sched: make the multiplication table more accurate
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
1da177e4 64
5517d86b 65#include <asm/tlb.h>
1da177e4 66
b035b6de
AD
67/*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
634fa8c9
IM
135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
91fcdd4e 138/*
634fa8c9 139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 140 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 141 */
634fa8c9 142static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 143{
634fa8c9
IM
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
151}
152
e05606d3
IM
153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
1da177e4 165/*
6aa645ea 166 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 167 */
6aa645ea
IM
168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
172
173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
1da177e4
LT
267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
0a2966b4 275 int cpu; /* cpu of this runqueue */
1da177e4 276
36c8b586 277 struct task_struct *migration_thread;
1da177e4
LT
278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
fcb99371 300 struct lock_class_key rq_lock_key;
1da177e4
LT
301};
302
f34e3b61 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 304static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 305
dd41f596
IM
306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
0a2966b4
CL
311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
20d315d4 320/*
b04a0f4c
IM
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
20d315d4 323 */
b04a0f4c 324static void __update_rq_clock(struct rq *rq)
20d315d4
IM
325{
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
b04a0f4c
IM
331#ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333#endif
20d315d4
IM
334 /*
335 * Protect against sched_clock() occasionally going backwards:
336 */
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
341 /*
342 * Catch too large forward jumps too:
343 */
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
351 }
352 }
353
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
b04a0f4c 356}
20d315d4 357
b04a0f4c
IM
358static void update_rq_clock(struct rq *rq)
359{
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
20d315d4
IM
362}
363
674311d5
NP
364/*
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 366 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
367 *
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
370 */
48f24c4d
IM
371#define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
373
374#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375#define this_rq() (&__get_cpu_var(runqueues))
376#define task_rq(p) cpu_rq(task_cpu(p))
377#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
378
e436d800
IM
379/*
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
382 */
383unsigned long long cpu_clock(int cpu)
384{
e436d800
IM
385 unsigned long long now;
386 unsigned long flags;
b04a0f4c 387 struct rq *rq;
e436d800 388
2cd4d0ea 389 local_irq_save(flags);
b04a0f4c
IM
390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
2cd4d0ea 393 local_irq_restore(flags);
e436d800
IM
394
395 return now;
396}
397
138a8aeb
IM
398#ifdef CONFIG_FAIR_GROUP_SCHED
399/* Change a task's ->cfs_rq if it moves across CPUs */
400static inline void set_task_cfs_rq(struct task_struct *p)
401{
402 p->se.cfs_rq = &task_rq(p)->cfs;
403}
404#else
405static inline void set_task_cfs_rq(struct task_struct *p)
406{
407}
408#endif
409
1da177e4 410#ifndef prepare_arch_switch
4866cde0
NP
411# define prepare_arch_switch(next) do { } while (0)
412#endif
413#ifndef finish_arch_switch
414# define finish_arch_switch(prev) do { } while (0)
415#endif
416
417#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 418static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
419{
420 return rq->curr == p;
421}
422
70b97a7f 423static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
424{
425}
426
70b97a7f 427static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 428{
da04c035
IM
429#ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432#endif
8a25d5de
IM
433 /*
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
437 */
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
439
4866cde0
NP
440 spin_unlock_irq(&rq->lock);
441}
442
443#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 444static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
445{
446#ifdef CONFIG_SMP
447 return p->oncpu;
448#else
449 return rq->curr == p;
450#endif
451}
452
70b97a7f 453static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
454{
455#ifdef CONFIG_SMP
456 /*
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
460 */
461 next->oncpu = 1;
462#endif
463#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465#else
466 spin_unlock(&rq->lock);
467#endif
468}
469
70b97a7f 470static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
471{
472#ifdef CONFIG_SMP
473 /*
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
477 */
478 smp_wmb();
479 prev->oncpu = 0;
480#endif
481#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
1da177e4 483#endif
4866cde0
NP
484}
485#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 486
b29739f9
IM
487/*
488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
490 */
70b97a7f 491static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
492 __acquires(rq->lock)
493{
70b97a7f 494 struct rq *rq;
b29739f9
IM
495
496repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
502 }
503 return rq;
504}
505
1da177e4
LT
506/*
507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
510 */
70b97a7f 511static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
512 __acquires(rq->lock)
513{
70b97a7f 514 struct rq *rq;
1da177e4
LT
515
516repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
523 }
524 return rq;
525}
526
70b97a7f 527static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
528 __releases(rq->lock)
529{
530 spin_unlock(&rq->lock);
531}
532
70b97a7f 533static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
534 __releases(rq->lock)
535{
536 spin_unlock_irqrestore(&rq->lock, *flags);
537}
538
1da177e4 539/*
cc2a73b5 540 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 541 */
70b97a7f 542static inline struct rq *this_rq_lock(void)
1da177e4
LT
543 __acquires(rq->lock)
544{
70b97a7f 545 struct rq *rq;
1da177e4
LT
546
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
550
551 return rq;
552}
553
1b9f19c2
IM
554/*
555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 */
557void sched_clock_unstable_event(void)
558{
559 unsigned long flags;
560 struct rq *rq;
561
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
566}
567
c24d20db
IM
568/*
569 * resched_task - mark a task 'to be rescheduled now'.
570 *
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
574 */
575#ifdef CONFIG_SMP
576
577#ifndef tsk_is_polling
578#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579#endif
580
581static void resched_task(struct task_struct *p)
582{
583 int cpu;
584
585 assert_spin_locked(&task_rq(p)->lock);
586
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
589
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
591
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
595
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
600}
601
602static void resched_cpu(int cpu)
603{
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
606
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
611}
612#else
613static inline void resched_task(struct task_struct *p)
614{
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
617}
618#endif
619
45bf76df
IM
620static u64 div64_likely32(u64 divident, unsigned long divisor)
621{
622#if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
626
627 return divident;
628#else
629 return divident / divisor;
630#endif
631}
632
633#if BITS_PER_LONG == 32
634# define WMULT_CONST (~0UL)
635#else
636# define WMULT_CONST (1UL << 32)
637#endif
638
639#define WMULT_SHIFT 32
640
cb1c4fc9 641static unsigned long
45bf76df
IM
642calc_delta_mine(unsigned long delta_exec, unsigned long weight,
643 struct load_weight *lw)
644{
645 u64 tmp;
646
647 if (unlikely(!lw->inv_weight))
648 lw->inv_weight = WMULT_CONST / lw->weight;
649
650 tmp = (u64)delta_exec * weight;
651 /*
652 * Check whether we'd overflow the 64-bit multiplication:
653 */
654 if (unlikely(tmp > WMULT_CONST)) {
655 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
656 >> (WMULT_SHIFT/2);
657 } else {
658 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
659 }
660
ecf691da 661 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
662}
663
664static inline unsigned long
665calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
666{
667 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
668}
669
670static void update_load_add(struct load_weight *lw, unsigned long inc)
671{
672 lw->weight += inc;
673 lw->inv_weight = 0;
674}
675
676static void update_load_sub(struct load_weight *lw, unsigned long dec)
677{
678 lw->weight -= dec;
679 lw->inv_weight = 0;
680}
681
2dd73a4f
PW
682/*
683 * To aid in avoiding the subversion of "niceness" due to uneven distribution
684 * of tasks with abnormal "nice" values across CPUs the contribution that
685 * each task makes to its run queue's load is weighted according to its
686 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
687 * scaled version of the new time slice allocation that they receive on time
688 * slice expiry etc.
689 */
690
dd41f596
IM
691#define WEIGHT_IDLEPRIO 2
692#define WMULT_IDLEPRIO (1 << 31)
693
694/*
695 * Nice levels are multiplicative, with a gentle 10% change for every
696 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
697 * nice 1, it will get ~10% less CPU time than another CPU-bound task
698 * that remained on nice 0.
699 *
700 * The "10% effect" is relative and cumulative: from _any_ nice level,
701 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
702 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
703 * If a task goes up by ~10% and another task goes down by ~10% then
704 * the relative distance between them is ~25%.)
dd41f596
IM
705 */
706static const int prio_to_weight[40] = {
254753dc
IM
707 /* -20 */ 88761, 71755, 56483, 46273, 36291,
708 /* -15 */ 29154, 23254, 18705, 14949, 11916,
709 /* -10 */ 9548, 7620, 6100, 4904, 3906,
710 /* -5 */ 3121, 2501, 1991, 1586, 1277,
711 /* 0 */ 1024, 820, 655, 526, 423,
712 /* 5 */ 335, 272, 215, 172, 137,
713 /* 10 */ 110, 87, 70, 56, 45,
714 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
715};
716
5714d2de
IM
717/*
718 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
719 *
720 * In cases where the weight does not change often, we can use the
721 * precalculated inverse to speed up arithmetics by turning divisions
722 * into multiplications:
723 */
dd41f596 724static const u32 prio_to_wmult[40] = {
254753dc
IM
725 /* -20 */ 48388, 59856, 76040, 92818, 118348,
726 /* -15 */ 147320, 184698, 229616, 287308, 360437,
727 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
728 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
729 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
730 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
731 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
732 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 733};
2dd73a4f 734
dd41f596
IM
735static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
736
737/*
738 * runqueue iterator, to support SMP load-balancing between different
739 * scheduling classes, without having to expose their internal data
740 * structures to the load-balancing proper:
741 */
742struct rq_iterator {
743 void *arg;
744 struct task_struct *(*start)(void *);
745 struct task_struct *(*next)(void *);
746};
747
748static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
749 unsigned long max_nr_move, unsigned long max_load_move,
750 struct sched_domain *sd, enum cpu_idle_type idle,
751 int *all_pinned, unsigned long *load_moved,
a4ac01c3 752 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
753
754#include "sched_stats.h"
755#include "sched_rt.c"
756#include "sched_fair.c"
757#include "sched_idletask.c"
758#ifdef CONFIG_SCHED_DEBUG
759# include "sched_debug.c"
760#endif
761
762#define sched_class_highest (&rt_sched_class)
763
9c217245
IM
764static void __update_curr_load(struct rq *rq, struct load_stat *ls)
765{
766 if (rq->curr != rq->idle && ls->load.weight) {
767 ls->delta_exec += ls->delta_stat;
768 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
769 ls->delta_stat = 0;
770 }
771}
772
773/*
774 * Update delta_exec, delta_fair fields for rq.
775 *
776 * delta_fair clock advances at a rate inversely proportional to
777 * total load (rq->ls.load.weight) on the runqueue, while
778 * delta_exec advances at the same rate as wall-clock (provided
779 * cpu is not idle).
780 *
781 * delta_exec / delta_fair is a measure of the (smoothened) load on this
782 * runqueue over any given interval. This (smoothened) load is used
783 * during load balance.
784 *
785 * This function is called /before/ updating rq->ls.load
786 * and when switching tasks.
787 */
84a1d7a2 788static void update_curr_load(struct rq *rq)
9c217245
IM
789{
790 struct load_stat *ls = &rq->ls;
791 u64 start;
792
793 start = ls->load_update_start;
d281918d
IM
794 ls->load_update_start = rq->clock;
795 ls->delta_stat += rq->clock - start;
9c217245
IM
796 /*
797 * Stagger updates to ls->delta_fair. Very frequent updates
798 * can be expensive.
799 */
800 if (ls->delta_stat >= sysctl_sched_stat_granularity)
801 __update_curr_load(rq, ls);
802}
803
29b4b623 804static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 805{
84a1d7a2 806 update_curr_load(rq);
9c217245
IM
807 update_load_add(&rq->ls.load, p->se.load.weight);
808}
809
79b5dddf 810static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 811{
84a1d7a2 812 update_curr_load(rq);
9c217245
IM
813 update_load_sub(&rq->ls.load, p->se.load.weight);
814}
815
e5fa2237 816static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
817{
818 rq->nr_running++;
29b4b623 819 inc_load(rq, p);
9c217245
IM
820}
821
db53181e 822static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
823{
824 rq->nr_running--;
79b5dddf 825 dec_load(rq, p);
9c217245
IM
826}
827
45bf76df
IM
828static void set_load_weight(struct task_struct *p)
829{
dd41f596
IM
830 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
831 p->se.wait_runtime = 0;
832
45bf76df 833 if (task_has_rt_policy(p)) {
dd41f596
IM
834 p->se.load.weight = prio_to_weight[0] * 2;
835 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
836 return;
837 }
45bf76df 838
dd41f596
IM
839 /*
840 * SCHED_IDLE tasks get minimal weight:
841 */
842 if (p->policy == SCHED_IDLE) {
843 p->se.load.weight = WEIGHT_IDLEPRIO;
844 p->se.load.inv_weight = WMULT_IDLEPRIO;
845 return;
846 }
71f8bd46 847
dd41f596
IM
848 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
849 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
850}
851
8159f87e 852static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 853{
dd41f596 854 sched_info_queued(p);
fd390f6a 855 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 856 p->se.on_rq = 1;
71f8bd46
IM
857}
858
69be72c1 859static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 860{
f02231e5 861 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 862 p->se.on_rq = 0;
71f8bd46
IM
863}
864
14531189 865/*
dd41f596 866 * __normal_prio - return the priority that is based on the static prio
14531189 867 */
14531189
IM
868static inline int __normal_prio(struct task_struct *p)
869{
dd41f596 870 return p->static_prio;
14531189
IM
871}
872
b29739f9
IM
873/*
874 * Calculate the expected normal priority: i.e. priority
875 * without taking RT-inheritance into account. Might be
876 * boosted by interactivity modifiers. Changes upon fork,
877 * setprio syscalls, and whenever the interactivity
878 * estimator recalculates.
879 */
36c8b586 880static inline int normal_prio(struct task_struct *p)
b29739f9
IM
881{
882 int prio;
883
e05606d3 884 if (task_has_rt_policy(p))
b29739f9
IM
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
889}
890
891/*
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
897 */
36c8b586 898static int effective_prio(struct task_struct *p)
b29739f9
IM
899{
900 p->normal_prio = normal_prio(p);
901 /*
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
905 */
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
909}
910
1da177e4 911/*
dd41f596 912 * activate_task - move a task to the runqueue.
1da177e4 913 */
dd41f596 914static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 915{
dd41f596
IM
916 if (p->state == TASK_UNINTERRUPTIBLE)
917 rq->nr_uninterruptible--;
1da177e4 918
8159f87e 919 enqueue_task(rq, p, wakeup);
e5fa2237 920 inc_nr_running(p, rq);
1da177e4
LT
921}
922
923/*
dd41f596 924 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 925 */
dd41f596 926static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 927{
a8e504d2 928 update_rq_clock(rq);
1da177e4 929
dd41f596
IM
930 if (p->state == TASK_UNINTERRUPTIBLE)
931 rq->nr_uninterruptible--;
ece8a684 932
8159f87e 933 enqueue_task(rq, p, 0);
e5fa2237 934 inc_nr_running(p, rq);
1da177e4
LT
935}
936
937/*
938 * deactivate_task - remove a task from the runqueue.
939 */
2e1cb74a 940static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 941{
dd41f596
IM
942 if (p->state == TASK_UNINTERRUPTIBLE)
943 rq->nr_uninterruptible++;
944
69be72c1 945 dequeue_task(rq, p, sleep);
db53181e 946 dec_nr_running(p, rq);
1da177e4
LT
947}
948
1da177e4
LT
949/**
950 * task_curr - is this task currently executing on a CPU?
951 * @p: the task in question.
952 */
36c8b586 953inline int task_curr(const struct task_struct *p)
1da177e4
LT
954{
955 return cpu_curr(task_cpu(p)) == p;
956}
957
2dd73a4f
PW
958/* Used instead of source_load when we know the type == 0 */
959unsigned long weighted_cpuload(const int cpu)
960{
dd41f596
IM
961 return cpu_rq(cpu)->ls.load.weight;
962}
963
964static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
965{
966#ifdef CONFIG_SMP
967 task_thread_info(p)->cpu = cpu;
968 set_task_cfs_rq(p);
969#endif
2dd73a4f
PW
970}
971
1da177e4 972#ifdef CONFIG_SMP
c65cc870 973
dd41f596 974void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 975{
dd41f596
IM
976 int old_cpu = task_cpu(p);
977 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
978 u64 clock_offset, fair_clock_offset;
979
980 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
981 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
982
dd41f596
IM
983 if (p->se.wait_start_fair)
984 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
985 if (p->se.sleep_start_fair)
986 p->se.sleep_start_fair -= fair_clock_offset;
987
988#ifdef CONFIG_SCHEDSTATS
989 if (p->se.wait_start)
990 p->se.wait_start -= clock_offset;
dd41f596
IM
991 if (p->se.sleep_start)
992 p->se.sleep_start -= clock_offset;
993 if (p->se.block_start)
994 p->se.block_start -= clock_offset;
6cfb0d5d 995#endif
dd41f596
IM
996
997 __set_task_cpu(p, new_cpu);
c65cc870
IM
998}
999
70b97a7f 1000struct migration_req {
1da177e4 1001 struct list_head list;
1da177e4 1002
36c8b586 1003 struct task_struct *task;
1da177e4
LT
1004 int dest_cpu;
1005
1da177e4 1006 struct completion done;
70b97a7f 1007};
1da177e4
LT
1008
1009/*
1010 * The task's runqueue lock must be held.
1011 * Returns true if you have to wait for migration thread.
1012 */
36c8b586 1013static int
70b97a7f 1014migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1015{
70b97a7f 1016 struct rq *rq = task_rq(p);
1da177e4
LT
1017
1018 /*
1019 * If the task is not on a runqueue (and not running), then
1020 * it is sufficient to simply update the task's cpu field.
1021 */
dd41f596 1022 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1023 set_task_cpu(p, dest_cpu);
1024 return 0;
1025 }
1026
1027 init_completion(&req->done);
1da177e4
LT
1028 req->task = p;
1029 req->dest_cpu = dest_cpu;
1030 list_add(&req->list, &rq->migration_queue);
48f24c4d 1031
1da177e4
LT
1032 return 1;
1033}
1034
1035/*
1036 * wait_task_inactive - wait for a thread to unschedule.
1037 *
1038 * The caller must ensure that the task *will* unschedule sometime soon,
1039 * else this function might spin for a *long* time. This function can't
1040 * be called with interrupts off, or it may introduce deadlock with
1041 * smp_call_function() if an IPI is sent by the same process we are
1042 * waiting to become inactive.
1043 */
36c8b586 1044void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1045{
1046 unsigned long flags;
dd41f596 1047 int running, on_rq;
70b97a7f 1048 struct rq *rq;
1da177e4
LT
1049
1050repeat:
fa490cfd
LT
1051 /*
1052 * We do the initial early heuristics without holding
1053 * any task-queue locks at all. We'll only try to get
1054 * the runqueue lock when things look like they will
1055 * work out!
1056 */
1057 rq = task_rq(p);
1058
1059 /*
1060 * If the task is actively running on another CPU
1061 * still, just relax and busy-wait without holding
1062 * any locks.
1063 *
1064 * NOTE! Since we don't hold any locks, it's not
1065 * even sure that "rq" stays as the right runqueue!
1066 * But we don't care, since "task_running()" will
1067 * return false if the runqueue has changed and p
1068 * is actually now running somewhere else!
1069 */
1070 while (task_running(rq, p))
1071 cpu_relax();
1072
1073 /*
1074 * Ok, time to look more closely! We need the rq
1075 * lock now, to be *sure*. If we're wrong, we'll
1076 * just go back and repeat.
1077 */
1da177e4 1078 rq = task_rq_lock(p, &flags);
fa490cfd 1079 running = task_running(rq, p);
dd41f596 1080 on_rq = p->se.on_rq;
fa490cfd
LT
1081 task_rq_unlock(rq, &flags);
1082
1083 /*
1084 * Was it really running after all now that we
1085 * checked with the proper locks actually held?
1086 *
1087 * Oops. Go back and try again..
1088 */
1089 if (unlikely(running)) {
1da177e4 1090 cpu_relax();
1da177e4
LT
1091 goto repeat;
1092 }
fa490cfd
LT
1093
1094 /*
1095 * It's not enough that it's not actively running,
1096 * it must be off the runqueue _entirely_, and not
1097 * preempted!
1098 *
1099 * So if it wa still runnable (but just not actively
1100 * running right now), it's preempted, and we should
1101 * yield - it could be a while.
1102 */
dd41f596 1103 if (unlikely(on_rq)) {
fa490cfd
LT
1104 yield();
1105 goto repeat;
1106 }
1107
1108 /*
1109 * Ahh, all good. It wasn't running, and it wasn't
1110 * runnable, which means that it will never become
1111 * running in the future either. We're all done!
1112 */
1da177e4
LT
1113}
1114
1115/***
1116 * kick_process - kick a running thread to enter/exit the kernel
1117 * @p: the to-be-kicked thread
1118 *
1119 * Cause a process which is running on another CPU to enter
1120 * kernel-mode, without any delay. (to get signals handled.)
1121 *
1122 * NOTE: this function doesnt have to take the runqueue lock,
1123 * because all it wants to ensure is that the remote task enters
1124 * the kernel. If the IPI races and the task has been migrated
1125 * to another CPU then no harm is done and the purpose has been
1126 * achieved as well.
1127 */
36c8b586 1128void kick_process(struct task_struct *p)
1da177e4
LT
1129{
1130 int cpu;
1131
1132 preempt_disable();
1133 cpu = task_cpu(p);
1134 if ((cpu != smp_processor_id()) && task_curr(p))
1135 smp_send_reschedule(cpu);
1136 preempt_enable();
1137}
1138
1139/*
2dd73a4f
PW
1140 * Return a low guess at the load of a migration-source cpu weighted
1141 * according to the scheduling class and "nice" value.
1da177e4
LT
1142 *
1143 * We want to under-estimate the load of migration sources, to
1144 * balance conservatively.
1145 */
a2000572 1146static inline unsigned long source_load(int cpu, int type)
1da177e4 1147{
70b97a7f 1148 struct rq *rq = cpu_rq(cpu);
dd41f596 1149 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1150
3b0bd9bc 1151 if (type == 0)
dd41f596 1152 return total;
b910472d 1153
dd41f596 1154 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1155}
1156
1157/*
2dd73a4f
PW
1158 * Return a high guess at the load of a migration-target cpu weighted
1159 * according to the scheduling class and "nice" value.
1da177e4 1160 */
a2000572 1161static inline unsigned long target_load(int cpu, int type)
1da177e4 1162{
70b97a7f 1163 struct rq *rq = cpu_rq(cpu);
dd41f596 1164 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1165
7897986b 1166 if (type == 0)
dd41f596 1167 return total;
3b0bd9bc 1168
dd41f596 1169 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1170}
1171
1172/*
1173 * Return the average load per task on the cpu's run queue
1174 */
1175static inline unsigned long cpu_avg_load_per_task(int cpu)
1176{
70b97a7f 1177 struct rq *rq = cpu_rq(cpu);
dd41f596 1178 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1179 unsigned long n = rq->nr_running;
1180
dd41f596 1181 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1182}
1183
147cbb4b
NP
1184/*
1185 * find_idlest_group finds and returns the least busy CPU group within the
1186 * domain.
1187 */
1188static struct sched_group *
1189find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1190{
1191 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1192 unsigned long min_load = ULONG_MAX, this_load = 0;
1193 int load_idx = sd->forkexec_idx;
1194 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1195
1196 do {
1197 unsigned long load, avg_load;
1198 int local_group;
1199 int i;
1200
da5a5522
BD
1201 /* Skip over this group if it has no CPUs allowed */
1202 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1203 goto nextgroup;
1204
147cbb4b 1205 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1206
1207 /* Tally up the load of all CPUs in the group */
1208 avg_load = 0;
1209
1210 for_each_cpu_mask(i, group->cpumask) {
1211 /* Bias balancing toward cpus of our domain */
1212 if (local_group)
1213 load = source_load(i, load_idx);
1214 else
1215 load = target_load(i, load_idx);
1216
1217 avg_load += load;
1218 }
1219
1220 /* Adjust by relative CPU power of the group */
5517d86b
ED
1221 avg_load = sg_div_cpu_power(group,
1222 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1223
1224 if (local_group) {
1225 this_load = avg_load;
1226 this = group;
1227 } else if (avg_load < min_load) {
1228 min_load = avg_load;
1229 idlest = group;
1230 }
da5a5522 1231nextgroup:
147cbb4b
NP
1232 group = group->next;
1233 } while (group != sd->groups);
1234
1235 if (!idlest || 100*this_load < imbalance*min_load)
1236 return NULL;
1237 return idlest;
1238}
1239
1240/*
0feaece9 1241 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1242 */
95cdf3b7
IM
1243static int
1244find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1245{
da5a5522 1246 cpumask_t tmp;
147cbb4b
NP
1247 unsigned long load, min_load = ULONG_MAX;
1248 int idlest = -1;
1249 int i;
1250
da5a5522
BD
1251 /* Traverse only the allowed CPUs */
1252 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1253
1254 for_each_cpu_mask(i, tmp) {
2dd73a4f 1255 load = weighted_cpuload(i);
147cbb4b
NP
1256
1257 if (load < min_load || (load == min_load && i == this_cpu)) {
1258 min_load = load;
1259 idlest = i;
1260 }
1261 }
1262
1263 return idlest;
1264}
1265
476d139c
NP
1266/*
1267 * sched_balance_self: balance the current task (running on cpu) in domains
1268 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1269 * SD_BALANCE_EXEC.
