sched: Cleanup set_load_weight()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
4934a4d3 331#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 332 unsigned int nr_spread_over;
4934a4d3 333#endif
ddc97297 334
62160e3f 335#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337
41a2d6cf
IM
338 /*
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
342 *
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
345 */
3d4b47b4 346 int on_list;
41a2d6cf
IM
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
349
350#ifdef CONFIG_SMP
c09595f6 351 /*
c8cba857 352 * the part of load.weight contributed by tasks
c09595f6 353 */
c8cba857 354 unsigned long task_weight;
c09595f6 355
c8cba857
PZ
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
c09595f6 363
c8cba857 364 /*
3b3d190e
PT
365 * Maintaining per-cpu shares distribution for group scheduling
366 *
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 370 */
2069dd75
PZ
371 u64 load_avg;
372 u64 load_period;
3b3d190e 373 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 374
2069dd75 375 unsigned long load_contribution;
c09595f6 376#endif
6aa645ea
IM
377#endif
378};
1da177e4 379
6aa645ea
IM
380/* Real-Time classes' related field in a runqueue: */
381struct rt_rq {
382 struct rt_prio_array active;
63489e45 383 unsigned long rt_nr_running;
052f1dc7 384#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
385 struct {
386 int curr; /* highest queued rt task prio */
398a153b 387#ifdef CONFIG_SMP
e864c499 388 int next; /* next highest */
398a153b 389#endif
e864c499 390 } highest_prio;
6f505b16 391#endif
fa85ae24 392#ifdef CONFIG_SMP
73fe6aae 393 unsigned long rt_nr_migratory;
a1ba4d8b 394 unsigned long rt_nr_total;
a22d7fc1 395 int overloaded;
917b627d 396 struct plist_head pushable_tasks;
fa85ae24 397#endif
6f505b16 398 int rt_throttled;
fa85ae24 399 u64 rt_time;
ac086bc2 400 u64 rt_runtime;
ea736ed5 401 /* Nests inside the rq lock: */
0986b11b 402 raw_spinlock_t rt_runtime_lock;
6f505b16 403
052f1dc7 404#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
405 unsigned long rt_nr_boosted;
406
6f505b16
PZ
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
6f505b16 410#endif
6aa645ea
IM
411};
412
57d885fe
GH
413#ifdef CONFIG_SMP
414
415/*
416 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
421 *
57d885fe
GH
422 */
423struct root_domain {
424 atomic_t refcount;
dce840a0 425 struct rcu_head rcu;
c6c4927b
RR
426 cpumask_var_t span;
427 cpumask_var_t online;
637f5085 428
0eab9146 429 /*
637f5085
GH
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
432 */
c6c4927b 433 cpumask_var_t rto_mask;
0eab9146 434 atomic_t rto_count;
6e0534f2 435 struct cpupri cpupri;
57d885fe
GH
436};
437
dc938520
GH
438/*
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
441 */
57d885fe
GH
442static struct root_domain def_root_domain;
443
ed2d372c 444#endif /* CONFIG_SMP */
57d885fe 445
1da177e4
LT
446/*
447 * This is the main, per-CPU runqueue data structure.
448 *
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
452 */
70b97a7f 453struct rq {
d8016491 454 /* runqueue lock: */
05fa785c 455 raw_spinlock_t lock;
1da177e4
LT
456
457 /*
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
460 */
461 unsigned long nr_running;
6aa645ea
IM
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 464 unsigned long last_load_update_tick;
46cb4b7c 465#ifdef CONFIG_NO_HZ
39c0cbe2 466 u64 nohz_stamp;
83cd4fe2 467 unsigned char nohz_balance_kick;
46cb4b7c 468#endif
61eadef6 469 int skip_clock_update;
a64692a3 470
d8016491
IM
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
6aa645ea
IM
473 unsigned long nr_load_updates;
474 u64 nr_switches;
475
476 struct cfs_rq cfs;
6f505b16 477 struct rt_rq rt;
6f505b16 478
6aa645ea 479#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
482#endif
483#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 484 struct list_head leaf_rt_rq_list;
1da177e4 485#endif
1da177e4
LT
486
487 /*
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
492 */
493 unsigned long nr_uninterruptible;
494
34f971f6 495 struct task_struct *curr, *idle, *stop;
c9819f45 496 unsigned long next_balance;
1da177e4 497 struct mm_struct *prev_mm;
6aa645ea 498
3e51f33f 499 u64 clock;
305e6835 500 u64 clock_task;
6aa645ea 501
1da177e4
LT
502 atomic_t nr_iowait;
503
504#ifdef CONFIG_SMP
0eab9146 505 struct root_domain *rd;
1da177e4
LT
506 struct sched_domain *sd;
507
e51fd5e2
PZ
508 unsigned long cpu_power;
509
a0a522ce 510 unsigned char idle_at_tick;
1da177e4 511 /* For active balancing */
3f029d3c 512 int post_schedule;
1da177e4
LT
513 int active_balance;
514 int push_cpu;
969c7921 515 struct cpu_stop_work active_balance_work;
d8016491
IM
516 /* cpu of this runqueue: */
517 int cpu;
1f11eb6a 518 int online;
1da177e4 519
a8a51d5e 520 unsigned long avg_load_per_task;
1da177e4 521
e9e9250b
PZ
522 u64 rt_avg;
523 u64 age_stamp;
1b9508f6
MG
524 u64 idle_stamp;
525 u64 avg_idle;
1da177e4
LT
526#endif
527
aa483808
VP
528#ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530#endif
531
dce48a84
TG
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
535
8f4d37ec 536#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
537#ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540#endif
8f4d37ec
PZ
541 struct hrtimer hrtick_timer;
542#endif
543
1da177e4
LT
544#ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
9c2c4802
KC
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
549
550 /* sys_sched_yield() stats */
480b9434 551 unsigned int yld_count;
1da177e4
LT
552
553 /* schedule() stats */
480b9434
KC
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
1da177e4
LT
557
558 /* try_to_wake_up() stats */
480b9434
KC
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
1da177e4 561#endif
317f3941
PZ
562
563#ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565#endif
1da177e4
LT
566};
567
f34e3b61 568static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 569
a64692a3 570
1e5a7405 571static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d 583 rcu_dereference_check((p), \
dce840a0 584 rcu_read_lock_held() || \
d11c563d
PM
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
5091faa4 615 struct task_group *tg;
dc61b1d6
PZ
616 struct cgroup_subsys_state *css;
617
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 619 lockdep_is_held(&p->pi_lock));
5091faa4
MG
620 tg = container_of(css, struct task_group, css);
621
622 return autogroup_task_group(p, tg);
dc61b1d6
PZ
623}
624
625/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
627{
628#ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
631#endif
632
633#ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
636#endif
637}
638
639#else /* CONFIG_CGROUP_SCHED */
640
641static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642static inline struct task_group *task_group(struct task_struct *p)
643{
644 return NULL;
645}
646
647#endif /* CONFIG_CGROUP_SCHED */
648
fe44d621 649static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 650
fe44d621 651static void update_rq_clock(struct rq *rq)
3e51f33f 652{
fe44d621 653 s64 delta;
305e6835 654
61eadef6 655 if (rq->skip_clock_update > 0)
f26f9aff 656 return;
aa483808 657
fe44d621
PZ
658 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
659 rq->clock += delta;
660 update_rq_clock_task(rq, delta);
3e51f33f
PZ
661}
662
bf5c91ba
IM
663/*
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
665 */
666#ifdef CONFIG_SCHED_DEBUG
667# define const_debug __read_mostly
668#else
669# define const_debug static const
670#endif
671
017730c1 672/**
1fd06bb1 673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 674 * @cpu: the processor in question.
017730c1 675 *
017730c1
IM
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
678 */
89f19f04 679int runqueue_is_locked(int cpu)
017730c1 680{
05fa785c 681 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
682}
683
bf5c91ba
IM
684/*
685 * Debugging: various feature bits
686 */
f00b45c1
PZ
687
688#define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
690
bf5c91ba 691enum {
f00b45c1 692#include "sched_features.h"
bf5c91ba
IM
693};
694
f00b45c1
PZ
695#undef SCHED_FEAT
696
697#define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
699
bf5c91ba 700const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
701#include "sched_features.h"
702 0;
703
704#undef SCHED_FEAT
705
706#ifdef CONFIG_SCHED_DEBUG
707#define SCHED_FEAT(name, enabled) \
708 #name ,
709
983ed7a6 710static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
711#include "sched_features.h"
712 NULL
713};
714
715#undef SCHED_FEAT
716
34f3a814 717static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 718{
f00b45c1
PZ
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
722 if (!(sysctl_sched_features & (1UL << i)))
723 seq_puts(m, "NO_");
724 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 725 }
34f3a814 726 seq_puts(m, "\n");
f00b45c1 727
34f3a814 728 return 0;
f00b45c1
PZ
729}
730
731static ssize_t
732sched_feat_write(struct file *filp, const char __user *ubuf,
733 size_t cnt, loff_t *ppos)
734{
735 char buf[64];
7740191c 736 char *cmp;
f00b45c1
PZ
737 int neg = 0;
738 int i;
739
740 if (cnt > 63)
741 cnt = 63;
742
743 if (copy_from_user(&buf, ubuf, cnt))
744 return -EFAULT;
745
746 buf[cnt] = 0;
7740191c 747 cmp = strstrip(buf);
f00b45c1 748
524429c3 749 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
750 neg = 1;
751 cmp += 3;
752 }
753
754 for (i = 0; sched_feat_names[i]; i++) {
7740191c 755 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
756 if (neg)
757 sysctl_sched_features &= ~(1UL << i);
758 else
759 sysctl_sched_features |= (1UL << i);
760 break;
761 }
762 }
763
764 if (!sched_feat_names[i])
765 return -EINVAL;
766
42994724 767 *ppos += cnt;
f00b45c1
PZ
768
769 return cnt;
770}
771
34f3a814
LZ
772static int sched_feat_open(struct inode *inode, struct file *filp)
773{
774 return single_open(filp, sched_feat_show, NULL);
775}
776
828c0950 777static const struct file_operations sched_feat_fops = {
34f3a814
LZ
778 .open = sched_feat_open,
779 .write = sched_feat_write,
780 .read = seq_read,
781 .llseek = seq_lseek,
782 .release = single_release,
f00b45c1
PZ
783};
784
785static __init int sched_init_debug(void)
786{
f00b45c1
PZ
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
788 &sched_feat_fops);
789
790 return 0;
791}
792late_initcall(sched_init_debug);
793
794#endif
795
796#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 797
b82d9fdd
PZ
798/*
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
801 */
802const_debug unsigned int sysctl_sched_nr_migrate = 32;
803
e9e9250b
PZ
804/*
805 * period over which we average the RT time consumption, measured
806 * in ms.
807 *
808 * default: 1s
809 */
810const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
811
fa85ae24 812/*
9f0c1e56 813 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
814 * default: 1s
815 */
9f0c1e56 816unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 817
6892b75e
IM
818static __read_mostly int scheduler_running;
819
9f0c1e56
PZ
820/*
821 * part of the period that we allow rt tasks to run in us.
822 * default: 0.95s
823 */
824int sysctl_sched_rt_runtime = 950000;
fa85ae24 825
d0b27fa7
PZ
826static inline u64 global_rt_period(void)
827{
828 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
829}
830
831static inline u64 global_rt_runtime(void)
832{
e26873bb 833 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
834 return RUNTIME_INF;
835
836 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
837}
fa85ae24 838
1da177e4 839#ifndef prepare_arch_switch
4866cde0
NP
840# define prepare_arch_switch(next) do { } while (0)
841#endif
842#ifndef finish_arch_switch
843# define finish_arch_switch(prev) do { } while (0)
844#endif
845
051a1d1a
DA
846static inline int task_current(struct rq *rq, struct task_struct *p)
847{
848 return rq->curr == p;
849}
850
70b97a7f 851static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 852{
3ca7a440
PZ
853#ifdef CONFIG_SMP
854 return p->on_cpu;
855#else
051a1d1a 856 return task_current(rq, p);
3ca7a440 857#endif
4866cde0
NP
858}
859
3ca7a440 860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 861static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 862{
3ca7a440
PZ
863#ifdef CONFIG_SMP
864 /*
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
867 * here.
868 */
869 next->on_cpu = 1;
870#endif
4866cde0
NP
871}
872
70b97a7f 873static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 874{
3ca7a440
PZ
875#ifdef CONFIG_SMP
876 /*
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
879 * finished.
880 */
881 smp_wmb();
882 prev->on_cpu = 0;
883#endif
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
05fa785c 895 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
906 */
3ca7a440 907 next->on_cpu = 1;
4866cde0
NP
908#endif
909#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 910 raw_spin_unlock_irq(&rq->lock);
4866cde0 911#else
05fa785c 912 raw_spin_unlock(&rq->lock);
4866cde0
NP
913#endif
914}
915
70b97a7f 916static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
917{
918#ifdef CONFIG_SMP
919 /*
3ca7a440 920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
921 * We must ensure this doesn't happen until the switch is completely
922 * finished.
923 */
924 smp_wmb();
3ca7a440 925 prev->on_cpu = 0;
4866cde0
NP
926#endif
927#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 local_irq_enable();
1da177e4 929#endif
4866cde0
NP
930}
931#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 932
0970d299 933/*
0122ec5b 934 * __task_rq_lock - lock the rq @p resides on.
b29739f9 935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
0122ec5b
PZ
941 lockdep_assert_held(&p->pi_lock);
942
3a5c359a 943 for (;;) {
0970d299 944 rq = task_rq(p);
05fa785c 945 raw_spin_lock(&rq->lock);
65cc8e48 946 if (likely(rq == task_rq(p)))
3a5c359a 947 return rq;
05fa785c 948 raw_spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4 952/*
0122ec5b 953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 956 __acquires(p->pi_lock)
1da177e4
LT
957 __acquires(rq->lock)
958{
70b97a7f 959 struct rq *rq;
1da177e4 960
3a5c359a 961 for (;;) {
0122ec5b 962 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
65cc8e48 965 if (likely(rq == task_rq(p)))
3a5c359a 966 return rq;
0122ec5b
PZ
967 raw_spin_unlock(&rq->lock);
968 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
05fa785c 975 raw_spin_unlock(&rq->lock);
b29739f9
IM
976}
977
0122ec5b
PZ
978static inline void
979task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 980 __releases(rq->lock)
0122ec5b 981 __releases(p->pi_lock)
1da177e4 982{
0122ec5b
PZ
983 raw_spin_unlock(&rq->lock);
984 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
985}
986
1da177e4 987/*
cc2a73b5 988 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 989 */
a9957449 990static struct rq *this_rq_lock(void)
1da177e4
LT
991 __acquires(rq->lock)
992{
70b97a7f 993 struct rq *rq;
1da177e4
LT
994
995 local_irq_disable();
996 rq = this_rq();
05fa785c 997 raw_spin_lock(&rq->lock);
1da177e4
LT
998
999 return rq;
1000}
1001
8f4d37ec
PZ
1002#ifdef CONFIG_SCHED_HRTICK
1003/*
1004 * Use HR-timers to deliver accurate preemption points.
1005 *
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * reschedule event.
1009 *
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * rq->lock.
1012 */
8f4d37ec
PZ
1013
1014/*
1015 * Use hrtick when:
1016 * - enabled by features
1017 * - hrtimer is actually high res
1018 */
1019static inline int hrtick_enabled(struct rq *rq)
1020{
1021 if (!sched_feat(HRTICK))
1022 return 0;
ba42059f 1023 if (!cpu_active(cpu_of(rq)))
b328ca18 1024 return 0;
8f4d37ec
PZ
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026}
1027
8f4d37ec
PZ
1028static void hrtick_clear(struct rq *rq)
1029{
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1032}
1033
8f4d37ec
PZ
1034/*
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1037 */
1038static enum hrtimer_restart hrtick(struct hrtimer *timer)
1039{
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1041
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1043
05fa785c 1044 raw_spin_lock(&rq->lock);
3e51f33f 1045 update_rq_clock(rq);
8f4d37ec 1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1047 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1048
1049 return HRTIMER_NORESTART;
1050}
1051
95e904c7 1052#ifdef CONFIG_SMP
31656519
PZ
1053/*
1054 * called from hardirq (IPI) context
1055 */
1056static void __hrtick_start(void *arg)
b328ca18 1057{
31656519 1058 struct rq *rq = arg;
b328ca18 1059
05fa785c 1060 raw_spin_lock(&rq->lock);
31656519
PZ
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
05fa785c 1063 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1064}
1065
31656519
PZ
1066/*
1067 * Called to set the hrtick timer state.
1068 *
1069 * called with rq->lock held and irqs disabled
1070 */
1071static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1072{
31656519
PZ
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1075
cc584b21 1076 hrtimer_set_expires(timer, time);
31656519
PZ
1077
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
6e275637 1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1082 rq->hrtick_csd_pending = 1;
1083 }
b328ca18
PZ
1084}
1085
1086static int
1087hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1088{
1089 int cpu = (int)(long)hcpu;
1090
1091 switch (action) {
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1096 case CPU_DEAD:
1097 case CPU_DEAD_FROZEN:
31656519 1098 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1099 return NOTIFY_OK;
1100 }
1101
1102 return NOTIFY_DONE;
1103}
1104
fa748203 1105static __init void init_hrtick(void)
b328ca18
PZ
1106{
1107 hotcpu_notifier(hotplug_hrtick, 0);
1108}
31656519
PZ
1109#else
1110/*
1111 * Called to set the hrtick timer state.
1112 *
1113 * called with rq->lock held and irqs disabled
1114 */
1115static void hrtick_start(struct rq *rq, u64 delay)
1116{
7f1e2ca9 1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1118 HRTIMER_MODE_REL_PINNED, 0);
31656519 1119}
b328ca18 1120
006c75f1 1121static inline void init_hrtick(void)
8f4d37ec 1122{
8f4d37ec 1123}
31656519 1124#endif /* CONFIG_SMP */
8f4d37ec 1125
31656519 1126static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1127{
31656519
PZ
1128#ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
8f4d37ec 1130
31656519
PZ
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134#endif
8f4d37ec 1135
31656519
PZ
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
8f4d37ec 1138}
006c75f1 1139#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1140static inline void hrtick_clear(struct rq *rq)
1141{
1142}
1143
8f4d37ec
PZ
1144static inline void init_rq_hrtick(struct rq *rq)
1145{
1146}
1147
b328ca18
PZ
1148static inline void init_hrtick(void)
1149{
1150}
006c75f1 1151#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1152
c24d20db
IM
1153/*
1154 * resched_task - mark a task 'to be rescheduled now'.
1155 *
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1158 * the target CPU.
1159 */
1160#ifdef CONFIG_SMP
1161
1162#ifndef tsk_is_polling
1163#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164#endif
1165
31656519 1166static void resched_task(struct task_struct *p)
c24d20db
IM
1167{
1168 int cpu;
1169
05fa785c 1170 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1171
5ed0cec0 1172 if (test_tsk_need_resched(p))
c24d20db
IM
1173 return;
1174
5ed0cec0 1175 set_tsk_need_resched(p);
c24d20db
IM
1176
1177 cpu = task_cpu(p);
1178 if (cpu == smp_processor_id())
1179 return;
1180
1181 /* NEED_RESCHED must be visible before we test polling */
1182 smp_mb();
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1185}
1186
1187static void resched_cpu(int cpu)
1188{
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1191
05fa785c 1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1193 return;
1194 resched_task(cpu_curr(cpu));
05fa785c 1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1196}
06d8308c
TG
1197
1198#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1199/*
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1202 *
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1206 */
1207int get_nohz_timer_target(void)
1208{
1209 int cpu = smp_processor_id();
1210 int i;
1211 struct sched_domain *sd;
1212
057f3fad 1213 rcu_read_lock();
83cd4fe2 1214 for_each_domain(cpu, sd) {
057f3fad
PZ
1215 for_each_cpu(i, sched_domain_span(sd)) {
1216 if (!idle_cpu(i)) {
1217 cpu = i;
1218 goto unlock;
1219 }
1220 }
83cd4fe2 1221 }
057f3fad
PZ
1222unlock:
1223 rcu_read_unlock();
83cd4fe2
VP
1224 return cpu;
1225}
06d8308c
TG
1226/*
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1235 */
1236void wake_up_idle_cpu(int cpu)
1237{
1238 struct rq *rq = cpu_rq(cpu);
1239
1240 if (cpu == smp_processor_id())
1241 return;
1242
1243 /*
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1249 */
1250 if (rq->curr != rq->idle)
1251 return;
1252
1253 /*
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1257 */
5ed0cec0 1258 set_tsk_need_resched(rq->idle);
06d8308c
TG
1259
1260 /* NEED_RESCHED must be visible before we test polling */
1261 smp_mb();
1262 if (!tsk_is_polling(rq->idle))
1263 smp_send_reschedule(cpu);
1264}
39c0cbe2 1265
6d6bc0ad 1266#endif /* CONFIG_NO_HZ */
06d8308c 1267
e9e9250b
PZ
1268static u64 sched_avg_period(void)
1269{
1270 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1271}
1272
1273static void sched_avg_update(struct rq *rq)
1274{
1275 s64 period = sched_avg_period();
1276
1277 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1278 /*
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1282 */
1283 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1284 rq->age_stamp += period;
1285 rq->rt_avg /= 2;
1286 }
1287}
1288
1289static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290{
1291 rq->rt_avg += rt_delta;
1292 sched_avg_update(rq);
1293}
1294
6d6bc0ad 1295#else /* !CONFIG_SMP */
31656519 1296static void resched_task(struct task_struct *p)
c24d20db 1297{
05fa785c 1298 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1299 set_tsk_need_resched(p);
c24d20db 1300}
e9e9250b
PZ
1301
1302static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1303{
1304}
da2b71ed
SS
1305
1306static void sched_avg_update(struct rq *rq)
1307{
1308}
6d6bc0ad 1309#endif /* CONFIG_SMP */
c24d20db 1310
45bf76df
IM
1311#if BITS_PER_LONG == 32
1312# define WMULT_CONST (~0UL)
1313#else
1314# define WMULT_CONST (1UL << 32)
1315#endif
1316
1317#define WMULT_SHIFT 32
1318
194081eb
IM
1319/*
1320 * Shift right and round:
1321 */
cf2ab469 1322#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1323
a7be37ac
PZ
1324/*
1325 * delta *= weight / lw
1326 */
cb1c4fc9 1327static unsigned long
45bf76df
IM
1328calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1329 struct load_weight *lw)
1330{
1331 u64 tmp;
1332
db670dac
SB
1333 tmp = (u64)delta_exec * weight;
1334
7a232e03
LJ
1335 if (!lw->inv_weight) {
1336 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1337 lw->inv_weight = 1;
1338 else
db670dac 1339 lw->inv_weight = WMULT_CONST / lw->weight;
7a232e03 1340 }
45bf76df 1341
45bf76df
IM
1342 /*
1343 * Check whether we'd overflow the 64-bit multiplication:
1344 */
194081eb 1345 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1346 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1347 WMULT_SHIFT/2);
1348 else
cf2ab469 1349 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1350
ecf691da 1351 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1352}
1353
1091985b 1354static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1355{
1356 lw->weight += inc;
e89996ae 1357 lw->inv_weight = 0;
45bf76df
IM
1358}
1359
1091985b 1360static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1361{
1362 lw->weight -= dec;
e89996ae 1363 lw->inv_weight = 0;
45bf76df
IM
1364}
1365
2069dd75
PZ
1366static inline void update_load_set(struct load_weight *lw, unsigned long w)
1367{
1368 lw->weight = w;
1369 lw->inv_weight = 0;
1370}
1371
2dd73a4f
PW
1372/*
1373 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1374 * of tasks with abnormal "nice" values across CPUs the contribution that
1375 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1376 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1377 * scaled version of the new time slice allocation that they receive on time
1378 * slice expiry etc.
1379 */
1380
cce7ade8
PZ
1381#define WEIGHT_IDLEPRIO 3
1382#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1383
1384/*
1385 * Nice levels are multiplicative, with a gentle 10% change for every
1386 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1387 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1388 * that remained on nice 0.
1389 *
1390 * The "10% effect" is relative and cumulative: from _any_ nice level,
1391 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1392 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1393 * If a task goes up by ~10% and another task goes down by ~10% then
1394 * the relative distance between them is ~25%.)
dd41f596
IM
1395 */
1396static const int prio_to_weight[40] = {
254753dc
IM
1397 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1398 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1399 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1400 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1401 /* 0 */ 1024, 820, 655, 526, 423,
1402 /* 5 */ 335, 272, 215, 172, 137,
1403 /* 10 */ 110, 87, 70, 56, 45,
1404 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1405};
1406
5714d2de
IM
1407/*
1408 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1409 *
1410 * In cases where the weight does not change often, we can use the
1411 * precalculated inverse to speed up arithmetics by turning divisions
1412 * into multiplications:
1413 */
dd41f596 1414static const u32 prio_to_wmult[40] = {
254753dc
IM
1415 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1416 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1417 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1418 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1419 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1420 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1421 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1422 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1423};
2dd73a4f 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
f5f08f39
PZ
1499/* Used instead of source_load when we know the type == 0 */
1500static unsigned long weighted_cpuload(const int cpu)
1501{
1502 return cpu_rq(cpu)->load.weight;
1503}
1504
1505/*
1506 * Return a low guess at the load of a migration-source cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 *
1509 * We want to under-estimate the load of migration sources, to
1510 * balance conservatively.
1511 */
1512static unsigned long source_load(int cpu, int type)
1513{
1514 struct rq *rq = cpu_rq(cpu);
1515 unsigned long total = weighted_cpuload(cpu);
1516
1517 if (type == 0 || !sched_feat(LB_BIAS))
1518 return total;
1519
1520 return min(rq->cpu_load[type-1], total);
1521}
1522
1523/*
1524 * Return a high guess at the load of a migration-target cpu weighted
1525 * according to the scheduling class and "nice" value.
1526 */
1527static unsigned long target_load(int cpu, int type)
1528{
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long total = weighted_cpuload(cpu);
1531
1532 if (type == 0 || !sched_feat(LB_BIAS))
1533 return total;
1534
1535 return max(rq->cpu_load[type-1], total);
1536}
1537
ae154be1
PZ
1538static unsigned long power_of(int cpu)
1539{
e51fd5e2 1540 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1541}
1542
eb755805
PZ
1543static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1544
1545static unsigned long cpu_avg_load_per_task(int cpu)
1546{
1547 struct rq *rq = cpu_rq(cpu);
af6d596f 1548 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1549
4cd42620
SR
1550 if (nr_running)
1551 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1552 else
1553 rq->avg_load_per_task = 0;
eb755805
PZ
1554
1555 return rq->avg_load_per_task;
1556}
1557
1558#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1559
c09595f6 1560/*
c8cba857
PZ
1561 * Compute the cpu's hierarchical load factor for each task group.
1562 * This needs to be done in a top-down fashion because the load of a child
1563 * group is a fraction of its parents load.
c09595f6 1564 */
eb755805 1565static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1566{
c8cba857 1567 unsigned long load;
eb755805 1568 long cpu = (long)data;
c09595f6 1569
c8cba857
PZ
1570 if (!tg->parent) {
1571 load = cpu_rq(cpu)->load.weight;
1572 } else {
1573 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1574 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1575 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1576 }
c09595f6 1577
c8cba857 1578 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1579
eb755805 1580 return 0;
c09595f6
PZ
1581}
1582
eb755805 1583static void update_h_load(long cpu)
c09595f6 1584{
eb755805 1585 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1586}
1587
18d95a28
PZ
1588#endif
1589
8f45e2b5
GH
1590#ifdef CONFIG_PREEMPT
1591
b78bb868
PZ
1592static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1593
70574a99 1594/*
8f45e2b5
GH
1595 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1596 * way at the expense of forcing extra atomic operations in all
1597 * invocations. This assures that the double_lock is acquired using the
1598 * same underlying policy as the spinlock_t on this architecture, which
1599 * reduces latency compared to the unfair variant below. However, it
1600 * also adds more overhead and therefore may reduce throughput.
70574a99 1601 */
8f45e2b5
GH
1602static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1603 __releases(this_rq->lock)
1604 __acquires(busiest->lock)
1605 __acquires(this_rq->lock)
1606{
05fa785c 1607 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1608 double_rq_lock(this_rq, busiest);
1609
1610 return 1;
1611}
1612
1613#else
1614/*
1615 * Unfair double_lock_balance: Optimizes throughput at the expense of
1616 * latency by eliminating extra atomic operations when the locks are
1617 * already in proper order on entry. This favors lower cpu-ids and will
1618 * grant the double lock to lower cpus over higher ids under contention,
1619 * regardless of entry order into the function.
1620 */
1621static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1622 __releases(this_rq->lock)
1623 __acquires(busiest->lock)
1624 __acquires(this_rq->lock)
1625{
1626 int ret = 0;
1627
05fa785c 1628 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1629 if (busiest < this_rq) {
05fa785c
TG
1630 raw_spin_unlock(&this_rq->lock);
1631 raw_spin_lock(&busiest->lock);
1632 raw_spin_lock_nested(&this_rq->lock,
1633 SINGLE_DEPTH_NESTING);
70574a99
AD
1634 ret = 1;
1635 } else
05fa785c
TG
1636 raw_spin_lock_nested(&busiest->lock,
1637 SINGLE_DEPTH_NESTING);
70574a99
AD
1638 }
1639 return ret;
1640}
1641
8f45e2b5
GH
1642#endif /* CONFIG_PREEMPT */
1643
1644/*
1645 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1646 */
1647static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1648{
1649 if (unlikely(!irqs_disabled())) {
1650 /* printk() doesn't work good under rq->lock */
05fa785c 1651 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1652 BUG_ON(1);
1653 }
1654
1655 return _double_lock_balance(this_rq, busiest);
1656}
1657
70574a99
AD
1658static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1659 __releases(busiest->lock)
1660{
05fa785c 1661 raw_spin_unlock(&busiest->lock);
70574a99
AD
1662 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1663}
1e3c88bd
PZ
1664
1665/*
1666 * double_rq_lock - safely lock two runqueues
1667 *
1668 * Note this does not disable interrupts like task_rq_lock,
1669 * you need to do so manually before calling.
1670 */
1671static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1672 __acquires(rq1->lock)
1673 __acquires(rq2->lock)
1674{
1675 BUG_ON(!irqs_disabled());
1676 if (rq1 == rq2) {
1677 raw_spin_lock(&rq1->lock);
1678 __acquire(rq2->lock); /* Fake it out ;) */
1679 } else {
1680 if (rq1 < rq2) {
1681 raw_spin_lock(&rq1->lock);
1682 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1683 } else {
1684 raw_spin_lock(&rq2->lock);
1685 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1686 }
1687 }
1e3c88bd
PZ
1688}
1689
1690/*
1691 * double_rq_unlock - safely unlock two runqueues
1692 *
1693 * Note this does not restore interrupts like task_rq_unlock,
1694 * you need to do so manually after calling.
1695 */
1696static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1697 __releases(rq1->lock)
1698 __releases(rq2->lock)
1699{
1700 raw_spin_unlock(&rq1->lock);
1701 if (rq1 != rq2)
1702 raw_spin_unlock(&rq2->lock);
1703 else
1704 __release(rq2->lock);
1705}
1706
d95f4122
MG
1707#else /* CONFIG_SMP */
1708
1709/*
1710 * double_rq_lock - safely lock two runqueues
1711 *
1712 * Note this does not disable interrupts like task_rq_lock,
1713 * you need to do so manually before calling.
1714 */
1715static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1716 __acquires(rq1->lock)
1717 __acquires(rq2->lock)
1718{
1719 BUG_ON(!irqs_disabled());
1720 BUG_ON(rq1 != rq2);
1721 raw_spin_lock(&rq1->lock);
1722 __acquire(rq2->lock); /* Fake it out ;) */
1723}
1724
1725/*
1726 * double_rq_unlock - safely unlock two runqueues
1727 *
1728 * Note this does not restore interrupts like task_rq_unlock,
1729 * you need to do so manually after calling.
1730 */
1731static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1732 __releases(rq1->lock)
1733 __releases(rq2->lock)
1734{
1735 BUG_ON(rq1 != rq2);
1736 raw_spin_unlock(&rq1->lock);
1737 __release(rq2->lock);
1738}
1739
18d95a28
PZ
1740#endif
1741
74f5187a 1742static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1743static void update_sysctl(void);
acb4a848 1744static int get_update_sysctl_factor(void);
fdf3e95d 1745static void update_cpu_load(struct rq *this_rq);
dce48a84 1746
cd29fe6f
PZ
1747static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1748{
1749 set_task_rq(p, cpu);
1750#ifdef CONFIG_SMP
1751 /*
1752 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1753 * successfuly executed on another CPU. We must ensure that updates of
1754 * per-task data have been completed by this moment.
