sched: add latency tracer callbacks to the scheduler
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4
LT
76
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
d7876a08 96 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 97 */
d6322faf 98#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 99
6aa645ea
IM
100#define NICE_0_LOAD SCHED_LOAD_SCALE
101#define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
1da177e4
LT
103/*
104 * These are the 'tuning knobs' of the scheduler:
105 *
a4ec24b4 106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
107 * Timeslices get refilled after they expire.
108 */
1da177e4 109#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 110
d0b27fa7
PZ
111/*
112 * single value that denotes runtime == period, ie unlimited time.
113 */
114#define RUNTIME_INF ((u64)~0ULL)
115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
d0b27fa7 157struct rt_bandwidth {
ea736ed5
IM
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
160 ktime_t rt_period;
161 u64 rt_runtime;
162 struct hrtimer rt_period_timer;
d0b27fa7
PZ
163};
164
165static struct rt_bandwidth def_rt_bandwidth;
166
167static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
168
169static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
170{
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
173 ktime_t now;
174 int overrun;
175 int idle = 0;
176
177 for (;;) {
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
180
181 if (!overrun)
182 break;
183
184 idle = do_sched_rt_period_timer(rt_b, overrun);
185 }
186
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
188}
189
190static
191void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
192{
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
195
ac086bc2
PZ
196 spin_lock_init(&rt_b->rt_runtime_lock);
197
d0b27fa7
PZ
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
202}
203
204static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
205{
206 ktime_t now;
207
208 if (rt_b->rt_runtime == RUNTIME_INF)
209 return;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 return;
213
214 spin_lock(&rt_b->rt_runtime_lock);
215 for (;;) {
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 break;
218
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
223 HRTIMER_MODE_ABS);
224 }
225 spin_unlock(&rt_b->rt_runtime_lock);
226}
227
228#ifdef CONFIG_RT_GROUP_SCHED
229static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230{
231 hrtimer_cancel(&rt_b->rt_period_timer);
232}
233#endif
234
712555ee
HC
235/*
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
238 */
239static DEFINE_MUTEX(sched_domains_mutex);
240
052f1dc7 241#ifdef CONFIG_GROUP_SCHED
29f59db3 242
68318b8e
SV
243#include <linux/cgroup.h>
244
29f59db3
SV
245struct cfs_rq;
246
6f505b16
PZ
247static LIST_HEAD(task_groups);
248
29f59db3 249/* task group related information */
4cf86d77 250struct task_group {
052f1dc7 251#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
252 struct cgroup_subsys_state css;
253#endif
052f1dc7
PZ
254
255#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
052f1dc7
PZ
261#endif
262
263#ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
266
d0b27fa7 267 struct rt_bandwidth rt_bandwidth;
052f1dc7 268#endif
6b2d7700 269
ae8393e5 270 struct rcu_head rcu;
6f505b16 271 struct list_head list;
f473aa5e
PZ
272
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
29f59db3
SV
276};
277
354d60c2 278#ifdef CONFIG_USER_SCHED
eff766a6
PZ
279
280/*
281 * Root task group.
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
284 */
285struct task_group root_task_group;
286
052f1dc7 287#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
288/* Default task group's sched entity on each cpu */
289static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290/* Default task group's cfs_rq on each cpu */
291static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
292#endif
293
294#ifdef CONFIG_RT_GROUP_SCHED
295static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 297#endif
eff766a6
PZ
298#else
299#define root_task_group init_task_group
354d60c2 300#endif
6f505b16 301
8ed36996 302/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
303 * a task group's cpu shares.
304 */
8ed36996 305static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 306
052f1dc7 307#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
308#ifdef CONFIG_USER_SCHED
309# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310#else
311# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312#endif
313
cb4ad1ff
MX
314/*
315 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
316 * (The default weight is 1024 - so there's no practical
317 * limitation from this.)
318 */
18d95a28 319#define MIN_SHARES 2
cb4ad1ff 320#define MAX_SHARES (ULONG_MAX - 1)
18d95a28 321
052f1dc7
PZ
322static int init_task_group_load = INIT_TASK_GROUP_LOAD;
323#endif
324
29f59db3 325/* Default task group.
3a252015 326 * Every task in system belong to this group at bootup.
29f59db3 327 */
434d53b0 328struct task_group init_task_group;
29f59db3
SV
329
330/* return group to which a task belongs */
4cf86d77 331static inline struct task_group *task_group(struct task_struct *p)
29f59db3 332{
4cf86d77 333 struct task_group *tg;
9b5b7751 334
052f1dc7 335#ifdef CONFIG_USER_SCHED
24e377a8 336 tg = p->user->tg;
052f1dc7 337#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
338 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
339 struct task_group, css);
24e377a8 340#else
41a2d6cf 341 tg = &init_task_group;
24e377a8 342#endif
9b5b7751 343 return tg;
29f59db3
SV
344}
345
346/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 347static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 348{
052f1dc7 349#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
350 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
351 p->se.parent = task_group(p)->se[cpu];
052f1dc7 352#endif
6f505b16 353
052f1dc7 354#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
355 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
356 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 357#endif
29f59db3
SV
358}
359
360#else
361
6f505b16 362static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 363
052f1dc7 364#endif /* CONFIG_GROUP_SCHED */
29f59db3 365
6aa645ea
IM
366/* CFS-related fields in a runqueue */
367struct cfs_rq {
368 struct load_weight load;
369 unsigned long nr_running;
370
6aa645ea 371 u64 exec_clock;
e9acbff6 372 u64 min_vruntime;
6aa645ea
IM
373
374 struct rb_root tasks_timeline;
375 struct rb_node *rb_leftmost;
4a55bd5e
PZ
376
377 struct list_head tasks;
378 struct list_head *balance_iterator;
379
380 /*
381 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
382 * It is set to NULL otherwise (i.e when none are currently running).
383 */
aa2ac252 384 struct sched_entity *curr, *next;
ddc97297
PZ
385
386 unsigned long nr_spread_over;
387
62160e3f 388#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
390
41a2d6cf
IM
391 /*
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
395 *
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
398 */
41a2d6cf
IM
399 struct list_head leaf_cfs_rq_list;
400 struct task_group *tg; /* group that "owns" this runqueue */
18d95a28
PZ
401
402#ifdef CONFIG_SMP
403 unsigned long task_weight;
404 unsigned long shares;
405 /*
406 * We need space to build a sched_domain wide view of the full task
407 * group tree, in order to avoid depending on dynamic memory allocation
408 * during the load balancing we place this in the per cpu task group
409 * hierarchy. This limits the load balancing to one instance per cpu,
410 * but more should not be needed anyway.
411 */
412 struct aggregate_struct {
413 /*
414 * load = weight(cpus) * f(tg)
415 *
416 * Where f(tg) is the recursive weight fraction assigned to
417 * this group.
418 */
419 unsigned long load;
420
421 /*
422 * part of the group weight distributed to this span.
423 */
424 unsigned long shares;
425
426 /*
427 * The sum of all runqueue weights within this span.
428 */
429 unsigned long rq_weight;
430
431 /*
432 * Weight contributed by tasks; this is the part we can
433 * influence by moving tasks around.
434 */
435 unsigned long task_weight;
436 } aggregate;
437#endif
6aa645ea
IM
438#endif
439};
1da177e4 440
6aa645ea
IM
441/* Real-Time classes' related field in a runqueue: */
442struct rt_rq {
443 struct rt_prio_array active;
63489e45 444 unsigned long rt_nr_running;
052f1dc7 445#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
446 int highest_prio; /* highest queued rt task prio */
447#endif
fa85ae24 448#ifdef CONFIG_SMP
73fe6aae 449 unsigned long rt_nr_migratory;
a22d7fc1 450 int overloaded;
fa85ae24 451#endif
6f505b16 452 int rt_throttled;
fa85ae24 453 u64 rt_time;
ac086bc2 454 u64 rt_runtime;
ea736ed5 455 /* Nests inside the rq lock: */
ac086bc2 456 spinlock_t rt_runtime_lock;
6f505b16 457
052f1dc7 458#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
459 unsigned long rt_nr_boosted;
460
6f505b16
PZ
461 struct rq *rq;
462 struct list_head leaf_rt_rq_list;
463 struct task_group *tg;
464 struct sched_rt_entity *rt_se;
465#endif
6aa645ea
IM
466};
467
57d885fe
GH
468#ifdef CONFIG_SMP
469
470/*
471 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
472 * variables. Each exclusive cpuset essentially defines an island domain by
473 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
474 * exclusive cpuset is created, we also create and attach a new root-domain
475 * object.
476 *
57d885fe
GH
477 */
478struct root_domain {
479 atomic_t refcount;
480 cpumask_t span;
481 cpumask_t online;
637f5085 482
0eab9146 483 /*
637f5085
GH
484 * The "RT overload" flag: it gets set if a CPU has more than
485 * one runnable RT task.
486 */
487 cpumask_t rto_mask;
0eab9146 488 atomic_t rto_count;
57d885fe
GH
489};
490
dc938520
GH
491/*
492 * By default the system creates a single root-domain with all cpus as
493 * members (mimicking the global state we have today).
494 */
57d885fe
GH
495static struct root_domain def_root_domain;
496
497#endif
498
1da177e4
LT
499/*
500 * This is the main, per-CPU runqueue data structure.
501 *
502 * Locking rule: those places that want to lock multiple runqueues
503 * (such as the load balancing or the thread migration code), lock
504 * acquire operations must be ordered by ascending &runqueue.
