpus))
7390 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7391 mutex_unlock(&sched_domains_mutex);
95402b38 7392 put_online_cpus();
e761b772 7393
3a101d05
TH
7394 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7395 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7396
7397 /* RT runtime code needs to handle some hotplug events */
7398 hotcpu_notifier(update_runtime, 0);
7399
b328ca18 7400 init_hrtick();
5c1e1767
NP
7401
7402 /* Move init over to a non-isolated CPU */
dcc30a35 7403 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7404 BUG();
19978ca6 7405 sched_init_granularity();
dcc30a35 7406 free_cpumask_var(non_isolated_cpus);
4212823f 7407
0e3900e6 7408 init_sched_rt_class();
1da177e4
LT
7409}
7410#else
7411void __init sched_init_smp(void)
7412{
19978ca6 7413 sched_init_granularity();
1da177e4
LT
7414}
7415#endif /* CONFIG_SMP */
7416
cd1bb94b
AB
7417const_debug unsigned int sysctl_timer_migration = 1;
7418
1da177e4
LT
7419int in_sched_functions(unsigned long addr)
7420{
1da177e4
LT
7421 return in_lock_functions(addr) ||
7422 (addr >= (unsigned long)__sched_text_start
7423 && addr < (unsigned long)__sched_text_end);
7424}
7425
a9957449 7426static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7427{
7428 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7429 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7430#ifdef CONFIG_FAIR_GROUP_SCHED
7431 cfs_rq->rq = rq;
7432#endif
67e9fb2a 7433 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7434}
7435
fa85ae24
PZ
7436static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7437{
7438 struct rt_prio_array *array;
7439 int i;
7440
7441 array = &rt_rq->active;
7442 for (i = 0; i < MAX_RT_PRIO; i++) {
7443 INIT_LIST_HEAD(array->queue + i);
7444 __clear_bit(i, array->bitmap);
7445 }
7446 /* delimiter for bitsearch: */
7447 __set_bit(MAX_RT_PRIO, array->bitmap);
7448
052f1dc7 7449#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7450 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7451#ifdef CONFIG_SMP
e864c499 7452 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7453#endif
48d5e258 7454#endif
fa85ae24
PZ
7455#ifdef CONFIG_SMP
7456 rt_rq->rt_nr_migratory = 0;
fa85ae24 7457 rt_rq->overloaded = 0;
05fa785c 7458 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7459#endif
7460
7461 rt_rq->rt_time = 0;
7462 rt_rq->rt_throttled = 0;
ac086bc2 7463 rt_rq->rt_runtime = 0;
0986b11b 7464 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7465
052f1dc7 7466#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7467 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7468 rt_rq->rq = rq;
7469#endif
fa85ae24
PZ
7470}
7471
6f505b16 7472#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7473static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7474 struct sched_entity *se, int cpu, int add,
7475 struct sched_entity *parent)
6f505b16 7476{
ec7dc8ac 7477 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7478 tg->cfs_rq[cpu] = cfs_rq;
7479 init_cfs_rq(cfs_rq, rq);
7480 cfs_rq->tg = tg;
7481 if (add)
7482 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7483
7484 tg->se[cpu] = se;
354d60c2
DG
7485 /* se could be NULL for init_task_group */
7486 if (!se)
7487 return;
7488
ec7dc8ac
DG
7489 if (!parent)
7490 se->cfs_rq = &rq->cfs;
7491 else
7492 se->cfs_rq = parent->my_q;
7493
6f505b16
PZ
7494 se->my_q = cfs_rq;
7495 se->load.weight = tg->shares;
e05510d0 7496 se->load.inv_weight = 0;
ec7dc8ac 7497 se->parent = parent;
6f505b16 7498}
052f1dc7 7499#endif
6f505b16 7500
052f1dc7 7501#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7502static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7503 struct sched_rt_entity *rt_se, int cpu, int add,
7504 struct sched_rt_entity *parent)
6f505b16 7505{
ec7dc8ac
DG
7506 struct rq *rq = cpu_rq(cpu);
7507
6f505b16
PZ
7508 tg->rt_rq[cpu] = rt_rq;
7509 init_rt_rq(rt_rq, rq);
7510 rt_rq->tg = tg;
ac086bc2 7511 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7512 if (add)
7513 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7514
7515 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7516 if (!rt_se)
7517 return;
7518
ec7dc8ac
DG
7519 if (!parent)
7520 rt_se->rt_rq = &rq->rt;
7521 else
7522 rt_se->rt_rq = parent->my_q;
7523
6f505b16 7524 rt_se->my_q = rt_rq;
ec7dc8ac 7525 rt_se->parent = parent;
6f505b16
PZ
7526 INIT_LIST_HEAD(&rt_se->run_list);
7527}
7528#endif
7529
1da177e4
LT
7530void __init sched_init(void)
7531{
dd41f596 7532 int i, j;
434d53b0
MT
7533 unsigned long alloc_size = 0, ptr;
7534
7535#ifdef CONFIG_FAIR_GROUP_SCHED
7536 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7537#endif
7538#ifdef CONFIG_RT_GROUP_SCHED
7539 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7540#endif
df7c8e84 7541#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7542 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7543#endif
434d53b0 7544 if (alloc_size) {
36b7b6d4 7545 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7546
7547#ifdef CONFIG_FAIR_GROUP_SCHED
7548 init_task_group.se = (struct sched_entity **)ptr;
7549 ptr += nr_cpu_ids * sizeof(void **);
7550
7551 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7552 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7553
6d6bc0ad 7554#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7555#ifdef CONFIG_RT_GROUP_SCHED
7556 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7557 ptr += nr_cpu_ids * sizeof(void **);
7558
7559 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7560 ptr += nr_cpu_ids * sizeof(void **);
7561
6d6bc0ad 7562#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7563#ifdef CONFIG_CPUMASK_OFFSTACK
7564 for_each_possible_cpu(i) {
7565 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7566 ptr += cpumask_size();
7567 }
7568#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7569 }
dd41f596 7570
57d885fe
GH
7571#ifdef CONFIG_SMP
7572 init_defrootdomain();
7573#endif
7574
d0b27fa7
PZ
7575 init_rt_bandwidth(&def_rt_bandwidth,
7576 global_rt_period(), global_rt_runtime());
7577
7578#ifdef CONFIG_RT_GROUP_SCHED
7579 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7580 global_rt_period(), global_rt_runtime());
6d6bc0ad 7581#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7582
7c941438 7583#ifdef CONFIG_CGROUP_SCHED
6f505b16 7584 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7585 INIT_LIST_HEAD(&init_task_group.children);
7586
7c941438 7587#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7588
4a6cc4bd
JK
7589#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7590 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7591 __alignof__(unsigned long));
7592#endif
0a945022 7593 for_each_possible_cpu(i) {
70b97a7f 7594 struct rq *rq;
1da177e4
LT
7595
7596 rq = cpu_rq(i);
05fa785c 7597 raw_spin_lock_init(&rq->lock);
7897986b 7598 rq->nr_running = 0;
dce48a84
TG
7599 rq->calc_load_active = 0;
7600 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7601 init_cfs_rq(&rq->cfs, rq);
6f505b16 7602 init_rt_rq(&rq->rt, rq);
dd41f596 7603#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7604 init_task_group.shares = init_task_group_load;
6f505b16 7605 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7606#ifdef CONFIG_CGROUP_SCHED
7607 /*
7608 * How much cpu bandwidth does init_task_group get?
