sched: rt: move some code around
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 368
052f1dc7 369#endif /* CONFIG_GROUP_SCHED */
29f59db3 370
6aa645ea
IM
371/* CFS-related fields in a runqueue */
372struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
6aa645ea 376 u64 exec_clock;
e9acbff6 377 u64 min_vruntime;
6aa645ea
IM
378
379 struct rb_root tasks_timeline;
380 struct rb_node *rb_leftmost;
4a55bd5e
PZ
381
382 struct list_head tasks;
383 struct list_head *balance_iterator;
384
385 /*
386 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
387 * It is set to NULL otherwise (i.e when none are currently running).
388 */
aa2ac252 389 struct sched_entity *curr, *next;
ddc97297
PZ
390
391 unsigned long nr_spread_over;
392
62160e3f 393#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
394 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
395
41a2d6cf
IM
396 /*
397 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
398 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
399 * (like users, containers etc.)
400 *
401 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
402 * list is used during load balance.
403 */
41a2d6cf
IM
404 struct list_head leaf_cfs_rq_list;
405 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
414 int highest_prio; /* highest queued rt task prio */
415#endif
fa85ae24 416#ifdef CONFIG_SMP
73fe6aae 417 unsigned long rt_nr_migratory;
a22d7fc1 418 int overloaded;
fa85ae24 419#endif
6f505b16 420 int rt_throttled;
fa85ae24 421 u64 rt_time;
ac086bc2 422 u64 rt_runtime;
ea736ed5 423 /* Nests inside the rq lock: */
ac086bc2 424 spinlock_t rt_runtime_lock;
6f505b16 425
052f1dc7 426#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
427 unsigned long rt_nr_boosted;
428
6f505b16
PZ
429 struct rq *rq;
430 struct list_head leaf_rt_rq_list;
431 struct task_group *tg;
432 struct sched_rt_entity *rt_se;
433#endif
6aa645ea
IM
434};
435
57d885fe
GH
436#ifdef CONFIG_SMP
437
438/*
439 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
440 * variables. Each exclusive cpuset essentially defines an island domain by
441 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
442 * exclusive cpuset is created, we also create and attach a new root-domain
443 * object.
444 *
57d885fe
GH
445 */
446struct root_domain {
447 atomic_t refcount;
448 cpumask_t span;
449 cpumask_t online;
637f5085 450
0eab9146 451 /*
637f5085
GH
452 * The "RT overload" flag: it gets set if a CPU has more than
453 * one runnable RT task.
454 */
455 cpumask_t rto_mask;
0eab9146 456 atomic_t rto_count;
6e0534f2
GH
457#ifdef CONFIG_SMP
458 struct cpupri cpupri;
459#endif
57d885fe
GH
460};
461
dc938520
GH
462/*
463 * By default the system creates a single root-domain with all cpus as
464 * members (mimicking the global state we have today).
465 */
57d885fe
GH
466static struct root_domain def_root_domain;
467
468#endif
469
1da177e4
LT
470/*
471 * This is the main, per-CPU runqueue data structure.
472 *
473 * Locking rule: those places that want to lock multiple runqueues
474 * (such as the load balancing or the thread migration code), lock
475 * acquire operations must be ordered by ascending &runqueue.
476 */
70b97a7f 477struct rq {
d8016491
IM
478 /* runqueue lock: */
479 spinlock_t lock;
1da177e4
LT
480
481 /*
482 * nr_running and cpu_load should be in the same cacheline because
483 * remote CPUs use both these fields when doing load calculation.
484 */
485 unsigned long nr_running;
6aa645ea
IM
486 #define CPU_LOAD_IDX_MAX 5
487 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 488 unsigned char idle_at_tick;
46cb4b7c 489#ifdef CONFIG_NO_HZ
15934a37 490 unsigned long last_tick_seen;
46cb4b7c
SS
491 unsigned char in_nohz_recently;
492#endif
d8016491
IM
493 /* capture load from *all* tasks on this cpu: */
494 struct load_weight load;
6aa645ea
IM
495 unsigned long nr_load_updates;
496 u64 nr_switches;
497
498 struct cfs_rq cfs;
6f505b16 499 struct rt_rq rt;
6f505b16 500
6aa645ea 501#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
502 /* list of leaf cfs_rq on this cpu: */
503 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
504#endif
505#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 506 struct list_head leaf_rt_rq_list;
1da177e4 507#endif
1da177e4
LT
508
509 /*
510 * This is part of a global counter where only the total sum
511 * over all CPUs matters. A task can increase this counter on
512 * one CPU and if it got migrated afterwards it may decrease
513 * it on another CPU. Always updated under the runqueue lock:
514 */
515 unsigned long nr_uninterruptible;
516
36c8b586 517 struct task_struct *curr, *idle;
c9819f45 518 unsigned long next_balance;
1da177e4 519 struct mm_struct *prev_mm;
6aa645ea 520
3e51f33f 521 u64 clock;
6aa645ea 522
1da177e4
LT
523 atomic_t nr_iowait;
524
525#ifdef CONFIG_SMP
0eab9146 526 struct root_domain *rd;
1da177e4
LT
527 struct sched_domain *sd;
528
529 /* For active balancing */
530 int active_balance;
531 int push_cpu;
d8016491
IM
532 /* cpu of this runqueue: */
533 int cpu;
1f11eb6a 534 int online;
1da177e4 535
36c8b586 536 struct task_struct *migration_thread;
1da177e4
LT
537 struct list_head migration_queue;
538#endif
539
8f4d37ec
PZ
540#ifdef CONFIG_SCHED_HRTICK
541 unsigned long hrtick_flags;
542 ktime_t hrtick_expire;
543 struct hrtimer hrtick_timer;
544#endif
545
1da177e4
LT
546#ifdef CONFIG_SCHEDSTATS
547 /* latency stats */
548 struct sched_info rq_sched_info;
549
550 /* sys_sched_yield() stats */
480b9434
KC
551 unsigned int yld_exp_empty;
552 unsigned int yld_act_empty;
553 unsigned int yld_both_empty;
554 unsigned int yld_count;
1da177e4
LT
555
556 /* schedule() stats */
480b9434
KC
557 unsigned int sched_switch;
558 unsigned int sched_count;
559 unsigned int sched_goidle;
1da177e4
LT
560
561 /* try_to_wake_up() stats */
480b9434
KC
562 unsigned int ttwu_count;
563 unsigned int ttwu_local;
b8efb561
IM
564
565 /* BKL stats */
480b9434 566 unsigned int bkl_count;
1da177e4 567#endif
fcb99371 568 struct lock_class_key rq_lock_key;
1da177e4
LT
569};
570
f34e3b61 571static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 572
dd41f596
IM
573static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
574{
575 rq->curr->sched_class->check_preempt_curr(rq, p);
576}
577
0a2966b4
CL
578static inline int cpu_of(struct rq *rq)
579{
580#ifdef CONFIG_SMP
581 return rq->cpu;
582#else
583 return 0;
584#endif
585}
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d
IM
594#define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601
3e51f33f
PZ
602static inline void update_rq_clock(struct rq *rq)
603{
604 rq->clock = sched_clock_cpu(cpu_of(rq));
605}
606
bf5c91ba
IM
607/*
608 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
609 */
610#ifdef CONFIG_SCHED_DEBUG
611# define const_debug __read_mostly
612#else
613# define const_debug static const
614#endif
615
616/*
617 * Debugging: various feature bits
618 */
f00b45c1
PZ
619
620#define SCHED_FEAT(name, enabled) \
621 __SCHED_FEAT_##name ,
622
bf5c91ba 623enum {
f00b45c1 624#include "sched_features.h"
bf5c91ba
IM
625};
626
f00b45c1
PZ
627#undef SCHED_FEAT
628
629#define SCHED_FEAT(name, enabled) \
630 (1UL << __SCHED_FEAT_##name) * enabled |
631
bf5c91ba 632const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
633#include "sched_features.h"
634 0;
635
636#undef SCHED_FEAT
637
638#ifdef CONFIG_SCHED_DEBUG
639#define SCHED_FEAT(name, enabled) \
640 #name ,
641
983ed7a6 642static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
643#include "sched_features.h"
644 NULL
645};
646
647#undef SCHED_FEAT
648
983ed7a6 649static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
650{
651 filp->private_data = inode->i_private;
652 return 0;
653}
654
655static ssize_t
656sched_feat_read(struct file *filp, char __user *ubuf,
657 size_t cnt, loff_t *ppos)
658{
659 char *buf;
660 int r = 0;
661 int len = 0;
662 int i;
663
664 for (i = 0; sched_feat_names[i]; i++) {
665 len += strlen(sched_feat_names[i]);
666 len += 4;
667 }
668
669 buf = kmalloc(len + 2, GFP_KERNEL);
670 if (!buf)
671 return -ENOMEM;
672
673 for (i = 0; sched_feat_names[i]; i++) {
674 if (sysctl_sched_features & (1UL << i))
675 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
676 else
c24b7c52 677 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
678 }
679
680 r += sprintf(buf + r, "\n");
681 WARN_ON(r >= len + 2);
682
683 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
684
685 kfree(buf);
686
687 return r;
688}
689
690static ssize_t
691sched_feat_write(struct file *filp, const char __user *ubuf,
692 size_t cnt, loff_t *ppos)
693{
694 char buf[64];
695 char *cmp = buf;
696 int neg = 0;
697 int i;
698
699 if (cnt > 63)
700 cnt = 63;
701
702 if (copy_from_user(&buf, ubuf, cnt))
703 return -EFAULT;
704
705 buf[cnt] = 0;
706
c24b7c52 707 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
708 neg = 1;
709 cmp += 3;
710 }
711
712 for (i = 0; sched_feat_names[i]; i++) {
713 int len = strlen(sched_feat_names[i]);
714
715 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
716 if (neg)
717 sysctl_sched_features &= ~(1UL << i);
718 else
719 sysctl_sched_features |= (1UL << i);
720 break;
721 }
722 }
723
724 if (!sched_feat_names[i])
725 return -EINVAL;
726
727 filp->f_pos += cnt;
728
729 return cnt;
730}
731
732static struct file_operations sched_feat_fops = {
733 .open = sched_feat_open,
734 .read = sched_feat_read,
735 .write = sched_feat_write,
736};
737
738static __init int sched_init_debug(void)
739{
f00b45c1
PZ
740 debugfs_create_file("sched_features", 0644, NULL, NULL,
741 &sched_feat_fops);
742
743 return 0;
744}
745late_initcall(sched_init_debug);
746
747#endif
748
749#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 750
b82d9fdd
PZ
751/*
752 * Number of tasks to iterate in a single balance run.
753 * Limited because this is done with IRQs disabled.
754 */
755const_debug unsigned int sysctl_sched_nr_migrate = 32;
756
fa85ae24 757/*
9f0c1e56 758 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
759 * default: 1s
760 */
9f0c1e56 761unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 762
6892b75e
IM
763static __read_mostly int scheduler_running;
764
9f0c1e56
PZ
765/*
766 * part of the period that we allow rt tasks to run in us.
767 * default: 0.95s
768 */
769int sysctl_sched_rt_runtime = 950000;
fa85ae24 770
d0b27fa7
PZ
771static inline u64 global_rt_period(void)
772{
773 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
774}
775
776static inline u64 global_rt_runtime(void)
777{
778 if (sysctl_sched_rt_period < 0)
779 return RUNTIME_INF;
780
781 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
782}
fa85ae24 783
690229a0 784unsigned long long time_sync_thresh = 100000;
27ec4407
IM
785
786static DEFINE_PER_CPU(unsigned long long, time_offset);
787static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
788
e436d800 789/*
27ec4407
IM
790 * Global lock which we take every now and then to synchronize
791 * the CPUs time. This method is not warp-safe, but it's good
792 * enough to synchronize slowly diverging time sources and thus
793 * it's good enough for tracing:
e436d800 794 */
27ec4407
IM
795static DEFINE_SPINLOCK(time_sync_lock);
796static unsigned long long prev_global_time;
797
dfbf4a1b 798static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 799{
dfbf4a1b
IM
800 /*
801 * We want this inlined, to not get tracer function calls
802 * in this critical section:
803 */
804 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
805 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
806
807 if (time < prev_global_time) {
808 per_cpu(time_offset, cpu) += prev_global_time - time;
809 time = prev_global_time;
810 } else {
811 prev_global_time = time;
812 }
813
dfbf4a1b
IM
814 __raw_spin_unlock(&time_sync_lock.raw_lock);
815 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
816
817 return time;
818}
819
820static unsigned long long __cpu_clock(int cpu)
e436d800 821{
e436d800 822 unsigned long long now;
e436d800 823
8ced5f69
IM
824 /*
825 * Only call sched_clock() if the scheduler has already been
826 * initialized (some code might call cpu_clock() very early):
827 */
6892b75e
IM
828 if (unlikely(!scheduler_running))
829 return 0;
830
3e51f33f 831 now = sched_clock_cpu(cpu);
e436d800
IM
832
833 return now;
834}
27ec4407
IM
835
836/*
837 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
838 * clock constructed from sched_clock():
839 */
840unsigned long long cpu_clock(int cpu)
841{
842 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 843 unsigned long flags;
27ec4407 844
dfbf4a1b 845 local_irq_save(flags);
27ec4407
IM
846 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
847 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
848 delta_time = time-prev_cpu_time;
849
dfbf4a1b 850 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 851 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
852 per_cpu(prev_cpu_time, cpu) = time;
853 }
854 local_irq_restore(flags);
27ec4407
IM
855
856 return time;
857}
a58f6f25 858EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
a9957449 978static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
979 __releases(rq->lock)
980{
981 spin_unlock(&rq->lock);
982}
983
70b97a7f 984static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
985 __releases(rq->lock)
986{
987 spin_unlock_irqrestore(&rq->lock, *flags);
988}
989
1da177e4 990/*
cc2a73b5 991 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 992 */
a9957449 993static struct rq *this_rq_lock(void)
1da177e4
LT
994 __acquires(rq->lock)
995{
70b97a7f 996 struct rq *rq;
1da177e4
LT
997
998 local_irq_disable();
999 rq = this_rq();
1000 spin_lock(&rq->lock);
1001
1002 return rq;
1003}
1004
8f4d37ec
PZ
1005static void __resched_task(struct task_struct *p, int tif_bit);
1006
1007static inline void resched_task(struct task_struct *p)
1008{
1009 __resched_task(p, TIF_NEED_RESCHED);
1010}
1011
1012#ifdef CONFIG_SCHED_HRTICK
1013/*
1014 * Use HR-timers to deliver accurate preemption points.
1015 *
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1019 *
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1022 */
1023static inline void resched_hrt(struct task_struct *p)
1024{
1025 __resched_task(p, TIF_HRTICK_RESCHED);
1026}
1027
1028static inline void resched_rq(struct rq *rq)
1029{
1030 unsigned long flags;
1031
1032 spin_lock_irqsave(&rq->lock, flags);
1033 resched_task(rq->curr);
1034 spin_unlock_irqrestore(&rq->lock, flags);
1035}
1036
1037enum {
1038 HRTICK_SET, /* re-programm hrtick_timer */
1039 HRTICK_RESET, /* not a new slice */
b328ca18 1040 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1041};
1042
1043/*
1044 * Use hrtick when:
1045 * - enabled by features
1046 * - hrtimer is actually high res
1047 */
1048static inline int hrtick_enabled(struct rq *rq)
1049{
1050 if (!sched_feat(HRTICK))
1051 return 0;
b328ca18
PZ
1052 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1053 return 0;
8f4d37ec
PZ
1054 return hrtimer_is_hres_active(&rq->hrtick_timer);
1055}
1056
1057/*
1058 * Called to set the hrtick timer state.
1059 *
1060 * called with rq->lock held and irqs disabled
1061 */
1062static void hrtick_start(struct rq *rq, u64 delay, int reset)
1063{
1064 assert_spin_locked(&rq->lock);
1065
1066 /*
1067 * preempt at: now + delay
1068 */
1069 rq->hrtick_expire =
1070 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1071 /*
1072 * indicate we need to program the timer
1073 */
1074 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1075 if (reset)
1076 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1077
1078 /*
1079 * New slices are called from the schedule path and don't need a
1080 * forced reschedule.
1081 */
1082 if (reset)
1083 resched_hrt(rq->curr);
1084}
1085
1086static void hrtick_clear(struct rq *rq)
1087{
1088 if (hrtimer_active(&rq->hrtick_timer))
1089 hrtimer_cancel(&rq->hrtick_timer);
1090}
1091
1092/*
1093 * Update the timer from the possible pending state.
1094 */
1095static void hrtick_set(struct rq *rq)
1096{
1097 ktime_t time;
1098 int set, reset;
1099 unsigned long flags;
1100
1101 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1102
1103 spin_lock_irqsave(&rq->lock, flags);
1104 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1105 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1106 time = rq->hrtick_expire;
1107 clear_thread_flag(TIF_HRTICK_RESCHED);
1108 spin_unlock_irqrestore(&rq->lock, flags);
1109
1110 if (set) {
1111 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1112 if (reset && !hrtimer_active(&rq->hrtick_timer))
1113 resched_rq(rq);
1114 } else
1115 hrtick_clear(rq);
1116}
1117
1118/*
1119 * High-resolution timer tick.
1120 * Runs from hardirq context with interrupts disabled.
1121 */
1122static enum hrtimer_restart hrtick(struct hrtimer *timer)
1123{
1124 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1125
1126 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1127
1128 spin_lock(&rq->lock);
3e51f33f 1129 update_rq_clock(rq);
8f4d37ec
PZ
1130 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1131 spin_unlock(&rq->lock);
1132
1133 return HRTIMER_NORESTART;
1134}
1135
81d41d7e 1136#ifdef CONFIG_SMP
b328ca18
PZ
1137static void hotplug_hrtick_disable(int cpu)
1138{
1139 struct rq *rq = cpu_rq(cpu);
1140 unsigned long flags;
1141
1142 spin_lock_irqsave(&rq->lock, flags);
1143 rq->hrtick_flags = 0;
1144 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1145 spin_unlock_irqrestore(&rq->lock, flags);
1146
1147 hrtick_clear(rq);
1148}
1149
1150static void hotplug_hrtick_enable(int cpu)
1151{
1152 struct rq *rq = cpu_rq(cpu);
1153 unsigned long flags;
1154
1155 spin_lock_irqsave(&rq->lock, flags);
1156 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1157 spin_unlock_irqrestore(&rq->lock, flags);
1158}
1159
1160static int
1161hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1162{
1163 int cpu = (int)(long)hcpu;
1164
1165 switch (action) {
1166 case CPU_UP_CANCELED:
1167 case CPU_UP_CANCELED_FROZEN:
1168 case CPU_DOWN_PREPARE:
1169 case CPU_DOWN_PREPARE_FROZEN:
1170 case CPU_DEAD:
1171 case CPU_DEAD_FROZEN:
1172 hotplug_hrtick_disable(cpu);
1173 return NOTIFY_OK;
1174
1175 case CPU_UP_PREPARE:
1176 case CPU_UP_PREPARE_FROZEN:
1177 case CPU_DOWN_FAILED:
1178 case CPU_DOWN_FAILED_FROZEN:
1179 case CPU_ONLINE:
1180 case CPU_ONLINE_FROZEN:
1181 hotplug_hrtick_enable(cpu);
1182 return NOTIFY_OK;
1183 }
1184
1185 return NOTIFY_DONE;
1186}
1187
1188static void init_hrtick(void)
1189{
1190 hotcpu_notifier(hotplug_hrtick, 0);
1191}
81d41d7e 1192#endif /* CONFIG_SMP */
b328ca18
PZ
1193
1194static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1195{
1196 rq->hrtick_flags = 0;
1197 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1198 rq->hrtick_timer.function = hrtick;
1199 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1200}
1201
1202void hrtick_resched(void)
1203{
1204 struct rq *rq;
1205 unsigned long flags;
1206
1207 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1208 return;
1209
1210 local_irq_save(flags);
1211 rq = cpu_rq(smp_processor_id());
1212 hrtick_set(rq);
1213 local_irq_restore(flags);
1214}
1215#else
1216static inline void hrtick_clear(struct rq *rq)
1217{
1218}
1219
1220static inline void hrtick_set(struct rq *rq)
1221{
1222}
1223
1224static inline void init_rq_hrtick(struct rq *rq)
1225{
1226}
1227
1228void hrtick_resched(void)
1229{
1230}
b328ca18
PZ
1231
1232static inline void init_hrtick(void)
1233{
1234}
8f4d37ec
PZ
1235#endif
1236
c24d20db
IM
1237/*
1238 * resched_task - mark a task 'to be rescheduled now'.
1239 *
1240 * On UP this means the setting of the need_resched flag, on SMP it
1241 * might also involve a cross-CPU call to trigger the scheduler on
1242 * the target CPU.
1243 */
1244#ifdef CONFIG_SMP
1245
1246#ifndef tsk_is_polling
1247#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1248#endif
1249
8f4d37ec 1250static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1251{
1252 int cpu;
1253
1254 assert_spin_locked(&task_rq(p)->lock);
1255
8f4d37ec 1256 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1257 return;
1258
8f4d37ec 1259 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1260
1261 cpu = task_cpu(p);
1262 if (cpu == smp_processor_id())
1263 return;
1264
1265 /* NEED_RESCHED must be visible before we test polling */
1266 smp_mb();
1267 if (!tsk_is_polling(p))
1268 smp_send_reschedule(cpu);
1269}
1270
1271static void resched_cpu(int cpu)
1272{
1273 struct rq *rq = cpu_rq(cpu);
1274 unsigned long flags;
1275
1276 if (!spin_trylock_irqsave(&rq->lock, flags))
1277 return;
1278 resched_task(cpu_curr(cpu));
1279 spin_unlock_irqrestore(&rq->lock, flags);
1280}
06d8308c
TG
1281
1282#ifdef CONFIG_NO_HZ
1283/*
1284 * When add_timer_on() enqueues a timer into the timer wheel of an
1285 * idle CPU then this timer might expire before the next timer event
1286 * which is scheduled to wake up that CPU. In case of a completely
1287 * idle system the next event might even be infinite time into the
1288 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1289 * leaves the inner idle loop so the newly added timer is taken into
1290 * account when the CPU goes back to idle and evaluates the timer
1291 * wheel for the next timer event.
1292 */
1293void wake_up_idle_cpu(int cpu)
1294{
1295 struct rq *rq = cpu_rq(cpu);
1296
1297 if (cpu == smp_processor_id())
1298 return;
1299
1300 /*
1301 * This is safe, as this function is called with the timer
1302 * wheel base lock of (cpu) held. When the CPU is on the way
1303 * to idle and has not yet set rq->curr to idle then it will
1304 * be serialized on the timer wheel base lock and take the new
1305 * timer into account automatically.
1306 */
1307 if (rq->curr != rq->idle)
1308 return;
1309
1310 /*
1311 * We can set TIF_RESCHED on the idle task of the other CPU
1312 * lockless. The worst case is that the other CPU runs the
1313 * idle task through an additional NOOP schedule()
1314 */
1315 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1316
1317 /* NEED_RESCHED must be visible before we test polling */
1318 smp_mb();
1319 if (!tsk_is_polling(rq->idle))
1320 smp_send_reschedule(cpu);
1321}
6d6bc0ad 1322#endif /* CONFIG_NO_HZ */
06d8308c 1323
6d6bc0ad 1324#else /* !CONFIG_SMP */
8f4d37ec 1325static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1326{
1327 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1328 set_tsk_thread_flag(p, tif_bit);
c24d20db 1329}
6d6bc0ad 1330#endif /* CONFIG_SMP */
c24d20db 1331
45bf76df
IM
1332#if BITS_PER_LONG == 32
1333# define WMULT_CONST (~0UL)
1334#else
1335# define WMULT_CONST (1UL << 32)
1336#endif
1337
1338#define WMULT_SHIFT 32
1339
194081eb
IM
1340/*
1341 * Shift right and round:
1342 */
cf2ab469 1343#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1344
cb1c4fc9 1345static unsigned long
45bf76df
IM
1346calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1347 struct load_weight *lw)
1348{
1349 u64 tmp;
1350
7a232e03
LJ
1351 if (!lw->inv_weight) {
1352 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1353 lw->inv_weight = 1;
1354 else
1355 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1356 / (lw->weight+1);
1357 }
45bf76df
IM
1358
1359 tmp = (u64)delta_exec * weight;
1360 /*
1361 * Check whether we'd overflow the 64-bit multiplication:
1362 */
194081eb 1363 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1364 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1365 WMULT_SHIFT/2);
1366 else
cf2ab469 1367 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1368
ecf691da 1369 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1370}
1371
f9305d4a
IM
1372static inline unsigned long
1373calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1374{
1375 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1376}
1377
1091985b 1378static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1379{
1380 lw->weight += inc;
e89996ae 1381 lw->inv_weight = 0;
45bf76df
IM
1382}
1383
1091985b 1384static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1385{
1386 lw->weight -= dec;
e89996ae 1387 lw->inv_weight = 0;
45bf76df
IM
1388}
1389
2dd73a4f
PW
1390/*
1391 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1392 * of tasks with abnormal "nice" values across CPUs the contribution that
1393 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1394 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1395 * scaled version of the new time slice allocation that they receive on time
1396 * slice expiry etc.
1397 */
1398
dd41f596
IM
1399#define WEIGHT_IDLEPRIO 2
1400#define WMULT_IDLEPRIO (1 << 31)
1401
1402/*
1403 * Nice levels are multiplicative, with a gentle 10% change for every
1404 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1405 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1406 * that remained on nice 0.
1407 *
1408 * The "10% effect" is relative and cumulative: from _any_ nice level,
1409 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1410 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1411 * If a task goes up by ~10% and another task goes down by ~10% then
1412 * the relative distance between them is ~25%.)
dd41f596
IM
1413 */
1414static const int prio_to_weight[40] = {
254753dc
IM
1415 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1416 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1417 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1418 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1419 /* 0 */ 1024, 820, 655, 526, 423,
1420 /* 5 */ 335, 272, 215, 172, 137,
1421 /* 10 */ 110, 87, 70, 56, 45,
1422 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1423};
1424
5714d2de
IM
1425/*
1426 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1427 *
1428 * In cases where the weight does not change often, we can use the
1429 * precalculated inverse to speed up arithmetics by turning divisions
1430 * into multiplications:
1431 */
dd41f596 1432static const u32 prio_to_wmult[40] = {
254753dc
IM
1433 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1434 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1435 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1436 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1437 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1438 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1439 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1440 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1441};
2dd73a4f 1442
dd41f596
IM
1443static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1444
1445/*
1446 * runqueue iterator, to support SMP load-balancing between different
1447 * scheduling classes, without having to expose their internal data
1448 * structures to the load-balancing proper:
1449 */
1450struct rq_iterator {
1451 void *arg;
1452 struct task_struct *(*start)(void *);
1453 struct task_struct *(*next)(void *);
1454};
1455
e1d1484f
PW
1456#ifdef CONFIG_SMP
1457static unsigned long
1458balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1459 unsigned long max_load_move, struct sched_domain *sd,
1460 enum cpu_idle_type idle, int *all_pinned,
1461 int *this_best_prio, struct rq_iterator *iterator);
1462
1463static int
1464iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1465 struct sched_domain *sd, enum cpu_idle_type idle,
1466 struct rq_iterator *iterator);
e1d1484f 1467#endif
dd41f596 1468
d842de87
SV
1469#ifdef CONFIG_CGROUP_CPUACCT
1470static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1471#else
1472static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1473#endif
1474
18d95a28
PZ
1475static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1476{
1477 update_load_add(&rq->load, load);
1478}
1479
1480static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1481{
1482 update_load_sub(&rq->load, load);
1483}
1484
e7693a36
GH
1485#ifdef CONFIG_SMP
1486static unsigned long source_load(int cpu, int type);
1487static unsigned long target_load(int cpu, int type);
1488static unsigned long cpu_avg_load_per_task(int cpu);
1489static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1490#endif
1491
dd41f596 1492#include "sched_stats.h"
dd41f596 1493#include "sched_idletask.c"
5522d5d5
IM
1494#include "sched_fair.c"
1495#include "sched_rt.c"
dd41f596
IM
1496#ifdef CONFIG_SCHED_DEBUG
1497# include "sched_debug.c"
1498#endif
1499
1500#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1501#define for_each_class(class) \
1502 for (class = sched_class_highest; class; class = class->next)
dd41f596 1503
6363ca57
IM
1504static inline void inc_load(struct rq *rq, const struct task_struct *p)
1505{
1506 update_load_add(&rq->load, p->se.load.weight);
1507}
1508
1509static inline void dec_load(struct rq *rq, const struct task_struct *p)
1510{
1511 update_load_sub(&rq->load, p->se.load.weight);
1512}
1513
1514static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1515{
1516 rq->nr_running++;
6363ca57 1517 inc_load(rq, p);
9c217245
IM
1518}
1519
6363ca57 1520static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1521{
1522 rq->nr_running--;
6363ca57 1523 dec_load(rq, p);
9c217245
IM
1524}
1525
45bf76df
IM
1526static void set_load_weight(struct task_struct *p)
1527{
1528 if (task_has_rt_policy(p)) {
dd41f596
IM
1529 p->se.load.weight = prio_to_weight[0] * 2;
1530 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1531 return;
1532 }
45bf76df 1533
dd41f596
IM
1534 /*
1535 * SCHED_IDLE tasks get minimal weight:
1536 */
1537 if (p->policy == SCHED_IDLE) {
1538 p->se.load.weight = WEIGHT_IDLEPRIO;
1539 p->se.load.inv_weight = WMULT_IDLEPRIO;
1540 return;
1541 }
71f8bd46 1542
dd41f596
IM
1543 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1544 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1545}
1546
8159f87e 1547static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1548{
dd41f596 1549 sched_info_queued(p);
fd390f6a 1550 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1551 p->se.on_rq = 1;
71f8bd46
IM
1552}
1553
69be72c1 1554static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1555{
f02231e5 1556 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1557 p->se.on_rq = 0;
71f8bd46
IM
1558}
1559
14531189 1560/*
dd41f596 1561 * __normal_prio - return the priority that is based on the static prio
14531189 1562 */
14531189
IM
1563static inline int __normal_prio(struct task_struct *p)
1564{
dd41f596 1565 return p->static_prio;
14531189
IM
1566}
1567
b29739f9
IM
1568/*
1569 * Calculate the expected normal priority: i.e. priority
1570 * without taking RT-inheritance into account. Might be
1571 * boosted by interactivity modifiers. Changes upon fork,
1572 * setprio syscalls, and whenever the interactivity
1573 * estimator recalculates.
1574 */
36c8b586 1575static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1576{
1577 int prio;
1578
e05606d3 1579 if (task_has_rt_policy(p))
b29739f9
IM
1580 prio = MAX_RT_PRIO-1 - p->rt_priority;
1581 else
1582 prio = __normal_prio(p);
1583 return prio;
1584}
1585
1586/*
1587 * Calculate the current priority, i.e. the priority
1588 * taken into account by the scheduler. This value might
1589 * be boosted by RT tasks, or might be boosted by
1590 * interactivity modifiers. Will be RT if the task got
1591 * RT-boosted. If not then it returns p->normal_prio.
1592 */
36c8b586 1593static int effective_prio(struct task_struct *p)
b29739f9
IM
1594{
1595 p->normal_prio = normal_prio(p);
1596 /*
1597 * If we are RT tasks or we were boosted to RT priority,
1598 * keep the priority unchanged. Otherwise, update priority
1599 * to the normal priority:
1600 */
1601 if (!rt_prio(p->prio))
1602 return p->normal_prio;
1603 return p->prio;
1604}
1605
1da177e4 1606/*
dd41f596 1607 * activate_task - move a task to the runqueue.
1da177e4 1608 */
dd41f596 1609static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1610{
d9514f6c 1611 if (task_contributes_to_load(p))
dd41f596 1612 rq->nr_uninterruptible--;
1da177e4 1613
8159f87e 1614 enqueue_task(rq, p, wakeup);
6363ca57 1615 inc_nr_running(p, rq);
1da177e4
LT
1616}
1617
1da177e4
LT
1618/*
1619 * deactivate_task - remove a task from the runqueue.
1620 */
2e1cb74a 1621static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1622{
d9514f6c 1623 if (task_contributes_to_load(p))
dd41f596
IM
1624 rq->nr_uninterruptible++;
1625
69be72c1 1626 dequeue_task(rq, p, sleep);
6363ca57 1627 dec_nr_running(p, rq);
1da177e4
LT
1628}
1629
1da177e4
LT
1630/**
1631 * task_curr - is this task currently executing on a CPU?
1632 * @p: the task in question.
1633 */
36c8b586 1634inline int task_curr(const struct task_struct *p)
1da177e4
LT
1635{
1636 return cpu_curr(task_cpu(p)) == p;
1637}
1638
dd41f596
IM
1639static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1640{
6f505b16 1641 set_task_rq(p, cpu);
dd41f596 1642#ifdef CONFIG_SMP
ce96b5ac
DA
1643 /*
1644 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1645 * successfuly executed on another CPU. We must ensure that updates of
1646 * per-task data have been completed by this moment.