1270 *
1271 * Balance, ie. select the least loaded group.
1272 *
1273 * Returns the target CPU number, or the same CPU if no balancing is needed.
1274 *
1275 * preempt must be disabled.
1276 */
1277static int sched_balance_self(int cpu, int flag)
1278{
1279 struct task_struct *t = current;
1280 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1281
c96d145e 1282 for_each_domain(cpu, tmp) {
9761eea8
IM
1283 /*
1284 * If power savings logic is enabled for a domain, stop there.
1285 */
5c45bf27
SS
1286 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1287 break;
476d139c
NP
1288 if (tmp->flags & flag)
1289 sd = tmp;
c96d145e 1290 }
476d139c
NP
1291
1292 while (sd) {
1293 cpumask_t span;
1294 struct sched_group *group;
1a848870
SS
1295 int new_cpu, weight;
1296
1297 if (!(sd->flags & flag)) {
1298 sd = sd->child;
1299 continue;
1300 }
476d139c
NP
1301
1302 span = sd->span;
1303 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1304 if (!group) {
1305 sd = sd->child;
1306 continue;
1307 }
476d139c 1308
da5a5522 1309 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1310 if (new_cpu == -1 || new_cpu == cpu) {
1311 /* Now try balancing at a lower domain level of cpu */
1312 sd = sd->child;
1313 continue;
1314 }
476d139c 1315
1a848870 1316 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1317 cpu = new_cpu;
476d139c
NP
1318 sd = NULL;
1319 weight = cpus_weight(span);
1320 for_each_domain(cpu, tmp) {
1321 if (weight <= cpus_weight(tmp->span))
1322 break;
1323 if (tmp->flags & flag)
1324 sd = tmp;
1325 }
1326 /* while loop will break here if sd == NULL */
1327 }
1328
1329 return cpu;
1330}
1331
1332#endif /* CONFIG_SMP */
1da177e4
LT
1333
1334/*
1335 * wake_idle() will wake a task on an idle cpu if task->cpu is
1336 * not idle and an idle cpu is available. The span of cpus to
1337 * search starts with cpus closest then further out as needed,
1338 * so we always favor a closer, idle cpu.
1339 *
1340 * Returns the CPU we should wake onto.
1341 */
1342#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1343static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1344{
1345 cpumask_t tmp;
1346 struct sched_domain *sd;
1347 int i;
1348
4953198b
SS
1349 /*
1350 * If it is idle, then it is the best cpu to run this task.
1351 *
1352 * This cpu is also the best, if it has more than one task already.
1353 * Siblings must be also busy(in most cases) as they didn't already
1354 * pickup the extra load from this cpu and hence we need not check
1355 * sibling runqueue info. This will avoid the checks and cache miss
1356 * penalities associated with that.
1357 */
1358 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1359 return cpu;
1360
1361 for_each_domain(cpu, sd) {
1362 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1363 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1364 for_each_cpu_mask(i, tmp) {
1365 if (idle_cpu(i))
1366 return i;
1367 }
9761eea8 1368 } else {
e0f364f4 1369 break;
9761eea8 1370 }
1da177e4
LT
1371 }
1372 return cpu;
1373}
1374#else
36c8b586 1375static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1376{
1377 return cpu;
1378}
1379#endif
1380
1381/***
1382 * try_to_wake_up - wake up a thread
1383 * @p: the to-be-woken-up thread
1384 * @state: the mask of task states that can be woken
1385 * @sync: do a synchronous wakeup?
1386 *
1387 * Put it on the run-queue if it's not already there. The "current"
1388 * thread is always on the run-queue (except when the actual
1389 * re-schedule is in progress), and as such you're allowed to do
1390 * the simpler "current->state = TASK_RUNNING" to mark yourself
1391 * runnable without the overhead of this.
1392 *
1393 * returns failure only if the task is already active.
1394 */
36c8b586 1395static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1396{
1397 int cpu, this_cpu, success = 0;
1398 unsigned long flags;
1399 long old_state;
70b97a7f 1400 struct rq *rq;
1da177e4 1401#ifdef CONFIG_SMP
7897986b 1402 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1403 unsigned long load, this_load;
1da177e4
LT
1404 int new_cpu;
1405#endif
1406
1407 rq = task_rq_lock(p, &flags);
1408 old_state = p->state;
1409 if (!(old_state & state))
1410 goto out;
1411
dd41f596 1412 if (p->se.on_rq)
1da177e4
LT
1413 goto out_running;
1414
1415 cpu = task_cpu(p);
1416 this_cpu = smp_processor_id();
1417
1418#ifdef CONFIG_SMP
1419 if (unlikely(task_running(rq, p)))
1420 goto out_activate;
1421
7897986b
NP
1422 new_cpu = cpu;
1423
1da177e4
LT
1424 schedstat_inc(rq, ttwu_cnt);
1425 if (cpu == this_cpu) {
1426 schedstat_inc(rq, ttwu_local);
7897986b
NP
1427 goto out_set_cpu;
1428 }
1429
1430 for_each_domain(this_cpu, sd) {
1431 if (cpu_isset(cpu, sd->span)) {
1432 schedstat_inc(sd, ttwu_wake_remote);
1433 this_sd = sd;
1434 break;
1da177e4
LT
1435 }
1436 }
1da177e4 1437
7897986b 1438 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1439 goto out_set_cpu;
1440
1da177e4 1441 /*
7897986b 1442 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1443 */
7897986b
NP
1444 if (this_sd) {
1445 int idx = this_sd->wake_idx;
1446 unsigned int imbalance;
1da177e4 1447
a3f21bce
NP
1448 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1449
7897986b
NP
1450 load = source_load(cpu, idx);
1451 this_load = target_load(this_cpu, idx);
1da177e4 1452
7897986b
NP
1453 new_cpu = this_cpu; /* Wake to this CPU if we can */
1454
a3f21bce
NP
1455 if (this_sd->flags & SD_WAKE_AFFINE) {
1456 unsigned long tl = this_load;
33859f7f
MOS
1457 unsigned long tl_per_task;
1458
1459 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1460
1da177e4 1461 /*
a3f21bce
NP
1462 * If sync wakeup then subtract the (maximum possible)
1463 * effect of the currently running task from the load
1464 * of the current CPU:
1da177e4 1465 */
a3f21bce 1466 if (sync)
dd41f596 1467 tl -= current->se.load.weight;
a3f21bce
NP
1468
1469 if ((tl <= load &&
2dd73a4f 1470 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1471 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1472 /*
1473 * This domain has SD_WAKE_AFFINE and
1474 * p is cache cold in this domain, and
1475 * there is no bad imbalance.
1476 */
1477 schedstat_inc(this_sd, ttwu_move_affine);
1478 goto out_set_cpu;
1479 }
1480 }
1481
1482 /*
1483 * Start passive balancing when half the imbalance_pct
1484 * limit is reached.
1485 */
1486 if (this_sd->flags & SD_WAKE_BALANCE) {
1487 if (imbalance*this_load <= 100*load) {
1488 schedstat_inc(this_sd, ttwu_move_balance);
1489 goto out_set_cpu;
1490 }
1da177e4
LT
1491 }
1492 }
1493
1494 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1495out_set_cpu:
1496 new_cpu = wake_idle(new_cpu, p);
1497 if (new_cpu != cpu) {
1498 set_task_cpu(p, new_cpu);
1499 task_rq_unlock(rq, &flags);
1500 /* might preempt at this point */
1501 rq = task_rq_lock(p, &flags);
1502 old_state = p->state;
1503 if (!(old_state & state))
1504 goto out;
dd41f596 1505 if (p->se.on_rq)
1da177e4
LT
1506 goto out_running;
1507
1508 this_cpu = smp_processor_id();
1509 cpu = task_cpu(p);
1510 }
1511
1512out_activate:
1513#endif /* CONFIG_SMP */
2daa3577 1514 update_rq_clock(rq);
dd41f596 1515 activate_task(rq, p, 1);
1da177e4
LT
1516 /*
1517 * Sync wakeups (i.e. those types of wakeups where the waker
1518 * has indicated that it will leave the CPU in short order)
1519 * don't trigger a preemption, if the woken up task will run on
1520 * this cpu. (in this case the 'I will reschedule' promise of
1521 * the waker guarantees that the freshly woken up task is going
1522 * to be considered on this CPU.)
1523 */
dd41f596
IM
1524 if (!sync || cpu != this_cpu)
1525 check_preempt_curr(rq, p);
1da177e4
LT
1526 success = 1;
1527
1528out_running:
1529 p->state = TASK_RUNNING;
1530out:
1531 task_rq_unlock(rq, &flags);
1532
1533 return success;
1534}
1535
36c8b586 1536int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1537{
1538 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1539 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1540}
1da177e4
LT
1541EXPORT_SYMBOL(wake_up_process);
1542
36c8b586 1543int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1544{
1545 return try_to_wake_up(p, state, 0);
1546}
1547
1da177e4
LT
1548/*
1549 * Perform scheduler related setup for a newly forked process p.
1550 * p is forked by current.
dd41f596
IM
1551 *
1552 * __sched_fork() is basic setup used by init_idle() too:
1553 */
1554static void __sched_fork(struct task_struct *p)
1555{
1556 p->se.wait_start_fair = 0;
dd41f596
IM
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
1559 p->se.delta_exec = 0;
1560 p->se.delta_fair_run = 0;
1561 p->se.delta_fair_sleep = 0;
1562 p->se.wait_runtime = 0;
6cfb0d5d
IM
1563 p->se.sleep_start_fair = 0;
1564
1565#ifdef CONFIG_SCHEDSTATS
1566 p->se.wait_start = 0;
dd41f596
IM
1567 p->se.sum_wait_runtime = 0;
1568 p->se.sum_sleep_runtime = 0;
1569 p->se.sleep_start = 0;
dd41f596
IM
1570 p->se.block_start = 0;
1571 p->se.sleep_max = 0;
1572 p->se.block_max = 0;
1573 p->se.exec_max = 0;
1574 p->se.wait_max = 0;
1575 p->se.wait_runtime_overruns = 0;
1576 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1577#endif
476d139c 1578
dd41f596
IM
1579 INIT_LIST_HEAD(&p->run_list);
1580 p->se.on_rq = 0;
476d139c 1581
e107be36
AK
1582#ifdef CONFIG_PREEMPT_NOTIFIERS
1583 INIT_HLIST_HEAD(&p->preempt_notifiers);
1584#endif
1585
1da177e4
LT
1586 /*
1587 * We mark the process as running here, but have not actually
1588 * inserted it onto the runqueue yet. This guarantees that
1589 * nobody will actually run it, and a signal or other external
1590 * event cannot wake it up and insert it on the runqueue either.
1591 */
1592 p->state = TASK_RUNNING;
dd41f596
IM
1593}
1594
1595/*
1596 * fork()/clone()-time setup:
1597 */
1598void sched_fork(struct task_struct *p, int clone_flags)
1599{
1600 int cpu = get_cpu();
1601
1602 __sched_fork(p);
1603
1604#ifdef CONFIG_SMP
1605 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1606#endif
1607 __set_task_cpu(p, cpu);
b29739f9
IM
1608
1609 /*
1610 * Make sure we do not leak PI boosting priority to the child:
1611 */
1612 p->prio = current->normal_prio;
1613
52f17b6c 1614#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1615 if (likely(sched_info_on()))
52f17b6c 1616 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1617#endif
d6077cb8 1618#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1619 p->oncpu = 0;
1620#endif
1da177e4 1621#ifdef CONFIG_PREEMPT
4866cde0 1622 /* Want to start with kernel preemption disabled. */
a1261f54 1623 task_thread_info(p)->preempt_count = 1;
1da177e4 1624#endif
476d139c 1625 put_cpu();
1da177e4
LT
1626}
1627
dd41f596
IM
1628/*
1629 * After fork, child runs first. (default) If set to 0 then
1630 * parent will (try to) run first.
1631 */
1632unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1633
1da177e4
LT
1634/*
1635 * wake_up_new_task - wake up a newly created task for the first time.
1636 *
1637 * This function will do some initial scheduler statistics housekeeping
1638 * that must be done for every newly created context, then puts the task
1639 * on the runqueue and wakes it.
1640 */
36c8b586 1641void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1642{
1643 unsigned long flags;
dd41f596
IM
1644 struct rq *rq;
1645 int this_cpu;
1da177e4
LT
1646
1647 rq = task_rq_lock(p, &flags);
147cbb4b 1648 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1649 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2 1650 update_rq_clock(rq);
1da177e4
LT
1651
1652 p->prio = effective_prio(p);
1653
cad60d93
IM
1654 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1655 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1656 !current->se.on_rq) {
1657
dd41f596 1658 activate_task(rq, p, 0);
1da177e4 1659 } else {
1da177e4 1660 /*
dd41f596
IM
1661 * Let the scheduling class do new task startup
1662 * management (if any):
1da177e4 1663 */
ee0827d8 1664 p->sched_class->task_new(rq, p);
e5fa2237 1665 inc_nr_running(p, rq);
1da177e4 1666 }
dd41f596
IM
1667 check_preempt_curr(rq, p);
1668 task_rq_unlock(rq, &flags);
1da177e4
LT
1669}
1670
e107be36
AK
1671#ifdef CONFIG_PREEMPT_NOTIFIERS
1672
1673/**
421cee29
RD
1674 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1675 * @notifier: notifier struct to register
e107be36
AK
1676 */
1677void preempt_notifier_register(struct preempt_notifier *notifier)
1678{
1679 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1680}
1681EXPORT_SYMBOL_GPL(preempt_notifier_register);
1682
1683/**
1684 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1685 * @notifier: notifier struct to unregister
e107be36
AK
1686 *
1687 * This is safe to call from within a preemption notifier.
1688 */
1689void preempt_notifier_unregister(struct preempt_notifier *notifier)
1690{
1691 hlist_del(&notifier->link);
1692}
1693EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1694
1695static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1696{
1697 struct preempt_notifier *notifier;
1698 struct hlist_node *node;
1699
1700 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1701 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1702}
1703
1704static void
1705fire_sched_out_preempt_notifiers(struct task_struct *curr,
1706 struct task_struct *next)
1707{
1708 struct preempt_notifier *notifier;
1709 struct hlist_node *node;
1710
1711 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1712 notifier->ops->sched_out(notifier, next);
1713}
1714
1715#else
1716
1717static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1718{
1719}
1720
1721static void
1722fire_sched_out_preempt_notifiers(struct task_struct *curr,
1723 struct task_struct *next)
1724{
1725}
1726
1727#endif
1728
4866cde0
NP
1729/**
1730 * prepare_task_switch - prepare to switch tasks
1731 * @rq: the runqueue preparing to switch
421cee29 1732 * @prev: the current task that is being switched out
4866cde0
NP
1733 * @next: the task we are going to switch to.
1734 *
1735 * This is called with the rq lock held and interrupts off. It must
1736 * be paired with a subsequent finish_task_switch after the context
1737 * switch.
1738 *
1739 * prepare_task_switch sets up locking and calls architecture specific
1740 * hooks.
1741 */
e107be36
AK
1742static inline void
1743prepare_task_switch(struct rq *rq, struct task_struct *prev,
1744 struct task_struct *next)
4866cde0 1745{
e107be36 1746 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1747 prepare_lock_switch(rq, next);
1748 prepare_arch_switch(next);
1749}
1750
1da177e4
LT
1751/**
1752 * finish_task_switch - clean up after a task-switch
344babaa 1753 * @rq: runqueue associated with task-switch
1da177e4
LT
1754 * @prev: the thread we just switched away from.
1755 *
4866cde0
NP
1756 * finish_task_switch must be called after the context switch, paired
1757 * with a prepare_task_switch call before the context switch.
1758 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1759 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1760 *
1761 * Note that we may have delayed dropping an mm in context_switch(). If
1762 * so, we finish that here outside of the runqueue lock. (Doing it
1763 * with the lock held can cause deadlocks; see schedule() for
1764 * details.)
1765 */
70b97a7f 1766static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1767 __releases(rq->lock)
1768{
1da177e4 1769 struct mm_struct *mm = rq->prev_mm;
55a101f8 1770 long prev_state;
1da177e4
LT
1771
1772 rq->prev_mm = NULL;
1773
1774 /*
1775 * A task struct has one reference for the use as "current".
c394cc9f 1776 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1777 * schedule one last time. The schedule call will never return, and
1778 * the scheduled task must drop that reference.
c394cc9f 1779 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1780 * still held, otherwise prev could be scheduled on another cpu, die
1781 * there before we look at prev->state, and then the reference would
1782 * be dropped twice.
1783 * Manfred Spraul <manfred@colorfullife.com>
1784 */
55a101f8 1785 prev_state = prev->state;
4866cde0
NP
1786 finish_arch_switch(prev);
1787 finish_lock_switch(rq, prev);
e107be36 1788 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1789 if (mm)
1790 mmdrop(mm);
c394cc9f 1791 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1792 /*
1793 * Remove function-return probe instances associated with this
1794 * task and put them back on the free list.
9761eea8 1795 */
c6fd91f0 1796 kprobe_flush_task(prev);
1da177e4 1797 put_task_struct(prev);
c6fd91f0 1798 }
1da177e4
LT
1799}
1800
1801/**
1802 * schedule_tail - first thing a freshly forked thread must call.
1803 * @prev: the thread we just switched away from.
1804 */
36c8b586 1805asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1806 __releases(rq->lock)
1807{
70b97a7f
IM
1808 struct rq *rq = this_rq();
1809
4866cde0
NP
1810 finish_task_switch(rq, prev);
1811#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1812 /* In this case, finish_task_switch does not reenable preemption */
1813 preempt_enable();
1814#endif
1da177e4
LT
1815 if (current->set_child_tid)
1816 put_user(current->pid, current->set_child_tid);
1817}
1818
1819/*
1820 * context_switch - switch to the new MM and the new
1821 * thread's register state.
1822 */
dd41f596 1823static inline void
70b97a7f 1824context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1825 struct task_struct *next)
1da177e4 1826{
dd41f596 1827 struct mm_struct *mm, *oldmm;
1da177e4 1828
e107be36 1829 prepare_task_switch(rq, prev, next);
dd41f596
IM
1830 mm = next->mm;
1831 oldmm = prev->active_mm;
9226d125
ZA
1832 /*
1833 * For paravirt, this is coupled with an exit in switch_to to
1834 * combine the page table reload and the switch backend into
1835 * one hypercall.
1836 */
1837 arch_enter_lazy_cpu_mode();
1838
dd41f596 1839 if (unlikely(!mm)) {
1da177e4
LT
1840 next->active_mm = oldmm;
1841 atomic_inc(&oldmm->mm_count);
1842 enter_lazy_tlb(oldmm, next);
1843 } else
1844 switch_mm(oldmm, mm, next);
1845
dd41f596 1846 if (unlikely(!prev->mm)) {
1da177e4 1847 prev->active_mm = NULL;
1da177e4
LT
1848 rq->prev_mm = oldmm;
1849 }
3a5f5e48
IM
1850 /*
1851 * Since the runqueue lock will be released by the next
1852 * task (which is an invalid locking op but in the case
1853 * of the scheduler it's an obvious special-case), so we
1854 * do an early lockdep release here:
1855 */
1856#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1857 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1858#endif
1da177e4
LT
1859
1860 /* Here we just switch the register state and the stack. */
1861 switch_to(prev, next, prev);
1862
dd41f596
IM
1863 barrier();
1864 /*
1865 * this_rq must be evaluated again because prev may have moved
1866 * CPUs since it called schedule(), thus the 'rq' on its stack
1867 * frame will be invalid.
1868 */
1869 finish_task_switch(this_rq(), prev);
1da177e4
LT
1870}
1871
1872/*
1873 * nr_running, nr_uninterruptible and nr_context_switches:
1874 *
1875 * externally visible scheduler statistics: current number of runnable
1876 * threads, current number of uninterruptible-sleeping threads, total
1877 * number of context switches performed since bootup.
1878 */
1879unsigned long nr_running(void)
1880{
1881 unsigned long i, sum = 0;
1882
1883 for_each_online_cpu(i)
1884 sum += cpu_rq(i)->nr_running;
1885
1886 return sum;
1887}
1888
1889unsigned long nr_uninterruptible(void)
1890{
1891 unsigned long i, sum = 0;
1892
0a945022 1893 for_each_possible_cpu(i)
1da177e4
LT
1894 sum += cpu_rq(i)->nr_uninterruptible;
1895
1896 /*
1897 * Since we read the counters lockless, it might be slightly
1898 * inaccurate. Do not allow it to go below zero though:
1899 */
1900 if (unlikely((long)sum < 0))
1901 sum = 0;
1902
1903 return sum;
1904}
1905
1906unsigned long long nr_context_switches(void)
1907{
cc94abfc
SR
1908 int i;
1909 unsigned long long sum = 0;
1da177e4 1910
0a945022 1911 for_each_possible_cpu(i)
1da177e4
LT
1912 sum += cpu_rq(i)->nr_switches;
1913
1914 return sum;
1915}
1916
1917unsigned long nr_iowait(void)
1918{
1919 unsigned long i, sum = 0;
1920
0a945022 1921 for_each_possible_cpu(i)
1da177e4
LT
1922 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1923
1924 return sum;
1925}
1926
db1b1fef
JS
1927unsigned long nr_active(void)
1928{
1929 unsigned long i, running = 0, uninterruptible = 0;
1930
1931 for_each_online_cpu(i) {
1932 running += cpu_rq(i)->nr_running;
1933 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1934 }
1935
1936 if (unlikely((long)uninterruptible < 0))
1937 uninterruptible = 0;
1938
1939 return running + uninterruptible;
1940}
1941
48f24c4d 1942/*
dd41f596
IM
1943 * Update rq->cpu_load[] statistics. This function is usually called every
1944 * scheduler tick (TICK_NSEC).
48f24c4d 1945 */
dd41f596 1946static void update_cpu_load(struct rq *this_rq)
48f24c4d 1947{
dd41f596
IM
1948 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1949 unsigned long total_load = this_rq->ls.load.weight;
1950 unsigned long this_load = total_load;
1951 struct load_stat *ls = &this_rq->ls;
dd41f596
IM
1952 int i, scale;
1953
1954 this_rq->nr_load_updates++;
1955 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1956 goto do_avg;
1957
1958 /* Update delta_fair/delta_exec fields first */
84a1d7a2 1959 update_curr_load(this_rq);
dd41f596
IM
1960
1961 fair_delta64 = ls->delta_fair + 1;
1962 ls->delta_fair = 0;
1963
1964 exec_delta64 = ls->delta_exec + 1;
1965 ls->delta_exec = 0;
1966
d281918d
IM
1967 sample_interval64 = this_rq->clock - ls->load_update_last;
1968 ls->load_update_last = this_rq->clock;
dd41f596
IM
1969
1970 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1971 sample_interval64 = TICK_NSEC;
1972
1973 if (exec_delta64 > sample_interval64)
1974 exec_delta64 = sample_interval64;
1975
1976 idle_delta64 = sample_interval64 - exec_delta64;
1977
1978 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1979 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1980
1981 this_load = (unsigned long)tmp64;
1982
1983do_avg:
1984
1985 /* Update our load: */
1986 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1987 unsigned long old_load, new_load;
1988
1989 /* scale is effectively 1 << i now, and >> i divides by scale */
1990
1991 old_load = this_rq->cpu_load[i];
1992 new_load = this_load;
1993
1994 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1995 }
48f24c4d
IM
1996}
1997
dd41f596
IM
1998#ifdef CONFIG_SMP
1999
1da177e4
LT
2000/*
2001 * double_rq_lock - safely lock two runqueues
2002 *
2003 * Note this does not disable interrupts like task_rq_lock,
2004 * you need to do so manually before calling.
2005 */
70b97a7f 2006static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2007 __acquires(rq1->lock)
2008 __acquires(rq2->lock)
2009{
054b9108 2010 BUG_ON(!irqs_disabled());
1da177e4
LT
2011 if (rq1 == rq2) {
2012 spin_lock(&rq1->lock);
2013 __acquire(rq2->lock); /* Fake it out ;) */
2014 } else {
c96d145e 2015 if (rq1 < rq2) {
1da177e4
LT
2016 spin_lock(&rq1->lock);
2017 spin_lock(&rq2->lock);
2018 } else {
2019 spin_lock(&rq2->lock);
2020 spin_lock(&rq1->lock);
2021 }
2022 }
6e82a3be
IM
2023 update_rq_clock(rq1);
2024 update_rq_clock(rq2);
1da177e4
LT
2025}
2026
2027/*
2028 * double_rq_unlock - safely unlock two runqueues
2029 *
2030 * Note this does not restore interrupts like task_rq_unlock,
2031 * you need to do so manually after calling.