1755 */
1756 smp_wmb();
1757 task_thread_info(p)->cpu = cpu;
1758#endif
1759}
dce48a84 1760
1e3c88bd 1761static const struct sched_class rt_sched_class;
dd41f596 1762
34f971f6 1763#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1764#define for_each_class(class) \
1765 for (class = sched_class_highest; class; class = class->next)
dd41f596 1766
1e3c88bd
PZ
1767#include "sched_stats.h"
1768
c09595f6 1769static void inc_nr_running(struct rq *rq)
9c217245
IM
1770{
1771 rq->nr_running++;
9c217245
IM
1772}
1773
c09595f6 1774static void dec_nr_running(struct rq *rq)
9c217245
IM
1775{
1776 rq->nr_running--;
9c217245
IM
1777}
1778
45bf76df
IM
1779static void set_load_weight(struct task_struct *p)
1780{
f05998d4
NR
1781 int prio = p->static_prio - MAX_RT_PRIO;
1782 struct load_weight *load = &p->se.load;
1783
dd41f596
IM
1784 /*
1785 * SCHED_IDLE tasks get minimal weight:
1786 */
1787 if (p->policy == SCHED_IDLE) {
f05998d4
NR
1788 load->weight = WEIGHT_IDLEPRIO;
1789 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1790 return;
1791 }
71f8bd46 1792
f05998d4
NR
1793 load->weight = prio_to_weight[prio];
1794 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1795}
1796
371fd7e7 1797static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1798{
a64692a3 1799 update_rq_clock(rq);
dd41f596 1800 sched_info_queued(p);
371fd7e7 1801 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1802}
1803
371fd7e7 1804static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1805{
a64692a3 1806 update_rq_clock(rq);
46ac22ba 1807 sched_info_dequeued(p);
371fd7e7 1808 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1809}
1810
1e3c88bd
PZ
1811/*
1812 * activate_task - move a task to the runqueue.
1813 */
371fd7e7 1814static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1815{
1816 if (task_contributes_to_load(p))
1817 rq->nr_uninterruptible--;
1818
371fd7e7 1819 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1820 inc_nr_running(rq);
1821}
1822
1823/*
1824 * deactivate_task - remove a task from the runqueue.
1825 */
371fd7e7 1826static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1827{
1828 if (task_contributes_to_load(p))
1829 rq->nr_uninterruptible++;
1830
371fd7e7 1831 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1832 dec_nr_running(rq);
1833}
1834
b52bfee4
VP
1835#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1836
305e6835
VP
1837/*
1838 * There are no locks covering percpu hardirq/softirq time.
1839 * They are only modified in account_system_vtime, on corresponding CPU
1840 * with interrupts disabled. So, writes are safe.
1841 * They are read and saved off onto struct rq in update_rq_clock().
1842 * This may result in other CPU reading this CPU's irq time and can
1843 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1844 * or new value with a side effect of accounting a slice of irq time to wrong
1845 * task when irq is in progress while we read rq->clock. That is a worthy
1846 * compromise in place of having locks on each irq in account_system_time.
305e6835 1847 */
b52bfee4
VP
1848static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1849static DEFINE_PER_CPU(u64, cpu_softirq_time);
1850
1851static DEFINE_PER_CPU(u64, irq_start_time);
1852static int sched_clock_irqtime;
1853
1854void enable_sched_clock_irqtime(void)
1855{
1856 sched_clock_irqtime = 1;
1857}
1858
1859void disable_sched_clock_irqtime(void)
1860{
1861 sched_clock_irqtime = 0;
1862}
1863
8e92c201
PZ
1864#ifndef CONFIG_64BIT
1865static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1866
1867static inline void irq_time_write_begin(void)
1868{
1869 __this_cpu_inc(irq_time_seq.sequence);
1870 smp_wmb();
1871}
1872
1873static inline void irq_time_write_end(void)
1874{
1875 smp_wmb();
1876 __this_cpu_inc(irq_time_seq.sequence);
1877}
1878
1879static inline u64 irq_time_read(int cpu)
1880{
1881 u64 irq_time;
1882 unsigned seq;
1883
1884 do {
1885 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1886 irq_time = per_cpu(cpu_softirq_time, cpu) +
1887 per_cpu(cpu_hardirq_time, cpu);
1888 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1889
1890 return irq_time;
1891}
1892#else /* CONFIG_64BIT */
1893static inline void irq_time_write_begin(void)
1894{
1895}
1896
1897static inline void irq_time_write_end(void)
1898{
1899}
1900
1901static inline u64 irq_time_read(int cpu)
305e6835 1902{
305e6835
VP
1903 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1904}
8e92c201 1905#endif /* CONFIG_64BIT */
305e6835 1906
fe44d621
PZ
1907/*
1908 * Called before incrementing preempt_count on {soft,}irq_enter
1909 * and before decrementing preempt_count on {soft,}irq_exit.
1910 */
b52bfee4
VP
1911void account_system_vtime(struct task_struct *curr)
1912{
1913 unsigned long flags;
fe44d621 1914 s64 delta;
b52bfee4 1915 int cpu;
b52bfee4
VP
1916
1917 if (!sched_clock_irqtime)
1918 return;
1919
1920 local_irq_save(flags);
1921
b52bfee4 1922 cpu = smp_processor_id();
fe44d621
PZ
1923 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1924 __this_cpu_add(irq_start_time, delta);
1925
8e92c201 1926 irq_time_write_begin();
b52bfee4
VP
1927 /*
1928 * We do not account for softirq time from ksoftirqd here.
1929 * We want to continue accounting softirq time to ksoftirqd thread
1930 * in that case, so as not to confuse scheduler with a special task
1931 * that do not consume any time, but still wants to run.
1932 */
1933 if (hardirq_count())
fe44d621 1934 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1935 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1936 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1937
8e92c201 1938 irq_time_write_end();
b52bfee4
VP
1939 local_irq_restore(flags);
1940}
b7dadc38 1941EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1942
fe44d621 1943static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1944{
fe44d621
PZ
1945 s64 irq_delta;
1946
8e92c201 1947 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1948
1949 /*
1950 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1951 * this case when a previous update_rq_clock() happened inside a
1952 * {soft,}irq region.
1953 *
1954 * When this happens, we stop ->clock_task and only update the
1955 * prev_irq_time stamp to account for the part that fit, so that a next
1956 * update will consume the rest. This ensures ->clock_task is
1957 * monotonic.
1958 *
1959 * It does however cause some slight miss-attribution of {soft,}irq
1960 * time, a more accurate solution would be to update the irq_time using
1961 * the current rq->clock timestamp, except that would require using
1962 * atomic ops.
1963 */
1964 if (irq_delta > delta)
1965 irq_delta = delta;
1966
1967 rq->prev_irq_time += irq_delta;
1968 delta -= irq_delta;
1969 rq->clock_task += delta;
1970
1971 if (irq_delta && sched_feat(NONIRQ_POWER))
1972 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1973}
1974
abb74cef
VP
1975static int irqtime_account_hi_update(void)
1976{
1977 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1978 unsigned long flags;
1979 u64 latest_ns;
1980 int ret = 0;
1981
1982 local_irq_save(flags);
1983 latest_ns = this_cpu_read(cpu_hardirq_time);
1984 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1985 ret = 1;
1986 local_irq_restore(flags);
1987 return ret;
1988}
1989
1990static int irqtime_account_si_update(void)
1991{
1992 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1993 unsigned long flags;
1994 u64 latest_ns;
1995 int ret = 0;
1996
1997 local_irq_save(flags);
1998 latest_ns = this_cpu_read(cpu_softirq_time);
1999 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2000 ret = 1;
2001 local_irq_restore(flags);
2002 return ret;
2003}
2004
fe44d621 2005#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2006
abb74cef
VP
2007#define sched_clock_irqtime (0)
2008
fe44d621 2009static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 2010{
fe44d621 2011 rq->clock_task += delta;
305e6835
VP
2012}
2013
fe44d621 2014#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2015
1e3c88bd
PZ
2016#include "sched_idletask.c"
2017#include "sched_fair.c"
2018#include "sched_rt.c"
5091faa4 2019#include "sched_autogroup.c"
34f971f6 2020#include "sched_stoptask.c"
1e3c88bd
PZ
2021#ifdef CONFIG_SCHED_DEBUG
2022# include "sched_debug.c"
2023#endif
2024
34f971f6
PZ
2025void sched_set_stop_task(int cpu, struct task_struct *stop)
2026{
2027 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2028 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2029
2030 if (stop) {
2031 /*
2032 * Make it appear like a SCHED_FIFO task, its something
2033 * userspace knows about and won't get confused about.
2034 *
2035 * Also, it will make PI more or less work without too
2036 * much confusion -- but then, stop work should not
2037 * rely on PI working anyway.
2038 */
2039 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2040
2041 stop->sched_class = &stop_sched_class;
2042 }
2043
2044 cpu_rq(cpu)->stop = stop;
2045
2046 if (old_stop) {
2047 /*
2048 * Reset it back to a normal scheduling class so that
2049 * it can die in pieces.
2050 */
2051 old_stop->sched_class = &rt_sched_class;
2052 }
2053}
2054
14531189 2055/*
dd41f596 2056 * __normal_prio - return the priority that is based on the static prio
14531189 2057 */
14531189
IM
2058static inline int __normal_prio(struct task_struct *p)
2059{
dd41f596 2060 return p->static_prio;
14531189
IM
2061}
2062
b29739f9
IM
2063/*
2064 * Calculate the expected normal priority: i.e. priority
2065 * without taking RT-inheritance into account. Might be
2066 * boosted by interactivity modifiers. Changes upon fork,
2067 * setprio syscalls, and whenever the interactivity
2068 * estimator recalculates.
2069 */
36c8b586 2070static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2071{
2072 int prio;
2073
e05606d3 2074 if (task_has_rt_policy(p))
b29739f9
IM
2075 prio = MAX_RT_PRIO-1 - p->rt_priority;
2076 else
2077 prio = __normal_prio(p);
2078 return prio;
2079}
2080
2081/*
2082 * Calculate the current priority, i.e. the priority
2083 * taken into account by the scheduler. This value might
2084 * be boosted by RT tasks, or might be boosted by
2085 * interactivity modifiers. Will be RT if the task got
2086 * RT-boosted. If not then it returns p->normal_prio.
2087 */
36c8b586 2088static int effective_prio(struct task_struct *p)
b29739f9
IM
2089{
2090 p->normal_prio = normal_prio(p);
2091 /*
2092 * If we are RT tasks or we were boosted to RT priority,
2093 * keep the priority unchanged. Otherwise, update priority
2094 * to the normal priority:
2095 */
2096 if (!rt_prio(p->prio))
2097 return p->normal_prio;
2098 return p->prio;
2099}
2100
1da177e4
LT
2101/**
2102 * task_curr - is this task currently executing on a CPU?
2103 * @p: the task in question.
2104 */
36c8b586 2105inline int task_curr(const struct task_struct *p)
1da177e4
LT
2106{
2107 return cpu_curr(task_cpu(p)) == p;
2108}
2109
cb469845
SR
2110static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2111 const struct sched_class *prev_class,
da7a735e 2112 int oldprio)
cb469845
SR
2113{
2114 if (prev_class != p->sched_class) {
2115 if (prev_class->switched_from)
da7a735e
PZ
2116 prev_class->switched_from(rq, p);
2117 p->sched_class->switched_to(rq, p);
2118 } else if (oldprio != p->prio)
2119 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2120}
2121
1e5a7405
PZ
2122static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2123{
2124 const struct sched_class *class;
2125
2126 if (p->sched_class == rq->curr->sched_class) {
2127 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2128 } else {
2129 for_each_class(class) {
2130 if (class == rq->curr->sched_class)
2131 break;
2132 if (class == p->sched_class) {
2133 resched_task(rq->curr);
2134 break;
2135 }
2136 }
2137 }
2138
2139 /*
2140 * A queue event has occurred, and we're going to schedule. In
2141 * this case, we can save a useless back to back clock update.
2142 */
fd2f4419 2143 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2144 rq->skip_clock_update = 1;
2145}
2146
1da177e4 2147#ifdef CONFIG_SMP
cc367732
IM
2148/*
2149 * Is this task likely cache-hot:
2150 */
e7693a36 2151static int
cc367732
IM
2152task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2153{
2154 s64 delta;
2155
e6c8fba7
PZ
2156 if (p->sched_class != &fair_sched_class)
2157 return 0;
2158
ef8002f6
NR
2159 if (unlikely(p->policy == SCHED_IDLE))
2160 return 0;
2161
f540a608
IM
2162 /*
2163 * Buddy candidates are cache hot:
2164 */
f685ceac 2165 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2166 (&p->se == cfs_rq_of(&p->se)->next ||
2167 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2168 return 1;
2169
6bc1665b
IM
2170 if (sysctl_sched_migration_cost == -1)
2171 return 1;
2172 if (sysctl_sched_migration_cost == 0)
2173 return 0;
2174
cc367732
IM
2175 delta = now - p->se.exec_start;
2176
2177 return delta < (s64)sysctl_sched_migration_cost;
2178}
2179
dd41f596 2180void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2181{
e2912009
PZ
2182#ifdef CONFIG_SCHED_DEBUG
2183 /*
2184 * We should never call set_task_cpu() on a blocked task,
2185 * ttwu() will sort out the placement.
2186 */
077614ee
PZ
2187 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2188 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2189
2190#ifdef CONFIG_LOCKDEP
2191 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2192 lockdep_is_held(&task_rq(p)->lock)));
2193#endif
e2912009
PZ
2194#endif
2195
de1d7286 2196 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2197
0c69774e
PZ
2198 if (task_cpu(p) != new_cpu) {
2199 p->se.nr_migrations++;
2200 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2201 }
dd41f596
IM
2202
2203 __set_task_cpu(p, new_cpu);
c65cc870
IM
2204}
2205
969c7921 2206struct migration_arg {
36c8b586 2207 struct task_struct *task;
1da177e4 2208 int dest_cpu;
70b97a7f 2209};
1da177e4 2210
969c7921
TH
2211static int migration_cpu_stop(void *data);
2212
1da177e4
LT
2213/*
2214 * wait_task_inactive - wait for a thread to unschedule.
2215 *
85ba2d86
RM
2216 * If @match_state is nonzero, it's the @p->state value just checked and
2217 * not expected to change. If it changes, i.e. @p might have woken up,
2218 * then return zero. When we succeed in waiting for @p to be off its CPU,
2219 * we return a positive number (its total switch count). If a second call
2220 * a short while later returns the same number, the caller can be sure that
2221 * @p has remained unscheduled the whole time.
2222 *
1da177e4
LT
2223 * The caller must ensure that the task *will* unschedule sometime soon,
2224 * else this function might spin for a *long* time. This function can't
2225 * be called with interrupts off, or it may introduce deadlock with
2226 * smp_call_function() if an IPI is sent by the same process we are
2227 * waiting to become inactive.
2228 */
85ba2d86 2229unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2230{
2231 unsigned long flags;
dd41f596 2232 int running, on_rq;
85ba2d86 2233 unsigned long ncsw;
70b97a7f 2234 struct rq *rq;
1da177e4 2235
3a5c359a
AK
2236 for (;;) {
2237 /*
2238 * We do the initial early heuristics without holding
2239 * any task-queue locks at all. We'll only try to get
2240 * the runqueue lock when things look like they will
2241 * work out!
2242 */
2243 rq = task_rq(p);
fa490cfd 2244
3a5c359a
AK
2245 /*
2246 * If the task is actively running on another CPU
2247 * still, just relax and busy-wait without holding
2248 * any locks.
2249 *
2250 * NOTE! Since we don't hold any locks, it's not
2251 * even sure that "rq" stays as the right runqueue!
2252 * But we don't care, since "task_running()" will
2253 * return false if the runqueue has changed and p
2254 * is actually now running somewhere else!
2255 */
85ba2d86
RM
2256 while (task_running(rq, p)) {
2257 if (match_state && unlikely(p->state != match_state))
2258 return 0;
3a5c359a 2259 cpu_relax();
85ba2d86 2260 }
fa490cfd 2261
3a5c359a
AK
2262 /*
2263 * Ok, time to look more closely! We need the rq
2264 * lock now, to be *sure*. If we're wrong, we'll
2265 * just go back and repeat.
2266 */
2267 rq = task_rq_lock(p, &flags);
27a9da65 2268 trace_sched_wait_task(p);
3a5c359a 2269 running = task_running(rq, p);
fd2f4419 2270 on_rq = p->on_rq;
85ba2d86 2271 ncsw = 0;
f31e11d8 2272 if (!match_state || p->state == match_state)
93dcf55f 2273 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2274 task_rq_unlock(rq, p, &flags);
fa490cfd 2275
85ba2d86
RM
2276 /*
2277 * If it changed from the expected state, bail out now.
2278 */
2279 if (unlikely(!ncsw))
2280 break;
2281
3a5c359a
AK
2282 /*
2283 * Was it really running after all now that we
2284 * checked with the proper locks actually held?
2285 *
2286 * Oops. Go back and try again..
2287 */
2288 if (unlikely(running)) {
2289 cpu_relax();
2290 continue;
2291 }
fa490cfd 2292
3a5c359a
AK
2293 /*
2294 * It's not enough that it's not actively running,
2295 * it must be off the runqueue _entirely_, and not
2296 * preempted!
2297 *
80dd99b3 2298 * So if it was still runnable (but just not actively
3a5c359a
AK
2299 * running right now), it's preempted, and we should
2300 * yield - it could be a while.
2301 */
2302 if (unlikely(on_rq)) {
8eb90c30
TG
2303 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2304
2305 set_current_state(TASK_UNINTERRUPTIBLE);
2306 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2307 continue;
2308 }
fa490cfd 2309
3a5c359a
AK
2310 /*
2311 * Ahh, all good. It wasn't running, and it wasn't
2312 * runnable, which means that it will never become
2313 * running in the future either. We're all done!
2314 */
2315 break;
2316 }
85ba2d86
RM
2317
2318 return ncsw;
1da177e4
LT
2319}
2320
2321/***
2322 * kick_process - kick a running thread to enter/exit the kernel
2323 * @p: the to-be-kicked thread
2324 *
2325 * Cause a process which is running on another CPU to enter
2326 * kernel-mode, without any delay. (to get signals handled.)
2327 *
25985edc 2328 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2329 * because all it wants to ensure is that the remote task enters
2330 * the kernel. If the IPI races and the task has been migrated
2331 * to another CPU then no harm is done and the purpose has been
2332 * achieved as well.
2333 */
36c8b586 2334void kick_process(struct task_struct *p)
1da177e4
LT
2335{
2336 int cpu;
2337
2338 preempt_disable();
2339 cpu = task_cpu(p);
2340 if ((cpu != smp_processor_id()) && task_curr(p))
2341 smp_send_reschedule(cpu);
2342 preempt_enable();
2343}
b43e3521 2344EXPORT_SYMBOL_GPL(kick_process);
476d139c 2345#endif /* CONFIG_SMP */
1da177e4 2346
970b13ba 2347#ifdef CONFIG_SMP
30da688e 2348/*
013fdb80 2349 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2350 */
5da9a0fb
PZ
2351static int select_fallback_rq(int cpu, struct task_struct *p)
2352{
2353 int dest_cpu;
2354 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2355
2356 /* Look for allowed, online CPU in same node. */
2357 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2358 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2359 return dest_cpu;
2360
2361 /* Any allowed, online CPU? */
2362 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2363 if (dest_cpu < nr_cpu_ids)
2364 return dest_cpu;
2365
2366 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2367 dest_cpu = cpuset_cpus_allowed_fallback(p);
2368 /*
2369 * Don't tell them about moving exiting tasks or
2370 * kernel threads (both mm NULL), since they never
2371 * leave kernel.
2372 */
2373 if (p->mm && printk_ratelimit()) {
2374 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2375 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2376 }
2377
2378 return dest_cpu;
2379}
2380
e2912009 2381/*
013fdb80 2382 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2383 */
970b13ba 2384static inline
7608dec2 2385int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2386{
7608dec2 2387 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2388
2389 /*
2390 * In order not to call set_task_cpu() on a blocking task we need
2391 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2392 * cpu.
2393 *
2394 * Since this is common to all placement strategies, this lives here.
2395 *
2396 * [ this allows ->select_task() to simply return task_cpu(p) and
2397 * not worry about this generic constraint ]
2398 */
2399 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2400 !cpu_online(cpu)))
5da9a0fb 2401 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2402
2403 return cpu;
970b13ba 2404}
09a40af5
MG
2405
2406static void update_avg(u64 *avg, u64 sample)
2407{
2408 s64 diff = sample - *avg;
2409 *avg += diff >> 3;
2410}
970b13ba
PZ
2411#endif
2412
d7c01d27 2413static void
b84cb5df 2414ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2415{
d7c01d27 2416#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2417 struct rq *rq = this_rq();
2418
d7c01d27
PZ
2419#ifdef CONFIG_SMP
2420 int this_cpu = smp_processor_id();
2421
2422 if (cpu == this_cpu) {
2423 schedstat_inc(rq, ttwu_local);
2424 schedstat_inc(p, se.statistics.nr_wakeups_local);
2425 } else {
2426 struct sched_domain *sd;
2427
2428 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2429 rcu_read_lock();
d7c01d27
PZ
2430 for_each_domain(this_cpu, sd) {
2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2432 schedstat_inc(sd, ttwu_wake_remote);
2433 break;
2434 }
2435 }
057f3fad 2436 rcu_read_unlock();
d7c01d27
PZ
2437 }
2438#endif /* CONFIG_SMP */
2439
2440 schedstat_inc(rq, ttwu_count);
9ed3811a 2441 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2442
2443 if (wake_flags & WF_SYNC)
9ed3811a 2444 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2445
2446 if (cpu != task_cpu(p))
9ed3811a 2447 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2448
d7c01d27
PZ
2449#endif /* CONFIG_SCHEDSTATS */
2450}
2451
2452static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2453{
9ed3811a 2454 activate_task(rq, p, en_flags);
fd2f4419 2455 p->on_rq = 1;
c2f7115e
PZ
2456
2457 /* if a worker is waking up, notify workqueue */
2458 if (p->flags & PF_WQ_WORKER)
2459 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2460}
2461
23f41eeb
PZ
2462/*
2463 * Mark the task runnable and perform wakeup-preemption.
2464 */
89363381 2465static void
23f41eeb 2466ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2467{
89363381 2468 trace_sched_wakeup(p, true);
9ed3811a
TH
2469 check_preempt_curr(rq, p, wake_flags);
2470
2471 p->state = TASK_RUNNING;
2472#ifdef CONFIG_SMP
2473 if (p->sched_class->task_woken)
2474 p->sched_class->task_woken(rq, p);
2475
2476 if (unlikely(rq->idle_stamp)) {
2477 u64 delta = rq->clock - rq->idle_stamp;
2478 u64 max = 2*sysctl_sched_migration_cost;
2479
2480 if (delta > max)
2481 rq->avg_idle = max;
2482 else
2483 update_avg(&rq->avg_idle, delta);
2484 rq->idle_stamp = 0;
2485 }
2486#endif
2487}
2488
c05fbafb
PZ
2489static void
2490ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2491{
2492#ifdef CONFIG_SMP
2493 if (p->sched_contributes_to_load)
2494 rq->nr_uninterruptible--;
2495#endif
2496
2497 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2498 ttwu_do_wakeup(rq, p, wake_flags);
2499}
2500
2501/*
2502 * Called in case the task @p isn't fully descheduled from its runqueue,
2503 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2504 * since all we need to do is flip p->state to TASK_RUNNING, since
2505 * the task is still ->on_rq.
2506 */
2507static int ttwu_remote(struct task_struct *p, int wake_flags)
2508{
2509 struct rq *rq;
2510 int ret = 0;
2511
2512 rq = __task_rq_lock(p);
2513 if (p->on_rq) {
2514 ttwu_do_wakeup(rq, p, wake_flags);
2515 ret = 1;
2516 }
2517 __task_rq_unlock(rq);
2518
2519 return ret;
2520}
2521
317f3941
PZ
2522#ifdef CONFIG_SMP
2523static void sched_ttwu_pending(void)
2524{
2525 struct rq *rq = this_rq();
2526 struct task_struct *list = xchg(&rq->wake_list, NULL);
2527
2528 if (!list)
2529 return;
2530
2531 raw_spin_lock(&rq->lock);
2532
2533 while (list) {
2534 struct task_struct *p = list;
2535 list = list->wake_entry;
2536 ttwu_do_activate(rq, p, 0);
2537 }
2538
2539 raw_spin_unlock(&rq->lock);
2540}
2541
2542void scheduler_ipi(void)
2543{
2544 sched_ttwu_pending();
2545}
2546
2547static void ttwu_queue_remote(struct task_struct *p, int cpu)
2548{
2549 struct rq *rq = cpu_rq(cpu);
2550 struct task_struct *next = rq->wake_list;
2551
2552 for (;;) {
2553 struct task_struct *old = next;
2554
2555 p->wake_entry = next;
2556 next = cmpxchg(&rq->wake_list, old, p);
2557 if (next == old)
2558 break;
2559 }
2560
2561 if (!next)
2562 smp_send_reschedule(cpu);
2563}
2564#endif
2565
c05fbafb
PZ
2566static void ttwu_queue(struct task_struct *p, int cpu)
2567{
2568 struct rq *rq = cpu_rq(cpu);
2569
317f3941
PZ
2570#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_TTWU_QUEUE)
2571 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2572 ttwu_queue_remote(p, cpu);
2573 return;
2574 }
2575#endif
2576
c05fbafb
PZ
2577 raw_spin_lock(&rq->lock);
2578 ttwu_do_activate(rq, p, 0);
2579 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2580}
2581
2582/**
1da177e4 2583 * try_to_wake_up - wake up a thread
9ed3811a 2584 * @p: the thread to be awakened
1da177e4 2585 * @state: the mask of task states that can be woken
9ed3811a 2586 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2587 *
2588 * Put it on the run-queue if it's not already there. The "current"
2589 * thread is always on the run-queue (except when the actual
2590 * re-schedule is in progress), and as such you're allowed to do
2591 * the simpler "current->state = TASK_RUNNING" to mark yourself
2592 * runnable without the overhead of this.
2593 *
9ed3811a
TH
2594 * Returns %true if @p was woken up, %false if it was already running
2595 * or @state didn't match @p's state.
1da177e4 2596 */
e4a52bcb
PZ
2597static int
2598try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2599{
1da177e4 2600 unsigned long flags;
c05fbafb 2601 int cpu, success = 0;
2398f2c6 2602
04e2f174 2603 smp_wmb();
013fdb80 2604 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2605 if (!(p->state & state))
1da177e4
LT
2606 goto out;
2607
c05fbafb 2608 success = 1; /* we're going to change ->state */
1da177e4 2609 cpu = task_cpu(p);
1da177e4 2610
c05fbafb
PZ
2611 if (p->on_rq && ttwu_remote(p, wake_flags))
2612 goto stat;
1da177e4 2613
1da177e4 2614#ifdef CONFIG_SMP
e9c84311 2615 /*
c05fbafb
PZ
2616 * If the owning (remote) cpu is still in the middle of schedule() with
2617 * this task as prev, wait until its done referencing the task.
e9c84311 2618 */
e4a52bcb
PZ
2619 while (p->on_cpu) {
2620#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2621 /*
2622 * If called from interrupt context we could have landed in the
2623 * middle of schedule(), in this case we should take care not
2624 * to spin on ->on_cpu if p is current, since that would
2625 * deadlock.
2626 */
c05fbafb
PZ
2627 if (p == current) {
2628 ttwu_queue(p, cpu);
2629 goto stat;
2630 }
e4a52bcb
PZ
2631#endif
2632 cpu_relax();
371fd7e7 2633 }
0970d299 2634 /*
e4a52bcb 2635 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2636 */
e4a52bcb 2637 smp_rmb();
1da177e4 2638
a8e4f2ea 2639 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2640 p->state = TASK_WAKING;
e7693a36 2641
e4a52bcb 2642 if (p->sched_class->task_waking)
74f8e4b2 2643 p->sched_class->task_waking(p);
efbbd05a 2644
7608dec2 2645 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
c05fbafb 2646 if (task_cpu(p) != cpu)
e4a52bcb 2647 set_task_cpu(p, cpu);
1da177e4 2648#endif /* CONFIG_SMP */
1da177e4 2649
c05fbafb
PZ
2650 ttwu_queue(p, cpu);
2651stat:
b84cb5df 2652 ttwu_stat(p, cpu, wake_flags);
1da177e4 2653out:
013fdb80 2654 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2655
2656 return success;
2657}
2658
21aa9af0
TH
2659/**
2660 * try_to_wake_up_local - try to wake up a local task with rq lock held
2661 * @p: the thread to be awakened
2662 *
2acca55e 2663 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2664 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2665 * the current task.
21aa9af0
TH
2666 */
2667static void try_to_wake_up_local(struct task_struct *p)
2668{
2669 struct rq *rq = task_rq(p);
21aa9af0
TH
2670
2671 BUG_ON(rq != this_rq());
2672 BUG_ON(p == current);
2673 lockdep_assert_held(&rq->lock);
2674
2acca55e
PZ
2675 if (!raw_spin_trylock(&p->pi_lock)) {
2676 raw_spin_unlock(&rq->lock);
2677 raw_spin_lock(&p->pi_lock);
2678 raw_spin_lock(&rq->lock);
2679 }
2680
21aa9af0 2681 if (!(p->state & TASK_NORMAL))
2acca55e 2682 goto out;
21aa9af0 2683
fd2f4419 2684 if (!p->on_rq)
d7c01d27
PZ
2685 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2686
23f41eeb 2687 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2688 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2689out:
2690 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2691}
2692
50fa610a
DH
2693/**
2694 * wake_up_process - Wake up a specific process
2695 * @p: The process to be woken up.
2696 *
2697 * Attempt to wake up the nominated process and move it to the set of runnable
2698 * processes. Returns 1 if the process was woken up, 0 if it was already
2699 * running.
2700 *
2701 * It may be assumed that this function implies a write memory barrier before
2702 * changing the task state if and only if any tasks are woken up.
2703 */
7ad5b3a5 2704int wake_up_process(struct task_struct *p)
1da177e4 2705{
d9514f6c 2706 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2707}
1da177e4
LT
2708EXPORT_SYMBOL(wake_up_process);
2709
7ad5b3a5 2710int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2711{
2712 return try_to_wake_up(p, state, 0);
2713}
2714
1da177e4
LT
2715/*
2716 * Perform scheduler related setup for a newly forked process p.
2717 * p is forked by current.
dd41f596
IM
2718 *
2719 * __sched_fork() is basic setup used by init_idle() too:
2720 */
2721static void __sched_fork(struct task_struct *p)
2722{
fd2f4419
PZ
2723 p->on_rq = 0;
2724
2725 p->se.on_rq = 0;
dd41f596
IM
2726 p->se.exec_start = 0;
2727 p->se.sum_exec_runtime = 0;
f6cf891c 2728 p->se.prev_sum_exec_runtime = 0;
6c594c21 2729 p->se.nr_migrations = 0;
da7a735e 2730 p->se.vruntime = 0;
fd2f4419 2731 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2732
2733#ifdef CONFIG_SCHEDSTATS
41acab88 2734 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2735#endif
476d139c 2736
fa717060 2737 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2738
e107be36
AK
2739#ifdef CONFIG_PREEMPT_NOTIFIERS
2740 INIT_HLIST_HEAD(&p->preempt_notifiers);
2741#endif
dd41f596
IM
2742}
2743
2744/*
2745 * fork()/clone()-time setup:
2746 */
3e51e3ed 2747void sched_fork(struct task_struct *p)
dd41f596 2748{
0122ec5b 2749 unsigned long flags;
dd41f596
IM
2750 int cpu = get_cpu();
2751
2752 __sched_fork(p);
06b83b5f 2753 /*
0017d735 2754 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2755 * nobody will actually run it, and a signal or other external
2756 * event cannot wake it up and insert it on the runqueue either.
2757 */
0017d735 2758 p->state = TASK_RUNNING;
dd41f596 2759
b9dc29e7
MG
2760 /*
2761 * Revert to default priority/policy on fork if requested.
2762 */
2763 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2764 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2765 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2766 p->normal_prio = p->static_prio;
2767 }
b9dc29e7 2768
6c697bdf
MG
2769 if (PRIO_TO_NICE(p->static_prio) < 0) {
2770 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2771 p->normal_prio = p->static_prio;
6c697bdf
MG
2772 set_load_weight(p);
2773 }
2774
b9dc29e7
MG
2775 /*
2776 * We don't need the reset flag anymore after the fork. It has
2777 * fulfilled its duty:
2778 */
2779 p->sched_reset_on_fork = 0;
2780 }
ca94c442 2781
f83f9ac2
PW
2782 /*
2783 * Make sure we do not leak PI boosting priority to the child.