1647 */
1648 smp_wmb();
dd41f596 1649 task_thread_info(p)->cpu = cpu;
dd41f596 1650#endif
2dd73a4f
PW
1651}
1652
cb469845
SR
1653static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1654 const struct sched_class *prev_class,
1655 int oldprio, int running)
1656{
1657 if (prev_class != p->sched_class) {
1658 if (prev_class->switched_from)
1659 prev_class->switched_from(rq, p, running);
1660 p->sched_class->switched_to(rq, p, running);
1661 } else
1662 p->sched_class->prio_changed(rq, p, oldprio, running);
1663}
1664
1da177e4 1665#ifdef CONFIG_SMP
c65cc870 1666
e958b360
TG
1667/* Used instead of source_load when we know the type == 0 */
1668static unsigned long weighted_cpuload(const int cpu)
1669{
1670 return cpu_rq(cpu)->load.weight;
1671}
1672
cc367732
IM
1673/*
1674 * Is this task likely cache-hot:
1675 */
e7693a36 1676static int
cc367732
IM
1677task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1678{
1679 s64 delta;
1680
f540a608
IM
1681 /*
1682 * Buddy candidates are cache hot:
1683 */
d25ce4cd 1684 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1685 return 1;
1686
cc367732
IM
1687 if (p->sched_class != &fair_sched_class)
1688 return 0;
1689
6bc1665b
IM
1690 if (sysctl_sched_migration_cost == -1)
1691 return 1;
1692 if (sysctl_sched_migration_cost == 0)
1693 return 0;
1694
cc367732
IM
1695 delta = now - p->se.exec_start;
1696
1697 return delta < (s64)sysctl_sched_migration_cost;
1698}
1699
1700
dd41f596 1701void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1702{
dd41f596
IM
1703 int old_cpu = task_cpu(p);
1704 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1705 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1706 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1707 u64 clock_offset;
dd41f596
IM
1708
1709 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1710
1711#ifdef CONFIG_SCHEDSTATS
1712 if (p->se.wait_start)
1713 p->se.wait_start -= clock_offset;
dd41f596
IM
1714 if (p->se.sleep_start)
1715 p->se.sleep_start -= clock_offset;
1716 if (p->se.block_start)
1717 p->se.block_start -= clock_offset;
cc367732
IM
1718 if (old_cpu != new_cpu) {
1719 schedstat_inc(p, se.nr_migrations);
1720 if (task_hot(p, old_rq->clock, NULL))
1721 schedstat_inc(p, se.nr_forced2_migrations);
1722 }
6cfb0d5d 1723#endif
2830cf8c
SV
1724 p->se.vruntime -= old_cfsrq->min_vruntime -
1725 new_cfsrq->min_vruntime;
dd41f596
IM
1726
1727 __set_task_cpu(p, new_cpu);
c65cc870
IM
1728}
1729
70b97a7f 1730struct migration_req {
1da177e4 1731 struct list_head list;
1da177e4 1732
36c8b586 1733 struct task_struct *task;
1da177e4
LT
1734 int dest_cpu;
1735
1da177e4 1736 struct completion done;
70b97a7f 1737};
1da177e4
LT
1738
1739/*
1740 * The task's runqueue lock must be held.
1741 * Returns true if you have to wait for migration thread.
1742 */
36c8b586 1743static int
70b97a7f 1744migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1745{
70b97a7f 1746 struct rq *rq = task_rq(p);
1da177e4
LT
1747
1748 /*
1749 * If the task is not on a runqueue (and not running), then
1750 * it is sufficient to simply update the task's cpu field.
1751 */
dd41f596 1752 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1753 set_task_cpu(p, dest_cpu);
1754 return 0;
1755 }
1756
1757 init_completion(&req->done);
1da177e4
LT
1758 req->task = p;
1759 req->dest_cpu = dest_cpu;
1760 list_add(&req->list, &rq->migration_queue);
48f24c4d 1761
1da177e4
LT
1762 return 1;
1763}
1764
1765/*
1766 * wait_task_inactive - wait for a thread to unschedule.
1767 *
1768 * The caller must ensure that the task *will* unschedule sometime soon,
1769 * else this function might spin for a *long* time. This function can't
1770 * be called with interrupts off, or it may introduce deadlock with
1771 * smp_call_function() if an IPI is sent by the same process we are
1772 * waiting to become inactive.
1773 */
36c8b586 1774void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1775{
1776 unsigned long flags;
dd41f596 1777 int running, on_rq;
70b97a7f 1778 struct rq *rq;
1da177e4 1779
3a5c359a
AK
1780 for (;;) {
1781 /*
1782 * We do the initial early heuristics without holding
1783 * any task-queue locks at all. We'll only try to get
1784 * the runqueue lock when things look like they will
1785 * work out!
1786 */
1787 rq = task_rq(p);
fa490cfd 1788
3a5c359a
AK
1789 /*
1790 * If the task is actively running on another CPU
1791 * still, just relax and busy-wait without holding
1792 * any locks.
1793 *
1794 * NOTE! Since we don't hold any locks, it's not
1795 * even sure that "rq" stays as the right runqueue!
1796 * But we don't care, since "task_running()" will
1797 * return false if the runqueue has changed and p
1798 * is actually now running somewhere else!
1799 */
1800 while (task_running(rq, p))
1801 cpu_relax();
fa490cfd 1802
3a5c359a
AK
1803 /*
1804 * Ok, time to look more closely! We need the rq
1805 * lock now, to be *sure*. If we're wrong, we'll
1806 * just go back and repeat.
1807 */
1808 rq = task_rq_lock(p, &flags);
1809 running = task_running(rq, p);
1810 on_rq = p->se.on_rq;
1811 task_rq_unlock(rq, &flags);
fa490cfd 1812
3a5c359a
AK
1813 /*
1814 * Was it really running after all now that we
1815 * checked with the proper locks actually held?
1816 *
1817 * Oops. Go back and try again..
1818 */
1819 if (unlikely(running)) {
1820 cpu_relax();
1821 continue;
1822 }
fa490cfd 1823
3a5c359a
AK
1824 /*
1825 * It's not enough that it's not actively running,
1826 * it must be off the runqueue _entirely_, and not
1827 * preempted!
1828 *
1829 * So if it wa still runnable (but just not actively
1830 * running right now), it's preempted, and we should
1831 * yield - it could be a while.
1832 */
1833 if (unlikely(on_rq)) {
1834 schedule_timeout_uninterruptible(1);
1835 continue;
1836 }
fa490cfd 1837
3a5c359a
AK
1838 /*
1839 * Ahh, all good. It wasn't running, and it wasn't
1840 * runnable, which means that it will never become
1841 * running in the future either. We're all done!
1842 */
1843 break;
1844 }
1da177e4
LT
1845}
1846
1847/***
1848 * kick_process - kick a running thread to enter/exit the kernel
1849 * @p: the to-be-kicked thread
1850 *
1851 * Cause a process which is running on another CPU to enter
1852 * kernel-mode, without any delay. (to get signals handled.)
1853 *
1854 * NOTE: this function doesnt have to take the runqueue lock,
1855 * because all it wants to ensure is that the remote task enters
1856 * the kernel. If the IPI races and the task has been migrated
1857 * to another CPU then no harm is done and the purpose has been
1858 * achieved as well.
1859 */
36c8b586 1860void kick_process(struct task_struct *p)
1da177e4
LT
1861{
1862 int cpu;
1863
1864 preempt_disable();
1865 cpu = task_cpu(p);
1866 if ((cpu != smp_processor_id()) && task_curr(p))
1867 smp_send_reschedule(cpu);
1868 preempt_enable();
1869}
1870
1871/*
2dd73a4f
PW
1872 * Return a low guess at the load of a migration-source cpu weighted
1873 * according to the scheduling class and "nice" value.
1da177e4
LT
1874 *
1875 * We want to under-estimate the load of migration sources, to
1876 * balance conservatively.
1877 */
a9957449 1878static unsigned long source_load(int cpu, int type)
1da177e4 1879{
70b97a7f 1880 struct rq *rq = cpu_rq(cpu);
dd41f596 1881 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1882
3b0bd9bc 1883 if (type == 0)
dd41f596 1884 return total;
b910472d 1885
dd41f596 1886 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1887}
1888
1889/*
2dd73a4f
PW
1890 * Return a high guess at the load of a migration-target cpu weighted
1891 * according to the scheduling class and "nice" value.
1da177e4 1892 */
a9957449 1893static unsigned long target_load(int cpu, int type)
1da177e4 1894{
70b97a7f 1895 struct rq *rq = cpu_rq(cpu);
dd41f596 1896 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1897
7897986b 1898 if (type == 0)
dd41f596 1899 return total;
3b0bd9bc 1900
dd41f596 1901 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1902}
1903
1904/*
1905 * Return the average load per task on the cpu's run queue
1906 */
e7693a36 1907static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1908{
70b97a7f 1909 struct rq *rq = cpu_rq(cpu);
dd41f596 1910 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1911 unsigned long n = rq->nr_running;
1912
dd41f596 1913 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1914}
1915
147cbb4b
NP
1916/*
1917 * find_idlest_group finds and returns the least busy CPU group within the
1918 * domain.
1919 */
1920static struct sched_group *
1921find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1922{
1923 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1924 unsigned long min_load = ULONG_MAX, this_load = 0;
1925 int load_idx = sd->forkexec_idx;
1926 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1927
1928 do {
1929 unsigned long load, avg_load;
1930 int local_group;
1931 int i;
1932
da5a5522
BD
1933 /* Skip over this group if it has no CPUs allowed */
1934 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1935 continue;
da5a5522 1936
147cbb4b 1937 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1938
1939 /* Tally up the load of all CPUs in the group */
1940 avg_load = 0;
1941
1942 for_each_cpu_mask(i, group->cpumask) {
1943 /* Bias balancing toward cpus of our domain */
1944 if (local_group)
1945 load = source_load(i, load_idx);
1946 else
1947 load = target_load(i, load_idx);
1948
1949 avg_load += load;
1950 }
1951
1952 /* Adjust by relative CPU power of the group */
5517d86b
ED
1953 avg_load = sg_div_cpu_power(group,
1954 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1955
1956 if (local_group) {
1957 this_load = avg_load;
1958 this = group;
1959 } else if (avg_load < min_load) {
1960 min_load = avg_load;
1961 idlest = group;
1962 }
3a5c359a 1963 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1964
1965 if (!idlest || 100*this_load < imbalance*min_load)
1966 return NULL;
1967 return idlest;
1968}
1969
1970/*
0feaece9 1971 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1972 */
95cdf3b7 1973static int
7c16ec58
MT
1974find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1975 cpumask_t *tmp)
147cbb4b
NP
1976{
1977 unsigned long load, min_load = ULONG_MAX;
1978 int idlest = -1;
1979 int i;
1980
da5a5522 1981 /* Traverse only the allowed CPUs */
7c16ec58 1982 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1983
7c16ec58 1984 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1985 load = weighted_cpuload(i);
147cbb4b
NP
1986
1987 if (load < min_load || (load == min_load && i == this_cpu)) {
1988 min_load = load;
1989 idlest = i;
1990 }
1991 }
1992
1993 return idlest;
1994}
1995
476d139c
NP
1996/*
1997 * sched_balance_self: balance the current task (running on cpu) in domains
1998 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1999 * SD_BALANCE_EXEC.
2000 *
2001 * Balance, ie. select the least loaded group.
2002 *
2003 * Returns the target CPU number, or the same CPU if no balancing is needed.
2004 *
2005 * preempt must be disabled.
2006 */
2007static int sched_balance_self(int cpu, int flag)
2008{
2009 struct task_struct *t = current;
2010 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2011
c96d145e 2012 for_each_domain(cpu, tmp) {
9761eea8
IM
2013 /*
2014 * If power savings logic is enabled for a domain, stop there.
2015 */
5c45bf27
SS
2016 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2017 break;
476d139c
NP
2018 if (tmp->flags & flag)
2019 sd = tmp;
c96d145e 2020 }
476d139c
NP
2021
2022 while (sd) {
7c16ec58 2023 cpumask_t span, tmpmask;
476d139c 2024 struct sched_group *group;
1a848870
SS
2025 int new_cpu, weight;
2026
2027 if (!(sd->flags & flag)) {
2028 sd = sd->child;
2029 continue;
2030 }
476d139c
NP
2031
2032 span = sd->span;
2033 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2034 if (!group) {
2035 sd = sd->child;
2036 continue;
2037 }
476d139c 2038
7c16ec58 2039 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2040 if (new_cpu == -1 || new_cpu == cpu) {
2041 /* Now try balancing at a lower domain level of cpu */
2042 sd = sd->child;
2043 continue;
2044 }
476d139c 2045
1a848870 2046 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2047 cpu = new_cpu;
476d139c
NP
2048 sd = NULL;
2049 weight = cpus_weight(span);
2050 for_each_domain(cpu, tmp) {
2051 if (weight <= cpus_weight(tmp->span))
2052 break;
2053 if (tmp->flags & flag)
2054 sd = tmp;
2055 }
2056 /* while loop will break here if sd == NULL */
2057 }
2058
2059 return cpu;
2060}
2061
2062#endif /* CONFIG_SMP */
1da177e4 2063
1da177e4
LT
2064/***
2065 * try_to_wake_up - wake up a thread
2066 * @p: the to-be-woken-up thread
2067 * @state: the mask of task states that can be woken
2068 * @sync: do a synchronous wakeup?
2069 *
2070 * Put it on the run-queue if it's not already there. The "current"
2071 * thread is always on the run-queue (except when the actual
2072 * re-schedule is in progress), and as such you're allowed to do
2073 * the simpler "current->state = TASK_RUNNING" to mark yourself
2074 * runnable without the overhead of this.
2075 *
2076 * returns failure only if the task is already active.
2077 */
36c8b586 2078static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2079{
cc367732 2080 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2081 unsigned long flags;
2082 long old_state;
70b97a7f 2083 struct rq *rq;
1da177e4 2084
b85d0667
IM
2085 if (!sched_feat(SYNC_WAKEUPS))
2086 sync = 0;
2087
04e2f174 2088 smp_wmb();
1da177e4
LT
2089 rq = task_rq_lock(p, &flags);
2090 old_state = p->state;
2091 if (!(old_state & state))
2092 goto out;
2093
dd41f596 2094 if (p->se.on_rq)
1da177e4
LT
2095 goto out_running;
2096
2097 cpu = task_cpu(p);
cc367732 2098 orig_cpu = cpu;
1da177e4
LT
2099 this_cpu = smp_processor_id();
2100
2101#ifdef CONFIG_SMP
2102 if (unlikely(task_running(rq, p)))
2103 goto out_activate;
2104
5d2f5a61
DA
2105 cpu = p->sched_class->select_task_rq(p, sync);
2106 if (cpu != orig_cpu) {
2107 set_task_cpu(p, cpu);
1da177e4
LT
2108 task_rq_unlock(rq, &flags);
2109 /* might preempt at this point */
2110 rq = task_rq_lock(p, &flags);
2111 old_state = p->state;
2112 if (!(old_state & state))
2113 goto out;
dd41f596 2114 if (p->se.on_rq)
1da177e4
LT
2115 goto out_running;
2116
2117 this_cpu = smp_processor_id();
2118 cpu = task_cpu(p);
2119 }
2120
e7693a36
GH
2121#ifdef CONFIG_SCHEDSTATS
2122 schedstat_inc(rq, ttwu_count);
2123 if (cpu == this_cpu)
2124 schedstat_inc(rq, ttwu_local);
2125 else {
2126 struct sched_domain *sd;
2127 for_each_domain(this_cpu, sd) {
2128 if (cpu_isset(cpu, sd->span)) {
2129 schedstat_inc(sd, ttwu_wake_remote);
2130 break;
2131 }
2132 }
2133 }
6d6bc0ad 2134#endif /* CONFIG_SCHEDSTATS */
e7693a36 2135
1da177e4
LT
2136out_activate:
2137#endif /* CONFIG_SMP */
cc367732
IM
2138 schedstat_inc(p, se.nr_wakeups);
2139 if (sync)
2140 schedstat_inc(p, se.nr_wakeups_sync);
2141 if (orig_cpu != cpu)
2142 schedstat_inc(p, se.nr_wakeups_migrate);
2143 if (cpu == this_cpu)
2144 schedstat_inc(p, se.nr_wakeups_local);
2145 else
2146 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2147 update_rq_clock(rq);
dd41f596 2148 activate_task(rq, p, 1);
1da177e4
LT
2149 success = 1;
2150
2151out_running:
4ae7d5ce
IM
2152 check_preempt_curr(rq, p);
2153
1da177e4 2154 p->state = TASK_RUNNING;
9a897c5a
SR
2155#ifdef CONFIG_SMP
2156 if (p->sched_class->task_wake_up)
2157 p->sched_class->task_wake_up(rq, p);
2158#endif
1da177e4
LT
2159out:
2160 task_rq_unlock(rq, &flags);
2161
2162 return success;
2163}
2164
7ad5b3a5 2165int wake_up_process(struct task_struct *p)
1da177e4 2166{
d9514f6c 2167 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2168}
1da177e4
LT
2169EXPORT_SYMBOL(wake_up_process);
2170
7ad5b3a5 2171int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2172{
2173 return try_to_wake_up(p, state, 0);
2174}
2175
1da177e4
LT
2176/*
2177 * Perform scheduler related setup for a newly forked process p.
2178 * p is forked by current.
dd41f596
IM
2179 *
2180 * __sched_fork() is basic setup used by init_idle() too:
2181 */
2182static void __sched_fork(struct task_struct *p)
2183{
dd41f596
IM
2184 p->se.exec_start = 0;
2185 p->se.sum_exec_runtime = 0;
f6cf891c 2186 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2187 p->se.last_wakeup = 0;
2188 p->se.avg_overlap = 0;
6cfb0d5d
IM
2189
2190#ifdef CONFIG_SCHEDSTATS
2191 p->se.wait_start = 0;
dd41f596
IM
2192 p->se.sum_sleep_runtime = 0;
2193 p->se.sleep_start = 0;
dd41f596
IM
2194 p->se.block_start = 0;
2195 p->se.sleep_max = 0;
2196 p->se.block_max = 0;
2197 p->se.exec_max = 0;
eba1ed4b 2198 p->se.slice_max = 0;
dd41f596 2199 p->se.wait_max = 0;
6cfb0d5d 2200#endif
476d139c 2201
fa717060 2202 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2203 p->se.on_rq = 0;
4a55bd5e 2204 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2205
e107be36
AK
2206#ifdef CONFIG_PREEMPT_NOTIFIERS
2207 INIT_HLIST_HEAD(&p->preempt_notifiers);
2208#endif
2209
1da177e4
LT
2210 /*
2211 * We mark the process as running here, but have not actually
2212 * inserted it onto the runqueue yet. This guarantees that
2213 * nobody will actually run it, and a signal or other external
2214 * event cannot wake it up and insert it on the runqueue either.
2215 */
2216 p->state = TASK_RUNNING;
dd41f596
IM
2217}
2218
2219/*
2220 * fork()/clone()-time setup:
2221 */
2222void sched_fork(struct task_struct *p, int clone_flags)
2223{
2224 int cpu = get_cpu();
2225
2226 __sched_fork(p);
2227
2228#ifdef CONFIG_SMP
2229 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2230#endif
02e4bac2 2231 set_task_cpu(p, cpu);
b29739f9
IM
2232
2233 /*
2234 * Make sure we do not leak PI boosting priority to the child:
2235 */
2236 p->prio = current->normal_prio;
2ddbf952
HS
2237 if (!rt_prio(p->prio))
2238 p->sched_class = &fair_sched_class;
b29739f9 2239
52f17b6c 2240#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2241 if (likely(sched_info_on()))
52f17b6c 2242 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2243#endif
d6077cb8 2244#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2245 p->oncpu = 0;
2246#endif
1da177e4 2247#ifdef CONFIG_PREEMPT
4866cde0 2248 /* Want to start with kernel preemption disabled. */
a1261f54 2249 task_thread_info(p)->preempt_count = 1;
1da177e4 2250#endif
476d139c 2251 put_cpu();
1da177e4
LT
2252}
2253
2254/*
2255 * wake_up_new_task - wake up a newly created task for the first time.
2256 *
2257 * This function will do some initial scheduler statistics housekeeping
2258 * that must be done for every newly created context, then puts the task
2259 * on the runqueue and wakes it.
2260 */
7ad5b3a5 2261void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2262{
2263 unsigned long flags;
dd41f596 2264 struct rq *rq;
1da177e4
LT
2265
2266 rq = task_rq_lock(p, &flags);
147cbb4b 2267 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2268 update_rq_clock(rq);
1da177e4
LT
2269
2270 p->prio = effective_prio(p);
2271
b9dca1e0 2272 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2273 activate_task(rq, p, 0);
1da177e4 2274 } else {
1da177e4 2275 /*
dd41f596
IM
2276 * Let the scheduling class do new task startup
2277 * management (if any):
1da177e4 2278 */
ee0827d8 2279 p->sched_class->task_new(rq, p);
6363ca57 2280 inc_nr_running(p, rq);
1da177e4 2281 }
dd41f596 2282 check_preempt_curr(rq, p);
9a897c5a
SR
2283#ifdef CONFIG_SMP
2284 if (p->sched_class->task_wake_up)
2285 p->sched_class->task_wake_up(rq, p);
2286#endif
dd41f596 2287 task_rq_unlock(rq, &flags);
1da177e4
LT
2288}
2289
e107be36
AK
2290#ifdef CONFIG_PREEMPT_NOTIFIERS
2291
2292/**
421cee29
RD
2293 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2294 * @notifier: notifier struct to register
e107be36
AK
2295 */
2296void preempt_notifier_register(struct preempt_notifier *notifier)
2297{
2298 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2299}
2300EXPORT_SYMBOL_GPL(preempt_notifier_register);
2301
2302/**
2303 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2304 * @notifier: notifier struct to unregister
e107be36
AK
2305 *
2306 * This is safe to call from within a preemption notifier.
2307 */
2308void preempt_notifier_unregister(struct preempt_notifier *notifier)
2309{
2310 hlist_del(&notifier->link);
2311}
2312EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2313
2314static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2315{
2316 struct preempt_notifier *notifier;
2317 struct hlist_node *node;
2318
2319 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2320 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2321}
2322
2323static void
2324fire_sched_out_preempt_notifiers(struct task_struct *curr,
2325 struct task_struct *next)
2326{
2327 struct preempt_notifier *notifier;
2328 struct hlist_node *node;
2329
2330 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2331 notifier->ops->sched_out(notifier, next);
2332}
2333
6d6bc0ad 2334#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2335
2336static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2337{
2338}
2339
2340static void
2341fire_sched_out_preempt_notifiers(struct task_struct *curr,
2342 struct task_struct *next)
2343{
2344}
2345
6d6bc0ad 2346#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2347
4866cde0
NP
2348/**
2349 * prepare_task_switch - prepare to switch tasks
2350 * @rq: the runqueue preparing to switch
421cee29 2351 * @prev: the current task that is being switched out
4866cde0
NP
2352 * @next: the task we are going to switch to.
2353 *
2354 * This is called with the rq lock held and interrupts off. It must
2355 * be paired with a subsequent finish_task_switch after the context
2356 * switch.
2357 *
2358 * prepare_task_switch sets up locking and calls architecture specific
2359 * hooks.
2360 */
e107be36
AK
2361static inline void
2362prepare_task_switch(struct rq *rq, struct task_struct *prev,
2363 struct task_struct *next)
4866cde0 2364{
e107be36 2365 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2366 prepare_lock_switch(rq, next);
2367 prepare_arch_switch(next);
2368}
2369
1da177e4
LT
2370/**
2371 * finish_task_switch - clean up after a task-switch
344babaa 2372 * @rq: runqueue associated with task-switch
1da177e4
LT
2373 * @prev: the thread we just switched away from.
2374 *
4866cde0
NP
2375 * finish_task_switch must be called after the context switch, paired
2376 * with a prepare_task_switch call before the context switch.
2377 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2378 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2379 *
2380 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2381 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2382 * with the lock held can cause deadlocks; see schedule() for
2383 * details.)
2384 */
a9957449 2385static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2386 __releases(rq->lock)
2387{
1da177e4 2388 struct mm_struct *mm = rq->prev_mm;
55a101f8 2389 long prev_state;
1da177e4
LT
2390
2391 rq->prev_mm = NULL;
2392
2393 /*
2394 * A task struct has one reference for the use as "current".
c394cc9f 2395 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2396 * schedule one last time. The schedule call will never return, and
2397 * the scheduled task must drop that reference.
c394cc9f 2398 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2399 * still held, otherwise prev could be scheduled on another cpu, die
2400 * there before we look at prev->state, and then the reference would
2401 * be dropped twice.
2402 * Manfred Spraul <manfred@colorfullife.com>
2403 */
55a101f8 2404 prev_state = prev->state;
4866cde0
NP
2405 finish_arch_switch(prev);
2406 finish_lock_switch(rq, prev);
9a897c5a
SR
2407#ifdef CONFIG_SMP
2408 if (current->sched_class->post_schedule)
2409 current->sched_class->post_schedule(rq);
2410#endif
e8fa1362 2411
e107be36 2412 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2413 if (mm)
2414 mmdrop(mm);
c394cc9f 2415 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2416 /*
2417 * Remove function-return probe instances associated with this
2418 * task and put them back on the free list.
9761eea8 2419 */
c6fd91f0 2420 kprobe_flush_task(prev);
1da177e4 2421 put_task_struct(prev);
c6fd91f0 2422 }
1da177e4
LT
2423}
2424
2425/**
2426 * schedule_tail - first thing a freshly forked thread must call.
2427 * @prev: the thread we just switched away from.
2428 */
36c8b586 2429asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2430 __releases(rq->lock)
2431{
70b97a7f
IM
2432 struct rq *rq = this_rq();
2433
4866cde0
NP
2434 finish_task_switch(rq, prev);
2435#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2436 /* In this case, finish_task_switch does not reenable preemption */
2437 preempt_enable();
2438#endif
1da177e4 2439 if (current->set_child_tid)
b488893a 2440 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2441}
2442
2443/*
2444 * context_switch - switch to the new MM and the new
2445 * thread's register state.
2446 */
dd41f596 2447static inline void
70b97a7f 2448context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2449 struct task_struct *next)
1da177e4 2450{
dd41f596 2451 struct mm_struct *mm, *oldmm;
1da177e4 2452
e107be36 2453 prepare_task_switch(rq, prev, next);
dd41f596
IM
2454 mm = next->mm;
2455 oldmm = prev->active_mm;
9226d125
ZA
2456 /*
2457 * For paravirt, this is coupled with an exit in switch_to to
2458 * combine the page table reload and the switch backend into
2459 * one hypercall.
2460 */
2461 arch_enter_lazy_cpu_mode();
2462
dd41f596 2463 if (unlikely(!mm)) {
1da177e4
LT
2464 next->active_mm = oldmm;
2465 atomic_inc(&oldmm->mm_count);
2466 enter_lazy_tlb(oldmm, next);
2467 } else
2468 switch_mm(oldmm, mm, next);
2469
dd41f596 2470 if (unlikely(!prev->mm)) {
1da177e4 2471 prev->active_mm = NULL;
1da177e4
LT
2472 rq->prev_mm = oldmm;
2473 }
3a5f5e48
IM
2474 /*
2475 * Since the runqueue lock will be released by the next
2476 * task (which is an invalid locking op but in the case
2477 * of the scheduler it's an obvious special-case), so we
2478 * do an early lockdep release here:
2479 */
2480#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2481 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2482#endif
1da177e4
LT
2483
2484 /* Here we just switch the register state and the stack. */
2485 switch_to(prev, next, prev);
2486
dd41f596
IM
2487 barrier();
2488 /*
2489 * this_rq must be evaluated again because prev may have moved
2490 * CPUs since it called schedule(), thus the 'rq' on its stack
2491 * frame will be invalid.
2492 */
2493 finish_task_switch(this_rq(), prev);
1da177e4
LT
2494}
2495
2496/*
2497 * nr_running, nr_uninterruptible and nr_context_switches:
2498 *
2499 * externally visible scheduler statistics: current number of runnable
2500 * threads, current number of uninterruptible-sleeping threads, total
2501 * number of context switches performed since bootup.
2502 */
2503unsigned long nr_running(void)
2504{
2505 unsigned long i, sum = 0;
2506
2507 for_each_online_cpu(i)
2508 sum += cpu_rq(i)->nr_running;
2509
2510 return sum;
2511}
2512
2513unsigned long nr_uninterruptible(void)
2514{
2515 unsigned long i, sum = 0;
2516
0a945022 2517 for_each_possible_cpu(i)
1da177e4
LT
2518 sum += cpu_rq(i)->nr_uninterruptible;
2519
2520 /*
2521 * Since we read the counters lockless, it might be slightly
2522 * inaccurate. Do not allow it to go below zero though:
2523 */
2524 if (unlikely((long)sum < 0))
2525 sum = 0;
2526
2527 return sum;
2528}
2529
2530unsigned long long nr_context_switches(void)
2531{
cc94abfc
SR
2532 int i;
2533 unsigned long long sum = 0;
1da177e4 2534
0a945022 2535 for_each_possible_cpu(i)
1da177e4
LT
2536 sum += cpu_rq(i)->nr_switches;
2537
2538 return sum;
2539}
2540
2541unsigned long nr_iowait(void)
2542{
2543 unsigned long i, sum = 0;
2544
0a945022 2545 for_each_possible_cpu(i)
1da177e4
LT
2546 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2547
2548 return sum;
2549}
2550
db1b1fef
JS
2551unsigned long nr_active(void)
2552{
2553 unsigned long i, running = 0, uninterruptible = 0;
2554
2555 for_each_online_cpu(i) {
2556 running += cpu_rq(i)->nr_running;
2557 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2558 }
2559
2560 if (unlikely((long)uninterruptible < 0))
2561 uninterruptible = 0;
2562
2563 return running + uninterruptible;
2564}
2565
48f24c4d 2566/*
dd41f596
IM
2567 * Update rq->cpu_load[] statistics. This function is usually called every
2568 * scheduler tick (TICK_NSEC).
48f24c4d 2569 */
dd41f596 2570static void update_cpu_load(struct rq *this_rq)
48f24c4d 2571{
495eca49 2572 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2573 int i, scale;
2574
2575 this_rq->nr_load_updates++;
dd41f596
IM
2576
2577 /* Update our load: */
2578 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2579 unsigned long old_load, new_load;
2580
2581 /* scale is effectively 1 << i now, and >> i divides by scale */
2582
2583 old_load = this_rq->cpu_load[i];
2584 new_load = this_load;
a25707f3
IM
2585 /*
2586 * Round up the averaging division if load is increasing. This
2587 * prevents us from getting stuck on 9 if the load is 10, for
2588 * example.
2589 */
2590 if (new_load > old_load)
2591 new_load += scale-1;
dd41f596
IM
2592 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2593 }
48f24c4d
IM
2594}
2595
dd41f596
IM
2596#ifdef CONFIG_SMP
2597
1da177e4
LT
2598/*
2599 * double_rq_lock - safely lock two runqueues
2600 *
2601 * Note this does not disable interrupts like task_rq_lock,
2602 * you need to do so manually before calling.
2603 */
70b97a7f 2604static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2605 __acquires(rq1->lock)
2606 __acquires(rq2->lock)
2607{
054b9108 2608 BUG_ON(!irqs_disabled());
1da177e4
LT
2609 if (rq1 == rq2) {
2610 spin_lock(&rq1->lock);
2611 __acquire(rq2->lock); /* Fake it out ;) */
2612 } else {
c96d145e 2613 if (rq1 < rq2) {
1da177e4
LT
2614 spin_lock(&rq1->lock);
2615 spin_lock(&rq2->lock);
2616 } else {
2617 spin_lock(&rq2->lock);
2618 spin_lock(&rq1->lock);
2619 }
2620 }
6e82a3be
IM
2621 update_rq_clock(rq1);
2622 update_rq_clock(rq2);
1da177e4
LT
2623}
2624
2625/*
2626 * double_rq_unlock - safely unlock two runqueues
2627 *
2628 * Note this does not restore interrupts like task_rq_unlock,
2629 * you need to do so manually after calling.