2032 */
70b97a7f 2033static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2034 __releases(rq1->lock)
2035 __releases(rq2->lock)
2036{
2037 spin_unlock(&rq1->lock);
2038 if (rq1 != rq2)
2039 spin_unlock(&rq2->lock);
2040 else
2041 __release(rq2->lock);
2042}
2043
2044/*
2045 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2046 */
70b97a7f 2047static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2048 __releases(this_rq->lock)
2049 __acquires(busiest->lock)
2050 __acquires(this_rq->lock)
2051{
054b9108
KK
2052 if (unlikely(!irqs_disabled())) {
2053 /* printk() doesn't work good under rq->lock */
2054 spin_unlock(&this_rq->lock);
2055 BUG_ON(1);
2056 }
1da177e4 2057 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2058 if (busiest < this_rq) {
1da177e4
LT
2059 spin_unlock(&this_rq->lock);
2060 spin_lock(&busiest->lock);
2061 spin_lock(&this_rq->lock);
2062 } else
2063 spin_lock(&busiest->lock);
2064 }
2065}
2066
1da177e4
LT
2067/*
2068 * If dest_cpu is allowed for this process, migrate the task to it.
2069 * This is accomplished by forcing the cpu_allowed mask to only
2070 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2071 * the cpu_allowed mask is restored.
2072 */
36c8b586 2073static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2074{
70b97a7f 2075 struct migration_req req;
1da177e4 2076 unsigned long flags;
70b97a7f 2077 struct rq *rq;
1da177e4
LT
2078
2079 rq = task_rq_lock(p, &flags);
2080 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2081 || unlikely(cpu_is_offline(dest_cpu)))
2082 goto out;
2083
2084 /* force the process onto the specified CPU */
2085 if (migrate_task(p, dest_cpu, &req)) {
2086 /* Need to wait for migration thread (might exit: take ref). */
2087 struct task_struct *mt = rq->migration_thread;
36c8b586 2088
1da177e4
LT
2089 get_task_struct(mt);
2090 task_rq_unlock(rq, &flags);
2091 wake_up_process(mt);
2092 put_task_struct(mt);
2093 wait_for_completion(&req.done);
36c8b586 2094
1da177e4
LT
2095 return;
2096 }
2097out:
2098 task_rq_unlock(rq, &flags);
2099}
2100
2101/*
476d139c
NP
2102 * sched_exec - execve() is a valuable balancing opportunity, because at
2103 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2104 */
2105void sched_exec(void)
2106{
1da177e4 2107 int new_cpu, this_cpu = get_cpu();
476d139c 2108 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2109 put_cpu();
476d139c
NP
2110 if (new_cpu != this_cpu)
2111 sched_migrate_task(current, new_cpu);
1da177e4
LT
2112}
2113
2114/*
2115 * pull_task - move a task from a remote runqueue to the local runqueue.
2116 * Both runqueues must be locked.
2117 */
dd41f596
IM
2118static void pull_task(struct rq *src_rq, struct task_struct *p,
2119 struct rq *this_rq, int this_cpu)
1da177e4 2120{
2e1cb74a 2121 deactivate_task(src_rq, p, 0);
1da177e4 2122 set_task_cpu(p, this_cpu);
dd41f596 2123 activate_task(this_rq, p, 0);
1da177e4
LT
2124 /*
2125 * Note that idle threads have a prio of MAX_PRIO, for this test
2126 * to be always true for them.
2127 */
dd41f596 2128 check_preempt_curr(this_rq, p);
1da177e4
LT
2129}
2130
2131/*
2132 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2133 */
858119e1 2134static
70b97a7f 2135int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2136 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2137 int *all_pinned)
1da177e4
LT
2138{
2139 /*
2140 * We do not migrate tasks that are:
2141 * 1) running (obviously), or
2142 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2143 * 3) are cache-hot on their current CPU.
2144 */
1da177e4
LT
2145 if (!cpu_isset(this_cpu, p->cpus_allowed))
2146 return 0;
81026794
NP
2147 *all_pinned = 0;
2148
2149 if (task_running(rq, p))
2150 return 0;
1da177e4
LT
2151
2152 /*
dd41f596 2153 * Aggressive migration if too many balance attempts have failed:
1da177e4 2154 */
dd41f596 2155 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2156 return 1;
2157
1da177e4
LT
2158 return 1;
2159}
2160
dd41f596 2161static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2162 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2163 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2164 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2165 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2166{
dd41f596
IM
2167 int pulled = 0, pinned = 0, skip_for_load;
2168 struct task_struct *p;
2169 long rem_load_move = max_load_move;
1da177e4 2170
2dd73a4f 2171 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2172 goto out;
2173
81026794
NP
2174 pinned = 1;
2175
1da177e4 2176 /*
dd41f596 2177 * Start the load-balancing iterator:
1da177e4 2178 */
dd41f596
IM
2179 p = iterator->start(iterator->arg);
2180next:
2181 if (!p)
1da177e4 2182 goto out;
50ddd969
PW
2183 /*
2184 * To help distribute high priority tasks accross CPUs we don't
2185 * skip a task if it will be the highest priority task (i.e. smallest
2186 * prio value) on its new queue regardless of its load weight
2187 */
dd41f596
IM
2188 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2189 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2190 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2191 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2192 p = iterator->next(iterator->arg);
2193 goto next;
1da177e4
LT
2194 }
2195
dd41f596 2196 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2197 pulled++;
dd41f596 2198 rem_load_move -= p->se.load.weight;
1da177e4 2199
2dd73a4f
PW
2200 /*
2201 * We only want to steal up to the prescribed number of tasks
2202 * and the prescribed amount of weighted load.
2203 */
2204 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2205 if (p->prio < *this_best_prio)
2206 *this_best_prio = p->prio;
dd41f596
IM
2207 p = iterator->next(iterator->arg);
2208 goto next;
1da177e4
LT
2209 }
2210out:
2211 /*
2212 * Right now, this is the only place pull_task() is called,
2213 * so we can safely collect pull_task() stats here rather than
2214 * inside pull_task().
2215 */
2216 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2217
2218 if (all_pinned)
2219 *all_pinned = pinned;
dd41f596 2220 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2221 return pulled;
2222}
2223
dd41f596 2224/*
43010659
PW
2225 * move_tasks tries to move up to max_load_move weighted load from busiest to
2226 * this_rq, as part of a balancing operation within domain "sd".
2227 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2228 *
2229 * Called with both runqueues locked.
2230 */
2231static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2232 unsigned long max_load_move,
dd41f596
IM
2233 struct sched_domain *sd, enum cpu_idle_type idle,
2234 int *all_pinned)
2235{
2236 struct sched_class *class = sched_class_highest;
43010659 2237 unsigned long total_load_moved = 0;
a4ac01c3 2238 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2239
2240 do {
43010659
PW
2241 total_load_moved +=
2242 class->load_balance(this_rq, this_cpu, busiest,
2243 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2244 sd, idle, all_pinned, &this_best_prio);
dd41f596 2245 class = class->next;
43010659 2246 } while (class && max_load_move > total_load_moved);
dd41f596 2247
43010659
PW
2248 return total_load_moved > 0;
2249}
2250
2251/*
2252 * move_one_task tries to move exactly one task from busiest to this_rq, as
2253 * part of active balancing operations within "domain".
2254 * Returns 1 if successful and 0 otherwise.
2255 *
2256 * Called with both runqueues locked.
2257 */
2258static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2259 struct sched_domain *sd, enum cpu_idle_type idle)
2260{
2261 struct sched_class *class;
a4ac01c3 2262 int this_best_prio = MAX_PRIO;
43010659
PW
2263
2264 for (class = sched_class_highest; class; class = class->next)
2265 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2266 1, ULONG_MAX, sd, idle, NULL,
2267 &this_best_prio))
43010659
PW
2268 return 1;
2269
2270 return 0;
dd41f596
IM
2271}
2272
1da177e4
LT
2273/*
2274 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2275 * domain. It calculates and returns the amount of weighted load which
2276 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2277 */
2278static struct sched_group *
2279find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2280 unsigned long *imbalance, enum cpu_idle_type idle,
2281 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2282{
2283 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2284 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2285 unsigned long max_pull;
2dd73a4f
PW
2286 unsigned long busiest_load_per_task, busiest_nr_running;
2287 unsigned long this_load_per_task, this_nr_running;
7897986b 2288 int load_idx;
5c45bf27
SS
2289#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2290 int power_savings_balance = 1;
2291 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2292 unsigned long min_nr_running = ULONG_MAX;
2293 struct sched_group *group_min = NULL, *group_leader = NULL;
2294#endif
1da177e4
LT
2295
2296 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2297 busiest_load_per_task = busiest_nr_running = 0;
2298 this_load_per_task = this_nr_running = 0;
d15bcfdb 2299 if (idle == CPU_NOT_IDLE)
7897986b 2300 load_idx = sd->busy_idx;
d15bcfdb 2301 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2302 load_idx = sd->newidle_idx;
2303 else
2304 load_idx = sd->idle_idx;
1da177e4
LT
2305
2306 do {
5c45bf27 2307 unsigned long load, group_capacity;
1da177e4
LT
2308 int local_group;
2309 int i;
783609c6 2310 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2311 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2312
2313 local_group = cpu_isset(this_cpu, group->cpumask);
2314
783609c6
SS
2315 if (local_group)
2316 balance_cpu = first_cpu(group->cpumask);
2317
1da177e4 2318 /* Tally up the load of all CPUs in the group */
2dd73a4f 2319 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2320
2321 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2322 struct rq *rq;
2323
2324 if (!cpu_isset(i, *cpus))
2325 continue;
2326
2327 rq = cpu_rq(i);
2dd73a4f 2328
9439aab8 2329 if (*sd_idle && rq->nr_running)
5969fe06
NP
2330 *sd_idle = 0;
2331
1da177e4 2332 /* Bias balancing toward cpus of our domain */
783609c6
SS
2333 if (local_group) {
2334 if (idle_cpu(i) && !first_idle_cpu) {
2335 first_idle_cpu = 1;
2336 balance_cpu = i;
2337 }
2338
a2000572 2339 load = target_load(i, load_idx);
783609c6 2340 } else
a2000572 2341 load = source_load(i, load_idx);
1da177e4
LT
2342
2343 avg_load += load;
2dd73a4f 2344 sum_nr_running += rq->nr_running;
dd41f596 2345 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2346 }
2347
783609c6
SS
2348 /*
2349 * First idle cpu or the first cpu(busiest) in this sched group
2350 * is eligible for doing load balancing at this and above
9439aab8
SS
2351 * domains. In the newly idle case, we will allow all the cpu's
2352 * to do the newly idle load balance.
783609c6 2353 */
9439aab8
SS
2354 if (idle != CPU_NEWLY_IDLE && local_group &&
2355 balance_cpu != this_cpu && balance) {
783609c6
SS
2356 *balance = 0;
2357 goto ret;
2358 }
2359
1da177e4 2360 total_load += avg_load;
5517d86b 2361 total_pwr += group->__cpu_power;
1da177e4
LT
2362
2363 /* Adjust by relative CPU power of the group */
5517d86b
ED
2364 avg_load = sg_div_cpu_power(group,
2365 avg_load * SCHED_LOAD_SCALE);
1da177e4 2366
5517d86b 2367 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2368
1da177e4
LT
2369 if (local_group) {
2370 this_load = avg_load;
2371 this = group;
2dd73a4f
PW
2372 this_nr_running = sum_nr_running;
2373 this_load_per_task = sum_weighted_load;
2374 } else if (avg_load > max_load &&
5c45bf27 2375 sum_nr_running > group_capacity) {
1da177e4
LT
2376 max_load = avg_load;
2377 busiest = group;
2dd73a4f
PW
2378 busiest_nr_running = sum_nr_running;
2379 busiest_load_per_task = sum_weighted_load;
1da177e4 2380 }
5c45bf27
SS
2381
2382#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2383 /*
2384 * Busy processors will not participate in power savings
2385 * balance.
2386 */
dd41f596
IM
2387 if (idle == CPU_NOT_IDLE ||
2388 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2389 goto group_next;
5c45bf27
SS
2390
2391 /*
2392 * If the local group is idle or completely loaded
2393 * no need to do power savings balance at this domain
2394 */
2395 if (local_group && (this_nr_running >= group_capacity ||
2396 !this_nr_running))
2397 power_savings_balance = 0;
2398
dd41f596 2399 /*
5c45bf27
SS
2400 * If a group is already running at full capacity or idle,
2401 * don't include that group in power savings calculations
dd41f596
IM
2402 */
2403 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2404 || !sum_nr_running)
dd41f596 2405 goto group_next;
5c45bf27 2406
dd41f596 2407 /*
5c45bf27 2408 * Calculate the group which has the least non-idle load.
dd41f596
IM
2409 * This is the group from where we need to pick up the load
2410 * for saving power
2411 */
2412 if ((sum_nr_running < min_nr_running) ||
2413 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2414 first_cpu(group->cpumask) <
2415 first_cpu(group_min->cpumask))) {
dd41f596
IM
2416 group_min = group;
2417 min_nr_running = sum_nr_running;
5c45bf27
SS
2418 min_load_per_task = sum_weighted_load /
2419 sum_nr_running;
dd41f596 2420 }
5c45bf27 2421
dd41f596 2422 /*
5c45bf27 2423 * Calculate the group which is almost near its
dd41f596
IM
2424 * capacity but still has some space to pick up some load
2425 * from other group and save more power
2426 */
2427 if (sum_nr_running <= group_capacity - 1) {
2428 if (sum_nr_running > leader_nr_running ||
2429 (sum_nr_running == leader_nr_running &&
2430 first_cpu(group->cpumask) >
2431 first_cpu(group_leader->cpumask))) {
2432 group_leader = group;
2433 leader_nr_running = sum_nr_running;
2434 }
48f24c4d 2435 }
5c45bf27
SS
2436group_next:
2437#endif
1da177e4
LT
2438 group = group->next;
2439 } while (group != sd->groups);
2440
2dd73a4f 2441 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2442 goto out_balanced;
2443
2444 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2445
2446 if (this_load >= avg_load ||
2447 100*max_load <= sd->imbalance_pct*this_load)
2448 goto out_balanced;
2449
2dd73a4f 2450 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2451 /*
2452 * We're trying to get all the cpus to the average_load, so we don't
2453 * want to push ourselves above the average load, nor do we wish to
2454 * reduce the max loaded cpu below the average load, as either of these
2455 * actions would just result in more rebalancing later, and ping-pong
2456 * tasks around. Thus we look for the minimum possible imbalance.
2457 * Negative imbalances (*we* are more loaded than anyone else) will
2458 * be counted as no imbalance for these purposes -- we can't fix that
2459 * by pulling tasks to us. Be careful of negative numbers as they'll
2460 * appear as very large values with unsigned longs.
2461 */
2dd73a4f
PW
2462 if (max_load <= busiest_load_per_task)
2463 goto out_balanced;
2464
2465 /*
2466 * In the presence of smp nice balancing, certain scenarios can have
2467 * max load less than avg load(as we skip the groups at or below
2468 * its cpu_power, while calculating max_load..)
2469 */
2470 if (max_load < avg_load) {
2471 *imbalance = 0;
2472 goto small_imbalance;
2473 }
0c117f1b
SS
2474
2475 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2476 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2477
1da177e4 2478 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2479 *imbalance = min(max_pull * busiest->__cpu_power,
2480 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2481 / SCHED_LOAD_SCALE;
2482
2dd73a4f
PW
2483 /*
2484 * if *imbalance is less than the average load per runnable task
2485 * there is no gaurantee that any tasks will be moved so we'll have
2486 * a think about bumping its value to force at least one task to be
2487 * moved
2488 */
dd41f596 2489 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2490 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2491 unsigned int imbn;
2492
2493small_imbalance:
2494 pwr_move = pwr_now = 0;
2495 imbn = 2;
2496 if (this_nr_running) {
2497 this_load_per_task /= this_nr_running;
2498 if (busiest_load_per_task > this_load_per_task)
2499 imbn = 1;
2500 } else
2501 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2502
dd41f596
IM
2503 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2504 busiest_load_per_task * imbn) {
2dd73a4f 2505 *imbalance = busiest_load_per_task;
1da177e4
LT
2506 return busiest;
2507 }
2508
2509 /*
2510 * OK, we don't have enough imbalance to justify moving tasks,
2511 * however we may be able to increase total CPU power used by
2512 * moving them.
2513 */
2514
5517d86b
ED
2515 pwr_now += busiest->__cpu_power *
2516 min(busiest_load_per_task, max_load);
2517 pwr_now += this->__cpu_power *
2518 min(this_load_per_task, this_load);
1da177e4
LT
2519 pwr_now /= SCHED_LOAD_SCALE;
2520
2521 /* Amount of load we'd subtract */
5517d86b
ED
2522 tmp = sg_div_cpu_power(busiest,
2523 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2524 if (max_load > tmp)
5517d86b 2525 pwr_move += busiest->__cpu_power *
2dd73a4f 2526 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2527
2528 /* Amount of load we'd add */
5517d86b 2529 if (max_load * busiest->__cpu_power <
33859f7f 2530 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2531 tmp = sg_div_cpu_power(this,
2532 max_load * busiest->__cpu_power);
1da177e4 2533 else
5517d86b
ED
2534 tmp = sg_div_cpu_power(this,
2535 busiest_load_per_task * SCHED_LOAD_SCALE);
2536 pwr_move += this->__cpu_power *
2537 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2538 pwr_move /= SCHED_LOAD_SCALE;
2539
2540 /* Move if we gain throughput */
2541 if (pwr_move <= pwr_now)
2542 goto out_balanced;
2543
2dd73a4f 2544 *imbalance = busiest_load_per_task;
1da177e4
LT
2545 }
2546
1da177e4
LT
2547 return busiest;
2548
2549out_balanced:
5c45bf27 2550#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2551 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2552 goto ret;
1da177e4 2553
5c45bf27
SS
2554 if (this == group_leader && group_leader != group_min) {
2555 *imbalance = min_load_per_task;
2556 return group_min;
2557 }
5c45bf27 2558#endif
783609c6 2559ret:
1da177e4
LT
2560 *imbalance = 0;
2561 return NULL;
2562}
2563
2564/*
2565 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2566 */
70b97a7f 2567static struct rq *
d15bcfdb 2568find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2569 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2570{
70b97a7f 2571 struct rq *busiest = NULL, *rq;
2dd73a4f 2572 unsigned long max_load = 0;
1da177e4
LT
2573 int i;
2574
2575 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2576 unsigned long wl;
0a2966b4
CL
2577
2578 if (!cpu_isset(i, *cpus))
2579 continue;
2580
48f24c4d 2581 rq = cpu_rq(i);
dd41f596 2582 wl = weighted_cpuload(i);
2dd73a4f 2583
dd41f596 2584 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2585 continue;
1da177e4 2586
dd41f596
IM
2587 if (wl > max_load) {
2588 max_load = wl;
48f24c4d 2589 busiest = rq;
1da177e4
LT
2590 }
2591 }
2592
2593 return busiest;
2594}
2595
77391d71
NP
2596/*
2597 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2598 * so long as it is large enough.
2599 */
2600#define MAX_PINNED_INTERVAL 512
2601
1da177e4
LT
2602/*
2603 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2604 * tasks if there is an imbalance.
1da177e4 2605 */
70b97a7f 2606static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2607 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2608 int *balance)
1da177e4 2609{
43010659 2610 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2611 struct sched_group *group;
1da177e4 2612 unsigned long imbalance;
70b97a7f 2613 struct rq *busiest;
0a2966b4 2614 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2615 unsigned long flags;
5969fe06 2616
89c4710e
SS
2617 /*
2618 * When power savings policy is enabled for the parent domain, idle
2619 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2620 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2621 * portraying it as CPU_NOT_IDLE.
89c4710e 2622 */
d15bcfdb 2623 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2624 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2625 sd_idle = 1;
1da177e4 2626
1da177e4
LT
2627 schedstat_inc(sd, lb_cnt[idle]);
2628
0a2966b4
CL
2629redo:
2630 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2631 &cpus, balance);
2632
06066714 2633 if (*balance == 0)
783609c6 2634 goto out_balanced;
783609c6 2635
1da177e4
LT
2636 if (!group) {
2637 schedstat_inc(sd, lb_nobusyg[idle]);
2638 goto out_balanced;
2639 }
2640
0a2966b4 2641 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2642 if (!busiest) {
2643 schedstat_inc(sd, lb_nobusyq[idle]);
2644 goto out_balanced;
2645 }
2646
db935dbd 2647 BUG_ON(busiest == this_rq);
1da177e4
LT
2648
2649 schedstat_add(sd, lb_imbalance[idle], imbalance);
2650
43010659 2651 ld_moved = 0;
1da177e4
LT
2652 if (busiest->nr_running > 1) {
2653 /*
2654 * Attempt to move tasks. If find_busiest_group has found
2655 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2656 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2657 * correctly treated as an imbalance.
2658 */
fe2eea3f 2659 local_irq_save(flags);
e17224bf 2660 double_rq_lock(this_rq, busiest);
43010659 2661 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2662 imbalance, sd, idle, &all_pinned);
e17224bf 2663 double_rq_unlock(this_rq, busiest);
fe2eea3f 2664 local_irq_restore(flags);
81026794 2665
46cb4b7c
SS
2666 /*
2667 * some other cpu did the load balance for us.
2668 */
43010659 2669 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2670 resched_cpu(this_cpu);
2671
81026794 2672 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2673 if (unlikely(all_pinned)) {
2674 cpu_clear(cpu_of(busiest), cpus);
2675 if (!cpus_empty(cpus))
2676 goto redo;
81026794 2677 goto out_balanced;
0a2966b4 2678 }
1da177e4 2679 }
81026794 2680
43010659 2681 if (!ld_moved) {
1da177e4
LT
2682 schedstat_inc(sd, lb_failed[idle]);
2683 sd->nr_balance_failed++;
2684
2685 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2686
fe2eea3f 2687 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2688
2689 /* don't kick the migration_thread, if the curr
2690 * task on busiest cpu can't be moved to this_cpu
2691 */
2692 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2693 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2694 all_pinned = 1;
2695 goto out_one_pinned;
2696 }
2697
1da177e4
LT
2698 if (!busiest->active_balance) {
2699 busiest->active_balance = 1;
2700 busiest->push_cpu = this_cpu;
81026794 2701 active_balance = 1;
1da177e4 2702 }
fe2eea3f 2703 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2704 if (active_balance)
1da177e4
LT
2705 wake_up_process(busiest->migration_thread);
2706
2707 /*
2708 * We've kicked active balancing, reset the failure
2709 * counter.
2710 */
39507451 2711 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2712 }
81026794 2713 } else
1da177e4
LT
2714 sd->nr_balance_failed = 0;
2715
81026794 2716 if (likely(!active_balance)) {
1da177e4
LT
2717 /* We were unbalanced, so reset the balancing interval */
2718 sd->balance_interval = sd->min_interval;
81026794
NP
2719 } else {
2720 /*
2721 * If we've begun active balancing, start to back off. This
2722 * case may not be covered by the all_pinned logic if there
2723 * is only 1 task on the busy runqueue (because we don't call
2724 * move_tasks).
2725 */
2726 if (sd->balance_interval < sd->max_interval)
2727 sd->balance_interval *= 2;
1da177e4
LT
2728 }
2729
43010659 2730 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2732 return -1;
43010659 2733 return ld_moved;
1da177e4
LT
2734
2735out_balanced:
1da177e4
LT
2736 schedstat_inc(sd, lb_balanced[idle]);
2737
16cfb1c0 2738 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2739
2740out_one_pinned:
1da177e4 2741 /* tune up the balancing interval */
77391d71
NP
2742 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2743 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2744 sd->balance_interval *= 2;
2745
48f24c4d 2746 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2747 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2748 return -1;
1da177e4
LT
2749 return 0;
2750}
2751
2752/*
2753 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2754 * tasks if there is an imbalance.
2755 *
d15bcfdb 2756 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2757 * this_rq is locked.
2758 */
48f24c4d 2759static int
70b97a7f 2760load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2761{
2762 struct sched_group *group;
70b97a7f 2763 struct rq *busiest = NULL;
1da177e4 2764 unsigned long imbalance;
43010659 2765 int ld_moved = 0;
5969fe06 2766 int sd_idle = 0;
969bb4e4 2767 int all_pinned = 0;
0a2966b4 2768 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2769
89c4710e
SS
2770 /*
2771 * When power savings policy is enabled for the parent domain, idle
2772 * sibling can pick up load irrespective of busy siblings. In this case,
2773 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2774 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2775 */
2776 if (sd->flags & SD_SHARE_CPUPOWER &&
2777 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2778 sd_idle = 1;
1da177e4 2779
d15bcfdb 2780 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2781redo:
d15bcfdb 2782 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2783 &sd_idle, &cpus, NULL);
1da177e4 2784 if (!group) {
d15bcfdb 2785 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2786 goto out_balanced;
1da177e4
LT
2787 }
2788
d15bcfdb 2789 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2790 &cpus);
db935dbd 2791 if (!busiest) {
d15bcfdb 2792 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2793 goto out_balanced;
1da177e4
LT
2794 }
2795
db935dbd
NP
2796 BUG_ON(busiest == this_rq);
2797
d15bcfdb 2798 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2799
43010659 2800 ld_moved = 0;
d6d5cfaf
NP
2801 if (busiest->nr_running > 1) {
2802 /* Attempt to move tasks */
2803 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2804 /* this_rq->clock is already updated */
2805 update_rq_clock(busiest);
43010659 2806 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2807 imbalance, sd, CPU_NEWLY_IDLE,
2808 &all_pinned);
d6d5cfaf 2809 spin_unlock(&busiest->lock);
0a2966b4 2810
969bb4e4 2811 if (unlikely(all_pinned)) {
0a2966b4
CL
2812 cpu_clear(cpu_of(busiest), cpus);
2813 if (!cpus_empty(cpus))
2814 goto redo;
2815 }
d6d5cfaf
NP
2816 }
2817
43010659 2818 if (!ld_moved) {
d15bcfdb 2819 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2820 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2821 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2822 return -1;
2823 } else
16cfb1c0 2824 sd->nr_balance_failed = 0;
1da177e4 2825
43010659 2826 return ld_moved;
16cfb1c0
NP
2827
2828out_balanced:
d15bcfdb 2829 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2830 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2831 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2832 return -1;
16cfb1c0 2833 sd->nr_balance_failed = 0;
48f24c4d 2834
16cfb1c0 2835 return 0;
1da177e4
LT
2836}
2837
2838/*
2839 * idle_balance is called by schedule() if this_cpu is about to become
2840 * idle. Attempts to pull tasks from other CPUs.