7609 *
7610 * In case of task-groups formed thr' the cgroup filesystem, it
7611 * gets 100% of the cpu resources in the system. This overall
7612 * system cpu resource is divided among the tasks of
7613 * init_task_group and its child task-groups in a fair manner,
7614 * based on each entity's (task or task-group's) weight
7615 * (se->load.weight).
7616 *
7617 * In other words, if init_task_group has 10 tasks of weight
7618 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7619 * then A0's share of the cpu resource is:
7620 *
0d905bca 7621 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7622 *
7623 * We achieve this by letting init_task_group's tasks sit
7624 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7625 */
ec7dc8ac 7626 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7627#endif
354d60c2
DG
7628#endif /* CONFIG_FAIR_GROUP_SCHED */
7629
7630 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7631#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7632 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7633#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7634 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7635#endif
dd41f596 7636#endif
1da177e4 7637
dd41f596
IM
7638 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7639 rq->cpu_load[j] = 0;
1da177e4 7640#ifdef CONFIG_SMP
41c7ce9a 7641 rq->sd = NULL;
57d885fe 7642 rq->rd = NULL;
e51fd5e2 7643 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7644 rq->post_schedule = 0;
1da177e4 7645 rq->active_balance = 0;
dd41f596 7646 rq->next_balance = jiffies;
1da177e4 7647 rq->push_cpu = 0;
0a2966b4 7648 rq->cpu = i;
1f11eb6a 7649 rq->online = 0;
eae0c9df
MG
7650 rq->idle_stamp = 0;
7651 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7652 rq_attach_root(rq, &def_root_domain);
1da177e4 7653#endif
8f4d37ec 7654 init_rq_hrtick(rq);
1da177e4 7655 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7656 }
7657
2dd73a4f 7658 set_load_weight(&init_task);
b50f60ce 7659
e107be36
AK
7660#ifdef CONFIG_PREEMPT_NOTIFIERS
7661 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7662#endif
7663
c9819f45 7664#ifdef CONFIG_SMP
962cf36c 7665 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7666#endif
7667
b50f60ce 7668#ifdef CONFIG_RT_MUTEXES
1d615482 7669 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7670#endif
7671
1da177e4
LT
7672 /*
7673 * The boot idle thread does lazy MMU switching as well:
7674 */
7675 atomic_inc(&init_mm.mm_count);
7676 enter_lazy_tlb(&init_mm, current);
7677
7678 /*
7679 * Make us the idle thread. Technically, schedule() should not be
7680 * called from this thread, however somewhere below it might be,
7681 * but because we are the idle thread, we just pick up running again
7682 * when this runqueue becomes "idle".
7683 */
7684 init_idle(current, smp_processor_id());
dce48a84
TG
7685
7686 calc_load_update = jiffies + LOAD_FREQ;
7687
dd41f596
IM
7688 /*
7689 * During early bootup we pretend to be a normal task:
7690 */
7691 current->sched_class = &fair_sched_class;
6892b75e 7692
6a7b3dc3 7693 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7694 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7695#ifdef CONFIG_SMP
7d1e6a9b 7696#ifdef CONFIG_NO_HZ
49557e62 7697 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7698 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7699#endif
bdddd296
RR
7700 /* May be allocated at isolcpus cmdline parse time */
7701 if (cpu_isolated_map == NULL)
7702 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7703#endif /* SMP */
6a7b3dc3 7704
cdd6c482 7705 perf_event_init();
0d905bca 7706
6892b75e 7707 scheduler_running = 1;
1da177e4
LT
7708}
7709
7710#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7711static inline int preempt_count_equals(int preempt_offset)
7712{
234da7bc 7713 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7714
7715 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7716}
7717
d894837f 7718void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7719{
48f24c4d 7720#ifdef in_atomic
1da177e4
LT
7721 static unsigned long prev_jiffy; /* ratelimiting */
7722
e4aafea2
FW
7723 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7724 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7725 return;
7726 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7727 return;
7728 prev_jiffy = jiffies;
7729
3df0fc5b
PZ
7730 printk(KERN_ERR
7731 "BUG: sleeping function called from invalid context at %s:%d\n",
7732 file, line);
7733 printk(KERN_ERR
7734 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7735 in_atomic(), irqs_disabled(),
7736 current->pid, current->comm);
aef745fc
IM
7737
7738 debug_show_held_locks(current);
7739 if (irqs_disabled())
7740 print_irqtrace_events(current);
7741 dump_stack();
1da177e4
LT
7742#endif
7743}
7744EXPORT_SYMBOL(__might_sleep);
7745#endif
7746
7747#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7748static void normalize_task(struct rq *rq, struct task_struct *p)
7749{
7750 int on_rq;
3e51f33f 7751
3a5e4dc1
AK
7752 on_rq = p->se.on_rq;
7753 if (on_rq)
7754 deactivate_task(rq, p, 0);
7755 __setscheduler(rq, p, SCHED_NORMAL, 0);
7756 if (on_rq) {
7757 activate_task(rq, p, 0);
7758 resched_task(rq->curr);
7759 }
7760}
7761
1da177e4
LT
7762void normalize_rt_tasks(void)
7763{
a0f98a1c 7764 struct task_struct *g, *p;
1da177e4 7765 unsigned long flags;
70b97a7f 7766 struct rq *rq;
1da177e4 7767
4cf5d77a 7768 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7769 do_each_thread(g, p) {
178be793
IM
7770 /*
7771 * Only normalize user tasks:
7772 */
7773 if (!p->mm)
7774 continue;
7775
6cfb0d5d 7776 p->se.exec_start = 0;
6cfb0d5d 7777#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7778 p->se.statistics.wait_start = 0;
7779 p->se.statistics.sleep_start = 0;
7780 p->se.statistics.block_start = 0;
6cfb0d5d 7781#endif
dd41f596
IM
7782
7783 if (!rt_task(p)) {