505 */
70b97a7f 506struct rq {
d8016491
IM
507 /* runqueue lock: */
508 spinlock_t lock;
1da177e4
LT
509
510 /*
511 * nr_running and cpu_load should be in the same cacheline because
512 * remote CPUs use both these fields when doing load calculation.
513 */
514 unsigned long nr_running;
6aa645ea
IM
515 #define CPU_LOAD_IDX_MAX 5
516 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 517 unsigned char idle_at_tick;
46cb4b7c 518#ifdef CONFIG_NO_HZ
15934a37 519 unsigned long last_tick_seen;
46cb4b7c
SS
520 unsigned char in_nohz_recently;
521#endif
d8016491
IM
522 /* capture load from *all* tasks on this cpu: */
523 struct load_weight load;
6aa645ea
IM
524 unsigned long nr_load_updates;
525 u64 nr_switches;
526
527 struct cfs_rq cfs;
6f505b16 528 struct rt_rq rt;
6f505b16 529
6aa645ea 530#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
531 /* list of leaf cfs_rq on this cpu: */
532 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
533#endif
534#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 535 struct list_head leaf_rt_rq_list;
1da177e4 536#endif
1da177e4
LT
537
538 /*
539 * This is part of a global counter where only the total sum
540 * over all CPUs matters. A task can increase this counter on
541 * one CPU and if it got migrated afterwards it may decrease
542 * it on another CPU. Always updated under the runqueue lock:
543 */
544 unsigned long nr_uninterruptible;
545
36c8b586 546 struct task_struct *curr, *idle;
c9819f45 547 unsigned long next_balance;
1da177e4 548 struct mm_struct *prev_mm;
6aa645ea 549
3e51f33f 550 u64 clock;
6aa645ea 551
1da177e4
LT
552 atomic_t nr_iowait;
553
554#ifdef CONFIG_SMP
0eab9146 555 struct root_domain *rd;
1da177e4
LT
556 struct sched_domain *sd;
557
558 /* For active balancing */
559 int active_balance;
560 int push_cpu;
d8016491
IM
561 /* cpu of this runqueue: */
562 int cpu;
1da177e4 563
36c8b586 564 struct task_struct *migration_thread;
1da177e4
LT
565 struct list_head migration_queue;
566#endif
567
8f4d37ec
PZ
568#ifdef CONFIG_SCHED_HRTICK
569 unsigned long hrtick_flags;
570 ktime_t hrtick_expire;
571 struct hrtimer hrtick_timer;
572#endif
573
1da177e4
LT
574#ifdef CONFIG_SCHEDSTATS
575 /* latency stats */
576 struct sched_info rq_sched_info;
577
578 /* sys_sched_yield() stats */
480b9434
KC
579 unsigned int yld_exp_empty;
580 unsigned int yld_act_empty;
581 unsigned int yld_both_empty;
582 unsigned int yld_count;
1da177e4
LT
583
584 /* schedule() stats */
480b9434
KC
585 unsigned int sched_switch;
586 unsigned int sched_count;
587 unsigned int sched_goidle;
1da177e4
LT
588
589 /* try_to_wake_up() stats */
480b9434
KC
590 unsigned int ttwu_count;
591 unsigned int ttwu_local;
b8efb561
IM
592
593 /* BKL stats */
480b9434 594 unsigned int bkl_count;
1da177e4 595#endif
fcb99371 596 struct lock_class_key rq_lock_key;
1da177e4
LT
597};
598
f34e3b61 599static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 600
dd41f596
IM
601static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
602{
603 rq->curr->sched_class->check_preempt_curr(rq, p);
604}
605
0a2966b4
CL
606static inline int cpu_of(struct rq *rq)
607{
608#ifdef CONFIG_SMP
609 return rq->cpu;
610#else
611 return 0;
612#endif
613}
614
674311d5
NP
615/*
616 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 617 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
618 *
619 * The domain tree of any CPU may only be accessed from within
620 * preempt-disabled sections.
621 */
48f24c4d
IM
622#define for_each_domain(cpu, __sd) \
623 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
624
625#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
626#define this_rq() (&__get_cpu_var(runqueues))
627#define task_rq(p) cpu_rq(task_cpu(p))
628#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
629
3e51f33f
PZ
630static inline void update_rq_clock(struct rq *rq)
631{
632 rq->clock = sched_clock_cpu(cpu_of(rq));
633}
634
bf5c91ba
IM
635/*
636 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
637 */
638#ifdef CONFIG_SCHED_DEBUG
639# define const_debug __read_mostly
640#else
641# define const_debug static const
642#endif
643
644/*
645 * Debugging: various feature bits
646 */
f00b45c1
PZ
647
648#define SCHED_FEAT(name, enabled) \
649 __SCHED_FEAT_##name ,
650
bf5c91ba 651enum {
f00b45c1 652#include "sched_features.h"
bf5c91ba
IM
653};
654
f00b45c1
PZ
655#undef SCHED_FEAT
656
657#define SCHED_FEAT(name, enabled) \
658 (1UL << __SCHED_FEAT_##name) * enabled |
659
bf5c91ba 660const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
661#include "sched_features.h"
662 0;
663
664#undef SCHED_FEAT
665
666#ifdef CONFIG_SCHED_DEBUG
667#define SCHED_FEAT(name, enabled) \
668 #name ,
669
983ed7a6 670static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
671#include "sched_features.h"
672 NULL
673};
674
675#undef SCHED_FEAT
676
983ed7a6 677static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
678{
679 filp->private_data = inode->i_private;
680 return 0;
681}
682
683static ssize_t
684sched_feat_read(struct file *filp, char __user *ubuf,
685 size_t cnt, loff_t *ppos)
686{
687 char *buf;
688 int r = 0;
689 int len = 0;
690 int i;
691
692 for (i = 0; sched_feat_names[i]; i++) {
693 len += strlen(sched_feat_names[i]);
694 len += 4;
695 }
696
697 buf = kmalloc(len + 2, GFP_KERNEL);
698 if (!buf)
699 return -ENOMEM;
700
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (sysctl_sched_features & (1UL << i))
703 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
704 else
c24b7c52 705 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
706 }
707
708 r += sprintf(buf + r, "\n");
709 WARN_ON(r >= len + 2);
710
711 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
712
713 kfree(buf);
714
715 return r;
716}
717
718static ssize_t
719sched_feat_write(struct file *filp, const char __user *ubuf,
720 size_t cnt, loff_t *ppos)
721{
722 char buf[64];
723 char *cmp = buf;
724 int neg = 0;
725 int i;
726
727 if (cnt > 63)
728 cnt = 63;
729
730 if (copy_from_user(&buf, ubuf, cnt))
731 return -EFAULT;
732
733 buf[cnt] = 0;
734
c24b7c52 735 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
736 neg = 1;
737 cmp += 3;
738 }
739
740 for (i = 0; sched_feat_names[i]; i++) {
741 int len = strlen(sched_feat_names[i]);
742
743 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
744 if (neg)
745 sysctl_sched_features &= ~(1UL << i);
746 else
747 sysctl_sched_features |= (1UL << i);
748 break;
749 }
750 }
751
752 if (!sched_feat_names[i])
753 return -EINVAL;
754
755 filp->f_pos += cnt;
756
757 return cnt;
758}
759
760static struct file_operations sched_feat_fops = {
761 .open = sched_feat_open,
762 .read = sched_feat_read,
763 .write = sched_feat_write,
764};
765
766static __init int sched_init_debug(void)
767{
f00b45c1
PZ
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772}
773late_initcall(sched_init_debug);
774
775#endif
776
777#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 778
b82d9fdd
PZ
779/*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
fa85ae24 785/*
9f0c1e56 786 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
787 * default: 1s
788 */
9f0c1e56 789unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 790
6892b75e
IM
791static __read_mostly int scheduler_running;
792
9f0c1e56
PZ
793/*
794 * part of the period that we allow rt tasks to run in us.
795 * default: 0.95s
796 */
797int sysctl_sched_rt_runtime = 950000;
fa85ae24 798
d0b27fa7
PZ
799static inline u64 global_rt_period(void)
800{
801 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
802}
803
804static inline u64 global_rt_runtime(void)
805{
806 if (sysctl_sched_rt_period < 0)
807 return RUNTIME_INF;
808
809 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
810}
fa85ae24 811
690229a0 812unsigned long long time_sync_thresh = 100000;
27ec4407
IM
813
814static DEFINE_PER_CPU(unsigned long long, time_offset);
815static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
816
e436d800 817/*
27ec4407
IM
818 * Global lock which we take every now and then to synchronize
819 * the CPUs time. This method is not warp-safe, but it's good
820 * enough to synchronize slowly diverging time sources and thus
821 * it's good enough for tracing:
e436d800 822 */
27ec4407
IM
823static DEFINE_SPINLOCK(time_sync_lock);
824static unsigned long long prev_global_time;
825
dfbf4a1b 826static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 827{
dfbf4a1b
IM
828 /*
829 * We want this inlined, to not get tracer function calls
830 * in this critical section:
831 */
832 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
833 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
834
835 if (time < prev_global_time) {
836 per_cpu(time_offset, cpu) += prev_global_time - time;
837 time = prev_global_time;
838 } else {
839 prev_global_time = time;
840 }
841
dfbf4a1b
IM
842 __raw_spin_unlock(&time_sync_lock.raw_lock);
843 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
844
845 return time;
846}
847
848static unsigned long long __cpu_clock(int cpu)
e436d800 849{
e436d800 850 unsigned long long now;
e436d800 851
8ced5f69
IM
852 /*
853 * Only call sched_clock() if the scheduler has already been
854 * initialized (some code might call cpu_clock() very early):
855 */
6892b75e
IM
856 if (unlikely(!scheduler_running))
857 return 0;
858
3e51f33f 859 now = sched_clock_cpu(cpu);
e436d800
IM
860
861 return now;
862}
27ec4407
IM
863
864/*
865 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
866 * clock constructed from sched_clock():
867 */
868unsigned long long cpu_clock(int cpu)
869{
870 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 871 unsigned long flags;
27ec4407 872
dfbf4a1b 873 local_irq_save(flags);
27ec4407
IM
874 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
875 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
876 delta_time = time-prev_cpu_time;
877
dfbf4a1b 878 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 879 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
880 per_cpu(prev_cpu_time, cpu) = time;
881 }
882 local_irq_restore(flags);
27ec4407
IM
883
884 return time;
885}
a58f6f25 886EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 887
1da177e4 888#ifndef prepare_arch_switch
4866cde0
NP
889# define prepare_arch_switch(next) do { } while (0)
890#endif
891#ifndef finish_arch_switch
892# define finish_arch_switch(prev) do { } while (0)
893#endif
894
051a1d1a
DA
895static inline int task_current(struct rq *rq, struct task_struct *p)
896{
897 return rq->curr == p;
898}
899
4866cde0 900#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 901static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 902{
051a1d1a 903 return task_current(rq, p);
4866cde0
NP
904}
905
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908}
909
70b97a7f 910static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 911{
da04c035
IM
912#ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
915#endif
8a25d5de
IM
916 /*
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
919 * prev into current:
920 */
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
922
4866cde0
NP
923 spin_unlock_irq(&rq->lock);
924}
925
926#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 927static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
928{
929#ifdef CONFIG_SMP
930 return p->oncpu;
931#else
051a1d1a 932 return task_current(rq, p);
4866cde0
NP
933#endif
934}
935
70b97a7f 936static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
937{
938#ifdef CONFIG_SMP
939 /*
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
942 * here.