2841 */
70b97a7f 2842static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2843{
2844 struct sched_domain *sd;
dd41f596
IM
2845 int pulled_task = -1;
2846 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2847
2848 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2849 unsigned long interval;
2850
2851 if (!(sd->flags & SD_LOAD_BALANCE))
2852 continue;
2853
2854 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2855 /* If we've pulled tasks over stop searching: */
1bd77f2d 2856 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2857 this_rq, sd);
2858
2859 interval = msecs_to_jiffies(sd->balance_interval);
2860 if (time_after(next_balance, sd->last_balance + interval))
2861 next_balance = sd->last_balance + interval;
2862 if (pulled_task)
2863 break;
1da177e4 2864 }
dd41f596 2865 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2866 /*
2867 * We are going idle. next_balance may be set based on
2868 * a busy processor. So reset next_balance.
2869 */
2870 this_rq->next_balance = next_balance;
dd41f596 2871 }
1da177e4
LT
2872}
2873
2874/*
2875 * active_load_balance is run by migration threads. It pushes running tasks
2876 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2877 * running on each physical CPU where possible, and avoids physical /
2878 * logical imbalances.
2879 *
2880 * Called with busiest_rq locked.
2881 */
70b97a7f 2882static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2883{
39507451 2884 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2885 struct sched_domain *sd;
2886 struct rq *target_rq;
39507451 2887
48f24c4d 2888 /* Is there any task to move? */
39507451 2889 if (busiest_rq->nr_running <= 1)
39507451
NP
2890 return;
2891
2892 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2893
2894 /*
39507451
NP
2895 * This condition is "impossible", if it occurs
2896 * we need to fix it. Originally reported by
2897 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2898 */
39507451 2899 BUG_ON(busiest_rq == target_rq);
1da177e4 2900
39507451
NP
2901 /* move a task from busiest_rq to target_rq */
2902 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2903 update_rq_clock(busiest_rq);
2904 update_rq_clock(target_rq);
39507451
NP
2905
2906 /* Search for an sd spanning us and the target CPU. */
c96d145e 2907 for_each_domain(target_cpu, sd) {
39507451 2908 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2909 cpu_isset(busiest_cpu, sd->span))
39507451 2910 break;
c96d145e 2911 }
39507451 2912
48f24c4d
IM
2913 if (likely(sd)) {
2914 schedstat_inc(sd, alb_cnt);
39507451 2915
43010659
PW
2916 if (move_one_task(target_rq, target_cpu, busiest_rq,
2917 sd, CPU_IDLE))
48f24c4d
IM
2918 schedstat_inc(sd, alb_pushed);
2919 else
2920 schedstat_inc(sd, alb_failed);
2921 }
39507451 2922 spin_unlock(&target_rq->lock);
1da177e4
LT
2923}
2924
46cb4b7c
SS
2925#ifdef CONFIG_NO_HZ
2926static struct {
2927 atomic_t load_balancer;
2928 cpumask_t cpu_mask;
2929} nohz ____cacheline_aligned = {
2930 .load_balancer = ATOMIC_INIT(-1),
2931 .cpu_mask = CPU_MASK_NONE,
2932};
2933
7835b98b 2934/*
46cb4b7c
SS
2935 * This routine will try to nominate the ilb (idle load balancing)
2936 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2937 * load balancing on behalf of all those cpus. If all the cpus in the system
2938 * go into this tickless mode, then there will be no ilb owner (as there is
2939 * no need for one) and all the cpus will sleep till the next wakeup event
2940 * arrives...
2941 *
2942 * For the ilb owner, tick is not stopped. And this tick will be used
2943 * for idle load balancing. ilb owner will still be part of
2944 * nohz.cpu_mask..
7835b98b 2945 *
46cb4b7c
SS
2946 * While stopping the tick, this cpu will become the ilb owner if there
2947 * is no other owner. And will be the owner till that cpu becomes busy
2948 * or if all cpus in the system stop their ticks at which point
2949 * there is no need for ilb owner.
2950 *
2951 * When the ilb owner becomes busy, it nominates another owner, during the
2952 * next busy scheduler_tick()
2953 */
2954int select_nohz_load_balancer(int stop_tick)
2955{
2956 int cpu = smp_processor_id();
2957
2958 if (stop_tick) {
2959 cpu_set(cpu, nohz.cpu_mask);
2960 cpu_rq(cpu)->in_nohz_recently = 1;
2961
2962 /*
2963 * If we are going offline and still the leader, give up!
2964 */
2965 if (cpu_is_offline(cpu) &&
2966 atomic_read(&nohz.load_balancer) == cpu) {
2967 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2968 BUG();
2969 return 0;
2970 }
2971
2972 /* time for ilb owner also to sleep */
2973 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2974 if (atomic_read(&nohz.load_balancer) == cpu)
2975 atomic_set(&nohz.load_balancer, -1);
2976 return 0;
2977 }
2978
2979 if (atomic_read(&nohz.load_balancer) == -1) {
2980 /* make me the ilb owner */
2981 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2982 return 1;
2983 } else if (atomic_read(&nohz.load_balancer) == cpu)
2984 return 1;
2985 } else {
2986 if (!cpu_isset(cpu, nohz.cpu_mask))
2987 return 0;
2988
2989 cpu_clear(cpu, nohz.cpu_mask);
2990
2991 if (atomic_read(&nohz.load_balancer) == cpu)
2992 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2993 BUG();
2994 }
2995 return 0;
2996}
2997#endif
2998
2999static DEFINE_SPINLOCK(balancing);
3000
3001/*
7835b98b
CL
3002 * It checks each scheduling domain to see if it is due to be balanced,
3003 * and initiates a balancing operation if so.
3004 *
3005 * Balancing parameters are set up in arch_init_sched_domains.
3006 */
d15bcfdb 3007static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3008{
46cb4b7c
SS
3009 int balance = 1;
3010 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3011 unsigned long interval;
3012 struct sched_domain *sd;
46cb4b7c 3013 /* Earliest time when we have to do rebalance again */
c9819f45 3014 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3015
46cb4b7c 3016 for_each_domain(cpu, sd) {
1da177e4
LT
3017 if (!(sd->flags & SD_LOAD_BALANCE))
3018 continue;
3019
3020 interval = sd->balance_interval;
d15bcfdb 3021 if (idle != CPU_IDLE)
1da177e4
LT
3022 interval *= sd->busy_factor;
3023
3024 /* scale ms to jiffies */
3025 interval = msecs_to_jiffies(interval);
3026 if (unlikely(!interval))
3027 interval = 1;
dd41f596
IM
3028 if (interval > HZ*NR_CPUS/10)
3029 interval = HZ*NR_CPUS/10;
3030
1da177e4 3031
08c183f3
CL
3032 if (sd->flags & SD_SERIALIZE) {
3033 if (!spin_trylock(&balancing))
3034 goto out;
3035 }
3036
c9819f45 3037 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3038 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3039 /*
3040 * We've pulled tasks over so either we're no
5969fe06
NP
3041 * longer idle, or one of our SMT siblings is
3042 * not idle.
3043 */
d15bcfdb 3044 idle = CPU_NOT_IDLE;
1da177e4 3045 }
1bd77f2d 3046 sd->last_balance = jiffies;
1da177e4 3047 }
08c183f3
CL
3048 if (sd->flags & SD_SERIALIZE)
3049 spin_unlock(&balancing);
3050out:
c9819f45
CL
3051 if (time_after(next_balance, sd->last_balance + interval))
3052 next_balance = sd->last_balance + interval;
783609c6
SS
3053
3054 /*
3055 * Stop the load balance at this level. There is another
3056 * CPU in our sched group which is doing load balancing more
3057 * actively.
3058 */
3059 if (!balance)
3060 break;
1da177e4 3061 }
46cb4b7c
SS
3062 rq->next_balance = next_balance;
3063}
3064
3065/*
3066 * run_rebalance_domains is triggered when needed from the scheduler tick.
3067 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3068 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3069 */
3070static void run_rebalance_domains(struct softirq_action *h)
3071{
dd41f596
IM
3072 int this_cpu = smp_processor_id();
3073 struct rq *this_rq = cpu_rq(this_cpu);
3074 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3075 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3076
dd41f596 3077 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3078
3079#ifdef CONFIG_NO_HZ
3080 /*
3081 * If this cpu is the owner for idle load balancing, then do the
3082 * balancing on behalf of the other idle cpus whose ticks are
3083 * stopped.
3084 */
dd41f596
IM
3085 if (this_rq->idle_at_tick &&
3086 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3087 cpumask_t cpus = nohz.cpu_mask;
3088 struct rq *rq;
3089 int balance_cpu;
3090
dd41f596 3091 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3092 for_each_cpu_mask(balance_cpu, cpus) {
3093 /*
3094 * If this cpu gets work to do, stop the load balancing
3095 * work being done for other cpus. Next load
3096 * balancing owner will pick it up.
3097 */
3098 if (need_resched())
3099 break;
3100
dd41f596 3101 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3102
3103 rq = cpu_rq(balance_cpu);
dd41f596
IM
3104 if (time_after(this_rq->next_balance, rq->next_balance))
3105 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3106 }
3107 }
3108#endif
3109}
3110
3111/*
3112 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3113 *
3114 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3115 * idle load balancing owner or decide to stop the periodic load balancing,
3116 * if the whole system is idle.
3117 */
dd41f596 3118static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3119{
46cb4b7c
SS
3120#ifdef CONFIG_NO_HZ
3121 /*
3122 * If we were in the nohz mode recently and busy at the current
3123 * scheduler tick, then check if we need to nominate new idle
3124 * load balancer.
3125 */
3126 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3127 rq->in_nohz_recently = 0;
3128
3129 if (atomic_read(&nohz.load_balancer) == cpu) {
3130 cpu_clear(cpu, nohz.cpu_mask);
3131 atomic_set(&nohz.load_balancer, -1);
3132 }
3133
3134 if (atomic_read(&nohz.load_balancer) == -1) {
3135 /*
3136 * simple selection for now: Nominate the
3137 * first cpu in the nohz list to be the next
3138 * ilb owner.
3139 *
3140 * TBD: Traverse the sched domains and nominate
3141 * the nearest cpu in the nohz.cpu_mask.
3142 */
3143 int ilb = first_cpu(nohz.cpu_mask);
3144
3145 if (ilb != NR_CPUS)
3146 resched_cpu(ilb);
3147 }
3148 }
3149
3150 /*
3151 * If this cpu is idle and doing idle load balancing for all the
3152 * cpus with ticks stopped, is it time for that to stop?
3153 */
3154 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3155 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3156 resched_cpu(cpu);
3157 return;
3158 }
3159
3160 /*
3161 * If this cpu is idle and the idle load balancing is done by
3162 * someone else, then no need raise the SCHED_SOFTIRQ
3163 */
3164 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3165 cpu_isset(cpu, nohz.cpu_mask))
3166 return;
3167#endif
3168 if (time_after_eq(jiffies, rq->next_balance))
3169 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3170}
dd41f596
IM
3171
3172#else /* CONFIG_SMP */
3173
1da177e4
LT
3174/*
3175 * on UP we do not need to balance between CPUs:
3176 */
70b97a7f 3177static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3178{
3179}
dd41f596
IM
3180
3181/* Avoid "used but not defined" warning on UP */
3182static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3183 unsigned long max_nr_move, unsigned long max_load_move,
3184 struct sched_domain *sd, enum cpu_idle_type idle,
3185 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3186 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3187{
3188 *load_moved = 0;
3189
3190 return 0;
3191}
3192
1da177e4
LT
3193#endif
3194
1da177e4
LT
3195DEFINE_PER_CPU(struct kernel_stat, kstat);
3196
3197EXPORT_PER_CPU_SYMBOL(kstat);
3198
3199/*
41b86e9c
IM
3200 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3201 * that have not yet been banked in case the task is currently running.
1da177e4 3202 */
41b86e9c 3203unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3204{
1da177e4 3205 unsigned long flags;
41b86e9c
IM
3206 u64 ns, delta_exec;
3207 struct rq *rq;
48f24c4d 3208
41b86e9c
IM
3209 rq = task_rq_lock(p, &flags);
3210 ns = p->se.sum_exec_runtime;
3211 if (rq->curr == p) {
a8e504d2
IM
3212 update_rq_clock(rq);
3213 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3214 if ((s64)delta_exec > 0)
3215 ns += delta_exec;
3216 }
3217 task_rq_unlock(rq, &flags);
48f24c4d 3218
1da177e4
LT
3219 return ns;
3220}
3221
1da177e4
LT
3222/*
3223 * Account user cpu time to a process.
3224 * @p: the process that the cpu time gets accounted to
3225 * @hardirq_offset: the offset to subtract from hardirq_count()
3226 * @cputime: the cpu time spent in user space since the last update
3227 */
3228void account_user_time(struct task_struct *p, cputime_t cputime)
3229{
3230 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3231 cputime64_t tmp;
3232
3233 p->utime = cputime_add(p->utime, cputime);
3234
3235 /* Add user time to cpustat. */
3236 tmp = cputime_to_cputime64(cputime);
3237 if (TASK_NICE(p) > 0)
3238 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3239 else
3240 cpustat->user = cputime64_add(cpustat->user, tmp);
3241}
3242
3243/*
3244 * Account system cpu time to a process.
3245 * @p: the process that the cpu time gets accounted to
3246 * @hardirq_offset: the offset to subtract from hardirq_count()
3247 * @cputime: the cpu time spent in kernel space since the last update
3248 */
3249void account_system_time(struct task_struct *p, int hardirq_offset,
3250 cputime_t cputime)
3251{
3252 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3253 struct rq *rq = this_rq();
1da177e4
LT
3254 cputime64_t tmp;
3255
3256 p->stime = cputime_add(p->stime, cputime);
3257
3258 /* Add system time to cpustat. */
3259 tmp = cputime_to_cputime64(cputime);
3260 if (hardirq_count() - hardirq_offset)
3261 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3262 else if (softirq_count())
3263 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3264 else if (p != rq->idle)
3265 cpustat->system = cputime64_add(cpustat->system, tmp);
3266 else if (atomic_read(&rq->nr_iowait) > 0)
3267 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3268 else
3269 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3270 /* Account for system time used */
3271 acct_update_integrals(p);
1da177e4
LT
3272}
3273
3274/*
3275 * Account for involuntary wait time.
3276 * @p: the process from which the cpu time has been stolen
3277 * @steal: the cpu time spent in involuntary wait
3278 */
3279void account_steal_time(struct task_struct *p, cputime_t steal)
3280{
3281 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3282 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3283 struct rq *rq = this_rq();
1da177e4
LT
3284
3285 if (p == rq->idle) {
3286 p->stime = cputime_add(p->stime, steal);
3287 if (atomic_read(&rq->nr_iowait) > 0)
3288 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3289 else
3290 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3291 } else
3292 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3293}
3294
7835b98b
CL
3295/*
3296 * This function gets called by the timer code, with HZ frequency.
3297 * We call it with interrupts disabled.
3298 *
3299 * It also gets called by the fork code, when changing the parent's
3300 * timeslices.
3301 */
3302void scheduler_tick(void)
3303{
7835b98b
CL
3304 int cpu = smp_processor_id();
3305 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3306 struct task_struct *curr = rq->curr;
3307
3308 spin_lock(&rq->lock);
546fe3c9 3309 __update_rq_clock(rq);
f1a438d8 3310 update_cpu_load(rq);
dd41f596
IM
3311 if (curr != rq->idle) /* FIXME: needed? */
3312 curr->sched_class->task_tick(rq, curr);
dd41f596 3313 spin_unlock(&rq->lock);
7835b98b 3314
e418e1c2 3315#ifdef CONFIG_SMP
dd41f596
IM
3316 rq->idle_at_tick = idle_cpu(cpu);
3317 trigger_load_balance(rq, cpu);
e418e1c2 3318#endif
1da177e4
LT
3319}
3320
1da177e4
LT
3321#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3322
3323void fastcall add_preempt_count(int val)
3324{
3325 /*
3326 * Underflow?
3327 */
9a11b49a
IM
3328 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3329 return;
1da177e4
LT
3330 preempt_count() += val;
3331 /*
3332 * Spinlock count overflowing soon?
3333 */
33859f7f
MOS
3334 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3335 PREEMPT_MASK - 10);
1da177e4
LT
3336}
3337EXPORT_SYMBOL(add_preempt_count);
3338
3339void fastcall sub_preempt_count(int val)
3340{
3341 /*
3342 * Underflow?
3343 */
9a11b49a
IM
3344 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3345 return;
1da177e4
LT
3346 /*
3347 * Is the spinlock portion underflowing?
3348 */
9a11b49a
IM
3349 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3350 !(preempt_count() & PREEMPT_MASK)))
3351 return;
3352
1da177e4
LT
3353 preempt_count() -= val;
3354}
3355EXPORT_SYMBOL(sub_preempt_count);
3356
3357#endif
3358
3359/*
dd41f596 3360 * Print scheduling while atomic bug:
1da177e4 3361 */
dd41f596 3362static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3363{
dd41f596
IM
3364 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3365 prev->comm, preempt_count(), prev->pid);
3366 debug_show_held_locks(prev);
3367 if (irqs_disabled())
3368 print_irqtrace_events(prev);
3369 dump_stack();
3370}
1da177e4 3371
dd41f596
IM
3372/*
3373 * Various schedule()-time debugging checks and statistics:
3374 */
3375static inline void schedule_debug(struct task_struct *prev)
3376{
1da177e4
LT
3377 /*
3378 * Test if we are atomic. Since do_exit() needs to call into
3379 * schedule() atomically, we ignore that path for now.
3380 * Otherwise, whine if we are scheduling when we should not be.
3381 */
dd41f596
IM
3382 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3383 __schedule_bug(prev);
3384
1da177e4
LT
3385 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3386
dd41f596
IM
3387 schedstat_inc(this_rq(), sched_cnt);
3388}
3389
3390/*
3391 * Pick up the highest-prio task:
3392 */
3393static inline struct task_struct *
ff95f3df 3394pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3395{
3396 struct sched_class *class;
3397 struct task_struct *p;
1da177e4
LT
3398
3399 /*
dd41f596
IM
3400 * Optimization: we know that if all tasks are in
3401 * the fair class we can call that function directly:
1da177e4 3402 */
dd41f596 3403 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3404 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3405 if (likely(p))
3406 return p;
1da177e4
LT
3407 }
3408
dd41f596
IM
3409 class = sched_class_highest;
3410 for ( ; ; ) {
fb8d4724 3411 p = class->pick_next_task(rq);
dd41f596
IM
3412 if (p)
3413 return p;
3414 /*
3415 * Will never be NULL as the idle class always
3416 * returns a non-NULL p:
3417 */
3418 class = class->next;
3419 }
3420}
1da177e4 3421
dd41f596
IM
3422/*
3423 * schedule() is the main scheduler function.
3424 */
3425asmlinkage void __sched schedule(void)
3426{
3427 struct task_struct *prev, *next;
3428 long *switch_count;
3429 struct rq *rq;
dd41f596
IM
3430 int cpu;
3431
3432need_resched:
3433 preempt_disable();
3434 cpu = smp_processor_id();
3435 rq = cpu_rq(cpu);
3436 rcu_qsctr_inc(cpu);
3437 prev = rq->curr;
3438 switch_count = &prev->nivcsw;
3439
3440 release_kernel_lock(prev);
3441need_resched_nonpreemptible:
3442
3443 schedule_debug(prev);
1da177e4
LT
3444
3445 spin_lock_irq(&rq->lock);
dd41f596 3446 clear_tsk_need_resched(prev);
c1b3da3e 3447 __update_rq_clock(rq);
1da177e4 3448
1da177e4 3449 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3450 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3451 unlikely(signal_pending(prev)))) {
1da177e4 3452 prev->state = TASK_RUNNING;
dd41f596 3453 } else {
2e1cb74a 3454 deactivate_task(rq, prev, 1);
1da177e4 3455 }
dd41f596 3456 switch_count = &prev->nvcsw;
1da177e4
LT
3457 }
3458
dd41f596 3459 if (unlikely(!rq->nr_running))
1da177e4 3460 idle_balance(cpu, rq);
1da177e4 3461
31ee529c 3462 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3463 next = pick_next_task(rq, prev);
1da177e4
LT
3464
3465 sched_info_switch(prev, next);
dd41f596 3466
1da177e4 3467 if (likely(prev != next)) {
1da177e4
LT
3468 rq->nr_switches++;
3469 rq->curr = next;
3470 ++*switch_count;
3471
dd41f596 3472 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3473 } else
3474 spin_unlock_irq(&rq->lock);
3475
dd41f596
IM
3476 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3477 cpu = smp_processor_id();
3478 rq = cpu_rq(cpu);
1da177e4 3479 goto need_resched_nonpreemptible;
dd41f596 3480 }
1da177e4
LT
3481 preempt_enable_no_resched();
3482 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3483 goto need_resched;
3484}
1da177e4
LT
3485EXPORT_SYMBOL(schedule);
3486
3487#ifdef CONFIG_PREEMPT
3488/*
2ed6e34f 3489 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3490 * off of preempt_enable. Kernel preemptions off return from interrupt
3491 * occur there and call schedule directly.
3492 */
3493asmlinkage void __sched preempt_schedule(void)
3494{
3495 struct thread_info *ti = current_thread_info();
3496#ifdef CONFIG_PREEMPT_BKL
3497 struct task_struct *task = current;
3498 int saved_lock_depth;
3499#endif
3500 /*
3501 * If there is a non-zero preempt_count or interrupts are disabled,
3502 * we do not want to preempt the current task. Just return..
3503 */
beed33a8 3504 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3505 return;
3506
3507need_resched:
3508 add_preempt_count(PREEMPT_ACTIVE);
3509 /*
3510 * We keep the big kernel semaphore locked, but we
3511 * clear ->lock_depth so that schedule() doesnt
3512 * auto-release the semaphore:
3513 */
3514#ifdef CONFIG_PREEMPT_BKL
3515 saved_lock_depth = task->lock_depth;
3516 task->lock_depth = -1;
3517#endif
3518 schedule();
3519#ifdef CONFIG_PREEMPT_BKL
3520 task->lock_depth = saved_lock_depth;
3521#endif
3522 sub_preempt_count(PREEMPT_ACTIVE);
3523
3524 /* we could miss a preemption opportunity between schedule and now */
3525 barrier();
3526 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3527 goto need_resched;
3528}
1da177e4
LT
3529EXPORT_SYMBOL(preempt_schedule);
3530
3531/*
2ed6e34f 3532 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3533 * off of irq context.
3534 * Note, that this is called and return with irqs disabled. This will
3535 * protect us against recursive calling from irq.
3536 */
3537asmlinkage void __sched preempt_schedule_irq(void)
3538{
3539 struct thread_info *ti = current_thread_info();
3540#ifdef CONFIG_PREEMPT_BKL
3541 struct task_struct *task = current;
3542 int saved_lock_depth;
3543#endif
2ed6e34f 3544 /* Catch callers which need to be fixed */
1da177e4
LT
3545 BUG_ON(ti->preempt_count || !irqs_disabled());
3546
3547need_resched:
3548 add_preempt_count(PREEMPT_ACTIVE);
3549 /*
3550 * We keep the big kernel semaphore locked, but we
3551 * clear ->lock_depth so that schedule() doesnt
3552 * auto-release the semaphore:
3553 */
3554#ifdef CONFIG_PREEMPT_BKL
3555 saved_lock_depth = task->lock_depth;
3556 task->lock_depth = -1;
3557#endif
3558 local_irq_enable();
3559 schedule();
3560 local_irq_disable();
3561#ifdef CONFIG_PREEMPT_BKL
3562 task->lock_depth = saved_lock_depth;
3563#endif
3564 sub_preempt_count(PREEMPT_ACTIVE);
3565
3566 /* we could miss a preemption opportunity between schedule and now */
3567 barrier();
3568 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3569 goto need_resched;
3570}
3571
3572#endif /* CONFIG_PREEMPT */
3573
95cdf3b7
IM
3574int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3575 void *key)
1da177e4 3576{
48f24c4d 3577 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3578}
1da177e4
LT
3579EXPORT_SYMBOL(default_wake_function);
3580
3581/*
3582 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3583 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3584 * number) then we wake all the non-exclusive tasks and one exclusive task.