7784 /*
7785 * Renice negative nice level userspace
7786 * tasks back to 0:
7787 */
7788 if (TASK_NICE(p) < 0 && p->mm)
7789 set_user_nice(p, 0);
1da177e4 7790 continue;
dd41f596 7791 }
1da177e4 7792
1d615482 7793 raw_spin_lock(&p->pi_lock);
b29739f9 7794 rq = __task_rq_lock(p);
1da177e4 7795
178be793 7796 normalize_task(rq, p);
3a5e4dc1 7797
b29739f9 7798 __task_rq_unlock(rq);
1d615482 7799 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7800 } while_each_thread(g, p);
7801
4cf5d77a 7802 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7803}
7804
7805#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7806
67fc4e0c 7807#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7808/*
67fc4e0c 7809 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7810 *
7811 * They can only be called when the whole system has been
7812 * stopped - every CPU needs to be quiescent, and no scheduling
7813 * activity can take place. Using them for anything else would
7814 * be a serious bug, and as a result, they aren't even visible
7815 * under any other configuration.
7816 */
7817
7818/**
7819 * curr_task - return the current task for a given cpu.
7820 * @cpu: the processor in question.
7821 *
7822 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7823 */
36c8b586 7824struct task_struct *curr_task(int cpu)
1df5c10a
LT
7825{
7826 return cpu_curr(cpu);
7827}
7828
67fc4e0c
JW
7829#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7830
7831#ifdef CONFIG_IA64
1df5c10a
LT
7832/**
7833 * set_curr_task - set the current task for a given cpu.
7834 * @cpu: the processor in question.
7835 * @p: the task pointer to set.
7836 *
7837 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7838 * are serviced on a separate stack. It allows the architecture to switch the
7839 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7840 * must be called with all CPU's synchronized, and interrupts disabled, the
7841 * and caller must save the original value of the current task (see
7842 * curr_task() above) and restore that value before reenabling interrupts and
7843 * re-starting the system.
7844 *
7845 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7846 */
36c8b586 7847void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7848{
7849 cpu_curr(cpu) = p;
7850}
7851
7852#endif
29f59db3 7853
bccbe08a
PZ
7854#ifdef CONFIG_FAIR_GROUP_SCHED
7855static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7856{
7857 int i;
7858
7859 for_each_possible_cpu(i) {
7860 if (tg->cfs_rq)
7861 kfree(tg->cfs_rq[i]);
7862 if (tg->se)
7863 kfree(tg->se[i]);
6f505b16
PZ
7864 }
7865
7866 kfree(tg->cfs_rq);
7867 kfree(tg->se);
6f505b16
PZ
7868}
7869
ec7dc8ac
DG
7870static
7871int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7872{
29f59db3 7873 struct cfs_rq *cfs_rq;
eab17229 7874 struct sched_entity *se;
9b5b7751 7875 struct rq *rq;
29f59db3
SV
7876 int i;
7877
434d53b0 7878 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7879 if (!tg->cfs_rq)
7880 goto err;
434d53b0 7881 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7882 if (!tg->se)
7883 goto err;
052f1dc7
PZ
7884
7885 tg->shares = NICE_0_LOAD;
29f59db3
SV
7886
7887 for_each_possible_cpu(i) {
9b5b7751 7888 rq = cpu_rq(i);
29f59db3 7889
eab17229
LZ
7890 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7891 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7892 if (!cfs_rq)
7893 goto err;
7894
eab17229
LZ
7895 se = kzalloc_node(sizeof(struct sched_entity),
7896 GFP_KERNEL, cpu_to_node(i));
29f59db3 7897 if (!se)
dfc12eb2 7898 goto err_free_rq;
29f59db3 7899
eab17229 7900 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7901 }
7902
7903 return 1;
7904
dfc12eb2
PC
7905 err_free_rq:
7906 kfree(cfs_rq);
bccbe08a
PZ
7907 err:
7908 return 0;
7909}
7910
7911static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7912{
7913 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7914 &cpu_rq(cpu)->leaf_cfs_rq_list);
7915}
7916
7917static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7918{
7919 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7920}
6d6bc0ad 7921#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7922static inline void free_fair_sched_group(struct task_group *tg)
7923{
7924}
7925
ec7dc8ac
DG
7926static inline
7927int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7928{
7929 return 1;
7930}
7931
7932static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7933{
7934}
7935
7936static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7937{
7938}
6d6bc0ad 7939#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7940
7941#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7942static void free_rt_sched_group(struct task_group *tg)
7943{
7944 int i;
7945
d0b27fa7
PZ
7946 destroy_rt_bandwidth(&tg->rt_bandwidth);
7947
bccbe08a
PZ
7948 for_each_possible_cpu(i) {
7949 if (tg->rt_rq)
7950 kfree(tg->rt_rq[i]);
7951 if (tg->rt_se)
7952 kfree(tg->rt_se[i]);
7953 }
7954
7955 kfree(tg->rt_rq);
7956 kfree(tg->rt_se);
7957}
7958
ec7dc8ac
DG
7959static
7960int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7961{
7962 struct rt_rq *rt_rq;
eab17229 7963 struct sched_rt_entity *rt_se;
bccbe08a
PZ
7964 struct rq *rq;
7965 int i;
7966
434d53b0 7967 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7968 if (!tg->rt_rq)
7969 goto err;
434d53b0 7970 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7971 if (!tg->rt_se)
7972 goto err;
7973
d0b27fa7
PZ
7974 init_rt_bandwidth(&tg->rt_bandwidth,
7975 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7976
7977 for_each_possible_cpu(i) {
7978 rq = cpu_rq(i);
7979
eab17229
LZ
7980 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7981 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
7982 if (!rt_rq)
7983 goto err;
29f59db3 7984
eab17229
LZ
7985 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7986 GFP_KERNEL, cpu_to_node(i));