2630 */
70b97a7f 2631static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2632 __releases(rq1->lock)
2633 __releases(rq2->lock)
2634{
2635 spin_unlock(&rq1->lock);
2636 if (rq1 != rq2)
2637 spin_unlock(&rq2->lock);
2638 else
2639 __release(rq2->lock);
2640}
2641
2642/*
2643 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2644 */
e8fa1362 2645static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2646 __releases(this_rq->lock)
2647 __acquires(busiest->lock)
2648 __acquires(this_rq->lock)
2649{
e8fa1362
SR
2650 int ret = 0;
2651
054b9108
KK
2652 if (unlikely(!irqs_disabled())) {
2653 /* printk() doesn't work good under rq->lock */
2654 spin_unlock(&this_rq->lock);
2655 BUG_ON(1);
2656 }
1da177e4 2657 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2658 if (busiest < this_rq) {
1da177e4
LT
2659 spin_unlock(&this_rq->lock);
2660 spin_lock(&busiest->lock);
2661 spin_lock(&this_rq->lock);
e8fa1362 2662 ret = 1;
1da177e4
LT
2663 } else
2664 spin_lock(&busiest->lock);
2665 }
e8fa1362 2666 return ret;
1da177e4
LT
2667}
2668
1da177e4
LT
2669/*
2670 * If dest_cpu is allowed for this process, migrate the task to it.
2671 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2672 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2673 * the cpu_allowed mask is restored.
2674 */
36c8b586 2675static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2676{
70b97a7f 2677 struct migration_req req;
1da177e4 2678 unsigned long flags;
70b97a7f 2679 struct rq *rq;
1da177e4
LT
2680
2681 rq = task_rq_lock(p, &flags);
2682 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2683 || unlikely(cpu_is_offline(dest_cpu)))
2684 goto out;
2685
2686 /* force the process onto the specified CPU */
2687 if (migrate_task(p, dest_cpu, &req)) {
2688 /* Need to wait for migration thread (might exit: take ref). */
2689 struct task_struct *mt = rq->migration_thread;
36c8b586 2690
1da177e4
LT
2691 get_task_struct(mt);
2692 task_rq_unlock(rq, &flags);
2693 wake_up_process(mt);
2694 put_task_struct(mt);
2695 wait_for_completion(&req.done);
36c8b586 2696
1da177e4
LT
2697 return;
2698 }
2699out:
2700 task_rq_unlock(rq, &flags);
2701}
2702
2703/*
476d139c
NP
2704 * sched_exec - execve() is a valuable balancing opportunity, because at
2705 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2706 */
2707void sched_exec(void)
2708{
1da177e4 2709 int new_cpu, this_cpu = get_cpu();
476d139c 2710 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2711 put_cpu();
476d139c
NP
2712 if (new_cpu != this_cpu)
2713 sched_migrate_task(current, new_cpu);
1da177e4
LT
2714}
2715
2716/*
2717 * pull_task - move a task from a remote runqueue to the local runqueue.
2718 * Both runqueues must be locked.
2719 */
dd41f596
IM
2720static void pull_task(struct rq *src_rq, struct task_struct *p,
2721 struct rq *this_rq, int this_cpu)
1da177e4 2722{
2e1cb74a 2723 deactivate_task(src_rq, p, 0);
1da177e4 2724 set_task_cpu(p, this_cpu);
dd41f596 2725 activate_task(this_rq, p, 0);
1da177e4
LT
2726 /*
2727 * Note that idle threads have a prio of MAX_PRIO, for this test
2728 * to be always true for them.
2729 */
dd41f596 2730 check_preempt_curr(this_rq, p);
1da177e4
LT
2731}
2732
2733/*
2734 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2735 */
858119e1 2736static
70b97a7f 2737int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2738 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2739 int *all_pinned)
1da177e4
LT
2740{
2741 /*
2742 * We do not migrate tasks that are:
2743 * 1) running (obviously), or
2744 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2745 * 3) are cache-hot on their current CPU.
2746 */
cc367732
IM
2747 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2748 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2749 return 0;
cc367732 2750 }
81026794
NP
2751 *all_pinned = 0;
2752
cc367732
IM
2753 if (task_running(rq, p)) {
2754 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2755 return 0;
cc367732 2756 }
1da177e4 2757
da84d961
IM
2758 /*
2759 * Aggressive migration if:
2760 * 1) task is cache cold, or
2761 * 2) too many balance attempts have failed.
2762 */
2763
6bc1665b
IM
2764 if (!task_hot(p, rq->clock, sd) ||
2765 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2766#ifdef CONFIG_SCHEDSTATS
cc367732 2767 if (task_hot(p, rq->clock, sd)) {
da84d961 2768 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2769 schedstat_inc(p, se.nr_forced_migrations);
2770 }
da84d961
IM
2771#endif
2772 return 1;
2773 }
2774
cc367732
IM
2775 if (task_hot(p, rq->clock, sd)) {
2776 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2777 return 0;
cc367732 2778 }
1da177e4
LT
2779 return 1;
2780}
2781
e1d1484f
PW
2782static unsigned long
2783balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2784 unsigned long max_load_move, struct sched_domain *sd,
2785 enum cpu_idle_type idle, int *all_pinned,
2786 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2787{
b82d9fdd 2788 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2789 struct task_struct *p;
2790 long rem_load_move = max_load_move;
1da177e4 2791
e1d1484f 2792 if (max_load_move == 0)
1da177e4
LT
2793 goto out;
2794
81026794
NP
2795 pinned = 1;
2796
1da177e4 2797 /*
dd41f596 2798 * Start the load-balancing iterator:
1da177e4 2799 */
dd41f596
IM
2800 p = iterator->start(iterator->arg);
2801next:
b82d9fdd 2802 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2803 goto out;
50ddd969 2804 /*
b82d9fdd 2805 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2806 * skip a task if it will be the highest priority task (i.e. smallest
2807 * prio value) on its new queue regardless of its load weight
2808 */
dd41f596
IM
2809 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2810 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2811 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2812 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2813 p = iterator->next(iterator->arg);
2814 goto next;
1da177e4
LT
2815 }
2816
dd41f596 2817 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2818 pulled++;
dd41f596 2819 rem_load_move -= p->se.load.weight;
1da177e4 2820
2dd73a4f 2821 /*
b82d9fdd 2822 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2823 */
e1d1484f 2824 if (rem_load_move > 0) {
a4ac01c3
PW
2825 if (p->prio < *this_best_prio)
2826 *this_best_prio = p->prio;
dd41f596
IM
2827 p = iterator->next(iterator->arg);
2828 goto next;
1da177e4
LT
2829 }
2830out:
2831 /*
e1d1484f 2832 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2833 * so we can safely collect pull_task() stats here rather than
2834 * inside pull_task().
2835 */
2836 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2837
2838 if (all_pinned)
2839 *all_pinned = pinned;
e1d1484f
PW
2840
2841 return max_load_move - rem_load_move;
1da177e4
LT
2842}
2843
dd41f596 2844/*
43010659
PW
2845 * move_tasks tries to move up to max_load_move weighted load from busiest to
2846 * this_rq, as part of a balancing operation within domain "sd".
2847 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2848 *
2849 * Called with both runqueues locked.
2850 */
2851static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2852 unsigned long max_load_move,
dd41f596
IM
2853 struct sched_domain *sd, enum cpu_idle_type idle,
2854 int *all_pinned)
2855{
5522d5d5 2856 const struct sched_class *class = sched_class_highest;
43010659 2857 unsigned long total_load_moved = 0;
a4ac01c3 2858 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2859
2860 do {
43010659
PW
2861 total_load_moved +=
2862 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2863 max_load_move - total_load_moved,
a4ac01c3 2864 sd, idle, all_pinned, &this_best_prio);
dd41f596 2865 class = class->next;
43010659 2866 } while (class && max_load_move > total_load_moved);
dd41f596 2867
43010659
PW
2868 return total_load_moved > 0;
2869}
2870
e1d1484f
PW
2871static int
2872iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2873 struct sched_domain *sd, enum cpu_idle_type idle,
2874 struct rq_iterator *iterator)
2875{
2876 struct task_struct *p = iterator->start(iterator->arg);
2877 int pinned = 0;
2878
2879 while (p) {
2880 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2881 pull_task(busiest, p, this_rq, this_cpu);
2882 /*
2883 * Right now, this is only the second place pull_task()
2884 * is called, so we can safely collect pull_task()
2885 * stats here rather than inside pull_task().
2886 */
2887 schedstat_inc(sd, lb_gained[idle]);
2888
2889 return 1;
2890 }
2891 p = iterator->next(iterator->arg);
2892 }
2893
2894 return 0;
2895}
2896
43010659
PW
2897/*
2898 * move_one_task tries to move exactly one task from busiest to this_rq, as
2899 * part of active balancing operations within "domain".
2900 * Returns 1 if successful and 0 otherwise.
2901 *
2902 * Called with both runqueues locked.
2903 */
2904static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2905 struct sched_domain *sd, enum cpu_idle_type idle)
2906{
5522d5d5 2907 const struct sched_class *class;
43010659
PW
2908
2909 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2910 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2911 return 1;
2912
2913 return 0;
dd41f596
IM
2914}
2915
1da177e4
LT
2916/*
2917 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2918 * domain. It calculates and returns the amount of weighted load which
2919 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2920 */
2921static struct sched_group *
2922find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2923 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2924 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2925{
2926 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2927 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2928 unsigned long max_pull;
2dd73a4f
PW
2929 unsigned long busiest_load_per_task, busiest_nr_running;
2930 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2931 int load_idx, group_imb = 0;
5c45bf27
SS
2932#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2933 int power_savings_balance = 1;
2934 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2935 unsigned long min_nr_running = ULONG_MAX;
2936 struct sched_group *group_min = NULL, *group_leader = NULL;
2937#endif
1da177e4
LT
2938
2939 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2940 busiest_load_per_task = busiest_nr_running = 0;
2941 this_load_per_task = this_nr_running = 0;
d15bcfdb 2942 if (idle == CPU_NOT_IDLE)
7897986b 2943 load_idx = sd->busy_idx;
d15bcfdb 2944 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2945 load_idx = sd->newidle_idx;
2946 else
2947 load_idx = sd->idle_idx;
1da177e4
LT
2948
2949 do {
908a7c1b 2950 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2951 int local_group;
2952 int i;
908a7c1b 2953 int __group_imb = 0;
783609c6 2954 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2955 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2956
2957 local_group = cpu_isset(this_cpu, group->cpumask);
2958
783609c6
SS
2959 if (local_group)
2960 balance_cpu = first_cpu(group->cpumask);
2961
1da177e4 2962 /* Tally up the load of all CPUs in the group */
2dd73a4f 2963 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2964 max_cpu_load = 0;
2965 min_cpu_load = ~0UL;
1da177e4
LT
2966
2967 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2968 struct rq *rq;
2969
2970 if (!cpu_isset(i, *cpus))
2971 continue;
2972
2973 rq = cpu_rq(i);
2dd73a4f 2974
9439aab8 2975 if (*sd_idle && rq->nr_running)
5969fe06
NP
2976 *sd_idle = 0;
2977
1da177e4 2978 /* Bias balancing toward cpus of our domain */
783609c6
SS
2979 if (local_group) {
2980 if (idle_cpu(i) && !first_idle_cpu) {
2981 first_idle_cpu = 1;
2982 balance_cpu = i;
2983 }
2984
a2000572 2985 load = target_load(i, load_idx);
908a7c1b 2986 } else {
a2000572 2987 load = source_load(i, load_idx);
908a7c1b
KC
2988 if (load > max_cpu_load)
2989 max_cpu_load = load;
2990 if (min_cpu_load > load)
2991 min_cpu_load = load;
2992 }
1da177e4
LT
2993
2994 avg_load += load;
2dd73a4f 2995 sum_nr_running += rq->nr_running;
dd41f596 2996 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2997 }
2998
783609c6
SS
2999 /*
3000 * First idle cpu or the first cpu(busiest) in this sched group
3001 * is eligible for doing load balancing at this and above
9439aab8
SS
3002 * domains. In the newly idle case, we will allow all the cpu's
3003 * to do the newly idle load balance.
783609c6 3004 */
9439aab8
SS
3005 if (idle != CPU_NEWLY_IDLE && local_group &&
3006 balance_cpu != this_cpu && balance) {
783609c6
SS
3007 *balance = 0;
3008 goto ret;
3009 }
3010
1da177e4 3011 total_load += avg_load;
5517d86b 3012 total_pwr += group->__cpu_power;
1da177e4
LT
3013
3014 /* Adjust by relative CPU power of the group */
5517d86b
ED
3015 avg_load = sg_div_cpu_power(group,
3016 avg_load * SCHED_LOAD_SCALE);
1da177e4 3017
908a7c1b
KC
3018 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3019 __group_imb = 1;
3020
5517d86b 3021 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3022
1da177e4
LT
3023 if (local_group) {
3024 this_load = avg_load;
3025 this = group;
2dd73a4f
PW
3026 this_nr_running = sum_nr_running;
3027 this_load_per_task = sum_weighted_load;
3028 } else if (avg_load > max_load &&
908a7c1b 3029 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3030 max_load = avg_load;
3031 busiest = group;
2dd73a4f
PW
3032 busiest_nr_running = sum_nr_running;
3033 busiest_load_per_task = sum_weighted_load;
908a7c1b 3034 group_imb = __group_imb;
1da177e4 3035 }
5c45bf27
SS
3036
3037#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3038 /*
3039 * Busy processors will not participate in power savings
3040 * balance.
3041 */
dd41f596
IM
3042 if (idle == CPU_NOT_IDLE ||
3043 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3044 goto group_next;
5c45bf27
SS
3045
3046 /*
3047 * If the local group is idle or completely loaded
3048 * no need to do power savings balance at this domain
3049 */
3050 if (local_group && (this_nr_running >= group_capacity ||
3051 !this_nr_running))
3052 power_savings_balance = 0;
3053
dd41f596 3054 /*
5c45bf27
SS
3055 * If a group is already running at full capacity or idle,
3056 * don't include that group in power savings calculations
dd41f596
IM
3057 */
3058 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3059 || !sum_nr_running)
dd41f596 3060 goto group_next;
5c45bf27 3061
dd41f596 3062 /*
5c45bf27 3063 * Calculate the group which has the least non-idle load.
dd41f596
IM
3064 * This is the group from where we need to pick up the load
3065 * for saving power
3066 */
3067 if ((sum_nr_running < min_nr_running) ||
3068 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3069 first_cpu(group->cpumask) <
3070 first_cpu(group_min->cpumask))) {
dd41f596
IM
3071 group_min = group;
3072 min_nr_running = sum_nr_running;
5c45bf27
SS
3073 min_load_per_task = sum_weighted_load /
3074 sum_nr_running;
dd41f596 3075 }
5c45bf27 3076
dd41f596 3077 /*
5c45bf27 3078 * Calculate the group which is almost near its
dd41f596
IM
3079 * capacity but still has some space to pick up some load
3080 * from other group and save more power
3081 */
3082 if (sum_nr_running <= group_capacity - 1) {
3083 if (sum_nr_running > leader_nr_running ||
3084 (sum_nr_running == leader_nr_running &&
3085 first_cpu(group->cpumask) >
3086 first_cpu(group_leader->cpumask))) {
3087 group_leader = group;
3088 leader_nr_running = sum_nr_running;
3089 }
48f24c4d 3090 }
5c45bf27
SS
3091group_next:
3092#endif
1da177e4
LT
3093 group = group->next;
3094 } while (group != sd->groups);
3095
2dd73a4f 3096 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3097 goto out_balanced;
3098
3099 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3100
3101 if (this_load >= avg_load ||
3102 100*max_load <= sd->imbalance_pct*this_load)
3103 goto out_balanced;
3104
2dd73a4f 3105 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3106 if (group_imb)
3107 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3108
1da177e4
LT
3109 /*
3110 * We're trying to get all the cpus to the average_load, so we don't
3111 * want to push ourselves above the average load, nor do we wish to
3112 * reduce the max loaded cpu below the average load, as either of these
3113 * actions would just result in more rebalancing later, and ping-pong
3114 * tasks around. Thus we look for the minimum possible imbalance.
3115 * Negative imbalances (*we* are more loaded than anyone else) will
3116 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3117 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3118 * appear as very large values with unsigned longs.
3119 */
2dd73a4f
PW
3120 if (max_load <= busiest_load_per_task)
3121 goto out_balanced;
3122
3123 /*
3124 * In the presence of smp nice balancing, certain scenarios can have
3125 * max load less than avg load(as we skip the groups at or below
3126 * its cpu_power, while calculating max_load..)
3127 */
3128 if (max_load < avg_load) {
3129 *imbalance = 0;
3130 goto small_imbalance;
3131 }
0c117f1b
SS
3132
3133 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3134 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3135
1da177e4 3136 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3137 *imbalance = min(max_pull * busiest->__cpu_power,
3138 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3139 / SCHED_LOAD_SCALE;
3140
2dd73a4f
PW
3141 /*
3142 * if *imbalance is less than the average load per runnable task
3143 * there is no gaurantee that any tasks will be moved so we'll have
3144 * a think about bumping its value to force at least one task to be
3145 * moved
3146 */
7fd0d2dd 3147 if (*imbalance < busiest_load_per_task) {
48f24c4d 3148 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3149 unsigned int imbn;
3150
3151small_imbalance:
3152 pwr_move = pwr_now = 0;
3153 imbn = 2;
3154 if (this_nr_running) {
3155 this_load_per_task /= this_nr_running;
3156 if (busiest_load_per_task > this_load_per_task)
3157 imbn = 1;
3158 } else
3159 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3160
dd41f596
IM
3161 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3162 busiest_load_per_task * imbn) {
2dd73a4f 3163 *imbalance = busiest_load_per_task;
1da177e4
LT
3164 return busiest;
3165 }
3166
3167 /*
3168 * OK, we don't have enough imbalance to justify moving tasks,
3169 * however we may be able to increase total CPU power used by
3170 * moving them.
3171 */
3172
5517d86b
ED
3173 pwr_now += busiest->__cpu_power *
3174 min(busiest_load_per_task, max_load);
3175 pwr_now += this->__cpu_power *
3176 min(this_load_per_task, this_load);
1da177e4
LT
3177 pwr_now /= SCHED_LOAD_SCALE;
3178
3179 /* Amount of load we'd subtract */
5517d86b
ED
3180 tmp = sg_div_cpu_power(busiest,
3181 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3182 if (max_load > tmp)
5517d86b 3183 pwr_move += busiest->__cpu_power *
2dd73a4f 3184 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3185
3186 /* Amount of load we'd add */
5517d86b 3187 if (max_load * busiest->__cpu_power <
33859f7f 3188 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3189 tmp = sg_div_cpu_power(this,
3190 max_load * busiest->__cpu_power);
1da177e4 3191 else
5517d86b
ED
3192 tmp = sg_div_cpu_power(this,
3193 busiest_load_per_task * SCHED_LOAD_SCALE);
3194 pwr_move += this->__cpu_power *
3195 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3196 pwr_move /= SCHED_LOAD_SCALE;
3197
3198 /* Move if we gain throughput */
7fd0d2dd
SS
3199 if (pwr_move > pwr_now)
3200 *imbalance = busiest_load_per_task;
1da177e4
LT
3201 }
3202
1da177e4
LT
3203 return busiest;
3204
3205out_balanced:
5c45bf27 3206#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3207 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3208 goto ret;
1da177e4 3209
5c45bf27
SS
3210 if (this == group_leader && group_leader != group_min) {
3211 *imbalance = min_load_per_task;
3212 return group_min;
3213 }
5c45bf27 3214#endif
783609c6 3215ret:
1da177e4
LT
3216 *imbalance = 0;
3217 return NULL;
3218}
3219
3220/*
3221 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3222 */
70b97a7f 3223static struct rq *
d15bcfdb 3224find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3225 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3226{
70b97a7f 3227 struct rq *busiest = NULL, *rq;
2dd73a4f 3228 unsigned long max_load = 0;
1da177e4
LT
3229 int i;
3230
3231 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3232 unsigned long wl;
0a2966b4
CL
3233
3234 if (!cpu_isset(i, *cpus))
3235 continue;
3236
48f24c4d 3237 rq = cpu_rq(i);
dd41f596 3238 wl = weighted_cpuload(i);
2dd73a4f 3239
dd41f596 3240 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3241 continue;
1da177e4 3242
dd41f596
IM
3243 if (wl > max_load) {
3244 max_load = wl;
48f24c4d 3245 busiest = rq;
1da177e4
LT
3246 }
3247 }
3248
3249 return busiest;
3250}
3251
77391d71
NP
3252/*
3253 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3254 * so long as it is large enough.
3255 */
3256#define MAX_PINNED_INTERVAL 512
3257
1da177e4
LT
3258/*
3259 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3260 * tasks if there is an imbalance.
1da177e4 3261 */
70b97a7f 3262static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3263 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3264 int *balance, cpumask_t *cpus)
1da177e4 3265{
43010659 3266 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3267 struct sched_group *group;
1da177e4 3268 unsigned long imbalance;
70b97a7f 3269 struct rq *busiest;
fe2eea3f 3270 unsigned long flags;
5969fe06 3271
7c16ec58
MT
3272 cpus_setall(*cpus);
3273
89c4710e
SS
3274 /*
3275 * When power savings policy is enabled for the parent domain, idle
3276 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3277 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3278 * portraying it as CPU_NOT_IDLE.
89c4710e 3279 */
d15bcfdb 3280 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3281 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3282 sd_idle = 1;
1da177e4 3283
2d72376b 3284 schedstat_inc(sd, lb_count[idle]);
1da177e4 3285
0a2966b4
CL
3286redo:
3287 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3288 cpus, balance);
783609c6 3289
06066714 3290 if (*balance == 0)
783609c6 3291 goto out_balanced;
783609c6 3292
1da177e4
LT
3293 if (!group) {
3294 schedstat_inc(sd, lb_nobusyg[idle]);
3295 goto out_balanced;
3296 }
3297
7c16ec58 3298 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3299 if (!busiest) {
3300 schedstat_inc(sd, lb_nobusyq[idle]);
3301 goto out_balanced;
3302 }
3303
db935dbd 3304 BUG_ON(busiest == this_rq);
1da177e4
LT
3305
3306 schedstat_add(sd, lb_imbalance[idle], imbalance);
3307
43010659 3308 ld_moved = 0;
1da177e4
LT
3309 if (busiest->nr_running > 1) {
3310 /*
3311 * Attempt to move tasks. If find_busiest_group has found
3312 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3313 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3314 * correctly treated as an imbalance.
3315 */
fe2eea3f 3316 local_irq_save(flags);
e17224bf 3317 double_rq_lock(this_rq, busiest);
43010659 3318 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3319 imbalance, sd, idle, &all_pinned);
e17224bf 3320 double_rq_unlock(this_rq, busiest);
fe2eea3f 3321 local_irq_restore(flags);
81026794 3322
46cb4b7c
SS
3323 /*
3324 * some other cpu did the load balance for us.
3325 */
43010659 3326 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3327 resched_cpu(this_cpu);
3328
81026794 3329 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3330 if (unlikely(all_pinned)) {
7c16ec58
MT
3331 cpu_clear(cpu_of(busiest), *cpus);
3332 if (!cpus_empty(*cpus))
0a2966b4 3333 goto redo;
81026794 3334 goto out_balanced;
0a2966b4 3335 }
1da177e4 3336 }
81026794 3337
43010659 3338 if (!ld_moved) {
1da177e4
LT
3339 schedstat_inc(sd, lb_failed[idle]);
3340 sd->nr_balance_failed++;
3341
3342 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3343
fe2eea3f 3344 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3345
3346 /* don't kick the migration_thread, if the curr
3347 * task on busiest cpu can't be moved to this_cpu
3348 */
3349 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3350 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3351 all_pinned = 1;
3352 goto out_one_pinned;
3353 }
3354
1da177e4
LT
3355 if (!busiest->active_balance) {
3356 busiest->active_balance = 1;
3357 busiest->push_cpu = this_cpu;
81026794 3358 active_balance = 1;
1da177e4 3359 }
fe2eea3f 3360 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3361 if (active_balance)
1da177e4
LT
3362 wake_up_process(busiest->migration_thread);
3363
3364 /*
3365 * We've kicked active balancing, reset the failure
3366 * counter.
3367 */
39507451 3368 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3369 }
81026794 3370 } else
1da177e4
LT
3371 sd->nr_balance_failed = 0;
3372
81026794 3373 if (likely(!active_balance)) {
1da177e4
LT
3374 /* We were unbalanced, so reset the balancing interval */
3375 sd->balance_interval = sd->min_interval;
81026794
NP
3376 } else {
3377 /*
3378 * If we've begun active balancing, start to back off. This
3379 * case may not be covered by the all_pinned logic if there
3380 * is only 1 task on the busy runqueue (because we don't call
3381 * move_tasks).
3382 */
3383 if (sd->balance_interval < sd->max_interval)
3384 sd->balance_interval *= 2;
1da177e4
LT
3385 }
3386
43010659 3387 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3388 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3389 return -1;
3390 return ld_moved;
1da177e4
LT
3391
3392out_balanced:
1da177e4
LT
3393 schedstat_inc(sd, lb_balanced[idle]);
3394
16cfb1c0 3395 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3396
3397out_one_pinned:
1da177e4 3398 /* tune up the balancing interval */
77391d71
NP
3399 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3400 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3401 sd->balance_interval *= 2;
3402
48f24c4d 3403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3405 return -1;
3406 return 0;
1da177e4
LT
3407}
3408
3409/*
3410 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3411 * tasks if there is an imbalance.
3412 *
d15bcfdb 3413 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3414 * this_rq is locked.
3415 */
48f24c4d 3416static int
7c16ec58
MT
3417load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3418 cpumask_t *cpus)
1da177e4
LT
3419{
3420 struct sched_group *group;
70b97a7f 3421 struct rq *busiest = NULL;
1da177e4 3422 unsigned long imbalance;
43010659 3423 int ld_moved = 0;
5969fe06 3424 int sd_idle = 0;
969bb4e4 3425 int all_pinned = 0;
7c16ec58
MT
3426
3427 cpus_setall(*cpus);
5969fe06 3428
89c4710e
SS
3429 /*
3430 * When power savings policy is enabled for the parent domain, idle
3431 * sibling can pick up load irrespective of busy siblings. In this case,
3432 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3433 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3434 */
3435 if (sd->flags & SD_SHARE_CPUPOWER &&
3436 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3437 sd_idle = 1;
1da177e4 3438
2d72376b 3439 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3440redo:
d15bcfdb 3441 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3442 &sd_idle, cpus, NULL);
1da177e4 3443 if (!group) {
d15bcfdb 3444 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3445 goto out_balanced;
1da177e4
LT
3446 }
3447
7c16ec58 3448 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3449 if (!busiest) {
d15bcfdb 3450 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3451 goto out_balanced;
1da177e4
LT
3452 }
3453
db935dbd
NP
3454 BUG_ON(busiest == this_rq);
3455
d15bcfdb 3456 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3457
43010659 3458 ld_moved = 0;
d6d5cfaf
NP
3459 if (busiest->nr_running > 1) {
3460 /* Attempt to move tasks */
3461 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3462 /* this_rq->clock is already updated */
3463 update_rq_clock(busiest);
43010659 3464 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3465 imbalance, sd, CPU_NEWLY_IDLE,
3466 &all_pinned);
d6d5cfaf 3467 spin_unlock(&busiest->lock);
0a2966b4 3468
969bb4e4 3469 if (unlikely(all_pinned)) {
7c16ec58
MT
3470 cpu_clear(cpu_of(busiest), *cpus);
3471 if (!cpus_empty(*cpus))
0a2966b4
CL
3472 goto redo;
3473 }
d6d5cfaf
NP
3474 }
3475
43010659 3476 if (!ld_moved) {
d15bcfdb 3477 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3478 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3480 return -1;
3481 } else
16cfb1c0 3482 sd->nr_balance_failed = 0;
1da177e4 3483
43010659 3484 return ld_moved;
16cfb1c0
NP
3485
3486out_balanced:
d15bcfdb 3487 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3488 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3489 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3490 return -1;
16cfb1c0 3491 sd->nr_balance_failed = 0;
48f24c4d 3492
16cfb1c0 3493 return 0;
1da177e4
LT
3494}
3495
3496/*
3497 * idle_balance is called by schedule() if this_cpu is about to become
3498 * idle. Attempts to pull tasks from other CPUs.
3499 */
70b97a7f 3500static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3501{
3502 struct sched_domain *sd;
dd41f596
IM
3503 int pulled_task = -1;
3504 unsigned long next_balance = jiffies + HZ;
7c16ec58 3505 cpumask_t tmpmask;
1da177e4
LT
3506
3507 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3508 unsigned long interval;
3509
3510 if (!(sd->flags & SD_LOAD_BALANCE))
3511 continue;
3512
3513 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3514 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3515 pulled_task = load_balance_newidle(this_cpu, this_rq,
3516 sd, &tmpmask);
92c4ca5c
CL
3517
3518 interval = msecs_to_jiffies(sd->balance_interval);
3519 if (time_after(next_balance, sd->last_balance + interval))
3520 next_balance = sd->last_balance + interval;
3521 if (pulled_task)
3522 break;
1da177e4 3523 }
dd41f596 3524 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3525 /*
3526 * We are going idle. next_balance may be set based on
3527 * a busy processor. So reset next_balance.
3528 */
3529 this_rq->next_balance = next_balance;
dd41f596 3530 }
1da177e4
LT
3531}
3532
3533/*
3534 * active_load_balance is run by migration threads. It pushes running tasks
3535 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3536 * running on each physical CPU where possible, and avoids physical /
3537 * logical imbalances.
3538 *
3539 * Called with busiest_rq locked.
3540 */
70b97a7f 3541static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3542{
39507451 3543 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3544 struct sched_domain *sd;
3545 struct rq *target_rq;
39507451 3546
48f24c4d 3547 /* Is there any task to move? */
39507451 3548 if (busiest_rq->nr_running <= 1)
39507451
NP
3549 return;
3550
3551 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3552
3553 /*
39507451 3554 * This condition is "impossible", if it occurs
41a2d6cf 3555 * we need to fix it. Originally reported by
39507451 3556 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3557 */
39507451 3558 BUG_ON(busiest_rq == target_rq);
1da177e4 3559
39507451
NP
3560 /* move a task from busiest_rq to target_rq */
3561 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3562 update_rq_clock(busiest_rq);
3563 update_rq_clock(target_rq);
39507451
NP
3564
3565 /* Search for an sd spanning us and the target CPU. */
c96d145e 3566 for_each_domain(target_cpu, sd) {
39507451 3567 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3568 cpu_isset(busiest_cpu, sd->span))
39507451 3569 break;
c96d145e 3570 }
39507451 3571
48f24c4d 3572 if (likely(sd)) {
2d72376b 3573 schedstat_inc(sd, alb_count);
39507451 3574
43010659
PW
3575 if (move_one_task(target_rq, target_cpu, busiest_rq,
3576 sd, CPU_IDLE))
48f24c4d
IM
3577 schedstat_inc(sd, alb_pushed);
3578 else
3579 schedstat_inc(sd, alb_failed);
3580 }
39507451 3581 spin_unlock(&target_rq->lock);
1da177e4
LT
3582}
3583
46cb4b7c
SS
3584#ifdef CONFIG_NO_HZ
3585static struct {
3586 atomic_t load_balancer;
41a2d6cf 3587 cpumask_t cpu_mask;
46cb4b7c
SS
3588} nohz ____cacheline_aligned = {
3589 .load_balancer = ATOMIC_INIT(-1),
3590 .cpu_mask = CPU_MASK_NONE,
3591};
3592
7835b98b 3593/*
46cb4b7c
SS
3594 * This routine will try to nominate the ilb (idle load balancing)
3595 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3596 * load balancing on behalf of all those cpus. If all the cpus in the system
3597 * go into this tickless mode, then there will be no ilb owner (as there is
3598 * no need for one) and all the cpus will sleep till the next wakeup event
3599 * arrives...
3600 *
3601 * For the ilb owner, tick is not stopped. And this tick will be used
3602 * for idle load balancing. ilb owner will still be part of
3603 * nohz.cpu_mask..
7835b98b 3604 *
46cb4b7c
SS
3605 * While stopping the tick, this cpu will become the ilb owner if there
3606 * is no other owner. And will be the owner till that cpu becomes busy
3607 * or if all cpus in the system stop their ticks at which point
3608 * there is no need for ilb owner.
3609 *
3610 * When the ilb owner becomes busy, it nominates another owner, during the
3611 * next busy scheduler_tick()
3612 */
3613int select_nohz_load_balancer(int stop_tick)
3614{
3615 int cpu = smp_processor_id();
3616
3617 if (stop_tick) {
3618 cpu_set(cpu, nohz.cpu_mask);
3619 cpu_rq(cpu)->in_nohz_recently = 1;
3620
3621 /*
3622 * If we are going offline and still the leader, give up!
3623 */
3624 if (cpu_is_offline(cpu) &&
3625 atomic_read(&nohz.load_balancer) == cpu) {
3626 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3627 BUG();
3628 return 0;
3629 }
3630
3631 /* time for ilb owner also to sleep */
3632 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3633 if (atomic_read(&nohz.load_balancer) == cpu)
3634 atomic_set(&nohz.load_balancer, -1);
3635 return 0;
3636 }
3637
3638 if (atomic_read(&nohz.load_balancer) == -1) {
3639 /* make me the ilb owner */
3640 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3641 return 1;
3642 } else if (atomic_read(&nohz.load_balancer) == cpu)
3643 return 1;
3644 } else {
3645 if (!cpu_isset(cpu, nohz.cpu_mask))
3646 return 0;
3647
3648 cpu_clear(cpu, nohz.cpu_mask);
3649
3650 if (atomic_read(&nohz.load_balancer) == cpu)
3651 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3652 BUG();
3653 }
3654 return 0;
3655}
3656#endif
3657
3658static DEFINE_SPINLOCK(balancing);
3659
3660/*
7835b98b
CL
3661 * It checks each scheduling domain to see if it is due to be balanced,
3662 * and initiates a balancing operation if so.