3585 *
3586 * There are circumstances in which we can try to wake a task which has already
3587 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3588 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3589 */
3590static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3591 int nr_exclusive, int sync, void *key)
3592{
3593 struct list_head *tmp, *next;
3594
3595 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3596 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3597 unsigned flags = curr->flags;
3598
1da177e4 3599 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3600 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3601 break;
3602 }
3603}
3604
3605/**
3606 * __wake_up - wake up threads blocked on a waitqueue.
3607 * @q: the waitqueue
3608 * @mode: which threads
3609 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3610 * @key: is directly passed to the wakeup function
1da177e4
LT
3611 */
3612void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3613 int nr_exclusive, void *key)
1da177e4
LT
3614{
3615 unsigned long flags;
3616
3617 spin_lock_irqsave(&q->lock, flags);
3618 __wake_up_common(q, mode, nr_exclusive, 0, key);
3619 spin_unlock_irqrestore(&q->lock, flags);
3620}
1da177e4
LT
3621EXPORT_SYMBOL(__wake_up);
3622
3623/*
3624 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3625 */
3626void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3627{
3628 __wake_up_common(q, mode, 1, 0, NULL);
3629}
3630
3631/**
67be2dd1 3632 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3633 * @q: the waitqueue
3634 * @mode: which threads
3635 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3636 *
3637 * The sync wakeup differs that the waker knows that it will schedule
3638 * away soon, so while the target thread will be woken up, it will not
3639 * be migrated to another CPU - ie. the two threads are 'synchronized'
3640 * with each other. This can prevent needless bouncing between CPUs.
3641 *
3642 * On UP it can prevent extra preemption.
3643 */
95cdf3b7
IM
3644void fastcall
3645__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3646{
3647 unsigned long flags;
3648 int sync = 1;
3649
3650 if (unlikely(!q))
3651 return;
3652
3653 if (unlikely(!nr_exclusive))
3654 sync = 0;
3655
3656 spin_lock_irqsave(&q->lock, flags);
3657 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3658 spin_unlock_irqrestore(&q->lock, flags);
3659}
3660EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3661
3662void fastcall complete(struct completion *x)
3663{
3664 unsigned long flags;
3665
3666 spin_lock_irqsave(&x->wait.lock, flags);
3667 x->done++;
3668 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3669 1, 0, NULL);
3670 spin_unlock_irqrestore(&x->wait.lock, flags);
3671}
3672EXPORT_SYMBOL(complete);
3673
3674void fastcall complete_all(struct completion *x)
3675{
3676 unsigned long flags;
3677
3678 spin_lock_irqsave(&x->wait.lock, flags);
3679 x->done += UINT_MAX/2;
3680 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3681 0, 0, NULL);
3682 spin_unlock_irqrestore(&x->wait.lock, flags);
3683}
3684EXPORT_SYMBOL(complete_all);
3685
3686void fastcall __sched wait_for_completion(struct completion *x)
3687{
3688 might_sleep();
48f24c4d 3689
1da177e4
LT
3690 spin_lock_irq(&x->wait.lock);
3691 if (!x->done) {
3692 DECLARE_WAITQUEUE(wait, current);
3693
3694 wait.flags |= WQ_FLAG_EXCLUSIVE;
3695 __add_wait_queue_tail(&x->wait, &wait);
3696 do {
3697 __set_current_state(TASK_UNINTERRUPTIBLE);
3698 spin_unlock_irq(&x->wait.lock);
3699 schedule();
3700 spin_lock_irq(&x->wait.lock);
3701 } while (!x->done);
3702 __remove_wait_queue(&x->wait, &wait);
3703 }
3704 x->done--;
3705 spin_unlock_irq(&x->wait.lock);
3706}
3707EXPORT_SYMBOL(wait_for_completion);
3708
3709unsigned long fastcall __sched
3710wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3711{
3712 might_sleep();
3713
3714 spin_lock_irq(&x->wait.lock);
3715 if (!x->done) {
3716 DECLARE_WAITQUEUE(wait, current);
3717
3718 wait.flags |= WQ_FLAG_EXCLUSIVE;
3719 __add_wait_queue_tail(&x->wait, &wait);
3720 do {
3721 __set_current_state(TASK_UNINTERRUPTIBLE);
3722 spin_unlock_irq(&x->wait.lock);
3723 timeout = schedule_timeout(timeout);
3724 spin_lock_irq(&x->wait.lock);
3725 if (!timeout) {
3726 __remove_wait_queue(&x->wait, &wait);
3727 goto out;
3728 }
3729 } while (!x->done);
3730 __remove_wait_queue(&x->wait, &wait);
3731 }
3732 x->done--;
3733out:
3734 spin_unlock_irq(&x->wait.lock);
3735 return timeout;
3736}
3737EXPORT_SYMBOL(wait_for_completion_timeout);
3738
3739int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3740{
3741 int ret = 0;
3742
3743 might_sleep();
3744
3745 spin_lock_irq(&x->wait.lock);
3746 if (!x->done) {
3747 DECLARE_WAITQUEUE(wait, current);
3748
3749 wait.flags |= WQ_FLAG_EXCLUSIVE;
3750 __add_wait_queue_tail(&x->wait, &wait);
3751 do {
3752 if (signal_pending(current)) {
3753 ret = -ERESTARTSYS;
3754 __remove_wait_queue(&x->wait, &wait);
3755 goto out;
3756 }
3757 __set_current_state(TASK_INTERRUPTIBLE);
3758 spin_unlock_irq(&x->wait.lock);
3759 schedule();
3760 spin_lock_irq(&x->wait.lock);
3761 } while (!x->done);
3762 __remove_wait_queue(&x->wait, &wait);
3763 }
3764 x->done--;
3765out:
3766 spin_unlock_irq(&x->wait.lock);
3767
3768 return ret;
3769}
3770EXPORT_SYMBOL(wait_for_completion_interruptible);
3771
3772unsigned long fastcall __sched
3773wait_for_completion_interruptible_timeout(struct completion *x,
3774 unsigned long timeout)
3775{
3776 might_sleep();
3777
3778 spin_lock_irq(&x->wait.lock);
3779 if (!x->done) {
3780 DECLARE_WAITQUEUE(wait, current);
3781
3782 wait.flags |= WQ_FLAG_EXCLUSIVE;
3783 __add_wait_queue_tail(&x->wait, &wait);
3784 do {
3785 if (signal_pending(current)) {
3786 timeout = -ERESTARTSYS;
3787 __remove_wait_queue(&x->wait, &wait);
3788 goto out;
3789 }
3790 __set_current_state(TASK_INTERRUPTIBLE);
3791 spin_unlock_irq(&x->wait.lock);
3792 timeout = schedule_timeout(timeout);
3793 spin_lock_irq(&x->wait.lock);
3794 if (!timeout) {
3795 __remove_wait_queue(&x->wait, &wait);
3796 goto out;
3797 }
3798 } while (!x->done);
3799 __remove_wait_queue(&x->wait, &wait);
3800 }
3801 x->done--;
3802out:
3803 spin_unlock_irq(&x->wait.lock);
3804 return timeout;
3805}
3806EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3807
0fec171c
IM
3808static inline void
3809sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3810{
3811 spin_lock_irqsave(&q->lock, *flags);
3812 __add_wait_queue(q, wait);
1da177e4 3813 spin_unlock(&q->lock);
0fec171c 3814}
1da177e4 3815
0fec171c
IM
3816static inline void
3817sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3818{
3819 spin_lock_irq(&q->lock);
3820 __remove_wait_queue(q, wait);
3821 spin_unlock_irqrestore(&q->lock, *flags);
3822}
1da177e4 3823
0fec171c 3824void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3825{
0fec171c
IM
3826 unsigned long flags;
3827 wait_queue_t wait;
3828
3829 init_waitqueue_entry(&wait, current);
1da177e4
LT
3830
3831 current->state = TASK_INTERRUPTIBLE;
3832
0fec171c 3833 sleep_on_head(q, &wait, &flags);
1da177e4 3834 schedule();
0fec171c 3835 sleep_on_tail(q, &wait, &flags);
1da177e4 3836}
1da177e4
LT
3837EXPORT_SYMBOL(interruptible_sleep_on);
3838
0fec171c 3839long __sched
95cdf3b7 3840interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3841{
0fec171c
IM
3842 unsigned long flags;
3843 wait_queue_t wait;
3844
3845 init_waitqueue_entry(&wait, current);
1da177e4
LT
3846
3847 current->state = TASK_INTERRUPTIBLE;
3848
0fec171c 3849 sleep_on_head(q, &wait, &flags);
1da177e4 3850 timeout = schedule_timeout(timeout);
0fec171c 3851 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3852
3853 return timeout;
3854}
1da177e4
LT
3855EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3856
0fec171c 3857void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3858{
0fec171c
IM
3859 unsigned long flags;
3860 wait_queue_t wait;
3861
3862 init_waitqueue_entry(&wait, current);
1da177e4
LT
3863
3864 current->state = TASK_UNINTERRUPTIBLE;
3865
0fec171c 3866 sleep_on_head(q, &wait, &flags);
1da177e4 3867 schedule();
0fec171c 3868 sleep_on_tail(q, &wait, &flags);
1da177e4 3869}
1da177e4
LT
3870EXPORT_SYMBOL(sleep_on);
3871
0fec171c 3872long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3873{
0fec171c
IM
3874 unsigned long flags;
3875 wait_queue_t wait;
3876
3877 init_waitqueue_entry(&wait, current);
1da177e4
LT
3878
3879 current->state = TASK_UNINTERRUPTIBLE;
3880
0fec171c 3881 sleep_on_head(q, &wait, &flags);
1da177e4 3882 timeout = schedule_timeout(timeout);
0fec171c 3883 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3884
3885 return timeout;
3886}
1da177e4
LT
3887EXPORT_SYMBOL(sleep_on_timeout);
3888
b29739f9
IM
3889#ifdef CONFIG_RT_MUTEXES
3890
3891/*
3892 * rt_mutex_setprio - set the current priority of a task
3893 * @p: task
3894 * @prio: prio value (kernel-internal form)
3895 *
3896 * This function changes the 'effective' priority of a task. It does
3897 * not touch ->normal_prio like __setscheduler().
3898 *
3899 * Used by the rt_mutex code to implement priority inheritance logic.
3900 */
36c8b586 3901void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3902{
3903 unsigned long flags;
dd41f596 3904 int oldprio, on_rq;
70b97a7f 3905 struct rq *rq;
b29739f9
IM
3906
3907 BUG_ON(prio < 0 || prio > MAX_PRIO);
3908
3909 rq = task_rq_lock(p, &flags);
a8e504d2 3910 update_rq_clock(rq);
b29739f9 3911
d5f9f942 3912 oldprio = p->prio;
dd41f596
IM
3913 on_rq = p->se.on_rq;
3914 if (on_rq)
69be72c1 3915 dequeue_task(rq, p, 0);
dd41f596
IM
3916
3917 if (rt_prio(prio))
3918 p->sched_class = &rt_sched_class;
3919 else
3920 p->sched_class = &fair_sched_class;
3921
b29739f9
IM
3922 p->prio = prio;
3923
dd41f596 3924 if (on_rq) {
8159f87e 3925 enqueue_task(rq, p, 0);
b29739f9
IM
3926 /*
3927 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3928 * our priority decreased, or if we are not currently running on
3929 * this runqueue and our priority is higher than the current's
b29739f9 3930 */
d5f9f942
AM
3931 if (task_running(rq, p)) {
3932 if (p->prio > oldprio)
3933 resched_task(rq->curr);
dd41f596
IM
3934 } else {
3935 check_preempt_curr(rq, p);
3936 }
b29739f9
IM
3937 }
3938 task_rq_unlock(rq, &flags);
3939}
3940
3941#endif
3942
36c8b586 3943void set_user_nice(struct task_struct *p, long nice)
1da177e4 3944{
dd41f596 3945 int old_prio, delta, on_rq;
1da177e4 3946 unsigned long flags;
70b97a7f 3947 struct rq *rq;
1da177e4
LT
3948
3949 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3950 return;
3951 /*
3952 * We have to be careful, if called from sys_setpriority(),
3953 * the task might be in the middle of scheduling on another CPU.
3954 */
3955 rq = task_rq_lock(p, &flags);
a8e504d2 3956 update_rq_clock(rq);
1da177e4
LT
3957 /*
3958 * The RT priorities are set via sched_setscheduler(), but we still
3959 * allow the 'normal' nice value to be set - but as expected
3960 * it wont have any effect on scheduling until the task is
dd41f596 3961 * SCHED_FIFO/SCHED_RR:
1da177e4 3962 */
e05606d3 3963 if (task_has_rt_policy(p)) {
1da177e4
LT
3964 p->static_prio = NICE_TO_PRIO(nice);
3965 goto out_unlock;
3966 }
dd41f596
IM
3967 on_rq = p->se.on_rq;
3968 if (on_rq) {
69be72c1 3969 dequeue_task(rq, p, 0);
79b5dddf 3970 dec_load(rq, p);
2dd73a4f 3971 }
1da177e4 3972
1da177e4 3973 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3974 set_load_weight(p);
b29739f9
IM
3975 old_prio = p->prio;
3976 p->prio = effective_prio(p);
3977 delta = p->prio - old_prio;
1da177e4 3978
dd41f596 3979 if (on_rq) {
8159f87e 3980 enqueue_task(rq, p, 0);
29b4b623 3981 inc_load(rq, p);
1da177e4 3982 /*
d5f9f942
AM
3983 * If the task increased its priority or is running and
3984 * lowered its priority, then reschedule its CPU:
1da177e4 3985 */
d5f9f942 3986 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3987 resched_task(rq->curr);
3988 }
3989out_unlock:
3990 task_rq_unlock(rq, &flags);
3991}
1da177e4
LT
3992EXPORT_SYMBOL(set_user_nice);
3993
e43379f1
MM
3994/*
3995 * can_nice - check if a task can reduce its nice value
3996 * @p: task
3997 * @nice: nice value
3998 */
36c8b586 3999int can_nice(const struct task_struct *p, const int nice)
e43379f1 4000{
024f4747
MM
4001 /* convert nice value [19,-20] to rlimit style value [1,40] */
4002 int nice_rlim = 20 - nice;
48f24c4d 4003
e43379f1
MM
4004 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4005 capable(CAP_SYS_NICE));
4006}
4007
1da177e4
LT
4008#ifdef __ARCH_WANT_SYS_NICE
4009
4010/*
4011 * sys_nice - change the priority of the current process.
4012 * @increment: priority increment
4013 *
4014 * sys_setpriority is a more generic, but much slower function that
4015 * does similar things.
4016 */
4017asmlinkage long sys_nice(int increment)
4018{
48f24c4d 4019 long nice, retval;
1da177e4
LT
4020
4021 /*
4022 * Setpriority might change our priority at the same moment.
4023 * We don't have to worry. Conceptually one call occurs first
4024 * and we have a single winner.
4025 */
e43379f1
MM
4026 if (increment < -40)
4027 increment = -40;
1da177e4
LT
4028 if (increment > 40)
4029 increment = 40;
4030
4031 nice = PRIO_TO_NICE(current->static_prio) + increment;
4032 if (nice < -20)
4033 nice = -20;
4034 if (nice > 19)
4035 nice = 19;
4036
e43379f1
MM
4037 if (increment < 0 && !can_nice(current, nice))
4038 return -EPERM;
4039
1da177e4
LT
4040 retval = security_task_setnice(current, nice);
4041 if (retval)
4042 return retval;
4043
4044 set_user_nice(current, nice);
4045 return 0;
4046}
4047
4048#endif
4049
4050/**
4051 * task_prio - return the priority value of a given task.
4052 * @p: the task in question.
4053 *
4054 * This is the priority value as seen by users in /proc.
4055 * RT tasks are offset by -200. Normal tasks are centered
4056 * around 0, value goes from -16 to +15.
4057 */
36c8b586 4058int task_prio(const struct task_struct *p)
1da177e4
LT
4059{
4060 return p->prio - MAX_RT_PRIO;
4061}
4062
4063/**
4064 * task_nice - return the nice value of a given task.
4065 * @p: the task in question.
4066 */
36c8b586 4067int task_nice(const struct task_struct *p)
1da177e4
LT
4068{
4069 return TASK_NICE(p);
4070}
1da177e4 4071EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4072
4073/**
4074 * idle_cpu - is a given cpu idle currently?
4075 * @cpu: the processor in question.
4076 */
4077int idle_cpu(int cpu)
4078{
4079 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4080}
4081
1da177e4
LT
4082/**
4083 * idle_task - return the idle task for a given cpu.
4084 * @cpu: the processor in question.
4085 */
36c8b586 4086struct task_struct *idle_task(int cpu)
1da177e4
LT
4087{
4088 return cpu_rq(cpu)->idle;
4089}
4090
4091/**
4092 * find_process_by_pid - find a process with a matching PID value.
4093 * @pid: the pid in question.
4094 */
36c8b586 4095static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4096{
4097 return pid ? find_task_by_pid(pid) : current;
4098}
4099
4100/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4101static void
4102__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4103{
dd41f596 4104 BUG_ON(p->se.on_rq);
48f24c4d 4105
1da177e4 4106 p->policy = policy;
dd41f596
IM
4107 switch (p->policy) {
4108 case SCHED_NORMAL:
4109 case SCHED_BATCH:
4110 case SCHED_IDLE:
4111 p->sched_class = &fair_sched_class;
4112 break;
4113 case SCHED_FIFO:
4114 case SCHED_RR:
4115 p->sched_class = &rt_sched_class;
4116 break;
4117 }
4118
1da177e4 4119 p->rt_priority = prio;
b29739f9
IM
4120 p->normal_prio = normal_prio(p);
4121 /* we are holding p->pi_lock already */
4122 p->prio = rt_mutex_getprio(p);
2dd73a4f 4123 set_load_weight(p);
1da177e4
LT
4124}
4125
4126/**
72fd4a35 4127 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4128 * @p: the task in question.
4129 * @policy: new policy.
4130 * @param: structure containing the new RT priority.
5fe1d75f 4131 *
72fd4a35 4132 * NOTE that the task may be already dead.
1da177e4 4133 */
95cdf3b7
IM
4134int sched_setscheduler(struct task_struct *p, int policy,
4135 struct sched_param *param)
1da177e4 4136{
dd41f596 4137 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4138 unsigned long flags;
70b97a7f 4139 struct rq *rq;
1da177e4 4140
66e5393a
SR
4141 /* may grab non-irq protected spin_locks */
4142 BUG_ON(in_interrupt());
1da177e4
LT
4143recheck:
4144 /* double check policy once rq lock held */
4145 if (policy < 0)
4146 policy = oldpolicy = p->policy;
4147 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4148 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4149 policy != SCHED_IDLE)
b0a9499c 4150 return -EINVAL;
1da177e4
LT
4151 /*
4152 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4153 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4154 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4155 */
4156 if (param->sched_priority < 0 ||
95cdf3b7 4157 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4158 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4159 return -EINVAL;
e05606d3 4160 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4161 return -EINVAL;
4162
37e4ab3f
OC
4163 /*
4164 * Allow unprivileged RT tasks to decrease priority:
4165 */
4166 if (!capable(CAP_SYS_NICE)) {
e05606d3 4167 if (rt_policy(policy)) {
8dc3e909 4168 unsigned long rlim_rtprio;
8dc3e909
ON
4169
4170 if (!lock_task_sighand(p, &flags))
4171 return -ESRCH;
4172 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4173 unlock_task_sighand(p, &flags);
4174
4175 /* can't set/change the rt policy */
4176 if (policy != p->policy && !rlim_rtprio)
4177 return -EPERM;
4178
4179 /* can't increase priority */
4180 if (param->sched_priority > p->rt_priority &&
4181 param->sched_priority > rlim_rtprio)
4182 return -EPERM;
4183 }
dd41f596
IM
4184 /*
4185 * Like positive nice levels, dont allow tasks to
4186 * move out of SCHED_IDLE either:
4187 */
4188 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4189 return -EPERM;
5fe1d75f 4190
37e4ab3f
OC
4191 /* can't change other user's priorities */
4192 if ((current->euid != p->euid) &&
4193 (current->euid != p->uid))
4194 return -EPERM;
4195 }
1da177e4
LT
4196
4197 retval = security_task_setscheduler(p, policy, param);
4198 if (retval)
4199 return retval;
b29739f9
IM
4200 /*
4201 * make sure no PI-waiters arrive (or leave) while we are
4202 * changing the priority of the task:
4203 */
4204 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4205 /*
4206 * To be able to change p->policy safely, the apropriate
4207 * runqueue lock must be held.
4208 */
b29739f9 4209 rq = __task_rq_lock(p);
1da177e4
LT
4210 /* recheck policy now with rq lock held */
4211 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4212 policy = oldpolicy = -1;
b29739f9
IM
4213 __task_rq_unlock(rq);
4214 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4215 goto recheck;
4216 }
2daa3577 4217 update_rq_clock(rq);
dd41f596 4218 on_rq = p->se.on_rq;
2daa3577 4219 if (on_rq)
2e1cb74a 4220 deactivate_task(rq, p, 0);
1da177e4 4221 oldprio = p->prio;
dd41f596
IM
4222 __setscheduler(rq, p, policy, param->sched_priority);
4223 if (on_rq) {
4224 activate_task(rq, p, 0);
1da177e4
LT
4225 /*
4226 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4227 * our priority decreased, or if we are not currently running on
4228 * this runqueue and our priority is higher than the current's
1da177e4 4229 */
d5f9f942
AM
4230 if (task_running(rq, p)) {
4231 if (p->prio > oldprio)
4232 resched_task(rq->curr);
dd41f596
IM
4233 } else {
4234 check_preempt_curr(rq, p);
4235 }
1da177e4 4236 }
b29739f9
IM
4237 __task_rq_unlock(rq);
4238 spin_unlock_irqrestore(&p->pi_lock, flags);
4239
95e02ca9
TG
4240 rt_mutex_adjust_pi(p);
4241
1da177e4
LT
4242 return 0;
4243}
4244EXPORT_SYMBOL_GPL(sched_setscheduler);
4245
95cdf3b7
IM
4246static int
4247do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4248{
1da177e4
LT
4249 struct sched_param lparam;
4250 struct task_struct *p;
36c8b586 4251 int retval;
1da177e4
LT
4252
4253 if (!param || pid < 0)
4254 return -EINVAL;
4255 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4256 return -EFAULT;
5fe1d75f
ON
4257
4258 rcu_read_lock();
4259 retval = -ESRCH;
1da177e4 4260 p = find_process_by_pid(pid);
5fe1d75f
ON
4261 if (p != NULL)
4262 retval = sched_setscheduler(p, policy, &lparam);
4263 rcu_read_unlock();
36c8b586 4264
1da177e4
LT
4265 return retval;
4266}
4267
4268/**
4269 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4270 * @pid: the pid in question.
4271 * @policy: new policy.
4272 * @param: structure containing the new RT priority.
4273 */
4274asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4275 struct sched_param __user *param)
4276{
c21761f1
JB
4277 /* negative values for policy are not valid */
4278 if (policy < 0)
4279 return -EINVAL;
4280
1da177e4
LT
4281 return do_sched_setscheduler(pid, policy, param);
4282}
4283
4284/**
4285 * sys_sched_setparam - set/change the RT priority of a thread
4286 * @pid: the pid in question.
4287 * @param: structure containing the new RT priority.
4288 */
4289asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4290{
4291 return do_sched_setscheduler(pid, -1, param);
4292}
4293
4294/**
4295 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4296 * @pid: the pid in question.
4297 */
4298asmlinkage long sys_sched_getscheduler(pid_t pid)
4299{
36c8b586 4300 struct task_struct *p;
1da177e4 4301 int retval = -EINVAL;
1da177e4
LT
4302
4303 if (pid < 0)
4304 goto out_nounlock;
4305
4306 retval = -ESRCH;
4307 read_lock(&tasklist_lock);
4308 p = find_process_by_pid(pid);
4309 if (p) {
4310 retval = security_task_getscheduler(p);
4311 if (!retval)
4312 retval = p->policy;
4313 }
4314 read_unlock(&tasklist_lock);
4315
4316out_nounlock:
4317 return retval;
4318}
4319
4320/**
4321 * sys_sched_getscheduler - get the RT priority of a thread
4322 * @pid: the pid in question.
4323 * @param: structure containing the RT priority.
4324 */
4325asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4326{
4327 struct sched_param lp;
36c8b586 4328 struct task_struct *p;
1da177e4 4329 int retval = -EINVAL;
1da177e4
LT
4330
4331 if (!param || pid < 0)
4332 goto out_nounlock;
4333
4334 read_lock(&tasklist_lock);
4335 p = find_process_by_pid(pid);
4336 retval = -ESRCH;
4337 if (!p)
4338 goto out_unlock;
4339
4340 retval = security_task_getscheduler(p);
4341 if (retval)
4342 goto out_unlock;
4343
4344 lp.sched_priority = p->rt_priority;
4345 read_unlock(&tasklist_lock);
4346
4347 /*
4348 * This one might sleep, we cannot do it with a spinlock held ...