6f505b16 7987 if (!rt_se)
dfc12eb2 7988 goto err_free_rq;
29f59db3 7989
eab17229 7990 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
7991 }
7992
bccbe08a
PZ
7993 return 1;
7994
dfc12eb2
PC
7995 err_free_rq:
7996 kfree(rt_rq);
bccbe08a
PZ
7997 err:
7998 return 0;
7999}
8000
8001static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8002{
8003 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8004 &cpu_rq(cpu)->leaf_rt_rq_list);
8005}
8006
8007static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8008{
8009 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8010}
6d6bc0ad 8011#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8012static inline void free_rt_sched_group(struct task_group *tg)
8013{
8014}
8015
ec7dc8ac
DG
8016static inline
8017int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8018{
8019 return 1;
8020}
8021
8022static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8023{
8024}
8025
8026static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8027{
8028}
6d6bc0ad 8029#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8030
7c941438 8031#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8032static void free_sched_group(struct task_group *tg)
8033{
8034 free_fair_sched_group(tg);
8035 free_rt_sched_group(tg);
8036 kfree(tg);
8037}
8038
8039/* allocate runqueue etc for a new task group */
ec7dc8ac 8040struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8041{
8042 struct task_group *tg;
8043 unsigned long flags;
8044 int i;
8045
8046 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8047 if (!tg)
8048 return ERR_PTR(-ENOMEM);
8049
ec7dc8ac 8050 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8051 goto err;
8052
ec7dc8ac 8053 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8054 goto err;
8055
8ed36996 8056 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8057 for_each_possible_cpu(i) {
bccbe08a
PZ
8058 register_fair_sched_group(tg, i);
8059 register_rt_sched_group(tg, i);
9b5b7751 8060 }
6f505b16 8061 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8062
8063 WARN_ON(!parent); /* root should already exist */
8064
8065 tg->parent = parent;
f473aa5e 8066 INIT_LIST_HEAD(&tg->children);
09f2724a 8067 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8068 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8069
9b5b7751 8070 return tg;
29f59db3
SV
8071
8072err:
6f505b16 8073 free_sched_group(tg);
29f59db3
SV
8074 return ERR_PTR(-ENOMEM);
8075}
8076
9b5b7751 8077/* rcu callback to free various structures associated with a task group */
6f505b16 8078static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8079{
29f59db3 8080 /* now it should be safe to free those cfs_rqs */
6f505b16 8081 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8082}
8083
9b5b7751 8084/* Destroy runqueue etc associated with a task group */
4cf86d77 8085void sched_destroy_group(struct task_group *tg)
29f59db3 8086{
8ed36996 8087 unsigned long flags;
9b5b7751 8088 int i;
29f59db3 8089
8ed36996 8090 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8091 for_each_possible_cpu(i) {
bccbe08a
PZ
8092 unregister_fair_sched_group(tg, i);
8093 unregister_rt_sched_group(tg, i);
9b5b7751 8094 }
6f505b16 8095 list_del_rcu(&tg->list);
f473aa5e 8096 list_del_rcu(&tg->siblings);
8ed36996 8097 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8098
9b5b7751 8099 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8100 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8101}
8102
9b5b7751 8103/* change task's runqueue when it moves between groups.
3a252015
IM
8104 * The caller of this function should have put the task in its new group
8105 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8106 * reflect its new group.
9b5b7751
SV
8107 */
8108void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8109{
8110 int on_rq, running;
8111 unsigned long flags;
8112 struct rq *rq;
8113
8114 rq = task_rq_lock(tsk, &flags);
8115
051a1d1a 8116 running = task_current(rq, tsk);
29f59db3
SV
8117 on_rq = tsk->se.on_rq;
8118
0e1f3483 8119 if (on_rq)
29f59db3 8120 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8121 if (unlikely(running))
8122 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8123
6f505b16 8124 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8125
810b3817
PZ
8126#ifdef CONFIG_FAIR_GROUP_SCHED
8127 if (tsk->sched_class->moved_group)
88ec22d3 8128 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8129#endif
8130
0e1f3483
HS
8131 if (unlikely(running))
8132 tsk->sched_class->set_curr_task(rq);
8133 if (on_rq)
371fd7e7 8134 enqueue_task(rq, tsk, 0);
29f59db3 8135
29f59db3
SV
8136 task_rq_unlock(rq, &flags);
8137}
7c941438 8138#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8139
052f1dc7 8140#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8141static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8142{
8143 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8144 int on_rq;
8145
29f59db3 8146 on_rq = se->on_rq;
62fb1851 8147 if (on_rq)
29f59db3
SV
8148 dequeue_entity(cfs_rq, se, 0);
8149
8150 se->load.weight = shares;
e05510d0 8151 se->load.inv_weight = 0;
29f59db3 8152
62fb1851 8153 if (on_rq)
29f59db3 8154 enqueue_entity(cfs_rq, se, 0);
c09595f6 8155}
62fb1851 8156
c09595f6
PZ
8157static void set_se_shares(struct sched_entity *se, unsigned long shares)
8158{
8159 struct cfs_rq *cfs_rq = se->cfs_rq;
8160 struct rq *rq = cfs_rq->rq;
8161 unsigned long flags;
8162
05fa785c 8163 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8164 __set_se_shares(se, shares);
05fa785c 8165 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8166}
8167
8ed36996
PZ
8168static DEFINE_MUTEX(shares_mutex);
8169
4cf86d77 8170int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8171{
8172 int i;
8ed36996 8173 unsigned long flags;
c61935fd 8174
ec7dc8ac
DG
8175 /*
8176 * We can't change the weight of the root cgroup.