3663 *
3664 * Balancing parameters are set up in arch_init_sched_domains.
3665 */
a9957449 3666static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3667{
46cb4b7c
SS
3668 int balance = 1;
3669 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3670 unsigned long interval;
3671 struct sched_domain *sd;
46cb4b7c 3672 /* Earliest time when we have to do rebalance again */
c9819f45 3673 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3674 int update_next_balance = 0;
d07355f5 3675 int need_serialize;
7c16ec58 3676 cpumask_t tmp;
1da177e4 3677
46cb4b7c 3678 for_each_domain(cpu, sd) {
1da177e4
LT
3679 if (!(sd->flags & SD_LOAD_BALANCE))
3680 continue;
3681
3682 interval = sd->balance_interval;
d15bcfdb 3683 if (idle != CPU_IDLE)
1da177e4
LT
3684 interval *= sd->busy_factor;
3685
3686 /* scale ms to jiffies */
3687 interval = msecs_to_jiffies(interval);
3688 if (unlikely(!interval))
3689 interval = 1;
dd41f596
IM
3690 if (interval > HZ*NR_CPUS/10)
3691 interval = HZ*NR_CPUS/10;
3692
d07355f5 3693 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3694
d07355f5 3695 if (need_serialize) {
08c183f3
CL
3696 if (!spin_trylock(&balancing))
3697 goto out;
3698 }
3699
c9819f45 3700 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3701 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3702 /*
3703 * We've pulled tasks over so either we're no
5969fe06
NP
3704 * longer idle, or one of our SMT siblings is
3705 * not idle.
3706 */
d15bcfdb 3707 idle = CPU_NOT_IDLE;
1da177e4 3708 }
1bd77f2d 3709 sd->last_balance = jiffies;
1da177e4 3710 }
d07355f5 3711 if (need_serialize)
08c183f3
CL
3712 spin_unlock(&balancing);
3713out:
f549da84 3714 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3715 next_balance = sd->last_balance + interval;
f549da84
SS
3716 update_next_balance = 1;
3717 }
783609c6
SS
3718
3719 /*
3720 * Stop the load balance at this level. There is another
3721 * CPU in our sched group which is doing load balancing more
3722 * actively.
3723 */
3724 if (!balance)
3725 break;
1da177e4 3726 }
f549da84
SS
3727
3728 /*
3729 * next_balance will be updated only when there is a need.
3730 * When the cpu is attached to null domain for ex, it will not be
3731 * updated.
3732 */
3733 if (likely(update_next_balance))
3734 rq->next_balance = next_balance;
46cb4b7c
SS
3735}
3736
3737/*
3738 * run_rebalance_domains is triggered when needed from the scheduler tick.
3739 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3740 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3741 */
3742static void run_rebalance_domains(struct softirq_action *h)
3743{
dd41f596
IM
3744 int this_cpu = smp_processor_id();
3745 struct rq *this_rq = cpu_rq(this_cpu);
3746 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3747 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3748
dd41f596 3749 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3750
3751#ifdef CONFIG_NO_HZ
3752 /*
3753 * If this cpu is the owner for idle load balancing, then do the
3754 * balancing on behalf of the other idle cpus whose ticks are
3755 * stopped.
3756 */
dd41f596
IM
3757 if (this_rq->idle_at_tick &&
3758 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3759 cpumask_t cpus = nohz.cpu_mask;
3760 struct rq *rq;
3761 int balance_cpu;
3762
dd41f596 3763 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3764 for_each_cpu_mask(balance_cpu, cpus) {
3765 /*
3766 * If this cpu gets work to do, stop the load balancing
3767 * work being done for other cpus. Next load
3768 * balancing owner will pick it up.
3769 */
3770 if (need_resched())
3771 break;
3772
de0cf899 3773 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3774
3775 rq = cpu_rq(balance_cpu);
dd41f596
IM
3776 if (time_after(this_rq->next_balance, rq->next_balance))
3777 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3778 }
3779 }
3780#endif
3781}
3782
3783/*
3784 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3785 *
3786 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3787 * idle load balancing owner or decide to stop the periodic load balancing,
3788 * if the whole system is idle.
3789 */
dd41f596 3790static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3791{
46cb4b7c
SS
3792#ifdef CONFIG_NO_HZ
3793 /*
3794 * If we were in the nohz mode recently and busy at the current
3795 * scheduler tick, then check if we need to nominate new idle
3796 * load balancer.
3797 */
3798 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3799 rq->in_nohz_recently = 0;
3800
3801 if (atomic_read(&nohz.load_balancer) == cpu) {
3802 cpu_clear(cpu, nohz.cpu_mask);
3803 atomic_set(&nohz.load_balancer, -1);
3804 }
3805
3806 if (atomic_read(&nohz.load_balancer) == -1) {
3807 /*
3808 * simple selection for now: Nominate the
3809 * first cpu in the nohz list to be the next
3810 * ilb owner.
3811 *
3812 * TBD: Traverse the sched domains and nominate
3813 * the nearest cpu in the nohz.cpu_mask.
3814 */
3815 int ilb = first_cpu(nohz.cpu_mask);
3816
434d53b0 3817 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3818 resched_cpu(ilb);
3819 }
3820 }
3821
3822 /*
3823 * If this cpu is idle and doing idle load balancing for all the
3824 * cpus with ticks stopped, is it time for that to stop?
3825 */
3826 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3827 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3828 resched_cpu(cpu);
3829 return;
3830 }
3831
3832 /*
3833 * If this cpu is idle and the idle load balancing is done by
3834 * someone else, then no need raise the SCHED_SOFTIRQ
3835 */
3836 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3837 cpu_isset(cpu, nohz.cpu_mask))
3838 return;
3839#endif
3840 if (time_after_eq(jiffies, rq->next_balance))
3841 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3842}
dd41f596
IM
3843
3844#else /* CONFIG_SMP */
3845
1da177e4
LT
3846/*
3847 * on UP we do not need to balance between CPUs:
3848 */
70b97a7f 3849static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3850{
3851}
dd41f596 3852
1da177e4
LT
3853#endif
3854
1da177e4
LT
3855DEFINE_PER_CPU(struct kernel_stat, kstat);
3856
3857EXPORT_PER_CPU_SYMBOL(kstat);
3858
3859/*
41b86e9c
IM
3860 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3861 * that have not yet been banked in case the task is currently running.
1da177e4 3862 */
41b86e9c 3863unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3864{
1da177e4 3865 unsigned long flags;
41b86e9c
IM
3866 u64 ns, delta_exec;
3867 struct rq *rq;
48f24c4d 3868
41b86e9c
IM
3869 rq = task_rq_lock(p, &flags);
3870 ns = p->se.sum_exec_runtime;
051a1d1a 3871 if (task_current(rq, p)) {
a8e504d2
IM
3872 update_rq_clock(rq);
3873 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3874 if ((s64)delta_exec > 0)
3875 ns += delta_exec;
3876 }
3877 task_rq_unlock(rq, &flags);
48f24c4d 3878
1da177e4
LT
3879 return ns;
3880}
3881
1da177e4
LT
3882/*
3883 * Account user cpu time to a process.
3884 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3885 * @cputime: the cpu time spent in user space since the last update
3886 */
3887void account_user_time(struct task_struct *p, cputime_t cputime)
3888{
3889 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3890 cputime64_t tmp;
3891
3892 p->utime = cputime_add(p->utime, cputime);
3893
3894 /* Add user time to cpustat. */
3895 tmp = cputime_to_cputime64(cputime);
3896 if (TASK_NICE(p) > 0)
3897 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3898 else
3899 cpustat->user = cputime64_add(cpustat->user, tmp);
3900}
3901
94886b84
LV
3902/*
3903 * Account guest cpu time to a process.
3904 * @p: the process that the cpu time gets accounted to
3905 * @cputime: the cpu time spent in virtual machine since the last update
3906 */
f7402e03 3907static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3908{
3909 cputime64_t tmp;
3910 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3911
3912 tmp = cputime_to_cputime64(cputime);
3913
3914 p->utime = cputime_add(p->utime, cputime);
3915 p->gtime = cputime_add(p->gtime, cputime);
3916
3917 cpustat->user = cputime64_add(cpustat->user, tmp);
3918 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3919}
3920
c66f08be
MN
3921/*
3922 * Account scaled user cpu time to a process.
3923 * @p: the process that the cpu time gets accounted to
3924 * @cputime: the cpu time spent in user space since the last update
3925 */
3926void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3927{
3928 p->utimescaled = cputime_add(p->utimescaled, cputime);
3929}
3930
1da177e4
LT
3931/*
3932 * Account system cpu time to a process.
3933 * @p: the process that the cpu time gets accounted to
3934 * @hardirq_offset: the offset to subtract from hardirq_count()
3935 * @cputime: the cpu time spent in kernel space since the last update
3936 */
3937void account_system_time(struct task_struct *p, int hardirq_offset,
3938 cputime_t cputime)
3939{
3940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3941 struct rq *rq = this_rq();
1da177e4
LT
3942 cputime64_t tmp;
3943
983ed7a6
HH
3944 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3945 account_guest_time(p, cputime);
3946 return;
3947 }
94886b84 3948
1da177e4
LT
3949 p->stime = cputime_add(p->stime, cputime);
3950
3951 /* Add system time to cpustat. */
3952 tmp = cputime_to_cputime64(cputime);
3953 if (hardirq_count() - hardirq_offset)
3954 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3955 else if (softirq_count())
3956 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3957 else if (p != rq->idle)
1da177e4 3958 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3959 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3960 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3961 else
3962 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3963 /* Account for system time used */
3964 acct_update_integrals(p);
1da177e4
LT
3965}
3966
c66f08be
MN
3967/*
3968 * Account scaled system cpu time to a process.
3969 * @p: the process that the cpu time gets accounted to
3970 * @hardirq_offset: the offset to subtract from hardirq_count()
3971 * @cputime: the cpu time spent in kernel space since the last update
3972 */
3973void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3974{
3975 p->stimescaled = cputime_add(p->stimescaled, cputime);
3976}
3977
1da177e4
LT
3978/*
3979 * Account for involuntary wait time.
3980 * @p: the process from which the cpu time has been stolen
3981 * @steal: the cpu time spent in involuntary wait
3982 */
3983void account_steal_time(struct task_struct *p, cputime_t steal)
3984{
3985 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3986 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3987 struct rq *rq = this_rq();
1da177e4
LT
3988
3989 if (p == rq->idle) {
3990 p->stime = cputime_add(p->stime, steal);
3991 if (atomic_read(&rq->nr_iowait) > 0)
3992 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3993 else
3994 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3995 } else
1da177e4
LT
3996 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3997}
3998
7835b98b
CL
3999/*
4000 * This function gets called by the timer code, with HZ frequency.
4001 * We call it with interrupts disabled.
4002 *
4003 * It also gets called by the fork code, when changing the parent's
4004 * timeslices.
4005 */
4006void scheduler_tick(void)
4007{
7835b98b
CL
4008 int cpu = smp_processor_id();
4009 struct rq *rq = cpu_rq(cpu);
dd41f596 4010 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4011
4012 sched_clock_tick();
dd41f596
IM
4013
4014 spin_lock(&rq->lock);
3e51f33f 4015 update_rq_clock(rq);
f1a438d8 4016 update_cpu_load(rq);
fa85ae24 4017 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4018 spin_unlock(&rq->lock);
7835b98b 4019
e418e1c2 4020#ifdef CONFIG_SMP
dd41f596
IM
4021 rq->idle_at_tick = idle_cpu(cpu);
4022 trigger_load_balance(rq, cpu);
e418e1c2 4023#endif
1da177e4
LT
4024}
4025
1da177e4
LT
4026#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4027
43627582 4028void __kprobes add_preempt_count(int val)
1da177e4
LT
4029{
4030 /*
4031 * Underflow?
4032 */
9a11b49a
IM
4033 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4034 return;
1da177e4
LT
4035 preempt_count() += val;
4036 /*
4037 * Spinlock count overflowing soon?
4038 */
33859f7f
MOS
4039 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4040 PREEMPT_MASK - 10);
1da177e4
LT
4041}
4042EXPORT_SYMBOL(add_preempt_count);
4043
43627582 4044void __kprobes sub_preempt_count(int val)
1da177e4
LT
4045{
4046 /*
4047 * Underflow?
4048 */
9a11b49a
IM
4049 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4050 return;
1da177e4
LT
4051 /*
4052 * Is the spinlock portion underflowing?
4053 */
9a11b49a
IM
4054 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4055 !(preempt_count() & PREEMPT_MASK)))
4056 return;
4057
1da177e4
LT
4058 preempt_count() -= val;
4059}
4060EXPORT_SYMBOL(sub_preempt_count);
4061
4062#endif
4063
4064/*
dd41f596 4065 * Print scheduling while atomic bug:
1da177e4 4066 */
dd41f596 4067static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4068{
838225b4
SS
4069 struct pt_regs *regs = get_irq_regs();
4070
4071 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4072 prev->comm, prev->pid, preempt_count());
4073
dd41f596 4074 debug_show_held_locks(prev);
e21f5b15 4075 print_modules();
dd41f596
IM
4076 if (irqs_disabled())
4077 print_irqtrace_events(prev);
838225b4
SS
4078
4079 if (regs)
4080 show_regs(regs);
4081 else
4082 dump_stack();
dd41f596 4083}
1da177e4 4084
dd41f596
IM
4085/*
4086 * Various schedule()-time debugging checks and statistics:
4087 */
4088static inline void schedule_debug(struct task_struct *prev)
4089{
1da177e4 4090 /*
41a2d6cf 4091 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4092 * schedule() atomically, we ignore that path for now.
4093 * Otherwise, whine if we are scheduling when we should not be.
4094 */
3f33a7ce 4095 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4096 __schedule_bug(prev);
4097
1da177e4
LT
4098 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4099
2d72376b 4100 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4101#ifdef CONFIG_SCHEDSTATS
4102 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4103 schedstat_inc(this_rq(), bkl_count);
4104 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4105 }
4106#endif
dd41f596
IM
4107}
4108
4109/*
4110 * Pick up the highest-prio task:
4111 */
4112static inline struct task_struct *
ff95f3df 4113pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4114{
5522d5d5 4115 const struct sched_class *class;
dd41f596 4116 struct task_struct *p;
1da177e4
LT
4117
4118 /*
dd41f596
IM
4119 * Optimization: we know that if all tasks are in
4120 * the fair class we can call that function directly:
1da177e4 4121 */
dd41f596 4122 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4123 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4124 if (likely(p))
4125 return p;
1da177e4
LT
4126 }
4127
dd41f596
IM
4128 class = sched_class_highest;
4129 for ( ; ; ) {
fb8d4724 4130 p = class->pick_next_task(rq);
dd41f596
IM
4131 if (p)
4132 return p;
4133 /*
4134 * Will never be NULL as the idle class always
4135 * returns a non-NULL p:
4136 */
4137 class = class->next;
4138 }
4139}
1da177e4 4140
dd41f596
IM
4141/*
4142 * schedule() is the main scheduler function.
4143 */
4144asmlinkage void __sched schedule(void)
4145{
4146 struct task_struct *prev, *next;
67ca7bde 4147 unsigned long *switch_count;
dd41f596 4148 struct rq *rq;
f333fdc9 4149 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4150
4151need_resched:
4152 preempt_disable();
4153 cpu = smp_processor_id();
4154 rq = cpu_rq(cpu);
4155 rcu_qsctr_inc(cpu);
4156 prev = rq->curr;
4157 switch_count = &prev->nivcsw;
4158
4159 release_kernel_lock(prev);
4160need_resched_nonpreemptible:
4161
4162 schedule_debug(prev);
1da177e4 4163
f333fdc9
MG
4164 if (hrtick)
4165 hrtick_clear(rq);
8f4d37ec 4166
1e819950
IM
4167 /*
4168 * Do the rq-clock update outside the rq lock:
4169 */
4170 local_irq_disable();
3e51f33f 4171 update_rq_clock(rq);
1e819950
IM
4172 spin_lock(&rq->lock);
4173 clear_tsk_need_resched(prev);
1da177e4 4174
1da177e4 4175 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4176 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4177 prev->state = TASK_RUNNING;
16882c1e 4178 else
2e1cb74a 4179 deactivate_task(rq, prev, 1);
dd41f596 4180 switch_count = &prev->nvcsw;
1da177e4
LT
4181 }
4182
9a897c5a
SR
4183#ifdef CONFIG_SMP
4184 if (prev->sched_class->pre_schedule)
4185 prev->sched_class->pre_schedule(rq, prev);
4186#endif
f65eda4f 4187
dd41f596 4188 if (unlikely(!rq->nr_running))
1da177e4 4189 idle_balance(cpu, rq);
1da177e4 4190
31ee529c 4191 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4192 next = pick_next_task(rq, prev);
1da177e4 4193
1da177e4 4194 if (likely(prev != next)) {
673a90a1
DS
4195 sched_info_switch(prev, next);
4196
1da177e4
LT
4197 rq->nr_switches++;
4198 rq->curr = next;
4199 ++*switch_count;
4200
dd41f596 4201 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4202 /*
4203 * the context switch might have flipped the stack from under
4204 * us, hence refresh the local variables.
4205 */
4206 cpu = smp_processor_id();
4207 rq = cpu_rq(cpu);
1da177e4
LT
4208 } else
4209 spin_unlock_irq(&rq->lock);
4210
f333fdc9
MG
4211 if (hrtick)
4212 hrtick_set(rq);
8f4d37ec
PZ
4213
4214 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4215 goto need_resched_nonpreemptible;
8f4d37ec 4216
1da177e4
LT
4217 preempt_enable_no_resched();
4218 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4219 goto need_resched;
4220}
1da177e4
LT
4221EXPORT_SYMBOL(schedule);
4222
4223#ifdef CONFIG_PREEMPT
4224/*
2ed6e34f 4225 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4226 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4227 * occur there and call schedule directly.
4228 */
4229asmlinkage void __sched preempt_schedule(void)
4230{
4231 struct thread_info *ti = current_thread_info();
6478d880 4232
1da177e4
LT
4233 /*
4234 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4235 * we do not want to preempt the current task. Just return..
1da177e4 4236 */
beed33a8 4237 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4238 return;
4239
3a5c359a
AK
4240 do {
4241 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4242 schedule();
3a5c359a 4243 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4244
3a5c359a
AK
4245 /*
4246 * Check again in case we missed a preemption opportunity
4247 * between schedule and now.
4248 */
4249 barrier();
4250 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4251}
1da177e4
LT
4252EXPORT_SYMBOL(preempt_schedule);
4253
4254/*
2ed6e34f 4255 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4256 * off of irq context.
4257 * Note, that this is called and return with irqs disabled. This will
4258 * protect us against recursive calling from irq.
4259 */
4260asmlinkage void __sched preempt_schedule_irq(void)
4261{
4262 struct thread_info *ti = current_thread_info();
6478d880 4263
2ed6e34f 4264 /* Catch callers which need to be fixed */
1da177e4
LT
4265 BUG_ON(ti->preempt_count || !irqs_disabled());
4266
3a5c359a
AK
4267 do {
4268 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4269 local_irq_enable();
4270 schedule();
4271 local_irq_disable();
3a5c359a 4272 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4273
3a5c359a
AK
4274 /*
4275 * Check again in case we missed a preemption opportunity
4276 * between schedule and now.
4277 */
4278 barrier();
4279 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4280}
4281
4282#endif /* CONFIG_PREEMPT */
4283
95cdf3b7
IM
4284int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4285 void *key)
1da177e4 4286{
48f24c4d 4287 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4288}
1da177e4
LT
4289EXPORT_SYMBOL(default_wake_function);
4290
4291/*
41a2d6cf
IM
4292 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4293 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4294 * number) then we wake all the non-exclusive tasks and one exclusive task.
4295 *
4296 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4297 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4298 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4299 */
4300static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4301 int nr_exclusive, int sync, void *key)
4302{
2e45874c 4303 wait_queue_t *curr, *next;
1da177e4 4304
2e45874c 4305 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4306 unsigned flags = curr->flags;
4307
1da177e4 4308 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4309 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4310 break;
4311 }
4312}
4313
4314/**
4315 * __wake_up - wake up threads blocked on a waitqueue.
4316 * @q: the waitqueue
4317 * @mode: which threads
4318 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4319 * @key: is directly passed to the wakeup function
1da177e4 4320 */
7ad5b3a5 4321void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4322 int nr_exclusive, void *key)
1da177e4
LT
4323{
4324 unsigned long flags;
4325
4326 spin_lock_irqsave(&q->lock, flags);
4327 __wake_up_common(q, mode, nr_exclusive, 0, key);
4328 spin_unlock_irqrestore(&q->lock, flags);
4329}
1da177e4
LT
4330EXPORT_SYMBOL(__wake_up);
4331
4332/*
4333 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4334 */
7ad5b3a5 4335void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4336{
4337 __wake_up_common(q, mode, 1, 0, NULL);
4338}
4339
4340/**
67be2dd1 4341 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4342 * @q: the waitqueue
4343 * @mode: which threads
4344 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4345 *
4346 * The sync wakeup differs that the waker knows that it will schedule
4347 * away soon, so while the target thread will be woken up, it will not
4348 * be migrated to another CPU - ie. the two threads are 'synchronized'
4349 * with each other. This can prevent needless bouncing between CPUs.
4350 *
4351 * On UP it can prevent extra preemption.
4352 */
7ad5b3a5 4353void
95cdf3b7 4354__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4355{
4356 unsigned long flags;
4357 int sync = 1;
4358
4359 if (unlikely(!q))
4360 return;
4361
4362 if (unlikely(!nr_exclusive))
4363 sync = 0;
4364
4365 spin_lock_irqsave(&q->lock, flags);
4366 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4367 spin_unlock_irqrestore(&q->lock, flags);
4368}
4369EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4370
b15136e9 4371void complete(struct completion *x)
1da177e4
LT
4372{
4373 unsigned long flags;
4374
4375 spin_lock_irqsave(&x->wait.lock, flags);
4376 x->done++;
d9514f6c 4377 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4378 spin_unlock_irqrestore(&x->wait.lock, flags);
4379}
4380EXPORT_SYMBOL(complete);
4381
b15136e9 4382void complete_all(struct completion *x)
1da177e4
LT
4383{
4384 unsigned long flags;
4385
4386 spin_lock_irqsave(&x->wait.lock, flags);
4387 x->done += UINT_MAX/2;
d9514f6c 4388 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4389 spin_unlock_irqrestore(&x->wait.lock, flags);
4390}
4391EXPORT_SYMBOL(complete_all);
4392
8cbbe86d
AK
4393static inline long __sched
4394do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4395{
1da177e4
LT
4396 if (!x->done) {
4397 DECLARE_WAITQUEUE(wait, current);
4398
4399 wait.flags |= WQ_FLAG_EXCLUSIVE;
4400 __add_wait_queue_tail(&x->wait, &wait);
4401 do {
009e577e
MW
4402 if ((state == TASK_INTERRUPTIBLE &&
4403 signal_pending(current)) ||
4404 (state == TASK_KILLABLE &&
4405 fatal_signal_pending(current))) {
8cbbe86d
AK
4406 __remove_wait_queue(&x->wait, &wait);
4407 return -ERESTARTSYS;
4408 }
4409 __set_current_state(state);
1da177e4
LT
4410 spin_unlock_irq(&x->wait.lock);
4411 timeout = schedule_timeout(timeout);
4412 spin_lock_irq(&x->wait.lock);
4413 if (!timeout) {
4414 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4415 return timeout;
1da177e4
LT
4416 }
4417 } while (!x->done);
4418 __remove_wait_queue(&x->wait, &wait);
4419 }
4420 x->done--;
1da177e4
LT
4421 return timeout;
4422}
1da177e4 4423
8cbbe86d
AK
4424static long __sched
4425wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4426{
1da177e4
LT
4427 might_sleep();
4428
4429 spin_lock_irq(&x->wait.lock);
8cbbe86d 4430 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4431 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4432 return timeout;
4433}
1da177e4 4434
b15136e9 4435void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4436{
4437 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4438}
8cbbe86d 4439EXPORT_SYMBOL(wait_for_completion);
1da177e4 4440
b15136e9 4441unsigned long __sched
8cbbe86d 4442wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4443{
8cbbe86d 4444 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4445}
8cbbe86d 4446EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4447
8cbbe86d 4448int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4449{
51e97990
AK
4450 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4451 if (t == -ERESTARTSYS)
4452 return t;
4453 return 0;
0fec171c 4454}
8cbbe86d 4455EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4456
b15136e9 4457unsigned long __sched
8cbbe86d
AK
4458wait_for_completion_interruptible_timeout(struct completion *x,
4459 unsigned long timeout)
0fec171c 4460{
8cbbe86d 4461 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4462}
8cbbe86d 4463EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4464
009e577e
MW
4465int __sched wait_for_completion_killable(struct completion *x)
4466{
4467 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4468 if (t == -ERESTARTSYS)
4469 return t;
4470 return 0;
4471}
4472EXPORT_SYMBOL(wait_for_completion_killable);
4473
8cbbe86d
AK
4474static long __sched
4475sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4476{
0fec171c
IM
4477 unsigned long flags;
4478 wait_queue_t wait;
4479
4480 init_waitqueue_entry(&wait, current);
1da177e4 4481
8cbbe86d 4482 __set_current_state(state);
1da177e4 4483
8cbbe86d
AK
4484 spin_lock_irqsave(&q->lock, flags);
4485 __add_wait_queue(q, &wait);
4486 spin_unlock(&q->lock);
4487 timeout = schedule_timeout(timeout);
4488 spin_lock_irq(&q->lock);
4489 __remove_wait_queue(q, &wait);
4490 spin_unlock_irqrestore(&q->lock, flags);
4491
4492 return timeout;
4493}
4494
4495void __sched interruptible_sleep_on(wait_queue_head_t *q)
4496{
4497 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4498}
1da177e4
LT
4499EXPORT_SYMBOL(interruptible_sleep_on);
4500
0fec171c 4501long __sched
95cdf3b7 4502interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4503{
8cbbe86d 4504 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4505}
1da177e4
LT
4506EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4507
0fec171c 4508void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4509{
8cbbe86d 4510 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4511}
1da177e4
LT
4512EXPORT_SYMBOL(sleep_on);
4513
0fec171c 4514long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4515{
8cbbe86d 4516 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4517}
1da177e4
LT
4518EXPORT_SYMBOL(sleep_on_timeout);
4519
b29739f9
IM
4520#ifdef CONFIG_RT_MUTEXES
4521
4522/*
4523 * rt_mutex_setprio - set the current priority of a task
4524 * @p: task
4525 * @prio: prio value (kernel-internal form)
4526 *
4527 * This function changes the 'effective' priority of a task. It does
4528 * not touch ->normal_prio like __setscheduler().
4529 *
4530 * Used by the rt_mutex code to implement priority inheritance logic.
4531 */
36c8b586 4532void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4533{
4534 unsigned long flags;
83b699ed 4535 int oldprio, on_rq, running;
70b97a7f 4536 struct rq *rq;
cb469845 4537 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4538
4539 BUG_ON(prio < 0 || prio > MAX_PRIO);
4540
4541 rq = task_rq_lock(p, &flags);
a8e504d2 4542 update_rq_clock(rq);
b29739f9 4543
d5f9f942 4544 oldprio = p->prio;
dd41f596 4545 on_rq = p->se.on_rq;
051a1d1a 4546 running = task_current(rq, p);
0e1f3483 4547 if (on_rq)
69be72c1 4548 dequeue_task(rq, p, 0);
0e1f3483
HS
4549 if (running)
4550 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4551
4552 if (rt_prio(prio))
4553 p->sched_class = &rt_sched_class;
4554 else
4555 p->sched_class = &fair_sched_class;
4556
b29739f9
IM
4557 p->prio = prio;
4558
0e1f3483
HS
4559 if (running)
4560 p->sched_class->set_curr_task(rq);
dd41f596 4561 if (on_rq) {
8159f87e 4562 enqueue_task(rq, p, 0);
cb469845
SR
4563
4564 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4565 }
4566 task_rq_unlock(rq, &flags);
4567}
4568
4569#endif
4570
36c8b586 4571void set_user_nice(struct task_struct *p, long nice)
1da177e4 4572{
dd41f596 4573 int old_prio, delta, on_rq;
1da177e4 4574 unsigned long flags;
70b97a7f 4575 struct rq *rq;
1da177e4
LT
4576
4577 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4578 return;
4579 /*
4580 * We have to be careful, if called from sys_setpriority(),
4581 * the task might be in the middle of scheduling on another CPU.
4582 */
4583 rq = task_rq_lock(p, &flags);
a8e504d2 4584 update_rq_clock(rq);
1da177e4
LT
4585 /*
4586 * The RT priorities are set via sched_setscheduler(), but we still
4587 * allow the 'normal' nice value to be set - but as expected
4588 * it wont have any effect on scheduling until the task is
dd41f596 4589 * SCHED_FIFO/SCHED_RR:
1da177e4 4590 */
e05606d3 4591 if (task_has_rt_policy(p)) {
1da177e4
LT
4592 p->static_prio = NICE_TO_PRIO(nice);
4593 goto out_unlock;
4594 }
dd41f596 4595 on_rq = p->se.on_rq;
6363ca57 4596 if (on_rq) {
69be72c1 4597 dequeue_task(rq, p, 0);
6363ca57
IM
4598 dec_load(rq, p);
4599 }
1da177e4 4600
1da177e4 4601 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4602 set_load_weight(p);
b29739f9
IM
4603 old_prio = p->prio;
4604 p->prio = effective_prio(p);
4605 delta = p->prio - old_prio;
1da177e4 4606
dd41f596 4607 if (on_rq) {
8159f87e 4608 enqueue_task(rq, p, 0);
6363ca57 4609 inc_load(rq, p);
1da177e4 4610 /*
d5f9f942
AM
4611 * If the task increased its priority or is running and
4612 * lowered its priority, then reschedule its CPU:
1da177e4 4613 */
d5f9f942 4614 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4615 resched_task(rq->curr);
4616 }
4617out_unlock:
4618 task_rq_unlock(rq, &flags);
4619}
1da177e4
LT
4620EXPORT_SYMBOL(set_user_nice);
4621
e43379f1
MM
4622/*
4623 * can_nice - check if a task can reduce its nice value
4624 * @p: task
4625 * @nice: nice value
4626 */
36c8b586 4627int can_nice(const struct task_struct *p, const int nice)
e43379f1 4628{
024f4747
MM
4629 /* convert nice value [19,-20] to rlimit style value [1,40] */
4630 int nice_rlim = 20 - nice;
48f24c4d 4631
e43379f1
MM
4632 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4633 capable(CAP_SYS_NICE));
4634}
4635
1da177e4
LT
4636#ifdef __ARCH_WANT_SYS_NICE
4637
4638/*
4639 * sys_nice - change the priority of the current process.
4640 * @increment: priority increment
4641 *
4642 * sys_setpriority is a more generic, but much slower function that
4643 * does similar things.
4644 */
4645asmlinkage long sys_nice(int increment)
4646{
48f24c4d 4647 long nice, retval;
1da177e4
LT
4648
4649 /*
4650 * Setpriority might change our priority at the same moment.
4651 * We don't have to worry. Conceptually one call occurs first
4652 * and we have a single winner.
4653 */
e43379f1
MM
4654 if (increment < -40)
4655 increment = -40;
1da177e4
LT
4656 if (increment > 40)
4657 increment = 40;
4658
4659 nice = PRIO_TO_NICE(current->static_prio) + increment;
4660 if (nice < -20)
4661 nice = -20;
4662 if (nice > 19)
4663 nice = 19;
4664
e43379f1
MM
4665 if (increment < 0 && !can_nice(current, nice))
4666 return -EPERM;
4667
1da177e4
LT
4668 retval = security_task_setnice(current, nice);
4669 if (retval)
4670 return retval;
4671
4672 set_user_nice(current, nice);
4673 return 0;
4674}
4675
4676#endif
4677
4678/**
4679 * task_prio - return the priority value of a given task.
4680 * @p: the task in question.
4681 *
4682 * This is the priority value as seen by users in /proc.
4683 * RT tasks are offset by -200. Normal tasks are centered
4684 * around 0, value goes from -16 to +15.
4685 */
36c8b586 4686int task_prio(const struct task_struct *p)
1da177e4
LT
4687{
4688 return p->prio - MAX_RT_PRIO;
4689}
4690
4691/**
4692 * task_nice - return the nice value of a given task.