4349 */
4350 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4351
4352out_nounlock:
4353 return retval;
4354
4355out_unlock:
4356 read_unlock(&tasklist_lock);
4357 return retval;
4358}
4359
4360long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4361{
1da177e4 4362 cpumask_t cpus_allowed;
36c8b586
IM
4363 struct task_struct *p;
4364 int retval;
1da177e4 4365
5be9361c 4366 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4367 read_lock(&tasklist_lock);
4368
4369 p = find_process_by_pid(pid);
4370 if (!p) {
4371 read_unlock(&tasklist_lock);
5be9361c 4372 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4373 return -ESRCH;
4374 }
4375
4376 /*
4377 * It is not safe to call set_cpus_allowed with the
4378 * tasklist_lock held. We will bump the task_struct's
4379 * usage count and then drop tasklist_lock.
4380 */
4381 get_task_struct(p);
4382 read_unlock(&tasklist_lock);
4383
4384 retval = -EPERM;
4385 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4386 !capable(CAP_SYS_NICE))
4387 goto out_unlock;
4388
e7834f8f
DQ
4389 retval = security_task_setscheduler(p, 0, NULL);
4390 if (retval)
4391 goto out_unlock;
4392
1da177e4
LT
4393 cpus_allowed = cpuset_cpus_allowed(p);
4394 cpus_and(new_mask, new_mask, cpus_allowed);
4395 retval = set_cpus_allowed(p, new_mask);
4396
4397out_unlock:
4398 put_task_struct(p);
5be9361c 4399 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4400 return retval;
4401}
4402
4403static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4404 cpumask_t *new_mask)
4405{
4406 if (len < sizeof(cpumask_t)) {
4407 memset(new_mask, 0, sizeof(cpumask_t));
4408 } else if (len > sizeof(cpumask_t)) {
4409 len = sizeof(cpumask_t);
4410 }
4411 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4412}
4413
4414/**
4415 * sys_sched_setaffinity - set the cpu affinity of a process
4416 * @pid: pid of the process
4417 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4418 * @user_mask_ptr: user-space pointer to the new cpu mask
4419 */
4420asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4421 unsigned long __user *user_mask_ptr)
4422{
4423 cpumask_t new_mask;
4424 int retval;
4425
4426 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4427 if (retval)
4428 return retval;
4429
4430 return sched_setaffinity(pid, new_mask);
4431}
4432
4433/*
4434 * Represents all cpu's present in the system
4435 * In systems capable of hotplug, this map could dynamically grow
4436 * as new cpu's are detected in the system via any platform specific
4437 * method, such as ACPI for e.g.
4438 */
4439
4cef0c61 4440cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4441EXPORT_SYMBOL(cpu_present_map);
4442
4443#ifndef CONFIG_SMP
4cef0c61 4444cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4445EXPORT_SYMBOL(cpu_online_map);
4446
4cef0c61 4447cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4448EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4449#endif
4450
4451long sched_getaffinity(pid_t pid, cpumask_t *mask)
4452{
36c8b586 4453 struct task_struct *p;
1da177e4 4454 int retval;
1da177e4 4455
5be9361c 4456 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4457 read_lock(&tasklist_lock);
4458
4459 retval = -ESRCH;
4460 p = find_process_by_pid(pid);
4461 if (!p)
4462 goto out_unlock;
4463
e7834f8f
DQ
4464 retval = security_task_getscheduler(p);
4465 if (retval)
4466 goto out_unlock;
4467
2f7016d9 4468 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4469
4470out_unlock:
4471 read_unlock(&tasklist_lock);
5be9361c 4472 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4473
9531b62f 4474 return retval;
1da177e4
LT
4475}
4476
4477/**
4478 * sys_sched_getaffinity - get the cpu affinity of a process
4479 * @pid: pid of the process
4480 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4481 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4482 */
4483asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4484 unsigned long __user *user_mask_ptr)
4485{
4486 int ret;
4487 cpumask_t mask;
4488
4489 if (len < sizeof(cpumask_t))
4490 return -EINVAL;
4491
4492 ret = sched_getaffinity(pid, &mask);
4493 if (ret < 0)
4494 return ret;
4495
4496 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4497 return -EFAULT;
4498
4499 return sizeof(cpumask_t);
4500}
4501
4502/**
4503 * sys_sched_yield - yield the current processor to other threads.
4504 *
dd41f596
IM
4505 * This function yields the current CPU to other tasks. If there are no
4506 * other threads running on this CPU then this function will return.
1da177e4
LT
4507 */
4508asmlinkage long sys_sched_yield(void)
4509{
70b97a7f 4510 struct rq *rq = this_rq_lock();
1da177e4
LT
4511
4512 schedstat_inc(rq, yld_cnt);
dd41f596 4513 if (unlikely(rq->nr_running == 1))
1da177e4 4514 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4515 else
4516 current->sched_class->yield_task(rq, current);
1da177e4
LT
4517
4518 /*
4519 * Since we are going to call schedule() anyway, there's
4520 * no need to preempt or enable interrupts:
4521 */
4522 __release(rq->lock);
8a25d5de 4523 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4524 _raw_spin_unlock(&rq->lock);
4525 preempt_enable_no_resched();
4526
4527 schedule();
4528
4529 return 0;
4530}
4531
e7b38404 4532static void __cond_resched(void)
1da177e4 4533{
8e0a43d8
IM
4534#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4535 __might_sleep(__FILE__, __LINE__);
4536#endif
5bbcfd90
IM
4537 /*
4538 * The BKS might be reacquired before we have dropped
4539 * PREEMPT_ACTIVE, which could trigger a second
4540 * cond_resched() call.
4541 */
1da177e4
LT
4542 do {
4543 add_preempt_count(PREEMPT_ACTIVE);
4544 schedule();
4545 sub_preempt_count(PREEMPT_ACTIVE);
4546 } while (need_resched());
4547}
4548
4549int __sched cond_resched(void)
4550{
9414232f
IM
4551 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4552 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4553 __cond_resched();
4554 return 1;
4555 }
4556 return 0;
4557}
1da177e4
LT
4558EXPORT_SYMBOL(cond_resched);
4559
4560/*
4561 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4562 * call schedule, and on return reacquire the lock.
4563 *
4564 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4565 * operations here to prevent schedule() from being called twice (once via
4566 * spin_unlock(), once by hand).
4567 */
95cdf3b7 4568int cond_resched_lock(spinlock_t *lock)
1da177e4 4569{
6df3cecb
JK
4570 int ret = 0;
4571
1da177e4
LT
4572 if (need_lockbreak(lock)) {
4573 spin_unlock(lock);
4574 cpu_relax();
6df3cecb 4575 ret = 1;
1da177e4
LT
4576 spin_lock(lock);
4577 }
9414232f 4578 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4579 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4580 _raw_spin_unlock(lock);
4581 preempt_enable_no_resched();
4582 __cond_resched();
6df3cecb 4583 ret = 1;
1da177e4 4584 spin_lock(lock);
1da177e4 4585 }
6df3cecb 4586 return ret;
1da177e4 4587}
1da177e4
LT
4588EXPORT_SYMBOL(cond_resched_lock);
4589
4590int __sched cond_resched_softirq(void)
4591{
4592 BUG_ON(!in_softirq());
4593
9414232f 4594 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4595 local_bh_enable();
1da177e4
LT
4596 __cond_resched();
4597 local_bh_disable();
4598 return 1;
4599 }
4600 return 0;
4601}
1da177e4
LT
4602EXPORT_SYMBOL(cond_resched_softirq);
4603
1da177e4
LT
4604/**
4605 * yield - yield the current processor to other threads.
4606 *
72fd4a35 4607 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4608 * thread runnable and calls sys_sched_yield().
4609 */
4610void __sched yield(void)
4611{
4612 set_current_state(TASK_RUNNING);
4613 sys_sched_yield();
4614}
1da177e4
LT
4615EXPORT_SYMBOL(yield);
4616
4617/*
4618 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4619 * that process accounting knows that this is a task in IO wait state.
4620 *
4621 * But don't do that if it is a deliberate, throttling IO wait (this task
4622 * has set its backing_dev_info: the queue against which it should throttle)
4623 */
4624void __sched io_schedule(void)
4625{
70b97a7f 4626 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4627
0ff92245 4628 delayacct_blkio_start();
1da177e4
LT
4629 atomic_inc(&rq->nr_iowait);
4630 schedule();
4631 atomic_dec(&rq->nr_iowait);
0ff92245 4632 delayacct_blkio_end();
1da177e4 4633}
1da177e4
LT
4634EXPORT_SYMBOL(io_schedule);
4635
4636long __sched io_schedule_timeout(long timeout)
4637{
70b97a7f 4638 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4639 long ret;
4640
0ff92245 4641 delayacct_blkio_start();
1da177e4
LT
4642 atomic_inc(&rq->nr_iowait);
4643 ret = schedule_timeout(timeout);
4644 atomic_dec(&rq->nr_iowait);
0ff92245 4645 delayacct_blkio_end();
1da177e4
LT
4646 return ret;
4647}
4648
4649/**
4650 * sys_sched_get_priority_max - return maximum RT priority.
4651 * @policy: scheduling class.
4652 *
4653 * this syscall returns the maximum rt_priority that can be used
4654 * by a given scheduling class.
4655 */
4656asmlinkage long sys_sched_get_priority_max(int policy)
4657{
4658 int ret = -EINVAL;
4659
4660 switch (policy) {
4661 case SCHED_FIFO:
4662 case SCHED_RR:
4663 ret = MAX_USER_RT_PRIO-1;
4664 break;
4665 case SCHED_NORMAL:
b0a9499c 4666 case SCHED_BATCH:
dd41f596 4667 case SCHED_IDLE:
1da177e4
LT
4668 ret = 0;
4669 break;
4670 }
4671 return ret;
4672}
4673
4674/**
4675 * sys_sched_get_priority_min - return minimum RT priority.
4676 * @policy: scheduling class.
4677 *
4678 * this syscall returns the minimum rt_priority that can be used
4679 * by a given scheduling class.
4680 */
4681asmlinkage long sys_sched_get_priority_min(int policy)
4682{
4683 int ret = -EINVAL;
4684
4685 switch (policy) {
4686 case SCHED_FIFO:
4687 case SCHED_RR:
4688 ret = 1;
4689 break;
4690 case SCHED_NORMAL:
b0a9499c 4691 case SCHED_BATCH:
dd41f596 4692 case SCHED_IDLE:
1da177e4
LT
4693 ret = 0;
4694 }
4695 return ret;
4696}
4697
4698/**
4699 * sys_sched_rr_get_interval - return the default timeslice of a process.
4700 * @pid: pid of the process.
4701 * @interval: userspace pointer to the timeslice value.
4702 *
4703 * this syscall writes the default timeslice value of a given process
4704 * into the user-space timespec buffer. A value of '0' means infinity.
4705 */
4706asmlinkage
4707long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4708{
36c8b586 4709 struct task_struct *p;
1da177e4
LT
4710 int retval = -EINVAL;
4711 struct timespec t;
1da177e4
LT
4712
4713 if (pid < 0)
4714 goto out_nounlock;
4715
4716 retval = -ESRCH;
4717 read_lock(&tasklist_lock);
4718 p = find_process_by_pid(pid);
4719 if (!p)
4720 goto out_unlock;
4721
4722 retval = security_task_getscheduler(p);
4723 if (retval)
4724 goto out_unlock;
4725
b78709cf 4726 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4727 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4728 read_unlock(&tasklist_lock);
4729 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4730out_nounlock:
4731 return retval;
4732out_unlock:
4733 read_unlock(&tasklist_lock);
4734 return retval;
4735}
4736
2ed6e34f 4737static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4738
4739static void show_task(struct task_struct *p)
1da177e4 4740{
1da177e4 4741 unsigned long free = 0;
36c8b586 4742 unsigned state;
1da177e4 4743
1da177e4 4744 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4745 printk("%-13.13s %c", p->comm,
4746 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4747#if BITS_PER_LONG == 32
1da177e4 4748 if (state == TASK_RUNNING)
4bd77321 4749 printk(" running ");
1da177e4 4750 else
4bd77321 4751 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4752#else
4753 if (state == TASK_RUNNING)
4bd77321 4754 printk(" running task ");
1da177e4
LT
4755 else
4756 printk(" %016lx ", thread_saved_pc(p));
4757#endif
4758#ifdef CONFIG_DEBUG_STACK_USAGE
4759 {
10ebffde 4760 unsigned long *n = end_of_stack(p);
1da177e4
LT
4761 while (!*n)
4762 n++;
10ebffde 4763 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4764 }
4765#endif
4bd77321 4766 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4767
4768 if (state != TASK_RUNNING)
4769 show_stack(p, NULL);
4770}
4771
e59e2ae2 4772void show_state_filter(unsigned long state_filter)
1da177e4 4773{
36c8b586 4774 struct task_struct *g, *p;
1da177e4 4775
4bd77321
IM
4776#if BITS_PER_LONG == 32
4777 printk(KERN_INFO
4778 " task PC stack pid father\n");
1da177e4 4779#else
4bd77321
IM
4780 printk(KERN_INFO
4781 " task PC stack pid father\n");
1da177e4
LT
4782#endif
4783 read_lock(&tasklist_lock);
4784 do_each_thread(g, p) {
4785 /*
4786 * reset the NMI-timeout, listing all files on a slow
4787 * console might take alot of time:
4788 */
4789 touch_nmi_watchdog();
39bc89fd 4790 if (!state_filter || (p->state & state_filter))
e59e2ae2 4791 show_task(p);
1da177e4
LT
4792 } while_each_thread(g, p);
4793
04c9167f
JF
4794 touch_all_softlockup_watchdogs();
4795
dd41f596
IM
4796#ifdef CONFIG_SCHED_DEBUG
4797 sysrq_sched_debug_show();
4798#endif
1da177e4 4799 read_unlock(&tasklist_lock);
e59e2ae2
IM
4800 /*
4801 * Only show locks if all tasks are dumped:
4802 */
4803 if (state_filter == -1)
4804 debug_show_all_locks();
1da177e4
LT
4805}
4806
1df21055
IM
4807void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4808{
dd41f596 4809 idle->sched_class = &idle_sched_class;
1df21055
IM
4810}
4811
f340c0d1
IM
4812/**
4813 * init_idle - set up an idle thread for a given CPU
4814 * @idle: task in question
4815 * @cpu: cpu the idle task belongs to
4816 *
4817 * NOTE: this function does not set the idle thread's NEED_RESCHED
4818 * flag, to make booting more robust.
4819 */
5c1e1767 4820void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4821{
70b97a7f 4822 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4823 unsigned long flags;
4824
dd41f596
IM
4825 __sched_fork(idle);
4826 idle->se.exec_start = sched_clock();
4827
b29739f9 4828 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4829 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4830 __set_task_cpu(idle, cpu);
1da177e4
LT
4831
4832 spin_lock_irqsave(&rq->lock, flags);
4833 rq->curr = rq->idle = idle;
4866cde0
NP
4834#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4835 idle->oncpu = 1;
4836#endif
1da177e4
LT
4837 spin_unlock_irqrestore(&rq->lock, flags);
4838
4839 /* Set the preempt count _outside_ the spinlocks! */
4840#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4841 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4842#else
a1261f54 4843 task_thread_info(idle)->preempt_count = 0;
1da177e4 4844#endif
dd41f596
IM
4845 /*
4846 * The idle tasks have their own, simple scheduling class:
4847 */
4848 idle->sched_class = &idle_sched_class;
1da177e4
LT
4849}
4850
4851/*
4852 * In a system that switches off the HZ timer nohz_cpu_mask
4853 * indicates which cpus entered this state. This is used
4854 * in the rcu update to wait only for active cpus. For system
4855 * which do not switch off the HZ timer nohz_cpu_mask should
4856 * always be CPU_MASK_NONE.
4857 */
4858cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4859
dd41f596
IM
4860/*
4861 * Increase the granularity value when there are more CPUs,
4862 * because with more CPUs the 'effective latency' as visible
4863 * to users decreases. But the relationship is not linear,
4864 * so pick a second-best guess by going with the log2 of the
4865 * number of CPUs.
4866 *
4867 * This idea comes from the SD scheduler of Con Kolivas:
4868 */
4869static inline void sched_init_granularity(void)
4870{
4871 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4872 const unsigned long gran_limit = 100000000;
dd41f596
IM
4873
4874 sysctl_sched_granularity *= factor;
4875 if (sysctl_sched_granularity > gran_limit)
4876 sysctl_sched_granularity = gran_limit;
4877
4878 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4879 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4880}
4881
1da177e4
LT
4882#ifdef CONFIG_SMP
4883/*
4884 * This is how migration works:
4885 *
70b97a7f 4886 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4887 * runqueue and wake up that CPU's migration thread.
4888 * 2) we down() the locked semaphore => thread blocks.
4889 * 3) migration thread wakes up (implicitly it forces the migrated
4890 * thread off the CPU)
4891 * 4) it gets the migration request and checks whether the migrated
4892 * task is still in the wrong runqueue.
4893 * 5) if it's in the wrong runqueue then the migration thread removes
4894 * it and puts it into the right queue.
4895 * 6) migration thread up()s the semaphore.
4896 * 7) we wake up and the migration is done.
4897 */
4898
4899/*
4900 * Change a given task's CPU affinity. Migrate the thread to a
4901 * proper CPU and schedule it away if the CPU it's executing on
4902 * is removed from the allowed bitmask.
4903 *
4904 * NOTE: the caller must have a valid reference to the task, the
4905 * task must not exit() & deallocate itself prematurely. The
4906 * call is not atomic; no spinlocks may be held.
4907 */
36c8b586 4908int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4909{
70b97a7f 4910 struct migration_req req;
1da177e4 4911 unsigned long flags;
70b97a7f 4912 struct rq *rq;
48f24c4d 4913 int ret = 0;
1da177e4
LT
4914
4915 rq = task_rq_lock(p, &flags);
4916 if (!cpus_intersects(new_mask, cpu_online_map)) {
4917 ret = -EINVAL;
4918 goto out;
4919 }
4920
4921 p->cpus_allowed = new_mask;
4922 /* Can the task run on the task's current CPU? If so, we're done */
4923 if (cpu_isset(task_cpu(p), new_mask))
4924 goto out;
4925
4926 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4927 /* Need help from migration thread: drop lock and wait. */
4928 task_rq_unlock(rq, &flags);
4929 wake_up_process(rq->migration_thread);
4930 wait_for_completion(&req.done);
4931 tlb_migrate_finish(p->mm);
4932 return 0;
4933 }
4934out:
4935 task_rq_unlock(rq, &flags);
48f24c4d 4936
1da177e4
LT
4937 return ret;
4938}
1da177e4
LT
4939EXPORT_SYMBOL_GPL(set_cpus_allowed);
4940
4941/*
4942 * Move (not current) task off this cpu, onto dest cpu. We're doing
4943 * this because either it can't run here any more (set_cpus_allowed()
4944 * away from this CPU, or CPU going down), or because we're
4945 * attempting to rebalance this task on exec (sched_exec).
4946 *
4947 * So we race with normal scheduler movements, but that's OK, as long
4948 * as the task is no longer on this CPU.
efc30814
KK
4949 *
4950 * Returns non-zero if task was successfully migrated.
1da177e4 4951 */
efc30814 4952static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4953{
70b97a7f 4954 struct rq *rq_dest, *rq_src;
dd41f596 4955 int ret = 0, on_rq;
1da177e4
LT
4956
4957 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4958 return ret;
1da177e4
LT
4959
4960 rq_src = cpu_rq(src_cpu);
4961 rq_dest = cpu_rq(dest_cpu);
4962
4963 double_rq_lock(rq_src, rq_dest);
4964 /* Already moved. */
4965 if (task_cpu(p) != src_cpu)
4966 goto out;
4967 /* Affinity changed (again). */
4968 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4969 goto out;
4970
dd41f596 4971 on_rq = p->se.on_rq;
6e82a3be 4972 if (on_rq)
2e1cb74a 4973 deactivate_task(rq_src, p, 0);
6e82a3be 4974
1da177e4 4975 set_task_cpu(p, dest_cpu);
dd41f596
IM
4976 if (on_rq) {
4977 activate_task(rq_dest, p, 0);
4978 check_preempt_curr(rq_dest, p);
1da177e4 4979 }
efc30814 4980 ret = 1;
1da177e4
LT
4981out:
4982 double_rq_unlock(rq_src, rq_dest);
efc30814 4983 return ret;
1da177e4
LT
4984}
4985
4986/*
4987 * migration_thread - this is a highprio system thread that performs
4988 * thread migration by bumping thread off CPU then 'pushing' onto
4989 * another runqueue.
4990 */
95cdf3b7 4991static int migration_thread(void *data)
1da177e4 4992{
1da177e4 4993 int cpu = (long)data;
70b97a7f 4994 struct rq *rq;
1da177e4
LT
4995
4996 rq = cpu_rq(cpu);
4997 BUG_ON(rq->migration_thread != current);
4998
4999 set_current_state(TASK_INTERRUPTIBLE);
5000 while (!kthread_should_stop()) {
70b97a7f 5001 struct migration_req *req;
1da177e4 5002 struct list_head *head;
1da177e4 5003
1da177e4
LT
5004 spin_lock_irq(&rq->lock);
5005
5006 if (cpu_is_offline(cpu)) {
5007 spin_unlock_irq(&rq->lock);
5008 goto wait_to_die;
5009 }
5010
5011 if (rq->active_balance) {
5012 active_load_balance(rq, cpu);
5013 rq->active_balance = 0;
5014 }
5015
5016 head = &rq->migration_queue;
5017
5018 if (list_empty(head)) {
5019 spin_unlock_irq(&rq->lock);
5020 schedule();
5021 set_current_state(TASK_INTERRUPTIBLE);
5022 continue;
5023 }
70b97a7f 5024 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5025 list_del_init(head->next);
5026
674311d5
NP
5027 spin_unlock(&rq->lock);
5028 __migrate_task(req->task, cpu, req->dest_cpu);
5029 local_irq_enable();
1da177e4
LT
5030
5031 complete(&req->done);
5032 }
5033 __set_current_state(TASK_RUNNING);
5034 return 0;
5035
5036wait_to_die:
5037 /* Wait for kthread_stop */
5038 set_current_state(TASK_INTERRUPTIBLE);
5039 while (!kthread_should_stop()) {
5040 schedule();
5041 set_current_state(TASK_INTERRUPTIBLE);
5042 }
5043 __set_current_state(TASK_RUNNING);
5044 return 0;
5045}
5046
5047#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5048/*
5049 * Figure out where task on dead CPU should go, use force if neccessary.
5050 * NOTE: interrupts should be disabled by the caller
5051 */
48f24c4d 5052static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5053{
efc30814 5054 unsigned long flags;
1da177e4 5055 cpumask_t mask;
70b97a7f
IM
5056 struct rq *rq;
5057 int dest_cpu;
1da177e4 5058
efc30814 5059restart:
1da177e4
LT
5060 /* On same node? */
5061 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5062 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5063 dest_cpu = any_online_cpu(mask);
5064
5065 /* On any allowed CPU? */
5066 if (dest_cpu == NR_CPUS)
48f24c4d 5067 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5068
5069 /* No more Mr. Nice Guy. */
5070 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5071 rq = task_rq_lock(p, &flags);
5072 cpus_setall(p->cpus_allowed);
5073 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5074 task_rq_unlock(rq, &flags);
1da177e4
LT
5075
5076 /*
5077 * Don't tell them about moving exiting tasks or
5078 * kernel threads (both mm NULL), since they never
5079 * leave kernel.
5080 */
48f24c4d 5081 if (p->mm && printk_ratelimit())
1da177e4
LT
5082 printk(KERN_INFO "process %d (%s) no "
5083 "longer affine to cpu%d\n",
48f24c4d 5084 p->pid, p->comm, dead_cpu);
1da177e4 5085 }
48f24c4d 5086 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5087 goto restart;
1da177e4
LT
5088}
5089
5090/*
5091 * While a dead CPU has no uninterruptible tasks queued at this point,
5092 * it might still have a nonzero ->nr_uninterruptible counter, because
5093 * for performance reasons the counter is not stricly tracking tasks to
5094 * their home CPUs. So we just add the counter to another CPU's counter,
5095 * to keep the global sum constant after CPU-down:
5096 */
70b97a7f 5097static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5098{
70b97a7f 5099 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5100 unsigned long flags;
5101
5102 local_irq_save(flags);
5103 double_rq_lock(rq_src, rq_dest);
5104 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5105 rq_src->nr_uninterruptible = 0;
5106 double_rq_unlock(rq_src, rq_dest);
5107 local_irq_restore(flags);
5108}
5109
5110/* Run through task list and migrate tasks from the dead cpu. */
5111static void migrate_live_tasks(int src_cpu)
5112{
48f24c4d 5113 struct task_struct *p, *t;
1da177e4
LT
5114
5115 write_lock_irq(&tasklist_lock);
5116
48f24c4d
IM
5117 do_each_thread(t, p) {
5118 if (p == current)
1da177e4
LT
5119 continue;
5120
48f24c4d
IM
5121 if (task_cpu(p) == src_cpu)
5122 move_task_off_dead_cpu(src_cpu, p);
5123 } while_each_thread(t, p);
1da177e4
LT
5124
5125 write_unlock_irq(&tasklist_lock);
5126}
5127
dd41f596
IM
5128/*
5129 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5130 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5131 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5132 */
5133void sched_idle_next(void)
5134{
48f24c4d 5135 int this_cpu = smp_processor_id();
70b97a7f 5136 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5137 struct task_struct *p = rq->idle;
5138 unsigned long flags;
5139
5140 /* cpu has to be offline */
48f24c4d 5141 BUG_ON(cpu_online(this_cpu));
1da177e4 5142
48f24c4d
IM
5143 /*
5144 * Strictly not necessary since rest of the CPUs are stopped by now
5145 * and interrupts disabled on the current cpu.