8177 */
8178 if (!tg->se[0])
8179 return -EINVAL;
8180
18d95a28
PZ
8181 if (shares < MIN_SHARES)
8182 shares = MIN_SHARES;
cb4ad1ff
MX
8183 else if (shares > MAX_SHARES)
8184 shares = MAX_SHARES;
62fb1851 8185
8ed36996 8186 mutex_lock(&shares_mutex);
9b5b7751 8187 if (tg->shares == shares)
5cb350ba 8188 goto done;
29f59db3 8189
8ed36996 8190 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8191 for_each_possible_cpu(i)
8192 unregister_fair_sched_group(tg, i);
f473aa5e 8193 list_del_rcu(&tg->siblings);
8ed36996 8194 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8195
8196 /* wait for any ongoing reference to this group to finish */
8197 synchronize_sched();
8198
8199 /*
8200 * Now we are free to modify the group's share on each cpu
8201 * w/o tripping rebalance_share or load_balance_fair.
8202 */
9b5b7751 8203 tg->shares = shares;
c09595f6
PZ
8204 for_each_possible_cpu(i) {
8205 /*
8206 * force a rebalance
8207 */
8208 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8209 set_se_shares(tg->se[i], shares);
c09595f6 8210 }
29f59db3 8211
6b2d7700
SV
8212 /*
8213 * Enable load balance activity on this group, by inserting it back on
8214 * each cpu's rq->leaf_cfs_rq_list.
8215 */
8ed36996 8216 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8217 for_each_possible_cpu(i)
8218 register_fair_sched_group(tg, i);
f473aa5e 8219 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8220 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8221done:
8ed36996 8222 mutex_unlock(&shares_mutex);
9b5b7751 8223 return 0;
29f59db3
SV
8224}
8225
5cb350ba
DG
8226unsigned long sched_group_shares(struct task_group *tg)
8227{
8228 return tg->shares;
8229}
052f1dc7 8230#endif
5cb350ba 8231
052f1dc7 8232#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8233/*
9f0c1e56 8234 * Ensure that the real time constraints are schedulable.
6f505b16 8235 */
9f0c1e56
PZ
8236static DEFINE_MUTEX(rt_constraints_mutex);
8237
8238static unsigned long to_ratio(u64 period, u64 runtime)
8239{
8240 if (runtime == RUNTIME_INF)
9a7e0b18 8241 return 1ULL << 20;
9f0c1e56 8242
9a7e0b18 8243 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8244}
8245
9a7e0b18
PZ
8246/* Must be called with tasklist_lock held */
8247static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8248{
9a7e0b18 8249 struct task_struct *g, *p;
b40b2e8e 8250
9a7e0b18
PZ
8251 do_each_thread(g, p) {
8252 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8253 return 1;
8254 } while_each_thread(g, p);
b40b2e8e 8255
9a7e0b18
PZ
8256 return 0;
8257}
b40b2e8e 8258
9a7e0b18
PZ
8259struct rt_schedulable_data {
8260 struct task_group *tg;
8261 u64 rt_period;
8262 u64 rt_runtime;
8263};
b40b2e8e 8264
9a7e0b18
PZ
8265static int tg_schedulable(struct task_group *tg, void *data)
8266{
8267 struct rt_schedulable_data *d = data;
8268 struct task_group *child;
8269 unsigned long total, sum = 0;
8270 u64 period, runtime;
b40b2e8e 8271
9a7e0b18
PZ
8272 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8273 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8274
9a7e0b18
PZ
8275 if (tg == d->tg) {
8276 period = d->rt_period;
8277 runtime = d->rt_runtime;
b40b2e8e 8278 }
b40b2e8e 8279
4653f803
PZ
8280 /*
8281 * Cannot have more runtime than the period.
8282 */
8283 if (runtime > period && runtime != RUNTIME_INF)
8284 return -EINVAL;
6f505b16 8285
4653f803
PZ
8286 /*
8287 * Ensure we don't starve existing RT tasks.
8288 */
9a7e0b18
PZ
8289 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8290 return -EBUSY;
6f505b16 8291
9a7e0b18 8292 total = to_ratio(period, runtime);
6f505b16 8293
4653f803
PZ
8294 /*
8295 * Nobody can have more than the global setting allows.
8296 */
8297 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8298 return -EINVAL;
6f505b16 8299
4653f803
PZ
8300 /*
8301 * The sum of our children's runtime should not exceed our own.