4693 * @p: the task in question.
4694 */
36c8b586 4695int task_nice(const struct task_struct *p)
1da177e4
LT
4696{
4697 return TASK_NICE(p);
4698}
150d8bed 4699EXPORT_SYMBOL(task_nice);
1da177e4
LT
4700
4701/**
4702 * idle_cpu - is a given cpu idle currently?
4703 * @cpu: the processor in question.
4704 */
4705int idle_cpu(int cpu)
4706{
4707 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4708}
4709
1da177e4
LT
4710/**
4711 * idle_task - return the idle task for a given cpu.
4712 * @cpu: the processor in question.
4713 */
36c8b586 4714struct task_struct *idle_task(int cpu)
1da177e4
LT
4715{
4716 return cpu_rq(cpu)->idle;
4717}
4718
4719/**
4720 * find_process_by_pid - find a process with a matching PID value.
4721 * @pid: the pid in question.
4722 */
a9957449 4723static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4724{
228ebcbe 4725 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4726}
4727
4728/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4729static void
4730__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4731{
dd41f596 4732 BUG_ON(p->se.on_rq);
48f24c4d 4733
1da177e4 4734 p->policy = policy;
dd41f596
IM
4735 switch (p->policy) {
4736 case SCHED_NORMAL:
4737 case SCHED_BATCH:
4738 case SCHED_IDLE:
4739 p->sched_class = &fair_sched_class;
4740 break;
4741 case SCHED_FIFO:
4742 case SCHED_RR:
4743 p->sched_class = &rt_sched_class;
4744 break;
4745 }
4746
1da177e4 4747 p->rt_priority = prio;
b29739f9
IM
4748 p->normal_prio = normal_prio(p);
4749 /* we are holding p->pi_lock already */
4750 p->prio = rt_mutex_getprio(p);
2dd73a4f 4751 set_load_weight(p);
1da177e4
LT
4752}
4753
4754/**
72fd4a35 4755 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4756 * @p: the task in question.
4757 * @policy: new policy.
4758 * @param: structure containing the new RT priority.
5fe1d75f 4759 *
72fd4a35 4760 * NOTE that the task may be already dead.
1da177e4 4761 */
95cdf3b7
IM
4762int sched_setscheduler(struct task_struct *p, int policy,
4763 struct sched_param *param)
1da177e4 4764{
83b699ed 4765 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4766 unsigned long flags;
cb469845 4767 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4768 struct rq *rq;
1da177e4 4769
66e5393a
SR
4770 /* may grab non-irq protected spin_locks */
4771 BUG_ON(in_interrupt());
1da177e4
LT
4772recheck:
4773 /* double check policy once rq lock held */
4774 if (policy < 0)
4775 policy = oldpolicy = p->policy;
4776 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4777 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4778 policy != SCHED_IDLE)
b0a9499c 4779 return -EINVAL;
1da177e4
LT
4780 /*
4781 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4782 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4783 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4784 */
4785 if (param->sched_priority < 0 ||
95cdf3b7 4786 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4787 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4788 return -EINVAL;
e05606d3 4789 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4790 return -EINVAL;
4791
37e4ab3f
OC
4792 /*
4793 * Allow unprivileged RT tasks to decrease priority:
4794 */
4795 if (!capable(CAP_SYS_NICE)) {
e05606d3 4796 if (rt_policy(policy)) {
8dc3e909 4797 unsigned long rlim_rtprio;
8dc3e909
ON
4798
4799 if (!lock_task_sighand(p, &flags))
4800 return -ESRCH;
4801 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4802 unlock_task_sighand(p, &flags);
4803
4804 /* can't set/change the rt policy */
4805 if (policy != p->policy && !rlim_rtprio)
4806 return -EPERM;
4807
4808 /* can't increase priority */
4809 if (param->sched_priority > p->rt_priority &&
4810 param->sched_priority > rlim_rtprio)
4811 return -EPERM;
4812 }
dd41f596
IM
4813 /*
4814 * Like positive nice levels, dont allow tasks to
4815 * move out of SCHED_IDLE either:
4816 */
4817 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4818 return -EPERM;
5fe1d75f 4819
37e4ab3f
OC
4820 /* can't change other user's priorities */
4821 if ((current->euid != p->euid) &&
4822 (current->euid != p->uid))
4823 return -EPERM;
4824 }
1da177e4 4825
b68aa230
PZ
4826#ifdef CONFIG_RT_GROUP_SCHED
4827 /*
4828 * Do not allow realtime tasks into groups that have no runtime
4829 * assigned.
4830 */
d0b27fa7 4831 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4832 return -EPERM;
4833#endif
4834
1da177e4
LT
4835 retval = security_task_setscheduler(p, policy, param);
4836 if (retval)
4837 return retval;
b29739f9
IM
4838 /*
4839 * make sure no PI-waiters arrive (or leave) while we are
4840 * changing the priority of the task:
4841 */
4842 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4843 /*
4844 * To be able to change p->policy safely, the apropriate
4845 * runqueue lock must be held.
4846 */
b29739f9 4847 rq = __task_rq_lock(p);
1da177e4
LT
4848 /* recheck policy now with rq lock held */
4849 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4850 policy = oldpolicy = -1;
b29739f9
IM
4851 __task_rq_unlock(rq);
4852 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4853 goto recheck;
4854 }
2daa3577 4855 update_rq_clock(rq);
dd41f596 4856 on_rq = p->se.on_rq;
051a1d1a 4857 running = task_current(rq, p);
0e1f3483 4858 if (on_rq)
2e1cb74a 4859 deactivate_task(rq, p, 0);
0e1f3483
HS
4860 if (running)
4861 p->sched_class->put_prev_task(rq, p);
f6b53205 4862
1da177e4 4863 oldprio = p->prio;
dd41f596 4864 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4865
0e1f3483
HS
4866 if (running)
4867 p->sched_class->set_curr_task(rq);
dd41f596
IM
4868 if (on_rq) {
4869 activate_task(rq, p, 0);
cb469845
SR
4870
4871 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4872 }
b29739f9
IM
4873 __task_rq_unlock(rq);
4874 spin_unlock_irqrestore(&p->pi_lock, flags);
4875
95e02ca9
TG
4876 rt_mutex_adjust_pi(p);
4877
1da177e4
LT
4878 return 0;
4879}
4880EXPORT_SYMBOL_GPL(sched_setscheduler);
4881
95cdf3b7
IM
4882static int
4883do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4884{
1da177e4
LT
4885 struct sched_param lparam;
4886 struct task_struct *p;
36c8b586 4887 int retval;
1da177e4
LT
4888
4889 if (!param || pid < 0)
4890 return -EINVAL;
4891 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4892 return -EFAULT;
5fe1d75f
ON
4893
4894 rcu_read_lock();
4895 retval = -ESRCH;
1da177e4 4896 p = find_process_by_pid(pid);
5fe1d75f
ON
4897 if (p != NULL)
4898 retval = sched_setscheduler(p, policy, &lparam);
4899 rcu_read_unlock();
36c8b586 4900
1da177e4
LT
4901 return retval;
4902}
4903
4904/**
4905 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4906 * @pid: the pid in question.
4907 * @policy: new policy.
4908 * @param: structure containing the new RT priority.
4909 */
41a2d6cf
IM
4910asmlinkage long
4911sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4912{
c21761f1
JB
4913 /* negative values for policy are not valid */
4914 if (policy < 0)
4915 return -EINVAL;
4916
1da177e4
LT
4917 return do_sched_setscheduler(pid, policy, param);
4918}
4919
4920/**
4921 * sys_sched_setparam - set/change the RT priority of a thread
4922 * @pid: the pid in question.
4923 * @param: structure containing the new RT priority.
4924 */
4925asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4926{
4927 return do_sched_setscheduler(pid, -1, param);
4928}
4929
4930/**
4931 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4932 * @pid: the pid in question.
4933 */
4934asmlinkage long sys_sched_getscheduler(pid_t pid)
4935{
36c8b586 4936 struct task_struct *p;
3a5c359a 4937 int retval;
1da177e4
LT
4938
4939 if (pid < 0)
3a5c359a 4940 return -EINVAL;
1da177e4
LT
4941
4942 retval = -ESRCH;
4943 read_lock(&tasklist_lock);
4944 p = find_process_by_pid(pid);
4945 if (p) {
4946 retval = security_task_getscheduler(p);
4947 if (!retval)
4948 retval = p->policy;
4949 }
4950 read_unlock(&tasklist_lock);
1da177e4
LT
4951 return retval;
4952}
4953
4954/**
4955 * sys_sched_getscheduler - get the RT priority of a thread
4956 * @pid: the pid in question.
4957 * @param: structure containing the RT priority.
4958 */
4959asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4960{
4961 struct sched_param lp;
36c8b586 4962 struct task_struct *p;
3a5c359a 4963 int retval;
1da177e4
LT
4964
4965 if (!param || pid < 0)
3a5c359a 4966 return -EINVAL;
1da177e4
LT
4967
4968 read_lock(&tasklist_lock);
4969 p = find_process_by_pid(pid);
4970 retval = -ESRCH;
4971 if (!p)
4972 goto out_unlock;
4973
4974 retval = security_task_getscheduler(p);
4975 if (retval)
4976 goto out_unlock;
4977
4978 lp.sched_priority = p->rt_priority;
4979 read_unlock(&tasklist_lock);
4980
4981 /*
4982 * This one might sleep, we cannot do it with a spinlock held ...
4983 */
4984 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4985
1da177e4
LT
4986 return retval;
4987
4988out_unlock:
4989 read_unlock(&tasklist_lock);
4990 return retval;
4991}
4992
b53e921b 4993long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4994{
1da177e4 4995 cpumask_t cpus_allowed;
b53e921b 4996 cpumask_t new_mask = *in_mask;
36c8b586
IM
4997 struct task_struct *p;
4998 int retval;
1da177e4 4999
95402b38 5000 get_online_cpus();
1da177e4
LT
5001 read_lock(&tasklist_lock);
5002
5003 p = find_process_by_pid(pid);
5004 if (!p) {
5005 read_unlock(&tasklist_lock);
95402b38 5006 put_online_cpus();
1da177e4
LT
5007 return -ESRCH;
5008 }
5009
5010 /*
5011 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5012 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5013 * usage count and then drop tasklist_lock.
5014 */
5015 get_task_struct(p);
5016 read_unlock(&tasklist_lock);
5017
5018 retval = -EPERM;
5019 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5020 !capable(CAP_SYS_NICE))
5021 goto out_unlock;
5022
e7834f8f
DQ
5023 retval = security_task_setscheduler(p, 0, NULL);
5024 if (retval)
5025 goto out_unlock;
5026
f9a86fcb 5027 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5028 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5029 again:
7c16ec58 5030 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5031
8707d8b8 5032 if (!retval) {
f9a86fcb 5033 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5034 if (!cpus_subset(new_mask, cpus_allowed)) {
5035 /*
5036 * We must have raced with a concurrent cpuset
5037 * update. Just reset the cpus_allowed to the
5038 * cpuset's cpus_allowed
5039 */
5040 new_mask = cpus_allowed;
5041 goto again;
5042 }
5043 }
1da177e4
LT
5044out_unlock:
5045 put_task_struct(p);
95402b38 5046 put_online_cpus();
1da177e4
LT
5047 return retval;
5048}
5049
5050static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5051 cpumask_t *new_mask)
5052{
5053 if (len < sizeof(cpumask_t)) {
5054 memset(new_mask, 0, sizeof(cpumask_t));
5055 } else if (len > sizeof(cpumask_t)) {
5056 len = sizeof(cpumask_t);
5057 }
5058 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5059}
5060
5061/**
5062 * sys_sched_setaffinity - set the cpu affinity of a process
5063 * @pid: pid of the process
5064 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5065 * @user_mask_ptr: user-space pointer to the new cpu mask
5066 */
5067asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5068 unsigned long __user *user_mask_ptr)
5069{
5070 cpumask_t new_mask;
5071 int retval;
5072
5073 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5074 if (retval)
5075 return retval;
5076
b53e921b 5077 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5078}
5079
1da177e4
LT
5080long sched_getaffinity(pid_t pid, cpumask_t *mask)
5081{
36c8b586 5082 struct task_struct *p;
1da177e4 5083 int retval;
1da177e4 5084
95402b38 5085 get_online_cpus();
1da177e4
LT
5086 read_lock(&tasklist_lock);
5087
5088 retval = -ESRCH;
5089 p = find_process_by_pid(pid);
5090 if (!p)
5091 goto out_unlock;
5092
e7834f8f
DQ
5093 retval = security_task_getscheduler(p);
5094 if (retval)
5095 goto out_unlock;
5096
2f7016d9 5097 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5098
5099out_unlock:
5100 read_unlock(&tasklist_lock);
95402b38 5101 put_online_cpus();
1da177e4 5102
9531b62f 5103 return retval;
1da177e4
LT
5104}
5105
5106/**
5107 * sys_sched_getaffinity - get the cpu affinity of a process
5108 * @pid: pid of the process
5109 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5110 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5111 */
5112asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5113 unsigned long __user *user_mask_ptr)
5114{
5115 int ret;
5116 cpumask_t mask;
5117
5118 if (len < sizeof(cpumask_t))
5119 return -EINVAL;
5120
5121 ret = sched_getaffinity(pid, &mask);
5122 if (ret < 0)
5123 return ret;
5124
5125 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5126 return -EFAULT;
5127
5128 return sizeof(cpumask_t);
5129}
5130
5131/**
5132 * sys_sched_yield - yield the current processor to other threads.
5133 *
dd41f596
IM
5134 * This function yields the current CPU to other tasks. If there are no
5135 * other threads running on this CPU then this function will return.
1da177e4
LT
5136 */
5137asmlinkage long sys_sched_yield(void)
5138{
70b97a7f 5139 struct rq *rq = this_rq_lock();
1da177e4 5140
2d72376b 5141 schedstat_inc(rq, yld_count);
4530d7ab 5142 current->sched_class->yield_task(rq);
1da177e4
LT
5143
5144 /*
5145 * Since we are going to call schedule() anyway, there's
5146 * no need to preempt or enable interrupts:
5147 */
5148 __release(rq->lock);
8a25d5de 5149 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5150 _raw_spin_unlock(&rq->lock);
5151 preempt_enable_no_resched();
5152
5153 schedule();
5154
5155 return 0;
5156}
5157
e7b38404 5158static void __cond_resched(void)
1da177e4 5159{
8e0a43d8
IM
5160#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5161 __might_sleep(__FILE__, __LINE__);
5162#endif
5bbcfd90
IM
5163 /*
5164 * The BKS might be reacquired before we have dropped
5165 * PREEMPT_ACTIVE, which could trigger a second
5166 * cond_resched() call.
5167 */
1da177e4
LT
5168 do {
5169 add_preempt_count(PREEMPT_ACTIVE);
5170 schedule();
5171 sub_preempt_count(PREEMPT_ACTIVE);
5172 } while (need_resched());
5173}
5174
02b67cc3 5175int __sched _cond_resched(void)
1da177e4 5176{
9414232f
IM
5177 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5178 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5179 __cond_resched();
5180 return 1;
5181 }
5182 return 0;
5183}
02b67cc3 5184EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5185
5186/*
5187 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5188 * call schedule, and on return reacquire the lock.
5189 *
41a2d6cf 5190 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5191 * operations here to prevent schedule() from being called twice (once via
5192 * spin_unlock(), once by hand).
5193 */
95cdf3b7 5194int cond_resched_lock(spinlock_t *lock)
1da177e4 5195{
95c354fe 5196 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5197 int ret = 0;
5198
95c354fe 5199 if (spin_needbreak(lock) || resched) {
1da177e4 5200 spin_unlock(lock);
95c354fe
NP
5201 if (resched && need_resched())
5202 __cond_resched();
5203 else
5204 cpu_relax();
6df3cecb 5205 ret = 1;
1da177e4 5206 spin_lock(lock);
1da177e4 5207 }
6df3cecb 5208 return ret;
1da177e4 5209}
1da177e4
LT
5210EXPORT_SYMBOL(cond_resched_lock);
5211
5212int __sched cond_resched_softirq(void)
5213{
5214 BUG_ON(!in_softirq());
5215
9414232f 5216 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5217 local_bh_enable();
1da177e4
LT
5218 __cond_resched();
5219 local_bh_disable();
5220 return 1;
5221 }
5222 return 0;
5223}
1da177e4
LT
5224EXPORT_SYMBOL(cond_resched_softirq);
5225
1da177e4
LT
5226/**
5227 * yield - yield the current processor to other threads.
5228 *
72fd4a35 5229 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5230 * thread runnable and calls sys_sched_yield().
5231 */
5232void __sched yield(void)
5233{
5234 set_current_state(TASK_RUNNING);
5235 sys_sched_yield();
5236}
1da177e4
LT
5237EXPORT_SYMBOL(yield);
5238
5239/*
41a2d6cf 5240 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5241 * that process accounting knows that this is a task in IO wait state.
5242 *
5243 * But don't do that if it is a deliberate, throttling IO wait (this task
5244 * has set its backing_dev_info: the queue against which it should throttle)
5245 */
5246void __sched io_schedule(void)
5247{
70b97a7f 5248 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5249
0ff92245 5250 delayacct_blkio_start();
1da177e4
LT
5251 atomic_inc(&rq->nr_iowait);
5252 schedule();
5253 atomic_dec(&rq->nr_iowait);
0ff92245 5254 delayacct_blkio_end();
1da177e4 5255}
1da177e4
LT
5256EXPORT_SYMBOL(io_schedule);
5257
5258long __sched io_schedule_timeout(long timeout)
5259{
70b97a7f 5260 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5261 long ret;
5262
0ff92245 5263 delayacct_blkio_start();
1da177e4
LT
5264 atomic_inc(&rq->nr_iowait);
5265 ret = schedule_timeout(timeout);
5266 atomic_dec(&rq->nr_iowait);
0ff92245 5267 delayacct_blkio_end();
1da177e4
LT
5268 return ret;
5269}
5270
5271/**
5272 * sys_sched_get_priority_max - return maximum RT priority.
5273 * @policy: scheduling class.
5274 *
5275 * this syscall returns the maximum rt_priority that can be used
5276 * by a given scheduling class.
5277 */
5278asmlinkage long sys_sched_get_priority_max(int policy)
5279{
5280 int ret = -EINVAL;
5281
5282 switch (policy) {
5283 case SCHED_FIFO:
5284 case SCHED_RR:
5285 ret = MAX_USER_RT_PRIO-1;
5286 break;
5287 case SCHED_NORMAL:
b0a9499c 5288 case SCHED_BATCH:
dd41f596 5289 case SCHED_IDLE:
1da177e4
LT
5290 ret = 0;
5291 break;
5292 }
5293 return ret;
5294}
5295
5296/**
5297 * sys_sched_get_priority_min - return minimum RT priority.
5298 * @policy: scheduling class.
5299 *
5300 * this syscall returns the minimum rt_priority that can be used
5301 * by a given scheduling class.
5302 */
5303asmlinkage long sys_sched_get_priority_min(int policy)
5304{
5305 int ret = -EINVAL;
5306
5307 switch (policy) {
5308 case SCHED_FIFO:
5309 case SCHED_RR:
5310 ret = 1;
5311 break;
5312 case SCHED_NORMAL:
b0a9499c 5313 case SCHED_BATCH:
dd41f596 5314 case SCHED_IDLE:
1da177e4
LT
5315 ret = 0;
5316 }
5317 return ret;
5318}
5319
5320/**
5321 * sys_sched_rr_get_interval - return the default timeslice of a process.
5322 * @pid: pid of the process.
5323 * @interval: userspace pointer to the timeslice value.
5324 *
5325 * this syscall writes the default timeslice value of a given process
5326 * into the user-space timespec buffer. A value of '0' means infinity.
5327 */
5328asmlinkage
5329long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5330{
36c8b586 5331 struct task_struct *p;
a4ec24b4 5332 unsigned int time_slice;
3a5c359a 5333 int retval;
1da177e4 5334 struct timespec t;
1da177e4
LT
5335
5336 if (pid < 0)
3a5c359a 5337 return -EINVAL;
1da177e4
LT
5338
5339 retval = -ESRCH;
5340 read_lock(&tasklist_lock);
5341 p = find_process_by_pid(pid);
5342 if (!p)
5343 goto out_unlock;
5344
5345 retval = security_task_getscheduler(p);
5346 if (retval)
5347 goto out_unlock;
5348
77034937
IM
5349 /*
5350 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5351 * tasks that are on an otherwise idle runqueue:
5352 */
5353 time_slice = 0;
5354 if (p->policy == SCHED_RR) {
a4ec24b4 5355 time_slice = DEF_TIMESLICE;
1868f958 5356 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5357 struct sched_entity *se = &p->se;
5358 unsigned long flags;
5359 struct rq *rq;
5360
5361 rq = task_rq_lock(p, &flags);
77034937
IM
5362 if (rq->cfs.load.weight)
5363 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5364 task_rq_unlock(rq, &flags);
5365 }
1da177e4 5366 read_unlock(&tasklist_lock);
a4ec24b4 5367 jiffies_to_timespec(time_slice, &t);
1da177e4 5368 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5369 return retval;
3a5c359a 5370
1da177e4
LT
5371out_unlock:
5372 read_unlock(&tasklist_lock);
5373 return retval;
5374}
5375
2ed6e34f 5376static const char stat_nam[] = "RSDTtZX";
36c8b586 5377
82a1fcb9 5378void sched_show_task(struct task_struct *p)
1da177e4 5379{
1da177e4 5380 unsigned long free = 0;
36c8b586 5381 unsigned state;
1da177e4 5382
1da177e4 5383 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5384 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5385 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5386#if BITS_PER_LONG == 32
1da177e4 5387 if (state == TASK_RUNNING)
cc4ea795 5388 printk(KERN_CONT " running ");
1da177e4 5389 else
cc4ea795 5390 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5391#else
5392 if (state == TASK_RUNNING)
cc4ea795 5393 printk(KERN_CONT " running task ");
1da177e4 5394 else
cc4ea795 5395 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5396#endif
5397#ifdef CONFIG_DEBUG_STACK_USAGE
5398 {
10ebffde 5399 unsigned long *n = end_of_stack(p);
1da177e4
LT
5400 while (!*n)
5401 n++;
10ebffde 5402 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5403 }
5404#endif
ba25f9dc 5405 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5406 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5407
5fb5e6de 5408 show_stack(p, NULL);
1da177e4
LT
5409}
5410
e59e2ae2 5411void show_state_filter(unsigned long state_filter)
1da177e4 5412{
36c8b586 5413 struct task_struct *g, *p;
1da177e4 5414
4bd77321
IM
5415#if BITS_PER_LONG == 32
5416 printk(KERN_INFO
5417 " task PC stack pid father\n");
1da177e4 5418#else
4bd77321
IM
5419 printk(KERN_INFO
5420 " task PC stack pid father\n");
1da177e4
LT
5421#endif
5422 read_lock(&tasklist_lock);
5423 do_each_thread(g, p) {
5424 /*
5425 * reset the NMI-timeout, listing all files on a slow
5426 * console might take alot of time:
5427 */
5428 touch_nmi_watchdog();
39bc89fd 5429 if (!state_filter || (p->state & state_filter))
82a1fcb9 5430 sched_show_task(p);
1da177e4
LT
5431 } while_each_thread(g, p);
5432
04c9167f
JF
5433 touch_all_softlockup_watchdogs();
5434
dd41f596
IM
5435#ifdef CONFIG_SCHED_DEBUG
5436 sysrq_sched_debug_show();
5437#endif
1da177e4 5438 read_unlock(&tasklist_lock);
e59e2ae2
IM
5439 /*
5440 * Only show locks if all tasks are dumped:
5441 */
5442 if (state_filter == -1)
5443 debug_show_all_locks();
1da177e4
LT
5444}
5445
1df21055
IM
5446void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5447{
dd41f596 5448 idle->sched_class = &idle_sched_class;
1df21055
IM
5449}
5450
f340c0d1
IM
5451/**
5452 * init_idle - set up an idle thread for a given CPU
5453 * @idle: task in question
5454 * @cpu: cpu the idle task belongs to
5455 *
5456 * NOTE: this function does not set the idle thread's NEED_RESCHED
5457 * flag, to make booting more robust.
5458 */
5c1e1767 5459void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5460{
70b97a7f 5461 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5462 unsigned long flags;
5463
dd41f596
IM
5464 __sched_fork(idle);
5465 idle->se.exec_start = sched_clock();
5466
b29739f9 5467 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5468 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5469 __set_task_cpu(idle, cpu);
1da177e4
LT
5470
5471 spin_lock_irqsave(&rq->lock, flags);
5472 rq->curr = rq->idle = idle;
4866cde0
NP
5473#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5474 idle->oncpu = 1;
5475#endif
1da177e4
LT
5476 spin_unlock_irqrestore(&rq->lock, flags);
5477
5478 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5479#if defined(CONFIG_PREEMPT)
5480 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5481#else
a1261f54 5482 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5483#endif
dd41f596
IM
5484 /*
5485 * The idle tasks have their own, simple scheduling class:
5486 */
5487 idle->sched_class = &idle_sched_class;
1da177e4
LT
5488}
5489
5490/*
5491 * In a system that switches off the HZ timer nohz_cpu_mask
5492 * indicates which cpus entered this state. This is used
5493 * in the rcu update to wait only for active cpus. For system
5494 * which do not switch off the HZ timer nohz_cpu_mask should
5495 * always be CPU_MASK_NONE.
5496 */
5497cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5498
19978ca6
IM
5499/*
5500 * Increase the granularity value when there are more CPUs,
5501 * because with more CPUs the 'effective latency' as visible
5502 * to users decreases. But the relationship is not linear,
5503 * so pick a second-best guess by going with the log2 of the
5504 * number of CPUs.
5505 *
5506 * This idea comes from the SD scheduler of Con Kolivas:
5507 */
5508static inline void sched_init_granularity(void)
5509{
5510 unsigned int factor = 1 + ilog2(num_online_cpus());
5511 const unsigned long limit = 200000000;
5512
5513 sysctl_sched_min_granularity *= factor;
5514 if (sysctl_sched_min_granularity > limit)
5515 sysctl_sched_min_granularity = limit;
5516
5517 sysctl_sched_latency *= factor;
5518 if (sysctl_sched_latency > limit)
5519 sysctl_sched_latency = limit;
5520
5521 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5522}
5523
1da177e4
LT
5524#ifdef CONFIG_SMP
5525/*
5526 * This is how migration works:
5527 *
70b97a7f 5528 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5529 * runqueue and wake up that CPU's migration thread.
5530 * 2) we down() the locked semaphore => thread blocks.
5531 * 3) migration thread wakes up (implicitly it forces the migrated
5532 * thread off the CPU)
5533 * 4) it gets the migration request and checks whether the migrated
5534 * task is still in the wrong runqueue.
5535 * 5) if it's in the wrong runqueue then the migration thread removes
5536 * it and puts it into the right queue.
5537 * 6) migration thread up()s the semaphore.
5538 * 7) we wake up and the migration is done.
5539 */
5540
5541/*
5542 * Change a given task's CPU affinity. Migrate the thread to a
5543 * proper CPU and schedule it away if the CPU it's executing on
5544 * is removed from the allowed bitmask.
5545 *
5546 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5547 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5548 * call is not atomic; no spinlocks may be held.
5549 */
cd8ba7cd 5550int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5551{
70b97a7f 5552 struct migration_req req;
1da177e4 5553 unsigned long flags;
70b97a7f 5554 struct rq *rq;
48f24c4d 5555 int ret = 0;
1da177e4
LT
5556
5557 rq = task_rq_lock(p, &flags);
cd8ba7cd 5558 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5559 ret = -EINVAL;
5560 goto out;
5561 }
5562
9985b0ba
DR
5563 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5564 !cpus_equal(p->cpus_allowed, *new_mask))) {
5565 ret = -EINVAL;
5566 goto out;
5567 }
5568
73fe6aae 5569 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5570 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5571 else {
cd8ba7cd
MT
5572 p->cpus_allowed = *new_mask;
5573 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5574 }
5575
1da177e4 5576 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5577 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5578 goto out;
5579
cd8ba7cd 5580 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5581 /* Need help from migration thread: drop lock and wait. */
5582 task_rq_unlock(rq, &flags);
5583 wake_up_process(rq->migration_thread);
5584 wait_for_completion(&req.done);
5585 tlb_migrate_finish(p->mm);
5586 return 0;
5587 }
5588out:
5589 task_rq_unlock(rq, &flags);
48f24c4d 5590
1da177e4
LT
5591 return ret;
5592}
cd8ba7cd 5593EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5594
5595/*
41a2d6cf 5596 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5597 * this because either it can't run here any more (set_cpus_allowed()
5598 * away from this CPU, or CPU going down), or because we're
5599 * attempting to rebalance this task on exec (sched_exec).
5600 *
5601 * So we race with normal scheduler movements, but that's OK, as long
5602 * as the task is no longer on this CPU.
efc30814
KK
5603 *
5604 * Returns non-zero if task was successfully migrated.
1da177e4 5605 */
efc30814 5606static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5607{
70b97a7f 5608 struct rq *rq_dest, *rq_src;
dd41f596 5609 int ret = 0, on_rq;
1da177e4
LT
5610
5611 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5612 return ret;
1da177e4
LT
5613
5614 rq_src = cpu_rq(src_cpu);
5615 rq_dest = cpu_rq(dest_cpu);
5616
5617 double_rq_lock(rq_src, rq_dest);
5618 /* Already moved. */
5619 if (task_cpu(p) != src_cpu)
5620 goto out;
5621 /* Affinity changed (again). */
5622 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5623 goto out;
5624
dd41f596 5625 on_rq = p->se.on_rq;
6e82a3be 5626 if (on_rq)
2e1cb74a 5627 deactivate_task(rq_src, p, 0);
6e82a3be 5628
1da177e4 5629 set_task_cpu(p, dest_cpu);
dd41f596
IM
5630 if (on_rq) {
5631 activate_task(rq_dest, p, 0);
5632 check_preempt_curr(rq_dest, p);
1da177e4 5633 }
efc30814 5634 ret = 1;
1da177e4
LT
5635out:
5636 double_rq_unlock(rq_src, rq_dest);
efc30814 5637 return ret;
1da177e4
LT
5638}
5639
5640/*
5641 * migration_thread - this is a highprio system thread that performs
5642 * thread migration by bumping thread off CPU then 'pushing' onto
5643 * another runqueue.
5644 */
95cdf3b7 5645static int migration_thread(void *data)
1da177e4 5646{
1da177e4 5647 int cpu = (long)data;
70b97a7f 5648 struct rq *rq;
1da177e4
LT
5649
5650 rq = cpu_rq(cpu);
5651 BUG_ON(rq->migration_thread != current);
5652
5653 set_current_state(TASK_INTERRUPTIBLE);
5654 while (!kthread_should_stop()) {
70b97a7f 5655 struct migration_req *req;
1da177e4 5656 struct list_head *head;
1da177e4 5657
1da177e4
LT
5658 spin_lock_irq(&rq->lock);
5659
5660 if (cpu_is_offline(cpu)) {
5661 spin_unlock_irq(&rq->lock);
5662 goto wait_to_die;
5663 }
5664
5665 if (rq->active_balance) {
5666 active_load_balance(rq, cpu);
5667 rq->active_balance = 0;
5668 }
5669
5670 head = &rq->migration_queue;
5671
5672 if (list_empty(head)) {
5673 spin_unlock_irq(&rq->lock);
5674 schedule();
5675 set_current_state(TASK_INTERRUPTIBLE);
5676 continue;
5677 }
70b97a7f 5678 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5679 list_del_init(head->next);
5680
674311d5
NP
5681 spin_unlock(&rq->lock);
5682 __migrate_task(req->task, cpu, req->dest_cpu);
5683 local_irq_enable();
1da177e4
LT
5684
5685 complete(&req->done);
5686 }
5687 __set_current_state(TASK_RUNNING);
5688 return 0;
5689
5690wait_to_die:
5691 /* Wait for kthread_stop */
5692 set_current_state(TASK_INTERRUPTIBLE);
5693 while (!kthread_should_stop()) {
5694 schedule();
5695 set_current_state(TASK_INTERRUPTIBLE);
5696 }
5697 __set_current_state(TASK_RUNNING);
5698 return 0;
5699}
5700
5701#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5702
5703static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5704{
5705 int ret;
5706
5707 local_irq_disable();
5708 ret = __migrate_task(p, src_cpu, dest_cpu);
5709 local_irq_enable();
5710 return ret;
5711}
5712
054b9108 5713/*
3a4fa0a2 5714 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5715 * NOTE: interrupts should be disabled by the caller
5716 */
48f24c4d 5717static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5718{
efc30814 5719 unsigned long flags;
1da177e4 5720 cpumask_t mask;
70b97a7f
IM
5721 struct rq *rq;
5722 int dest_cpu;
1da177e4 5723
3a5c359a
AK
5724 do {
5725 /* On same node? */
5726 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5727 cpus_and(mask, mask, p->cpus_allowed);
5728 dest_cpu = any_online_cpu(mask);
5729
5730 /* On any allowed CPU? */
434d53b0 5731 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5732 dest_cpu = any_online_cpu(p->cpus_allowed);
5733
5734 /* No more Mr. Nice Guy. */
434d53b0 5735 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5736 cpumask_t cpus_allowed;
5737
5738 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5739 /*
5740 * Try to stay on the same cpuset, where the
5741 * current cpuset may be a subset of all cpus.