943 */
944 next->oncpu = 1;
945#endif
946#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
948#else
949 spin_unlock(&rq->lock);
950#endif
951}
952
70b97a7f 953static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
954{
955#ifdef CONFIG_SMP
956 /*
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
959 * finished.
960 */
961 smp_wmb();
962 prev->oncpu = 0;
963#endif
964#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
965 local_irq_enable();
1da177e4 966#endif
4866cde0
NP
967}
968#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 969
b29739f9
IM
970/*
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
973 */
70b97a7f 974static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
975 __acquires(rq->lock)
976{
3a5c359a
AK
977 for (;;) {
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
981 return rq;
b29739f9 982 spin_unlock(&rq->lock);
b29739f9 983 }
b29739f9
IM
984}
985
1da177e4
LT
986/*
987 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 988 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
989 * explicitly disabling preemption.
990 */
70b97a7f 991static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
992 __acquires(rq->lock)
993{
70b97a7f 994 struct rq *rq;
1da177e4 995
3a5c359a
AK
996 for (;;) {
997 local_irq_save(*flags);
998 rq = task_rq(p);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1001 return rq;
1da177e4 1002 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1003 }
1da177e4
LT
1004}
1005
a9957449 1006static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1007 __releases(rq->lock)
1008{
1009 spin_unlock(&rq->lock);
1010}
1011
70b97a7f 1012static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1013 __releases(rq->lock)
1014{
1015 spin_unlock_irqrestore(&rq->lock, *flags);
1016}
1017
1da177e4 1018/*
cc2a73b5 1019 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1020 */
a9957449 1021static struct rq *this_rq_lock(void)
1da177e4
LT
1022 __acquires(rq->lock)
1023{
70b97a7f 1024 struct rq *rq;
1da177e4
LT
1025
1026 local_irq_disable();
1027 rq = this_rq();
1028 spin_lock(&rq->lock);
1029
1030 return rq;
1031}
1032
8f4d37ec
PZ
1033static void __resched_task(struct task_struct *p, int tif_bit);
1034
1035static inline void resched_task(struct task_struct *p)
1036{
1037 __resched_task(p, TIF_NEED_RESCHED);
1038}
1039
1040#ifdef CONFIG_SCHED_HRTICK
1041/*
1042 * Use HR-timers to deliver accurate preemption points.
1043 *
1044 * Its all a bit involved since we cannot program an hrt while holding the
1045 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1046 * reschedule event.
1047 *
1048 * When we get rescheduled we reprogram the hrtick_timer outside of the
1049 * rq->lock.
1050 */
1051static inline void resched_hrt(struct task_struct *p)
1052{
1053 __resched_task(p, TIF_HRTICK_RESCHED);
1054}
1055
1056static inline void resched_rq(struct rq *rq)
1057{
1058 unsigned long flags;
1059
1060 spin_lock_irqsave(&rq->lock, flags);
1061 resched_task(rq->curr);
1062 spin_unlock_irqrestore(&rq->lock, flags);
1063}
1064
1065enum {
1066 HRTICK_SET, /* re-programm hrtick_timer */
1067 HRTICK_RESET, /* not a new slice */
b328ca18 1068 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1069};
1070
1071/*
1072 * Use hrtick when:
1073 * - enabled by features
1074 * - hrtimer is actually high res
1075 */
1076static inline int hrtick_enabled(struct rq *rq)
1077{
1078 if (!sched_feat(HRTICK))
1079 return 0;
b328ca18
PZ
1080 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1081 return 0;
8f4d37ec
PZ
1082 return hrtimer_is_hres_active(&rq->hrtick_timer);
1083}
1084
1085/*
1086 * Called to set the hrtick timer state.
1087 *
1088 * called with rq->lock held and irqs disabled
1089 */
1090static void hrtick_start(struct rq *rq, u64 delay, int reset)
1091{
1092 assert_spin_locked(&rq->lock);
1093
1094 /*
1095 * preempt at: now + delay
1096 */
1097 rq->hrtick_expire =
1098 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1099 /*
1100 * indicate we need to program the timer
1101 */
1102 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1103 if (reset)
1104 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1105
1106 /*
1107 * New slices are called from the schedule path and don't need a
1108 * forced reschedule.
1109 */
1110 if (reset)
1111 resched_hrt(rq->curr);
1112}
1113
1114static void hrtick_clear(struct rq *rq)
1115{
1116 if (hrtimer_active(&rq->hrtick_timer))
1117 hrtimer_cancel(&rq->hrtick_timer);
1118}
1119
1120/*
1121 * Update the timer from the possible pending state.
1122 */
1123static void hrtick_set(struct rq *rq)
1124{
1125 ktime_t time;
1126 int set, reset;
1127 unsigned long flags;
1128
1129 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1130
1131 spin_lock_irqsave(&rq->lock, flags);
1132 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1133 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1134 time = rq->hrtick_expire;
1135 clear_thread_flag(TIF_HRTICK_RESCHED);
1136 spin_unlock_irqrestore(&rq->lock, flags);
1137
1138 if (set) {
1139 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1140 if (reset && !hrtimer_active(&rq->hrtick_timer))
1141 resched_rq(rq);
1142 } else
1143 hrtick_clear(rq);
1144}
1145
1146/*
1147 * High-resolution timer tick.
1148 * Runs from hardirq context with interrupts disabled.
1149 */
1150static enum hrtimer_restart hrtick(struct hrtimer *timer)
1151{
1152 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1153
1154 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1155
1156 spin_lock(&rq->lock);
3e51f33f 1157 update_rq_clock(rq);
8f4d37ec
PZ
1158 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1159 spin_unlock(&rq->lock);
1160
1161 return HRTIMER_NORESTART;
1162}
1163
b328ca18
PZ
1164static void hotplug_hrtick_disable(int cpu)
1165{
1166 struct rq *rq = cpu_rq(cpu);
1167 unsigned long flags;
1168
1169 spin_lock_irqsave(&rq->lock, flags);
1170 rq->hrtick_flags = 0;
1171 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1172 spin_unlock_irqrestore(&rq->lock, flags);
1173
1174 hrtick_clear(rq);
1175}
1176
1177static void hotplug_hrtick_enable(int cpu)
1178{
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long flags;
1181
1182 spin_lock_irqsave(&rq->lock, flags);
1183 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1184 spin_unlock_irqrestore(&rq->lock, flags);
1185}
1186
1187static int
1188hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1189{
1190 int cpu = (int)(long)hcpu;
1191
1192 switch (action) {
1193 case CPU_UP_CANCELED:
1194 case CPU_UP_CANCELED_FROZEN:
1195 case CPU_DOWN_PREPARE:
1196 case CPU_DOWN_PREPARE_FROZEN:
1197 case CPU_DEAD:
1198 case CPU_DEAD_FROZEN:
1199 hotplug_hrtick_disable(cpu);
1200 return NOTIFY_OK;
1201
1202 case CPU_UP_PREPARE:
1203 case CPU_UP_PREPARE_FROZEN:
1204 case CPU_DOWN_FAILED:
1205 case CPU_DOWN_FAILED_FROZEN:
1206 case CPU_ONLINE:
1207 case CPU_ONLINE_FROZEN:
1208 hotplug_hrtick_enable(cpu);
1209 return NOTIFY_OK;
1210 }
1211
1212 return NOTIFY_DONE;
1213}
1214
1215static void init_hrtick(void)
1216{
1217 hotcpu_notifier(hotplug_hrtick, 0);
1218}
1219
1220static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1221{
1222 rq->hrtick_flags = 0;
1223 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1224 rq->hrtick_timer.function = hrtick;
1225 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1226}
1227
1228void hrtick_resched(void)
1229{
1230 struct rq *rq;
1231 unsigned long flags;
1232
1233 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1234 return;
1235
1236 local_irq_save(flags);
1237 rq = cpu_rq(smp_processor_id());
1238 hrtick_set(rq);
1239 local_irq_restore(flags);
1240}
1241#else
1242static inline void hrtick_clear(struct rq *rq)
1243{
1244}
1245
1246static inline void hrtick_set(struct rq *rq)
1247{
1248}
1249
1250static inline void init_rq_hrtick(struct rq *rq)
1251{
1252}
1253
1254void hrtick_resched(void)
1255{
1256}
b328ca18
PZ
1257
1258static inline void init_hrtick(void)
1259{
1260}
8f4d37ec
PZ
1261#endif
1262
c24d20db
IM
1263/*
1264 * resched_task - mark a task 'to be rescheduled now'.