8302 */
9a7e0b18
PZ
8303 list_for_each_entry_rcu(child, &tg->children, siblings) {
8304 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8305 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8306
9a7e0b18
PZ
8307 if (child == d->tg) {
8308 period = d->rt_period;
8309 runtime = d->rt_runtime;
8310 }
6f505b16 8311
9a7e0b18 8312 sum += to_ratio(period, runtime);
9f0c1e56 8313 }
6f505b16 8314
9a7e0b18
PZ
8315 if (sum > total)
8316 return -EINVAL;
8317
8318 return 0;
6f505b16
PZ
8319}
8320
9a7e0b18 8321static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8322{
9a7e0b18
PZ
8323 struct rt_schedulable_data data = {
8324 .tg = tg,
8325 .rt_period = period,
8326 .rt_runtime = runtime,
8327 };
8328
8329 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8330}
8331
d0b27fa7
PZ
8332static int tg_set_bandwidth(struct task_group *tg,
8333 u64 rt_period, u64 rt_runtime)
6f505b16 8334{
ac086bc2 8335 int i, err = 0;
9f0c1e56 8336
9f0c1e56 8337 mutex_lock(&rt_constraints_mutex);
521f1a24 8338 read_lock(&tasklist_lock);
9a7e0b18
PZ
8339 err = __rt_schedulable(tg, rt_period, rt_runtime);
8340 if (err)
9f0c1e56 8341 goto unlock;
ac086bc2 8342
0986b11b 8343 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8344 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8345 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8346
8347 for_each_possible_cpu(i) {
8348 struct rt_rq *rt_rq = tg->rt_rq[i];
8349
0986b11b 8350 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8351 rt_rq->rt_runtime = rt_runtime;
0986b11b 8352 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8353 }
0986b11b 8354 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8355 unlock:
521f1a24 8356 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8357 mutex_unlock(&rt_constraints_mutex);
8358
8359 return err;
6f505b16
PZ
8360}
8361
d0b27fa7
PZ
8362int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8363{
8364 u64 rt_runtime, rt_period;
8365
8366 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8367 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8368 if (rt_runtime_us < 0)
8369 rt_runtime = RUNTIME_INF;
8370
8371 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8372}
8373
9f0c1e56
PZ
8374long sched_group_rt_runtime(struct task_group *tg)
8375{
8376 u64 rt_runtime_us;
8377
d0b27fa7 8378 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8379 return -1;
8380
d0b27fa7 8381 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8382 do_div(rt_runtime_us, NSEC_PER_USEC);
8383 return rt_runtime_us;
8384}
d0b27fa7
PZ
8385
8386int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8387{
8388 u64 rt_runtime, rt_period;
8389
8390 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8391 rt_runtime = tg->rt_bandwidth.rt_runtime;
8392
619b0488
R
8393 if (rt_period == 0)
8394 return -EINVAL;
8395
d0b27fa7
PZ
8396 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8397}
8398
8399long sched_group_rt_period(struct task_group *tg)
8400{
8401 u64 rt_period_us;
8402
8403 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8404 do_div(rt_period_us, NSEC_PER_USEC);
8405 return rt_period_us;
8406}
8407
8408static int sched_rt_global_constraints(void)
8409{
4653f803 8410 u64 runtime, period;
d0b27fa7
PZ
8411 int ret = 0;
8412
ec5d4989
HS
8413 if (sysctl_sched_rt_period <= 0)
8414 return -EINVAL;
8415
4653f803
PZ
8416 runtime = global_rt_runtime();
8417 period = global_rt_period();
8418
8419 /*
8420 * Sanity check on the sysctl variables.
8421 */
8422 if (runtime > period && runtime != RUNTIME_INF)
8423 return -EINVAL;
10b612f4 8424
d0b27fa7 8425 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8426 read_lock(&tasklist_lock);
4653f803 8427 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8428 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8429 mutex_unlock(&rt_constraints_mutex);
8430
8431 return ret;
8432}
54e99124
DG
8433
8434int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8435{
8436 /* Don't accept realtime tasks when there is no way for them to run */
8437 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8438 return 0;
8439
8440 return 1;
8441}
8442
6d6bc0ad 8443#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8444static int sched_rt_global_constraints(void)
8445{
ac086bc2
PZ
8446 unsigned long flags;
8447 int i;
8448
ec5d4989
HS
8449 if (sysctl_sched_rt_period <= 0)
8450 return -EINVAL;
8451
60aa605d
PZ
8452 /*
8453 * There's always some RT tasks in the root group
8454 * -- migration, kstopmachine etc..
8455 */
8456 if (sysctl_sched_rt_runtime == 0)
8457 return -EBUSY;
8458
0986b11b 8459 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8460 for_each_possible_cpu(i) {
8461 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8462
0986b11b 8463 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8464 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8465 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8466 }
0986b11b 8467 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8468
d0b27fa7
PZ
8469 return 0;
8470}
6d6bc0ad 8471#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8472
8473int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8474 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8475 loff_t *ppos)
8476{
8477 int ret;
8478 int old_period, old_runtime;
8479 static DEFINE_MUTEX(mutex);
8480
8481 mutex_lock(&mutex);
8482 old_period = sysctl_sched_rt_period;
8483 old_runtime = sysctl_sched_rt_runtime;
8484
8d65af78 8485 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8486
8487 if (!ret && write) {
8488 ret = sched_rt_global_constraints();
8489 if (ret) {
8490 sysctl_sched_rt_period = old_period;
8491 sysctl_sched_rt_runtime = old_runtime;
8492 } else {
8493 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8494 def_rt_bandwidth.rt_period =
8495 ns_to_ktime(global_rt_period());
8496 }
8497 }
8498 mutex_unlock(&mutex);
8499
8500 return ret;
8501}
68318b8e 8502
052f1dc7 8503#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8504
8505/* return corresponding task_group object of a cgroup */
2b01dfe3 8506static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8507{
2b01dfe3
PM
8508 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8509 struct task_group, css);
68318b8e
SV
8510}
8511
8512static struct cgroup_subsys_state *
2b01dfe3 8513cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8514{
ec7dc8ac 8515 struct task_group *tg, *parent;
68318b8e 8516
2b01dfe3 8517 if (!cgrp->parent) {
68318b8e 8518 /* This is early initialization for the top cgroup */
68318b8e
SV
8519 return &init_task_group.css;
8520 }
8521
ec7dc8ac
DG
8522 parent = cgroup_tg(cgrp->parent);
8523 tg = sched_create_group(parent);
68318b8e
SV
8524 if (IS_ERR(tg))
8525 return ERR_PTR(-ENOMEM);
8526
68318b8e
SV
8527 return &tg->css;
8528}
8529
41a2d6cf
IM
8530static void
8531cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8532{
2b01dfe3 8533 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8534
8535 sched_destroy_group(tg);
8536}
8537
41a2d6cf 8538static int
be367d09 8539cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8540{
b68aa230 8541#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8542 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8543 return -EINVAL;
8544#else
68318b8e
SV
8545 /* We don't support RT-tasks being in separate groups */
8546 if (tsk->sched_class != &fair_sched_class)
8547 return -EINVAL;
b68aa230 8548#endif
be367d09
BB
8549 return 0;
8550}
68318b8e 8551
be367d09
BB
8552static int
8553cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8554 struct task_struct *tsk, bool threadgroup)
8555{
8556 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8557 if (retval)
8558 return retval;
8559 if (threadgroup) {
8560 struct task_struct *c;
8561 rcu_read_lock();
8562 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8563 retval = cpu_cgroup_can_attach_task(cgrp, c);
8564 if (retval) {
8565 rcu_read_unlock();
8566 return retval;
8567 }
8568 }
8569 rcu_read_unlock();
8570 }
68318b8e
SV
8571 return 0;
8572}
8573
8574static void
2b01dfe3 8575cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8576 struct cgroup *old_cont, struct task_struct *tsk,
8577 bool threadgroup)
68318b8e
SV
8578{
8579 sched_move_task(tsk);
be367d09
BB
8580 if (threadgroup) {
8581 struct task_struct *c;
8582 rcu_read_lock();