2784 */
2785 p->prio = current->normal_prio;
2786
2ddbf952
HS
2787 if (!rt_prio(p->prio))
2788 p->sched_class = &fair_sched_class;
b29739f9 2789
cd29fe6f
PZ
2790 if (p->sched_class->task_fork)
2791 p->sched_class->task_fork(p);
2792
86951599
PZ
2793 /*
2794 * The child is not yet in the pid-hash so no cgroup attach races,
2795 * and the cgroup is pinned to this child due to cgroup_fork()
2796 * is ran before sched_fork().
2797 *
2798 * Silence PROVE_RCU.
2799 */
0122ec5b 2800 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2801 set_task_cpu(p, cpu);
0122ec5b 2802 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2803
52f17b6c 2804#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2805 if (likely(sched_info_on()))
52f17b6c 2806 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2807#endif
3ca7a440
PZ
2808#if defined(CONFIG_SMP)
2809 p->on_cpu = 0;
4866cde0 2810#endif
1da177e4 2811#ifdef CONFIG_PREEMPT
4866cde0 2812 /* Want to start with kernel preemption disabled. */
a1261f54 2813 task_thread_info(p)->preempt_count = 1;
1da177e4 2814#endif
806c09a7 2815#ifdef CONFIG_SMP
917b627d 2816 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2817#endif
917b627d 2818
476d139c 2819 put_cpu();
1da177e4
LT
2820}
2821
2822/*
2823 * wake_up_new_task - wake up a newly created task for the first time.
2824 *
2825 * This function will do some initial scheduler statistics housekeeping
2826 * that must be done for every newly created context, then puts the task
2827 * on the runqueue and wakes it.
2828 */
3e51e3ed 2829void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2830{
2831 unsigned long flags;
dd41f596 2832 struct rq *rq;
fabf318e 2833
ab2515c4 2834 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2835#ifdef CONFIG_SMP
2836 /*
2837 * Fork balancing, do it here and not earlier because:
2838 * - cpus_allowed can change in the fork path
2839 * - any previously selected cpu might disappear through hotplug
fabf318e 2840 */
ab2515c4 2841 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2842#endif
2843
ab2515c4 2844 rq = __task_rq_lock(p);
cd29fe6f 2845 activate_task(rq, p, 0);
fd2f4419 2846 p->on_rq = 1;
89363381 2847 trace_sched_wakeup_new(p, true);
a7558e01 2848 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2849#ifdef CONFIG_SMP
efbbd05a
PZ
2850 if (p->sched_class->task_woken)
2851 p->sched_class->task_woken(rq, p);
9a897c5a 2852#endif
0122ec5b 2853 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2854}
2855
e107be36
AK
2856#ifdef CONFIG_PREEMPT_NOTIFIERS
2857
2858/**
80dd99b3 2859 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2860 * @notifier: notifier struct to register
e107be36
AK
2861 */
2862void preempt_notifier_register(struct preempt_notifier *notifier)
2863{
2864 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2865}
2866EXPORT_SYMBOL_GPL(preempt_notifier_register);
2867
2868/**
2869 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2870 * @notifier: notifier struct to unregister
e107be36
AK
2871 *
2872 * This is safe to call from within a preemption notifier.
2873 */
2874void preempt_notifier_unregister(struct preempt_notifier *notifier)
2875{
2876 hlist_del(&notifier->link);
2877}
2878EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2879
2880static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2881{
2882 struct preempt_notifier *notifier;
2883 struct hlist_node *node;
2884
2885 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2886 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2887}
2888
2889static void
2890fire_sched_out_preempt_notifiers(struct task_struct *curr,
2891 struct task_struct *next)
2892{
2893 struct preempt_notifier *notifier;
2894 struct hlist_node *node;
2895
2896 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2897 notifier->ops->sched_out(notifier, next);
2898}
2899
6d6bc0ad 2900#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2901
2902static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2903{
2904}
2905
2906static void
2907fire_sched_out_preempt_notifiers(struct task_struct *curr,
2908 struct task_struct *next)
2909{
2910}
2911
6d6bc0ad 2912#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2913
4866cde0
NP
2914/**
2915 * prepare_task_switch - prepare to switch tasks
2916 * @rq: the runqueue preparing to switch
421cee29 2917 * @prev: the current task that is being switched out
4866cde0
NP
2918 * @next: the task we are going to switch to.
2919 *
2920 * This is called with the rq lock held and interrupts off. It must
2921 * be paired with a subsequent finish_task_switch after the context
2922 * switch.
2923 *
2924 * prepare_task_switch sets up locking and calls architecture specific
2925 * hooks.
2926 */
e107be36
AK
2927static inline void
2928prepare_task_switch(struct rq *rq, struct task_struct *prev,
2929 struct task_struct *next)
4866cde0 2930{
fe4b04fa
PZ
2931 sched_info_switch(prev, next);
2932 perf_event_task_sched_out(prev, next);
e107be36 2933 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2934 prepare_lock_switch(rq, next);
2935 prepare_arch_switch(next);
fe4b04fa 2936 trace_sched_switch(prev, next);
4866cde0
NP
2937}
2938
1da177e4
LT
2939/**
2940 * finish_task_switch - clean up after a task-switch
344babaa 2941 * @rq: runqueue associated with task-switch
1da177e4
LT
2942 * @prev: the thread we just switched away from.
2943 *
4866cde0
NP
2944 * finish_task_switch must be called after the context switch, paired
2945 * with a prepare_task_switch call before the context switch.
2946 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2947 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2948 *
2949 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2950 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2951 * with the lock held can cause deadlocks; see schedule() for
2952 * details.)
2953 */
a9957449 2954static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2955 __releases(rq->lock)
2956{
1da177e4 2957 struct mm_struct *mm = rq->prev_mm;
55a101f8 2958 long prev_state;
1da177e4
LT
2959
2960 rq->prev_mm = NULL;
2961
2962 /*
2963 * A task struct has one reference for the use as "current".
c394cc9f 2964 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2965 * schedule one last time. The schedule call will never return, and
2966 * the scheduled task must drop that reference.
c394cc9f 2967 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2968 * still held, otherwise prev could be scheduled on another cpu, die
2969 * there before we look at prev->state, and then the reference would
2970 * be dropped twice.
2971 * Manfred Spraul <manfred@colorfullife.com>
2972 */
55a101f8 2973 prev_state = prev->state;
4866cde0 2974 finish_arch_switch(prev);
8381f65d
JI
2975#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2976 local_irq_disable();
2977#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2978 perf_event_task_sched_in(current);
8381f65d
JI
2979#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2980 local_irq_enable();
2981#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2982 finish_lock_switch(rq, prev);
e8fa1362 2983
e107be36 2984 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2985 if (mm)
2986 mmdrop(mm);
c394cc9f 2987 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2988 /*
2989 * Remove function-return probe instances associated with this
2990 * task and put them back on the free list.
9761eea8 2991 */
c6fd91f0 2992 kprobe_flush_task(prev);
1da177e4 2993 put_task_struct(prev);
c6fd91f0 2994 }
1da177e4
LT
2995}
2996
3f029d3c
GH
2997#ifdef CONFIG_SMP
2998
2999/* assumes rq->lock is held */
3000static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3001{
3002 if (prev->sched_class->pre_schedule)
3003 prev->sched_class->pre_schedule(rq, prev);
3004}
3005
3006/* rq->lock is NOT held, but preemption is disabled */
3007static inline void post_schedule(struct rq *rq)
3008{
3009 if (rq->post_schedule) {
3010 unsigned long flags;
3011
05fa785c 3012 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3013 if (rq->curr->sched_class->post_schedule)
3014 rq->curr->sched_class->post_schedule(rq);
05fa785c 3015 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3016
3017 rq->post_schedule = 0;
3018 }
3019}
3020
3021#else
da19ab51 3022
3f029d3c
GH
3023static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3024{
3025}
3026
3027static inline void post_schedule(struct rq *rq)
3028{
1da177e4
LT
3029}
3030
3f029d3c
GH
3031#endif
3032
1da177e4
LT
3033/**
3034 * schedule_tail - first thing a freshly forked thread must call.
3035 * @prev: the thread we just switched away from.
3036 */
36c8b586 3037asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3038 __releases(rq->lock)
3039{
70b97a7f
IM
3040 struct rq *rq = this_rq();
3041
4866cde0 3042 finish_task_switch(rq, prev);
da19ab51 3043
3f029d3c
GH
3044 /*
3045 * FIXME: do we need to worry about rq being invalidated by the
3046 * task_switch?
3047 */
3048 post_schedule(rq);
70b97a7f 3049
4866cde0
NP
3050#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3051 /* In this case, finish_task_switch does not reenable preemption */
3052 preempt_enable();
3053#endif
1da177e4 3054 if (current->set_child_tid)
b488893a 3055 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3056}
3057
3058/*
3059 * context_switch - switch to the new MM and the new
3060 * thread's register state.
3061 */
dd41f596 3062static inline void
70b97a7f 3063context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3064 struct task_struct *next)
1da177e4 3065{
dd41f596 3066 struct mm_struct *mm, *oldmm;
1da177e4 3067
e107be36 3068 prepare_task_switch(rq, prev, next);
fe4b04fa 3069
dd41f596
IM
3070 mm = next->mm;
3071 oldmm = prev->active_mm;
9226d125
ZA
3072 /*
3073 * For paravirt, this is coupled with an exit in switch_to to
3074 * combine the page table reload and the switch backend into
3075 * one hypercall.
3076 */
224101ed 3077 arch_start_context_switch(prev);
9226d125 3078
31915ab4 3079 if (!mm) {
1da177e4
LT
3080 next->active_mm = oldmm;
3081 atomic_inc(&oldmm->mm_count);
3082 enter_lazy_tlb(oldmm, next);
3083 } else
3084 switch_mm(oldmm, mm, next);
3085
31915ab4 3086 if (!prev->mm) {
1da177e4 3087 prev->active_mm = NULL;
1da177e4
LT
3088 rq->prev_mm = oldmm;
3089 }
3a5f5e48
IM
3090 /*
3091 * Since the runqueue lock will be released by the next
3092 * task (which is an invalid locking op but in the case
3093 * of the scheduler it's an obvious special-case), so we
3094 * do an early lockdep release here:
3095 */
3096#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3097 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3098#endif
1da177e4
LT
3099
3100 /* Here we just switch the register state and the stack. */
3101 switch_to(prev, next, prev);
3102
dd41f596
IM
3103 barrier();
3104 /*
3105 * this_rq must be evaluated again because prev may have moved
3106 * CPUs since it called schedule(), thus the 'rq' on its stack
3107 * frame will be invalid.
3108 */
3109 finish_task_switch(this_rq(), prev);
1da177e4
LT
3110}
3111
3112/*
3113 * nr_running, nr_uninterruptible and nr_context_switches:
3114 *
3115 * externally visible scheduler statistics: current number of runnable
3116 * threads, current number of uninterruptible-sleeping threads, total
3117 * number of context switches performed since bootup.
3118 */
3119unsigned long nr_running(void)
3120{
3121 unsigned long i, sum = 0;
3122
3123 for_each_online_cpu(i)
3124 sum += cpu_rq(i)->nr_running;
3125
3126 return sum;
f711f609 3127}
1da177e4
LT
3128
3129unsigned long nr_uninterruptible(void)
f711f609 3130{
1da177e4 3131 unsigned long i, sum = 0;
f711f609 3132
0a945022 3133 for_each_possible_cpu(i)
1da177e4 3134 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3135
3136 /*
1da177e4
LT
3137 * Since we read the counters lockless, it might be slightly
3138 * inaccurate. Do not allow it to go below zero though:
f711f609 3139 */
1da177e4
LT
3140 if (unlikely((long)sum < 0))
3141 sum = 0;
f711f609 3142
1da177e4 3143 return sum;
f711f609 3144}
f711f609 3145
1da177e4 3146unsigned long long nr_context_switches(void)
46cb4b7c 3147{
cc94abfc
SR
3148 int i;
3149 unsigned long long sum = 0;
46cb4b7c 3150
0a945022 3151 for_each_possible_cpu(i)
1da177e4 3152 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3153
1da177e4
LT
3154 return sum;
3155}
483b4ee6 3156
1da177e4
LT
3157unsigned long nr_iowait(void)
3158{
3159 unsigned long i, sum = 0;
483b4ee6 3160
0a945022 3161 for_each_possible_cpu(i)
1da177e4 3162 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3163
1da177e4
LT
3164 return sum;
3165}
483b4ee6 3166
8c215bd3 3167unsigned long nr_iowait_cpu(int cpu)
69d25870 3168{
8c215bd3 3169 struct rq *this = cpu_rq(cpu);
69d25870
AV
3170 return atomic_read(&this->nr_iowait);
3171}
46cb4b7c 3172
69d25870
AV
3173unsigned long this_cpu_load(void)
3174{
3175 struct rq *this = this_rq();
3176 return this->cpu_load[0];
3177}
e790fb0b 3178
46cb4b7c 3179
dce48a84
TG
3180/* Variables and functions for calc_load */
3181static atomic_long_t calc_load_tasks;
3182static unsigned long calc_load_update;
3183unsigned long avenrun[3];
3184EXPORT_SYMBOL(avenrun);
46cb4b7c 3185
74f5187a
PZ
3186static long calc_load_fold_active(struct rq *this_rq)
3187{
3188 long nr_active, delta = 0;
3189
3190 nr_active = this_rq->nr_running;
3191 nr_active += (long) this_rq->nr_uninterruptible;
3192
3193 if (nr_active != this_rq->calc_load_active) {
3194 delta = nr_active - this_rq->calc_load_active;
3195 this_rq->calc_load_active = nr_active;
3196 }
3197
3198 return delta;
3199}
3200
0f004f5a
PZ
3201static unsigned long
3202calc_load(unsigned long load, unsigned long exp, unsigned long active)
3203{
3204 load *= exp;
3205 load += active * (FIXED_1 - exp);
3206 load += 1UL << (FSHIFT - 1);
3207 return load >> FSHIFT;
3208}
3209
74f5187a
PZ
3210#ifdef CONFIG_NO_HZ
3211/*
3212 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3213 *
3214 * When making the ILB scale, we should try to pull this in as well.
3215 */
3216static atomic_long_t calc_load_tasks_idle;
3217
3218static void calc_load_account_idle(struct rq *this_rq)
3219{
3220 long delta;
3221
3222 delta = calc_load_fold_active(this_rq);
3223 if (delta)
3224 atomic_long_add(delta, &calc_load_tasks_idle);
3225}
3226
3227static long calc_load_fold_idle(void)
3228{
3229 long delta = 0;
3230
3231 /*
3232 * Its got a race, we don't care...
3233 */
3234 if (atomic_long_read(&calc_load_tasks_idle))
3235 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3236
3237 return delta;
3238}
0f004f5a
PZ
3239
3240/**
3241 * fixed_power_int - compute: x^n, in O(log n) time
3242 *
3243 * @x: base of the power
3244 * @frac_bits: fractional bits of @x
3245 * @n: power to raise @x to.
3246 *
3247 * By exploiting the relation between the definition of the natural power
3248 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3249 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3250 * (where: n_i \elem {0, 1}, the binary vector representing n),
3251 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3252 * of course trivially computable in O(log_2 n), the length of our binary
3253 * vector.
3254 */
3255static unsigned long
3256fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3257{
3258 unsigned long result = 1UL << frac_bits;
3259
3260 if (n) for (;;) {
3261 if (n & 1) {
3262 result *= x;
3263 result += 1UL << (frac_bits - 1);
3264 result >>= frac_bits;
3265 }
3266 n >>= 1;
3267 if (!n)
3268 break;
3269 x *= x;
3270 x += 1UL << (frac_bits - 1);
3271 x >>= frac_bits;
3272 }
3273
3274 return result;
3275}
3276
3277/*
3278 * a1 = a0 * e + a * (1 - e)
3279 *
3280 * a2 = a1 * e + a * (1 - e)
3281 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3282 * = a0 * e^2 + a * (1 - e) * (1 + e)
3283 *
3284 * a3 = a2 * e + a * (1 - e)
3285 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3286 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3287 *
3288 * ...
3289 *
3290 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3291 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3292 * = a0 * e^n + a * (1 - e^n)
3293 *
3294 * [1] application of the geometric series:
3295 *
3296 * n 1 - x^(n+1)
3297 * S_n := \Sum x^i = -------------
3298 * i=0 1 - x
3299 */
3300static unsigned long
3301calc_load_n(unsigned long load, unsigned long exp,
3302 unsigned long active, unsigned int n)
3303{
3304
3305 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3306}
3307
3308/*
3309 * NO_HZ can leave us missing all per-cpu ticks calling
3310 * calc_load_account_active(), but since an idle CPU folds its delta into
3311 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3312 * in the pending idle delta if our idle period crossed a load cycle boundary.
3313 *
3314 * Once we've updated the global active value, we need to apply the exponential
3315 * weights adjusted to the number of cycles missed.
3316 */
3317static void calc_global_nohz(unsigned long ticks)
3318{
3319 long delta, active, n;
3320
3321 if (time_before(jiffies, calc_load_update))
3322 return;
3323
3324 /*
3325 * If we crossed a calc_load_update boundary, make sure to fold
3326 * any pending idle changes, the respective CPUs might have
3327 * missed the tick driven calc_load_account_active() update
3328 * due to NO_HZ.
3329 */
3330 delta = calc_load_fold_idle();
3331 if (delta)
3332 atomic_long_add(delta, &calc_load_tasks);
3333
3334 /*
3335 * If we were idle for multiple load cycles, apply them.
3336 */
3337 if (ticks >= LOAD_FREQ) {
3338 n = ticks / LOAD_FREQ;
3339
3340 active = atomic_long_read(&calc_load_tasks);
3341 active = active > 0 ? active * FIXED_1 : 0;
3342
3343 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3344 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3345 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3346
3347 calc_load_update += n * LOAD_FREQ;
3348 }
3349
3350 /*
3351 * Its possible the remainder of the above division also crosses
3352 * a LOAD_FREQ period, the regular check in calc_global_load()
3353 * which comes after this will take care of that.
3354 *
3355 * Consider us being 11 ticks before a cycle completion, and us
3356 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3357 * age us 4 cycles, and the test in calc_global_load() will
3358 * pick up the final one.
3359 */
3360}
74f5187a
PZ
3361#else
3362static void calc_load_account_idle(struct rq *this_rq)
3363{
3364}
3365
3366static inline long calc_load_fold_idle(void)
3367{
3368 return 0;
3369}
0f004f5a
PZ
3370
3371static void calc_global_nohz(unsigned long ticks)
3372{
3373}
74f5187a
PZ
3374#endif
3375
2d02494f
TG
3376/**
3377 * get_avenrun - get the load average array
3378 * @loads: pointer to dest load array
3379 * @offset: offset to add
3380 * @shift: shift count to shift the result left
3381 *
3382 * These values are estimates at best, so no need for locking.
3383 */
3384void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3385{
3386 loads[0] = (avenrun[0] + offset) << shift;
3387 loads[1] = (avenrun[1] + offset) << shift;
3388 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3389}
46cb4b7c 3390
46cb4b7c 3391/*
dce48a84
TG
3392 * calc_load - update the avenrun load estimates 10 ticks after the
3393 * CPUs have updated calc_load_tasks.
7835b98b 3394 */
0f004f5a 3395void calc_global_load(unsigned long ticks)
7835b98b 3396{
dce48a84 3397 long active;
1da177e4 3398
0f004f5a
PZ
3399 calc_global_nohz(ticks);
3400
3401 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3402 return;
1da177e4 3403
dce48a84
TG
3404 active = atomic_long_read(&calc_load_tasks);
3405 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3406
dce48a84
TG
3407 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3408 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3409 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3410
dce48a84
TG
3411 calc_load_update += LOAD_FREQ;
3412}
1da177e4 3413
dce48a84 3414/*
74f5187a
PZ
3415 * Called from update_cpu_load() to periodically update this CPU's
3416 * active count.
dce48a84
TG
3417 */
3418static void calc_load_account_active(struct rq *this_rq)
3419{
74f5187a 3420 long delta;
08c183f3 3421
74f5187a
PZ
3422 if (time_before(jiffies, this_rq->calc_load_update))
3423 return;
783609c6 3424
74f5187a
PZ
3425 delta = calc_load_fold_active(this_rq);
3426 delta += calc_load_fold_idle();
3427 if (delta)
dce48a84 3428 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3429
3430 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3431}
3432
fdf3e95d
VP
3433/*
3434 * The exact cpuload at various idx values, calculated at every tick would be
3435 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3436 *
3437 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3438 * on nth tick when cpu may be busy, then we have:
3439 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3440 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3441 *
3442 * decay_load_missed() below does efficient calculation of
3443 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3444 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3445 *
3446 * The calculation is approximated on a 128 point scale.
3447 * degrade_zero_ticks is the number of ticks after which load at any
3448 * particular idx is approximated to be zero.
3449 * degrade_factor is a precomputed table, a row for each load idx.
3450 * Each column corresponds to degradation factor for a power of two ticks,
3451 * based on 128 point scale.
3452 * Example:
3453 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3454 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3455 *
3456 * With this power of 2 load factors, we can degrade the load n times
3457 * by looking at 1 bits in n and doing as many mult/shift instead of
3458 * n mult/shifts needed by the exact degradation.
3459 */
3460#define DEGRADE_SHIFT 7
3461static const unsigned char
3462 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3463static const unsigned char
3464 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3465 {0, 0, 0, 0, 0, 0, 0, 0},
3466 {64, 32, 8, 0, 0, 0, 0, 0},
3467 {96, 72, 40, 12, 1, 0, 0},
3468 {112, 98, 75, 43, 15, 1, 0},
3469 {120, 112, 98, 76, 45, 16, 2} };
3470
3471/*
3472 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3473 * would be when CPU is idle and so we just decay the old load without
3474 * adding any new load.
3475 */
3476static unsigned long
3477decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3478{
3479 int j = 0;
3480
3481 if (!missed_updates)
3482 return load;
3483
3484 if (missed_updates >= degrade_zero_ticks[idx])
3485 return 0;
3486
3487 if (idx == 1)
3488 return load >> missed_updates;
3489
3490 while (missed_updates) {
3491 if (missed_updates % 2)
3492 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3493
3494 missed_updates >>= 1;
3495 j++;
3496 }
3497 return load;
3498}
3499
46cb4b7c 3500/*
dd41f596 3501 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3502 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3503 * every tick. We fix it up based on jiffies.
46cb4b7c 3504 */
dd41f596 3505static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3506{
495eca49 3507 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3508 unsigned long curr_jiffies = jiffies;
3509 unsigned long pending_updates;
dd41f596 3510 int i, scale;
46cb4b7c 3511
dd41f596 3512 this_rq->nr_load_updates++;
46cb4b7c 3513
fdf3e95d
VP
3514 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3515 if (curr_jiffies == this_rq->last_load_update_tick)
3516 return;
3517
3518 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3519 this_rq->last_load_update_tick = curr_jiffies;
3520
dd41f596 3521 /* Update our load: */
fdf3e95d
VP
3522 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3523 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3524 unsigned long old_load, new_load;
7d1e6a9b 3525
dd41f596 3526 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3527
dd41f596 3528 old_load = this_rq->cpu_load[i];
fdf3e95d 3529 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3530 new_load = this_load;
a25707f3
IM
3531 /*
3532 * Round up the averaging division if load is increasing. This
3533 * prevents us from getting stuck on 9 if the load is 10, for
3534 * example.
3535 */
3536 if (new_load > old_load)
fdf3e95d
VP
3537 new_load += scale - 1;
3538
3539 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3540 }
da2b71ed
SS
3541
3542 sched_avg_update(this_rq);
fdf3e95d
VP
3543}
3544
3545static void update_cpu_load_active(struct rq *this_rq)
3546{
3547 update_cpu_load(this_rq);
46cb4b7c 3548
74f5187a 3549 calc_load_account_active(this_rq);
46cb4b7c
SS
3550}
3551
dd41f596 3552#ifdef CONFIG_SMP
8a0be9ef 3553
46cb4b7c 3554/*
38022906
PZ
3555 * sched_exec - execve() is a valuable balancing opportunity, because at
3556 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3557 */
38022906 3558void sched_exec(void)
46cb4b7c 3559{
38022906 3560 struct task_struct *p = current;
1da177e4 3561 unsigned long flags;
0017d735 3562 int dest_cpu;
46cb4b7c 3563
8f42ced9 3564 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3565 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3566 if (dest_cpu == smp_processor_id())
3567 goto unlock;
38022906 3568
8f42ced9 3569 if (likely(cpu_active(dest_cpu))) {
969c7921 3570 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3571
8f42ced9
PZ
3572 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3573 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3574 return;
3575 }
0017d735 3576unlock:
8f42ced9 3577 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3578}
dd41f596 3579
1da177e4
LT
3580#endif
3581
1da177e4
LT
3582DEFINE_PER_CPU(struct kernel_stat, kstat);
3583
3584EXPORT_PER_CPU_SYMBOL(kstat);
3585
3586/*
c5f8d995 3587 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3588 * @p in case that task is currently running.
c5f8d995
HS
3589 *
3590 * Called with task_rq_lock() held on @rq.
1da177e4 3591 */
c5f8d995
HS
3592static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3593{
3594 u64 ns = 0;
3595
3596 if (task_current(rq, p)) {
3597 update_rq_clock(rq);
305e6835 3598 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3599 if ((s64)ns < 0)
3600 ns = 0;
3601 }
3602
3603 return ns;
3604}
3605
bb34d92f 3606unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3607{
1da177e4 3608 unsigned long flags;
41b86e9c 3609 struct rq *rq;
bb34d92f 3610 u64 ns = 0;
48f24c4d 3611
41b86e9c 3612 rq = task_rq_lock(p, &flags);
c5f8d995 3613 ns = do_task_delta_exec(p, rq);
0122ec5b 3614 task_rq_unlock(rq, p, &flags);
1508487e 3615
c5f8d995
HS
3616 return ns;
3617}
f06febc9 3618
c5f8d995
HS
3619/*
3620 * Return accounted runtime for the task.
3621 * In case the task is currently running, return the runtime plus current's
3622 * pending runtime that have not been accounted yet.
3623 */
3624unsigned long long task_sched_runtime(struct task_struct *p)
3625{
3626 unsigned long flags;
3627 struct rq *rq;
3628 u64 ns = 0;
3629
3630 rq = task_rq_lock(p, &flags);
3631 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3632 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3633
3634 return ns;
3635}
48f24c4d 3636
c5f8d995
HS
3637/*
3638 * Return sum_exec_runtime for the thread group.
3639 * In case the task is currently running, return the sum plus current's
3640 * pending runtime that have not been accounted yet.
3641 *
3642 * Note that the thread group might have other running tasks as well,
3643 * so the return value not includes other pending runtime that other
3644 * running tasks might have.
3645 */
3646unsigned long long thread_group_sched_runtime(struct task_struct *p)
3647{
3648 struct task_cputime totals;
3649 unsigned long flags;
3650 struct rq *rq;
3651 u64 ns;
3652
3653 rq = task_rq_lock(p, &flags);
3654 thread_group_cputime(p, &totals);
3655 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3656 task_rq_unlock(rq, p, &flags);
48f24c4d 3657
1da177e4
LT
3658 return ns;
3659}
3660
1da177e4
LT
3661/*
3662 * Account user cpu time to a process.
3663 * @p: the process that the cpu time gets accounted to
1da177e4 3664 * @cputime: the cpu time spent in user space since the last update
457533a7 3665 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3666 */
457533a7
MS
3667void account_user_time(struct task_struct *p, cputime_t cputime,
3668 cputime_t cputime_scaled)
1da177e4
LT
3669{
3670 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3671 cputime64_t tmp;
3672
457533a7 3673 /* Add user time to process. */
1da177e4 3674 p->utime = cputime_add(p->utime, cputime);
457533a7 3675 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3676 account_group_user_time(p, cputime);
1da177e4
LT
3677
3678 /* Add user time to cpustat. */
3679 tmp = cputime_to_cputime64(cputime);
3680 if (TASK_NICE(p) > 0)
3681 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3682 else
3683 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3684
3685 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3686 /* Account for user time used */
3687 acct_update_integrals(p);
1da177e4
LT
3688}
3689
94886b84
LV
3690/*
3691 * Account guest cpu time to a process.
3692 * @p: the process that the cpu time gets accounted to
3693 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3694 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3695 */
457533a7
MS
3696static void account_guest_time(struct task_struct *p, cputime_t cputime,
3697 cputime_t cputime_scaled)
94886b84
LV
3698{
3699 cputime64_t tmp;
3700 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3701
3702 tmp = cputime_to_cputime64(cputime);
3703
457533a7 3704 /* Add guest time to process. */
94886b84 3705 p->utime = cputime_add(p->utime, cputime);
457533a7 3706 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3707 account_group_user_time(p, cputime);
94886b84
LV
3708 p->gtime = cputime_add(p->gtime, cputime);
3709
457533a7 3710 /* Add guest time to cpustat. */
ce0e7b28
RO
3711 if (TASK_NICE(p) > 0) {
3712 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3713 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3714 } else {
3715 cpustat->user = cputime64_add(cpustat->user, tmp);
3716 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3717 }
94886b84
LV
3718}
3719
70a89a66
VP
3720/*
3721 * Account system cpu time to a process and desired cpustat field
3722 * @p: the process that the cpu time gets accounted to
3723 * @cputime: the cpu time spent in kernel space since the last update
3724 * @cputime_scaled: cputime scaled by cpu frequency
3725 * @target_cputime64: pointer to cpustat field that has to be updated
3726 */
3727static inline
3728void __account_system_time(struct task_struct *p, cputime_t cputime,
3729 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3730{
3731 cputime64_t tmp = cputime_to_cputime64(cputime);
3732
3733 /* Add system time to process. */
3734 p->stime = cputime_add(p->stime, cputime);
3735 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3736 account_group_system_time(p, cputime);
3737
3738 /* Add system time to cpustat. */
3739 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3740 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3741
3742 /* Account for system time used */
3743 acct_update_integrals(p);
3744}
3745
1da177e4
LT
3746/*
3747 * Account system cpu time to a process.
3748 * @p: the process that the cpu time gets accounted to
3749 * @hardirq_offset: the offset to subtract from hardirq_count()
3750 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3751 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3752 */
3753void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3754 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3755{
3756 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3757 cputime64_t *target_cputime64;
1da177e4 3758
983ed7a6 3759 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3760 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3761 return;
3762 }
94886b84 3763
1da177e4 3764 if (hardirq_count() - hardirq_offset)
70a89a66 3765 target_cputime64 = &cpustat->irq;
75e1056f 3766 else if (in_serving_softirq())
70a89a66 3767 target_cputime64 = &cpustat->softirq;
1da177e4 3768 else
70a89a66 3769 target_cputime64 = &cpustat->system;
ef12fefa 3770
70a89a66 3771 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3772}
3773
c66f08be 3774/*
1da177e4 3775 * Account for involuntary wait time.
544b4a1f 3776 * @cputime: the cpu time spent in involuntary wait
c66f08be 3777 */
79741dd3 3778void account_steal_time(cputime_t cputime)
c66f08be 3779{
79741dd3
MS
3780 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3781 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3782
3783 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3784}
3785
1da177e4 3786/*
79741dd3
MS
3787 * Account for idle time.
3788 * @cputime: the cpu time spent in idle wait
1da177e4 3789 */
79741dd3 3790void account_idle_time(cputime_t cputime)
1da177e4
LT
3791{
3792 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3793 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3794 struct rq *rq = this_rq();
1da177e4 3795
79741dd3
MS
3796 if (atomic_read(&rq->nr_iowait) > 0)
3797 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3798 else
3799 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3800}
3801
79741dd3
MS
3802#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3803
abb74cef
VP
3804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3805/*
3806 * Account a tick to a process and cpustat
3807 * @p: the process that the cpu time gets accounted to
3808 * @user_tick: is the tick from userspace
3809 * @rq: the pointer to rq
3810 *
3811 * Tick demultiplexing follows the order
3812 * - pending hardirq update
3813 * - pending softirq update
3814 * - user_time
3815 * - idle_time
3816 * - system time
3817 * - check for guest_time
3818 * - else account as system_time
3819 *
3820 * Check for hardirq is done both for system and user time as there is
3821 * no timer going off while we are on hardirq and hence we may never get an
3822 * opportunity to update it solely in system time.
3823 * p->stime and friends are only updated on system time and not on irq
3824 * softirq as those do not count in task exec_runtime any more.
3825 */
3826static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3827 struct rq *rq)
3828{
3829 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3830 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3831 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3832
3833 if (irqtime_account_hi_update()) {
3834 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3835 } else if (irqtime_account_si_update()) {
3836 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3837 } else if (this_cpu_ksoftirqd() == p) {
3838 /*
3839 * ksoftirqd time do not get accounted in cpu_softirq_time.
3840 * So, we have to handle it separately here.
3841 * Also, p->stime needs to be updated for ksoftirqd.