5742 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5743 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5744 * called within calls to cpuset_lock/cpuset_unlock.
5745 */
3a5c359a 5746 rq = task_rq_lock(p, &flags);
470fd646 5747 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5748 dest_cpu = any_online_cpu(p->cpus_allowed);
5749 task_rq_unlock(rq, &flags);
1da177e4 5750
3a5c359a
AK
5751 /*
5752 * Don't tell them about moving exiting tasks or
5753 * kernel threads (both mm NULL), since they never
5754 * leave kernel.
5755 */
41a2d6cf 5756 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5757 printk(KERN_INFO "process %d (%s) no "
5758 "longer affine to cpu%d\n",
41a2d6cf
IM
5759 task_pid_nr(p), p->comm, dead_cpu);
5760 }
3a5c359a 5761 }
f7b4cddc 5762 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5763}
5764
5765/*
5766 * While a dead CPU has no uninterruptible tasks queued at this point,
5767 * it might still have a nonzero ->nr_uninterruptible counter, because
5768 * for performance reasons the counter is not stricly tracking tasks to
5769 * their home CPUs. So we just add the counter to another CPU's counter,
5770 * to keep the global sum constant after CPU-down:
5771 */
70b97a7f 5772static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5773{
7c16ec58 5774 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5775 unsigned long flags;
5776
5777 local_irq_save(flags);
5778 double_rq_lock(rq_src, rq_dest);
5779 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5780 rq_src->nr_uninterruptible = 0;
5781 double_rq_unlock(rq_src, rq_dest);
5782 local_irq_restore(flags);
5783}
5784
5785/* Run through task list and migrate tasks from the dead cpu. */
5786static void migrate_live_tasks(int src_cpu)
5787{
48f24c4d 5788 struct task_struct *p, *t;
1da177e4 5789
f7b4cddc 5790 read_lock(&tasklist_lock);
1da177e4 5791
48f24c4d
IM
5792 do_each_thread(t, p) {
5793 if (p == current)
1da177e4
LT
5794 continue;
5795
48f24c4d
IM
5796 if (task_cpu(p) == src_cpu)
5797 move_task_off_dead_cpu(src_cpu, p);
5798 } while_each_thread(t, p);
1da177e4 5799
f7b4cddc 5800 read_unlock(&tasklist_lock);
1da177e4
LT
5801}
5802
dd41f596
IM
5803/*
5804 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5805 * It does so by boosting its priority to highest possible.
5806 * Used by CPU offline code.
1da177e4
LT
5807 */
5808void sched_idle_next(void)
5809{
48f24c4d 5810 int this_cpu = smp_processor_id();
70b97a7f 5811 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5812 struct task_struct *p = rq->idle;
5813 unsigned long flags;
5814
5815 /* cpu has to be offline */
48f24c4d 5816 BUG_ON(cpu_online(this_cpu));
1da177e4 5817
48f24c4d
IM
5818 /*
5819 * Strictly not necessary since rest of the CPUs are stopped by now
5820 * and interrupts disabled on the current cpu.
1da177e4
LT
5821 */
5822 spin_lock_irqsave(&rq->lock, flags);
5823
dd41f596 5824 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5825
94bc9a7b
DA
5826 update_rq_clock(rq);
5827 activate_task(rq, p, 0);
1da177e4
LT
5828
5829 spin_unlock_irqrestore(&rq->lock, flags);
5830}
5831
48f24c4d
IM
5832/*
5833 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5834 * offline.
5835 */
5836void idle_task_exit(void)
5837{
5838 struct mm_struct *mm = current->active_mm;
5839
5840 BUG_ON(cpu_online(smp_processor_id()));
5841
5842 if (mm != &init_mm)
5843 switch_mm(mm, &init_mm, current);
5844 mmdrop(mm);
5845}
5846
054b9108 5847/* called under rq->lock with disabled interrupts */
36c8b586 5848static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5849{
70b97a7f 5850 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5851
5852 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5853 BUG_ON(!p->exit_state);
1da177e4
LT
5854
5855 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5856 BUG_ON(p->state == TASK_DEAD);
1da177e4 5857
48f24c4d 5858 get_task_struct(p);
1da177e4
LT
5859
5860 /*
5861 * Drop lock around migration; if someone else moves it,
41a2d6cf 5862 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5863 * fine.
5864 */
f7b4cddc 5865 spin_unlock_irq(&rq->lock);
48f24c4d 5866 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5867 spin_lock_irq(&rq->lock);
1da177e4 5868
48f24c4d 5869 put_task_struct(p);
1da177e4
LT
5870}
5871
5872/* release_task() removes task from tasklist, so we won't find dead tasks. */
5873static void migrate_dead_tasks(unsigned int dead_cpu)
5874{
70b97a7f 5875 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5876 struct task_struct *next;
48f24c4d 5877
dd41f596
IM
5878 for ( ; ; ) {
5879 if (!rq->nr_running)
5880 break;
a8e504d2 5881 update_rq_clock(rq);
ff95f3df 5882 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5883 if (!next)
5884 break;
5885 migrate_dead(dead_cpu, next);
e692ab53 5886
1da177e4
LT
5887 }
5888}
5889#endif /* CONFIG_HOTPLUG_CPU */
5890
e692ab53
NP
5891#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5892
5893static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5894 {
5895 .procname = "sched_domain",
c57baf1e 5896 .mode = 0555,
e0361851 5897 },
38605cae 5898 {0, },
e692ab53
NP
5899};
5900
5901static struct ctl_table sd_ctl_root[] = {
e0361851 5902 {
c57baf1e 5903 .ctl_name = CTL_KERN,
e0361851 5904 .procname = "kernel",
c57baf1e 5905 .mode = 0555,
e0361851
AD
5906 .child = sd_ctl_dir,
5907 },
38605cae 5908 {0, },
e692ab53
NP
5909};
5910
5911static struct ctl_table *sd_alloc_ctl_entry(int n)
5912{
5913 struct ctl_table *entry =
5cf9f062 5914 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5915
e692ab53
NP
5916 return entry;
5917}
5918
6382bc90
MM
5919static void sd_free_ctl_entry(struct ctl_table **tablep)
5920{
cd790076 5921 struct ctl_table *entry;
6382bc90 5922
cd790076
MM
5923 /*
5924 * In the intermediate directories, both the child directory and
5925 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5926 * will always be set. In the lowest directory the names are
cd790076
MM
5927 * static strings and all have proc handlers.
5928 */
5929 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5930 if (entry->child)
5931 sd_free_ctl_entry(&entry->child);
cd790076
MM
5932 if (entry->proc_handler == NULL)
5933 kfree(entry->procname);
5934 }
6382bc90
MM
5935
5936 kfree(*tablep);
5937 *tablep = NULL;
5938}
5939
e692ab53 5940static void
e0361851 5941set_table_entry(struct ctl_table *entry,
e692ab53
NP
5942 const char *procname, void *data, int maxlen,
5943 mode_t mode, proc_handler *proc_handler)
5944{
e692ab53
NP
5945 entry->procname = procname;
5946 entry->data = data;
5947 entry->maxlen = maxlen;
5948 entry->mode = mode;
5949 entry->proc_handler = proc_handler;
5950}
5951
5952static struct ctl_table *
5953sd_alloc_ctl_domain_table(struct sched_domain *sd)
5954{
ace8b3d6 5955 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5956
ad1cdc1d
MM
5957 if (table == NULL)
5958 return NULL;
5959
e0361851 5960 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5961 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5962 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5963 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5964 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5965 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5966 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5967 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5968 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5969 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5970 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5971 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5972 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5973 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5974 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5975 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5976 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5977 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5978 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5979 &sd->cache_nice_tries,
5980 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5981 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5982 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5983 /* &table[11] is terminator */
e692ab53
NP
5984
5985 return table;
5986}
5987
9a4e7159 5988static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5989{
5990 struct ctl_table *entry, *table;
5991 struct sched_domain *sd;
5992 int domain_num = 0, i;
5993 char buf[32];
5994
5995 for_each_domain(cpu, sd)
5996 domain_num++;
5997 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5998 if (table == NULL)
5999 return NULL;
e692ab53
NP
6000
6001 i = 0;
6002 for_each_domain(cpu, sd) {
6003 snprintf(buf, 32, "domain%d", i);
e692ab53 6004 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6005 entry->mode = 0555;
e692ab53
NP
6006 entry->child = sd_alloc_ctl_domain_table(sd);
6007 entry++;
6008 i++;
6009 }
6010 return table;
6011}
6012
6013static struct ctl_table_header *sd_sysctl_header;
6382bc90 6014static void register_sched_domain_sysctl(void)
e692ab53
NP
6015{
6016 int i, cpu_num = num_online_cpus();
6017 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6018 char buf[32];
6019
7378547f
MM
6020 WARN_ON(sd_ctl_dir[0].child);
6021 sd_ctl_dir[0].child = entry;
6022
ad1cdc1d
MM
6023 if (entry == NULL)
6024 return;
6025
97b6ea7b 6026 for_each_online_cpu(i) {
e692ab53 6027 snprintf(buf, 32, "cpu%d", i);
e692ab53 6028 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6029 entry->mode = 0555;
e692ab53 6030 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6031 entry++;
e692ab53 6032 }
7378547f
MM
6033
6034 WARN_ON(sd_sysctl_header);
e692ab53
NP
6035 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6036}
6382bc90 6037
7378547f 6038/* may be called multiple times per register */
6382bc90
MM
6039static void unregister_sched_domain_sysctl(void)
6040{
7378547f
MM
6041 if (sd_sysctl_header)
6042 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6043 sd_sysctl_header = NULL;
7378547f
MM
6044 if (sd_ctl_dir[0].child)
6045 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6046}
e692ab53 6047#else
6382bc90
MM
6048static void register_sched_domain_sysctl(void)
6049{
6050}
6051static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6052{
6053}
6054#endif
6055
1f11eb6a
GH
6056static void set_rq_online(struct rq *rq)
6057{
6058 if (!rq->online) {
6059 const struct sched_class *class;
6060
6061 cpu_set(rq->cpu, rq->rd->online);
6062 rq->online = 1;
6063
6064 for_each_class(class) {
6065 if (class->rq_online)
6066 class->rq_online(rq);
6067 }
6068 }
6069}
6070
6071static void set_rq_offline(struct rq *rq)
6072{
6073 if (rq->online) {
6074 const struct sched_class *class;
6075
6076 for_each_class(class) {
6077 if (class->rq_offline)
6078 class->rq_offline(rq);
6079 }
6080
6081 cpu_clear(rq->cpu, rq->rd->online);
6082 rq->online = 0;
6083 }
6084}
6085
1da177e4
LT
6086/*
6087 * migration_call - callback that gets triggered when a CPU is added.
6088 * Here we can start up the necessary migration thread for the new CPU.
6089 */
48f24c4d
IM
6090static int __cpuinit
6091migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6092{
1da177e4 6093 struct task_struct *p;
48f24c4d 6094 int cpu = (long)hcpu;
1da177e4 6095 unsigned long flags;
70b97a7f 6096 struct rq *rq;
1da177e4
LT
6097
6098 switch (action) {
5be9361c 6099
1da177e4 6100 case CPU_UP_PREPARE:
8bb78442 6101 case CPU_UP_PREPARE_FROZEN:
dd41f596 6102 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6103 if (IS_ERR(p))
6104 return NOTIFY_BAD;
1da177e4
LT
6105 kthread_bind(p, cpu);
6106 /* Must be high prio: stop_machine expects to yield to it. */
6107 rq = task_rq_lock(p, &flags);
dd41f596 6108 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6109 task_rq_unlock(rq, &flags);
6110 cpu_rq(cpu)->migration_thread = p;
6111 break;
48f24c4d 6112
1da177e4 6113 case CPU_ONLINE:
8bb78442 6114 case CPU_ONLINE_FROZEN:
3a4fa0a2 6115 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6116 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6117
6118 /* Update our root-domain */
6119 rq = cpu_rq(cpu);
6120 spin_lock_irqsave(&rq->lock, flags);
6121 if (rq->rd) {
6122 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6123
6124 set_rq_online(rq);
1f94ef59
GH
6125 }
6126 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6127 break;
48f24c4d 6128
1da177e4
LT
6129#ifdef CONFIG_HOTPLUG_CPU
6130 case CPU_UP_CANCELED:
8bb78442 6131 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6132 if (!cpu_rq(cpu)->migration_thread)
6133 break;
41a2d6cf 6134 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6135 kthread_bind(cpu_rq(cpu)->migration_thread,
6136 any_online_cpu(cpu_online_map));
1da177e4
LT
6137 kthread_stop(cpu_rq(cpu)->migration_thread);
6138 cpu_rq(cpu)->migration_thread = NULL;
6139 break;
48f24c4d 6140
1da177e4 6141 case CPU_DEAD:
8bb78442 6142 case CPU_DEAD_FROZEN:
470fd646 6143 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6144 migrate_live_tasks(cpu);
6145 rq = cpu_rq(cpu);
6146 kthread_stop(rq->migration_thread);
6147 rq->migration_thread = NULL;
6148 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6149 spin_lock_irq(&rq->lock);
a8e504d2 6150 update_rq_clock(rq);
2e1cb74a 6151 deactivate_task(rq, rq->idle, 0);
1da177e4 6152 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6153 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6154 rq->idle->sched_class = &idle_sched_class;
1da177e4 6155 migrate_dead_tasks(cpu);
d2da272a 6156 spin_unlock_irq(&rq->lock);
470fd646 6157 cpuset_unlock();
1da177e4
LT
6158 migrate_nr_uninterruptible(rq);
6159 BUG_ON(rq->nr_running != 0);
6160
41a2d6cf
IM
6161 /*
6162 * No need to migrate the tasks: it was best-effort if
6163 * they didn't take sched_hotcpu_mutex. Just wake up
6164 * the requestors.
6165 */
1da177e4
LT
6166 spin_lock_irq(&rq->lock);
6167 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6168 struct migration_req *req;
6169
1da177e4 6170 req = list_entry(rq->migration_queue.next,
70b97a7f 6171 struct migration_req, list);
1da177e4
LT
6172 list_del_init(&req->list);
6173 complete(&req->done);
6174 }
6175 spin_unlock_irq(&rq->lock);
6176 break;
57d885fe 6177
08f503b0
GH
6178 case CPU_DYING:
6179 case CPU_DYING_FROZEN:
57d885fe
GH
6180 /* Update our root-domain */
6181 rq = cpu_rq(cpu);
6182 spin_lock_irqsave(&rq->lock, flags);
6183 if (rq->rd) {
6184 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6185 set_rq_offline(rq);
57d885fe
GH
6186 }
6187 spin_unlock_irqrestore(&rq->lock, flags);
6188 break;
1da177e4
LT
6189#endif
6190 }
6191 return NOTIFY_OK;
6192}
6193
6194/* Register at highest priority so that task migration (migrate_all_tasks)
6195 * happens before everything else.
6196 */
26c2143b 6197static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6198 .notifier_call = migration_call,
6199 .priority = 10
6200};
6201
e6fe6649 6202void __init migration_init(void)
1da177e4
LT
6203{
6204 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6205 int err;
48f24c4d
IM
6206
6207 /* Start one for the boot CPU: */
07dccf33
AM
6208 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6209 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6210 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6211 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6212}
6213#endif
6214
6215#ifdef CONFIG_SMP
476f3534 6216
3e9830dc 6217#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6218
099f98c8
GS
6219static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6220{
6221 switch (lvl) {
6222 case SD_LV_NONE:
6223 return "NONE";
6224 case SD_LV_SIBLING:
6225 return "SIBLING";
6226 case SD_LV_MC:
6227 return "MC";
6228 case SD_LV_CPU:
6229 return "CPU";
6230 case SD_LV_NODE:
6231 return "NODE";
6232 case SD_LV_ALLNODES:
6233 return "ALLNODES";
6234 case SD_LV_MAX:
6235 return "MAX";
6236
6237 }
6238 return "MAX";
6239}
6240
7c16ec58
MT
6241static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6242 cpumask_t *groupmask)
1da177e4 6243{
4dcf6aff 6244 struct sched_group *group = sd->groups;
434d53b0 6245 char str[256];
1da177e4 6246
434d53b0 6247 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6248 cpus_clear(*groupmask);
4dcf6aff
IM
6249
6250 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6251
6252 if (!(sd->flags & SD_LOAD_BALANCE)) {
6253 printk("does not load-balance\n");
6254 if (sd->parent)
6255 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6256 " has parent");
6257 return -1;
41c7ce9a
NP
6258 }
6259
099f98c8
GS
6260 printk(KERN_CONT "span %s level %s\n",
6261 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6262
6263 if (!cpu_isset(cpu, sd->span)) {
6264 printk(KERN_ERR "ERROR: domain->span does not contain "
6265 "CPU%d\n", cpu);
6266 }
6267 if (!cpu_isset(cpu, group->cpumask)) {
6268 printk(KERN_ERR "ERROR: domain->groups does not contain"
6269 " CPU%d\n", cpu);
6270 }
1da177e4 6271
4dcf6aff 6272 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6273 do {
4dcf6aff
IM
6274 if (!group) {
6275 printk("\n");
6276 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6277 break;
6278 }
6279
4dcf6aff
IM
6280 if (!group->__cpu_power) {
6281 printk(KERN_CONT "\n");
6282 printk(KERN_ERR "ERROR: domain->cpu_power not "
6283 "set\n");
6284 break;
6285 }
1da177e4 6286
4dcf6aff
IM
6287 if (!cpus_weight(group->cpumask)) {
6288 printk(KERN_CONT "\n");
6289 printk(KERN_ERR "ERROR: empty group\n");
6290 break;
6291 }
1da177e4 6292
7c16ec58 6293 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6294 printk(KERN_CONT "\n");
6295 printk(KERN_ERR "ERROR: repeated CPUs\n");
6296 break;
6297 }
1da177e4 6298
7c16ec58 6299 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6300
434d53b0 6301 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6302 printk(KERN_CONT " %s", str);
1da177e4 6303
4dcf6aff
IM
6304 group = group->next;
6305 } while (group != sd->groups);
6306 printk(KERN_CONT "\n");
1da177e4 6307
7c16ec58 6308 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6309 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6310
7c16ec58 6311 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6312 printk(KERN_ERR "ERROR: parent span is not a superset "
6313 "of domain->span\n");
6314 return 0;
6315}
1da177e4 6316
4dcf6aff
IM
6317static void sched_domain_debug(struct sched_domain *sd, int cpu)
6318{
7c16ec58 6319 cpumask_t *groupmask;
4dcf6aff 6320 int level = 0;
1da177e4 6321
4dcf6aff
IM
6322 if (!sd) {
6323 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6324 return;
6325 }
1da177e4 6326
4dcf6aff
IM
6327 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6328
7c16ec58
MT
6329 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6330 if (!groupmask) {
6331 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6332 return;
6333 }
6334
4dcf6aff 6335 for (;;) {
7c16ec58 6336 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6337 break;
1da177e4
LT
6338 level++;
6339 sd = sd->parent;
33859f7f 6340 if (!sd)
4dcf6aff
IM
6341 break;
6342 }
7c16ec58 6343 kfree(groupmask);
1da177e4 6344}
6d6bc0ad 6345#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6346# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6347#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6348
1a20ff27 6349static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6350{
6351 if (cpus_weight(sd->span) == 1)
6352 return 1;
6353
6354 /* Following flags need at least 2 groups */
6355 if (sd->flags & (SD_LOAD_BALANCE |
6356 SD_BALANCE_NEWIDLE |
6357 SD_BALANCE_FORK |
89c4710e
SS
6358 SD_BALANCE_EXEC |
6359 SD_SHARE_CPUPOWER |
6360 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6361 if (sd->groups != sd->groups->next)
6362 return 0;
6363 }
6364
6365 /* Following flags don't use groups */
6366 if (sd->flags & (SD_WAKE_IDLE |
6367 SD_WAKE_AFFINE |
6368 SD_WAKE_BALANCE))
6369 return 0;
6370
6371 return 1;
6372}
6373
48f24c4d
IM
6374static int
6375sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6376{
6377 unsigned long cflags = sd->flags, pflags = parent->flags;
6378
6379 if (sd_degenerate(parent))
6380 return 1;
6381
6382 if (!cpus_equal(sd->span, parent->span))
6383 return 0;
6384
6385 /* Does parent contain flags not in child? */
6386 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6387 if (cflags & SD_WAKE_AFFINE)
6388 pflags &= ~SD_WAKE_BALANCE;
6389 /* Flags needing groups don't count if only 1 group in parent */
6390 if (parent->groups == parent->groups->next) {
6391 pflags &= ~(SD_LOAD_BALANCE |
6392 SD_BALANCE_NEWIDLE |
6393 SD_BALANCE_FORK |
89c4710e
SS
6394 SD_BALANCE_EXEC |
6395 SD_SHARE_CPUPOWER |
6396 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6397 }
6398 if (~cflags & pflags)
6399 return 0;
6400
6401 return 1;
6402}
6403
57d885fe
GH
6404static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6405{
6406 unsigned long flags;
57d885fe
GH
6407
6408 spin_lock_irqsave(&rq->lock, flags);
6409
6410 if (rq->rd) {
6411 struct root_domain *old_rd = rq->rd;
6412
1f11eb6a
GH
6413 if (cpu_isset(rq->cpu, old_rd->online))
6414 set_rq_offline(rq);
57d885fe 6415
dc938520 6416 cpu_clear(rq->cpu, old_rd->span);
dc938520 6417
57d885fe
GH
6418 if (atomic_dec_and_test(&old_rd->refcount))
6419 kfree(old_rd);
6420 }
6421
6422 atomic_inc(&rd->refcount);
6423 rq->rd = rd;
6424
dc938520 6425 cpu_set(rq->cpu, rd->span);
1f94ef59 6426 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6427 set_rq_online(rq);
57d885fe
GH
6428
6429 spin_unlock_irqrestore(&rq->lock, flags);
6430}
6431
dc938520 6432static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6433{
6434 memset(rd, 0, sizeof(*rd));
6435
dc938520
GH
6436 cpus_clear(rd->span);
6437 cpus_clear(rd->online);
6e0534f2
GH
6438
6439 cpupri_init(&rd->cpupri);
57d885fe
GH
6440}
6441
6442static void init_defrootdomain(void)
6443{
dc938520 6444 init_rootdomain(&def_root_domain);
57d885fe
GH
6445 atomic_set(&def_root_domain.refcount, 1);
6446}
6447
dc938520 6448static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6449{
6450 struct root_domain *rd;
6451
6452 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6453 if (!rd)
6454 return NULL;
6455
dc938520 6456 init_rootdomain(rd);
57d885fe
GH
6457
6458 return rd;
6459}
6460
1da177e4 6461/*
0eab9146 6462 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6463 * hold the hotplug lock.
6464 */
0eab9146
IM
6465static void
6466cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6467{
70b97a7f 6468 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6469 struct sched_domain *tmp;
6470
6471 /* Remove the sched domains which do not contribute to scheduling. */
6472 for (tmp = sd; tmp; tmp = tmp->parent) {
6473 struct sched_domain *parent = tmp->parent;
6474 if (!parent)
6475 break;
1a848870 6476 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6477 tmp->parent = parent->parent;
1a848870
SS
6478 if (parent->parent)
6479 parent->parent->child = tmp;
6480 }
245af2c7
SS
6481 }
6482
1a848870 6483 if (sd && sd_degenerate(sd)) {
245af2c7 6484 sd = sd->parent;
1a848870
SS
6485 if (sd)
6486 sd->child = NULL;
6487 }
1da177e4
LT
6488
6489 sched_domain_debug(sd, cpu);
6490
57d885fe 6491 rq_attach_root(rq, rd);
674311d5 6492 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6493}
6494
6495/* cpus with isolated domains */
67af63a6 6496static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6497
6498/* Setup the mask of cpus configured for isolated domains */
6499static int __init isolated_cpu_setup(char *str)
6500{
6501 int ints[NR_CPUS], i;
6502
6503 str = get_options(str, ARRAY_SIZE(ints), ints);
6504 cpus_clear(cpu_isolated_map);
6505 for (i = 1; i <= ints[0]; i++)
6506 if (ints[i] < NR_CPUS)
6507 cpu_set(ints[i], cpu_isolated_map);
6508 return 1;
6509}
6510
8927f494 6511__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6512
6513/*
6711cab4
SS
6514 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6515 * to a function which identifies what group(along with sched group) a CPU
6516 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6517 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6518 *
6519 * init_sched_build_groups will build a circular linked list of the groups
6520 * covered by the given span, and will set each group's ->cpumask correctly,
6521 * and ->cpu_power to 0.
6522 */
a616058b 6523static void
7c16ec58 6524init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6525 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6526 struct sched_group **sg,
6527 cpumask_t *tmpmask),
6528 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6529{
6530 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6531 int i;
6532
7c16ec58
MT
6533 cpus_clear(*covered);
6534
6535 for_each_cpu_mask(i, *span) {
6711cab4 6536 struct sched_group *sg;
7c16ec58 6537 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6538 int j;
6539
7c16ec58 6540 if (cpu_isset(i, *covered))
1da177e4
LT
6541 continue;
6542
7c16ec58 6543 cpus_clear(sg->cpumask);
5517d86b 6544 sg->__cpu_power = 0;
1da177e4 6545
7c16ec58
MT
6546 for_each_cpu_mask(j, *span) {
6547 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6548 continue;
6549
7c16ec58 6550 cpu_set(j, *covered);
1da177e4
LT
6551 cpu_set(j, sg->cpumask);
6552 }
6553 if (!first)
6554 first = sg;
6555 if (last)
6556 last->next = sg;
6557 last = sg;
6558 }
6559 last->next = first;
6560}
6561
9c1cfda2 6562#define SD_NODES_PER_DOMAIN 16
1da177e4 6563
9c1cfda2 6564#ifdef CONFIG_NUMA
198e2f18 6565
9c1cfda2
JH
6566/**
6567 * find_next_best_node - find the next node to include in a sched_domain
6568 * @node: node whose sched_domain we're building
6569 * @used_nodes: nodes already in the sched_domain
6570 *
41a2d6cf 6571 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6572 * finds the closest node not already in the @used_nodes map.
6573 *
6574 * Should use nodemask_t.
6575 */
c5f59f08 6576static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6577{
6578 int i, n, val, min_val, best_node = 0;
6579
6580 min_val = INT_MAX;
6581
6582 for (i = 0; i < MAX_NUMNODES; i++) {
6583 /* Start at @node */
6584 n = (node + i) % MAX_NUMNODES;
6585
6586 if (!nr_cpus_node(n))
6587 continue;
6588
6589 /* Skip already used nodes */
c5f59f08 6590 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6591 continue;
6592
6593 /* Simple min distance search */
6594 val = node_distance(node, n);
6595
6596 if (val < min_val) {
6597 min_val = val;
6598 best_node = n;
6599 }
6600 }
6601
c5f59f08 6602 node_set(best_node, *used_nodes);
9c1cfda2
JH
6603 return best_node;
6604}
6605
6606/**
6607 * sched_domain_node_span - get a cpumask for a node's sched_domain
6608 * @node: node whose cpumask we're constructing
73486722 6609 * @span: resulting cpumask
9c1cfda2 6610 *
41a2d6cf 6611 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6612 * should be one that prevents unnecessary balancing, but also spreads tasks
6613 * out optimally.
6614 */
4bdbaad3 6615static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6616{
c5f59f08 6617 nodemask_t used_nodes;
c5f59f08 6618 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6619 int i;
9c1cfda2 6620
4bdbaad3 6621 cpus_clear(*span);
c5f59f08 6622 nodes_clear(used_nodes);
9c1cfda2 6623
4bdbaad3 6624 cpus_or(*span, *span, *nodemask);
c5f59f08 6625 node_set(node, used_nodes);
9c1cfda2
JH
6626
6627 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6628 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6629
c5f59f08 6630 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6631 cpus_or(*span, *span, *nodemask);
9c1cfda2 6632 }
9c1cfda2 6633}
6d6bc0ad 6634#endif /* CONFIG_NUMA */
9c1cfda2 6635
5c45bf27 6636int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6637
9c1cfda2 6638/*
48f24c4d 6639 * SMT sched-domains:
9c1cfda2 6640 */
1da177e4
LT
6641#ifdef CONFIG_SCHED_SMT
6642static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6643static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6644
41a2d6cf 6645static int
7c16ec58
MT
6646cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6647 cpumask_t *unused)
1da177e4 6648{
6711cab4
SS
6649 if (sg)
6650 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6651 return cpu;
6652}
6d6bc0ad 6653#endif /* CONFIG_SCHED_SMT */
1da177e4 6654
48f24c4d
IM
6655/*
6656 * multi-core sched-domains:
6657 */
1e9f28fa
SS
6658#ifdef CONFIG_SCHED_MC
6659static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6660static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6661#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6662
6663#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6664static int
7c16ec58
MT
6665cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6666 cpumask_t *mask)
1e9f28fa 6667{
6711cab4 6668 int group;
7c16ec58
MT
6669
6670 *mask = per_cpu(cpu_sibling_map, cpu);
6671 cpus_and(*mask, *mask, *cpu_map);
6672 group = first_cpu(*mask);
6711cab4
SS
6673 if (sg)
6674 *sg = &per_cpu(sched_group_core, group);
6675 return group;
1e9f28fa
SS
6676}
6677#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6678static int
7c16ec58
MT
6679cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6680 cpumask_t *unused)
1e9f28fa 6681{
6711cab4
SS
6682 if (sg)
6683 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6684 return cpu;
6685}
6686#endif
6687
1da177e4 6688static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6689static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6690
41a2d6cf 6691static int
7c16ec58
MT
6692cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6693 cpumask_t *mask)
1da177e4 6694{
6711cab4 6695 int group;
48f24c4d 6696#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6697 *mask = cpu_coregroup_map(cpu);
6698 cpus_and(*mask, *mask, *cpu_map);
6699 group = first_cpu(*mask);
1e9f28fa 6700#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6701 *mask = per_cpu(cpu_sibling_map, cpu);
6702 cpus_and(*mask, *mask, *cpu_map);
6703 group = first_cpu(*mask);
1da177e4 6704#else
6711cab4 6705 group = cpu;
1da177e4 6706#endif
6711cab4
SS
6707 if (sg)
6708 *sg = &per_cpu(sched_group_phys, group);
6709 return group;
1da177e4
LT
6710}
6711
6712#ifdef CONFIG_NUMA
1da177e4 6713/*
9c1cfda2
JH
6714 * The init_sched_build_groups can't handle what we want to do with node
6715 * groups, so roll our own. Now each node has its own list of groups which
6716 * gets dynamically allocated.
1da177e4 6717 */
9c1cfda2 6718static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6719static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6720
9c1cfda2 6721static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6722static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6723
6711cab4 6724static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6725 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6726{
6711cab4
SS
6727 int group;
6728
7c16ec58
MT
6729 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6730 cpus_and(*nodemask, *nodemask, *cpu_map);
6731 group = first_cpu(*nodemask);
6711cab4
SS
6732
6733 if (sg)
6734 *sg = &per_cpu(sched_group_allnodes, group);
6735 return group;
1da177e4 6736}
6711cab4 6737
08069033
SS
6738static void init_numa_sched_groups_power(struct sched_group *group_head)
6739{
6740 struct sched_group *sg = group_head;
6741 int j;
6742
6743 if (!sg)
6744 return;
3a5c359a
AK
6745 do {
6746 for_each_cpu_mask(j, sg->cpumask) {
6747 struct sched_domain *sd;
08069033 6748
3a5c359a
AK
6749 sd = &per_cpu(phys_domains, j);
6750 if (j != first_cpu(sd->groups->cpumask)) {
6751 /*
6752 * Only add "power" once for each
6753 * physical package.