8583 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8584 sched_move_task(c);
8585 }
8586 rcu_read_unlock();
8587 }
68318b8e
SV
8588}
8589
052f1dc7 8590#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8591static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8592 u64 shareval)
68318b8e 8593{
2b01dfe3 8594 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8595}
8596
f4c753b7 8597static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8598{
2b01dfe3 8599 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8600
8601 return (u64) tg->shares;
8602}
6d6bc0ad 8603#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8604
052f1dc7 8605#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8606static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8607 s64 val)
6f505b16 8608{
06ecb27c 8609 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8610}
8611
06ecb27c 8612static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8613{
06ecb27c 8614 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8615}
d0b27fa7
PZ
8616
8617static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8618 u64 rt_period_us)
8619{
8620 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8621}
8622
8623static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8624{
8625 return sched_group_rt_period(cgroup_tg(cgrp));
8626}
6d6bc0ad 8627#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8628
fe5c7cc2 8629static struct cftype cpu_files[] = {
052f1dc7 8630#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8631 {
8632 .name = "shares",
f4c753b7
PM
8633 .read_u64 = cpu_shares_read_u64,
8634 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8635 },
052f1dc7
PZ
8636#endif
8637#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8638 {
9f0c1e56 8639 .name = "rt_runtime_us",
06ecb27c
PM
8640 .read_s64 = cpu_rt_runtime_read,
8641 .write_s64 = cpu_rt_runtime_write,
6f505b16 8642 },
d0b27fa7
PZ
8643 {
8644 .name = "rt_period_us",
f4c753b7
PM
8645 .read_u64 = cpu_rt_period_read_uint,
8646 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8647 },
052f1dc7 8648#endif
68318b8e
SV
8649};
8650
8651static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8652{
fe5c7cc2 8653 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8654}
8655
8656struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8657 .name = "cpu",
8658 .create = cpu_cgroup_create,
8659 .destroy = cpu_cgroup_destroy,
8660 .can_attach = cpu_cgroup_can_attach,
8661 .attach = cpu_cgroup_attach,
8662 .populate = cpu_cgroup_populate,
8663 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8664 .early_init = 1,
8665};
8666
052f1dc7 8667#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8668
8669#ifdef CONFIG_CGROUP_CPUACCT
8670
8671/*
8672 * CPU accounting code for task groups.
8673 *
8674 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8675 * (balbir@in.ibm.com).
8676 */
8677
934352f2 8678/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8679struct cpuacct {
8680 struct cgroup_subsys_state css;
8681 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8682 u64 __percpu *cpuusage;
ef12fefa 8683 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8684 struct cpuacct *parent;
d842de87
SV
8685};
8686
8687struct cgroup_subsys cpuacct_subsys;
8688
8689/* return cpu accounting group corresponding to this container */
32cd756a 8690static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8691{
32cd756a 8692 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8693 struct cpuacct, css);
8694}
8695
8696/* return cpu accounting group to which this task belongs */
8697static inline struct cpuacct *task_ca(struct task_struct *tsk)
8698{
8699 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8700 struct cpuacct, css);
8701}
8702
8703/* create a new cpu accounting group */
8704static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8705 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8706{
8707 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8708 int i;
d842de87
SV
8709
8710 if (!ca)
ef12fefa 8711 goto out;
d842de87
SV
8712
8713 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8714 if (!ca->cpuusage)
8715 goto out_free_ca;
8716
8717 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8718 if (percpu_counter_init(&ca->cpustat[i], 0))
8719 goto out_free_counters;
d842de87 8720
934352f2
BR
8721 if (cgrp->parent)
8722 ca->parent = cgroup_ca(cgrp->parent);
8723
d842de87 8724 return &ca->css;
ef12fefa
BR
8725
8726out_free_counters:
8727 while (--i >= 0)
8728 percpu_counter_destroy(&ca->cpustat[i]);
8729 free_percpu(ca->cpuusage);
8730out_free_ca:
8731 kfree(ca);
8732out:
8733 return ERR_PTR(-ENOMEM);
d842de87
SV
8734}
8735
8736/* destroy an existing cpu accounting group */
41a2d6cf 8737static void
32cd756a 8738cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8739{
32cd756a 8740 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8741 int i;
d842de87 8742
ef12fefa
BR
8743 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8744 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8745 free_percpu(ca->cpuusage);
8746 kfree(ca);
8747}
8748
720f5498
KC
8749static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8750{
b36128c8 8751 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8752 u64 data;
8753
8754#ifndef CONFIG_64BIT
8755 /*
8756 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8757 */
05fa785c 8758 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8759 data = *cpuusage;
05fa785c 8760 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8761#else
8762 data = *cpuusage;
8763#endif
8764
8765 return data;
8766}
8767
8768static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8769{
b36128c8 8770 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8771
8772#ifndef CONFIG_64BIT
8773 /*
8774 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8775 */
05fa785c 8776 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8777 *cpuusage = val;
05fa785c 8778 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8779#else
8780 *cpuusage = val;
8781#endif
8782}
8783
d842de87 8784/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8785static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8786{
32cd756a 8787 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8788 u64 totalcpuusage = 0;
8789 int i;
8790
720f5498
KC
8791 for_each_present_cpu(i)
8792 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8793
8794 return totalcpuusage;
8795}
8796
0297b803
DG
8797static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8798 u64 reset)
8799{
8800 struct cpuacct *ca = cgroup_ca(cgrp);
8801 int err = 0;
8802 int i;
8803
8804 if (reset) {
8805 err = -EINVAL;
8806 goto out;
8807 }
8808
720f5498
KC
8809 for_each_present_cpu(i)
8810 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8811
0297b803
DG
8812out:
8813 return err;
8814}
8815
e9515c3c
KC
8816static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8817 struct seq_file *m)
8818{
8819 struct cpuacct *ca = cgroup_ca(cgroup);
8820 u64 percpu;
8821 int i;
8822
8823 for_each_present_cpu(i) {
8824 percpu = cpuacct_cpuusage_read(ca, i);
8825 seq_printf(m, "%llu ", (unsigned long long) percpu);
8826 }
8827 seq_printf(m, "\n");
8828 return 0;
8829}
8830
ef12fefa
BR
8831static const char *cpuacct_stat_desc[] = {
8832 [CPUACCT_STAT_USER] = "user",
8833 [CPUACCT_STAT_SYSTEM] = "system",
8834};
8835
8836static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8837 struct cgroup_map_cb *cb)
8838{
8839 struct cpuacct *ca = cgroup_ca(cgrp);
8840 int i;
8841
8842 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8843 s64 val = percpu_counter_read(&ca->cpustat[i]);
8844 val = cputime64_to_clock_t(val);
8845 cb->fill(cb, cpuacct_stat_desc[i], val);
8846 }
8847 return 0;
8848}
8849
d842de87
SV
8850static struct cftype files[] = {
8851 {
8852 .name = "usage",
f4c753b7
PM
8853 .read_u64 = cpuusage_read,
8854 .write_u64 = cpuusage_write,
d842de87 8855 },
e9515c3c
KC
8856 {
8857 .name = "usage_percpu",
8858 .read_seq_string = cpuacct_percpu_seq_read,
8859 },
ef12fefa
BR
8860 {
8861 .name = "stat",
8862 .read_map = cpuacct_stats_show,
8863 },
d842de87
SV
8864};
8865
32cd756a 8866static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8867{
32cd756a 8868 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8869}
8870
8871/*
8872 * charge this task's execution time to its accounting group.