3842 */
3843 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3844 &cpustat->softirq);
abb74cef
VP
3845 } else if (user_tick) {
3846 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3847 } else if (p == rq->idle) {
3848 account_idle_time(cputime_one_jiffy);
3849 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3850 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3851 } else {
3852 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3853 &cpustat->system);
3854 }
3855}
3856
3857static void irqtime_account_idle_ticks(int ticks)
3858{
3859 int i;
3860 struct rq *rq = this_rq();
3861
3862 for (i = 0; i < ticks; i++)
3863 irqtime_account_process_tick(current, 0, rq);
3864}
544b4a1f 3865#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3866static void irqtime_account_idle_ticks(int ticks) {}
3867static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3868 struct rq *rq) {}
544b4a1f 3869#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3870
3871/*
3872 * Account a single tick of cpu time.
3873 * @p: the process that the cpu time gets accounted to
3874 * @user_tick: indicates if the tick is a user or a system tick
3875 */
3876void account_process_tick(struct task_struct *p, int user_tick)
3877{
a42548a1 3878 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3879 struct rq *rq = this_rq();
3880
abb74cef
VP
3881 if (sched_clock_irqtime) {
3882 irqtime_account_process_tick(p, user_tick, rq);
3883 return;
3884 }
3885
79741dd3 3886 if (user_tick)
a42548a1 3887 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3888 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3889 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3890 one_jiffy_scaled);
3891 else
a42548a1 3892 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3893}
3894
3895/*
3896 * Account multiple ticks of steal time.
3897 * @p: the process from which the cpu time has been stolen
3898 * @ticks: number of stolen ticks
3899 */
3900void account_steal_ticks(unsigned long ticks)
3901{
3902 account_steal_time(jiffies_to_cputime(ticks));
3903}
3904
3905/*
3906 * Account multiple ticks of idle time.
3907 * @ticks: number of stolen ticks
3908 */
3909void account_idle_ticks(unsigned long ticks)
3910{
abb74cef
VP
3911
3912 if (sched_clock_irqtime) {
3913 irqtime_account_idle_ticks(ticks);
3914 return;
3915 }
3916
79741dd3 3917 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3918}
3919
79741dd3
MS
3920#endif
3921
49048622
BS
3922/*
3923 * Use precise platform statistics if available:
3924 */
3925#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3926void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3927{
d99ca3b9
HS
3928 *ut = p->utime;
3929 *st = p->stime;
49048622
BS
3930}
3931
0cf55e1e 3932void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3933{
0cf55e1e
HS
3934 struct task_cputime cputime;
3935
3936 thread_group_cputime(p, &cputime);
3937
3938 *ut = cputime.utime;
3939 *st = cputime.stime;
49048622
BS
3940}
3941#else
761b1d26
HS
3942
3943#ifndef nsecs_to_cputime
b7b20df9 3944# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3945#endif
3946
d180c5bc 3947void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3948{
d99ca3b9 3949 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3950
3951 /*
3952 * Use CFS's precise accounting:
3953 */
d180c5bc 3954 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3955
3956 if (total) {
e75e863d 3957 u64 temp = rtime;
d180c5bc 3958
e75e863d 3959 temp *= utime;
49048622 3960 do_div(temp, total);
d180c5bc
HS
3961 utime = (cputime_t)temp;
3962 } else
3963 utime = rtime;
49048622 3964
d180c5bc
HS
3965 /*
3966 * Compare with previous values, to keep monotonicity:
3967 */
761b1d26 3968 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3969 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3970
d99ca3b9
HS
3971 *ut = p->prev_utime;
3972 *st = p->prev_stime;
49048622
BS
3973}
3974
0cf55e1e
HS
3975/*
3976 * Must be called with siglock held.
3977 */
3978void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3979{
0cf55e1e
HS
3980 struct signal_struct *sig = p->signal;
3981 struct task_cputime cputime;
3982 cputime_t rtime, utime, total;
49048622 3983
0cf55e1e 3984 thread_group_cputime(p, &cputime);
49048622 3985
0cf55e1e
HS
3986 total = cputime_add(cputime.utime, cputime.stime);
3987 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3988
0cf55e1e 3989 if (total) {
e75e863d 3990 u64 temp = rtime;
49048622 3991
e75e863d 3992 temp *= cputime.utime;
0cf55e1e
HS
3993 do_div(temp, total);
3994 utime = (cputime_t)temp;
3995 } else
3996 utime = rtime;
3997
3998 sig->prev_utime = max(sig->prev_utime, utime);
3999 sig->prev_stime = max(sig->prev_stime,
4000 cputime_sub(rtime, sig->prev_utime));
4001
4002 *ut = sig->prev_utime;
4003 *st = sig->prev_stime;
49048622 4004}
49048622 4005#endif
49048622 4006
7835b98b
CL
4007/*
4008 * This function gets called by the timer code, with HZ frequency.
4009 * We call it with interrupts disabled.
7835b98b
CL
4010 */
4011void scheduler_tick(void)
4012{
7835b98b
CL
4013 int cpu = smp_processor_id();
4014 struct rq *rq = cpu_rq(cpu);
dd41f596 4015 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4016
4017 sched_clock_tick();
dd41f596 4018
05fa785c 4019 raw_spin_lock(&rq->lock);
3e51f33f 4020 update_rq_clock(rq);
fdf3e95d 4021 update_cpu_load_active(rq);
fa85ae24 4022 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4023 raw_spin_unlock(&rq->lock);
7835b98b 4024
e9d2b064 4025 perf_event_task_tick();
e220d2dc 4026
e418e1c2 4027#ifdef CONFIG_SMP
dd41f596
IM
4028 rq->idle_at_tick = idle_cpu(cpu);
4029 trigger_load_balance(rq, cpu);
e418e1c2 4030#endif
1da177e4
LT
4031}
4032
132380a0 4033notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4034{
4035 if (in_lock_functions(addr)) {
4036 addr = CALLER_ADDR2;
4037 if (in_lock_functions(addr))
4038 addr = CALLER_ADDR3;
4039 }
4040 return addr;
4041}
1da177e4 4042
7e49fcce
SR
4043#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4044 defined(CONFIG_PREEMPT_TRACER))
4045
43627582 4046void __kprobes add_preempt_count(int val)
1da177e4 4047{
6cd8a4bb 4048#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4049 /*
4050 * Underflow?
4051 */
9a11b49a
IM
4052 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4053 return;
6cd8a4bb 4054#endif
1da177e4 4055 preempt_count() += val;
6cd8a4bb 4056#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4057 /*
4058 * Spinlock count overflowing soon?
4059 */
33859f7f
MOS
4060 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4061 PREEMPT_MASK - 10);
6cd8a4bb
SR
4062#endif
4063 if (preempt_count() == val)
4064 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4065}
4066EXPORT_SYMBOL(add_preempt_count);
4067
43627582 4068void __kprobes sub_preempt_count(int val)
1da177e4 4069{
6cd8a4bb 4070#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4071 /*
4072 * Underflow?
4073 */
01e3eb82 4074 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4075 return;
1da177e4
LT
4076 /*
4077 * Is the spinlock portion underflowing?
4078 */
9a11b49a
IM
4079 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4080 !(preempt_count() & PREEMPT_MASK)))
4081 return;
6cd8a4bb 4082#endif
9a11b49a 4083
6cd8a4bb
SR
4084 if (preempt_count() == val)
4085 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4086 preempt_count() -= val;
4087}
4088EXPORT_SYMBOL(sub_preempt_count);
4089
4090#endif
4091
4092/*
dd41f596 4093 * Print scheduling while atomic bug:
1da177e4 4094 */
dd41f596 4095static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4096{
838225b4
SS
4097 struct pt_regs *regs = get_irq_regs();
4098
3df0fc5b
PZ
4099 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4100 prev->comm, prev->pid, preempt_count());
838225b4 4101
dd41f596 4102 debug_show_held_locks(prev);
e21f5b15 4103 print_modules();
dd41f596
IM
4104 if (irqs_disabled())
4105 print_irqtrace_events(prev);
838225b4
SS
4106
4107 if (regs)
4108 show_regs(regs);
4109 else
4110 dump_stack();
dd41f596 4111}
1da177e4 4112
dd41f596
IM
4113/*
4114 * Various schedule()-time debugging checks and statistics:
4115 */
4116static inline void schedule_debug(struct task_struct *prev)
4117{
1da177e4 4118 /*
41a2d6cf 4119 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4120 * schedule() atomically, we ignore that path for now.
4121 * Otherwise, whine if we are scheduling when we should not be.
4122 */
3f33a7ce 4123 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4124 __schedule_bug(prev);
4125
1da177e4
LT
4126 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4127
2d72376b 4128 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4129}
4130
6cecd084 4131static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4132{
61eadef6 4133 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4134 update_rq_clock(rq);
6cecd084 4135 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4136}
4137
dd41f596
IM
4138/*
4139 * Pick up the highest-prio task:
4140 */
4141static inline struct task_struct *
b67802ea 4142pick_next_task(struct rq *rq)
dd41f596 4143{
5522d5d5 4144 const struct sched_class *class;
dd41f596 4145 struct task_struct *p;
1da177e4
LT
4146
4147 /*
dd41f596
IM
4148 * Optimization: we know that if all tasks are in
4149 * the fair class we can call that function directly:
1da177e4 4150 */
dd41f596 4151 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4152 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4153 if (likely(p))
4154 return p;
1da177e4
LT
4155 }
4156
34f971f6 4157 for_each_class(class) {
fb8d4724 4158 p = class->pick_next_task(rq);
dd41f596
IM
4159 if (p)
4160 return p;
dd41f596 4161 }
34f971f6
PZ
4162
4163 BUG(); /* the idle class will always have a runnable task */
dd41f596 4164}
1da177e4 4165
dd41f596
IM
4166/*
4167 * schedule() is the main scheduler function.
4168 */
ff743345 4169asmlinkage void __sched schedule(void)
dd41f596
IM
4170{
4171 struct task_struct *prev, *next;
67ca7bde 4172 unsigned long *switch_count;
dd41f596 4173 struct rq *rq;
31656519 4174 int cpu;
dd41f596 4175
ff743345
PZ
4176need_resched:
4177 preempt_disable();
dd41f596
IM
4178 cpu = smp_processor_id();
4179 rq = cpu_rq(cpu);
25502a6c 4180 rcu_note_context_switch(cpu);
dd41f596 4181 prev = rq->curr;
dd41f596 4182
dd41f596 4183 schedule_debug(prev);
1da177e4 4184
31656519 4185 if (sched_feat(HRTICK))
f333fdc9 4186 hrtick_clear(rq);
8f4d37ec 4187
05fa785c 4188 raw_spin_lock_irq(&rq->lock);
1da177e4 4189
246d86b5 4190 switch_count = &prev->nivcsw;
1da177e4 4191 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4192 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4193 prev->state = TASK_RUNNING;
21aa9af0 4194 } else {
2acca55e
PZ
4195 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4196 prev->on_rq = 0;
4197
21aa9af0 4198 /*
2acca55e
PZ
4199 * If a worker went to sleep, notify and ask workqueue
4200 * whether it wants to wake up a task to maintain
4201 * concurrency.
21aa9af0
TH
4202 */
4203 if (prev->flags & PF_WQ_WORKER) {
4204 struct task_struct *to_wakeup;
4205
4206 to_wakeup = wq_worker_sleeping(prev, cpu);
4207 if (to_wakeup)
4208 try_to_wake_up_local(to_wakeup);
4209 }
fd2f4419 4210
6631e635 4211 /*
2acca55e
PZ
4212 * If we are going to sleep and we have plugged IO
4213 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4214 */
4215 if (blk_needs_flush_plug(prev)) {
4216 raw_spin_unlock(&rq->lock);
a237c1c5 4217 blk_schedule_flush_plug(prev);
6631e635
LT
4218 raw_spin_lock(&rq->lock);
4219 }
21aa9af0 4220 }
dd41f596 4221 switch_count = &prev->nvcsw;
1da177e4
LT
4222 }
4223
3f029d3c 4224 pre_schedule(rq, prev);
f65eda4f 4225
dd41f596 4226 if (unlikely(!rq->nr_running))
1da177e4 4227 idle_balance(cpu, rq);
1da177e4 4228
df1c99d4 4229 put_prev_task(rq, prev);
b67802ea 4230 next = pick_next_task(rq);
f26f9aff
MG
4231 clear_tsk_need_resched(prev);
4232 rq->skip_clock_update = 0;
1da177e4 4233
1da177e4 4234 if (likely(prev != next)) {
1da177e4
LT
4235 rq->nr_switches++;
4236 rq->curr = next;
4237 ++*switch_count;
4238
dd41f596 4239 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4240 /*
246d86b5
ON
4241 * The context switch have flipped the stack from under us
4242 * and restored the local variables which were saved when
4243 * this task called schedule() in the past. prev == current
4244 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4245 */
4246 cpu = smp_processor_id();
4247 rq = cpu_rq(cpu);
1da177e4 4248 } else
05fa785c 4249 raw_spin_unlock_irq(&rq->lock);
1da177e4 4250
3f029d3c 4251 post_schedule(rq);
1da177e4 4252
1da177e4 4253 preempt_enable_no_resched();
ff743345 4254 if (need_resched())
1da177e4
LT
4255 goto need_resched;
4256}
1da177e4
LT
4257EXPORT_SYMBOL(schedule);
4258
c08f7829 4259#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4260
c6eb3dda
PZ
4261static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4262{
4263 bool ret = false;
0d66bf6d 4264
c6eb3dda
PZ
4265 rcu_read_lock();
4266 if (lock->owner != owner)
4267 goto fail;
0d66bf6d
PZ
4268
4269 /*
c6eb3dda
PZ
4270 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4271 * lock->owner still matches owner, if that fails, owner might
4272 * point to free()d memory, if it still matches, the rcu_read_lock()
4273 * ensures the memory stays valid.
0d66bf6d 4274 */
c6eb3dda 4275 barrier();
0d66bf6d 4276
c6eb3dda
PZ
4277 ret = owner->on_cpu;
4278fail:
4279 rcu_read_unlock();
0d66bf6d 4280
c6eb3dda
PZ
4281 return ret;
4282}
0d66bf6d 4283
c6eb3dda
PZ
4284/*
4285 * Look out! "owner" is an entirely speculative pointer
4286 * access and not reliable.
4287 */
4288int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4289{
4290 if (!sched_feat(OWNER_SPIN))
4291 return 0;
0d66bf6d 4292
c6eb3dda
PZ
4293 while (owner_running(lock, owner)) {
4294 if (need_resched())
0d66bf6d
PZ
4295 return 0;
4296
335d7afb 4297 arch_mutex_cpu_relax();
0d66bf6d 4298 }
4b402210 4299
c6eb3dda
PZ
4300 /*
4301 * If the owner changed to another task there is likely
4302 * heavy contention, stop spinning.
4303 */
4304 if (lock->owner)
4305 return 0;
4306
0d66bf6d
PZ
4307 return 1;
4308}
4309#endif
4310
1da177e4
LT
4311#ifdef CONFIG_PREEMPT
4312/*
2ed6e34f 4313 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4314 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4315 * occur there and call schedule directly.
4316 */
d1f74e20 4317asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4318{
4319 struct thread_info *ti = current_thread_info();
6478d880 4320
1da177e4
LT
4321 /*
4322 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4323 * we do not want to preempt the current task. Just return..
1da177e4 4324 */
beed33a8 4325 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4326 return;
4327
3a5c359a 4328 do {
d1f74e20 4329 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4330 schedule();
d1f74e20 4331 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4332
3a5c359a
AK
4333 /*
4334 * Check again in case we missed a preemption opportunity
4335 * between schedule and now.
4336 */
4337 barrier();
5ed0cec0 4338 } while (need_resched());
1da177e4 4339}
1da177e4
LT
4340EXPORT_SYMBOL(preempt_schedule);
4341
4342/*
2ed6e34f 4343 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4344 * off of irq context.
4345 * Note, that this is called and return with irqs disabled. This will
4346 * protect us against recursive calling from irq.
4347 */
4348asmlinkage void __sched preempt_schedule_irq(void)
4349{
4350 struct thread_info *ti = current_thread_info();
6478d880 4351
2ed6e34f 4352 /* Catch callers which need to be fixed */
1da177e4
LT
4353 BUG_ON(ti->preempt_count || !irqs_disabled());
4354
3a5c359a
AK
4355 do {
4356 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4357 local_irq_enable();
4358 schedule();
4359 local_irq_disable();
3a5c359a 4360 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4361
3a5c359a
AK
4362 /*
4363 * Check again in case we missed a preemption opportunity
4364 * between schedule and now.
4365 */
4366 barrier();
5ed0cec0 4367 } while (need_resched());
1da177e4
LT
4368}
4369
4370#endif /* CONFIG_PREEMPT */
4371
63859d4f 4372int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4373 void *key)
1da177e4 4374{
63859d4f 4375 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4376}
1da177e4
LT
4377EXPORT_SYMBOL(default_wake_function);
4378
4379/*
41a2d6cf
IM
4380 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4381 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4382 * number) then we wake all the non-exclusive tasks and one exclusive task.
4383 *
4384 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4385 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4386 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4387 */
78ddb08f 4388static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4389 int nr_exclusive, int wake_flags, void *key)
1da177e4 4390{
2e45874c 4391 wait_queue_t *curr, *next;
1da177e4 4392
2e45874c 4393 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4394 unsigned flags = curr->flags;
4395
63859d4f 4396 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4397 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4398 break;
4399 }
4400}
4401
4402/**
4403 * __wake_up - wake up threads blocked on a waitqueue.
4404 * @q: the waitqueue
4405 * @mode: which threads
4406 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4407 * @key: is directly passed to the wakeup function
50fa610a
DH
4408 *
4409 * It may be assumed that this function implies a write memory barrier before
4410 * changing the task state if and only if any tasks are woken up.
1da177e4 4411 */
7ad5b3a5 4412void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4413 int nr_exclusive, void *key)
1da177e4
LT
4414{
4415 unsigned long flags;
4416
4417 spin_lock_irqsave(&q->lock, flags);
4418 __wake_up_common(q, mode, nr_exclusive, 0, key);
4419 spin_unlock_irqrestore(&q->lock, flags);
4420}
1da177e4
LT
4421EXPORT_SYMBOL(__wake_up);
4422
4423/*
4424 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4425 */
7ad5b3a5 4426void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4427{
4428 __wake_up_common(q, mode, 1, 0, NULL);
4429}
22c43c81 4430EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4431
4ede816a
DL
4432void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4433{
4434 __wake_up_common(q, mode, 1, 0, key);
4435}
bf294b41 4436EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4437
1da177e4 4438/**
4ede816a 4439 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4440 * @q: the waitqueue
4441 * @mode: which threads
4442 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4443 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4444 *
4445 * The sync wakeup differs that the waker knows that it will schedule
4446 * away soon, so while the target thread will be woken up, it will not
4447 * be migrated to another CPU - ie. the two threads are 'synchronized'
4448 * with each other. This can prevent needless bouncing between CPUs.
4449 *
4450 * On UP it can prevent extra preemption.
50fa610a
DH
4451 *
4452 * It may be assumed that this function implies a write memory barrier before
4453 * changing the task state if and only if any tasks are woken up.
1da177e4 4454 */
4ede816a
DL
4455void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4456 int nr_exclusive, void *key)
1da177e4
LT
4457{
4458 unsigned long flags;
7d478721 4459 int wake_flags = WF_SYNC;
1da177e4
LT
4460
4461 if (unlikely(!q))
4462 return;
4463
4464 if (unlikely(!nr_exclusive))
7d478721 4465 wake_flags = 0;
1da177e4
LT
4466
4467 spin_lock_irqsave(&q->lock, flags);
7d478721 4468 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4469 spin_unlock_irqrestore(&q->lock, flags);
4470}
4ede816a
DL
4471EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4472
4473/*
4474 * __wake_up_sync - see __wake_up_sync_key()
4475 */
4476void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4477{
4478 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4479}
1da177e4
LT
4480EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4481
65eb3dc6
KD
4482/**
4483 * complete: - signals a single thread waiting on this completion
4484 * @x: holds the state of this particular completion
4485 *
4486 * This will wake up a single thread waiting on this completion. Threads will be
4487 * awakened in the same order in which they were queued.
4488 *
4489 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4490 *
4491 * It may be assumed that this function implies a write memory barrier before
4492 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4493 */
b15136e9 4494void complete(struct completion *x)
1da177e4
LT
4495{
4496 unsigned long flags;
4497
4498 spin_lock_irqsave(&x->wait.lock, flags);
4499 x->done++;
d9514f6c 4500 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4501 spin_unlock_irqrestore(&x->wait.lock, flags);
4502}
4503EXPORT_SYMBOL(complete);
4504
65eb3dc6
KD
4505/**
4506 * complete_all: - signals all threads waiting on this completion
4507 * @x: holds the state of this particular completion
4508 *
4509 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4510 *
4511 * It may be assumed that this function implies a write memory barrier before
4512 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4513 */
b15136e9 4514void complete_all(struct completion *x)
1da177e4
LT
4515{
4516 unsigned long flags;
4517
4518 spin_lock_irqsave(&x->wait.lock, flags);
4519 x->done += UINT_MAX/2;
d9514f6c 4520 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4521 spin_unlock_irqrestore(&x->wait.lock, flags);
4522}
4523EXPORT_SYMBOL(complete_all);
4524
8cbbe86d
AK
4525static inline long __sched
4526do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4527{
1da177e4
LT
4528 if (!x->done) {
4529 DECLARE_WAITQUEUE(wait, current);
4530
a93d2f17 4531 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4532 do {
94d3d824 4533 if (signal_pending_state(state, current)) {
ea71a546
ON
4534 timeout = -ERESTARTSYS;
4535 break;
8cbbe86d
AK
4536 }
4537 __set_current_state(state);
1da177e4
LT
4538 spin_unlock_irq(&x->wait.lock);
4539 timeout = schedule_timeout(timeout);
4540 spin_lock_irq(&x->wait.lock);
ea71a546 4541 } while (!x->done && timeout);
1da177e4 4542 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4543 if (!x->done)
4544 return timeout;
1da177e4
LT
4545 }
4546 x->done--;
ea71a546 4547 return timeout ?: 1;
1da177e4 4548}
1da177e4 4549
8cbbe86d
AK
4550static long __sched
4551wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4552{
1da177e4
LT
4553 might_sleep();
4554
4555 spin_lock_irq(&x->wait.lock);
8cbbe86d 4556 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4557 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4558 return timeout;
4559}
1da177e4 4560
65eb3dc6
KD
4561/**
4562 * wait_for_completion: - waits for completion of a task
4563 * @x: holds the state of this particular completion
4564 *
4565 * This waits to be signaled for completion of a specific task. It is NOT
4566 * interruptible and there is no timeout.
4567 *
4568 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4569 * and interrupt capability. Also see complete().
4570 */
b15136e9 4571void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4572{
4573 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4574}
8cbbe86d 4575EXPORT_SYMBOL(wait_for_completion);
1da177e4 4576
65eb3dc6
KD
4577/**
4578 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4579 * @x: holds the state of this particular completion
4580 * @timeout: timeout value in jiffies
4581 *
4582 * This waits for either a completion of a specific task to be signaled or for a
4583 * specified timeout to expire. The timeout is in jiffies. It is not
4584 * interruptible.
4585 */
b15136e9 4586unsigned long __sched
8cbbe86d 4587wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4588{
8cbbe86d 4589 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4590}
8cbbe86d 4591EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4592
65eb3dc6
KD
4593/**
4594 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4595 * @x: holds the state of this particular completion
4596 *
4597 * This waits for completion of a specific task to be signaled. It is
4598 * interruptible.
4599 */
8cbbe86d 4600int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4601{
51e97990
AK
4602 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4603 if (t == -ERESTARTSYS)
4604 return t;
4605 return 0;
0fec171c 4606}
8cbbe86d 4607EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4608
65eb3dc6
KD
4609/**
4610 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4611 * @x: holds the state of this particular completion
4612 * @timeout: timeout value in jiffies
4613 *
4614 * This waits for either a completion of a specific task to be signaled or for a
4615 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4616 */
6bf41237 4617long __sched
8cbbe86d
AK
4618wait_for_completion_interruptible_timeout(struct completion *x,
4619 unsigned long timeout)
0fec171c 4620{
8cbbe86d 4621 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4622}
8cbbe86d 4623EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4624
65eb3dc6
KD
4625/**
4626 * wait_for_completion_killable: - waits for completion of a task (killable)
4627 * @x: holds the state of this particular completion
4628 *
4629 * This waits to be signaled for completion of a specific task. It can be
4630 * interrupted by a kill signal.
4631 */
009e577e
MW
4632int __sched wait_for_completion_killable(struct completion *x)
4633{
4634 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4635 if (t == -ERESTARTSYS)
4636 return t;
4637 return 0;
4638}
4639EXPORT_SYMBOL(wait_for_completion_killable);
4640
0aa12fb4
SW
4641/**
4642 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4643 * @x: holds the state of this particular completion
4644 * @timeout: timeout value in jiffies
4645 *
4646 * This waits for either a completion of a specific task to be
4647 * signaled or for a specified timeout to expire. It can be
4648 * interrupted by a kill signal. The timeout is in jiffies.
4649 */
6bf41237 4650long __sched
0aa12fb4
SW
4651wait_for_completion_killable_timeout(struct completion *x,
4652 unsigned long timeout)
4653{
4654 return wait_for_common(x, timeout, TASK_KILLABLE);
4655}
4656EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4657
be4de352
DC
4658/**
4659 * try_wait_for_completion - try to decrement a completion without blocking
4660 * @x: completion structure
4661 *
4662 * Returns: 0 if a decrement cannot be done without blocking
4663 * 1 if a decrement succeeded.
4664 *
4665 * If a completion is being used as a counting completion,
4666 * attempt to decrement the counter without blocking. This
4667 * enables us to avoid waiting if the resource the completion
4668 * is protecting is not available.
4669 */
4670bool try_wait_for_completion(struct completion *x)
4671{
7539a3b3 4672 unsigned long flags;
be4de352
DC
4673 int ret = 1;
4674
7539a3b3 4675 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4676 if (!x->done)
4677 ret = 0;
4678 else
4679 x->done--;
7539a3b3 4680 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4681 return ret;
4682}
4683EXPORT_SYMBOL(try_wait_for_completion);
4684
4685/**
4686 * completion_done - Test to see if a completion has any waiters
4687 * @x: completion structure
4688 *
4689 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4690 * 1 if there are no waiters.
4691 *
4692 */
4693bool completion_done(struct completion *x)
4694{
7539a3b3 4695 unsigned long flags;
be4de352
DC
4696 int ret = 1;
4697
7539a3b3 4698 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4699 if (!x->done)
4700 ret = 0;
7539a3b3 4701 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4702 return ret;
4703}
4704EXPORT_SYMBOL(completion_done);
4705
8cbbe86d
AK
4706static long __sched
4707sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4708{
0fec171c
IM
4709 unsigned long flags;
4710 wait_queue_t wait;
4711
4712 init_waitqueue_entry(&wait, current);
1da177e4 4713
8cbbe86d 4714 __set_current_state(state);
1da177e4 4715
8cbbe86d
AK
4716 spin_lock_irqsave(&q->lock, flags);
4717 __add_wait_queue(q, &wait);
4718 spin_unlock(&q->lock);
4719 timeout = schedule_timeout(timeout);
4720 spin_lock_irq(&q->lock);
4721 __remove_wait_queue(q, &wait);
4722 spin_unlock_irqrestore(&q->lock, flags);
4723
4724 return timeout;
4725}
4726
4727void __sched interruptible_sleep_on(wait_queue_head_t *q)
4728{
4729 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4730}
1da177e4
LT
4731EXPORT_SYMBOL(interruptible_sleep_on);
4732
0fec171c 4733long __sched
95cdf3b7 4734interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4735{
8cbbe86d 4736 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4737}
1da177e4
LT
4738EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4739
0fec171c 4740void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4741{
8cbbe86d 4742 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4743}
1da177e4
LT
4744EXPORT_SYMBOL(sleep_on);
4745
0fec171c 4746long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4747{
8cbbe86d 4748 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4749}
1da177e4
LT
4750EXPORT_SYMBOL(sleep_on_timeout);
4751
b29739f9
IM
4752#ifdef CONFIG_RT_MUTEXES
4753
4754/*
4755 * rt_mutex_setprio - set the current priority of a task
4756 * @p: task
4757 * @prio: prio value (kernel-internal form)
4758 *
4759 * This function changes the 'effective' priority of a task. It does
4760 * not touch ->normal_prio like __setscheduler().
4761 *
4762 * Used by the rt_mutex code to implement priority inheritance logic.
4763 */
36c8b586 4764void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4765{
83b699ed 4766 int oldprio, on_rq, running;
70b97a7f 4767 struct rq *rq;
83ab0aa0 4768 const struct sched_class *prev_class;
b29739f9
IM
4769
4770 BUG_ON(prio < 0 || prio > MAX_PRIO);
4771
0122ec5b 4772 rq = __task_rq_lock(p);
b29739f9 4773
a8027073 4774 trace_sched_pi_setprio(p, prio);
d5f9f942 4775 oldprio = p->prio;
83ab0aa0 4776 prev_class = p->sched_class;
fd2f4419 4777 on_rq = p->on_rq;
051a1d1a 4778 running = task_current(rq, p);
0e1f3483 4779 if (on_rq)
69be72c1 4780 dequeue_task(rq, p, 0);
0e1f3483
HS
4781 if (running)
4782 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4783
4784 if (rt_prio(prio))
4785 p->sched_class = &rt_sched_class;
4786 else
4787 p->sched_class = &fair_sched_class;
4788
b29739f9
IM
4789 p->prio = prio;
4790
0e1f3483
HS
4791 if (running)
4792 p->sched_class->set_curr_task(rq);
da7a735e 4793 if (on_rq)
371fd7e7 4794 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4795
da7a735e 4796 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4797 __task_rq_unlock(rq);
b29739f9
IM
4798}
4799
4800#endif
4801
36c8b586 4802void set_user_nice(struct task_struct *p, long nice)
1da177e4 4803{
dd41f596 4804 int old_prio, delta, on_rq;
1da177e4 4805 unsigned long flags;
70b97a7f 4806 struct rq *rq;
1da177e4
LT
4807
4808 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4809 return;
4810 /*
4811 * We have to be careful, if called from sys_setpriority(),
4812 * the task might be in the middle of scheduling on another CPU.
4813 */
4814 rq = task_rq_lock(p, &flags);
4815 /*
4816 * The RT priorities are set via sched_setscheduler(), but we still
4817 * allow the 'normal' nice value to be set - but as expected
4818 * it wont have any effect on scheduling until the task is
dd41f596 4819 * SCHED_FIFO/SCHED_RR:
1da177e4 4820 */
e05606d3 4821 if (task_has_rt_policy(p)) {
1da177e4
LT
4822 p->static_prio = NICE_TO_PRIO(nice);
4823 goto out_unlock;
4824 }
fd2f4419 4825 on_rq = p->on_rq;
c09595f6 4826 if (on_rq)
69be72c1 4827 dequeue_task(rq, p, 0);
1da177e4 4828
1da177e4 4829 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4830 set_load_weight(p);
b29739f9
IM
4831 old_prio = p->prio;
4832 p->prio = effective_prio(p);
4833 delta = p->prio - old_prio;
1da177e4 4834
dd41f596 4835 if (on_rq) {
371fd7e7 4836 enqueue_task(rq, p, 0);
1da177e4 4837 /*
d5f9f942
AM
4838 * If the task increased its priority or is running and
4839 * lowered its priority, then reschedule its CPU:
1da177e4 4840 */
d5f9f942 4841 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4842 resched_task(rq->curr);
4843 }
4844out_unlock:
0122ec5b 4845 task_rq_unlock(rq, p, &flags);
1da177e4 4846}
1da177e4
LT
4847EXPORT_SYMBOL(set_user_nice);
4848
e43379f1
MM
4849/*
4850 * can_nice - check if a task can reduce its nice value
4851 * @p: task
4852 * @nice: nice value
4853 */
36c8b586 4854int can_nice(const struct task_struct *p, const int nice)
e43379f1 4855{
024f4747
MM
4856 /* convert nice value [19,-20] to rlimit style value [1,40] */
4857 int nice_rlim = 20 - nice;
48f24c4d 4858
78d7d407 4859 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4860 capable(CAP_SYS_NICE));
4861}
4862
1da177e4
LT
4863#ifdef __ARCH_WANT_SYS_NICE
4864
4865/*
4866 * sys_nice - change the priority of the current process.
4867 * @increment: priority increment
4868 *
4869 * sys_setpriority is a more generic, but much slower function that
4870 * does similar things.
4871 */
5add95d4 4872SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4873{
48f24c4d 4874 long nice, retval;
1da177e4
LT
4875
4876 /*
4877 * Setpriority might change our priority at the same moment.
4878 * We don't have to worry. Conceptually one call occurs first
4879 * and we have a single winner.