1265 *
1266 * On UP this means the setting of the need_resched flag, on SMP it
1267 * might also involve a cross-CPU call to trigger the scheduler on
1268 * the target CPU.
1269 */
1270#ifdef CONFIG_SMP
1271
1272#ifndef tsk_is_polling
1273#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1274#endif
1275
8f4d37ec 1276static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1277{
1278 int cpu;
1279
1280 assert_spin_locked(&task_rq(p)->lock);
1281
8f4d37ec 1282 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1283 return;
1284
8f4d37ec 1285 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1286
1287 cpu = task_cpu(p);
1288 if (cpu == smp_processor_id())
1289 return;
1290
1291 /* NEED_RESCHED must be visible before we test polling */
1292 smp_mb();
1293 if (!tsk_is_polling(p))
1294 smp_send_reschedule(cpu);
1295}
1296
1297static void resched_cpu(int cpu)
1298{
1299 struct rq *rq = cpu_rq(cpu);
1300 unsigned long flags;
1301
1302 if (!spin_trylock_irqsave(&rq->lock, flags))
1303 return;
1304 resched_task(cpu_curr(cpu));
1305 spin_unlock_irqrestore(&rq->lock, flags);
1306}
06d8308c
TG
1307
1308#ifdef CONFIG_NO_HZ
1309/*
1310 * When add_timer_on() enqueues a timer into the timer wheel of an
1311 * idle CPU then this timer might expire before the next timer event
1312 * which is scheduled to wake up that CPU. In case of a completely
1313 * idle system the next event might even be infinite time into the
1314 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1315 * leaves the inner idle loop so the newly added timer is taken into
1316 * account when the CPU goes back to idle and evaluates the timer
1317 * wheel for the next timer event.
1318 */
1319void wake_up_idle_cpu(int cpu)
1320{
1321 struct rq *rq = cpu_rq(cpu);
1322
1323 if (cpu == smp_processor_id())
1324 return;
1325
1326 /*
1327 * This is safe, as this function is called with the timer
1328 * wheel base lock of (cpu) held. When the CPU is on the way
1329 * to idle and has not yet set rq->curr to idle then it will
1330 * be serialized on the timer wheel base lock and take the new
1331 * timer into account automatically.
1332 */
1333 if (rq->curr != rq->idle)
1334 return;
1335
1336 /*
1337 * We can set TIF_RESCHED on the idle task of the other CPU
1338 * lockless. The worst case is that the other CPU runs the
1339 * idle task through an additional NOOP schedule()
1340 */
1341 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1342
1343 /* NEED_RESCHED must be visible before we test polling */
1344 smp_mb();
1345 if (!tsk_is_polling(rq->idle))
1346 smp_send_reschedule(cpu);
1347}
1348#endif
1349
c24d20db 1350#else
8f4d37ec 1351static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1352{
1353 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1354 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1355}
1356#endif
1357
45bf76df
IM
1358#if BITS_PER_LONG == 32
1359# define WMULT_CONST (~0UL)
1360#else
1361# define WMULT_CONST (1UL << 32)
1362#endif
1363
1364#define WMULT_SHIFT 32
1365
194081eb
IM
1366/*
1367 * Shift right and round:
1368 */
cf2ab469 1369#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1370
8f1bc385
PZ
1371/*
1372 * delta *= weight / lw
1373 */
cb1c4fc9 1374static unsigned long
45bf76df
IM
1375calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1376 struct load_weight *lw)
1377{
1378 u64 tmp;
1379
e05510d0
PZ
1380 if (!lw->inv_weight)
1381 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
45bf76df
IM
1382
1383 tmp = (u64)delta_exec * weight;
1384 /*
1385 * Check whether we'd overflow the 64-bit multiplication:
1386 */
194081eb 1387 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1388 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1389 WMULT_SHIFT/2);
1390 else
cf2ab469 1391 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1392
ecf691da 1393 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1394}
1395
1091985b 1396static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1397{
1398 lw->weight += inc;
e89996ae 1399 lw->inv_weight = 0;
45bf76df
IM
1400}
1401
1091985b 1402static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1403{
1404 lw->weight -= dec;
e89996ae 1405 lw->inv_weight = 0;
45bf76df
IM
1406}
1407
2dd73a4f
PW
1408/*
1409 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1410 * of tasks with abnormal "nice" values across CPUs the contribution that
1411 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1412 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1413 * scaled version of the new time slice allocation that they receive on time
1414 * slice expiry etc.
1415 */
1416
dd41f596
IM
1417#define WEIGHT_IDLEPRIO 2
1418#define WMULT_IDLEPRIO (1 << 31)
1419
1420/*
1421 * Nice levels are multiplicative, with a gentle 10% change for every
1422 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1423 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1424 * that remained on nice 0.
1425 *
1426 * The "10% effect" is relative and cumulative: from _any_ nice level,
1427 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1428 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1429 * If a task goes up by ~10% and another task goes down by ~10% then
1430 * the relative distance between them is ~25%.)
dd41f596
IM
1431 */
1432static const int prio_to_weight[40] = {
254753dc
IM
1433 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1434 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1435 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1436 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1437 /* 0 */ 1024, 820, 655, 526, 423,
1438 /* 5 */ 335, 272, 215, 172, 137,
1439 /* 10 */ 110, 87, 70, 56, 45,
1440 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1441};
1442
5714d2de
IM
1443/*
1444 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1445 *
1446 * In cases where the weight does not change often, we can use the
1447 * precalculated inverse to speed up arithmetics by turning divisions
1448 * into multiplications:
1449 */
dd41f596 1450static const u32 prio_to_wmult[40] = {
254753dc
IM
1451 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1452 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1453 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1454 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1455 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1456 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1457 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1458 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1459};
2dd73a4f 1460
dd41f596
IM
1461static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1462
1463/*
1464 * runqueue iterator, to support SMP load-balancing between different
1465 * scheduling classes, without having to expose their internal data
1466 * structures to the load-balancing proper:
1467 */
1468struct rq_iterator {
1469 void *arg;
1470 struct task_struct *(*start)(void *);
1471 struct task_struct *(*next)(void *);
1472};
1473
e1d1484f
PW
1474#ifdef CONFIG_SMP
1475static unsigned long
1476balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1477 unsigned long max_load_move, struct sched_domain *sd,
1478 enum cpu_idle_type idle, int *all_pinned,
1479 int *this_best_prio, struct rq_iterator *iterator);
1480
1481static int
1482iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1483 struct sched_domain *sd, enum cpu_idle_type idle,
1484 struct rq_iterator *iterator);
e1d1484f 1485#endif
dd41f596 1486
d842de87
SV
1487#ifdef CONFIG_CGROUP_CPUACCT
1488static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1489#else
1490static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1491#endif
1492
18d95a28
PZ
1493static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1494{
1495 update_load_add(&rq->load, load);
1496}
1497
1498static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1499{
1500 update_load_sub(&rq->load, load);
1501}
1502
e7693a36
GH
1503#ifdef CONFIG_SMP
1504static unsigned long source_load(int cpu, int type);
1505static unsigned long target_load(int cpu, int type);
1506static unsigned long cpu_avg_load_per_task(int cpu);
1507static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1508
1509#ifdef CONFIG_FAIR_GROUP_SCHED
1510
1511/*
1512 * Group load balancing.
1513 *
1514 * We calculate a few balance domain wide aggregate numbers; load and weight.
1515 * Given the pictures below, and assuming each item has equal weight:
1516 *
1517 * root 1 - thread
1518 * / | \ A - group
1519 * A 1 B
1520 * /|\ / \
1521 * C 2 D 3 4
1522 * | |
1523 * 5 6
1524 *
1525 * load:
1526 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1527 * which equals 1/9-th of the total load.
1528 *
1529 * shares:
1530 * The weight of this group on the selected cpus.
1531 *
1532 * rq_weight:
1533 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1534 * B would get 2.
1535 *
1536 * task_weight:
1537 * Part of the rq_weight contributed by tasks; all groups except B would
1538 * get 1, B gets 2.
1539 */
1540
1541static inline struct aggregate_struct *
1542aggregate(struct task_group *tg, struct sched_domain *sd)
1543{
1544 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1545}
1546
1547typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1548
1549/*
1550 * Iterate the full tree, calling @down when first entering a node and @up when
1551 * leaving it for the final time.
1552 */
1553static
1554void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1555 struct sched_domain *sd)
1556{
1557 struct task_group *parent, *child;
1558
1559 rcu_read_lock();
1560 parent = &root_task_group;
1561down:
1562 (*down)(parent, sd);
1563 list_for_each_entry_rcu(child, &parent->children, siblings) {
1564 parent = child;
1565 goto down;
1566
1567up:
1568 continue;
1569 }
1570 (*up)(parent, sd);
1571
1572 child = parent;
1573 parent = parent->parent;
1574 if (parent)
1575 goto up;
1576 rcu_read_unlock();
1577}
1578
1579/*
1580 * Calculate the aggregate runqueue weight.