1da177e4
LT
5146 */
5147 spin_lock_irqsave(&rq->lock, flags);
5148
dd41f596 5149 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5150
5151 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5152 activate_idle_task(p, rq);
1da177e4
LT
5153
5154 spin_unlock_irqrestore(&rq->lock, flags);
5155}
5156
48f24c4d
IM
5157/*
5158 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5159 * offline.
5160 */
5161void idle_task_exit(void)
5162{
5163 struct mm_struct *mm = current->active_mm;
5164
5165 BUG_ON(cpu_online(smp_processor_id()));
5166
5167 if (mm != &init_mm)
5168 switch_mm(mm, &init_mm, current);
5169 mmdrop(mm);
5170}
5171
054b9108 5172/* called under rq->lock with disabled interrupts */
36c8b586 5173static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5174{
70b97a7f 5175 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5176
5177 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5178 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5179
5180 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5181 BUG_ON(p->state == TASK_DEAD);
1da177e4 5182
48f24c4d 5183 get_task_struct(p);
1da177e4
LT
5184
5185 /*
5186 * Drop lock around migration; if someone else moves it,
5187 * that's OK. No task can be added to this CPU, so iteration is
5188 * fine.
054b9108 5189 * NOTE: interrupts should be left disabled --dev@
1da177e4 5190 */
054b9108 5191 spin_unlock(&rq->lock);
48f24c4d 5192 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5193 spin_lock(&rq->lock);
1da177e4 5194
48f24c4d 5195 put_task_struct(p);
1da177e4
LT
5196}
5197
5198/* release_task() removes task from tasklist, so we won't find dead tasks. */
5199static void migrate_dead_tasks(unsigned int dead_cpu)
5200{
70b97a7f 5201 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5202 struct task_struct *next;
48f24c4d 5203
dd41f596
IM
5204 for ( ; ; ) {
5205 if (!rq->nr_running)
5206 break;
a8e504d2 5207 update_rq_clock(rq);
ff95f3df 5208 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5209 if (!next)
5210 break;
5211 migrate_dead(dead_cpu, next);
e692ab53 5212
1da177e4
LT
5213 }
5214}
5215#endif /* CONFIG_HOTPLUG_CPU */
5216
e692ab53
NP
5217#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5218
5219static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5220 {
5221 .procname = "sched_domain",
5222 .mode = 0755,
5223 },
e692ab53
NP
5224 {0,},
5225};
5226
5227static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5228 {
5229 .procname = "kernel",
5230 .mode = 0755,
5231 .child = sd_ctl_dir,
5232 },
e692ab53
NP
5233 {0,},
5234};
5235
5236static struct ctl_table *sd_alloc_ctl_entry(int n)
5237{
5238 struct ctl_table *entry =
5239 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5240
5241 BUG_ON(!entry);
5242 memset(entry, 0, n * sizeof(struct ctl_table));
5243
5244 return entry;
5245}
5246
5247static void
e0361851 5248set_table_entry(struct ctl_table *entry,
e692ab53
NP
5249 const char *procname, void *data, int maxlen,
5250 mode_t mode, proc_handler *proc_handler)
5251{
e692ab53
NP
5252 entry->procname = procname;
5253 entry->data = data;
5254 entry->maxlen = maxlen;
5255 entry->mode = mode;
5256 entry->proc_handler = proc_handler;
5257}
5258
5259static struct ctl_table *
5260sd_alloc_ctl_domain_table(struct sched_domain *sd)
5261{
5262 struct ctl_table *table = sd_alloc_ctl_entry(14);
5263
e0361851 5264 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5265 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5266 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5267 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5268 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5269 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5270 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5271 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5272 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5273 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5274 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5275 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5276 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5277 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5278 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5279 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5280 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5281 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5282 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5283 &sd->cache_nice_tries,
5284 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5285 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5286 sizeof(int), 0644, proc_dointvec_minmax);
5287
5288 return table;
5289}
5290
5291static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5292{
5293 struct ctl_table *entry, *table;
5294 struct sched_domain *sd;
5295 int domain_num = 0, i;
5296 char buf[32];
5297
5298 for_each_domain(cpu, sd)
5299 domain_num++;
5300 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5301
5302 i = 0;
5303 for_each_domain(cpu, sd) {
5304 snprintf(buf, 32, "domain%d", i);
e692ab53
NP
5305 entry->procname = kstrdup(buf, GFP_KERNEL);
5306 entry->mode = 0755;
5307 entry->child = sd_alloc_ctl_domain_table(sd);
5308 entry++;
5309 i++;
5310 }
5311 return table;
5312}
5313
5314static struct ctl_table_header *sd_sysctl_header;
5315static void init_sched_domain_sysctl(void)
5316{
5317 int i, cpu_num = num_online_cpus();
5318 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5319 char buf[32];
5320
5321 sd_ctl_dir[0].child = entry;
5322
5323 for (i = 0; i < cpu_num; i++, entry++) {
5324 snprintf(buf, 32, "cpu%d", i);
e692ab53
NP
5325 entry->procname = kstrdup(buf, GFP_KERNEL);
5326 entry->mode = 0755;
5327 entry->child = sd_alloc_ctl_cpu_table(i);
5328 }
5329 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5330}
5331#else
5332static void init_sched_domain_sysctl(void)
5333{
5334}
5335#endif
5336
1da177e4
LT
5337/*
5338 * migration_call - callback that gets triggered when a CPU is added.
5339 * Here we can start up the necessary migration thread for the new CPU.
5340 */
48f24c4d
IM
5341static int __cpuinit
5342migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5343{
1da177e4 5344 struct task_struct *p;
48f24c4d 5345 int cpu = (long)hcpu;
1da177e4 5346 unsigned long flags;
70b97a7f 5347 struct rq *rq;
1da177e4
LT
5348
5349 switch (action) {
5be9361c
GS
5350 case CPU_LOCK_ACQUIRE:
5351 mutex_lock(&sched_hotcpu_mutex);
5352 break;
5353
1da177e4 5354 case CPU_UP_PREPARE:
8bb78442 5355 case CPU_UP_PREPARE_FROZEN:
dd41f596 5356 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5357 if (IS_ERR(p))
5358 return NOTIFY_BAD;
1da177e4
LT
5359 kthread_bind(p, cpu);
5360 /* Must be high prio: stop_machine expects to yield to it. */
5361 rq = task_rq_lock(p, &flags);
dd41f596 5362 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5363 task_rq_unlock(rq, &flags);
5364 cpu_rq(cpu)->migration_thread = p;
5365 break;
48f24c4d 5366
1da177e4 5367 case CPU_ONLINE:
8bb78442 5368 case CPU_ONLINE_FROZEN:
1da177e4
LT
5369 /* Strictly unneccessary, as first user will wake it. */
5370 wake_up_process(cpu_rq(cpu)->migration_thread);
5371 break;
48f24c4d 5372
1da177e4
LT
5373#ifdef CONFIG_HOTPLUG_CPU
5374 case CPU_UP_CANCELED:
8bb78442 5375 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5376 if (!cpu_rq(cpu)->migration_thread)
5377 break;
1da177e4 5378 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5379 kthread_bind(cpu_rq(cpu)->migration_thread,
5380 any_online_cpu(cpu_online_map));
1da177e4
LT
5381 kthread_stop(cpu_rq(cpu)->migration_thread);
5382 cpu_rq(cpu)->migration_thread = NULL;
5383 break;
48f24c4d 5384
1da177e4 5385 case CPU_DEAD:
8bb78442 5386 case CPU_DEAD_FROZEN:
1da177e4
LT
5387 migrate_live_tasks(cpu);
5388 rq = cpu_rq(cpu);
5389 kthread_stop(rq->migration_thread);
5390 rq->migration_thread = NULL;
5391 /* Idle task back to normal (off runqueue, low prio) */
5392 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5393 update_rq_clock(rq);
2e1cb74a 5394 deactivate_task(rq, rq->idle, 0);
1da177e4 5395 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5396 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5397 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5398 migrate_dead_tasks(cpu);
5399 task_rq_unlock(rq, &flags);
5400 migrate_nr_uninterruptible(rq);
5401 BUG_ON(rq->nr_running != 0);
5402
5403 /* No need to migrate the tasks: it was best-effort if
5be9361c 5404 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5405 * the requestors. */
5406 spin_lock_irq(&rq->lock);
5407 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5408 struct migration_req *req;
5409
1da177e4 5410 req = list_entry(rq->migration_queue.next,
70b97a7f 5411 struct migration_req, list);
1da177e4
LT
5412 list_del_init(&req->list);
5413 complete(&req->done);
5414 }
5415 spin_unlock_irq(&rq->lock);
5416 break;
5417#endif
5be9361c
GS
5418 case CPU_LOCK_RELEASE:
5419 mutex_unlock(&sched_hotcpu_mutex);
5420 break;
1da177e4
LT
5421 }
5422 return NOTIFY_OK;
5423}
5424
5425/* Register at highest priority so that task migration (migrate_all_tasks)
5426 * happens before everything else.
5427 */
26c2143b 5428static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5429 .notifier_call = migration_call,
5430 .priority = 10
5431};
5432
5433int __init migration_init(void)
5434{
5435 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5436 int err;
48f24c4d
IM
5437
5438 /* Start one for the boot CPU: */
07dccf33
AM
5439 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5440 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5441 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5442 register_cpu_notifier(&migration_notifier);
48f24c4d 5443
1da177e4
LT
5444 return 0;
5445}
5446#endif
5447
5448#ifdef CONFIG_SMP
476f3534
CL
5449
5450/* Number of possible processor ids */
5451int nr_cpu_ids __read_mostly = NR_CPUS;
5452EXPORT_SYMBOL(nr_cpu_ids);
5453
1a20ff27 5454#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5455#ifdef SCHED_DOMAIN_DEBUG
5456static void sched_domain_debug(struct sched_domain *sd, int cpu)
5457{
5458 int level = 0;
5459
41c7ce9a
NP
5460 if (!sd) {
5461 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5462 return;
5463 }
5464
1da177e4
LT
5465 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5466
5467 do {
5468 int i;
5469 char str[NR_CPUS];
5470 struct sched_group *group = sd->groups;
5471 cpumask_t groupmask;
5472
5473 cpumask_scnprintf(str, NR_CPUS, sd->span);
5474 cpus_clear(groupmask);
5475
5476 printk(KERN_DEBUG);
5477 for (i = 0; i < level + 1; i++)
5478 printk(" ");
5479 printk("domain %d: ", level);
5480
5481 if (!(sd->flags & SD_LOAD_BALANCE)) {
5482 printk("does not load-balance\n");
5483 if (sd->parent)
33859f7f
MOS
5484 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5485 " has parent");
1da177e4
LT
5486 break;
5487 }
5488
5489 printk("span %s\n", str);
5490
5491 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5492 printk(KERN_ERR "ERROR: domain->span does not contain "
5493 "CPU%d\n", cpu);
1da177e4 5494 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5495 printk(KERN_ERR "ERROR: domain->groups does not contain"
5496 " CPU%d\n", cpu);
1da177e4
LT
5497
5498 printk(KERN_DEBUG);
5499 for (i = 0; i < level + 2; i++)
5500 printk(" ");
5501 printk("groups:");
5502 do {
5503 if (!group) {
5504 printk("\n");
5505 printk(KERN_ERR "ERROR: group is NULL\n");
5506 break;
5507 }
5508
5517d86b 5509 if (!group->__cpu_power) {
1da177e4 5510 printk("\n");
33859f7f
MOS
5511 printk(KERN_ERR "ERROR: domain->cpu_power not "
5512 "set\n");
1da177e4
LT
5513 }
5514
5515 if (!cpus_weight(group->cpumask)) {
5516 printk("\n");
5517 printk(KERN_ERR "ERROR: empty group\n");
5518 }
5519
5520 if (cpus_intersects(groupmask, group->cpumask)) {
5521 printk("\n");
5522 printk(KERN_ERR "ERROR: repeated CPUs\n");
5523 }
5524
5525 cpus_or(groupmask, groupmask, group->cpumask);
5526
5527 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5528 printk(" %s", str);
5529
5530 group = group->next;
5531 } while (group != sd->groups);
5532 printk("\n");
5533
5534 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5535 printk(KERN_ERR "ERROR: groups don't span "
5536 "domain->span\n");
1da177e4
LT
5537
5538 level++;
5539 sd = sd->parent;
33859f7f
MOS
5540 if (!sd)
5541 continue;
1da177e4 5542
33859f7f
MOS
5543 if (!cpus_subset(groupmask, sd->span))
5544 printk(KERN_ERR "ERROR: parent span is not a superset "
5545 "of domain->span\n");
1da177e4
LT
5546
5547 } while (sd);
5548}
5549#else
48f24c4d 5550# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5551#endif
5552
1a20ff27 5553static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5554{
5555 if (cpus_weight(sd->span) == 1)
5556 return 1;
5557
5558 /* Following flags need at least 2 groups */
5559 if (sd->flags & (SD_LOAD_BALANCE |
5560 SD_BALANCE_NEWIDLE |
5561 SD_BALANCE_FORK |
89c4710e
SS
5562 SD_BALANCE_EXEC |
5563 SD_SHARE_CPUPOWER |
5564 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5565 if (sd->groups != sd->groups->next)
5566 return 0;
5567 }
5568
5569 /* Following flags don't use groups */
5570 if (sd->flags & (SD_WAKE_IDLE |
5571 SD_WAKE_AFFINE |
5572 SD_WAKE_BALANCE))
5573 return 0;
5574
5575 return 1;
5576}
5577
48f24c4d
IM
5578static int
5579sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5580{
5581 unsigned long cflags = sd->flags, pflags = parent->flags;
5582
5583 if (sd_degenerate(parent))
5584 return 1;
5585
5586 if (!cpus_equal(sd->span, parent->span))
5587 return 0;
5588
5589 /* Does parent contain flags not in child? */
5590 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5591 if (cflags & SD_WAKE_AFFINE)
5592 pflags &= ~SD_WAKE_BALANCE;
5593 /* Flags needing groups don't count if only 1 group in parent */
5594 if (parent->groups == parent->groups->next) {
5595 pflags &= ~(SD_LOAD_BALANCE |
5596 SD_BALANCE_NEWIDLE |
5597 SD_BALANCE_FORK |
89c4710e
SS
5598 SD_BALANCE_EXEC |
5599 SD_SHARE_CPUPOWER |
5600 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5601 }
5602 if (~cflags & pflags)
5603 return 0;
5604
5605 return 1;
5606}
5607
1da177e4
LT
5608/*
5609 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5610 * hold the hotplug lock.
5611 */
9c1cfda2 5612static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5613{
70b97a7f 5614 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5615 struct sched_domain *tmp;
5616
5617 /* Remove the sched domains which do not contribute to scheduling. */
5618 for (tmp = sd; tmp; tmp = tmp->parent) {
5619 struct sched_domain *parent = tmp->parent;
5620 if (!parent)
5621 break;
1a848870 5622 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5623 tmp->parent = parent->parent;
1a848870
SS
5624 if (parent->parent)
5625 parent->parent->child = tmp;
5626 }
245af2c7
SS
5627 }
5628
1a848870 5629 if (sd && sd_degenerate(sd)) {
245af2c7 5630 sd = sd->parent;
1a848870
SS
5631 if (sd)
5632 sd->child = NULL;
5633 }
1da177e4
LT
5634
5635 sched_domain_debug(sd, cpu);
5636
674311d5 5637 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5638}
5639
5640/* cpus with isolated domains */
67af63a6 5641static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5642
5643/* Setup the mask of cpus configured for isolated domains */
5644static int __init isolated_cpu_setup(char *str)
5645{
5646 int ints[NR_CPUS], i;
5647
5648 str = get_options(str, ARRAY_SIZE(ints), ints);
5649 cpus_clear(cpu_isolated_map);
5650 for (i = 1; i <= ints[0]; i++)
5651 if (ints[i] < NR_CPUS)
5652 cpu_set(ints[i], cpu_isolated_map);
5653 return 1;
5654}
5655
5656__setup ("isolcpus=", isolated_cpu_setup);
5657
5658/*
6711cab4
SS
5659 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5660 * to a function which identifies what group(along with sched group) a CPU
5661 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5662 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5663 *
5664 * init_sched_build_groups will build a circular linked list of the groups
5665 * covered by the given span, and will set each group's ->cpumask correctly,
5666 * and ->cpu_power to 0.
5667 */
a616058b 5668static void
6711cab4
SS
5669init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5670 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5671 struct sched_group **sg))
1da177e4
LT
5672{
5673 struct sched_group *first = NULL, *last = NULL;
5674 cpumask_t covered = CPU_MASK_NONE;
5675 int i;
5676
5677 for_each_cpu_mask(i, span) {
6711cab4
SS
5678 struct sched_group *sg;
5679 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5680 int j;
5681
5682 if (cpu_isset(i, covered))
5683 continue;
5684
5685 sg->cpumask = CPU_MASK_NONE;
5517d86b 5686 sg->__cpu_power = 0;
1da177e4
LT
5687
5688 for_each_cpu_mask(j, span) {
6711cab4 5689 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5690 continue;
5691
5692 cpu_set(j, covered);
5693 cpu_set(j, sg->cpumask);
5694 }
5695 if (!first)
5696 first = sg;
5697 if (last)
5698 last->next = sg;
5699 last = sg;
5700 }
5701 last->next = first;
5702}
5703
9c1cfda2 5704#define SD_NODES_PER_DOMAIN 16
1da177e4 5705
9c1cfda2 5706#ifdef CONFIG_NUMA
198e2f18 5707
9c1cfda2
JH
5708/**
5709 * find_next_best_node - find the next node to include in a sched_domain
5710 * @node: node whose sched_domain we're building
5711 * @used_nodes: nodes already in the sched_domain
5712 *
5713 * Find the next node to include in a given scheduling domain. Simply
5714 * finds the closest node not already in the @used_nodes map.
5715 *
5716 * Should use nodemask_t.
5717 */
5718static int find_next_best_node(int node, unsigned long *used_nodes)
5719{
5720 int i, n, val, min_val, best_node = 0;
5721
5722 min_val = INT_MAX;
5723
5724 for (i = 0; i < MAX_NUMNODES; i++) {
5725 /* Start at @node */
5726 n = (node + i) % MAX_NUMNODES;
5727
5728 if (!nr_cpus_node(n))
5729 continue;
5730
5731 /* Skip already used nodes */
5732 if (test_bit(n, used_nodes))
5733 continue;
5734
5735 /* Simple min distance search */
5736 val = node_distance(node, n);
5737
5738 if (val < min_val) {
5739 min_val = val;
5740 best_node = n;
5741 }
5742 }
5743
5744 set_bit(best_node, used_nodes);
5745 return best_node;
5746}
5747
5748/**
5749 * sched_domain_node_span - get a cpumask for a node's sched_domain
5750 * @node: node whose cpumask we're constructing
5751 * @size: number of nodes to include in this span
5752 *
5753 * Given a node, construct a good cpumask for its sched_domain to span. It
5754 * should be one that prevents unnecessary balancing, but also spreads tasks
5755 * out optimally.
5756 */
5757static cpumask_t sched_domain_node_span(int node)
5758{
9c1cfda2 5759 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5760 cpumask_t span, nodemask;
5761 int i;
9c1cfda2
JH
5762
5763 cpus_clear(span);
5764 bitmap_zero(used_nodes, MAX_NUMNODES);
5765
5766 nodemask = node_to_cpumask(node);
5767 cpus_or(span, span, nodemask);
5768 set_bit(node, used_nodes);
5769
5770 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5771 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5772
9c1cfda2
JH
5773 nodemask = node_to_cpumask(next_node);
5774 cpus_or(span, span, nodemask);
5775 }
5776
5777 return span;
5778}
5779#endif
5780
5c45bf27 5781int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5782
9c1cfda2 5783/*
48f24c4d 5784 * SMT sched-domains:
9c1cfda2 5785 */
1da177e4
LT
5786#ifdef CONFIG_SCHED_SMT
5787static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5788static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5789
6711cab4
SS
5790static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5791 struct sched_group **sg)
1da177e4 5792{
6711cab4
SS
5793 if (sg)
5794 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5795 return cpu;
5796}
5797#endif
5798
48f24c4d
IM
5799/*
5800 * multi-core sched-domains:
5801 */
1e9f28fa
SS
5802#ifdef CONFIG_SCHED_MC
5803static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5804static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5805#endif
5806
5807#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5808static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5809 struct sched_group **sg)
1e9f28fa 5810{
6711cab4 5811 int group;
a616058b
SS
5812 cpumask_t mask = cpu_sibling_map[cpu];
5813 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5814 group = first_cpu(mask);
5815 if (sg)
5816 *sg = &per_cpu(sched_group_core, group);
5817 return group;
1e9f28fa
SS
5818}
5819#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5820static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5821 struct sched_group **sg)
1e9f28fa 5822{
6711cab4
SS
5823 if (sg)
5824 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5825 return cpu;
5826}
5827#endif
5828
1da177e4 5829static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5830static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5831
6711cab4
SS
5832static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5833 struct sched_group **sg)
1da177e4 5834{
6711cab4 5835 int group;
48f24c4d 5836#ifdef CONFIG_SCHED_MC
1e9f28fa 5837 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5838 cpus_and(mask, mask, *cpu_map);
6711cab4 5839 group = first_cpu(mask);
1e9f28fa 5840#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5841 cpumask_t mask = cpu_sibling_map[cpu];
5842 cpus_and(mask, mask, *cpu_map);
6711cab4 5843 group = first_cpu(mask);
1da177e4 5844#else
6711cab4 5845 group = cpu;
1da177e4 5846#endif
6711cab4
SS
5847 if (sg)
5848 *sg = &per_cpu(sched_group_phys, group);
5849 return group;
1da177e4
LT
5850}
5851
5852#ifdef CONFIG_NUMA
1da177e4 5853/*
9c1cfda2
JH
5854 * The init_sched_build_groups can't handle what we want to do with node
5855 * groups, so roll our own. Now each node has its own list of groups which
5856 * gets dynamically allocated.
1da177e4 5857 */
9c1cfda2 5858static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5859static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5860
9c1cfda2 5861static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5862static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5863
6711cab4
SS
5864static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5865 struct sched_group **sg)
9c1cfda2 5866{
6711cab4
SS
5867 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5868 int group;
5869
5870 cpus_and(nodemask, nodemask, *cpu_map);
5871 group = first_cpu(nodemask);
5872
5873 if (sg)
5874 *sg = &per_cpu(sched_group_allnodes, group);
5875 return group;
1da177e4 5876}
6711cab4 5877
08069033
SS
5878static void init_numa_sched_groups_power(struct sched_group *group_head)
5879{
5880 struct sched_group *sg = group_head;
5881 int j;
5882
5883 if (!sg)
5884 return;
5885next_sg:
5886 for_each_cpu_mask(j, sg->cpumask) {
5887 struct sched_domain *sd;
5888
5889 sd = &per_cpu(phys_domains, j);
5890 if (j != first_cpu(sd->groups->cpumask)) {
5891 /*
5892 * Only add "power" once for each
5893 * physical package.
5894 */
5895 continue;
5896 }
5897
5517d86b 5898 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5899 }
5900 sg = sg->next;
5901 if (sg != group_head)
5902 goto next_sg;
5903}
1da177e4
LT
5904#endif
5905
a616058b 5906#ifdef CONFIG_NUMA
51888ca2
SV
5907/* Free memory allocated for various sched_group structures */
5908static void free_sched_groups(const cpumask_t *cpu_map)
5909{
a616058b 5910 int cpu, i;
51888ca2
SV
5911
5912 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5913 struct sched_group **sched_group_nodes
5914 = sched_group_nodes_bycpu[cpu];
5915
51888ca2
SV
5916 if (!sched_group_nodes)
5917 continue;
5918
5919 for (i = 0; i < MAX_NUMNODES; i++) {
5920 cpumask_t nodemask = node_to_cpumask(i);
5921 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5922
5923 cpus_and(nodemask, nodemask, *cpu_map);
5924 if (cpus_empty(nodemask))
5925 continue;
5926
5927 if (sg == NULL)
5928 continue;
5929 sg = sg->next;
5930next_sg:
5931 oldsg = sg;
5932 sg = sg->next;
5933 kfree(oldsg);
5934 if (oldsg != sched_group_nodes[i])
5935 goto next_sg;
5936 }
5937 kfree(sched_group_nodes);
5938 sched_group_nodes_bycpu[cpu] = NULL;
5939 }
51888ca2 5940}
a616058b
SS
5941#else
5942static void free_sched_groups(const cpumask_t *cpu_map)
5943{
5944}
5945#endif
51888ca2 5946
89c4710e
SS
5947/*
5948 * Initialize sched groups cpu_power.
5949 *
5950 * cpu_power indicates the capacity of sched group, which is used while
5951 * distributing the load between different sched groups in a sched domain.