4880 */
e43379f1
MM
4881 if (increment < -40)
4882 increment = -40;
1da177e4
LT
4883 if (increment > 40)
4884 increment = 40;
4885
2b8f836f 4886 nice = TASK_NICE(current) + increment;
1da177e4
LT
4887 if (nice < -20)
4888 nice = -20;
4889 if (nice > 19)
4890 nice = 19;
4891
e43379f1
MM
4892 if (increment < 0 && !can_nice(current, nice))
4893 return -EPERM;
4894
1da177e4
LT
4895 retval = security_task_setnice(current, nice);
4896 if (retval)
4897 return retval;
4898
4899 set_user_nice(current, nice);
4900 return 0;
4901}
4902
4903#endif
4904
4905/**
4906 * task_prio - return the priority value of a given task.
4907 * @p: the task in question.
4908 *
4909 * This is the priority value as seen by users in /proc.
4910 * RT tasks are offset by -200. Normal tasks are centered
4911 * around 0, value goes from -16 to +15.
4912 */
36c8b586 4913int task_prio(const struct task_struct *p)
1da177e4
LT
4914{
4915 return p->prio - MAX_RT_PRIO;
4916}
4917
4918/**
4919 * task_nice - return the nice value of a given task.
4920 * @p: the task in question.
4921 */
36c8b586 4922int task_nice(const struct task_struct *p)
1da177e4
LT
4923{
4924 return TASK_NICE(p);
4925}
150d8bed 4926EXPORT_SYMBOL(task_nice);
1da177e4
LT
4927
4928/**
4929 * idle_cpu - is a given cpu idle currently?
4930 * @cpu: the processor in question.
4931 */
4932int idle_cpu(int cpu)
4933{
4934 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4935}
4936
1da177e4
LT
4937/**
4938 * idle_task - return the idle task for a given cpu.
4939 * @cpu: the processor in question.
4940 */
36c8b586 4941struct task_struct *idle_task(int cpu)
1da177e4
LT
4942{
4943 return cpu_rq(cpu)->idle;
4944}
4945
4946/**
4947 * find_process_by_pid - find a process with a matching PID value.
4948 * @pid: the pid in question.
4949 */
a9957449 4950static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4951{
228ebcbe 4952 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4953}
4954
4955/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4956static void
4957__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4958{
1da177e4
LT
4959 p->policy = policy;
4960 p->rt_priority = prio;
b29739f9
IM
4961 p->normal_prio = normal_prio(p);
4962 /* we are holding p->pi_lock already */
4963 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4964 if (rt_prio(p->prio))
4965 p->sched_class = &rt_sched_class;
4966 else
4967 p->sched_class = &fair_sched_class;
2dd73a4f 4968 set_load_weight(p);
1da177e4
LT
4969}
4970
c69e8d9c
DH
4971/*
4972 * check the target process has a UID that matches the current process's
4973 */
4974static bool check_same_owner(struct task_struct *p)
4975{
4976 const struct cred *cred = current_cred(), *pcred;
4977 bool match;
4978
4979 rcu_read_lock();
4980 pcred = __task_cred(p);
b0e77598
SH
4981 if (cred->user->user_ns == pcred->user->user_ns)
4982 match = (cred->euid == pcred->euid ||
4983 cred->euid == pcred->uid);
4984 else
4985 match = false;
c69e8d9c
DH
4986 rcu_read_unlock();
4987 return match;
4988}
4989
961ccddd 4990static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4991 const struct sched_param *param, bool user)
1da177e4 4992{
83b699ed 4993 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4994 unsigned long flags;
83ab0aa0 4995 const struct sched_class *prev_class;
70b97a7f 4996 struct rq *rq;
ca94c442 4997 int reset_on_fork;
1da177e4 4998
66e5393a
SR
4999 /* may grab non-irq protected spin_locks */
5000 BUG_ON(in_interrupt());
1da177e4
LT
5001recheck:
5002 /* double check policy once rq lock held */
ca94c442
LP
5003 if (policy < 0) {
5004 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5005 policy = oldpolicy = p->policy;
ca94c442
LP
5006 } else {
5007 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5008 policy &= ~SCHED_RESET_ON_FORK;
5009
5010 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5011 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5012 policy != SCHED_IDLE)
5013 return -EINVAL;
5014 }
5015
1da177e4
LT
5016 /*
5017 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5018 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5019 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5020 */
5021 if (param->sched_priority < 0 ||
95cdf3b7 5022 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5023 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5024 return -EINVAL;
e05606d3 5025 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5026 return -EINVAL;
5027
37e4ab3f
OC
5028 /*
5029 * Allow unprivileged RT tasks to decrease priority:
5030 */
961ccddd 5031 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5032 if (rt_policy(policy)) {
a44702e8
ON
5033 unsigned long rlim_rtprio =
5034 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5035
5036 /* can't set/change the rt policy */
5037 if (policy != p->policy && !rlim_rtprio)
5038 return -EPERM;
5039
5040 /* can't increase priority */
5041 if (param->sched_priority > p->rt_priority &&
5042 param->sched_priority > rlim_rtprio)
5043 return -EPERM;
5044 }
c02aa73b 5045
dd41f596 5046 /*
c02aa73b
DH
5047 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5048 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5049 */
c02aa73b
DH
5050 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5051 if (!can_nice(p, TASK_NICE(p)))
5052 return -EPERM;
5053 }
5fe1d75f 5054
37e4ab3f 5055 /* can't change other user's priorities */
c69e8d9c 5056 if (!check_same_owner(p))
37e4ab3f 5057 return -EPERM;
ca94c442
LP
5058
5059 /* Normal users shall not reset the sched_reset_on_fork flag */
5060 if (p->sched_reset_on_fork && !reset_on_fork)
5061 return -EPERM;
37e4ab3f 5062 }
1da177e4 5063
725aad24 5064 if (user) {
b0ae1981 5065 retval = security_task_setscheduler(p);
725aad24
JF
5066 if (retval)
5067 return retval;
5068 }
5069
b29739f9
IM
5070 /*
5071 * make sure no PI-waiters arrive (or leave) while we are
5072 * changing the priority of the task:
0122ec5b 5073 *
25985edc 5074 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5075 * runqueue lock must be held.
5076 */
0122ec5b 5077 rq = task_rq_lock(p, &flags);
dc61b1d6 5078
34f971f6
PZ
5079 /*
5080 * Changing the policy of the stop threads its a very bad idea
5081 */
5082 if (p == rq->stop) {
0122ec5b 5083 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5084 return -EINVAL;
5085 }
5086
a51e9198
DF
5087 /*
5088 * If not changing anything there's no need to proceed further:
5089 */
5090 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5091 param->sched_priority == p->rt_priority))) {
5092
5093 __task_rq_unlock(rq);
5094 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5095 return 0;
5096 }
5097
dc61b1d6
PZ
5098#ifdef CONFIG_RT_GROUP_SCHED
5099 if (user) {
5100 /*
5101 * Do not allow realtime tasks into groups that have no runtime
5102 * assigned.
5103 */
5104 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5105 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5106 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5107 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5108 return -EPERM;
5109 }
5110 }
5111#endif
5112
1da177e4
LT
5113 /* recheck policy now with rq lock held */
5114 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5115 policy = oldpolicy = -1;
0122ec5b 5116 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5117 goto recheck;
5118 }
fd2f4419 5119 on_rq = p->on_rq;
051a1d1a 5120 running = task_current(rq, p);
0e1f3483 5121 if (on_rq)
2e1cb74a 5122 deactivate_task(rq, p, 0);
0e1f3483
HS
5123 if (running)
5124 p->sched_class->put_prev_task(rq, p);
f6b53205 5125
ca94c442
LP
5126 p->sched_reset_on_fork = reset_on_fork;
5127
1da177e4 5128 oldprio = p->prio;
83ab0aa0 5129 prev_class = p->sched_class;
dd41f596 5130 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5131
0e1f3483
HS
5132 if (running)
5133 p->sched_class->set_curr_task(rq);
da7a735e 5134 if (on_rq)
dd41f596 5135 activate_task(rq, p, 0);
cb469845 5136
da7a735e 5137 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5138 task_rq_unlock(rq, p, &flags);
b29739f9 5139
95e02ca9
TG
5140 rt_mutex_adjust_pi(p);
5141
1da177e4
LT
5142 return 0;
5143}
961ccddd
RR
5144
5145/**
5146 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5147 * @p: the task in question.
5148 * @policy: new policy.
5149 * @param: structure containing the new RT priority.
5150 *
5151 * NOTE that the task may be already dead.
5152 */
5153int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5154 const struct sched_param *param)
961ccddd
RR
5155{
5156 return __sched_setscheduler(p, policy, param, true);
5157}
1da177e4
LT
5158EXPORT_SYMBOL_GPL(sched_setscheduler);
5159
961ccddd
RR
5160/**
5161 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5162 * @p: the task in question.
5163 * @policy: new policy.
5164 * @param: structure containing the new RT priority.
5165 *
5166 * Just like sched_setscheduler, only don't bother checking if the
5167 * current context has permission. For example, this is needed in
5168 * stop_machine(): we create temporary high priority worker threads,
5169 * but our caller might not have that capability.
5170 */
5171int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5172 const struct sched_param *param)
961ccddd
RR
5173{
5174 return __sched_setscheduler(p, policy, param, false);
5175}
5176
95cdf3b7
IM
5177static int
5178do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5179{
1da177e4
LT
5180 struct sched_param lparam;
5181 struct task_struct *p;
36c8b586 5182 int retval;
1da177e4
LT
5183
5184 if (!param || pid < 0)
5185 return -EINVAL;
5186 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5187 return -EFAULT;
5fe1d75f
ON
5188
5189 rcu_read_lock();
5190 retval = -ESRCH;
1da177e4 5191 p = find_process_by_pid(pid);
5fe1d75f
ON
5192 if (p != NULL)
5193 retval = sched_setscheduler(p, policy, &lparam);
5194 rcu_read_unlock();
36c8b586 5195
1da177e4
LT
5196 return retval;
5197}
5198
5199/**
5200 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5201 * @pid: the pid in question.
5202 * @policy: new policy.
5203 * @param: structure containing the new RT priority.
5204 */
5add95d4
HC
5205SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5206 struct sched_param __user *, param)
1da177e4 5207{
c21761f1
JB
5208 /* negative values for policy are not valid */
5209 if (policy < 0)
5210 return -EINVAL;
5211
1da177e4
LT
5212 return do_sched_setscheduler(pid, policy, param);
5213}
5214
5215/**
5216 * sys_sched_setparam - set/change the RT priority of a thread
5217 * @pid: the pid in question.
5218 * @param: structure containing the new RT priority.
5219 */
5add95d4 5220SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5221{
5222 return do_sched_setscheduler(pid, -1, param);
5223}
5224
5225/**
5226 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5227 * @pid: the pid in question.
5228 */
5add95d4 5229SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5230{
36c8b586 5231 struct task_struct *p;
3a5c359a 5232 int retval;
1da177e4
LT
5233
5234 if (pid < 0)
3a5c359a 5235 return -EINVAL;
1da177e4
LT
5236
5237 retval = -ESRCH;
5fe85be0 5238 rcu_read_lock();
1da177e4
LT
5239 p = find_process_by_pid(pid);
5240 if (p) {
5241 retval = security_task_getscheduler(p);
5242 if (!retval)
ca94c442
LP
5243 retval = p->policy
5244 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5245 }
5fe85be0 5246 rcu_read_unlock();
1da177e4
LT
5247 return retval;
5248}
5249
5250/**
ca94c442 5251 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5252 * @pid: the pid in question.
5253 * @param: structure containing the RT priority.
5254 */
5add95d4 5255SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5256{
5257 struct sched_param lp;
36c8b586 5258 struct task_struct *p;
3a5c359a 5259 int retval;
1da177e4
LT
5260
5261 if (!param || pid < 0)
3a5c359a 5262 return -EINVAL;
1da177e4 5263
5fe85be0 5264 rcu_read_lock();
1da177e4
LT
5265 p = find_process_by_pid(pid);
5266 retval = -ESRCH;
5267 if (!p)
5268 goto out_unlock;
5269
5270 retval = security_task_getscheduler(p);
5271 if (retval)
5272 goto out_unlock;
5273
5274 lp.sched_priority = p->rt_priority;
5fe85be0 5275 rcu_read_unlock();
1da177e4
LT
5276
5277 /*
5278 * This one might sleep, we cannot do it with a spinlock held ...
5279 */
5280 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5281
1da177e4
LT
5282 return retval;
5283
5284out_unlock:
5fe85be0 5285 rcu_read_unlock();
1da177e4
LT
5286 return retval;
5287}
5288
96f874e2 5289long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5290{
5a16f3d3 5291 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5292 struct task_struct *p;
5293 int retval;
1da177e4 5294
95402b38 5295 get_online_cpus();
23f5d142 5296 rcu_read_lock();
1da177e4
LT
5297
5298 p = find_process_by_pid(pid);
5299 if (!p) {
23f5d142 5300 rcu_read_unlock();
95402b38 5301 put_online_cpus();
1da177e4
LT
5302 return -ESRCH;
5303 }
5304
23f5d142 5305 /* Prevent p going away */
1da177e4 5306 get_task_struct(p);
23f5d142 5307 rcu_read_unlock();
1da177e4 5308
5a16f3d3
RR
5309 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5310 retval = -ENOMEM;
5311 goto out_put_task;
5312 }
5313 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5314 retval = -ENOMEM;
5315 goto out_free_cpus_allowed;
5316 }
1da177e4 5317 retval = -EPERM;
b0e77598 5318 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5319 goto out_unlock;
5320
b0ae1981 5321 retval = security_task_setscheduler(p);
e7834f8f
DQ
5322 if (retval)
5323 goto out_unlock;
5324
5a16f3d3
RR
5325 cpuset_cpus_allowed(p, cpus_allowed);
5326 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5327again:
5a16f3d3 5328 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5329
8707d8b8 5330 if (!retval) {
5a16f3d3
RR
5331 cpuset_cpus_allowed(p, cpus_allowed);
5332 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5333 /*
5334 * We must have raced with a concurrent cpuset
5335 * update. Just reset the cpus_allowed to the
5336 * cpuset's cpus_allowed
5337 */
5a16f3d3 5338 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5339 goto again;
5340 }
5341 }
1da177e4 5342out_unlock:
5a16f3d3
RR
5343 free_cpumask_var(new_mask);
5344out_free_cpus_allowed:
5345 free_cpumask_var(cpus_allowed);
5346out_put_task:
1da177e4 5347 put_task_struct(p);
95402b38 5348 put_online_cpus();
1da177e4
LT
5349 return retval;
5350}
5351
5352static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5353 struct cpumask *new_mask)
1da177e4 5354{
96f874e2
RR
5355 if (len < cpumask_size())
5356 cpumask_clear(new_mask);
5357 else if (len > cpumask_size())
5358 len = cpumask_size();
5359
1da177e4
LT
5360 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5361}
5362
5363/**
5364 * sys_sched_setaffinity - set the cpu affinity of a process
5365 * @pid: pid of the process
5366 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5367 * @user_mask_ptr: user-space pointer to the new cpu mask
5368 */
5add95d4
HC
5369SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5370 unsigned long __user *, user_mask_ptr)
1da177e4 5371{
5a16f3d3 5372 cpumask_var_t new_mask;
1da177e4
LT
5373 int retval;
5374
5a16f3d3
RR
5375 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5376 return -ENOMEM;
1da177e4 5377
5a16f3d3
RR
5378 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5379 if (retval == 0)
5380 retval = sched_setaffinity(pid, new_mask);
5381 free_cpumask_var(new_mask);
5382 return retval;
1da177e4
LT
5383}
5384
96f874e2 5385long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5386{
36c8b586 5387 struct task_struct *p;
31605683 5388 unsigned long flags;
1da177e4 5389 int retval;
1da177e4 5390
95402b38 5391 get_online_cpus();
23f5d142 5392 rcu_read_lock();
1da177e4
LT
5393
5394 retval = -ESRCH;
5395 p = find_process_by_pid(pid);
5396 if (!p)
5397 goto out_unlock;
5398
e7834f8f
DQ
5399 retval = security_task_getscheduler(p);
5400 if (retval)
5401 goto out_unlock;
5402
013fdb80 5403 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5404 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5405 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5406
5407out_unlock:
23f5d142 5408 rcu_read_unlock();
95402b38 5409 put_online_cpus();
1da177e4 5410
9531b62f 5411 return retval;
1da177e4
LT
5412}
5413
5414/**
5415 * sys_sched_getaffinity - get the cpu affinity of a process
5416 * @pid: pid of the process
5417 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5418 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5419 */
5add95d4
HC
5420SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5421 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5422{
5423 int ret;
f17c8607 5424 cpumask_var_t mask;
1da177e4 5425
84fba5ec 5426 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5427 return -EINVAL;
5428 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5429 return -EINVAL;
5430
f17c8607
RR
5431 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5432 return -ENOMEM;
1da177e4 5433
f17c8607
RR
5434 ret = sched_getaffinity(pid, mask);
5435 if (ret == 0) {
8bc037fb 5436 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5437
5438 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5439 ret = -EFAULT;
5440 else
cd3d8031 5441 ret = retlen;
f17c8607
RR
5442 }
5443 free_cpumask_var(mask);
1da177e4 5444
f17c8607 5445 return ret;
1da177e4
LT
5446}
5447
5448/**
5449 * sys_sched_yield - yield the current processor to other threads.
5450 *
dd41f596
IM
5451 * This function yields the current CPU to other tasks. If there are no
5452 * other threads running on this CPU then this function will return.
1da177e4 5453 */
5add95d4 5454SYSCALL_DEFINE0(sched_yield)
1da177e4 5455{
70b97a7f 5456 struct rq *rq = this_rq_lock();
1da177e4 5457
2d72376b 5458 schedstat_inc(rq, yld_count);
4530d7ab 5459 current->sched_class->yield_task(rq);
1da177e4
LT
5460
5461 /*
5462 * Since we are going to call schedule() anyway, there's
5463 * no need to preempt or enable interrupts:
5464 */
5465 __release(rq->lock);
8a25d5de 5466 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5467 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5468 preempt_enable_no_resched();
5469
5470 schedule();
5471
5472 return 0;
5473}
5474
d86ee480
PZ
5475static inline int should_resched(void)
5476{
5477 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5478}
5479
e7b38404 5480static void __cond_resched(void)
1da177e4 5481{
e7aaaa69
FW
5482 add_preempt_count(PREEMPT_ACTIVE);
5483 schedule();
5484 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5485}
5486
02b67cc3 5487int __sched _cond_resched(void)
1da177e4 5488{
d86ee480 5489 if (should_resched()) {
1da177e4
LT
5490 __cond_resched();
5491 return 1;
5492 }
5493 return 0;
5494}
02b67cc3 5495EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5496
5497/*
613afbf8 5498 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5499 * call schedule, and on return reacquire the lock.
5500 *
41a2d6cf 5501 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5502 * operations here to prevent schedule() from being called twice (once via
5503 * spin_unlock(), once by hand).
5504 */
613afbf8 5505int __cond_resched_lock(spinlock_t *lock)
1da177e4 5506{
d86ee480 5507 int resched = should_resched();
6df3cecb
JK
5508 int ret = 0;
5509
f607c668
PZ
5510 lockdep_assert_held(lock);
5511
95c354fe 5512 if (spin_needbreak(lock) || resched) {
1da177e4 5513 spin_unlock(lock);
d86ee480 5514 if (resched)
95c354fe
NP
5515 __cond_resched();
5516 else
5517 cpu_relax();
6df3cecb 5518 ret = 1;
1da177e4 5519 spin_lock(lock);
1da177e4 5520 }
6df3cecb 5521 return ret;
1da177e4 5522}
613afbf8 5523EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5524
613afbf8 5525int __sched __cond_resched_softirq(void)
1da177e4
LT
5526{
5527 BUG_ON(!in_softirq());
5528
d86ee480 5529 if (should_resched()) {
98d82567 5530 local_bh_enable();
1da177e4
LT
5531 __cond_resched();
5532 local_bh_disable();
5533 return 1;
5534 }
5535 return 0;
5536}
613afbf8 5537EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5538
1da177e4
LT
5539/**
5540 * yield - yield the current processor to other threads.
5541 *
72fd4a35 5542 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5543 * thread runnable and calls sys_sched_yield().
5544 */
5545void __sched yield(void)
5546{
5547 set_current_state(TASK_RUNNING);
5548 sys_sched_yield();
5549}
1da177e4
LT
5550EXPORT_SYMBOL(yield);
5551
d95f4122
MG
5552/**
5553 * yield_to - yield the current processor to another thread in
5554 * your thread group, or accelerate that thread toward the
5555 * processor it's on.
16addf95
RD
5556 * @p: target task
5557 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5558 *
5559 * It's the caller's job to ensure that the target task struct
5560 * can't go away on us before we can do any checks.
5561 *
5562 * Returns true if we indeed boosted the target task.
5563 */
5564bool __sched yield_to(struct task_struct *p, bool preempt)
5565{
5566 struct task_struct *curr = current;
5567 struct rq *rq, *p_rq;
5568 unsigned long flags;
5569 bool yielded = 0;
5570
5571 local_irq_save(flags);
5572 rq = this_rq();
5573
5574again:
5575 p_rq = task_rq(p);
5576 double_rq_lock(rq, p_rq);
5577 while (task_rq(p) != p_rq) {
5578 double_rq_unlock(rq, p_rq);
5579 goto again;
5580 }
5581
5582 if (!curr->sched_class->yield_to_task)
5583 goto out;
5584
5585 if (curr->sched_class != p->sched_class)
5586 goto out;
5587
5588 if (task_running(p_rq, p) || p->state)
5589 goto out;
5590
5591 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5592 if (yielded) {
d95f4122 5593 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5594 /*
5595 * Make p's CPU reschedule; pick_next_entity takes care of
5596 * fairness.
5597 */
5598 if (preempt && rq != p_rq)
5599 resched_task(p_rq->curr);
5600 }
d95f4122
MG
5601
5602out:
5603 double_rq_unlock(rq, p_rq);
5604 local_irq_restore(flags);
5605
5606 if (yielded)
5607 schedule();
5608
5609 return yielded;
5610}
5611EXPORT_SYMBOL_GPL(yield_to);
5612
1da177e4 5613/*
41a2d6cf 5614 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5615 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5616 */
5617void __sched io_schedule(void)
5618{
54d35f29 5619 struct rq *rq = raw_rq();
1da177e4 5620
0ff92245 5621 delayacct_blkio_start();
1da177e4 5622 atomic_inc(&rq->nr_iowait);
73c10101 5623 blk_flush_plug(current);
8f0dfc34 5624 current->in_iowait = 1;
1da177e4 5625 schedule();
8f0dfc34 5626 current->in_iowait = 0;
1da177e4 5627 atomic_dec(&rq->nr_iowait);
0ff92245 5628 delayacct_blkio_end();
1da177e4 5629}
1da177e4
LT
5630EXPORT_SYMBOL(io_schedule);
5631
5632long __sched io_schedule_timeout(long timeout)
5633{
54d35f29 5634 struct rq *rq = raw_rq();
1da177e4
LT
5635 long ret;
5636
0ff92245 5637 delayacct_blkio_start();
1da177e4 5638 atomic_inc(&rq->nr_iowait);
73c10101 5639 blk_flush_plug(current);
8f0dfc34 5640 current->in_iowait = 1;
1da177e4 5641 ret = schedule_timeout(timeout);
8f0dfc34 5642 current->in_iowait = 0;
1da177e4 5643 atomic_dec(&rq->nr_iowait);
0ff92245 5644 delayacct_blkio_end();
1da177e4
LT
5645 return ret;
5646}
5647
5648/**
5649 * sys_sched_get_priority_max - return maximum RT priority.
5650 * @policy: scheduling class.
5651 *
5652 * this syscall returns the maximum rt_priority that can be used
5653 * by a given scheduling class.
5654 */
5add95d4 5655SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5656{
5657 int ret = -EINVAL;
5658
5659 switch (policy) {
5660 case SCHED_FIFO:
5661 case SCHED_RR:
5662 ret = MAX_USER_RT_PRIO-1;
5663 break;
5664 case SCHED_NORMAL:
b0a9499c 5665 case SCHED_BATCH:
dd41f596 5666 case SCHED_IDLE:
1da177e4
LT
5667 ret = 0;
5668 break;
5669 }
5670 return ret;
5671}
5672
5673/**
5674 * sys_sched_get_priority_min - return minimum RT priority.
5675 * @policy: scheduling class.
5676 *
5677 * this syscall returns the minimum rt_priority that can be used
5678 * by a given scheduling class.
5679 */
5add95d4 5680SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5681{
5682 int ret = -EINVAL;
5683
5684 switch (policy) {
5685 case SCHED_FIFO:
5686 case SCHED_RR:
5687 ret = 1;
5688 break;
5689 case SCHED_NORMAL:
b0a9499c 5690 case SCHED_BATCH:
dd41f596 5691 case SCHED_IDLE:
1da177e4
LT
5692 ret = 0;
5693 }
5694 return ret;
5695}
5696
5697/**
5698 * sys_sched_rr_get_interval - return the default timeslice of a process.
5699 * @pid: pid of the process.
5700 * @interval: userspace pointer to the timeslice value.
5701 *
5702 * this syscall writes the default timeslice value of a given process
5703 * into the user-space timespec buffer. A value of '0' means infinity.
5704 */
17da2bd9 5705SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5706 struct timespec __user *, interval)
1da177e4 5707{
36c8b586 5708 struct task_struct *p;
a4ec24b4 5709 unsigned int time_slice;
dba091b9
TG
5710 unsigned long flags;
5711 struct rq *rq;
3a5c359a 5712 int retval;
1da177e4 5713 struct timespec t;
1da177e4
LT
5714
5715 if (pid < 0)
3a5c359a 5716 return -EINVAL;
1da177e4
LT
5717
5718 retval = -ESRCH;
1a551ae7 5719 rcu_read_lock();
1da177e4
LT
5720 p = find_process_by_pid(pid);
5721 if (!p)
5722 goto out_unlock;
5723
5724 retval = security_task_getscheduler(p);
5725 if (retval)
5726 goto out_unlock;
5727
dba091b9
TG
5728 rq = task_rq_lock(p, &flags);
5729 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5730 task_rq_unlock(rq, p, &flags);
a4ec24b4 5731
1a551ae7 5732 rcu_read_unlock();
a4ec24b4 5733 jiffies_to_timespec(time_slice, &t);
1da177e4 5734 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5735 return retval;
3a5c359a 5736
1da177e4 5737out_unlock:
1a551ae7 5738 rcu_read_unlock();
1da177e4
LT
5739 return retval;
5740}
5741
7c731e0a 5742static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5743
82a1fcb9 5744void sched_show_task(struct task_struct *p)
1da177e4 5745{
1da177e4 5746 unsigned long free = 0;
36c8b586 5747 unsigned state;
1da177e4 5748
1da177e4 5749 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5750 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5751 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5752#if BITS_PER_LONG == 32
1da177e4 5753 if (state == TASK_RUNNING)
3df0fc5b 5754 printk(KERN_CONT " running ");
1da177e4 5755 else
3df0fc5b 5756 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5757#else
5758 if (state == TASK_RUNNING)
3df0fc5b 5759 printk(KERN_CONT " running task ");
1da177e4 5760 else
3df0fc5b 5761 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5762#endif
5763#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5764 free = stack_not_used(p);
1da177e4 5765#endif
3df0fc5b 5766 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5767 task_pid_nr(p), task_pid_nr(p->real_parent),
5768 (unsigned long)task_thread_info(p)->flags);
1da177e4 5769
5fb5e6de 5770 show_stack(p, NULL);
1da177e4
LT
5771}
5772
e59e2ae2 5773void show_state_filter(unsigned long state_filter)
1da177e4 5774{
36c8b586 5775 struct task_struct *g, *p;
1da177e4 5776
4bd77321 5777#if BITS_PER_LONG == 32
3df0fc5b
PZ
5778 printk(KERN_INFO
5779 " task PC stack pid father\n");
1da177e4 5780#else
3df0fc5b
PZ
5781 printk(KERN_INFO
5782 " task PC stack pid father\n");
1da177e4
LT
5783#endif
5784 read_lock(&tasklist_lock);
5785 do_each_thread(g, p) {
5786 /*
5787 * reset the NMI-timeout, listing all files on a slow
25985edc 5788 * console might take a lot of time:
1da177e4
LT
5789 */
5790 touch_nmi_watchdog();
39bc89fd 5791 if (!state_filter || (p->state & state_filter))
82a1fcb9 5792 sched_show_task(p);
1da177e4
LT
5793 } while_each_thread(g, p);
5794
04c9167f
JF
5795 touch_all_softlockup_watchdogs();
5796
dd41f596
IM
5797#ifdef CONFIG_SCHED_DEBUG
5798 sysrq_sched_debug_show();
5799#endif
1da177e4 5800 read_unlock(&tasklist_lock);
e59e2ae2
IM
5801 /*
5802 * Only show locks if all tasks are dumped:
5803 */
93335a21 5804 if (!state_filter)
e59e2ae2 5805 debug_show_all_locks();
1da177e4
LT
5806}
5807
1df21055
IM
5808void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5809{
dd41f596 5810 idle->sched_class = &idle_sched_class;
1df21055
IM
5811}
5812
f340c0d1
IM
5813/**
5814 * init_idle - set up an idle thread for a given CPU
5815 * @idle: task in question
5816 * @cpu: cpu the idle task belongs to
5817 *
5818 * NOTE: this function does not set the idle thread's NEED_RESCHED
5819 * flag, to make booting more robust.
5820 */
5c1e1767 5821void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5822{
70b97a7f 5823 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5824 unsigned long flags;
5825
05fa785c 5826 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5827
dd41f596 5828 __sched_fork(idle);
06b83b5f 5829 idle->state = TASK_RUNNING;
dd41f596
IM
5830 idle->se.exec_start = sched_clock();
5831
96f874e2 5832 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5833 /*
5834 * We're having a chicken and egg problem, even though we are
5835 * holding rq->lock, the cpu isn't yet set to this cpu so the
5836 * lockdep check in task_group() will fail.
5837 *
5838 * Similar case to sched_fork(). / Alternatively we could
5839 * use task_rq_lock() here and obtain the other rq->lock.
5840 *
5841 * Silence PROVE_RCU
5842 */
5843 rcu_read_lock();
dd41f596 5844 __set_task_cpu(idle, cpu);
6506cf6c 5845 rcu_read_unlock();
1da177e4 5846
1da177e4 5847 rq->curr = rq->idle = idle;
3ca7a440
PZ
5848#if defined(CONFIG_SMP)
5849 idle->on_cpu = 1;
4866cde0 5850#endif
05fa785c 5851 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5852
5853 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5854 task_thread_info(idle)->preempt_count = 0;
625f2a37 5855
dd41f596
IM
5856 /*
5857 * The idle tasks have their own, simple scheduling class:
5858 */
5859 idle->sched_class = &idle_sched_class;
868baf07 5860 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5861}
5862
5863/*
5864 * In a system that switches off the HZ timer nohz_cpu_mask
5865 * indicates which cpus entered this state. This is used
5866 * in the rcu update to wait only for active cpus. For system
5867 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5868 * always be CPU_BITS_NONE.
1da177e4 5869 */
6a7b3dc3 5870cpumask_var_t nohz_cpu_mask;
1da177e4 5871
19978ca6
IM
5872/*
5873 * Increase the granularity value when there are more CPUs,
5874 * because with more CPUs the 'effective latency' as visible
5875 * to users decreases. But the relationship is not linear,
5876 * so pick a second-best guess by going with the log2 of the
5877 * number of CPUs.
5878 *
5879 * This idea comes from the SD scheduler of Con Kolivas:
5880 */
acb4a848 5881static int get_update_sysctl_factor(void)
19978ca6 5882{
4ca3ef71 5883 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5884 unsigned int factor;
5885
5886 switch (sysctl_sched_tunable_scaling) {
5887 case SCHED_TUNABLESCALING_NONE:
5888 factor = 1;
5889 break;
5890 case SCHED_TUNABLESCALING_LINEAR:
5891 factor = cpus;
5892 break;
5893 case SCHED_TUNABLESCALING_LOG:
5894 default:
5895 factor = 1 + ilog2(cpus);
5896 break;
5897 }
19978ca6 5898
acb4a848
CE
5899 return factor;
5900}
19978ca6 5901
acb4a848
CE
5902static void update_sysctl(void)
5903{
5904 unsigned int factor = get_update_sysctl_factor();
19978ca6 5905
0bcdcf28
CE
5906#define SET_SYSCTL(name) \
5907 (sysctl_##name = (factor) * normalized_sysctl_##name)
5908 SET_SYSCTL(sched_min_granularity);
5909 SET_SYSCTL(sched_latency);
5910 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5911#undef SET_SYSCTL
5912}
55cd5340 5913
0bcdcf28
CE
5914static inline void sched_init_granularity(void)
5915{
5916 update_sysctl();
19978ca6
IM
5917}
5918
1da177e4
LT
5919#ifdef CONFIG_SMP
5920/*
5921 * This is how migration works:
5922 *
969c7921
TH
5923 * 1) we invoke migration_cpu_stop() on the target CPU using
5924 * stop_one_cpu().