1581 */
1582static
1583void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1584{
1585 unsigned long rq_weight = 0;
1586 unsigned long task_weight = 0;
1587 int i;
1588
1589 for_each_cpu_mask(i, sd->span) {
1590 rq_weight += tg->cfs_rq[i]->load.weight;
1591 task_weight += tg->cfs_rq[i]->task_weight;
1592 }
1593
1594 aggregate(tg, sd)->rq_weight = rq_weight;
1595 aggregate(tg, sd)->task_weight = task_weight;
1596}
1597
18d95a28
PZ
1598/*
1599 * Compute the weight of this group on the given cpus.
1600 */
1601static
1602void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1603{
1604 unsigned long shares = 0;
1605 int i;
1606
18d95a28
PZ
1607 for_each_cpu_mask(i, sd->span)
1608 shares += tg->cfs_rq[i]->shares;
1609
3f5087a2
PZ
1610 if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
1611 shares = tg->shares;
18d95a28
PZ
1612
1613 aggregate(tg, sd)->shares = shares;
1614}
1615
1616/*
1617 * Compute the load fraction assigned to this group, relies on the aggregate
1618 * weight and this group's parent's load, i.e. top-down.
1619 */
1620static
1621void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1622{
1623 unsigned long load;
1624
1625 if (!tg->parent) {
1626 int i;
1627
1628 load = 0;
1629 for_each_cpu_mask(i, sd->span)
1630 load += cpu_rq(i)->load.weight;
1631
1632 } else {
1633 load = aggregate(tg->parent, sd)->load;
1634
1635 /*
1636 * shares is our weight in the parent's rq so
1637 * shares/parent->rq_weight gives our fraction of the load
1638 */
1639 load *= aggregate(tg, sd)->shares;
1640 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1641 }
1642
1643 aggregate(tg, sd)->load = load;
1644}
1645
1646static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1647
1648/*
1649 * Calculate and set the cpu's group shares.
1650 */
1651static void
1652__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1653 int tcpu)
1654{
1655 int boost = 0;
1656 unsigned long shares;
1657 unsigned long rq_weight;
1658
1659 if (!tg->se[tcpu])
1660 return;
1661
1662 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1663
1664 /*
1665 * If there are currently no tasks on the cpu pretend there is one of
1666 * average load so that when a new task gets to run here it will not
1667 * get delayed by group starvation.
1668 */
1669 if (!rq_weight) {
1670 boost = 1;
1671 rq_weight = NICE_0_LOAD;
1672 }
1673
1674 /*
1675 * \Sum shares * rq_weight
1676 * shares = -----------------------
1677 * \Sum rq_weight
1678 *
1679 */
1680 shares = aggregate(tg, sd)->shares * rq_weight;
1681 shares /= aggregate(tg, sd)->rq_weight + 1;
1682
1683 /*
1684 * record the actual number of shares, not the boosted amount.
1685 */
1686 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1687
1688 if (shares < MIN_SHARES)
1689 shares = MIN_SHARES;
cb4ad1ff
MX
1690 else if (shares > MAX_SHARES)
1691 shares = MAX_SHARES;
18d95a28
PZ
1692
1693 __set_se_shares(tg->se[tcpu], shares);
1694}
1695
1696/*
1697 * Re-adjust the weights on the cpu the task came from and on the cpu the
1698 * task went to.
1699 */
1700static void
1701__move_group_shares(struct task_group *tg, struct sched_domain *sd,
1702 int scpu, int dcpu)
1703{
1704 unsigned long shares;
1705
1706 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1707
1708 __update_group_shares_cpu(tg, sd, scpu);
1709 __update_group_shares_cpu(tg, sd, dcpu);
1710
1711 /*
1712 * ensure we never loose shares due to rounding errors in the
1713 * above redistribution.
1714 */
1715 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1716 if (shares)
1717 tg->cfs_rq[dcpu]->shares += shares;
1718}
1719
1720/*
1721 * Because changing a group's shares changes the weight of the super-group
1722 * we need to walk up the tree and change all shares until we hit the root.
1723 */
1724static void
1725move_group_shares(struct task_group *tg, struct sched_domain *sd,
1726 int scpu, int dcpu)
1727{
1728 while (tg) {
1729 __move_group_shares(tg, sd, scpu, dcpu);
1730 tg = tg->parent;
1731 }
1732}
1733
1734static
1735void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1736{
1737 unsigned long shares = aggregate(tg, sd)->shares;
1738 int i;
1739
1740 for_each_cpu_mask(i, sd->span) {
1741 struct rq *rq = cpu_rq(i);
1742 unsigned long flags;
1743
1744 spin_lock_irqsave(&rq->lock, flags);
1745 __update_group_shares_cpu(tg, sd, i);
1746 spin_unlock_irqrestore(&rq->lock, flags);
1747 }
1748
1749 aggregate_group_shares(tg, sd);
1750
1751 /*
1752 * ensure we never loose shares due to rounding errors in the
1753 * above redistribution.
1754 */
1755 shares -= aggregate(tg, sd)->shares;
1756 if (shares) {
1757 tg->cfs_rq[sd->first_cpu]->shares += shares;
1758 aggregate(tg, sd)->shares += shares;
1759 }
1760}
1761
1762/*
1763 * Calculate the accumulative weight and recursive load of each task group
1764 * while walking down the tree.
1765 */
1766static
1767void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1768{
1769 aggregate_group_weight(tg, sd);
1770 aggregate_group_shares(tg, sd);
1771 aggregate_group_load(tg, sd);
1772}
1773
1774/*
1775 * Rebalance the cpu shares while walking back up the tree.
1776 */
1777static
1778void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1779{
1780 aggregate_group_set_shares(tg, sd);
1781}
1782
1783static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1784
1785static void __init init_aggregate(void)
1786{
1787 int i;
1788
1789 for_each_possible_cpu(i)
1790 spin_lock_init(&per_cpu(aggregate_lock, i));
1791}
1792
1793static int get_aggregate(struct sched_domain *sd)
1794{
1795 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1796 return 0;
1797
1798 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1799 return 1;
1800}
1801
1802static void put_aggregate(struct sched_domain *sd)
1803{
1804 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1805}
1806
1807static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808{
1809 cfs_rq->shares = shares;
1810}
1811
1812#else
1813
1814static inline void init_aggregate(void)
1815{
1816}
1817
1818static inline int get_aggregate(struct sched_domain *sd)
1819{
1820 return 0;
1821}
1822
1823static inline void put_aggregate(struct sched_domain *sd)
1824{
1825}
1826#endif
1827
1828#else /* CONFIG_SMP */
1829
1830#ifdef CONFIG_FAIR_GROUP_SCHED
1831static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1832{
1833}
1834#endif
1835
e7693a36
GH
1836#endif /* CONFIG_SMP */
1837
dd41f596 1838#include "sched_stats.h"
dd41f596 1839#include "sched_idletask.c"
5522d5d5
IM
1840#include "sched_fair.c"
1841#include "sched_rt.c"
dd41f596
IM
1842#ifdef CONFIG_SCHED_DEBUG
1843# include "sched_debug.c"
1844#endif
1845
1846#define sched_class_highest (&rt_sched_class)
1847
18d95a28 1848static void inc_nr_running(struct rq *rq)
9c217245
IM
1849{
1850 rq->nr_running++;
9c217245
IM
1851}
1852
18d95a28 1853static void dec_nr_running(struct rq *rq)
9c217245
IM
1854{
1855 rq->nr_running--;
9c217245
IM
1856}
1857
45bf76df
IM
1858static void set_load_weight(struct task_struct *p)
1859{
1860 if (task_has_rt_policy(p)) {
dd41f596
IM
1861 p->se.load.weight = prio_to_weight[0] * 2;
1862 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1863 return;
1864 }
45bf76df 1865
dd41f596
IM
1866 /*
1867 * SCHED_IDLE tasks get minimal weight:
1868 */
1869 if (p->policy == SCHED_IDLE) {
1870 p->se.load.weight = WEIGHT_IDLEPRIO;
1871 p->se.load.inv_weight = WMULT_IDLEPRIO;
1872 return;
1873 }
71f8bd46 1874
dd41f596
IM
1875 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1876 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1877}
1878
8159f87e 1879static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1880{
dd41f596 1881 sched_info_queued(p);
fd390f6a 1882 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1883 p->se.on_rq = 1;
71f8bd46
IM
1884}
1885
69be72c1 1886static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1887{
f02231e5 1888 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1889 p->se.on_rq = 0;
71f8bd46
IM
1890}
1891
14531189 1892/*
dd41f596 1893 * __normal_prio - return the priority that is based on the static prio
14531189 1894 */
14531189
IM
1895static inline int __normal_prio(struct task_struct *p)
1896{
dd41f596 1897 return p->static_prio;
14531189
IM
1898}
1899
b29739f9
IM
1900/*
1901 * Calculate the expected normal priority: i.e. priority
1902 * without taking RT-inheritance into account. Might be
1903 * boosted by interactivity modifiers. Changes upon fork,
1904 * setprio syscalls, and whenever the interactivity
1905 * estimator recalculates.
1906 */
36c8b586 1907static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1908{
1909 int prio;
1910
e05606d3 1911 if (task_has_rt_policy(p))
b29739f9
IM
1912 prio = MAX_RT_PRIO-1 - p->rt_priority;
1913 else
1914 prio = __normal_prio(p);
1915 return prio;
1916}
1917
1918/*
1919 * Calculate the current priority, i.e. the priority
1920 * taken into account by the scheduler. This value might
1921 * be boosted by RT tasks, or might be boosted by
1922 * interactivity modifiers. Will be RT if the task got
1923 * RT-boosted. If not then it returns p->normal_prio.