5952 * Typically cpu_power for all the groups in a sched domain will be same unless
5953 * there are asymmetries in the topology. If there are asymmetries, group
5954 * having more cpu_power will pickup more load compared to the group having
5955 * less cpu_power.
5956 *
5957 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5958 * the maximum number of tasks a group can handle in the presence of other idle
5959 * or lightly loaded groups in the same sched domain.
5960 */
5961static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5962{
5963 struct sched_domain *child;
5964 struct sched_group *group;
5965
5966 WARN_ON(!sd || !sd->groups);
5967
5968 if (cpu != first_cpu(sd->groups->cpumask))
5969 return;
5970
5971 child = sd->child;
5972
5517d86b
ED
5973 sd->groups->__cpu_power = 0;
5974
89c4710e
SS
5975 /*
5976 * For perf policy, if the groups in child domain share resources
5977 * (for example cores sharing some portions of the cache hierarchy
5978 * or SMT), then set this domain groups cpu_power such that each group
5979 * can handle only one task, when there are other idle groups in the
5980 * same sched domain.
5981 */
5982 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5983 (child->flags &
5984 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5985 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5986 return;
5987 }
5988
89c4710e
SS
5989 /*
5990 * add cpu_power of each child group to this groups cpu_power
5991 */
5992 group = child->groups;
5993 do {
5517d86b 5994 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5995 group = group->next;
5996 } while (group != child->groups);
5997}
5998
1da177e4 5999/*
1a20ff27
DG
6000 * Build sched domains for a given set of cpus and attach the sched domains
6001 * to the individual cpus
1da177e4 6002 */
51888ca2 6003static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6004{
6005 int i;
d1b55138
JH
6006#ifdef CONFIG_NUMA
6007 struct sched_group **sched_group_nodes = NULL;
6711cab4 6008 int sd_allnodes = 0;
d1b55138
JH
6009
6010 /*
6011 * Allocate the per-node list of sched groups
6012 */
dd41f596 6013 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6014 GFP_KERNEL);
d1b55138
JH
6015 if (!sched_group_nodes) {
6016 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6017 return -ENOMEM;
d1b55138
JH
6018 }
6019 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6020#endif
1da177e4
LT
6021
6022 /*
1a20ff27 6023 * Set up domains for cpus specified by the cpu_map.
1da177e4 6024 */
1a20ff27 6025 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6026 struct sched_domain *sd = NULL, *p;
6027 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6028
1a20ff27 6029 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6030
6031#ifdef CONFIG_NUMA
dd41f596
IM
6032 if (cpus_weight(*cpu_map) >
6033 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6034 sd = &per_cpu(allnodes_domains, i);
6035 *sd = SD_ALLNODES_INIT;
6036 sd->span = *cpu_map;
6711cab4 6037 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6038 p = sd;
6711cab4 6039 sd_allnodes = 1;
9c1cfda2
JH
6040 } else
6041 p = NULL;
6042
1da177e4 6043 sd = &per_cpu(node_domains, i);
1da177e4 6044 *sd = SD_NODE_INIT;
9c1cfda2
JH
6045 sd->span = sched_domain_node_span(cpu_to_node(i));
6046 sd->parent = p;
1a848870
SS
6047 if (p)
6048 p->child = sd;
9c1cfda2 6049 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6050#endif
6051
6052 p = sd;
6053 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6054 *sd = SD_CPU_INIT;
6055 sd->span = nodemask;
6056 sd->parent = p;
1a848870
SS
6057 if (p)
6058 p->child = sd;
6711cab4 6059 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6060
1e9f28fa
SS
6061#ifdef CONFIG_SCHED_MC
6062 p = sd;
6063 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6064 *sd = SD_MC_INIT;
6065 sd->span = cpu_coregroup_map(i);
6066 cpus_and(sd->span, sd->span, *cpu_map);
6067 sd->parent = p;
1a848870 6068 p->child = sd;
6711cab4 6069 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6070#endif
6071
1da177e4
LT
6072#ifdef CONFIG_SCHED_SMT
6073 p = sd;
6074 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6075 *sd = SD_SIBLING_INIT;
6076 sd->span = cpu_sibling_map[i];
1a20ff27 6077 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6078 sd->parent = p;
1a848870 6079 p->child = sd;
6711cab4 6080 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6081#endif
6082 }
6083
6084#ifdef CONFIG_SCHED_SMT
6085 /* Set up CPU (sibling) groups */
9c1cfda2 6086 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6087 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6088 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6089 if (i != first_cpu(this_sibling_map))
6090 continue;
6091
dd41f596
IM
6092 init_sched_build_groups(this_sibling_map, cpu_map,
6093 &cpu_to_cpu_group);
1da177e4
LT
6094 }
6095#endif
6096
1e9f28fa
SS
6097#ifdef CONFIG_SCHED_MC
6098 /* Set up multi-core groups */
6099 for_each_cpu_mask(i, *cpu_map) {
6100 cpumask_t this_core_map = cpu_coregroup_map(i);
6101 cpus_and(this_core_map, this_core_map, *cpu_map);
6102 if (i != first_cpu(this_core_map))
6103 continue;
dd41f596
IM
6104 init_sched_build_groups(this_core_map, cpu_map,
6105 &cpu_to_core_group);
1e9f28fa
SS
6106 }
6107#endif
6108
1da177e4
LT
6109 /* Set up physical groups */
6110 for (i = 0; i < MAX_NUMNODES; i++) {
6111 cpumask_t nodemask = node_to_cpumask(i);
6112
1a20ff27 6113 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6114 if (cpus_empty(nodemask))
6115 continue;
6116
6711cab4 6117 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6118 }
6119
6120#ifdef CONFIG_NUMA
6121 /* Set up node groups */
6711cab4 6122 if (sd_allnodes)
dd41f596
IM
6123 init_sched_build_groups(*cpu_map, cpu_map,
6124 &cpu_to_allnodes_group);
9c1cfda2
JH
6125
6126 for (i = 0; i < MAX_NUMNODES; i++) {
6127 /* Set up node groups */
6128 struct sched_group *sg, *prev;
6129 cpumask_t nodemask = node_to_cpumask(i);
6130 cpumask_t domainspan;
6131 cpumask_t covered = CPU_MASK_NONE;
6132 int j;
6133
6134 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6135 if (cpus_empty(nodemask)) {
6136 sched_group_nodes[i] = NULL;
9c1cfda2 6137 continue;
d1b55138 6138 }
9c1cfda2
JH
6139
6140 domainspan = sched_domain_node_span(i);
6141 cpus_and(domainspan, domainspan, *cpu_map);
6142
15f0b676 6143 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6144 if (!sg) {
6145 printk(KERN_WARNING "Can not alloc domain group for "
6146 "node %d\n", i);
6147 goto error;
6148 }
9c1cfda2
JH
6149 sched_group_nodes[i] = sg;
6150 for_each_cpu_mask(j, nodemask) {
6151 struct sched_domain *sd;
9761eea8 6152
9c1cfda2
JH
6153 sd = &per_cpu(node_domains, j);
6154 sd->groups = sg;
9c1cfda2 6155 }
5517d86b 6156 sg->__cpu_power = 0;
9c1cfda2 6157 sg->cpumask = nodemask;
51888ca2 6158 sg->next = sg;
9c1cfda2
JH
6159 cpus_or(covered, covered, nodemask);
6160 prev = sg;
6161
6162 for (j = 0; j < MAX_NUMNODES; j++) {
6163 cpumask_t tmp, notcovered;
6164 int n = (i + j) % MAX_NUMNODES;
6165
6166 cpus_complement(notcovered, covered);
6167 cpus_and(tmp, notcovered, *cpu_map);
6168 cpus_and(tmp, tmp, domainspan);
6169 if (cpus_empty(tmp))
6170 break;
6171
6172 nodemask = node_to_cpumask(n);
6173 cpus_and(tmp, tmp, nodemask);
6174 if (cpus_empty(tmp))
6175 continue;
6176
15f0b676
SV
6177 sg = kmalloc_node(sizeof(struct sched_group),
6178 GFP_KERNEL, i);
9c1cfda2
JH
6179 if (!sg) {
6180 printk(KERN_WARNING
6181 "Can not alloc domain group for node %d\n", j);
51888ca2 6182 goto error;
9c1cfda2 6183 }
5517d86b 6184 sg->__cpu_power = 0;
9c1cfda2 6185 sg->cpumask = tmp;
51888ca2 6186 sg->next = prev->next;
9c1cfda2
JH
6187 cpus_or(covered, covered, tmp);
6188 prev->next = sg;
6189 prev = sg;
6190 }
9c1cfda2 6191 }
1da177e4
LT
6192#endif
6193
6194 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6195#ifdef CONFIG_SCHED_SMT
1a20ff27 6196 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6197 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6198
89c4710e 6199 init_sched_groups_power(i, sd);
5c45bf27 6200 }
1da177e4 6201#endif
1e9f28fa 6202#ifdef CONFIG_SCHED_MC
5c45bf27 6203 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6204 struct sched_domain *sd = &per_cpu(core_domains, i);
6205
89c4710e 6206 init_sched_groups_power(i, sd);
5c45bf27
SS
6207 }
6208#endif
1e9f28fa 6209
5c45bf27 6210 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6211 struct sched_domain *sd = &per_cpu(phys_domains, i);
6212
89c4710e 6213 init_sched_groups_power(i, sd);
1da177e4
LT
6214 }
6215
9c1cfda2 6216#ifdef CONFIG_NUMA
08069033
SS
6217 for (i = 0; i < MAX_NUMNODES; i++)
6218 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6219
6711cab4
SS
6220 if (sd_allnodes) {
6221 struct sched_group *sg;
f712c0c7 6222
6711cab4 6223 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6224 init_numa_sched_groups_power(sg);
6225 }
9c1cfda2
JH
6226#endif
6227
1da177e4 6228 /* Attach the domains */
1a20ff27 6229 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6230 struct sched_domain *sd;
6231#ifdef CONFIG_SCHED_SMT
6232 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6233#elif defined(CONFIG_SCHED_MC)
6234 sd = &per_cpu(core_domains, i);
1da177e4
LT
6235#else
6236 sd = &per_cpu(phys_domains, i);
6237#endif
6238 cpu_attach_domain(sd, i);
6239 }
51888ca2
SV
6240
6241 return 0;
6242
a616058b 6243#ifdef CONFIG_NUMA
51888ca2
SV
6244error:
6245 free_sched_groups(cpu_map);
6246 return -ENOMEM;
a616058b 6247#endif
1da177e4 6248}
1a20ff27
DG
6249/*
6250 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6251 */
51888ca2 6252static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6253{
6254 cpumask_t cpu_default_map;
51888ca2 6255 int err;
1da177e4 6256
1a20ff27
DG
6257 /*
6258 * Setup mask for cpus without special case scheduling requirements.
6259 * For now this just excludes isolated cpus, but could be used to
6260 * exclude other special cases in the future.
6261 */
6262 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6263
51888ca2
SV
6264 err = build_sched_domains(&cpu_default_map);
6265
6266 return err;
1a20ff27
DG
6267}
6268
6269static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6270{
51888ca2 6271 free_sched_groups(cpu_map);
9c1cfda2 6272}
1da177e4 6273
1a20ff27
DG
6274/*
6275 * Detach sched domains from a group of cpus specified in cpu_map
6276 * These cpus will now be attached to the NULL domain
6277 */
858119e1 6278static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6279{
6280 int i;
6281
6282 for_each_cpu_mask(i, *cpu_map)
6283 cpu_attach_domain(NULL, i);
6284 synchronize_sched();
6285 arch_destroy_sched_domains(cpu_map);
6286}
6287
6288/*
6289 * Partition sched domains as specified by the cpumasks below.
6290 * This attaches all cpus from the cpumasks to the NULL domain,
6291 * waits for a RCU quiescent period, recalculates sched
6292 * domain information and then attaches them back to the
6293 * correct sched domains
6294 * Call with hotplug lock held
6295 */
51888ca2 6296int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6297{
6298 cpumask_t change_map;
51888ca2 6299 int err = 0;
1a20ff27
DG
6300
6301 cpus_and(*partition1, *partition1, cpu_online_map);
6302 cpus_and(*partition2, *partition2, cpu_online_map);
6303 cpus_or(change_map, *partition1, *partition2);
6304
6305 /* Detach sched domains from all of the affected cpus */
6306 detach_destroy_domains(&change_map);
6307 if (!cpus_empty(*partition1))
51888ca2
SV
6308 err = build_sched_domains(partition1);
6309 if (!err && !cpus_empty(*partition2))
6310 err = build_sched_domains(partition2);
6311
6312 return err;
1a20ff27
DG
6313}
6314
5c45bf27
SS
6315#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6316int arch_reinit_sched_domains(void)
6317{
6318 int err;
6319
5be9361c 6320 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6321 detach_destroy_domains(&cpu_online_map);
6322 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6323 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6324
6325 return err;
6326}
6327
6328static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6329{
6330 int ret;
6331
6332 if (buf[0] != '0' && buf[0] != '1')
6333 return -EINVAL;
6334
6335 if (smt)
6336 sched_smt_power_savings = (buf[0] == '1');
6337 else
6338 sched_mc_power_savings = (buf[0] == '1');
6339
6340 ret = arch_reinit_sched_domains();
6341
6342 return ret ? ret : count;
6343}
6344
6345int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6346{
6347 int err = 0;
48f24c4d 6348
5c45bf27
SS
6349#ifdef CONFIG_SCHED_SMT
6350 if (smt_capable())
6351 err = sysfs_create_file(&cls->kset.kobj,
6352 &attr_sched_smt_power_savings.attr);
6353#endif
6354#ifdef CONFIG_SCHED_MC
6355 if (!err && mc_capable())
6356 err = sysfs_create_file(&cls->kset.kobj,
6357 &attr_sched_mc_power_savings.attr);
6358#endif
6359 return err;
6360}
6361#endif
6362
6363#ifdef CONFIG_SCHED_MC
6364static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6365{
6366 return sprintf(page, "%u\n", sched_mc_power_savings);
6367}
48f24c4d
IM
6368static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6369 const char *buf, size_t count)
5c45bf27
SS
6370{
6371 return sched_power_savings_store(buf, count, 0);
6372}
6373SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6374 sched_mc_power_savings_store);
6375#endif
6376
6377#ifdef CONFIG_SCHED_SMT
6378static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6379{
6380 return sprintf(page, "%u\n", sched_smt_power_savings);
6381}
48f24c4d
IM
6382static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6383 const char *buf, size_t count)
5c45bf27
SS
6384{
6385 return sched_power_savings_store(buf, count, 1);
6386}
6387SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6388 sched_smt_power_savings_store);
6389#endif
6390
1da177e4
LT
6391/*
6392 * Force a reinitialization of the sched domains hierarchy. The domains
6393 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6394 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6395 * which will prevent rebalancing while the sched domains are recalculated.
6396 */
6397static int update_sched_domains(struct notifier_block *nfb,
6398 unsigned long action, void *hcpu)
6399{
1da177e4
LT
6400 switch (action) {
6401 case CPU_UP_PREPARE:
8bb78442 6402 case CPU_UP_PREPARE_FROZEN:
1da177e4 6403 case CPU_DOWN_PREPARE:
8bb78442 6404 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6405 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6406 return NOTIFY_OK;
6407
6408 case CPU_UP_CANCELED:
8bb78442 6409 case CPU_UP_CANCELED_FROZEN:
1da177e4 6410 case CPU_DOWN_FAILED:
8bb78442 6411 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6412 case CPU_ONLINE:
8bb78442 6413 case CPU_ONLINE_FROZEN:
1da177e4 6414 case CPU_DEAD:
8bb78442 6415 case CPU_DEAD_FROZEN:
1da177e4
LT
6416 /*
6417 * Fall through and re-initialise the domains.
6418 */
6419 break;
6420 default:
6421 return NOTIFY_DONE;
6422 }
6423
6424 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6425 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6426
6427 return NOTIFY_OK;
6428}
1da177e4
LT
6429
6430void __init sched_init_smp(void)
6431{
5c1e1767
NP
6432 cpumask_t non_isolated_cpus;
6433
5be9361c 6434 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6435 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6436 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6437 if (cpus_empty(non_isolated_cpus))
6438 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6439 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6440 /* XXX: Theoretical race here - CPU may be hotplugged now */
6441 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6442
e692ab53
NP
6443 init_sched_domain_sysctl();
6444
5c1e1767
NP
6445 /* Move init over to a non-isolated CPU */
6446 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6447 BUG();
dd41f596 6448 sched_init_granularity();
1da177e4
LT
6449}
6450#else
6451void __init sched_init_smp(void)
6452{
dd41f596 6453 sched_init_granularity();
1da177e4
LT
6454}
6455#endif /* CONFIG_SMP */
6456
6457int in_sched_functions(unsigned long addr)
6458{
6459 /* Linker adds these: start and end of __sched functions */
6460 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6461
1da177e4
LT
6462 return in_lock_functions(addr) ||
6463 (addr >= (unsigned long)__sched_text_start
6464 && addr < (unsigned long)__sched_text_end);
6465}
6466
dd41f596
IM
6467static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6468{
6469 cfs_rq->tasks_timeline = RB_ROOT;
6470 cfs_rq->fair_clock = 1;
6471#ifdef CONFIG_FAIR_GROUP_SCHED
6472 cfs_rq->rq = rq;
6473#endif
6474}
6475
1da177e4
LT
6476void __init sched_init(void)
6477{
dd41f596 6478 u64 now = sched_clock();
476f3534 6479 int highest_cpu = 0;
dd41f596
IM
6480 int i, j;
6481
6482 /*
6483 * Link up the scheduling class hierarchy:
6484 */
6485 rt_sched_class.next = &fair_sched_class;
6486 fair_sched_class.next = &idle_sched_class;
6487 idle_sched_class.next = NULL;
1da177e4 6488
0a945022 6489 for_each_possible_cpu(i) {
dd41f596 6490 struct rt_prio_array *array;
70b97a7f 6491 struct rq *rq;
1da177e4
LT
6492
6493 rq = cpu_rq(i);
6494 spin_lock_init(&rq->lock);
fcb99371 6495 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6496 rq->nr_running = 0;
dd41f596
IM
6497 rq->clock = 1;
6498 init_cfs_rq(&rq->cfs, rq);
6499#ifdef CONFIG_FAIR_GROUP_SCHED
6500 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6501 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6502#endif
6503 rq->ls.load_update_last = now;
6504 rq->ls.load_update_start = now;
1da177e4 6505
dd41f596
IM
6506 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6507 rq->cpu_load[j] = 0;
1da177e4 6508#ifdef CONFIG_SMP
41c7ce9a 6509 rq->sd = NULL;
1da177e4 6510 rq->active_balance = 0;
dd41f596 6511 rq->next_balance = jiffies;
1da177e4 6512 rq->push_cpu = 0;
0a2966b4 6513 rq->cpu = i;
1da177e4
LT
6514 rq->migration_thread = NULL;
6515 INIT_LIST_HEAD(&rq->migration_queue);
6516#endif
6517 atomic_set(&rq->nr_iowait, 0);
6518
dd41f596
IM
6519 array = &rq->rt.active;
6520 for (j = 0; j < MAX_RT_PRIO; j++) {
6521 INIT_LIST_HEAD(array->queue + j);
6522 __clear_bit(j, array->bitmap);
1da177e4 6523 }
476f3534 6524 highest_cpu = i;
dd41f596
IM
6525 /* delimiter for bitsearch: */
6526 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6527 }
6528
2dd73a4f 6529 set_load_weight(&init_task);
b50f60ce 6530
e107be36
AK
6531#ifdef CONFIG_PREEMPT_NOTIFIERS
6532 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6533#endif
6534
c9819f45 6535#ifdef CONFIG_SMP
476f3534 6536 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6537 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6538#endif
6539
b50f60ce
HC
6540#ifdef CONFIG_RT_MUTEXES
6541 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6542#endif
6543
1da177e4
LT
6544 /*
6545 * The boot idle thread does lazy MMU switching as well:
6546 */
6547 atomic_inc(&init_mm.mm_count);
6548 enter_lazy_tlb(&init_mm, current);
6549
6550 /*
6551 * Make us the idle thread. Technically, schedule() should not be
6552 * called from this thread, however somewhere below it might be,
6553 * but because we are the idle thread, we just pick up running again
6554 * when this runqueue becomes "idle".
6555 */
6556 init_idle(current, smp_processor_id());
dd41f596
IM
6557 /*
6558 * During early bootup we pretend to be a normal task:
6559 */
6560 current->sched_class = &fair_sched_class;
1da177e4
LT
6561}
6562
6563#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6564void __might_sleep(char *file, int line)
6565{
48f24c4d 6566#ifdef in_atomic
1da177e4
LT
6567 static unsigned long prev_jiffy; /* ratelimiting */
6568
6569 if ((in_atomic() || irqs_disabled()) &&
6570 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6571 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6572 return;
6573 prev_jiffy = jiffies;
91368d73 6574 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6575 " context at %s:%d\n", file, line);
6576 printk("in_atomic():%d, irqs_disabled():%d\n",
6577 in_atomic(), irqs_disabled());
a4c410f0 6578 debug_show_held_locks(current);
3117df04
IM
6579 if (irqs_disabled())
6580 print_irqtrace_events(current);
1da177e4
LT
6581 dump_stack();
6582 }
6583#endif
6584}
6585EXPORT_SYMBOL(__might_sleep);
6586#endif
6587
6588#ifdef CONFIG_MAGIC_SYSRQ
6589void normalize_rt_tasks(void)
6590{
a0f98a1c 6591 struct task_struct *g, *p;
1da177e4 6592 unsigned long flags;
70b97a7f 6593 struct rq *rq;
dd41f596 6594 int on_rq;
1da177e4
LT
6595
6596 read_lock_irq(&tasklist_lock);
a0f98a1c 6597 do_each_thread(g, p) {
dd41f596
IM
6598 p->se.fair_key = 0;
6599 p->se.wait_runtime = 0;
6cfb0d5d 6600 p->se.exec_start = 0;
dd41f596 6601 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6602 p->se.sleep_start_fair = 0;
6603#ifdef CONFIG_SCHEDSTATS
dd41f596 6604 p->se.wait_start = 0;
dd41f596 6605 p->se.sleep_start = 0;
dd41f596 6606 p->se.block_start = 0;
6cfb0d5d 6607#endif
dd41f596
IM
6608 task_rq(p)->cfs.fair_clock = 0;
6609 task_rq(p)->clock = 0;
6610
6611 if (!rt_task(p)) {
6612 /*
6613 * Renice negative nice level userspace
6614 * tasks back to 0:
6615 */
6616 if (TASK_NICE(p) < 0 && p->mm)
6617 set_user_nice(p, 0);
1da177e4 6618 continue;
dd41f596 6619 }
1da177e4 6620
b29739f9
IM
6621 spin_lock_irqsave(&p->pi_lock, flags);
6622 rq = __task_rq_lock(p);
dd41f596
IM
6623#ifdef CONFIG_SMP
6624 /*
6625 * Do not touch the migration thread:
6626 */
6627 if (p == rq->migration_thread)
6628 goto out_unlock;
6629#endif
1da177e4 6630
2daa3577 6631 update_rq_clock(rq);
dd41f596 6632 on_rq = p->se.on_rq;
2daa3577
IM
6633 if (on_rq)
6634 deactivate_task(rq, p, 0);
dd41f596
IM
6635 __setscheduler(rq, p, SCHED_NORMAL, 0);
6636 if (on_rq) {
2daa3577 6637 activate_task(rq, p, 0);
1da177e4
LT
6638 resched_task(rq->curr);
6639 }
dd41f596
IM
6640#ifdef CONFIG_SMP
6641 out_unlock:
6642#endif
b29739f9
IM
6643 __task_rq_unlock(rq);
6644 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6645 } while_each_thread(g, p);
6646
1da177e4
LT
6647 read_unlock_irq(&tasklist_lock);
6648}
6649
6650#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6651
6652#ifdef CONFIG_IA64
6653/*
6654 * These functions are only useful for the IA64 MCA handling.
6655 *
6656 * They can only be called when the whole system has been
6657 * stopped - every CPU needs to be quiescent, and no scheduling
6658 * activity can take place. Using them for anything else would
6659 * be a serious bug, and as a result, they aren't even visible
6660 * under any other configuration.
6661 */
6662
6663/**
6664 * curr_task - return the current task for a given cpu.
6665 * @cpu: the processor in question.
6666 *
6667 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6668 */
36c8b586 6669struct task_struct *curr_task(int cpu)
1df5c10a
LT
6670{
6671 return cpu_curr(cpu);
6672}
6673
6674/**
6675 * set_curr_task - set the current task for a given cpu.
6676 * @cpu: the processor in question.
6677 * @p: the task pointer to set.
6678 *
6679 * Description: This function must only be used when non-maskable interrupts
6680 * are serviced on a separate stack. It allows the architecture to switch the
6681 * notion of the current task on a cpu in a non-blocking manner. This function
6682 * must be called with all CPU's synchronized, and interrupts disabled, the
6683 * and caller must save the original value of the current task (see
6684 * curr_task() above) and restore that value before reenabling interrupts and
6685 * re-starting the system.
6686 *
6687 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6688 */
36c8b586 6689void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6690{
6691 cpu_curr(cpu) = p;
6692}
6693
6694#endif