5925 * 2) stopper starts to run (implicitly forcing the migrated thread
5926 * off the CPU)
5927 * 3) it checks whether the migrated task is still in the wrong runqueue.
5928 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5929 * it and puts it into the right queue.
969c7921
TH
5930 * 5) stopper completes and stop_one_cpu() returns and the migration
5931 * is done.
1da177e4
LT
5932 */
5933
5934/*
5935 * Change a given task's CPU affinity. Migrate the thread to a
5936 * proper CPU and schedule it away if the CPU it's executing on
5937 * is removed from the allowed bitmask.
5938 *
5939 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5940 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5941 * call is not atomic; no spinlocks may be held.
5942 */
96f874e2 5943int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5944{
5945 unsigned long flags;
70b97a7f 5946 struct rq *rq;
969c7921 5947 unsigned int dest_cpu;
48f24c4d 5948 int ret = 0;
1da177e4
LT
5949
5950 rq = task_rq_lock(p, &flags);
e2912009 5951
db44fc01
YZ
5952 if (cpumask_equal(&p->cpus_allowed, new_mask))
5953 goto out;
5954
6ad4c188 5955 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5956 ret = -EINVAL;
5957 goto out;
5958 }
5959
db44fc01 5960 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5961 ret = -EINVAL;
5962 goto out;
5963 }
5964
73fe6aae 5965 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5966 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5967 else {
96f874e2
RR
5968 cpumask_copy(&p->cpus_allowed, new_mask);
5969 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5970 }
5971
1da177e4 5972 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5973 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5974 goto out;
5975
969c7921 5976 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5977 if (p->on_rq) {
969c7921 5978 struct migration_arg arg = { p, dest_cpu };
1da177e4 5979 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5980 task_rq_unlock(rq, p, &flags);
969c7921 5981 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5982 tlb_migrate_finish(p->mm);
5983 return 0;
5984 }
5985out:
0122ec5b 5986 task_rq_unlock(rq, p, &flags);
48f24c4d 5987
1da177e4
LT
5988 return ret;
5989}
cd8ba7cd 5990EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5991
5992/*
41a2d6cf 5993 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5994 * this because either it can't run here any more (set_cpus_allowed()
5995 * away from this CPU, or CPU going down), or because we're
5996 * attempting to rebalance this task on exec (sched_exec).
5997 *
5998 * So we race with normal scheduler movements, but that's OK, as long
5999 * as the task is no longer on this CPU.
efc30814
KK
6000 *
6001 * Returns non-zero if task was successfully migrated.
1da177e4 6002 */
efc30814 6003static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6004{
70b97a7f 6005 struct rq *rq_dest, *rq_src;
e2912009 6006 int ret = 0;
1da177e4 6007
e761b772 6008 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6009 return ret;
1da177e4
LT
6010
6011 rq_src = cpu_rq(src_cpu);
6012 rq_dest = cpu_rq(dest_cpu);
6013
0122ec5b 6014 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6015 double_rq_lock(rq_src, rq_dest);
6016 /* Already moved. */
6017 if (task_cpu(p) != src_cpu)
b1e38734 6018 goto done;
1da177e4 6019 /* Affinity changed (again). */
96f874e2 6020 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6021 goto fail;
1da177e4 6022
e2912009
PZ
6023 /*
6024 * If we're not on a rq, the next wake-up will ensure we're
6025 * placed properly.
6026 */
fd2f4419 6027 if (p->on_rq) {
2e1cb74a 6028 deactivate_task(rq_src, p, 0);
e2912009 6029 set_task_cpu(p, dest_cpu);
dd41f596 6030 activate_task(rq_dest, p, 0);
15afe09b 6031 check_preempt_curr(rq_dest, p, 0);
1da177e4 6032 }
b1e38734 6033done:
efc30814 6034 ret = 1;
b1e38734 6035fail:
1da177e4 6036 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6037 raw_spin_unlock(&p->pi_lock);
efc30814 6038 return ret;
1da177e4
LT
6039}
6040
6041/*
969c7921
TH
6042 * migration_cpu_stop - this will be executed by a highprio stopper thread
6043 * and performs thread migration by bumping thread off CPU then
6044 * 'pushing' onto another runqueue.
1da177e4 6045 */
969c7921 6046static int migration_cpu_stop(void *data)
1da177e4 6047{
969c7921 6048 struct migration_arg *arg = data;
f7b4cddc 6049
969c7921
TH
6050 /*
6051 * The original target cpu might have gone down and we might
6052 * be on another cpu but it doesn't matter.
6053 */
f7b4cddc 6054 local_irq_disable();
969c7921 6055 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6056 local_irq_enable();
1da177e4 6057 return 0;
f7b4cddc
ON
6058}
6059
1da177e4 6060#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6061
054b9108 6062/*
48c5ccae
PZ
6063 * Ensures that the idle task is using init_mm right before its cpu goes
6064 * offline.
054b9108 6065 */
48c5ccae 6066void idle_task_exit(void)
1da177e4 6067{
48c5ccae 6068 struct mm_struct *mm = current->active_mm;
e76bd8d9 6069
48c5ccae 6070 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6071
48c5ccae
PZ
6072 if (mm != &init_mm)
6073 switch_mm(mm, &init_mm, current);
6074 mmdrop(mm);
1da177e4
LT
6075}
6076
6077/*
6078 * While a dead CPU has no uninterruptible tasks queued at this point,
6079 * it might still have a nonzero ->nr_uninterruptible counter, because
6080 * for performance reasons the counter is not stricly tracking tasks to
6081 * their home CPUs. So we just add the counter to another CPU's counter,
6082 * to keep the global sum constant after CPU-down:
6083 */
70b97a7f 6084static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6085{
6ad4c188 6086 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6087
1da177e4
LT
6088 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6089 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6090}
6091
dd41f596 6092/*
48c5ccae 6093 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6094 */
48c5ccae 6095static void calc_global_load_remove(struct rq *rq)
1da177e4 6096{
48c5ccae
PZ
6097 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6098 rq->calc_load_active = 0;
1da177e4
LT
6099}
6100
48f24c4d 6101/*
48c5ccae
PZ
6102 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6103 * try_to_wake_up()->select_task_rq().
6104 *
6105 * Called with rq->lock held even though we'er in stop_machine() and
6106 * there's no concurrency possible, we hold the required locks anyway
6107 * because of lock validation efforts.
1da177e4 6108 */
48c5ccae 6109static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6110{
70b97a7f 6111 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6112 struct task_struct *next, *stop = rq->stop;
6113 int dest_cpu;
1da177e4
LT
6114
6115 /*
48c5ccae
PZ
6116 * Fudge the rq selection such that the below task selection loop
6117 * doesn't get stuck on the currently eligible stop task.
6118 *
6119 * We're currently inside stop_machine() and the rq is either stuck
6120 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6121 * either way we should never end up calling schedule() until we're
6122 * done here.
1da177e4 6123 */
48c5ccae 6124 rq->stop = NULL;
48f24c4d 6125
dd41f596 6126 for ( ; ; ) {
48c5ccae
PZ
6127 /*
6128 * There's this thread running, bail when that's the only
6129 * remaining thread.
6130 */
6131 if (rq->nr_running == 1)
dd41f596 6132 break;
48c5ccae 6133
b67802ea 6134 next = pick_next_task(rq);
48c5ccae 6135 BUG_ON(!next);
79c53799 6136 next->sched_class->put_prev_task(rq, next);
e692ab53 6137
48c5ccae
PZ
6138 /* Find suitable destination for @next, with force if needed. */
6139 dest_cpu = select_fallback_rq(dead_cpu, next);
6140 raw_spin_unlock(&rq->lock);
6141
6142 __migrate_task(next, dead_cpu, dest_cpu);
6143
6144 raw_spin_lock(&rq->lock);
1da177e4 6145 }
dce48a84 6146
48c5ccae 6147 rq->stop = stop;
dce48a84 6148}
48c5ccae 6149
1da177e4
LT
6150#endif /* CONFIG_HOTPLUG_CPU */
6151
e692ab53
NP
6152#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6153
6154static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6155 {
6156 .procname = "sched_domain",
c57baf1e 6157 .mode = 0555,
e0361851 6158 },
56992309 6159 {}
e692ab53
NP
6160};
6161
6162static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6163 {
6164 .procname = "kernel",
c57baf1e 6165 .mode = 0555,
e0361851
AD
6166 .child = sd_ctl_dir,
6167 },
56992309 6168 {}
e692ab53
NP
6169};
6170
6171static struct ctl_table *sd_alloc_ctl_entry(int n)
6172{
6173 struct ctl_table *entry =
5cf9f062 6174 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6175
e692ab53
NP
6176 return entry;
6177}
6178
6382bc90
MM
6179static void sd_free_ctl_entry(struct ctl_table **tablep)
6180{
cd790076 6181 struct ctl_table *entry;
6382bc90 6182
cd790076
MM
6183 /*
6184 * In the intermediate directories, both the child directory and
6185 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6186 * will always be set. In the lowest directory the names are
cd790076
MM
6187 * static strings and all have proc handlers.
6188 */
6189 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6190 if (entry->child)
6191 sd_free_ctl_entry(&entry->child);
cd790076
MM
6192 if (entry->proc_handler == NULL)
6193 kfree(entry->procname);
6194 }
6382bc90
MM
6195
6196 kfree(*tablep);
6197 *tablep = NULL;
6198}
6199
e692ab53 6200static void
e0361851 6201set_table_entry(struct ctl_table *entry,
e692ab53
NP
6202 const char *procname, void *data, int maxlen,
6203 mode_t mode, proc_handler *proc_handler)
6204{
e692ab53
NP
6205 entry->procname = procname;
6206 entry->data = data;
6207 entry->maxlen = maxlen;
6208 entry->mode = mode;
6209 entry->proc_handler = proc_handler;
6210}
6211
6212static struct ctl_table *
6213sd_alloc_ctl_domain_table(struct sched_domain *sd)
6214{
a5d8c348 6215 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6216
ad1cdc1d
MM
6217 if (table == NULL)
6218 return NULL;
6219
e0361851 6220 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6221 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6222 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6223 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6224 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6225 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6226 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6227 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6228 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6229 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6230 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6231 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6232 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6233 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6234 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6235 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6236 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6237 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6238 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6239 &sd->cache_nice_tries,
6240 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6241 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6242 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6243 set_table_entry(&table[11], "name", sd->name,
6244 CORENAME_MAX_SIZE, 0444, proc_dostring);
6245 /* &table[12] is terminator */
e692ab53
NP
6246
6247 return table;
6248}
6249
9a4e7159 6250static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6251{
6252 struct ctl_table *entry, *table;
6253 struct sched_domain *sd;
6254 int domain_num = 0, i;
6255 char buf[32];
6256
6257 for_each_domain(cpu, sd)
6258 domain_num++;
6259 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6260 if (table == NULL)
6261 return NULL;
e692ab53
NP
6262
6263 i = 0;
6264 for_each_domain(cpu, sd) {
6265 snprintf(buf, 32, "domain%d", i);
e692ab53 6266 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6267 entry->mode = 0555;
e692ab53
NP
6268 entry->child = sd_alloc_ctl_domain_table(sd);
6269 entry++;
6270 i++;
6271 }
6272 return table;
6273}
6274
6275static struct ctl_table_header *sd_sysctl_header;
6382bc90 6276static void register_sched_domain_sysctl(void)
e692ab53 6277{
6ad4c188 6278 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6279 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6280 char buf[32];
6281
7378547f
MM
6282 WARN_ON(sd_ctl_dir[0].child);
6283 sd_ctl_dir[0].child = entry;
6284
ad1cdc1d
MM
6285 if (entry == NULL)
6286 return;
6287
6ad4c188 6288 for_each_possible_cpu(i) {
e692ab53 6289 snprintf(buf, 32, "cpu%d", i);
e692ab53 6290 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6291 entry->mode = 0555;
e692ab53 6292 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6293 entry++;
e692ab53 6294 }
7378547f
MM
6295
6296 WARN_ON(sd_sysctl_header);
e692ab53
NP
6297 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6298}
6382bc90 6299
7378547f 6300/* may be called multiple times per register */
6382bc90
MM
6301static void unregister_sched_domain_sysctl(void)
6302{
7378547f
MM
6303 if (sd_sysctl_header)
6304 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6305 sd_sysctl_header = NULL;
7378547f
MM
6306 if (sd_ctl_dir[0].child)
6307 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6308}
e692ab53 6309#else
6382bc90
MM
6310static void register_sched_domain_sysctl(void)
6311{
6312}
6313static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6314{
6315}
6316#endif
6317
1f11eb6a
GH
6318static void set_rq_online(struct rq *rq)
6319{
6320 if (!rq->online) {
6321 const struct sched_class *class;
6322
c6c4927b 6323 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6324 rq->online = 1;
6325
6326 for_each_class(class) {
6327 if (class->rq_online)
6328 class->rq_online(rq);
6329 }
6330 }
6331}
6332
6333static void set_rq_offline(struct rq *rq)
6334{
6335 if (rq->online) {
6336 const struct sched_class *class;
6337
6338 for_each_class(class) {
6339 if (class->rq_offline)
6340 class->rq_offline(rq);
6341 }
6342
c6c4927b 6343 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6344 rq->online = 0;
6345 }
6346}
6347
1da177e4
LT
6348/*
6349 * migration_call - callback that gets triggered when a CPU is added.
6350 * Here we can start up the necessary migration thread for the new CPU.
6351 */
48f24c4d
IM
6352static int __cpuinit
6353migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6354{
48f24c4d 6355 int cpu = (long)hcpu;
1da177e4 6356 unsigned long flags;
969c7921 6357 struct rq *rq = cpu_rq(cpu);
1da177e4 6358
48c5ccae 6359 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6360
1da177e4 6361 case CPU_UP_PREPARE:
a468d389 6362 rq->calc_load_update = calc_load_update;
1da177e4 6363 break;
48f24c4d 6364
1da177e4 6365 case CPU_ONLINE:
1f94ef59 6366 /* Update our root-domain */
05fa785c 6367 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6368 if (rq->rd) {
c6c4927b 6369 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6370
6371 set_rq_online(rq);
1f94ef59 6372 }
05fa785c 6373 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6374 break;
48f24c4d 6375
1da177e4 6376#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6377 case CPU_DYING:
317f3941 6378 sched_ttwu_pending();
57d885fe 6379 /* Update our root-domain */
05fa785c 6380 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6381 if (rq->rd) {
c6c4927b 6382 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6383 set_rq_offline(rq);
57d885fe 6384 }
48c5ccae
PZ
6385 migrate_tasks(cpu);
6386 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6387 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6388
6389 migrate_nr_uninterruptible(rq);
6390 calc_global_load_remove(rq);
57d885fe 6391 break;
1da177e4
LT
6392#endif
6393 }
49c022e6
PZ
6394
6395 update_max_interval();
6396
1da177e4
LT
6397 return NOTIFY_OK;
6398}
6399
f38b0820
PM
6400/*
6401 * Register at high priority so that task migration (migrate_all_tasks)
6402 * happens before everything else. This has to be lower priority than
cdd6c482 6403 * the notifier in the perf_event subsystem, though.
1da177e4 6404 */
26c2143b 6405static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6406 .notifier_call = migration_call,
50a323b7 6407 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6408};
6409
3a101d05
TH
6410static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6411 unsigned long action, void *hcpu)
6412{
6413 switch (action & ~CPU_TASKS_FROZEN) {
6414 case CPU_ONLINE:
6415 case CPU_DOWN_FAILED:
6416 set_cpu_active((long)hcpu, true);
6417 return NOTIFY_OK;
6418 default:
6419 return NOTIFY_DONE;
6420 }
6421}
6422
6423static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6424 unsigned long action, void *hcpu)
6425{
6426 switch (action & ~CPU_TASKS_FROZEN) {
6427 case CPU_DOWN_PREPARE:
6428 set_cpu_active((long)hcpu, false);
6429 return NOTIFY_OK;
6430 default:
6431 return NOTIFY_DONE;
6432 }
6433}
6434
7babe8db 6435static int __init migration_init(void)
1da177e4
LT
6436{
6437 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6438 int err;
48f24c4d 6439
3a101d05 6440 /* Initialize migration for the boot CPU */
07dccf33
AM
6441 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6442 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6443 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6444 register_cpu_notifier(&migration_notifier);
7babe8db 6445
3a101d05
TH
6446 /* Register cpu active notifiers */
6447 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6448 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6449
a004cd42 6450 return 0;
1da177e4 6451}
7babe8db 6452early_initcall(migration_init);
1da177e4
LT
6453#endif
6454
6455#ifdef CONFIG_SMP
476f3534 6456
4cb98839
PZ
6457static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6458
3e9830dc 6459#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6460
f6630114
MT
6461static __read_mostly int sched_domain_debug_enabled;
6462
6463static int __init sched_domain_debug_setup(char *str)
6464{
6465 sched_domain_debug_enabled = 1;
6466
6467 return 0;
6468}
6469early_param("sched_debug", sched_domain_debug_setup);
6470
7c16ec58 6471static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6472 struct cpumask *groupmask)
1da177e4 6473{
4dcf6aff 6474 struct sched_group *group = sd->groups;
434d53b0 6475 char str[256];
1da177e4 6476
968ea6d8 6477 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6478 cpumask_clear(groupmask);
4dcf6aff
IM
6479
6480 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6481
6482 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6483 printk("does not load-balance\n");
4dcf6aff 6484 if (sd->parent)
3df0fc5b
PZ
6485 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6486 " has parent");
4dcf6aff 6487 return -1;
41c7ce9a
NP
6488 }
6489
3df0fc5b 6490 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6491
758b2cdc 6492 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6493 printk(KERN_ERR "ERROR: domain->span does not contain "
6494 "CPU%d\n", cpu);
4dcf6aff 6495 }
758b2cdc 6496 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6497 printk(KERN_ERR "ERROR: domain->groups does not contain"
6498 " CPU%d\n", cpu);
4dcf6aff 6499 }
1da177e4 6500
4dcf6aff 6501 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6502 do {
4dcf6aff 6503 if (!group) {
3df0fc5b
PZ
6504 printk("\n");
6505 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6506 break;
6507 }
6508
18a3885f 6509 if (!group->cpu_power) {
3df0fc5b
PZ
6510 printk(KERN_CONT "\n");
6511 printk(KERN_ERR "ERROR: domain->cpu_power not "
6512 "set\n");
4dcf6aff
IM
6513 break;
6514 }
1da177e4 6515
758b2cdc 6516 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6517 printk(KERN_CONT "\n");
6518 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6519 break;
6520 }
1da177e4 6521
758b2cdc 6522 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6523 printk(KERN_CONT "\n");
6524 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6525 break;
6526 }
1da177e4 6527
758b2cdc 6528 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6529
968ea6d8 6530 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6531
3df0fc5b 6532 printk(KERN_CONT " %s", str);
18a3885f 6533 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6534 printk(KERN_CONT " (cpu_power = %d)",
6535 group->cpu_power);
381512cf 6536 }
1da177e4 6537
4dcf6aff
IM
6538 group = group->next;
6539 } while (group != sd->groups);
3df0fc5b 6540 printk(KERN_CONT "\n");
1da177e4 6541
758b2cdc 6542 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6543 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6544
758b2cdc
RR
6545 if (sd->parent &&
6546 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6547 printk(KERN_ERR "ERROR: parent span is not a superset "
6548 "of domain->span\n");
4dcf6aff
IM
6549 return 0;
6550}
1da177e4 6551
4dcf6aff
IM
6552static void sched_domain_debug(struct sched_domain *sd, int cpu)
6553{
6554 int level = 0;
1da177e4 6555
f6630114
MT
6556 if (!sched_domain_debug_enabled)
6557 return;
6558
4dcf6aff
IM
6559 if (!sd) {
6560 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6561 return;
6562 }
1da177e4 6563
4dcf6aff
IM
6564 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6565
6566 for (;;) {
4cb98839 6567 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6568 break;
1da177e4
LT
6569 level++;
6570 sd = sd->parent;
33859f7f 6571 if (!sd)
4dcf6aff
IM
6572 break;
6573 }
1da177e4 6574}
6d6bc0ad 6575#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6576# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6577#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6578
1a20ff27 6579static int sd_degenerate(struct sched_domain *sd)
245af2c7 6580{
758b2cdc 6581 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6582 return 1;
6583
6584 /* Following flags need at least 2 groups */
6585 if (sd->flags & (SD_LOAD_BALANCE |
6586 SD_BALANCE_NEWIDLE |
6587 SD_BALANCE_FORK |
89c4710e
SS
6588 SD_BALANCE_EXEC |
6589 SD_SHARE_CPUPOWER |
6590 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6591 if (sd->groups != sd->groups->next)
6592 return 0;
6593 }
6594
6595 /* Following flags don't use groups */
c88d5910 6596 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6597 return 0;
6598
6599 return 1;
6600}
6601
48f24c4d
IM
6602static int
6603sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6604{
6605 unsigned long cflags = sd->flags, pflags = parent->flags;
6606
6607 if (sd_degenerate(parent))
6608 return 1;
6609
758b2cdc 6610 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6611 return 0;
6612
245af2c7
SS
6613 /* Flags needing groups don't count if only 1 group in parent */
6614 if (parent->groups == parent->groups->next) {
6615 pflags &= ~(SD_LOAD_BALANCE |
6616 SD_BALANCE_NEWIDLE |
6617 SD_BALANCE_FORK |
89c4710e
SS
6618 SD_BALANCE_EXEC |
6619 SD_SHARE_CPUPOWER |
6620 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6621 if (nr_node_ids == 1)
6622 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6623 }
6624 if (~cflags & pflags)
6625 return 0;
6626
6627 return 1;
6628}
6629
dce840a0 6630static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6631{
dce840a0 6632 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6633
68e74568 6634 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6635 free_cpumask_var(rd->rto_mask);
6636 free_cpumask_var(rd->online);
6637 free_cpumask_var(rd->span);
6638 kfree(rd);
6639}
6640
57d885fe
GH
6641static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6642{
a0490fa3 6643 struct root_domain *old_rd = NULL;
57d885fe 6644 unsigned long flags;
57d885fe 6645
05fa785c 6646 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6647
6648 if (rq->rd) {
a0490fa3 6649 old_rd = rq->rd;
57d885fe 6650
c6c4927b 6651 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6652 set_rq_offline(rq);
57d885fe 6653
c6c4927b 6654 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6655
a0490fa3
IM
6656 /*
6657 * If we dont want to free the old_rt yet then
6658 * set old_rd to NULL to skip the freeing later
6659 * in this function:
6660 */
6661 if (!atomic_dec_and_test(&old_rd->refcount))
6662 old_rd = NULL;
57d885fe
GH
6663 }
6664
6665 atomic_inc(&rd->refcount);
6666 rq->rd = rd;
6667
c6c4927b 6668 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6669 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6670 set_rq_online(rq);
57d885fe 6671
05fa785c 6672 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6673
6674 if (old_rd)
dce840a0 6675 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6676}
6677
68c38fc3 6678static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6679{
6680 memset(rd, 0, sizeof(*rd));
6681
68c38fc3 6682 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6683 goto out;
68c38fc3 6684 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6685 goto free_span;
68c38fc3 6686 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6687 goto free_online;
6e0534f2 6688
68c38fc3 6689 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6690 goto free_rto_mask;
c6c4927b 6691 return 0;
6e0534f2 6692
68e74568
RR
6693free_rto_mask:
6694 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6695free_online:
6696 free_cpumask_var(rd->online);
6697free_span:
6698 free_cpumask_var(rd->span);
0c910d28 6699out:
c6c4927b 6700 return -ENOMEM;
57d885fe
GH
6701}
6702
6703static void init_defrootdomain(void)
6704{
68c38fc3 6705 init_rootdomain(&def_root_domain);
c6c4927b 6706
57d885fe
GH
6707 atomic_set(&def_root_domain.refcount, 1);
6708}
6709
dc938520 6710static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6711{
6712 struct root_domain *rd;
6713
6714 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6715 if (!rd)
6716 return NULL;
6717
68c38fc3 6718 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6719 kfree(rd);
6720 return NULL;
6721 }
57d885fe
GH
6722
6723 return rd;
6724}
6725
dce840a0
PZ
6726static void free_sched_domain(struct rcu_head *rcu)
6727{
6728 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6729 if (atomic_dec_and_test(&sd->groups->ref))
6730 kfree(sd->groups);
6731 kfree(sd);
6732}
6733
6734static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6735{
6736 call_rcu(&sd->rcu, free_sched_domain);
6737}
6738
6739static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6740{
6741 for (; sd; sd = sd->parent)
6742 destroy_sched_domain(sd, cpu);
6743}
6744
1da177e4 6745/*
0eab9146 6746 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6747 * hold the hotplug lock.
6748 */
0eab9146
IM
6749static void
6750cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6751{
70b97a7f 6752 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6753 struct sched_domain *tmp;
6754
6755 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6756 for (tmp = sd; tmp; ) {
245af2c7
SS
6757 struct sched_domain *parent = tmp->parent;
6758 if (!parent)
6759 break;
f29c9b1c 6760
1a848870 6761 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6762 tmp->parent = parent->parent;
1a848870
SS
6763 if (parent->parent)
6764 parent->parent->child = tmp;
dce840a0 6765 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6766 } else
6767 tmp = tmp->parent;
245af2c7
SS
6768 }
6769
1a848870 6770 if (sd && sd_degenerate(sd)) {
dce840a0 6771 tmp = sd;
245af2c7 6772 sd = sd->parent;
dce840a0 6773 destroy_sched_domain(tmp, cpu);
1a848870
SS
6774 if (sd)
6775 sd->child = NULL;
6776 }
1da177e4 6777
4cb98839 6778 sched_domain_debug(sd, cpu);
1da177e4 6779
57d885fe 6780 rq_attach_root(rq, rd);
dce840a0 6781 tmp = rq->sd;
674311d5 6782 rcu_assign_pointer(rq->sd, sd);
dce840a0 6783 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6784}
6785
6786/* cpus with isolated domains */
dcc30a35 6787static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6788
6789/* Setup the mask of cpus configured for isolated domains */
6790static int __init isolated_cpu_setup(char *str)
6791{
bdddd296 6792 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6793 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6794 return 1;
6795}
6796
8927f494 6797__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6798
9c1cfda2 6799#define SD_NODES_PER_DOMAIN 16
1da177e4 6800
9c1cfda2 6801#ifdef CONFIG_NUMA
198e2f18 6802
9c1cfda2
JH
6803/**
6804 * find_next_best_node - find the next node to include in a sched_domain
6805 * @node: node whose sched_domain we're building
6806 * @used_nodes: nodes already in the sched_domain
6807 *
41a2d6cf 6808 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6809 * finds the closest node not already in the @used_nodes map.
6810 *
6811 * Should use nodemask_t.
6812 */
c5f59f08 6813static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 6814{
7142d17e 6815 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
6816
6817 min_val = INT_MAX;
6818
076ac2af 6819 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6820 /* Start at @node */
076ac2af 6821 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6822
6823 if (!nr_cpus_node(n))
6824 continue;
6825
6826 /* Skip already used nodes */
c5f59f08 6827 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6828 continue;
6829
6830 /* Simple min distance search */
6831 val = node_distance(node, n);
6832
6833 if (val < min_val) {
6834 min_val = val;
6835 best_node = n;
6836 }
6837 }
6838
7142d17e
HD
6839 if (best_node != -1)
6840 node_set(best_node, *used_nodes);
9c1cfda2
JH
6841 return best_node;
6842}
6843
6844/**
6845 * sched_domain_node_span - get a cpumask for a node's sched_domain
6846 * @node: node whose cpumask we're constructing
73486722 6847 * @span: resulting cpumask
9c1cfda2 6848 *
41a2d6cf 6849 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6850 * should be one that prevents unnecessary balancing, but also spreads tasks
6851 * out optimally.
6852 */
96f874e2 6853static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6854{
c5f59f08 6855 nodemask_t used_nodes;
48f24c4d 6856 int i;
9c1cfda2 6857
6ca09dfc 6858 cpumask_clear(span);
c5f59f08 6859 nodes_clear(used_nodes);
9c1cfda2 6860
6ca09dfc 6861 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6862 node_set(node, used_nodes);
9c1cfda2
JH
6863
6864 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6865 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
6866 if (next_node < 0)
6867 break;
6ca09dfc 6868 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6869 }
9c1cfda2 6870}
d3081f52
PZ
6871
6872static const struct cpumask *cpu_node_mask(int cpu)
6873{
6874 lockdep_assert_held(&sched_domains_mutex);
6875
6876 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6877
6878 return sched_domains_tmpmask;
6879}
2c402dc3
PZ
6880
6881static const struct cpumask *cpu_allnodes_mask(int cpu)
6882{
6883 return cpu_possible_mask;
6884}
6d6bc0ad 6885#endif /* CONFIG_NUMA */
9c1cfda2 6886
d3081f52
PZ
6887static const struct cpumask *cpu_cpu_mask(int cpu)
6888{
6889 return cpumask_of_node(cpu_to_node(cpu));
6890}
6891
5c45bf27 6892int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6893
dce840a0
PZ
6894struct sd_data {
6895 struct sched_domain **__percpu sd;
6896 struct sched_group **__percpu sg;
6897};
6898
49a02c51 6899struct s_data {
21d42ccf 6900 struct sched_domain ** __percpu sd;
49a02c51
AH
6901 struct root_domain *rd;
6902};
6903
2109b99e 6904enum s_alloc {
2109b99e 6905 sa_rootdomain,
21d42ccf 6906 sa_sd,
dce840a0 6907 sa_sd_storage,
2109b99e
AH
6908 sa_none,
6909};
6910
54ab4ff4
PZ
6911struct sched_domain_topology_level;
6912
6913typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6914typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6915
6916struct sched_domain_topology_level {
2c402dc3
PZ
6917 sched_domain_init_f init;
6918 sched_domain_mask_f mask;
54ab4ff4 6919 struct sd_data data;
eb7a74e6
PZ
6920};
6921
9c1cfda2 6922/*
dce840a0 6923 * Assumes the sched_domain tree is fully constructed
9c1cfda2 6924 */
dce840a0 6925static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6926{
dce840a0
PZ
6927 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6928 struct sched_domain *child = sd->child;
1da177e4 6929
dce840a0
PZ
6930 if (child)
6931 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6932
6711cab4 6933 if (sg)
dce840a0
PZ
6934 *sg = *per_cpu_ptr(sdd->sg, cpu);
6935
6936 return cpu;
1e9f28fa 6937}
1e9f28fa 6938
01a08546 6939/*
dce840a0
PZ
6940 * build_sched_groups takes the cpumask we wish to span, and a pointer
6941 * to a function which identifies what group(along with sched group) a CPU
6942 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6943 * (due to the fact that we keep track of groups covered with a struct cpumask).
6944 *
6945 * build_sched_groups will build a circular linked list of the groups
6946 * covered by the given span, and will set each group's ->cpumask correctly,
6947 * and ->cpu_power to 0.
01a08546 6948 */
dce840a0 6949static void
f96225fd 6950build_sched_groups(struct sched_domain *sd)
1da177e4 6951{
dce840a0
PZ
6952 struct sched_group *first = NULL, *last = NULL;
6953 struct sd_data *sdd = sd->private;
6954 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6955 struct cpumask *covered;
dce840a0 6956 int i;
9c1cfda2 6957
f96225fd
PZ
6958 lockdep_assert_held(&sched_domains_mutex);
6959 covered = sched_domains_tmpmask;
6960
dce840a0 6961 cpumask_clear(covered);
6711cab4 6962
dce840a0
PZ
6963 for_each_cpu(i, span) {
6964 struct sched_group *sg;
6965 int group = get_group(i, sdd, &sg);
6966 int j;
6711cab4 6967
dce840a0
PZ
6968 if (cpumask_test_cpu(i, covered))
6969 continue;
6711cab4 6970
dce840a0
PZ
6971 cpumask_clear(sched_group_cpus(sg));
6972 sg->cpu_power = 0;
0601a88d 6973
dce840a0
PZ
6974 for_each_cpu(j, span) {
6975 if (get_group(j, sdd, NULL) != group)
6976 continue;
0601a88d 6977
dce840a0
PZ
6978 cpumask_set_cpu(j, covered);
6979 cpumask_set_cpu(j, sched_group_cpus(sg));
6980 }
0601a88d 6981
dce840a0
PZ
6982 if (!first)
6983 first = sg;
6984 if (last)
6985 last->next = sg;
6986 last = sg;
6987 }
6988 last->next = first;
0601a88d 6989}
51888ca2 6990
89c4710e
SS
6991/*
6992 * Initialize sched groups cpu_power.