1924 */
36c8b586 1925static int effective_prio(struct task_struct *p)
b29739f9
IM
1926{
1927 p->normal_prio = normal_prio(p);
1928 /*
1929 * If we are RT tasks or we were boosted to RT priority,
1930 * keep the priority unchanged. Otherwise, update priority
1931 * to the normal priority:
1932 */
1933 if (!rt_prio(p->prio))
1934 return p->normal_prio;
1935 return p->prio;
1936}
1937
1da177e4 1938/*
dd41f596 1939 * activate_task - move a task to the runqueue.
1da177e4 1940 */
dd41f596 1941static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1942{
d9514f6c 1943 if (task_contributes_to_load(p))
dd41f596 1944 rq->nr_uninterruptible--;
1da177e4 1945
8159f87e 1946 enqueue_task(rq, p, wakeup);
18d95a28 1947 inc_nr_running(rq);
1da177e4
LT
1948}
1949
1da177e4
LT
1950/*
1951 * deactivate_task - remove a task from the runqueue.
1952 */
2e1cb74a 1953static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1954{
d9514f6c 1955 if (task_contributes_to_load(p))
dd41f596
IM
1956 rq->nr_uninterruptible++;
1957
69be72c1 1958 dequeue_task(rq, p, sleep);
18d95a28 1959 dec_nr_running(rq);
1da177e4
LT
1960}
1961
1da177e4
LT
1962/**
1963 * task_curr - is this task currently executing on a CPU?
1964 * @p: the task in question.
1965 */
36c8b586 1966inline int task_curr(const struct task_struct *p)
1da177e4
LT
1967{
1968 return cpu_curr(task_cpu(p)) == p;
1969}
1970
2dd73a4f
PW
1971/* Used instead of source_load when we know the type == 0 */
1972unsigned long weighted_cpuload(const int cpu)
1973{
495eca49 1974 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1975}
1976
1977static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1978{
6f505b16 1979 set_task_rq(p, cpu);
dd41f596 1980#ifdef CONFIG_SMP
ce96b5ac
DA
1981 /*
1982 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1983 * successfuly executed on another CPU. We must ensure that updates of
1984 * per-task data have been completed by this moment.
1985 */
1986 smp_wmb();
dd41f596 1987 task_thread_info(p)->cpu = cpu;
dd41f596 1988#endif
2dd73a4f
PW
1989}
1990
cb469845
SR
1991static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994{
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001}
2002
1da177e4 2003#ifdef CONFIG_SMP
c65cc870 2004
cc367732
IM
2005/*
2006 * Is this task likely cache-hot:
2007 */
e7693a36 2008static int
cc367732
IM
2009task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2010{
2011 s64 delta;
2012
f540a608
IM
2013 /*
2014 * Buddy candidates are cache hot:
2015 */
d25ce4cd 2016 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
2017 return 1;
2018
cc367732
IM
2019 if (p->sched_class != &fair_sched_class)
2020 return 0;
2021
6bc1665b
IM
2022 if (sysctl_sched_migration_cost == -1)
2023 return 1;
2024 if (sysctl_sched_migration_cost == 0)
2025 return 0;
2026
cc367732
IM
2027 delta = now - p->se.exec_start;
2028
2029 return delta < (s64)sysctl_sched_migration_cost;
2030}
2031
2032
dd41f596 2033void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2034{
dd41f596
IM
2035 int old_cpu = task_cpu(p);
2036 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2037 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2038 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2039 u64 clock_offset;
dd41f596
IM
2040
2041 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
2042
2043#ifdef CONFIG_SCHEDSTATS
2044 if (p->se.wait_start)
2045 p->se.wait_start -= clock_offset;
dd41f596
IM
2046 if (p->se.sleep_start)
2047 p->se.sleep_start -= clock_offset;
2048 if (p->se.block_start)
2049 p->se.block_start -= clock_offset;
cc367732
IM
2050 if (old_cpu != new_cpu) {
2051 schedstat_inc(p, se.nr_migrations);
2052 if (task_hot(p, old_rq->clock, NULL))
2053 schedstat_inc(p, se.nr_forced2_migrations);
2054 }
6cfb0d5d 2055#endif
2830cf8c
SV
2056 p->se.vruntime -= old_cfsrq->min_vruntime -
2057 new_cfsrq->min_vruntime;
dd41f596
IM
2058
2059 __set_task_cpu(p, new_cpu);
c65cc870
IM
2060}
2061
70b97a7f 2062struct migration_req {
1da177e4 2063 struct list_head list;
1da177e4 2064
36c8b586 2065 struct task_struct *task;
1da177e4
LT
2066 int dest_cpu;
2067
1da177e4 2068 struct completion done;
70b97a7f 2069};
1da177e4
LT
2070
2071/*
2072 * The task's runqueue lock must be held.
2073 * Returns true if you have to wait for migration thread.
2074 */
36c8b586 2075static int
70b97a7f 2076migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2077{
70b97a7f 2078 struct rq *rq = task_rq(p);
1da177e4
LT
2079
2080 /*
2081 * If the task is not on a runqueue (and not running), then
2082 * it is sufficient to simply update the task's cpu field.
2083 */
dd41f596 2084 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2085 set_task_cpu(p, dest_cpu);
2086 return 0;
2087 }
2088
2089 init_completion(&req->done);
1da177e4
LT
2090 req->task = p;
2091 req->dest_cpu = dest_cpu;
2092 list_add(&req->list, &rq->migration_queue);
48f24c4d 2093
1da177e4
LT
2094 return 1;
2095}
2096
2097/*
2098 * wait_task_inactive - wait for a thread to unschedule.
2099 *
2100 * The caller must ensure that the task *will* unschedule sometime soon,
2101 * else this function might spin for a *long* time. This function can't
2102 * be called with interrupts off, or it may introduce deadlock with
2103 * smp_call_function() if an IPI is sent by the same process we are
2104 * waiting to become inactive.
2105 */
36c8b586 2106void wait_task_inactive(struct task_struct *p)
1da177e4
LT
2107{
2108 unsigned long flags;
dd41f596 2109 int running, on_rq;
70b97a7f 2110 struct rq *rq;
1da177e4 2111
3a5c359a
AK
2112 for (;;) {
2113 /*
2114 * We do the initial early heuristics without holding
2115 * any task-queue locks at all. We'll only try to get
2116 * the runqueue lock when things look like they will
2117 * work out!
2118 */
2119 rq = task_rq(p);
fa490cfd 2120
3a5c359a
AK
2121 /*
2122 * If the task is actively running on another CPU
2123 * still, just relax and busy-wait without holding
2124 * any locks.
2125 *
2126 * NOTE! Since we don't hold any locks, it's not
2127 * even sure that "rq" stays as the right runqueue!
2128 * But we don't care, since "task_running()" will
2129 * return false if the runqueue has changed and p
2130 * is actually now running somewhere else!
2131 */
2132 while (task_running(rq, p))
2133 cpu_relax();
fa490cfd 2134
3a5c359a
AK
2135 /*
2136 * Ok, time to look more closely! We need the rq
2137 * lock now, to be *sure*. If we're wrong, we'll
2138 * just go back and repeat.
2139 */
2140 rq = task_rq_lock(p, &flags);
2141 running = task_running(rq, p);
2142 on_rq = p->se.on_rq;
2143 task_rq_unlock(rq, &flags);
fa490cfd 2144
3a5c359a
AK
2145 /*
2146 * Was it really running after all now that we
2147 * checked with the proper locks actually held?
2148 *
2149 * Oops. Go back and try again..
2150 */
2151 if (unlikely(running)) {
2152 cpu_relax();
2153 continue;
2154 }
fa490cfd 2155
3a5c359a
AK
2156 /*
2157 * It's not enough that it's not actively running,
2158 * it must be off the runqueue _entirely_, and not
2159 * preempted!
2160 *
2161 * So if it wa still runnable (but just not actively
2162 * running right now), it's preempted, and we should
2163 * yield - it could be a while.
2164 */
2165 if (unlikely(on_rq)) {
2166 schedule_timeout_uninterruptible(1);
2167 continue;
2168 }
fa490cfd 2169
3a5c359a
AK
2170 /*
2171 * Ahh, all good. It wasn't running, and it wasn't
2172 * runnable, which means that it will never become
2173 * running in the future either. We're all done!
2174 */
2175 break;
2176 }
1da177e4
LT
2177}
2178
2179/***
2180 * kick_process - kick a running thread to enter/exit the kernel
2181 * @p: the to-be-kicked thread
2182 *
2183 * Cause a process which is running on another CPU to enter
2184 * kernel-mode, without any delay. (to get signals handled.)
2185 *
2186 * NOTE: this function doesnt have to take the runqueue lock,
2187 * because all it wants to ensure is that the remote task enters
2188 * the kernel. If the IPI races and the task has been migrated
2189 * to another CPU then no harm is done and the purpose has been
2190 * achieved as well.
2191 */
36c8b586 2192void kick_process(struct task_struct *p)
1da177e4
LT
2193{
2194 int cpu;
2195
2196 preempt_disable();
2197 cpu = task_cpu(p);
2198 if ((cpu != smp_processor_id()) && task_curr(p))
2199 smp_send_reschedule(cpu);
2200 preempt_enable();
2201}
2202
2203/*
2dd73a4f
PW
2204 * Return a low guess at the load of a migration-source cpu weighted
2205 * according to the scheduling class and "nice" value.
1da177e4
LT
2206 *
2207 * We want to under-estimate the load of migration sources, to
2208 * balance conservatively.