6754 */
6755 continue;
6756 }
08069033 6757
3a5c359a
AK
6758 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6759 }
6760 sg = sg->next;
6761 } while (sg != group_head);
08069033 6762}
6d6bc0ad 6763#endif /* CONFIG_NUMA */
1da177e4 6764
a616058b 6765#ifdef CONFIG_NUMA
51888ca2 6766/* Free memory allocated for various sched_group structures */
7c16ec58 6767static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6768{
a616058b 6769 int cpu, i;
51888ca2
SV
6770
6771 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6772 struct sched_group **sched_group_nodes
6773 = sched_group_nodes_bycpu[cpu];
6774
51888ca2
SV
6775 if (!sched_group_nodes)
6776 continue;
6777
6778 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6779 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6780
7c16ec58
MT
6781 *nodemask = node_to_cpumask(i);
6782 cpus_and(*nodemask, *nodemask, *cpu_map);
6783 if (cpus_empty(*nodemask))
51888ca2
SV
6784 continue;
6785
6786 if (sg == NULL)
6787 continue;
6788 sg = sg->next;
6789next_sg:
6790 oldsg = sg;
6791 sg = sg->next;
6792 kfree(oldsg);
6793 if (oldsg != sched_group_nodes[i])
6794 goto next_sg;
6795 }
6796 kfree(sched_group_nodes);
6797 sched_group_nodes_bycpu[cpu] = NULL;
6798 }
51888ca2 6799}
6d6bc0ad 6800#else /* !CONFIG_NUMA */
7c16ec58 6801static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6802{
6803}
6d6bc0ad 6804#endif /* CONFIG_NUMA */
51888ca2 6805
89c4710e
SS
6806/*
6807 * Initialize sched groups cpu_power.
6808 *
6809 * cpu_power indicates the capacity of sched group, which is used while
6810 * distributing the load between different sched groups in a sched domain.
6811 * Typically cpu_power for all the groups in a sched domain will be same unless
6812 * there are asymmetries in the topology. If there are asymmetries, group
6813 * having more cpu_power will pickup more load compared to the group having
6814 * less cpu_power.
6815 *
6816 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6817 * the maximum number of tasks a group can handle in the presence of other idle
6818 * or lightly loaded groups in the same sched domain.
6819 */
6820static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6821{
6822 struct sched_domain *child;
6823 struct sched_group *group;
6824
6825 WARN_ON(!sd || !sd->groups);
6826
6827 if (cpu != first_cpu(sd->groups->cpumask))
6828 return;
6829
6830 child = sd->child;
6831
5517d86b
ED
6832 sd->groups->__cpu_power = 0;
6833
89c4710e
SS
6834 /*
6835 * For perf policy, if the groups in child domain share resources
6836 * (for example cores sharing some portions of the cache hierarchy
6837 * or SMT), then set this domain groups cpu_power such that each group
6838 * can handle only one task, when there are other idle groups in the
6839 * same sched domain.
6840 */
6841 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6842 (child->flags &
6843 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6844 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6845 return;
6846 }
6847
89c4710e
SS
6848 /*
6849 * add cpu_power of each child group to this groups cpu_power
6850 */
6851 group = child->groups;
6852 do {
5517d86b 6853 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6854 group = group->next;
6855 } while (group != child->groups);
6856}
6857
7c16ec58
MT
6858/*
6859 * Initializers for schedule domains
6860 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6861 */
6862
6863#define SD_INIT(sd, type) sd_init_##type(sd)
6864#define SD_INIT_FUNC(type) \
6865static noinline void sd_init_##type(struct sched_domain *sd) \
6866{ \
6867 memset(sd, 0, sizeof(*sd)); \
6868 *sd = SD_##type##_INIT; \
1d3504fc 6869 sd->level = SD_LV_##type; \
7c16ec58
MT
6870}
6871
6872SD_INIT_FUNC(CPU)
6873#ifdef CONFIG_NUMA
6874 SD_INIT_FUNC(ALLNODES)
6875 SD_INIT_FUNC(NODE)
6876#endif
6877#ifdef CONFIG_SCHED_SMT
6878 SD_INIT_FUNC(SIBLING)
6879#endif
6880#ifdef CONFIG_SCHED_MC
6881 SD_INIT_FUNC(MC)
6882#endif
6883
6884/*
6885 * To minimize stack usage kmalloc room for cpumasks and share the
6886 * space as the usage in build_sched_domains() dictates. Used only
6887 * if the amount of space is significant.
6888 */
6889struct allmasks {
6890 cpumask_t tmpmask; /* make this one first */
6891 union {
6892 cpumask_t nodemask;
6893 cpumask_t this_sibling_map;
6894 cpumask_t this_core_map;
6895 };
6896 cpumask_t send_covered;
6897
6898#ifdef CONFIG_NUMA
6899 cpumask_t domainspan;
6900 cpumask_t covered;
6901 cpumask_t notcovered;
6902#endif
6903};
6904
6905#if NR_CPUS > 128
6906#define SCHED_CPUMASK_ALLOC 1
6907#define SCHED_CPUMASK_FREE(v) kfree(v)
6908#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6909#else
6910#define SCHED_CPUMASK_ALLOC 0
6911#define SCHED_CPUMASK_FREE(v)
6912#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6913#endif
6914
6915#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6916 ((unsigned long)(a) + offsetof(struct allmasks, v))
6917
1d3504fc
HS
6918static int default_relax_domain_level = -1;
6919
6920static int __init setup_relax_domain_level(char *str)
6921{
6922 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6923 return 1;
6924}
6925__setup("relax_domain_level=", setup_relax_domain_level);
6926
6927static void set_domain_attribute(struct sched_domain *sd,
6928 struct sched_domain_attr *attr)
6929{
6930 int request;
6931
6932 if (!attr || attr->relax_domain_level < 0) {
6933 if (default_relax_domain_level < 0)
6934 return;
6935 else
6936 request = default_relax_domain_level;
6937 } else
6938 request = attr->relax_domain_level;
6939 if (request < sd->level) {
6940 /* turn off idle balance on this domain */
6941 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6942 } else {
6943 /* turn on idle balance on this domain */
6944 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6945 }
6946}
6947
1da177e4 6948/*
1a20ff27
DG
6949 * Build sched domains for a given set of cpus and attach the sched domains
6950 * to the individual cpus
1da177e4 6951 */
1d3504fc
HS
6952static int __build_sched_domains(const cpumask_t *cpu_map,
6953 struct sched_domain_attr *attr)
1da177e4
LT
6954{
6955 int i;
57d885fe 6956 struct root_domain *rd;
7c16ec58
MT
6957 SCHED_CPUMASK_DECLARE(allmasks);
6958 cpumask_t *tmpmask;
d1b55138
JH
6959#ifdef CONFIG_NUMA
6960 struct sched_group **sched_group_nodes = NULL;
6711cab4 6961 int sd_allnodes = 0;
d1b55138
JH
6962
6963 /*
6964 * Allocate the per-node list of sched groups
6965 */
5cf9f062 6966 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6967 GFP_KERNEL);
d1b55138
JH
6968 if (!sched_group_nodes) {
6969 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6970 return -ENOMEM;
d1b55138 6971 }
d1b55138 6972#endif
1da177e4 6973
dc938520 6974 rd = alloc_rootdomain();
57d885fe
GH
6975 if (!rd) {
6976 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6977#ifdef CONFIG_NUMA
6978 kfree(sched_group_nodes);
6979#endif
57d885fe
GH
6980 return -ENOMEM;
6981 }
6982
7c16ec58
MT
6983#if SCHED_CPUMASK_ALLOC
6984 /* get space for all scratch cpumask variables */
6985 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6986 if (!allmasks) {
6987 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6988 kfree(rd);
6989#ifdef CONFIG_NUMA
6990 kfree(sched_group_nodes);
6991#endif
6992 return -ENOMEM;
6993 }
6994#endif
6995 tmpmask = (cpumask_t *)allmasks;
6996
6997
6998#ifdef CONFIG_NUMA
6999 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7000#endif
7001
1da177e4 7002 /*
1a20ff27 7003 * Set up domains for cpus specified by the cpu_map.
1da177e4 7004 */
1a20ff27 7005 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7006 struct sched_domain *sd = NULL, *p;
7c16ec58 7007 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7008
7c16ec58
MT
7009 *nodemask = node_to_cpumask(cpu_to_node(i));
7010 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7011
7012#ifdef CONFIG_NUMA
dd41f596 7013 if (cpus_weight(*cpu_map) >
7c16ec58 7014 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7015 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7016 SD_INIT(sd, ALLNODES);
1d3504fc 7017 set_domain_attribute(sd, attr);
9c1cfda2 7018 sd->span = *cpu_map;
7c16ec58 7019 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7020 p = sd;
6711cab4 7021 sd_allnodes = 1;
9c1cfda2
JH
7022 } else
7023 p = NULL;
7024
1da177e4 7025 sd = &per_cpu(node_domains, i);
7c16ec58 7026 SD_INIT(sd, NODE);
1d3504fc 7027 set_domain_attribute(sd, attr);
4bdbaad3 7028 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7029 sd->parent = p;
1a848870
SS
7030 if (p)
7031 p->child = sd;
9c1cfda2 7032 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7033#endif
7034
7035 p = sd;
7036 sd = &per_cpu(phys_domains, i);
7c16ec58 7037 SD_INIT(sd, CPU);
1d3504fc 7038 set_domain_attribute(sd, attr);
7c16ec58 7039 sd->span = *nodemask;
1da177e4 7040 sd->parent = p;
1a848870
SS
7041 if (p)
7042 p->child = sd;
7c16ec58 7043 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7044
1e9f28fa
SS
7045#ifdef CONFIG_SCHED_MC
7046 p = sd;
7047 sd = &per_cpu(core_domains, i);
7c16ec58 7048 SD_INIT(sd, MC);
1d3504fc 7049 set_domain_attribute(sd, attr);
1e9f28fa
SS
7050 sd->span = cpu_coregroup_map(i);
7051 cpus_and(sd->span, sd->span, *cpu_map);
7052 sd->parent = p;
1a848870 7053 p->child = sd;
7c16ec58 7054 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7055#endif
7056
1da177e4
LT
7057#ifdef CONFIG_SCHED_SMT
7058 p = sd;
7059 sd = &per_cpu(cpu_domains, i);
7c16ec58 7060 SD_INIT(sd, SIBLING);
1d3504fc 7061 set_domain_attribute(sd, attr);
d5a7430d 7062 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7063 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7064 sd->parent = p;
1a848870 7065 p->child = sd;
7c16ec58 7066 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7067#endif
7068 }
7069
7070#ifdef CONFIG_SCHED_SMT
7071 /* Set up CPU (sibling) groups */
9c1cfda2 7072 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7073 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7074 SCHED_CPUMASK_VAR(send_covered, allmasks);
7075
7076 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7077 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7078 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7079 continue;
7080
dd41f596 7081 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7082 &cpu_to_cpu_group,
7083 send_covered, tmpmask);
1da177e4
LT
7084 }
7085#endif
7086
1e9f28fa
SS
7087#ifdef CONFIG_SCHED_MC
7088 /* Set up multi-core groups */
7089 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7090 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7091 SCHED_CPUMASK_VAR(send_covered, allmasks);
7092
7093 *this_core_map = cpu_coregroup_map(i);
7094 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7095 if (i != first_cpu(*this_core_map))
1e9f28fa 7096 continue;
7c16ec58 7097
dd41f596 7098 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7099 &cpu_to_core_group,
7100 send_covered, tmpmask);
1e9f28fa
SS
7101 }
7102#endif
7103
1da177e4
LT
7104 /* Set up physical groups */
7105 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7106 SCHED_CPUMASK_VAR(nodemask, allmasks);
7107 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7108
7c16ec58
MT
7109 *nodemask = node_to_cpumask(i);
7110 cpus_and(*nodemask, *nodemask, *cpu_map);
7111 if (cpus_empty(*nodemask))
1da177e4
LT
7112 continue;
7113
7c16ec58
MT
7114 init_sched_build_groups(nodemask, cpu_map,
7115 &cpu_to_phys_group,
7116 send_covered, tmpmask);
1da177e4
LT
7117 }
7118
7119#ifdef CONFIG_NUMA
7120 /* Set up node groups */
7c16ec58
MT
7121 if (sd_allnodes) {
7122 SCHED_CPUMASK_VAR(send_covered, allmasks);
7123
7124 init_sched_build_groups(cpu_map, cpu_map,
7125 &cpu_to_allnodes_group,
7126 send_covered, tmpmask);
7127 }
9c1cfda2
JH
7128
7129 for (i = 0; i < MAX_NUMNODES; i++) {
7130 /* Set up node groups */
7131 struct sched_group *sg, *prev;
7c16ec58
MT
7132 SCHED_CPUMASK_VAR(nodemask, allmasks);
7133 SCHED_CPUMASK_VAR(domainspan, allmasks);
7134 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7135 int j;
7136
7c16ec58
MT
7137 *nodemask = node_to_cpumask(i);
7138 cpus_clear(*covered);
7139
7140 cpus_and(*nodemask, *nodemask, *cpu_map);
7141 if (cpus_empty(*nodemask)) {
d1b55138 7142 sched_group_nodes[i] = NULL;
9c1cfda2 7143 continue;
d1b55138 7144 }
9c1cfda2 7145
4bdbaad3 7146 sched_domain_node_span(i, domainspan);
7c16ec58 7147 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7148
15f0b676 7149 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7150 if (!sg) {
7151 printk(KERN_WARNING "Can not alloc domain group for "
7152 "node %d\n", i);
7153 goto error;
7154 }
9c1cfda2 7155 sched_group_nodes[i] = sg;
7c16ec58 7156 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7157 struct sched_domain *sd;
9761eea8 7158
9c1cfda2
JH
7159 sd = &per_cpu(node_domains, j);
7160 sd->groups = sg;
9c1cfda2 7161 }
5517d86b 7162 sg->__cpu_power = 0;
7c16ec58 7163 sg->cpumask = *nodemask;
51888ca2 7164 sg->next = sg;
7c16ec58 7165 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7166 prev = sg;
7167
7168 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7169 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7170 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7171 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7172
7c16ec58
MT
7173 cpus_complement(*notcovered, *covered);
7174 cpus_and(*tmpmask, *notcovered, *cpu_map);
7175 cpus_and(*tmpmask, *tmpmask, *domainspan);
7176 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7177 break;
7178
7c16ec58
MT
7179 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7180 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7181 continue;
7182
15f0b676
SV
7183 sg = kmalloc_node(sizeof(struct sched_group),
7184 GFP_KERNEL, i);
9c1cfda2
JH
7185 if (!sg) {
7186 printk(KERN_WARNING
7187 "Can not alloc domain group for node %d\n", j);
51888ca2 7188 goto error;
9c1cfda2 7189 }
5517d86b 7190 sg->__cpu_power = 0;
7c16ec58 7191 sg->cpumask = *tmpmask;
51888ca2 7192 sg->next = prev->next;
7c16ec58 7193 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7194 prev->next = sg;
7195 prev = sg;
7196 }
9c1cfda2 7197 }
1da177e4
LT
7198#endif
7199
7200 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7201#ifdef CONFIG_SCHED_SMT
1a20ff27 7202 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7203 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7204
89c4710e 7205 init_sched_groups_power(i, sd);
5c45bf27 7206 }
1da177e4 7207#endif
1e9f28fa 7208#ifdef CONFIG_SCHED_MC
5c45bf27 7209 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7210 struct sched_domain *sd = &per_cpu(core_domains, i);
7211
89c4710e 7212 init_sched_groups_power(i, sd);
5c45bf27
SS
7213 }
7214#endif
1e9f28fa 7215
5c45bf27 7216 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7217 struct sched_domain *sd = &per_cpu(phys_domains, i);
7218
89c4710e 7219 init_sched_groups_power(i, sd);
1da177e4
LT
7220 }
7221
9c1cfda2 7222#ifdef CONFIG_NUMA
08069033
SS
7223 for (i = 0; i < MAX_NUMNODES; i++)
7224 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7225
6711cab4
SS
7226 if (sd_allnodes) {
7227 struct sched_group *sg;
f712c0c7 7228
7c16ec58
MT
7229 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7230 tmpmask);
f712c0c7
SS
7231 init_numa_sched_groups_power(sg);
7232 }
9c1cfda2
JH
7233#endif
7234
1da177e4 7235 /* Attach the domains */
1a20ff27 7236 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7237 struct sched_domain *sd;
7238#ifdef CONFIG_SCHED_SMT
7239 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7240#elif defined(CONFIG_SCHED_MC)
7241 sd = &per_cpu(core_domains, i);
1da177e4
LT
7242#else
7243 sd = &per_cpu(phys_domains, i);
7244#endif
57d885fe 7245 cpu_attach_domain(sd, rd, i);
1da177e4 7246 }
51888ca2 7247
7c16ec58 7248 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7249 return 0;
7250
a616058b 7251#ifdef CONFIG_NUMA
51888ca2 7252error:
7c16ec58
MT
7253 free_sched_groups(cpu_map, tmpmask);
7254 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7255 return -ENOMEM;
a616058b 7256#endif
1da177e4 7257}
029190c5 7258
1d3504fc
HS
7259static int build_sched_domains(const cpumask_t *cpu_map)
7260{
7261 return __build_sched_domains(cpu_map, NULL);
7262}
7263
029190c5
PJ
7264static cpumask_t *doms_cur; /* current sched domains */
7265static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7266static struct sched_domain_attr *dattr_cur;
7267 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7268
7269/*
7270 * Special case: If a kmalloc of a doms_cur partition (array of
7271 * cpumask_t) fails, then fallback to a single sched domain,
7272 * as determined by the single cpumask_t fallback_doms.
7273 */
7274static cpumask_t fallback_doms;
7275
22e52b07
HC
7276void __attribute__((weak)) arch_update_cpu_topology(void)
7277{
7278}
7279
5c8e1ed1
MK
7280/*
7281 * Free current domain masks.
7282 * Called after all cpus are attached to NULL domain.
7283 */
7284static void free_sched_domains(void)
7285{
7286 ndoms_cur = 0;
7287 if (doms_cur != &fallback_doms)
7288 kfree(doms_cur);
7289 doms_cur = &fallback_doms;
7290}
7291
1a20ff27 7292/*
41a2d6cf 7293 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7294 * For now this just excludes isolated cpus, but could be used to
7295 * exclude other special cases in the future.
1a20ff27 7296 */
51888ca2 7297static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7298{
7378547f
MM
7299 int err;
7300
22e52b07 7301 arch_update_cpu_topology();
029190c5
PJ
7302 ndoms_cur = 1;
7303 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7304 if (!doms_cur)
7305 doms_cur = &fallback_doms;
7306 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7307 dattr_cur = NULL;
7378547f 7308 err = build_sched_domains(doms_cur);
6382bc90 7309 register_sched_domain_sysctl();
7378547f
MM
7310
7311 return err;
1a20ff27
DG
7312}
7313
7c16ec58
MT
7314static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7315 cpumask_t *tmpmask)
1da177e4 7316{
7c16ec58 7317 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7318}
1da177e4 7319
1a20ff27
DG
7320/*
7321 * Detach sched domains from a group of cpus specified in cpu_map
7322 * These cpus will now be attached to the NULL domain
7323 */
858119e1 7324static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7325{
7c16ec58 7326 cpumask_t tmpmask;
1a20ff27
DG
7327 int i;
7328
6382bc90
MM
7329 unregister_sched_domain_sysctl();
7330
1a20ff27 7331 for_each_cpu_mask(i, *cpu_map)
57d885fe 7332 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7333 synchronize_sched();
7c16ec58 7334 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7335}
7336
1d3504fc
HS
7337/* handle null as "default" */
7338static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7339 struct sched_domain_attr *new, int idx_new)
7340{
7341 struct sched_domain_attr tmp;
7342
7343 /* fast path */
7344 if (!new && !cur)
7345 return 1;
7346
7347 tmp = SD_ATTR_INIT;
7348 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7349 new ? (new + idx_new) : &tmp,
7350 sizeof(struct sched_domain_attr));
7351}
7352
029190c5
PJ
7353/*
7354 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7355 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7356 * doms_new[] to the current sched domain partitioning, doms_cur[].
7357 * It destroys each deleted domain and builds each new domain.
7358 *
7359 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7360 * The masks don't intersect (don't overlap.) We should setup one
7361 * sched domain for each mask. CPUs not in any of the cpumasks will
7362 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7363 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7364 * it as it is.
7365 *
41a2d6cf
IM
7366 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7367 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7368 * failed the kmalloc call, then it can pass in doms_new == NULL,
7369 * and partition_sched_domains() will fallback to the single partition
7370 * 'fallback_doms'.
7371 *
7372 * Call with hotplug lock held
7373 */
1d3504fc
HS
7374void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7375 struct sched_domain_attr *dattr_new)
029190c5
PJ
7376{
7377 int i, j;
7378
712555ee 7379 mutex_lock(&sched_domains_mutex);
a1835615 7380
7378547f
MM
7381 /* always unregister in case we don't destroy any domains */
7382 unregister_sched_domain_sysctl();
7383
029190c5
PJ
7384 if (doms_new == NULL) {
7385 ndoms_new = 1;
7386 doms_new = &fallback_doms;
7387 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7388 dattr_new = NULL;
029190c5
PJ
7389 }
7390
7391 /* Destroy deleted domains */
7392 for (i = 0; i < ndoms_cur; i++) {
7393 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7394 if (cpus_equal(doms_cur[i], doms_new[j])
7395 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7396 goto match1;
7397 }
7398 /* no match - a current sched domain not in new doms_new[] */
7399 detach_destroy_domains(doms_cur + i);
7400match1:
7401 ;
7402 }
7403
7404 /* Build new domains */
7405 for (i = 0; i < ndoms_new; i++) {
7406 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7407 if (cpus_equal(doms_new[i], doms_cur[j])
7408 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7409 goto match2;
7410 }
7411 /* no match - add a new doms_new */
1d3504fc
HS
7412 __build_sched_domains(doms_new + i,
7413 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7414match2:
7415 ;
7416 }
7417
7418 /* Remember the new sched domains */
7419 if (doms_cur != &fallback_doms)
7420 kfree(doms_cur);
1d3504fc 7421 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7422 doms_cur = doms_new;
1d3504fc 7423 dattr_cur = dattr_new;
029190c5 7424 ndoms_cur = ndoms_new;
7378547f
MM
7425
7426 register_sched_domain_sysctl();
a1835615 7427
712555ee 7428 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7429}
7430
5c45bf27 7431#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7432int arch_reinit_sched_domains(void)
5c45bf27
SS
7433{
7434 int err;
7435
95402b38 7436 get_online_cpus();
712555ee 7437 mutex_lock(&sched_domains_mutex);
5c45bf27 7438 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7439 free_sched_domains();
5c45bf27 7440 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7441 mutex_unlock(&sched_domains_mutex);
95402b38 7442 put_online_cpus();
5c45bf27
SS
7443
7444 return err;
7445}
7446
7447static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7448{
7449 int ret;
7450
7451 if (buf[0] != '0' && buf[0] != '1')
7452 return -EINVAL;
7453
7454 if (smt)
7455 sched_smt_power_savings = (buf[0] == '1');
7456 else
7457 sched_mc_power_savings = (buf[0] == '1');
7458
7459 ret = arch_reinit_sched_domains();
7460
7461 return ret ? ret : count;
7462}
7463
5c45bf27
SS
7464#ifdef CONFIG_SCHED_MC
7465static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7466{
7467 return sprintf(page, "%u\n", sched_mc_power_savings);
7468}
48f24c4d
IM
7469static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7470 const char *buf, size_t count)
5c45bf27
SS
7471{
7472 return sched_power_savings_store(buf, count, 0);
7473}
6707de00
AB
7474static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7475 sched_mc_power_savings_store);
5c45bf27
SS
7476#endif
7477
7478#ifdef CONFIG_SCHED_SMT
7479static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7480{
7481 return sprintf(page, "%u\n", sched_smt_power_savings);
7482}
48f24c4d
IM
7483static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7484 const char *buf, size_t count)
5c45bf27
SS
7485{
7486 return sched_power_savings_store(buf, count, 1);
7487}
6707de00
AB
7488static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7489 sched_smt_power_savings_store);
7490#endif
7491
7492int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7493{
7494 int err = 0;
7495
7496#ifdef CONFIG_SCHED_SMT
7497 if (smt_capable())
7498 err = sysfs_create_file(&cls->kset.kobj,
7499 &attr_sched_smt_power_savings.attr);
7500#endif
7501#ifdef CONFIG_SCHED_MC
7502 if (!err && mc_capable())
7503 err = sysfs_create_file(&cls->kset.kobj,
7504 &attr_sched_mc_power_savings.attr);
7505#endif
7506 return err;
7507}
6d6bc0ad 7508#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7509
1da177e4 7510/*
41a2d6cf 7511 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7512 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7513 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7514 * which will prevent rebalancing while the sched domains are recalculated.
7515 */
7516static int update_sched_domains(struct notifier_block *nfb,
7517 unsigned long action, void *hcpu)
7518{
7def2be1
PZ
7519 int cpu = (int)(long)hcpu;
7520
1da177e4 7521 switch (action) {
1da177e4 7522 case CPU_DOWN_PREPARE:
8bb78442 7523 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7524 disable_runtime(cpu_rq(cpu));
7525 /* fall-through */
7526 case CPU_UP_PREPARE:
7527 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7528 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7529 free_sched_domains();
1da177e4
LT
7530 return NOTIFY_OK;
7531
7def2be1 7532
1da177e4 7533 case CPU_DOWN_FAILED:
8bb78442 7534 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7535 case CPU_ONLINE:
8bb78442 7536 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7537 enable_runtime(cpu_rq(cpu));
7538 /* fall-through */
7539 case CPU_UP_CANCELED:
7540 case CPU_UP_CANCELED_FROZEN:
1da177e4 7541 case CPU_DEAD:
8bb78442 7542 case CPU_DEAD_FROZEN:
1da177e4
LT
7543 /*
7544 * Fall through and re-initialise the domains.
7545 */
7546 break;
7547 default:
7548 return NOTIFY_DONE;
7549 }
7550
5c8e1ed1
MK
7551#ifndef CONFIG_CPUSETS
7552 /*
7553 * Create default domain partitioning if cpusets are disabled.
7554 * Otherwise we let cpusets rebuild the domains based on the
7555 * current setup.
7556 */
7557
1da177e4 7558 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7559 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7560#endif
1da177e4
LT
7561
7562 return NOTIFY_OK;
7563}
1da177e4
LT
7564
7565void __init sched_init_smp(void)
7566{
5c1e1767
NP
7567 cpumask_t non_isolated_cpus;
7568
434d53b0
MT
7569#if defined(CONFIG_NUMA)
7570 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7571 GFP_KERNEL);
7572 BUG_ON(sched_group_nodes_bycpu == NULL);
7573#endif
95402b38 7574 get_online_cpus();
712555ee 7575 mutex_lock(&sched_domains_mutex);
1a20ff27 7576 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7577 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7578 if (cpus_empty(non_isolated_cpus))
7579 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7580 mutex_unlock(&sched_domains_mutex);
95402b38 7581 put_online_cpus();
1da177e4
LT
7582 /* XXX: Theoretical race here - CPU may be hotplugged now */
7583 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7584 init_hrtick();
5c1e1767
NP
7585
7586 /* Move init over to a non-isolated CPU */
7c16ec58 7587 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7588 BUG();
19978ca6 7589 sched_init_granularity();
1da177e4
LT
7590}
7591#else
7592void __init sched_init_smp(void)
7593{
19978ca6 7594 sched_init_granularity();
1da177e4
LT
7595}
7596#endif /* CONFIG_SMP */
7597
7598int in_sched_functions(unsigned long addr)
7599{
1da177e4
LT
7600 return in_lock_functions(addr) ||
7601 (addr >= (unsigned long)__sched_text_start
7602 && addr < (unsigned long)__sched_text_end);
7603}
7604
a9957449 7605static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7606{
7607 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7608 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7609#ifdef CONFIG_FAIR_GROUP_SCHED
7610 cfs_rq->rq = rq;
7611#endif
67e9fb2a 7612 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7613}
7614
fa85ae24
PZ
7615static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7616{
7617 struct rt_prio_array *array;
7618 int i;
7619
7620 array = &rt_rq->active;
7621 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7622 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7623 __clear_bit(i, array->bitmap);
7624 }
7625 /* delimiter for bitsearch: */
7626 __set_bit(MAX_RT_PRIO, array->bitmap);
7627
052f1dc7 7628#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7629 rt_rq->highest_prio = MAX_RT_PRIO;
7630#endif
fa85ae24
PZ
7631#ifdef CONFIG_SMP
7632 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7633 rt_rq->overloaded = 0;
7634#endif
7635
7636 rt_rq->rt_time = 0;
7637 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7638 rt_rq->rt_runtime = 0;
7639 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7640
052f1dc7 7641#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7642 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7643 rt_rq->rq = rq;
7644#endif
fa85ae24
PZ
7645}
7646
6f505b16 7647#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7648static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7649 struct sched_entity *se, int cpu, int add,
7650 struct sched_entity *parent)
6f505b16 7651{
ec7dc8ac 7652 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7653 tg->cfs_rq[cpu] = cfs_rq;
7654 init_cfs_rq(cfs_rq, rq);
7655 cfs_rq->tg = tg;
7656 if (add)
7657 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7658
7659 tg->se[cpu] = se;
354d60c2
DG
7660 /* se could be NULL for init_task_group */
7661 if (!se)
7662 return;
7663
ec7dc8ac
DG
7664 if (!parent)
7665 se->cfs_rq = &rq->cfs;
7666 else
7667 se->cfs_rq = parent->my_q;
7668
6f505b16
PZ
7669 se->my_q = cfs_rq;
7670 se->load.weight = tg->shares;
e05510d0 7671 se->load.inv_weight = 0;
ec7dc8ac 7672 se->parent = parent;
6f505b16 7673}
052f1dc7 7674#endif
6f505b16 7675
052f1dc7 7676#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7677static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7678 struct sched_rt_entity *rt_se, int cpu, int add,
7679 struct sched_rt_entity *parent)
6f505b16 7680{
ec7dc8ac
DG
7681 struct rq *rq = cpu_rq(cpu);
7682
6f505b16
PZ
7683 tg->rt_rq[cpu] = rt_rq;
7684 init_rt_rq(rt_rq, rq);
7685 rt_rq->tg = tg;
7686 rt_rq->rt_se = rt_se;
ac086bc2 7687 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7688 if (add)
7689 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7690
7691 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7692 if (!rt_se)
7693 return;
7694
ec7dc8ac
DG
7695 if (!parent)
7696 rt_se->rt_rq = &rq->rt;
7697 else
7698 rt_se->rt_rq = parent->my_q;
7699
6f505b16 7700 rt_se->my_q = rt_rq;
ec7dc8ac 7701 rt_se->parent = parent;
6f505b16
PZ
7702 INIT_LIST_HEAD(&rt_se->run_list);
7703}
7704#endif
7705
1da177e4
LT
7706void __init sched_init(void)
7707{
dd41f596 7708 int i, j;
434d53b0
MT
7709 unsigned long alloc_size = 0, ptr;
7710
7711#ifdef CONFIG_FAIR_GROUP_SCHED
7712 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7713#endif
7714#ifdef CONFIG_RT_GROUP_SCHED
7715 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7716#endif
7717#ifdef CONFIG_USER_SCHED
7718 alloc_size *= 2;
434d53b0
MT
7719#endif
7720 /*
7721 * As sched_init() is called before page_alloc is setup,
7722 * we use alloc_bootmem().
7723 */
7724 if (alloc_size) {
5a9d3225 7725 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7726
7727#ifdef CONFIG_FAIR_GROUP_SCHED
7728 init_task_group.se = (struct sched_entity **)ptr;
7729 ptr += nr_cpu_ids * sizeof(void **);
7730
7731 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7732 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7733
7734#ifdef CONFIG_USER_SCHED
7735 root_task_group.se = (struct sched_entity **)ptr;
7736 ptr += nr_cpu_ids * sizeof(void **);
7737
7738 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7739 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7740#endif /* CONFIG_USER_SCHED */
7741#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7742#ifdef CONFIG_RT_GROUP_SCHED
7743 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7744 ptr += nr_cpu_ids * sizeof(void **);
7745
7746 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7747 ptr += nr_cpu_ids * sizeof(void **);
7748
7749#ifdef CONFIG_USER_SCHED
7750 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7751 ptr += nr_cpu_ids * sizeof(void **);
7752
7753 root_task_group.rt_rq = (struct rt_rq **)ptr;
7754 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7755#endif /* CONFIG_USER_SCHED */
7756#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7757 }
dd41f596 7758
57d885fe
GH
7759#ifdef CONFIG_SMP
7760 init_defrootdomain();
7761#endif
7762
d0b27fa7
PZ
7763 init_rt_bandwidth(&def_rt_bandwidth,
7764 global_rt_period(), global_rt_runtime());
7765
7766#ifdef CONFIG_RT_GROUP_SCHED
7767 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7768 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7769#ifdef CONFIG_USER_SCHED
7770 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7771 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7772#endif /* CONFIG_USER_SCHED */
7773#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7774
052f1dc7 7775#ifdef CONFIG_GROUP_SCHED
6f505b16 7776 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7777 INIT_LIST_HEAD(&init_task_group.children);
7778
7779#ifdef CONFIG_USER_SCHED
7780 INIT_LIST_HEAD(&root_task_group.children);
7781 init_task_group.parent = &root_task_group;
7782 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7783#endif /* CONFIG_USER_SCHED */
7784#endif /* CONFIG_GROUP_SCHED */
6f505b16 7785
0a945022 7786 for_each_possible_cpu(i) {
70b97a7f 7787 struct rq *rq;
1da177e4
LT
7788
7789 rq = cpu_rq(i);
7790 spin_lock_init(&rq->lock);
fcb99371 7791 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7792 rq->nr_running = 0;
dd41f596 7793 init_cfs_rq(&rq->cfs, rq);
6f505b16 7794 init_rt_rq(&rq->rt, rq);
dd41f596 7795#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7796 init_task_group.shares = init_task_group_load;
6f505b16 7797 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7798#ifdef CONFIG_CGROUP_SCHED
7799 /*
7800 * How much cpu bandwidth does init_task_group get?