6993 *
6994 * cpu_power indicates the capacity of sched group, which is used while
6995 * distributing the load between different sched groups in a sched domain.
6996 * Typically cpu_power for all the groups in a sched domain will be same unless
6997 * there are asymmetries in the topology. If there are asymmetries, group
6998 * having more cpu_power will pickup more load compared to the group having
6999 * less cpu_power.
89c4710e
SS
7000 */
7001static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7002{
89c4710e
SS
7003 WARN_ON(!sd || !sd->groups);
7004
13318a71 7005 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7006 return;
7007
aae6d3dd
SS
7008 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7009
d274cb30 7010 update_group_power(sd, cpu);
89c4710e
SS
7011}
7012
7c16ec58
MT
7013/*
7014 * Initializers for schedule domains
7015 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7016 */
7017
a5d8c348
IM
7018#ifdef CONFIG_SCHED_DEBUG
7019# define SD_INIT_NAME(sd, type) sd->name = #type
7020#else
7021# define SD_INIT_NAME(sd, type) do { } while (0)
7022#endif
7023
54ab4ff4
PZ
7024#define SD_INIT_FUNC(type) \
7025static noinline struct sched_domain * \
7026sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7027{ \
7028 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7029 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7030 SD_INIT_NAME(sd, type); \
7031 sd->private = &tl->data; \
7032 return sd; \
7c16ec58
MT
7033}
7034
7035SD_INIT_FUNC(CPU)
7036#ifdef CONFIG_NUMA
7037 SD_INIT_FUNC(ALLNODES)
7038 SD_INIT_FUNC(NODE)
7039#endif
7040#ifdef CONFIG_SCHED_SMT
7041 SD_INIT_FUNC(SIBLING)
7042#endif
7043#ifdef CONFIG_SCHED_MC
7044 SD_INIT_FUNC(MC)
7045#endif
01a08546
HC
7046#ifdef CONFIG_SCHED_BOOK
7047 SD_INIT_FUNC(BOOK)
7048#endif
7c16ec58 7049
1d3504fc 7050static int default_relax_domain_level = -1;
60495e77 7051int sched_domain_level_max;
1d3504fc
HS
7052
7053static int __init setup_relax_domain_level(char *str)
7054{
30e0e178
LZ
7055 unsigned long val;
7056
7057 val = simple_strtoul(str, NULL, 0);
60495e77 7058 if (val < sched_domain_level_max)
30e0e178
LZ
7059 default_relax_domain_level = val;
7060
1d3504fc
HS
7061 return 1;
7062}
7063__setup("relax_domain_level=", setup_relax_domain_level);
7064
7065static void set_domain_attribute(struct sched_domain *sd,
7066 struct sched_domain_attr *attr)
7067{
7068 int request;
7069
7070 if (!attr || attr->relax_domain_level < 0) {
7071 if (default_relax_domain_level < 0)
7072 return;
7073 else
7074 request = default_relax_domain_level;
7075 } else
7076 request = attr->relax_domain_level;
7077 if (request < sd->level) {
7078 /* turn off idle balance on this domain */
c88d5910 7079 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7080 } else {
7081 /* turn on idle balance on this domain */
c88d5910 7082 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7083 }
7084}
7085
54ab4ff4
PZ
7086static void __sdt_free(const struct cpumask *cpu_map);
7087static int __sdt_alloc(const struct cpumask *cpu_map);
7088
2109b99e
AH
7089static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7090 const struct cpumask *cpu_map)
7091{
7092 switch (what) {
2109b99e 7093 case sa_rootdomain:
822ff793
PZ
7094 if (!atomic_read(&d->rd->refcount))
7095 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7096 case sa_sd:
7097 free_percpu(d->sd); /* fall through */
dce840a0 7098 case sa_sd_storage:
54ab4ff4 7099 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7100 case sa_none:
7101 break;
7102 }
7103}
3404c8d9 7104
2109b99e
AH
7105static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7106 const struct cpumask *cpu_map)
7107{
dce840a0
PZ
7108 memset(d, 0, sizeof(*d));
7109
54ab4ff4
PZ
7110 if (__sdt_alloc(cpu_map))
7111 return sa_sd_storage;
dce840a0
PZ
7112 d->sd = alloc_percpu(struct sched_domain *);
7113 if (!d->sd)
7114 return sa_sd_storage;
2109b99e 7115 d->rd = alloc_rootdomain();
dce840a0 7116 if (!d->rd)
21d42ccf 7117 return sa_sd;
2109b99e
AH
7118 return sa_rootdomain;
7119}
57d885fe 7120
dce840a0
PZ
7121/*
7122 * NULL the sd_data elements we've used to build the sched_domain and
7123 * sched_group structure so that the subsequent __free_domain_allocs()
7124 * will not free the data we're using.
7125 */
7126static void claim_allocations(int cpu, struct sched_domain *sd)
7127{
7128 struct sd_data *sdd = sd->private;
7129 struct sched_group *sg = sd->groups;
7130
7131 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7132 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7133
7134 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7135 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7136 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7137 }
7138}
7139
2c402dc3
PZ
7140#ifdef CONFIG_SCHED_SMT
7141static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7142{
2c402dc3 7143 return topology_thread_cpumask(cpu);
3bd65a80 7144}
2c402dc3 7145#endif
7f4588f3 7146
d069b916
PZ
7147/*
7148 * Topology list, bottom-up.
7149 */
2c402dc3 7150static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7151#ifdef CONFIG_SCHED_SMT
7152 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7153#endif
1e9f28fa 7154#ifdef CONFIG_SCHED_MC
2c402dc3 7155 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7156#endif
d069b916
PZ
7157#ifdef CONFIG_SCHED_BOOK
7158 { sd_init_BOOK, cpu_book_mask, },
7159#endif
7160 { sd_init_CPU, cpu_cpu_mask, },
7161#ifdef CONFIG_NUMA
7162 { sd_init_NODE, cpu_node_mask, },
7163 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7164#endif
eb7a74e6
PZ
7165 { NULL, },
7166};
7167
7168static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7169
54ab4ff4
PZ
7170static int __sdt_alloc(const struct cpumask *cpu_map)
7171{
7172 struct sched_domain_topology_level *tl;
7173 int j;
7174
7175 for (tl = sched_domain_topology; tl->init; tl++) {
7176 struct sd_data *sdd = &tl->data;
7177
7178 sdd->sd = alloc_percpu(struct sched_domain *);
7179 if (!sdd->sd)
7180 return -ENOMEM;
7181
7182 sdd->sg = alloc_percpu(struct sched_group *);
7183 if (!sdd->sg)
7184 return -ENOMEM;
7185
7186 for_each_cpu(j, cpu_map) {
7187 struct sched_domain *sd;
7188 struct sched_group *sg;
7189
7190 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7191 GFP_KERNEL, cpu_to_node(j));
7192 if (!sd)
7193 return -ENOMEM;
7194
7195 *per_cpu_ptr(sdd->sd, j) = sd;
7196
7197 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7198 GFP_KERNEL, cpu_to_node(j));
7199 if (!sg)
7200 return -ENOMEM;
7201
7202 *per_cpu_ptr(sdd->sg, j) = sg;
7203 }
7204 }
7205
7206 return 0;
7207}
7208
7209static void __sdt_free(const struct cpumask *cpu_map)
7210{
7211 struct sched_domain_topology_level *tl;
7212 int j;
7213
7214 for (tl = sched_domain_topology; tl->init; tl++) {
7215 struct sd_data *sdd = &tl->data;
7216
7217 for_each_cpu(j, cpu_map) {
7218 kfree(*per_cpu_ptr(sdd->sd, j));
7219 kfree(*per_cpu_ptr(sdd->sg, j));
7220 }
7221 free_percpu(sdd->sd);
7222 free_percpu(sdd->sg);
7223 }
7224}
7225
2c402dc3
PZ
7226struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7227 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7228 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7229 int cpu)
7230{
54ab4ff4 7231 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7232 if (!sd)
d069b916 7233 return child;
2c402dc3
PZ
7234
7235 set_domain_attribute(sd, attr);
7236 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7237 if (child) {
7238 sd->level = child->level + 1;
7239 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7240 child->parent = sd;
60495e77 7241 }
d069b916 7242 sd->child = child;
2c402dc3
PZ
7243
7244 return sd;
7245}
7246
2109b99e
AH
7247/*
7248 * Build sched domains for a given set of cpus and attach the sched domains
7249 * to the individual cpus
7250 */
dce840a0
PZ
7251static int build_sched_domains(const struct cpumask *cpu_map,
7252 struct sched_domain_attr *attr)
2109b99e
AH
7253{
7254 enum s_alloc alloc_state = sa_none;
dce840a0 7255 struct sched_domain *sd;
2109b99e 7256 struct s_data d;
822ff793 7257 int i, ret = -ENOMEM;
9c1cfda2 7258
2109b99e
AH
7259 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7260 if (alloc_state != sa_rootdomain)
7261 goto error;
9c1cfda2 7262
dce840a0 7263 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7264 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7265 struct sched_domain_topology_level *tl;
7266
3bd65a80 7267 sd = NULL;
2c402dc3
PZ
7268 for (tl = sched_domain_topology; tl->init; tl++)
7269 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
d274cb30 7270
d069b916
PZ
7271 while (sd->child)
7272 sd = sd->child;
7273
21d42ccf 7274 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7275 }
7276
7277 /* Build the groups for the domains */
7278 for_each_cpu(i, cpu_map) {
7279 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7280 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7281 get_group(i, sd->private, &sd->groups);
7282 atomic_inc(&sd->groups->ref);
21d42ccf 7283
dce840a0
PZ
7284 if (i != cpumask_first(sched_domain_span(sd)))
7285 continue;
7286
f96225fd 7287 build_sched_groups(sd);
1cf51902 7288 }
a06dadbe 7289 }
9c1cfda2 7290
1da177e4 7291 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7292 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7293 if (!cpumask_test_cpu(i, cpu_map))
7294 continue;
9c1cfda2 7295
dce840a0
PZ
7296 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7297 claim_allocations(i, sd);
cd4ea6ae 7298 init_sched_groups_power(i, sd);
dce840a0 7299 }
f712c0c7 7300 }
9c1cfda2 7301
1da177e4 7302 /* Attach the domains */
dce840a0 7303 rcu_read_lock();
abcd083a 7304 for_each_cpu(i, cpu_map) {
21d42ccf 7305 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7306 cpu_attach_domain(sd, d.rd, i);
1da177e4 7307 }
dce840a0 7308 rcu_read_unlock();
51888ca2 7309
822ff793 7310 ret = 0;
51888ca2 7311error:
2109b99e 7312 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7313 return ret;
1da177e4 7314}
029190c5 7315
acc3f5d7 7316static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7317static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7318static struct sched_domain_attr *dattr_cur;
7319 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7320
7321/*
7322 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7323 * cpumask) fails, then fallback to a single sched domain,
7324 * as determined by the single cpumask fallback_doms.
029190c5 7325 */
4212823f 7326static cpumask_var_t fallback_doms;
029190c5 7327
ee79d1bd
HC
7328/*
7329 * arch_update_cpu_topology lets virtualized architectures update the
7330 * cpu core maps. It is supposed to return 1 if the topology changed
7331 * or 0 if it stayed the same.
7332 */
7333int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7334{
ee79d1bd 7335 return 0;
22e52b07
HC
7336}
7337
acc3f5d7
RR
7338cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7339{
7340 int i;
7341 cpumask_var_t *doms;
7342
7343 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7344 if (!doms)
7345 return NULL;
7346 for (i = 0; i < ndoms; i++) {
7347 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7348 free_sched_domains(doms, i);
7349 return NULL;
7350 }
7351 }
7352 return doms;
7353}
7354
7355void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7356{
7357 unsigned int i;
7358 for (i = 0; i < ndoms; i++)
7359 free_cpumask_var(doms[i]);
7360 kfree(doms);
7361}
7362
1a20ff27 7363/*
41a2d6cf 7364 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7365 * For now this just excludes isolated cpus, but could be used to
7366 * exclude other special cases in the future.
1a20ff27 7367 */
c4a8849a 7368static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7369{
7378547f
MM
7370 int err;
7371
22e52b07 7372 arch_update_cpu_topology();
029190c5 7373 ndoms_cur = 1;
acc3f5d7 7374 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7375 if (!doms_cur)
acc3f5d7
RR
7376 doms_cur = &fallback_doms;
7377 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7378 dattr_cur = NULL;
dce840a0 7379 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7380 register_sched_domain_sysctl();
7378547f
MM
7381
7382 return err;
1a20ff27
DG
7383}
7384
1a20ff27
DG
7385/*
7386 * Detach sched domains from a group of cpus specified in cpu_map
7387 * These cpus will now be attached to the NULL domain
7388 */
96f874e2 7389static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7390{
7391 int i;
7392
dce840a0 7393 rcu_read_lock();
abcd083a 7394 for_each_cpu(i, cpu_map)
57d885fe 7395 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7396 rcu_read_unlock();
1a20ff27
DG
7397}
7398
1d3504fc
HS
7399/* handle null as "default" */
7400static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7401 struct sched_domain_attr *new, int idx_new)
7402{
7403 struct sched_domain_attr tmp;
7404
7405 /* fast path */
7406 if (!new && !cur)
7407 return 1;
7408
7409 tmp = SD_ATTR_INIT;
7410 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7411 new ? (new + idx_new) : &tmp,
7412 sizeof(struct sched_domain_attr));
7413}
7414
029190c5
PJ
7415/*
7416 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7417 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7418 * doms_new[] to the current sched domain partitioning, doms_cur[].
7419 * It destroys each deleted domain and builds each new domain.
7420 *
acc3f5d7 7421 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7422 * The masks don't intersect (don't overlap.) We should setup one
7423 * sched domain for each mask. CPUs not in any of the cpumasks will
7424 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7425 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7426 * it as it is.
7427 *
acc3f5d7
RR
7428 * The passed in 'doms_new' should be allocated using
7429 * alloc_sched_domains. This routine takes ownership of it and will
7430 * free_sched_domains it when done with it. If the caller failed the
7431 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7432 * and partition_sched_domains() will fallback to the single partition
7433 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7434 *
96f874e2 7435 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7436 * ndoms_new == 0 is a special case for destroying existing domains,
7437 * and it will not create the default domain.
dfb512ec 7438 *
029190c5
PJ
7439 * Call with hotplug lock held
7440 */
acc3f5d7 7441void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7442 struct sched_domain_attr *dattr_new)
029190c5 7443{
dfb512ec 7444 int i, j, n;
d65bd5ec 7445 int new_topology;
029190c5 7446
712555ee 7447 mutex_lock(&sched_domains_mutex);
a1835615 7448
7378547f
MM
7449 /* always unregister in case we don't destroy any domains */
7450 unregister_sched_domain_sysctl();
7451
d65bd5ec
HC
7452 /* Let architecture update cpu core mappings. */
7453 new_topology = arch_update_cpu_topology();
7454
dfb512ec 7455 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7456
7457 /* Destroy deleted domains */
7458 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7459 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7460 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7461 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7462 goto match1;
7463 }
7464 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7465 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7466match1:
7467 ;
7468 }
7469
e761b772
MK
7470 if (doms_new == NULL) {
7471 ndoms_cur = 0;
acc3f5d7 7472 doms_new = &fallback_doms;
6ad4c188 7473 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7474 WARN_ON_ONCE(dattr_new);
e761b772
MK
7475 }
7476
029190c5
PJ
7477 /* Build new domains */
7478 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7479 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7480 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7481 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7482 goto match2;
7483 }
7484 /* no match - add a new doms_new */
dce840a0 7485 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7486match2:
7487 ;
7488 }
7489
7490 /* Remember the new sched domains */
acc3f5d7
RR
7491 if (doms_cur != &fallback_doms)
7492 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7493 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7494 doms_cur = doms_new;
1d3504fc 7495 dattr_cur = dattr_new;
029190c5 7496 ndoms_cur = ndoms_new;
7378547f
MM
7497
7498 register_sched_domain_sysctl();
a1835615 7499
712555ee 7500 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7501}
7502
5c45bf27 7503#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7504static void reinit_sched_domains(void)
5c45bf27 7505{
95402b38 7506 get_online_cpus();
dfb512ec
MK
7507
7508 /* Destroy domains first to force the rebuild */
7509 partition_sched_domains(0, NULL, NULL);
7510
e761b772 7511 rebuild_sched_domains();
95402b38 7512 put_online_cpus();
5c45bf27
SS
7513}
7514
7515static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7516{
afb8a9b7 7517 unsigned int level = 0;
5c45bf27 7518
afb8a9b7
GS
7519 if (sscanf(buf, "%u", &level) != 1)
7520 return -EINVAL;
7521
7522 /*
7523 * level is always be positive so don't check for
7524 * level < POWERSAVINGS_BALANCE_NONE which is 0
7525 * What happens on 0 or 1 byte write,
7526 * need to check for count as well?
7527 */
7528
7529 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7530 return -EINVAL;
7531
7532 if (smt)
afb8a9b7 7533 sched_smt_power_savings = level;
5c45bf27 7534 else
afb8a9b7 7535 sched_mc_power_savings = level;
5c45bf27 7536
c4a8849a 7537 reinit_sched_domains();
5c45bf27 7538
c70f22d2 7539 return count;
5c45bf27
SS
7540}
7541
5c45bf27 7542#ifdef CONFIG_SCHED_MC
f718cd4a 7543static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7544 struct sysdev_class_attribute *attr,
f718cd4a 7545 char *page)
5c45bf27
SS
7546{
7547 return sprintf(page, "%u\n", sched_mc_power_savings);
7548}
f718cd4a 7549static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7550 struct sysdev_class_attribute *attr,
48f24c4d 7551 const char *buf, size_t count)
5c45bf27
SS
7552{
7553 return sched_power_savings_store(buf, count, 0);
7554}
f718cd4a
AK
7555static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7556 sched_mc_power_savings_show,
7557 sched_mc_power_savings_store);
5c45bf27
SS
7558#endif
7559
7560#ifdef CONFIG_SCHED_SMT
f718cd4a 7561static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7562 struct sysdev_class_attribute *attr,
f718cd4a 7563 char *page)
5c45bf27
SS
7564{
7565 return sprintf(page, "%u\n", sched_smt_power_savings);
7566}
f718cd4a 7567static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7568 struct sysdev_class_attribute *attr,
48f24c4d 7569 const char *buf, size_t count)
5c45bf27
SS
7570{
7571 return sched_power_savings_store(buf, count, 1);
7572}
f718cd4a
AK
7573static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7574 sched_smt_power_savings_show,
6707de00
AB
7575 sched_smt_power_savings_store);
7576#endif
7577
39aac648 7578int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7579{
7580 int err = 0;
7581
7582#ifdef CONFIG_SCHED_SMT
7583 if (smt_capable())
7584 err = sysfs_create_file(&cls->kset.kobj,
7585 &attr_sched_smt_power_savings.attr);
7586#endif
7587#ifdef CONFIG_SCHED_MC
7588 if (!err && mc_capable())
7589 err = sysfs_create_file(&cls->kset.kobj,
7590 &attr_sched_mc_power_savings.attr);
7591#endif
7592 return err;
7593}
6d6bc0ad 7594#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7595
1da177e4 7596/*
3a101d05
TH
7597 * Update cpusets according to cpu_active mask. If cpusets are
7598 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7599 * around partition_sched_domains().
1da177e4 7600 */
0b2e918a
TH
7601static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7602 void *hcpu)
e761b772 7603{
3a101d05 7604 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7605 case CPU_ONLINE:
6ad4c188 7606 case CPU_DOWN_FAILED:
3a101d05 7607 cpuset_update_active_cpus();
e761b772 7608 return NOTIFY_OK;
3a101d05
TH
7609 default:
7610 return NOTIFY_DONE;
7611 }
7612}
e761b772 7613
0b2e918a
TH
7614static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7615 void *hcpu)
3a101d05
TH
7616{
7617 switch (action & ~CPU_TASKS_FROZEN) {
7618 case CPU_DOWN_PREPARE:
7619 cpuset_update_active_cpus();
7620 return NOTIFY_OK;
e761b772
MK
7621 default:
7622 return NOTIFY_DONE;
7623 }
7624}
e761b772
MK
7625
7626static int update_runtime(struct notifier_block *nfb,
7627 unsigned long action, void *hcpu)
1da177e4 7628{
7def2be1
PZ
7629 int cpu = (int)(long)hcpu;
7630
1da177e4 7631 switch (action) {
1da177e4 7632 case CPU_DOWN_PREPARE:
8bb78442 7633 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7634 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7635 return NOTIFY_OK;
7636
1da177e4 7637 case CPU_DOWN_FAILED:
8bb78442 7638 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7639 case CPU_ONLINE:
8bb78442 7640 case CPU_ONLINE_FROZEN:
7def2be1 7641 enable_runtime(cpu_rq(cpu));
e761b772
MK
7642 return NOTIFY_OK;
7643
1da177e4
LT
7644 default:
7645 return NOTIFY_DONE;
7646 }
1da177e4 7647}
1da177e4
LT
7648
7649void __init sched_init_smp(void)
7650{
dcc30a35
RR
7651 cpumask_var_t non_isolated_cpus;
7652
7653 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7654 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7655
95402b38 7656 get_online_cpus();
712555ee 7657 mutex_lock(&sched_domains_mutex);
c4a8849a 7658 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7659 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7660 if (cpumask_empty(non_isolated_cpus))
7661 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7662 mutex_unlock(&sched_domains_mutex);
95402b38 7663 put_online_cpus();
e761b772 7664
3a101d05
TH
7665 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7666 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7667
7668 /* RT runtime code needs to handle some hotplug events */
7669 hotcpu_notifier(update_runtime, 0);
7670
b328ca18 7671 init_hrtick();
5c1e1767
NP
7672
7673 /* Move init over to a non-isolated CPU */
dcc30a35 7674 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7675 BUG();
19978ca6 7676 sched_init_granularity();
dcc30a35 7677 free_cpumask_var(non_isolated_cpus);
4212823f 7678
0e3900e6 7679 init_sched_rt_class();
1da177e4
LT
7680}
7681#else
7682void __init sched_init_smp(void)
7683{
19978ca6 7684 sched_init_granularity();
1da177e4
LT
7685}
7686#endif /* CONFIG_SMP */
7687
cd1bb94b
AB
7688const_debug unsigned int sysctl_timer_migration = 1;
7689
1da177e4
LT
7690int in_sched_functions(unsigned long addr)
7691{
1da177e4
LT
7692 return in_lock_functions(addr) ||
7693 (addr >= (unsigned long)__sched_text_start
7694 && addr < (unsigned long)__sched_text_end);
7695}
7696
a9957449 7697static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7698{
7699 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7700 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7701#ifdef CONFIG_FAIR_GROUP_SCHED
7702 cfs_rq->rq = rq;
f07333bf 7703 /* allow initial update_cfs_load() to truncate */
6ea72f12 7704#ifdef CONFIG_SMP
f07333bf 7705 cfs_rq->load_stamp = 1;
6ea72f12 7706#endif
dd41f596 7707#endif
67e9fb2a 7708 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7709}
7710
fa85ae24
PZ
7711static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7712{
7713 struct rt_prio_array *array;
7714 int i;
7715
7716 array = &rt_rq->active;
7717 for (i = 0; i < MAX_RT_PRIO; i++) {
7718 INIT_LIST_HEAD(array->queue + i);
7719 __clear_bit(i, array->bitmap);
7720 }
7721 /* delimiter for bitsearch: */
7722 __set_bit(MAX_RT_PRIO, array->bitmap);
7723
052f1dc7 7724#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7725 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7726#ifdef CONFIG_SMP
e864c499 7727 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7728#endif
48d5e258 7729#endif
fa85ae24
PZ
7730#ifdef CONFIG_SMP
7731 rt_rq->rt_nr_migratory = 0;
fa85ae24 7732 rt_rq->overloaded = 0;
05fa785c 7733 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7734#endif
7735
7736 rt_rq->rt_time = 0;
7737 rt_rq->rt_throttled = 0;
ac086bc2 7738 rt_rq->rt_runtime = 0;
0986b11b 7739 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7740
052f1dc7 7741#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7742 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7743 rt_rq->rq = rq;
7744#endif
fa85ae24
PZ
7745}
7746
6f505b16 7747#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7748static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7749 struct sched_entity *se, int cpu,
ec7dc8ac 7750 struct sched_entity *parent)
6f505b16 7751{
ec7dc8ac 7752 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7753 tg->cfs_rq[cpu] = cfs_rq;
7754 init_cfs_rq(cfs_rq, rq);
7755 cfs_rq->tg = tg;
6f505b16
PZ
7756
7757 tg->se[cpu] = se;
07e06b01 7758 /* se could be NULL for root_task_group */
354d60c2
DG
7759 if (!se)
7760 return;
7761
ec7dc8ac
DG
7762 if (!parent)
7763 se->cfs_rq = &rq->cfs;
7764 else
7765 se->cfs_rq = parent->my_q;
7766
6f505b16 7767 se->my_q = cfs_rq;
9437178f 7768 update_load_set(&se->load, 0);
ec7dc8ac 7769 se->parent = parent;
6f505b16 7770}
052f1dc7 7771#endif
6f505b16 7772
052f1dc7 7773#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7774static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7775 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7776 struct sched_rt_entity *parent)
6f505b16 7777{
ec7dc8ac
DG
7778 struct rq *rq = cpu_rq(cpu);
7779
6f505b16
PZ
7780 tg->rt_rq[cpu] = rt_rq;
7781 init_rt_rq(rt_rq, rq);
7782 rt_rq->tg = tg;
ac086bc2 7783 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7784
7785 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7786 if (!rt_se)
7787 return;
7788
ec7dc8ac
DG
7789 if (!parent)
7790 rt_se->rt_rq = &rq->rt;
7791 else
7792 rt_se->rt_rq = parent->my_q;
7793
6f505b16 7794 rt_se->my_q = rt_rq;
ec7dc8ac 7795 rt_se->parent = parent;
6f505b16
PZ
7796 INIT_LIST_HEAD(&rt_se->run_list);
7797}
7798#endif
7799
1da177e4
LT
7800void __init sched_init(void)
7801{
dd41f596 7802 int i, j;
434d53b0
MT
7803 unsigned long alloc_size = 0, ptr;
7804
7805#ifdef CONFIG_FAIR_GROUP_SCHED
7806 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7807#endif
7808#ifdef CONFIG_RT_GROUP_SCHED
7809 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7810#endif
df7c8e84 7811#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7812 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7813#endif
434d53b0 7814 if (alloc_size) {
36b7b6d4 7815 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7816
7817#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7818 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7819 ptr += nr_cpu_ids * sizeof(void **);
7820
07e06b01 7821 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7822 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7823
6d6bc0ad 7824#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7825#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7826 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7827 ptr += nr_cpu_ids * sizeof(void **);
7828
07e06b01 7829 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7830 ptr += nr_cpu_ids * sizeof(void **);
7831
6d6bc0ad 7832#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7833#ifdef CONFIG_CPUMASK_OFFSTACK
7834 for_each_possible_cpu(i) {
7835 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7836 ptr += cpumask_size();
7837 }
7838#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7839 }
dd41f596 7840
57d885fe
GH
7841#ifdef CONFIG_SMP
7842 init_defrootdomain();
7843#endif
7844
d0b27fa7
PZ
7845 init_rt_bandwidth(&def_rt_bandwidth,
7846 global_rt_period(), global_rt_runtime());
7847
7848#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7849 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7850 global_rt_period(), global_rt_runtime());
6d6bc0ad 7851#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7852
7c941438 7853#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7854 list_add(&root_task_group.list, &task_groups);
7855 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7856 autogroup_init(&init_task);
7c941438 7857#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7858
0a945022 7859 for_each_possible_cpu(i) {
70b97a7f 7860 struct rq *rq;
1da177e4
LT
7861
7862 rq = cpu_rq(i);
05fa785c 7863 raw_spin_lock_init(&rq->lock);
7897986b 7864 rq->nr_running = 0;
dce48a84
TG
7865 rq->calc_load_active = 0;
7866 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7867 init_cfs_rq(&rq->cfs, rq);
6f505b16 7868 init_rt_rq(&rq->rt, rq);
dd41f596 7869#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7870 root_task_group.shares = root_task_group_load;
6f505b16 7871 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7872 /*
07e06b01 7873 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7874 *
7875 * In case of task-groups formed thr' the cgroup filesystem, it
7876 * gets 100% of the cpu resources in the system. This overall
7877 * system cpu resource is divided among the tasks of
07e06b01 7878 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7879 * based on each entity's (task or task-group's) weight
7880 * (se->load.weight).
7881 *
07e06b01 7882 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7883 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7884 * then A0's share of the cpu resource is:
7885 *
0d905bca 7886 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7887 *
07e06b01
YZ
7888 * We achieve this by letting root_task_group's tasks sit
7889 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7890 */
07e06b01 7891 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7892#endif /* CONFIG_FAIR_GROUP_SCHED */
7893
7894 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7895#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7896 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7897 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7898#endif
1da177e4 7899
dd41f596
IM
7900 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7901 rq->cpu_load[j] = 0;
fdf3e95d
VP
7902
7903 rq->last_load_update_tick = jiffies;
7904
1da177e4 7905#ifdef CONFIG_SMP
41c7ce9a 7906 rq->sd = NULL;
57d885fe 7907 rq->rd = NULL;
e51fd5e2 7908 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7909 rq->post_schedule = 0;
1da177e4 7910 rq->active_balance = 0;
dd41f596 7911 rq->next_balance = jiffies;
1da177e4 7912 rq->push_cpu = 0;
0a2966b4 7913 rq->cpu = i;
1f11eb6a 7914 rq->online = 0;
eae0c9df
MG
7915 rq->idle_stamp = 0;
7916 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7917 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7918#ifdef CONFIG_NO_HZ
7919 rq->nohz_balance_kick = 0;
7920 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7921#endif
1da177e4 7922#endif
8f4d37ec 7923 init_rq_hrtick(rq);
1da177e4 7924 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7925 }
7926
2dd73a4f 7927 set_load_weight(&init_task);
b50f60ce 7928
e107be36
AK
7929#ifdef CONFIG_PREEMPT_NOTIFIERS
7930 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7931#endif
7932
c9819f45 7933#ifdef CONFIG_SMP
962cf36c 7934 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7935#endif
7936
b50f60ce 7937#ifdef CONFIG_RT_MUTEXES
1d615482 7938 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7939#endif
7940
1da177e4
LT
7941 /*
7942 * The boot idle thread does lazy MMU switching as well:
7943 */
7944 atomic_inc(&init_mm.mm_count);
7945 enter_lazy_tlb(&init_mm, current);
7946
7947 /*
7948 * Make us the idle thread. Technically, schedule() should not be
7949 * called from this thread, however somewhere below it might be,
7950 * but because we are the idle thread, we just pick up running again
7951 * when this runqueue becomes "idle".