2209 */
a9957449 2210static unsigned long source_load(int cpu, int type)
1da177e4 2211{
70b97a7f 2212 struct rq *rq = cpu_rq(cpu);
dd41f596 2213 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2214
3b0bd9bc 2215 if (type == 0)
dd41f596 2216 return total;
b910472d 2217
dd41f596 2218 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2219}
2220
2221/*
2dd73a4f
PW
2222 * Return a high guess at the load of a migration-target cpu weighted
2223 * according to the scheduling class and "nice" value.
1da177e4 2224 */
a9957449 2225static unsigned long target_load(int cpu, int type)
1da177e4 2226{
70b97a7f 2227 struct rq *rq = cpu_rq(cpu);
dd41f596 2228 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2229
7897986b 2230 if (type == 0)
dd41f596 2231 return total;
3b0bd9bc 2232
dd41f596 2233 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2234}
2235
2236/*
2237 * Return the average load per task on the cpu's run queue
2238 */
e7693a36 2239static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2240{
70b97a7f 2241 struct rq *rq = cpu_rq(cpu);
dd41f596 2242 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2243 unsigned long n = rq->nr_running;
2244
dd41f596 2245 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2246}
2247
147cbb4b
NP
2248/*
2249 * find_idlest_group finds and returns the least busy CPU group within the
2250 * domain.
2251 */
2252static struct sched_group *
2253find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2254{
2255 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2256 unsigned long min_load = ULONG_MAX, this_load = 0;
2257 int load_idx = sd->forkexec_idx;
2258 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2259
2260 do {
2261 unsigned long load, avg_load;
2262 int local_group;
2263 int i;
2264
da5a5522
BD
2265 /* Skip over this group if it has no CPUs allowed */
2266 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2267 continue;
da5a5522 2268
147cbb4b 2269 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2270
2271 /* Tally up the load of all CPUs in the group */
2272 avg_load = 0;
2273
2274 for_each_cpu_mask(i, group->cpumask) {
2275 /* Bias balancing toward cpus of our domain */
2276 if (local_group)
2277 load = source_load(i, load_idx);
2278 else
2279 load = target_load(i, load_idx);
2280
2281 avg_load += load;
2282 }
2283
2284 /* Adjust by relative CPU power of the group */
5517d86b
ED
2285 avg_load = sg_div_cpu_power(group,
2286 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2287
2288 if (local_group) {
2289 this_load = avg_load;
2290 this = group;
2291 } else if (avg_load < min_load) {
2292 min_load = avg_load;
2293 idlest = group;
2294 }
3a5c359a 2295 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2296
2297 if (!idlest || 100*this_load < imbalance*min_load)
2298 return NULL;
2299 return idlest;
2300}
2301
2302/*
0feaece9 2303 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2304 */
95cdf3b7 2305static int
7c16ec58
MT
2306find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2307 cpumask_t *tmp)
147cbb4b
NP
2308{
2309 unsigned long load, min_load = ULONG_MAX;
2310 int idlest = -1;
2311 int i;
2312
da5a5522 2313 /* Traverse only the allowed CPUs */
7c16ec58 2314 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2315
7c16ec58 2316 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2317 load = weighted_cpuload(i);
147cbb4b
NP
2318
2319 if (load < min_load || (load == min_load && i == this_cpu)) {
2320 min_load = load;
2321 idlest = i;
2322 }
2323 }
2324
2325 return idlest;
2326}
2327
476d139c
NP
2328/*
2329 * sched_balance_self: balance the current task (running on cpu) in domains
2330 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2331 * SD_BALANCE_EXEC.
2332 *
2333 * Balance, ie. select the least loaded group.
2334 *
2335 * Returns the target CPU number, or the same CPU if no balancing is needed.
2336 *
2337 * preempt must be disabled.
2338 */
2339static int sched_balance_self(int cpu, int flag)
2340{
2341 struct task_struct *t = current;
2342 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2343
c96d145e 2344 for_each_domain(cpu, tmp) {
9761eea8
IM
2345 /*
2346 * If power savings logic is enabled for a domain, stop there.
2347 */
5c45bf27
SS
2348 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2349 break;
476d139c
NP
2350 if (tmp->flags & flag)
2351 sd = tmp;
c96d145e 2352 }
476d139c
NP
2353
2354 while (sd) {
7c16ec58 2355 cpumask_t span, tmpmask;
476d139c 2356 struct sched_group *group;
1a848870
SS
2357 int new_cpu, weight;
2358
2359 if (!(sd->flags & flag)) {
2360 sd = sd->child;
2361 continue;
2362 }
476d139c
NP
2363
2364 span = sd->span;
2365 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2366 if (!group) {
2367 sd = sd->child;
2368 continue;
2369 }
476d139c 2370
7c16ec58 2371 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2372 if (new_cpu == -1 || new_cpu == cpu) {
2373 /* Now try balancing at a lower domain level of cpu */
2374 sd = sd->child;
2375 continue;
2376 }
476d139c 2377
1a848870 2378 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2379 cpu = new_cpu;
476d139c
NP
2380 sd = NULL;
2381 weight = cpus_weight(span);
2382 for_each_domain(cpu, tmp) {
2383 if (weight <= cpus_weight(tmp->span))
2384 break;
2385 if (tmp->flags & flag)
2386 sd = tmp;
2387 }
2388 /* while loop will break here if sd == NULL */
2389 }
2390
2391 return cpu;
2392}
2393
2394#endif /* CONFIG_SMP */
1da177e4 2395
1da177e4
LT
2396/***
2397 * try_to_wake_up - wake up a thread
2398 * @p: the to-be-woken-up thread
2399 * @state: the mask of task states that can be woken
2400 * @sync: do a synchronous wakeup?
2401 *
2402 * Put it on the run-queue if it's not already there. The "current"
2403 * thread is always on the run-queue (except when the actual
2404 * re-schedule is in progress), and as such you're allowed to do
2405 * the simpler "current->state = TASK_RUNNING" to mark yourself
2406 * runnable without the overhead of this.
2407 *
2408 * returns failure only if the task is already active.
2409 */
36c8b586 2410static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2411{
cc367732 2412 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2413 unsigned long flags;
2414 long old_state;
70b97a7f 2415 struct rq *rq;
1da177e4 2416
b85d0667
IM
2417 if (!sched_feat(SYNC_WAKEUPS))
2418 sync = 0;
2419
04e2f174 2420 smp_wmb();
1da177e4
LT
2421 rq = task_rq_lock(p, &flags);
2422 old_state = p->state;
2423 if (!(old_state & state))
2424 goto out;
2425
dd41f596 2426 if (p->se.on_rq)
1da177e4
LT
2427 goto out_running;
2428
2429 cpu = task_cpu(p);
cc367732 2430 orig_cpu = cpu;
1da177e4
LT
2431 this_cpu = smp_processor_id();
2432
2433#ifdef CONFIG_SMP
2434 if (unlikely(task_running(rq, p)))
2435 goto out_activate;
2436
5d2f5a61
DA
2437 cpu = p->sched_class->select_task_rq(p, sync);
2438 if (cpu != orig_cpu) {
2439 set_task_cpu(p, cpu);
1da177e4
LT
2440 task_rq_unlock(rq, &flags);
2441 /* might preempt at this point */
2442 rq = task_rq_lock(p, &flags);
2443 old_state = p->state;
2444 if (!(old_state & state))
2445 goto out;
dd41f596 2446 if (p->se.on_rq)
1da177e4
LT
2447 goto out_running;
2448
2449 this_cpu = smp_processor_id();
2450 cpu = task_cpu(p);
2451 }
2452
e7693a36
GH
2453#ifdef CONFIG_SCHEDSTATS
2454 schedstat_inc(rq, ttwu_count);
2455 if (cpu == this_cpu)
2456 schedstat_inc(rq, ttwu_local);
2457 else {
2458 struct sched_domain *sd;
2459 for_each_domain(this_cpu, sd) {
2460 if (cpu_isset(cpu, sd->span)) {
2461 schedstat_inc(sd, ttwu_wake_remote);
2462 break;
2463 }
2464 }
2465 }
e7693a36
GH
2466#endif
2467
1da177e4
LT
2468out_activate:
2469#endif /* CONFIG_SMP */
bd3bff9e 2470 ftrace_wake_up_task(p, rq->curr);
cc367732
IM
2471 schedstat_inc(p, se.nr_wakeups);
2472 if (sync)
2473 schedstat_inc(p, se.nr_wakeups_sync);
2474 if (orig_cpu != cpu)
2475 schedstat_inc(p, se.nr_wakeups_migrate);
2476 if (cpu == this_cpu)
2477 schedstat_inc(p, se.nr_wakeups_local);
2478 else
2479 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2480 update_rq_clock(rq);
dd41f596 2481 activate_task(rq, p, 1);
1da177e4
LT
2482 success = 1;
2483
2484out_running:
4ae7d5ce
IM
2485 check_preempt_curr(rq, p);
2486
1da177e4 2487 p->state = TASK_RUNNING;
9a897c5a
SR
2488#ifdef CONFIG_SMP
2489 if (p->sched_class->task_wake_up)
2490 p->sched_class->task_wake_up(rq, p);
2491#endif
1da177e4
LT
2492out:
2493 task_rq_unlock(rq, &flags);
2494
2495 return success;
2496}
2497
7ad5b3a5 2498int wake_up_process(struct task_struct *p)
1da177e4 2499{
d9514f6c 2500 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2501}
1da177e4
LT
2502EXPORT_SYMBOL(wake_up_process);
2503
7ad5b3a5 2504int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2505{
2506 return try_to_wake_up(p, state, 0);
2507}
2508
1da177e4
LT
2509/*
2510 * Perform scheduler related setup for a newly forked process p.