8873 *
8874 * called with rq->lock held.
8875 */
8876static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8877{
8878 struct cpuacct *ca;
934352f2 8879 int cpu;
d842de87 8880
c40c6f85 8881 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8882 return;
8883
934352f2 8884 cpu = task_cpu(tsk);
a18b83b7
BR
8885
8886 rcu_read_lock();
8887
d842de87 8888 ca = task_ca(tsk);
d842de87 8889
934352f2 8890 for (; ca; ca = ca->parent) {
b36128c8 8891 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8892 *cpuusage += cputime;
8893 }
a18b83b7
BR
8894
8895 rcu_read_unlock();
d842de87
SV
8896}
8897
fa535a77
AB
8898/*
8899 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8900 * in cputime_t units. As a result, cpuacct_update_stats calls
8901 * percpu_counter_add with values large enough to always overflow the
8902 * per cpu batch limit causing bad SMP scalability.
8903 *
8904 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8905 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8906 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8907 */
8908#ifdef CONFIG_SMP
8909#define CPUACCT_BATCH \
8910 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8911#else
8912#define CPUACCT_BATCH 0
8913#endif
8914
ef12fefa
BR
8915/*
8916 * Charge the system/user time to the task's accounting group.
8917 */
8918static void cpuacct_update_stats(struct task_struct *tsk,
8919 enum cpuacct_stat_index idx, cputime_t val)
8920{
8921 struct cpuacct *ca;
fa535a77 8922 int batch = CPUACCT_BATCH;
ef12fefa
BR
8923
8924 if (unlikely(!cpuacct_subsys.active))
8925 return;
8926
8927 rcu_read_lock();
8928 ca = task_ca(tsk);
8929
8930 do {
fa535a77 8931 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8932 ca = ca->parent;
8933 } while (ca);
8934 rcu_read_unlock();
8935}
8936
d842de87
SV
8937struct cgroup_subsys cpuacct_subsys = {
8938 .name = "cpuacct",
8939 .create = cpuacct_create,
8940 .destroy = cpuacct_destroy,
8941 .populate = cpuacct_populate,
8942 .subsys_id = cpuacct_subsys_id,
8943};
8944#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8945
8946#ifndef CONFIG_SMP
8947
03b042bf
PM
8948void synchronize_sched_expedited(void)
8949{
fc390cde 8950 barrier();
03b042bf
PM
8951}
8952EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8953
8954#else /* #ifndef CONFIG_SMP */
8955
cc631fb7 8956static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 8957
cc631fb7 8958static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 8959{
969c7921
TH
8960 /*
8961 * There must be a full memory barrier on each affected CPU
8962 * between the time that try_stop_cpus() is called and the
8963 * time that it returns.
8964 *
8965 * In the current initial implementation of cpu_stop, the
8966 * above condition is already met when the control reaches
8967 * this point and the following smp_mb() is not strictly
8968 * necessary. Do smp_mb() anyway for documentation and
8969 * robustness against future implementation changes.
8970 */
cc631fb7 8971 smp_mb(); /* See above comment block. */
969c7921 8972 return 0;
03b042bf 8973}
03b042bf
PM
8974
8975/*
8976 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8977 * approach to force grace period to end quickly. This consumes
8978 * significant time on all CPUs, and is thus not recommended for
8979 * any sort of common-case code.
8980 *
8981 * Note that it is illegal to call this function while holding any
8982 * lock that is acquired by a CPU-hotplug notifier. Failing to
8983 * observe this restriction will result in deadlock.
8984 */
8985void synchronize_sched_expedited(void)
8986{
969c7921 8987 int snap, trycount = 0;
03b042bf
PM
8988
8989 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 8990 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 8991 get_online_cpus();
969c7921
TH
8992 while (try_stop_cpus(cpu_online_mask,
8993 synchronize_sched_expedited_cpu_stop,
94458d5e 8994 NULL) == -EAGAIN) {
03b042bf
PM
8995 put_online_cpus();
8996 if (trycount++ < 10)
8997 udelay(trycount * num_online_cpus());
8998 else {
8999 synchronize_sched();
9000 return;
9001 }
969c7921 9002 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9003 smp_mb(); /* ensure test happens before caller kfree */
9004 return;
9005 }
9006 get_online_cpus();
9007 }
969c7921 9008 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9009 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9010 put_online_cpus();
03b042bf
PM
9011}
9012EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9013
9014#endif /* #else #ifndef CONFIG_SMP */