7952 */
7953 init_idle(current, smp_processor_id());
dce48a84
TG
7954
7955 calc_load_update = jiffies + LOAD_FREQ;
7956
dd41f596
IM
7957 /*
7958 * During early bootup we pretend to be a normal task:
7959 */
7960 current->sched_class = &fair_sched_class;
6892b75e 7961
6a7b3dc3 7962 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7963 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7964#ifdef CONFIG_SMP
4cb98839 7965 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 7966#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7967 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7968 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7969 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7970 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7971 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7972#endif
bdddd296
RR
7973 /* May be allocated at isolcpus cmdline parse time */
7974 if (cpu_isolated_map == NULL)
7975 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7976#endif /* SMP */
6a7b3dc3 7977
6892b75e 7978 scheduler_running = 1;
1da177e4
LT
7979}
7980
7981#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7982static inline int preempt_count_equals(int preempt_offset)
7983{
234da7bc 7984 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7985
4ba8216c 7986 return (nested == preempt_offset);
e4aafea2
FW
7987}
7988
d894837f 7989void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7990{
48f24c4d 7991#ifdef in_atomic
1da177e4
LT
7992 static unsigned long prev_jiffy; /* ratelimiting */
7993
e4aafea2
FW
7994 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7995 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7996 return;
7997 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7998 return;
7999 prev_jiffy = jiffies;
8000
3df0fc5b
PZ
8001 printk(KERN_ERR
8002 "BUG: sleeping function called from invalid context at %s:%d\n",
8003 file, line);
8004 printk(KERN_ERR
8005 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8006 in_atomic(), irqs_disabled(),
8007 current->pid, current->comm);
aef745fc
IM
8008
8009 debug_show_held_locks(current);
8010 if (irqs_disabled())
8011 print_irqtrace_events(current);
8012 dump_stack();
1da177e4
LT
8013#endif
8014}
8015EXPORT_SYMBOL(__might_sleep);
8016#endif
8017
8018#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8019static void normalize_task(struct rq *rq, struct task_struct *p)
8020{
da7a735e
PZ
8021 const struct sched_class *prev_class = p->sched_class;
8022 int old_prio = p->prio;
3a5e4dc1 8023 int on_rq;
3e51f33f 8024
fd2f4419 8025 on_rq = p->on_rq;
3a5e4dc1
AK
8026 if (on_rq)
8027 deactivate_task(rq, p, 0);
8028 __setscheduler(rq, p, SCHED_NORMAL, 0);
8029 if (on_rq) {
8030 activate_task(rq, p, 0);
8031 resched_task(rq->curr);
8032 }
da7a735e
PZ
8033
8034 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8035}
8036
1da177e4
LT
8037void normalize_rt_tasks(void)
8038{
a0f98a1c 8039 struct task_struct *g, *p;
1da177e4 8040 unsigned long flags;
70b97a7f 8041 struct rq *rq;
1da177e4 8042
4cf5d77a 8043 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8044 do_each_thread(g, p) {
178be793
IM
8045 /*
8046 * Only normalize user tasks:
8047 */
8048 if (!p->mm)
8049 continue;
8050
6cfb0d5d 8051 p->se.exec_start = 0;
6cfb0d5d 8052#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8053 p->se.statistics.wait_start = 0;
8054 p->se.statistics.sleep_start = 0;
8055 p->se.statistics.block_start = 0;
6cfb0d5d 8056#endif
dd41f596
IM
8057
8058 if (!rt_task(p)) {
8059 /*
8060 * Renice negative nice level userspace
8061 * tasks back to 0:
8062 */
8063 if (TASK_NICE(p) < 0 && p->mm)
8064 set_user_nice(p, 0);
1da177e4 8065 continue;
dd41f596 8066 }
1da177e4 8067
1d615482 8068 raw_spin_lock(&p->pi_lock);
b29739f9 8069 rq = __task_rq_lock(p);
1da177e4 8070
178be793 8071 normalize_task(rq, p);
3a5e4dc1 8072
b29739f9 8073 __task_rq_unlock(rq);
1d615482 8074 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8075 } while_each_thread(g, p);
8076
4cf5d77a 8077 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8078}
8079
8080#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8081
67fc4e0c 8082#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8083/*
67fc4e0c 8084 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8085 *
8086 * They can only be called when the whole system has been
8087 * stopped - every CPU needs to be quiescent, and no scheduling
8088 * activity can take place. Using them for anything else would
8089 * be a serious bug, and as a result, they aren't even visible
8090 * under any other configuration.
8091 */
8092
8093/**
8094 * curr_task - return the current task for a given cpu.
8095 * @cpu: the processor in question.
8096 *
8097 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8098 */
36c8b586 8099struct task_struct *curr_task(int cpu)
1df5c10a
LT
8100{
8101 return cpu_curr(cpu);
8102}
8103
67fc4e0c
JW
8104#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8105
8106#ifdef CONFIG_IA64
1df5c10a
LT
8107/**
8108 * set_curr_task - set the current task for a given cpu.
8109 * @cpu: the processor in question.
8110 * @p: the task pointer to set.
8111 *
8112 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8113 * are serviced on a separate stack. It allows the architecture to switch the
8114 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8115 * must be called with all CPU's synchronized, and interrupts disabled, the
8116 * and caller must save the original value of the current task (see
8117 * curr_task() above) and restore that value before reenabling interrupts and
8118 * re-starting the system.
8119 *
8120 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8121 */
36c8b586 8122void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8123{
8124 cpu_curr(cpu) = p;
8125}
8126
8127#endif
29f59db3 8128
bccbe08a
PZ
8129#ifdef CONFIG_FAIR_GROUP_SCHED
8130static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8131{
8132 int i;
8133
8134 for_each_possible_cpu(i) {
8135 if (tg->cfs_rq)
8136 kfree(tg->cfs_rq[i]);
8137 if (tg->se)
8138 kfree(tg->se[i]);
6f505b16
PZ
8139 }
8140
8141 kfree(tg->cfs_rq);
8142 kfree(tg->se);
6f505b16
PZ
8143}
8144
ec7dc8ac
DG
8145static
8146int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8147{
29f59db3 8148 struct cfs_rq *cfs_rq;
eab17229 8149 struct sched_entity *se;
29f59db3
SV
8150 int i;
8151
434d53b0 8152 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8153 if (!tg->cfs_rq)
8154 goto err;
434d53b0 8155 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8156 if (!tg->se)
8157 goto err;
052f1dc7
PZ
8158
8159 tg->shares = NICE_0_LOAD;
29f59db3
SV
8160
8161 for_each_possible_cpu(i) {
eab17229
LZ
8162 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8163 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8164 if (!cfs_rq)
8165 goto err;
8166
eab17229
LZ
8167 se = kzalloc_node(sizeof(struct sched_entity),
8168 GFP_KERNEL, cpu_to_node(i));
29f59db3 8169 if (!se)
dfc12eb2 8170 goto err_free_rq;
29f59db3 8171
3d4b47b4 8172 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8173 }
8174
8175 return 1;
8176
49246274 8177err_free_rq:
dfc12eb2 8178 kfree(cfs_rq);
49246274 8179err:
bccbe08a
PZ
8180 return 0;
8181}
8182
bccbe08a
PZ
8183static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8184{
3d4b47b4
PZ
8185 struct rq *rq = cpu_rq(cpu);
8186 unsigned long flags;
3d4b47b4
PZ
8187
8188 /*
8189 * Only empty task groups can be destroyed; so we can speculatively
8190 * check on_list without danger of it being re-added.
8191 */
8192 if (!tg->cfs_rq[cpu]->on_list)
8193 return;
8194
8195 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8196 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8197 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8198}
6d6bc0ad 8199#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8200static inline void free_fair_sched_group(struct task_group *tg)
8201{
8202}
8203
ec7dc8ac
DG
8204static inline
8205int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8206{
8207 return 1;
8208}
8209
bccbe08a
PZ
8210static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8211{
8212}
6d6bc0ad 8213#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8214
8215#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8216static void free_rt_sched_group(struct task_group *tg)
8217{
8218 int i;
8219
d0b27fa7
PZ
8220 destroy_rt_bandwidth(&tg->rt_bandwidth);
8221
bccbe08a
PZ
8222 for_each_possible_cpu(i) {
8223 if (tg->rt_rq)
8224 kfree(tg->rt_rq[i]);
8225 if (tg->rt_se)
8226 kfree(tg->rt_se[i]);
8227 }
8228
8229 kfree(tg->rt_rq);
8230 kfree(tg->rt_se);
8231}
8232
ec7dc8ac
DG
8233static
8234int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8235{
8236 struct rt_rq *rt_rq;
eab17229 8237 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8238 int i;
8239
434d53b0 8240 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8241 if (!tg->rt_rq)
8242 goto err;
434d53b0 8243 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8244 if (!tg->rt_se)
8245 goto err;
8246
d0b27fa7
PZ
8247 init_rt_bandwidth(&tg->rt_bandwidth,
8248 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8249
8250 for_each_possible_cpu(i) {
eab17229
LZ
8251 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8252 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8253 if (!rt_rq)
8254 goto err;
29f59db3 8255
eab17229
LZ
8256 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8257 GFP_KERNEL, cpu_to_node(i));
6f505b16 8258 if (!rt_se)
dfc12eb2 8259 goto err_free_rq;
29f59db3 8260
3d4b47b4 8261 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8262 }
8263
bccbe08a
PZ
8264 return 1;
8265
49246274 8266err_free_rq:
dfc12eb2 8267 kfree(rt_rq);
49246274 8268err:
bccbe08a
PZ
8269 return 0;
8270}
6d6bc0ad 8271#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8272static inline void free_rt_sched_group(struct task_group *tg)
8273{
8274}
8275
ec7dc8ac
DG
8276static inline
8277int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8278{
8279 return 1;
8280}
6d6bc0ad 8281#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8282
7c941438 8283#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8284static void free_sched_group(struct task_group *tg)
8285{
8286 free_fair_sched_group(tg);
8287 free_rt_sched_group(tg);
e9aa1dd1 8288 autogroup_free(tg);
bccbe08a
PZ
8289 kfree(tg);
8290}
8291
8292/* allocate runqueue etc for a new task group */
ec7dc8ac 8293struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8294{
8295 struct task_group *tg;
8296 unsigned long flags;
bccbe08a
PZ
8297
8298 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8299 if (!tg)
8300 return ERR_PTR(-ENOMEM);
8301
ec7dc8ac 8302 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8303 goto err;
8304
ec7dc8ac 8305 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8306 goto err;
8307
8ed36996 8308 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8309 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8310
8311 WARN_ON(!parent); /* root should already exist */
8312
8313 tg->parent = parent;
f473aa5e 8314 INIT_LIST_HEAD(&tg->children);
09f2724a 8315 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8316 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8317
9b5b7751 8318 return tg;
29f59db3
SV
8319
8320err:
6f505b16 8321 free_sched_group(tg);
29f59db3
SV
8322 return ERR_PTR(-ENOMEM);
8323}
8324
9b5b7751 8325/* rcu callback to free various structures associated with a task group */
6f505b16 8326static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8327{
29f59db3 8328 /* now it should be safe to free those cfs_rqs */
6f505b16 8329 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8330}
8331
9b5b7751 8332/* Destroy runqueue etc associated with a task group */
4cf86d77 8333void sched_destroy_group(struct task_group *tg)
29f59db3 8334{
8ed36996 8335 unsigned long flags;
9b5b7751 8336 int i;
29f59db3 8337
3d4b47b4
PZ
8338 /* end participation in shares distribution */
8339 for_each_possible_cpu(i)
bccbe08a 8340 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8341
8342 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8343 list_del_rcu(&tg->list);
f473aa5e 8344 list_del_rcu(&tg->siblings);
8ed36996 8345 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8346
9b5b7751 8347 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8348 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8349}
8350
9b5b7751 8351/* change task's runqueue when it moves between groups.
3a252015
IM
8352 * The caller of this function should have put the task in its new group
8353 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8354 * reflect its new group.
9b5b7751
SV
8355 */
8356void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8357{
8358 int on_rq, running;
8359 unsigned long flags;
8360 struct rq *rq;
8361
8362 rq = task_rq_lock(tsk, &flags);
8363
051a1d1a 8364 running = task_current(rq, tsk);
fd2f4419 8365 on_rq = tsk->on_rq;
29f59db3 8366
0e1f3483 8367 if (on_rq)
29f59db3 8368 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8369 if (unlikely(running))
8370 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8371
810b3817 8372#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8373 if (tsk->sched_class->task_move_group)
8374 tsk->sched_class->task_move_group(tsk, on_rq);
8375 else
810b3817 8376#endif
b2b5ce02 8377 set_task_rq(tsk, task_cpu(tsk));
810b3817 8378
0e1f3483
HS
8379 if (unlikely(running))
8380 tsk->sched_class->set_curr_task(rq);
8381 if (on_rq)
371fd7e7 8382 enqueue_task(rq, tsk, 0);
29f59db3 8383
0122ec5b 8384 task_rq_unlock(rq, tsk, &flags);
29f59db3 8385}
7c941438 8386#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8387
052f1dc7 8388#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8389static DEFINE_MUTEX(shares_mutex);
8390
4cf86d77 8391int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8392{
8393 int i;
8ed36996 8394 unsigned long flags;
c61935fd 8395
ec7dc8ac
DG
8396 /*
8397 * We can't change the weight of the root cgroup.
8398 */
8399 if (!tg->se[0])
8400 return -EINVAL;
8401
18d95a28
PZ
8402 if (shares < MIN_SHARES)
8403 shares = MIN_SHARES;
cb4ad1ff
MX
8404 else if (shares > MAX_SHARES)
8405 shares = MAX_SHARES;
62fb1851 8406
8ed36996 8407 mutex_lock(&shares_mutex);
9b5b7751 8408 if (tg->shares == shares)
5cb350ba 8409 goto done;
29f59db3 8410
9b5b7751 8411 tg->shares = shares;
c09595f6 8412 for_each_possible_cpu(i) {
9437178f
PT
8413 struct rq *rq = cpu_rq(i);
8414 struct sched_entity *se;
8415
8416 se = tg->se[i];
8417 /* Propagate contribution to hierarchy */
8418 raw_spin_lock_irqsave(&rq->lock, flags);
8419 for_each_sched_entity(se)
6d5ab293 8420 update_cfs_shares(group_cfs_rq(se));
9437178f 8421 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8422 }
29f59db3 8423
5cb350ba 8424done:
8ed36996 8425 mutex_unlock(&shares_mutex);
9b5b7751 8426 return 0;
29f59db3
SV
8427}
8428
5cb350ba
DG
8429unsigned long sched_group_shares(struct task_group *tg)
8430{
8431 return tg->shares;
8432}
052f1dc7 8433#endif
5cb350ba 8434
052f1dc7 8435#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8436/*
9f0c1e56 8437 * Ensure that the real time constraints are schedulable.
6f505b16 8438 */
9f0c1e56
PZ
8439static DEFINE_MUTEX(rt_constraints_mutex);
8440
8441static unsigned long to_ratio(u64 period, u64 runtime)
8442{
8443 if (runtime == RUNTIME_INF)
9a7e0b18 8444 return 1ULL << 20;
9f0c1e56 8445
9a7e0b18 8446 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8447}
8448
9a7e0b18
PZ
8449/* Must be called with tasklist_lock held */
8450static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8451{
9a7e0b18 8452 struct task_struct *g, *p;
b40b2e8e 8453
9a7e0b18
PZ
8454 do_each_thread(g, p) {
8455 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8456 return 1;
8457 } while_each_thread(g, p);
b40b2e8e 8458
9a7e0b18
PZ
8459 return 0;
8460}
b40b2e8e 8461
9a7e0b18
PZ
8462struct rt_schedulable_data {
8463 struct task_group *tg;
8464 u64 rt_period;
8465 u64 rt_runtime;
8466};
b40b2e8e 8467
9a7e0b18
PZ
8468static int tg_schedulable(struct task_group *tg, void *data)
8469{
8470 struct rt_schedulable_data *d = data;
8471 struct task_group *child;
8472 unsigned long total, sum = 0;
8473 u64 period, runtime;
b40b2e8e 8474
9a7e0b18
PZ
8475 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8476 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8477
9a7e0b18
PZ
8478 if (tg == d->tg) {
8479 period = d->rt_period;
8480 runtime = d->rt_runtime;
b40b2e8e 8481 }
b40b2e8e 8482
4653f803
PZ
8483 /*
8484 * Cannot have more runtime than the period.
8485 */
8486 if (runtime > period && runtime != RUNTIME_INF)
8487 return -EINVAL;
6f505b16 8488
4653f803
PZ
8489 /*
8490 * Ensure we don't starve existing RT tasks.
8491 */
9a7e0b18
PZ
8492 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8493 return -EBUSY;
6f505b16 8494
9a7e0b18 8495 total = to_ratio(period, runtime);
6f505b16 8496
4653f803
PZ
8497 /*
8498 * Nobody can have more than the global setting allows.
8499 */
8500 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8501 return -EINVAL;
6f505b16 8502
4653f803
PZ
8503 /*
8504 * The sum of our children's runtime should not exceed our own.
8505 */
9a7e0b18
PZ
8506 list_for_each_entry_rcu(child, &tg->children, siblings) {
8507 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8508 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8509
9a7e0b18
PZ
8510 if (child == d->tg) {
8511 period = d->rt_period;
8512 runtime = d->rt_runtime;
8513 }
6f505b16 8514
9a7e0b18 8515 sum += to_ratio(period, runtime);
9f0c1e56 8516 }
6f505b16 8517
9a7e0b18
PZ
8518 if (sum > total)
8519 return -EINVAL;
8520
8521 return 0;
6f505b16
PZ
8522}
8523
9a7e0b18 8524static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8525{
9a7e0b18
PZ
8526 struct rt_schedulable_data data = {
8527 .tg = tg,
8528 .rt_period = period,
8529 .rt_runtime = runtime,
8530 };
8531
8532 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8533}
8534
d0b27fa7
PZ
8535static int tg_set_bandwidth(struct task_group *tg,
8536 u64 rt_period, u64 rt_runtime)
6f505b16 8537{
ac086bc2 8538 int i, err = 0;
9f0c1e56 8539
9f0c1e56 8540 mutex_lock(&rt_constraints_mutex);
521f1a24 8541 read_lock(&tasklist_lock);
9a7e0b18
PZ
8542 err = __rt_schedulable(tg, rt_period, rt_runtime);
8543 if (err)
9f0c1e56 8544 goto unlock;
ac086bc2 8545
0986b11b 8546 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8547 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8548 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8549
8550 for_each_possible_cpu(i) {
8551 struct rt_rq *rt_rq = tg->rt_rq[i];
8552
0986b11b 8553 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8554 rt_rq->rt_runtime = rt_runtime;
0986b11b 8555 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8556 }
0986b11b 8557 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8558unlock:
521f1a24 8559 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8560 mutex_unlock(&rt_constraints_mutex);
8561
8562 return err;
6f505b16
PZ
8563}
8564
d0b27fa7
PZ
8565int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8566{
8567 u64 rt_runtime, rt_period;
8568
8569 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8570 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8571 if (rt_runtime_us < 0)
8572 rt_runtime = RUNTIME_INF;
8573
8574 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8575}
8576
9f0c1e56
PZ
8577long sched_group_rt_runtime(struct task_group *tg)
8578{
8579 u64 rt_runtime_us;
8580
d0b27fa7 8581 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8582 return -1;
8583
d0b27fa7 8584 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8585 do_div(rt_runtime_us, NSEC_PER_USEC);
8586 return rt_runtime_us;
8587}
d0b27fa7
PZ
8588
8589int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8590{
8591 u64 rt_runtime, rt_period;
8592
8593 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8594 rt_runtime = tg->rt_bandwidth.rt_runtime;
8595
619b0488
R
8596 if (rt_period == 0)
8597 return -EINVAL;
8598
d0b27fa7
PZ
8599 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8600}
8601
8602long sched_group_rt_period(struct task_group *tg)
8603{
8604 u64 rt_period_us;
8605
8606 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8607 do_div(rt_period_us, NSEC_PER_USEC);
8608 return rt_period_us;
8609}
8610
8611static int sched_rt_global_constraints(void)
8612{
4653f803 8613 u64 runtime, period;
d0b27fa7
PZ
8614 int ret = 0;
8615
ec5d4989
HS
8616 if (sysctl_sched_rt_period <= 0)
8617 return -EINVAL;
8618
4653f803
PZ
8619 runtime = global_rt_runtime();
8620 period = global_rt_period();
8621
8622 /*
8623 * Sanity check on the sysctl variables.
8624 */
8625 if (runtime > period && runtime != RUNTIME_INF)
8626 return -EINVAL;
10b612f4 8627
d0b27fa7 8628 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8629 read_lock(&tasklist_lock);
4653f803 8630 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8631 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8632 mutex_unlock(&rt_constraints_mutex);
8633
8634 return ret;
8635}
54e99124
DG
8636
8637int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8638{
8639 /* Don't accept realtime tasks when there is no way for them to run */
8640 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8641 return 0;
8642
8643 return 1;
8644}
8645
6d6bc0ad 8646#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8647static int sched_rt_global_constraints(void)
8648{
ac086bc2
PZ
8649 unsigned long flags;
8650 int i;
8651
ec5d4989
HS
8652 if (sysctl_sched_rt_period <= 0)
8653 return -EINVAL;
8654
60aa605d
PZ
8655 /*
8656 * There's always some RT tasks in the root group
8657 * -- migration, kstopmachine etc..
8658 */
8659 if (sysctl_sched_rt_runtime == 0)
8660 return -EBUSY;
8661
0986b11b 8662 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8663 for_each_possible_cpu(i) {
8664 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8665
0986b11b 8666 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8667 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8668 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8669 }
0986b11b 8670 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8671
d0b27fa7
PZ
8672 return 0;
8673}
6d6bc0ad 8674#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8675
8676int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8677 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8678 loff_t *ppos)
8679{
8680 int ret;
8681 int old_period, old_runtime;
8682 static DEFINE_MUTEX(mutex);
8683
8684 mutex_lock(&mutex);
8685 old_period = sysctl_sched_rt_period;
8686 old_runtime = sysctl_sched_rt_runtime;
8687
8d65af78 8688 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8689
8690 if (!ret && write) {
8691 ret = sched_rt_global_constraints();
8692 if (ret) {
8693 sysctl_sched_rt_period = old_period;
8694 sysctl_sched_rt_runtime = old_runtime;
8695 } else {
8696 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8697 def_rt_bandwidth.rt_period =
8698 ns_to_ktime(global_rt_period());
8699 }
8700 }
8701 mutex_unlock(&mutex);
8702
8703 return ret;
8704}
68318b8e 8705
052f1dc7 8706#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8707
8708/* return corresponding task_group object of a cgroup */
2b01dfe3 8709static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8710{
2b01dfe3
PM
8711 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8712 struct task_group, css);
68318b8e
SV
8713}
8714
8715static struct cgroup_subsys_state *
2b01dfe3 8716cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8717{
ec7dc8ac 8718 struct task_group *tg, *parent;
68318b8e 8719
2b01dfe3 8720 if (!cgrp->parent) {
68318b8e 8721 /* This is early initialization for the top cgroup */
07e06b01 8722 return &root_task_group.css;
68318b8e
SV
8723 }
8724
ec7dc8ac
DG
8725 parent = cgroup_tg(cgrp->parent);
8726 tg = sched_create_group(parent);
68318b8e
SV
8727 if (IS_ERR(tg))
8728 return ERR_PTR(-ENOMEM);
8729
68318b8e
SV
8730 return &tg->css;
8731}
8732
41a2d6cf
IM
8733static void
8734cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8735{
2b01dfe3 8736 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8737
8738 sched_destroy_group(tg);
8739}
8740
41a2d6cf 8741static int
be367d09 8742cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8743{
b68aa230 8744#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8745 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8746 return -EINVAL;
8747#else
68318b8e
SV
8748 /* We don't support RT-tasks being in separate groups */
8749 if (tsk->sched_class != &fair_sched_class)
8750 return -EINVAL;
b68aa230 8751#endif
be367d09
BB
8752 return 0;
8753}
68318b8e 8754
be367d09
BB
8755static int
8756cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8757 struct task_struct *tsk, bool threadgroup)
8758{
8759 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8760 if (retval)
8761 return retval;
8762 if (threadgroup) {
8763 struct task_struct *c;
8764 rcu_read_lock();
8765 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8766 retval = cpu_cgroup_can_attach_task(cgrp, c);
8767 if (retval) {
8768 rcu_read_unlock();
8769 return retval;
8770 }
8771 }
8772 rcu_read_unlock();
8773 }
68318b8e
SV
8774 return 0;
8775}
8776
8777static void
2b01dfe3 8778cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8779 struct cgroup *old_cont, struct task_struct *tsk,
8780 bool threadgroup)
68318b8e
SV
8781{
8782 sched_move_task(tsk);
be367d09
BB
8783 if (threadgroup) {
8784 struct task_struct *c;
8785 rcu_read_lock();
8786 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8787 sched_move_task(c);
8788 }
8789 rcu_read_unlock();
8790 }
68318b8e
SV
8791}
8792
068c5cc5 8793static void
d41d5a01
PZ
8794cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8795 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8796{
8797 /*
8798 * cgroup_exit() is called in the copy_process() failure path.
8799 * Ignore this case since the task hasn't ran yet, this avoids
8800 * trying to poke a half freed task state from generic code.
8801 */
8802 if (!(task->flags & PF_EXITING))
8803 return;
8804
8805 sched_move_task(task);
8806}
8807
052f1dc7 8808#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8809static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8810 u64 shareval)
68318b8e 8811{
2b01dfe3 8812 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8813}
8814
f4c753b7 8815static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8816{
2b01dfe3 8817 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8818
8819 return (u64) tg->shares;
8820}
6d6bc0ad 8821#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8822
052f1dc7 8823#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8824static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8825 s64 val)
6f505b16 8826{
06ecb27c 8827 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8828}
8829
06ecb27c 8830static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8831{
06ecb27c 8832 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8833}
d0b27fa7
PZ
8834
8835static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8836 u64 rt_period_us)
8837{
8838 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8839}
8840
8841static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8842{
8843 return sched_group_rt_period(cgroup_tg(cgrp));
8844}
6d6bc0ad 8845#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8846
fe5c7cc2 8847static struct cftype cpu_files[] = {
052f1dc7 8848#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8849 {
8850 .name = "shares",
f4c753b7
PM
8851 .read_u64 = cpu_shares_read_u64,
8852 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8853 },
052f1dc7
PZ
8854#endif
8855#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8856 {
9f0c1e56 8857 .name = "rt_runtime_us",
06ecb27c
PM
8858 .read_s64 = cpu_rt_runtime_read,
8859 .write_s64 = cpu_rt_runtime_write,
6f505b16 8860 },
d0b27fa7
PZ
8861 {
8862 .name = "rt_period_us",
f4c753b7
PM
8863 .read_u64 = cpu_rt_period_read_uint,
8864 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8865 },
052f1dc7 8866#endif
68318b8e
SV
8867};
8868
8869static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8870{
fe5c7cc2 8871 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8872}
8873
8874struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8875 .name = "cpu",
8876 .create = cpu_cgroup_create,
8877 .destroy = cpu_cgroup_destroy,
8878 .can_attach = cpu_cgroup_can_attach,
8879 .attach = cpu_cgroup_attach,
068c5cc5 8880 .exit = cpu_cgroup_exit,
38605cae
IM
8881 .populate = cpu_cgroup_populate,
8882 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8883 .early_init = 1,
8884};
8885
052f1dc7 8886#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8887
8888#ifdef CONFIG_CGROUP_CPUACCT
8889
8890/*
8891 * CPU accounting code for task groups.
8892 *
8893 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8894 * (balbir@in.ibm.com).
8895 */
8896
934352f2 8897/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8898struct cpuacct {
8899 struct cgroup_subsys_state css;
8900 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8901 u64 __percpu *cpuusage;
ef12fefa 8902 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8903 struct cpuacct *parent;
d842de87
SV
8904};
8905
8906struct cgroup_subsys cpuacct_subsys;
8907
8908/* return cpu accounting group corresponding to this container */
32cd756a 8909static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8910{
32cd756a 8911 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8912 struct cpuacct, css);
8913}
8914
8915/* return cpu accounting group to which this task belongs */
8916static inline struct cpuacct *task_ca(struct task_struct *tsk)
8917{
8918 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8919 struct cpuacct, css);
8920}
8921
8922/* create a new cpu accounting group */
8923static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8924 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8925{
8926 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8927 int i;
d842de87
SV
8928
8929 if (!ca)
ef12fefa 8930 goto out;
d842de87
SV
8931
8932 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8933 if (!ca->cpuusage)
8934 goto out_free_ca;
8935
8936 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8937 if (percpu_counter_init(&ca->cpustat[i], 0))
8938 goto out_free_counters;
d842de87 8939
934352f2
BR
8940 if (cgrp->parent)
8941 ca->parent = cgroup_ca(cgrp->parent);
8942
d842de87 8943 return &ca->css;
ef12fefa
BR
8944
8945out_free_counters:
8946 while (--i >= 0)
8947 percpu_counter_destroy(&ca->cpustat[i]);
8948 free_percpu(ca->cpuusage);
8949out_free_ca:
8950 kfree(ca);
8951out:
8952 return ERR_PTR(-ENOMEM);
d842de87
SV
8953}
8954
8955/* destroy an existing cpu accounting group */
41a2d6cf 8956static void
32cd756a 8957cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8958{
32cd756a 8959 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8960 int i;
d842de87 8961
ef12fefa
BR
8962 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8963 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8964 free_percpu(ca->cpuusage);
8965 kfree(ca);
8966}
8967
720f5498
KC
8968static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8969{
b36128c8 8970 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8971 u64 data;
8972
8973#ifndef CONFIG_64BIT
8974 /*
8975 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8976 */
05fa785c 8977 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8978 data = *cpuusage;
05fa785c 8979 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8980#else
8981 data = *cpuusage;
8982#endif
8983
8984 return data;
8985}
8986
8987static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8988{
b36128c8 8989 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8990
8991#ifndef CONFIG_64BIT
8992 /*
8993 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8994 */
05fa785c 8995 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8996 *cpuusage = val;
05fa785c 8997 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8998#else
8999 *cpuusage = val;
9000#endif
9001}
9002
d842de87 9003/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9004static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9005{
32cd756a 9006 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9007 u64 totalcpuusage = 0;
9008 int i;
9009
720f5498
KC
9010 for_each_present_cpu(i)
9011 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9012
9013 return totalcpuusage;
9014}
9015
0297b803
DG
9016static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9017 u64 reset)
9018{
9019 struct cpuacct *ca = cgroup_ca(cgrp);
9020 int err = 0;
9021 int i;
9022
9023 if (reset) {
9024 err = -EINVAL;
9025 goto out;
9026 }
9027
720f5498
KC
9028 for_each_present_cpu(i)
9029 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9030
0297b803
DG
9031out:
9032 return err;
9033}
9034
e9515c3c
KC
9035static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9036 struct seq_file *m)
9037{
9038 struct cpuacct *ca = cgroup_ca(cgroup);
9039 u64 percpu;
9040 int i;
9041
9042 for_each_present_cpu(i) {
9043 percpu = cpuacct_cpuusage_read(ca, i);
9044 seq_printf(m, "%llu ", (unsigned long long) percpu);
9045 }
9046 seq_printf(m, "\n");
9047 return 0;
9048}
9049
ef12fefa
BR
9050static const char *cpuacct_stat_desc[] = {
9051 [CPUACCT_STAT_USER] = "user",
9052 [CPUACCT_STAT_SYSTEM] = "system",
9053};
9054
9055static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9056 struct cgroup_map_cb *cb)
9057{
9058 struct cpuacct *ca = cgroup_ca(cgrp);
9059 int i;
9060
9061 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9062 s64 val = percpu_counter_read(&ca->cpustat[i]);
9063 val = cputime64_to_clock_t(val);
9064 cb->fill(cb, cpuacct_stat_desc[i], val);
9065 }
9066 return 0;
9067}
9068
d842de87
SV
9069static struct cftype files[] = {
9070 {
9071 .name = "usage",
f4c753b7
PM
9072 .read_u64 = cpuusage_read,
9073 .write_u64 = cpuusage_write,
d842de87 9074 },
e9515c3c
KC
9075 {
9076 .name = "usage_percpu",
9077 .read_seq_string = cpuacct_percpu_seq_read,
9078 },
ef12fefa
BR
9079 {
9080 .name = "stat",
9081 .read_map = cpuacct_stats_show,
9082 },
d842de87
SV
9083};
9084
32cd756a 9085static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9086{
32cd756a 9087 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9088}
9089
9090/*
9091 * charge this task's execution time to its accounting group.
9092 *
9093 * called with rq->lock held.
9094 */
9095static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9096{
9097 struct cpuacct *ca;
934352f2 9098 int cpu;
d842de87 9099
c40c6f85 9100 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9101 return;
9102
934352f2 9103 cpu = task_cpu(tsk);
a18b83b7
BR
9104
9105 rcu_read_lock();
9106
d842de87 9107 ca = task_ca(tsk);
d842de87 9108
934352f2 9109 for (; ca; ca = ca->parent) {
b36128c8 9110 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9111 *cpuusage += cputime;
9112 }
a18b83b7
BR
9113
9114 rcu_read_unlock();
d842de87
SV
9115}
9116
fa535a77
AB
9117/*
9118 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9119 * in cputime_t units. As a result, cpuacct_update_stats calls
9120 * percpu_counter_add with values large enough to always overflow the
9121 * per cpu batch limit causing bad SMP scalability.
9122 *
9123 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9124 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9125 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9126 */
9127#ifdef CONFIG_SMP
9128#define CPUACCT_BATCH \
9129 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9130#else
9131#define CPUACCT_BATCH 0
9132#endif
9133
ef12fefa
BR
9134/*
9135 * Charge the system/user time to the task's accounting group.
9136 */
9137static void cpuacct_update_stats(struct task_struct *tsk,
9138 enum cpuacct_stat_index idx, cputime_t val)
9139{
9140 struct cpuacct *ca;
fa535a77 9141 int batch = CPUACCT_BATCH;
ef12fefa
BR
9142
9143 if (unlikely(!cpuacct_subsys.active))
9144 return;
9145
9146 rcu_read_lock();
9147 ca = task_ca(tsk);
9148
9149 do {
fa535a77 9150 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9151 ca = ca->parent;
9152 } while (ca);
9153 rcu_read_unlock();
9154}
9155
d842de87
SV
9156struct cgroup_subsys cpuacct_subsys = {
9157 .name = "cpuacct",
9158 .create = cpuacct_create,
9159 .destroy = cpuacct_destroy,
9160 .populate = cpuacct_populate,
9161 .subsys_id = cpuacct_subsys_id,
9162};
9163#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9164