7801 *
7802 * In case of task-groups formed thr' the cgroup filesystem, it
7803 * gets 100% of the cpu resources in the system. This overall
7804 * system cpu resource is divided among the tasks of
7805 * init_task_group and its child task-groups in a fair manner,
7806 * based on each entity's (task or task-group's) weight
7807 * (se->load.weight).
7808 *
7809 * In other words, if init_task_group has 10 tasks of weight
7810 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7811 * then A0's share of the cpu resource is:
7812 *
7813 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7814 *
7815 * We achieve this by letting init_task_group's tasks sit
7816 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7817 */
ec7dc8ac 7818 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7819#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7820 root_task_group.shares = NICE_0_LOAD;
7821 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7822 /*
7823 * In case of task-groups formed thr' the user id of tasks,
7824 * init_task_group represents tasks belonging to root user.
7825 * Hence it forms a sibling of all subsequent groups formed.
7826 * In this case, init_task_group gets only a fraction of overall
7827 * system cpu resource, based on the weight assigned to root
7828 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7829 * by letting tasks of init_task_group sit in a separate cfs_rq
7830 * (init_cfs_rq) and having one entity represent this group of
7831 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7832 */
ec7dc8ac 7833 init_tg_cfs_entry(&init_task_group,
6f505b16 7834 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7835 &per_cpu(init_sched_entity, i), i, 1,
7836 root_task_group.se[i]);
6f505b16 7837
052f1dc7 7838#endif
354d60c2
DG
7839#endif /* CONFIG_FAIR_GROUP_SCHED */
7840
7841 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7842#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7843 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7844#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7845 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7846#elif defined CONFIG_USER_SCHED
eff766a6 7847 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7848 init_tg_rt_entry(&init_task_group,
6f505b16 7849 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7850 &per_cpu(init_sched_rt_entity, i), i, 1,
7851 root_task_group.rt_se[i]);
354d60c2 7852#endif
dd41f596 7853#endif
1da177e4 7854
dd41f596
IM
7855 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7856 rq->cpu_load[j] = 0;
1da177e4 7857#ifdef CONFIG_SMP
41c7ce9a 7858 rq->sd = NULL;
57d885fe 7859 rq->rd = NULL;
1da177e4 7860 rq->active_balance = 0;
dd41f596 7861 rq->next_balance = jiffies;
1da177e4 7862 rq->push_cpu = 0;
0a2966b4 7863 rq->cpu = i;
1f11eb6a 7864 rq->online = 0;
1da177e4
LT
7865 rq->migration_thread = NULL;
7866 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7867 rq_attach_root(rq, &def_root_domain);
1da177e4 7868#endif
8f4d37ec 7869 init_rq_hrtick(rq);
1da177e4 7870 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7871 }
7872
2dd73a4f 7873 set_load_weight(&init_task);
b50f60ce 7874
e107be36
AK
7875#ifdef CONFIG_PREEMPT_NOTIFIERS
7876 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7877#endif
7878
c9819f45
CL
7879#ifdef CONFIG_SMP
7880 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7881#endif
7882
b50f60ce
HC
7883#ifdef CONFIG_RT_MUTEXES
7884 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7885#endif
7886
1da177e4
LT
7887 /*
7888 * The boot idle thread does lazy MMU switching as well:
7889 */
7890 atomic_inc(&init_mm.mm_count);
7891 enter_lazy_tlb(&init_mm, current);
7892
7893 /*
7894 * Make us the idle thread. Technically, schedule() should not be
7895 * called from this thread, however somewhere below it might be,
7896 * but because we are the idle thread, we just pick up running again
7897 * when this runqueue becomes "idle".
7898 */
7899 init_idle(current, smp_processor_id());
dd41f596
IM
7900 /*
7901 * During early bootup we pretend to be a normal task:
7902 */
7903 current->sched_class = &fair_sched_class;
6892b75e
IM
7904
7905 scheduler_running = 1;
1da177e4
LT
7906}
7907
7908#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7909void __might_sleep(char *file, int line)
7910{
48f24c4d 7911#ifdef in_atomic
1da177e4
LT
7912 static unsigned long prev_jiffy; /* ratelimiting */
7913
7914 if ((in_atomic() || irqs_disabled()) &&
7915 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7916 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7917 return;
7918 prev_jiffy = jiffies;
91368d73 7919 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7920 " context at %s:%d\n", file, line);
7921 printk("in_atomic():%d, irqs_disabled():%d\n",
7922 in_atomic(), irqs_disabled());
a4c410f0 7923 debug_show_held_locks(current);
3117df04
IM
7924 if (irqs_disabled())
7925 print_irqtrace_events(current);
1da177e4
LT
7926 dump_stack();
7927 }
7928#endif
7929}
7930EXPORT_SYMBOL(__might_sleep);
7931#endif
7932
7933#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7934static void normalize_task(struct rq *rq, struct task_struct *p)
7935{
7936 int on_rq;
3e51f33f 7937
3a5e4dc1
AK
7938 update_rq_clock(rq);
7939 on_rq = p->se.on_rq;
7940 if (on_rq)
7941 deactivate_task(rq, p, 0);
7942 __setscheduler(rq, p, SCHED_NORMAL, 0);
7943 if (on_rq) {
7944 activate_task(rq, p, 0);
7945 resched_task(rq->curr);
7946 }
7947}
7948
1da177e4
LT
7949void normalize_rt_tasks(void)
7950{
a0f98a1c 7951 struct task_struct *g, *p;
1da177e4 7952 unsigned long flags;
70b97a7f 7953 struct rq *rq;
1da177e4 7954
4cf5d77a 7955 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7956 do_each_thread(g, p) {
178be793
IM
7957 /*
7958 * Only normalize user tasks:
7959 */
7960 if (!p->mm)
7961 continue;
7962
6cfb0d5d 7963 p->se.exec_start = 0;
6cfb0d5d 7964#ifdef CONFIG_SCHEDSTATS
dd41f596 7965 p->se.wait_start = 0;
dd41f596 7966 p->se.sleep_start = 0;
dd41f596 7967 p->se.block_start = 0;
6cfb0d5d 7968#endif
dd41f596
IM
7969
7970 if (!rt_task(p)) {
7971 /*
7972 * Renice negative nice level userspace
7973 * tasks back to 0:
7974 */
7975 if (TASK_NICE(p) < 0 && p->mm)
7976 set_user_nice(p, 0);
1da177e4 7977 continue;
dd41f596 7978 }
1da177e4 7979
4cf5d77a 7980 spin_lock(&p->pi_lock);
b29739f9 7981 rq = __task_rq_lock(p);
1da177e4 7982
178be793 7983 normalize_task(rq, p);
3a5e4dc1 7984
b29739f9 7985 __task_rq_unlock(rq);
4cf5d77a 7986 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7987 } while_each_thread(g, p);
7988
4cf5d77a 7989 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7990}
7991
7992#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7993
7994#ifdef CONFIG_IA64
7995/*
7996 * These functions are only useful for the IA64 MCA handling.
7997 *
7998 * They can only be called when the whole system has been
7999 * stopped - every CPU needs to be quiescent, and no scheduling
8000 * activity can take place. Using them for anything else would
8001 * be a serious bug, and as a result, they aren't even visible
8002 * under any other configuration.
8003 */
8004
8005/**
8006 * curr_task - return the current task for a given cpu.
8007 * @cpu: the processor in question.
8008 *
8009 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8010 */
36c8b586 8011struct task_struct *curr_task(int cpu)
1df5c10a
LT
8012{
8013 return cpu_curr(cpu);
8014}
8015
8016/**
8017 * set_curr_task - set the current task for a given cpu.
8018 * @cpu: the processor in question.
8019 * @p: the task pointer to set.
8020 *
8021 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8022 * are serviced on a separate stack. It allows the architecture to switch the
8023 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8024 * must be called with all CPU's synchronized, and interrupts disabled, the
8025 * and caller must save the original value of the current task (see
8026 * curr_task() above) and restore that value before reenabling interrupts and
8027 * re-starting the system.
8028 *
8029 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8030 */
36c8b586 8031void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8032{
8033 cpu_curr(cpu) = p;
8034}
8035
8036#endif
29f59db3 8037
bccbe08a
PZ
8038#ifdef CONFIG_FAIR_GROUP_SCHED
8039static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8040{
8041 int i;
8042
8043 for_each_possible_cpu(i) {
8044 if (tg->cfs_rq)
8045 kfree(tg->cfs_rq[i]);
8046 if (tg->se)
8047 kfree(tg->se[i]);
6f505b16
PZ
8048 }
8049
8050 kfree(tg->cfs_rq);
8051 kfree(tg->se);
6f505b16
PZ
8052}
8053
ec7dc8ac
DG
8054static
8055int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8056{
29f59db3 8057 struct cfs_rq *cfs_rq;
ec7dc8ac 8058 struct sched_entity *se, *parent_se;
9b5b7751 8059 struct rq *rq;
29f59db3
SV
8060 int i;
8061
434d53b0 8062 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8063 if (!tg->cfs_rq)
8064 goto err;
434d53b0 8065 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8066 if (!tg->se)
8067 goto err;
052f1dc7
PZ
8068
8069 tg->shares = NICE_0_LOAD;
29f59db3
SV
8070
8071 for_each_possible_cpu(i) {
9b5b7751 8072 rq = cpu_rq(i);
29f59db3 8073
6f505b16
PZ
8074 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8075 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8076 if (!cfs_rq)
8077 goto err;
8078
6f505b16
PZ
8079 se = kmalloc_node(sizeof(struct sched_entity),
8080 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8081 if (!se)
8082 goto err;
8083
ec7dc8ac
DG
8084 parent_se = parent ? parent->se[i] : NULL;
8085 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8086 }
8087
8088 return 1;
8089
8090 err:
8091 return 0;
8092}
8093
8094static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8095{
8096 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8097 &cpu_rq(cpu)->leaf_cfs_rq_list);
8098}
8099
8100static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8101{
8102 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8103}
6d6bc0ad 8104#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8105static inline void free_fair_sched_group(struct task_group *tg)
8106{
8107}
8108
ec7dc8ac
DG
8109static inline
8110int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8111{
8112 return 1;
8113}
8114
8115static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8116{
8117}
8118
8119static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8120{
8121}
6d6bc0ad 8122#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8123
8124#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8125static void free_rt_sched_group(struct task_group *tg)
8126{
8127 int i;
8128
d0b27fa7
PZ
8129 destroy_rt_bandwidth(&tg->rt_bandwidth);
8130
bccbe08a
PZ
8131 for_each_possible_cpu(i) {
8132 if (tg->rt_rq)
8133 kfree(tg->rt_rq[i]);
8134 if (tg->rt_se)
8135 kfree(tg->rt_se[i]);
8136 }
8137
8138 kfree(tg->rt_rq);
8139 kfree(tg->rt_se);
8140}
8141
ec7dc8ac
DG
8142static
8143int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8144{
8145 struct rt_rq *rt_rq;
ec7dc8ac 8146 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8147 struct rq *rq;
8148 int i;
8149
434d53b0 8150 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8151 if (!tg->rt_rq)
8152 goto err;
434d53b0 8153 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8154 if (!tg->rt_se)
8155 goto err;
8156
d0b27fa7
PZ
8157 init_rt_bandwidth(&tg->rt_bandwidth,
8158 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8159
8160 for_each_possible_cpu(i) {
8161 rq = cpu_rq(i);
8162
6f505b16
PZ
8163 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8164 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8165 if (!rt_rq)
8166 goto err;
29f59db3 8167
6f505b16
PZ
8168 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8169 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8170 if (!rt_se)
8171 goto err;
29f59db3 8172
ec7dc8ac
DG
8173 parent_se = parent ? parent->rt_se[i] : NULL;
8174 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8175 }
8176
bccbe08a
PZ
8177 return 1;
8178
8179 err:
8180 return 0;
8181}
8182
8183static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8184{
8185 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8186 &cpu_rq(cpu)->leaf_rt_rq_list);
8187}
8188
8189static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8190{
8191 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8192}
6d6bc0ad 8193#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8194static inline void free_rt_sched_group(struct task_group *tg)
8195{
8196}
8197
ec7dc8ac
DG
8198static inline
8199int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8200{
8201 return 1;
8202}
8203
8204static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8205{
8206}
8207
8208static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8209{
8210}
6d6bc0ad 8211#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8212
d0b27fa7 8213#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8214static void free_sched_group(struct task_group *tg)
8215{
8216 free_fair_sched_group(tg);
8217 free_rt_sched_group(tg);
8218 kfree(tg);
8219}
8220
8221/* allocate runqueue etc for a new task group */
ec7dc8ac 8222struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8223{
8224 struct task_group *tg;
8225 unsigned long flags;
8226 int i;
8227
8228 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8229 if (!tg)
8230 return ERR_PTR(-ENOMEM);
8231
ec7dc8ac 8232 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8233 goto err;
8234
ec7dc8ac 8235 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8236 goto err;
8237
8ed36996 8238 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8239 for_each_possible_cpu(i) {
bccbe08a
PZ
8240 register_fair_sched_group(tg, i);
8241 register_rt_sched_group(tg, i);
9b5b7751 8242 }
6f505b16 8243 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8244
8245 WARN_ON(!parent); /* root should already exist */
8246
8247 tg->parent = parent;
8248 list_add_rcu(&tg->siblings, &parent->children);
8249 INIT_LIST_HEAD(&tg->children);
8ed36996 8250 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8251
9b5b7751 8252 return tg;
29f59db3
SV
8253
8254err:
6f505b16 8255 free_sched_group(tg);
29f59db3
SV
8256 return ERR_PTR(-ENOMEM);
8257}
8258
9b5b7751 8259/* rcu callback to free various structures associated with a task group */
6f505b16 8260static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8261{
29f59db3 8262 /* now it should be safe to free those cfs_rqs */
6f505b16 8263 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8264}
8265
9b5b7751 8266/* Destroy runqueue etc associated with a task group */
4cf86d77 8267void sched_destroy_group(struct task_group *tg)
29f59db3 8268{
8ed36996 8269 unsigned long flags;
9b5b7751 8270 int i;
29f59db3 8271
8ed36996 8272 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8273 for_each_possible_cpu(i) {
bccbe08a
PZ
8274 unregister_fair_sched_group(tg, i);
8275 unregister_rt_sched_group(tg, i);
9b5b7751 8276 }
6f505b16 8277 list_del_rcu(&tg->list);
f473aa5e 8278 list_del_rcu(&tg->siblings);
8ed36996 8279 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8280
9b5b7751 8281 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8282 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8283}
8284
9b5b7751 8285/* change task's runqueue when it moves between groups.
3a252015
IM
8286 * The caller of this function should have put the task in its new group
8287 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8288 * reflect its new group.
9b5b7751
SV
8289 */
8290void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8291{
8292 int on_rq, running;
8293 unsigned long flags;
8294 struct rq *rq;
8295
8296 rq = task_rq_lock(tsk, &flags);
8297
29f59db3
SV
8298 update_rq_clock(rq);
8299
051a1d1a 8300 running = task_current(rq, tsk);
29f59db3
SV
8301 on_rq = tsk->se.on_rq;
8302
0e1f3483 8303 if (on_rq)
29f59db3 8304 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8305 if (unlikely(running))
8306 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8307
6f505b16 8308 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8309
810b3817
PZ
8310#ifdef CONFIG_FAIR_GROUP_SCHED
8311 if (tsk->sched_class->moved_group)
8312 tsk->sched_class->moved_group(tsk);
8313#endif
8314
0e1f3483
HS
8315 if (unlikely(running))
8316 tsk->sched_class->set_curr_task(rq);
8317 if (on_rq)
7074badb 8318 enqueue_task(rq, tsk, 0);
29f59db3 8319
29f59db3
SV
8320 task_rq_unlock(rq, &flags);
8321}
6d6bc0ad 8322#endif /* CONFIG_GROUP_SCHED */
29f59db3 8323
052f1dc7 8324#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8325static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8326{
8327 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8328 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8329 int on_rq;
8330
6363ca57
IM
8331 spin_lock_irq(&rq->lock);
8332
29f59db3 8333 on_rq = se->on_rq;
62fb1851 8334 if (on_rq)
29f59db3
SV
8335 dequeue_entity(cfs_rq, se, 0);
8336
8337 se->load.weight = shares;
e05510d0 8338 se->load.inv_weight = 0;
29f59db3 8339
62fb1851 8340 if (on_rq)
29f59db3 8341 enqueue_entity(cfs_rq, se, 0);
62fb1851 8342
6363ca57 8343 spin_unlock_irq(&rq->lock);
29f59db3
SV
8344}
8345
8ed36996
PZ
8346static DEFINE_MUTEX(shares_mutex);
8347
4cf86d77 8348int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8349{
8350 int i;
8ed36996 8351 unsigned long flags;
c61935fd 8352
ec7dc8ac
DG
8353 /*
8354 * We can't change the weight of the root cgroup.
8355 */
8356 if (!tg->se[0])
8357 return -EINVAL;
8358
18d95a28
PZ
8359 if (shares < MIN_SHARES)
8360 shares = MIN_SHARES;
cb4ad1ff
MX
8361 else if (shares > MAX_SHARES)
8362 shares = MAX_SHARES;
62fb1851 8363
8ed36996 8364 mutex_lock(&shares_mutex);
9b5b7751 8365 if (tg->shares == shares)
5cb350ba 8366 goto done;
29f59db3 8367
8ed36996 8368 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8369 for_each_possible_cpu(i)
8370 unregister_fair_sched_group(tg, i);
f473aa5e 8371 list_del_rcu(&tg->siblings);
8ed36996 8372 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8373
8374 /* wait for any ongoing reference to this group to finish */
8375 synchronize_sched();
8376
8377 /*
8378 * Now we are free to modify the group's share on each cpu
8379 * w/o tripping rebalance_share or load_balance_fair.
8380 */
9b5b7751 8381 tg->shares = shares;
6363ca57 8382 for_each_possible_cpu(i)
cb4ad1ff 8383 set_se_shares(tg->se[i], shares);
29f59db3 8384
6b2d7700
SV
8385 /*
8386 * Enable load balance activity on this group, by inserting it back on
8387 * each cpu's rq->leaf_cfs_rq_list.
8388 */
8ed36996 8389 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8390 for_each_possible_cpu(i)
8391 register_fair_sched_group(tg, i);
f473aa5e 8392 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8393 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8394done:
8ed36996 8395 mutex_unlock(&shares_mutex);
9b5b7751 8396 return 0;
29f59db3
SV
8397}
8398
5cb350ba
DG
8399unsigned long sched_group_shares(struct task_group *tg)
8400{
8401 return tg->shares;
8402}
052f1dc7 8403#endif
5cb350ba 8404
052f1dc7 8405#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8406/*
9f0c1e56 8407 * Ensure that the real time constraints are schedulable.
6f505b16 8408 */
9f0c1e56
PZ
8409static DEFINE_MUTEX(rt_constraints_mutex);
8410
8411static unsigned long to_ratio(u64 period, u64 runtime)
8412{
8413 if (runtime == RUNTIME_INF)
8414 return 1ULL << 16;
8415
6f6d6a1a 8416 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8417}
8418
b40b2e8e
PZ
8419#ifdef CONFIG_CGROUP_SCHED
8420static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8421{
49307fd6 8422 struct task_group *tgi, *parent = tg ? tg->parent : NULL;
b40b2e8e
PZ
8423 unsigned long total = 0;
8424
8425 if (!parent) {
8426 if (global_rt_period() < period)
8427 return 0;
8428
8429 return to_ratio(period, runtime) <
8430 to_ratio(global_rt_period(), global_rt_runtime());
8431 }
8432
8433 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8434 return 0;
8435
8436 rcu_read_lock();
8437 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8438 if (tgi == tg)
8439 continue;
8440
8441 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8442 tgi->rt_bandwidth.rt_runtime);
8443 }
8444 rcu_read_unlock();
8445
8446 return total + to_ratio(period, runtime) <
8447 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8448 parent->rt_bandwidth.rt_runtime);
8449}
8450#elif defined CONFIG_USER_SCHED
9f0c1e56 8451static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8452{
8453 struct task_group *tgi;
8454 unsigned long total = 0;
9f0c1e56 8455 unsigned long global_ratio =
d0b27fa7 8456 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8457
8458 rcu_read_lock();
9f0c1e56
PZ
8459 list_for_each_entry_rcu(tgi, &task_groups, list) {
8460 if (tgi == tg)
8461 continue;
6f505b16 8462
d0b27fa7
PZ
8463 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8464 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8465 }
8466 rcu_read_unlock();
6f505b16 8467
9f0c1e56 8468 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8469}
b40b2e8e 8470#endif
6f505b16 8471
521f1a24
DG
8472/* Must be called with tasklist_lock held */
8473static inline int tg_has_rt_tasks(struct task_group *tg)
8474{
8475 struct task_struct *g, *p;
8476 do_each_thread(g, p) {
8477 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8478 return 1;
8479 } while_each_thread(g, p);
8480 return 0;
8481}
8482
d0b27fa7
PZ
8483static int tg_set_bandwidth(struct task_group *tg,
8484 u64 rt_period, u64 rt_runtime)
6f505b16 8485{
ac086bc2 8486 int i, err = 0;
9f0c1e56 8487
9f0c1e56 8488 mutex_lock(&rt_constraints_mutex);
521f1a24 8489 read_lock(&tasklist_lock);
ac086bc2 8490 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8491 err = -EBUSY;
8492 goto unlock;
8493 }
9f0c1e56
PZ
8494 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8495 err = -EINVAL;
8496 goto unlock;
8497 }
ac086bc2
PZ
8498
8499 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8500 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8501 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8502
8503 for_each_possible_cpu(i) {
8504 struct rt_rq *rt_rq = tg->rt_rq[i];
8505
8506 spin_lock(&rt_rq->rt_runtime_lock);
8507 rt_rq->rt_runtime = rt_runtime;
8508 spin_unlock(&rt_rq->rt_runtime_lock);
8509 }
8510 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8511 unlock:
521f1a24 8512 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8513 mutex_unlock(&rt_constraints_mutex);
8514
8515 return err;
6f505b16
PZ
8516}
8517
d0b27fa7
PZ
8518int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8519{
8520 u64 rt_runtime, rt_period;
8521
8522 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8523 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8524 if (rt_runtime_us < 0)
8525 rt_runtime = RUNTIME_INF;
8526
8527 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8528}
8529
9f0c1e56
PZ
8530long sched_group_rt_runtime(struct task_group *tg)
8531{
8532 u64 rt_runtime_us;
8533
d0b27fa7 8534 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8535 return -1;
8536
d0b27fa7 8537 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8538 do_div(rt_runtime_us, NSEC_PER_USEC);
8539 return rt_runtime_us;
8540}
d0b27fa7
PZ
8541
8542int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8543{
8544 u64 rt_runtime, rt_period;
8545
8546 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8547 rt_runtime = tg->rt_bandwidth.rt_runtime;
8548
8549 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8550}
8551
8552long sched_group_rt_period(struct task_group *tg)
8553{
8554 u64 rt_period_us;
8555
8556 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8557 do_div(rt_period_us, NSEC_PER_USEC);
8558 return rt_period_us;
8559}
8560
8561static int sched_rt_global_constraints(void)
8562{
8563 int ret = 0;
8564
8565 mutex_lock(&rt_constraints_mutex);
8566 if (!__rt_schedulable(NULL, 1, 0))
8567 ret = -EINVAL;
8568 mutex_unlock(&rt_constraints_mutex);
8569
8570 return ret;
8571}
6d6bc0ad 8572#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8573static int sched_rt_global_constraints(void)
8574{
ac086bc2
PZ
8575 unsigned long flags;
8576 int i;
8577
8578 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8579 for_each_possible_cpu(i) {
8580 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8581
8582 spin_lock(&rt_rq->rt_runtime_lock);
8583 rt_rq->rt_runtime = global_rt_runtime();
8584 spin_unlock(&rt_rq->rt_runtime_lock);
8585 }
8586 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8587
d0b27fa7
PZ
8588 return 0;
8589}
6d6bc0ad 8590#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8591
8592int sched_rt_handler(struct ctl_table *table, int write,
8593 struct file *filp, void __user *buffer, size_t *lenp,
8594 loff_t *ppos)
8595{
8596 int ret;
8597 int old_period, old_runtime;
8598 static DEFINE_MUTEX(mutex);
8599
8600 mutex_lock(&mutex);
8601 old_period = sysctl_sched_rt_period;
8602 old_runtime = sysctl_sched_rt_runtime;
8603
8604 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8605
8606 if (!ret && write) {
8607 ret = sched_rt_global_constraints();
8608 if (ret) {
8609 sysctl_sched_rt_period = old_period;
8610 sysctl_sched_rt_runtime = old_runtime;
8611 } else {
8612 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8613 def_rt_bandwidth.rt_period =
8614 ns_to_ktime(global_rt_period());
8615 }
8616 }
8617 mutex_unlock(&mutex);
8618
8619 return ret;
8620}
68318b8e 8621
052f1dc7 8622#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8623
8624/* return corresponding task_group object of a cgroup */
2b01dfe3 8625static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8626{
2b01dfe3
PM
8627 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8628 struct task_group, css);
68318b8e
SV
8629}
8630
8631static struct cgroup_subsys_state *
2b01dfe3 8632cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8633{
ec7dc8ac 8634 struct task_group *tg, *parent;
68318b8e 8635
2b01dfe3 8636 if (!cgrp->parent) {
68318b8e 8637 /* This is early initialization for the top cgroup */
2b01dfe3 8638 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8639 return &init_task_group.css;
8640 }
8641
ec7dc8ac
DG
8642 parent = cgroup_tg(cgrp->parent);
8643 tg = sched_create_group(parent);
68318b8e
SV
8644 if (IS_ERR(tg))
8645 return ERR_PTR(-ENOMEM);
8646
8647 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8648 tg->css.cgroup = cgrp;
68318b8e
SV
8649
8650 return &tg->css;
8651}
8652
41a2d6cf
IM
8653static void
8654cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8655{
2b01dfe3 8656 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8657
8658 sched_destroy_group(tg);
8659}
8660
41a2d6cf
IM
8661static int
8662cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8663 struct task_struct *tsk)
68318b8e 8664{
b68aa230
PZ
8665#ifdef CONFIG_RT_GROUP_SCHED
8666 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8667 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8668 return -EINVAL;
8669#else
68318b8e
SV
8670 /* We don't support RT-tasks being in separate groups */
8671 if (tsk->sched_class != &fair_sched_class)
8672 return -EINVAL;
b68aa230 8673#endif
68318b8e
SV
8674
8675 return 0;
8676}
8677
8678static void
2b01dfe3 8679cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8680 struct cgroup *old_cont, struct task_struct *tsk)
8681{
8682 sched_move_task(tsk);
8683}
8684
052f1dc7 8685#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8686static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8687 u64 shareval)
68318b8e 8688{
2b01dfe3 8689 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8690}
8691
f4c753b7 8692static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8693{
2b01dfe3 8694 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8695
8696 return (u64) tg->shares;
8697}
6d6bc0ad 8698#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8699
052f1dc7 8700#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8701static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8702 s64 val)
6f505b16 8703{
06ecb27c 8704 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8705}
8706
06ecb27c 8707static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8708{
06ecb27c 8709 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8710}
d0b27fa7
PZ
8711
8712static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8713 u64 rt_period_us)
8714{
8715 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8716}
8717
8718static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8719{
8720 return sched_group_rt_period(cgroup_tg(cgrp));
8721}
6d6bc0ad 8722#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8723
fe5c7cc2 8724static struct cftype cpu_files[] = {
052f1dc7 8725#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8726 {
8727 .name = "shares",
f4c753b7
PM
8728 .read_u64 = cpu_shares_read_u64,
8729 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8730 },
052f1dc7
PZ
8731#endif
8732#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8733 {
9f0c1e56 8734 .name = "rt_runtime_us",
06ecb27c
PM
8735 .read_s64 = cpu_rt_runtime_read,
8736 .write_s64 = cpu_rt_runtime_write,
6f505b16 8737 },
d0b27fa7
PZ
8738 {
8739 .name = "rt_period_us",
f4c753b7
PM
8740 .read_u64 = cpu_rt_period_read_uint,
8741 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8742 },
052f1dc7 8743#endif
68318b8e
SV
8744};
8745
8746static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8747{
fe5c7cc2 8748 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8749}
8750
8751struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8752 .name = "cpu",
8753 .create = cpu_cgroup_create,
8754 .destroy = cpu_cgroup_destroy,
8755 .can_attach = cpu_cgroup_can_attach,
8756 .attach = cpu_cgroup_attach,
8757 .populate = cpu_cgroup_populate,
8758 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8759 .early_init = 1,
8760};
8761
052f1dc7 8762#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8763
8764#ifdef CONFIG_CGROUP_CPUACCT
8765
8766/*
8767 * CPU accounting code for task groups.
8768 *
8769 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8770 * (balbir@in.ibm.com).
8771 */
8772
8773/* track cpu usage of a group of tasks */
8774struct cpuacct {
8775 struct cgroup_subsys_state css;
8776 /* cpuusage holds pointer to a u64-type object on every cpu */
8777 u64 *cpuusage;
8778};
8779
8780struct cgroup_subsys cpuacct_subsys;
8781
8782/* return cpu accounting group corresponding to this container */
32cd756a 8783static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8784{
32cd756a 8785 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8786 struct cpuacct, css);
8787}
8788
8789/* return cpu accounting group to which this task belongs */
8790static inline struct cpuacct *task_ca(struct task_struct *tsk)
8791{
8792 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8793 struct cpuacct, css);
8794}
8795
8796/* create a new cpu accounting group */
8797static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8798 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8799{
8800 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8801
8802 if (!ca)
8803 return ERR_PTR(-ENOMEM);
8804
8805 ca->cpuusage = alloc_percpu(u64);
8806 if (!ca->cpuusage) {
8807 kfree(ca);
8808 return ERR_PTR(-ENOMEM);
8809 }
8810
8811 return &ca->css;
8812}
8813
8814/* destroy an existing cpu accounting group */
41a2d6cf 8815static void
32cd756a 8816cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8817{
32cd756a 8818 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8819
8820 free_percpu(ca->cpuusage);
8821 kfree(ca);
8822}
8823
8824/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8825static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8826{
32cd756a 8827 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8828 u64 totalcpuusage = 0;
8829 int i;
8830
8831 for_each_possible_cpu(i) {
8832 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8833
8834 /*
8835 * Take rq->lock to make 64-bit addition safe on 32-bit
8836 * platforms.
8837 */
8838 spin_lock_irq(&cpu_rq(i)->lock);
8839 totalcpuusage += *cpuusage;
8840 spin_unlock_irq(&cpu_rq(i)->lock);
8841 }
8842
8843 return totalcpuusage;
8844}
8845
0297b803
DG
8846static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8847 u64 reset)
8848{
8849 struct cpuacct *ca = cgroup_ca(cgrp);
8850 int err = 0;
8851 int i;
8852
8853 if (reset) {
8854 err = -EINVAL;
8855 goto out;
8856 }
8857
8858 for_each_possible_cpu(i) {
8859 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8860
8861 spin_lock_irq(&cpu_rq(i)->lock);
8862 *cpuusage = 0;
8863 spin_unlock_irq(&cpu_rq(i)->lock);
8864 }
8865out:
8866 return err;
8867}
8868
d842de87
SV
8869static struct cftype files[] = {
8870 {
8871 .name = "usage",
f4c753b7
PM
8872 .read_u64 = cpuusage_read,
8873 .write_u64 = cpuusage_write,
d842de87
SV
8874 },
8875};
8876
32cd756a 8877static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8878{
32cd756a 8879 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8880}
8881
8882/*
8883 * charge this task's execution time to its accounting group.
8884 *
8885 * called with rq->lock held.
8886 */
8887static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8888{
8889 struct cpuacct *ca;
8890
8891 if (!cpuacct_subsys.active)
8892 return;
8893
8894 ca = task_ca(tsk);
8895 if (ca) {
8896 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8897
8898 *cpuusage += cputime;
8899 }
8900}
8901
8902struct cgroup_subsys cpuacct_subsys = {
8903 .name = "cpuacct",
8904 .create = cpuacct_create,
8905 .destroy = cpuacct_destroy,
8906 .populate = cpuacct_populate,
8907 .subsys_id = cpuacct_subsys_id,
8908};
8909#endif /* CONFIG_CGROUP_CPUACCT */