2511 * p is forked by current.
dd41f596
IM
2512 *
2513 * __sched_fork() is basic setup used by init_idle() too:
2514 */
2515static void __sched_fork(struct task_struct *p)
2516{
dd41f596
IM
2517 p->se.exec_start = 0;
2518 p->se.sum_exec_runtime = 0;
f6cf891c 2519 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2520 p->se.last_wakeup = 0;
2521 p->se.avg_overlap = 0;
6cfb0d5d
IM
2522
2523#ifdef CONFIG_SCHEDSTATS
2524 p->se.wait_start = 0;
dd41f596
IM
2525 p->se.sum_sleep_runtime = 0;
2526 p->se.sleep_start = 0;
dd41f596
IM
2527 p->se.block_start = 0;
2528 p->se.sleep_max = 0;
2529 p->se.block_max = 0;
2530 p->se.exec_max = 0;
eba1ed4b 2531 p->se.slice_max = 0;
dd41f596 2532 p->se.wait_max = 0;
6cfb0d5d 2533#endif
476d139c 2534
fa717060 2535 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2536 p->se.on_rq = 0;
4a55bd5e 2537 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2538
e107be36
AK
2539#ifdef CONFIG_PREEMPT_NOTIFIERS
2540 INIT_HLIST_HEAD(&p->preempt_notifiers);
2541#endif
2542
1da177e4
LT
2543 /*
2544 * We mark the process as running here, but have not actually
2545 * inserted it onto the runqueue yet. This guarantees that
2546 * nobody will actually run it, and a signal or other external
2547 * event cannot wake it up and insert it on the runqueue either.
2548 */
2549 p->state = TASK_RUNNING;
dd41f596
IM
2550}
2551
2552/*
2553 * fork()/clone()-time setup:
2554 */
2555void sched_fork(struct task_struct *p, int clone_flags)
2556{
2557 int cpu = get_cpu();
2558
2559 __sched_fork(p);
2560
2561#ifdef CONFIG_SMP
2562 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2563#endif
02e4bac2 2564 set_task_cpu(p, cpu);
b29739f9
IM
2565
2566 /*
2567 * Make sure we do not leak PI boosting priority to the child:
2568 */
2569 p->prio = current->normal_prio;
2ddbf952
HS
2570 if (!rt_prio(p->prio))
2571 p->sched_class = &fair_sched_class;
b29739f9 2572
52f17b6c 2573#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2574 if (likely(sched_info_on()))
52f17b6c 2575 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2576#endif
d6077cb8 2577#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2578 p->oncpu = 0;
2579#endif
1da177e4 2580#ifdef CONFIG_PREEMPT
4866cde0 2581 /* Want to start with kernel preemption disabled. */
a1261f54 2582 task_thread_info(p)->preempt_count = 1;
1da177e4 2583#endif
476d139c 2584 put_cpu();
1da177e4
LT
2585}
2586
2587/*
2588 * wake_up_new_task - wake up a newly created task for the first time.
2589 *
2590 * This function will do some initial scheduler statistics housekeeping
2591 * that must be done for every newly created context, then puts the task
2592 * on the runqueue and wakes it.
2593 */
7ad5b3a5 2594void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2595{
2596 unsigned long flags;
dd41f596 2597 struct rq *rq;
1da177e4
LT
2598
2599 rq = task_rq_lock(p, &flags);
147cbb4b 2600 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2601 update_rq_clock(rq);
1da177e4
LT
2602
2603 p->prio = effective_prio(p);
2604
b9dca1e0 2605 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2606 activate_task(rq, p, 0);
1da177e4 2607 } else {
1da177e4 2608 /*
dd41f596
IM
2609 * Let the scheduling class do new task startup
2610 * management (if any):
1da177e4 2611 */
ee0827d8 2612 p->sched_class->task_new(rq, p);
18d95a28 2613 inc_nr_running(rq);
1da177e4 2614 }
bd3bff9e 2615 ftrace_wake_up_new_task(p, rq->curr);
dd41f596 2616 check_preempt_curr(rq, p);
9a897c5a
SR
2617#ifdef CONFIG_SMP
2618 if (p->sched_class->task_wake_up)
2619 p->sched_class->task_wake_up(rq, p);
2620#endif
dd41f596 2621 task_rq_unlock(rq, &flags);
1da177e4
LT
2622}
2623
e107be36
AK
2624#ifdef CONFIG_PREEMPT_NOTIFIERS
2625
2626/**
421cee29
RD
2627 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2628 * @notifier: notifier struct to register
e107be36
AK
2629 */
2630void preempt_notifier_register(struct preempt_notifier *notifier)
2631{
2632 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2633}
2634EXPORT_SYMBOL_GPL(preempt_notifier_register);
2635
2636/**
2637 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2638 * @notifier: notifier struct to unregister
e107be36
AK
2639 *
2640 * This is safe to call from within a preemption notifier.
2641 */
2642void preempt_notifier_unregister(struct preempt_notifier *notifier)
2643{
2644 hlist_del(&notifier->link);
2645}
2646EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2647
2648static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2649{
2650 struct preempt_notifier *notifier;
2651 struct hlist_node *node;
2652
2653 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2654 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2655}
2656
2657static void
2658fire_sched_out_preempt_notifiers(struct task_struct *curr,
2659 struct task_struct *next)
2660{
2661 struct preempt_notifier *notifier;
2662 struct hlist_node *node;
2663
2664 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2665 notifier->ops->sched_out(notifier, next);
2666}
2667
2668#else
2669
2670static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2671{
2672}
2673
2674static void
2675fire_sched_out_preempt_notifiers(struct task_struct *curr,
2676 struct task_struct *next)
2677{
2678}
2679
2680#endif
2681
4866cde0
NP
2682/**
2683 * prepare_task_switch - prepare to switch tasks
2684 * @rq: the runqueue preparing to switch
421cee29 2685 * @prev: the current task that is being switched out
4866cde0
NP
2686 * @next: the task we are going to switch to.
2687 *
2688 * This is called with the rq lock held and interrupts off. It must
2689 * be paired with a subsequent finish_task_switch after the context
2690 * switch.
2691 *
2692 * prepare_task_switch sets up locking and calls architecture specific
2693 * hooks.
2694 */
e107be36
AK
2695static inline void
2696prepare_task_switch(struct rq *rq, struct task_struct *prev,
2697 struct task_struct *next)
4866cde0 2698{
e107be36 2699 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2700 prepare_lock_switch(rq, next);
2701 prepare_arch_switch(next);
2702}
2703
1da177e4
LT
2704/**
2705 * finish_task_switch - clean up after a task-switch
344babaa 2706 * @rq: runqueue associated with task-switch
1da177e4
LT
2707 * @prev: the thread we just switched away from.
2708 *
4866cde0
NP
2709 * finish_task_switch must be called after the context switch, paired
2710 * with a prepare_task_switch call before the context switch.
2711 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2712 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2713 *
2714 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2715 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2716 * with the lock held can cause deadlocks; see schedule() for
2717 * details.)
2718 */
a9957449 2719static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2720 __releases(rq->lock)
2721{
1da177e4 2722 struct mm_struct *mm = rq->prev_mm;
55a101f8 2723 long prev_state;
1da177e4
LT
2724
2725 rq->prev_mm = NULL;
2726
2727 /*
2728 * A task struct has one reference for the use as "current".
c394cc9f 2729 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2730 * schedule one last time. The schedule call will never return, and
2731 * the scheduled task must drop that reference.
c394cc9f 2732 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2733 * still held, otherwise prev could be scheduled on another cpu, die
2734 * there before we look at prev->state, and then the reference would
2735 * be dropped twice.
2736 * Manfred Spraul <manfred@colorfullife.com>
2737 */
55a101f8 2738 prev_state = prev->state;
4866cde0
NP
2739 finish_arch_switch(prev);
2740 finish_lock_switch(rq, prev);
9a897c5a
SR
2741#ifdef CONFIG_SMP
2742 if (current->sched_class->post_schedule)
2743 current->sched_class->post_schedule(rq);
2744#endif
e8fa1362 2745
e107be36 2746 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2747 if (mm)
2748 mmdrop(mm);
c394cc9f 2749 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2750 /*
2751 * Remove function-return probe instances associated with this
2752 * task and put them back on the free list.
9761eea8 2753 */
c6fd91f0 2754 kprobe_flush_task(prev);
1da177e4 2755 put_task_struct(prev);
c6fd91f0 2756 }
1da177e4
LT
2757}
2758
2759/**
2760 * schedule_tail - first thing a freshly forked thread must call.
2761 * @prev: the thread we just switched away from.
2762 */
36c8b586 2763asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2764 __releases(rq->lock)
2765{
70b97a7f
IM
2766 struct rq *rq = this_rq();
2767
4866cde0
NP
2768 finish_task_switch(rq, prev);
2769#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2770 /* In this case, finish_task_switch does not reenable preemption */
2771 preempt_enable();
2772#endif
1da177e4 2773 if (current->set_child_tid)
b488893a 2774 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2775}
2776
2777/*
2778 * context_switch - switch to the new MM and the new
2779 * thread's register state.
2780 */
dd41f596 2781static inline void
70b97a7f 2782context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2783 struct task_struct *next)
1da177e4 2784{
dd41f596 2785 struct mm_struct *mm, *oldmm;
1da177e4 2786
e107be36 2787 prepare_task_switch(rq, prev, next);
bd3bff9e 2788 ftrace_ctx_switch(prev, next);
dd41f596
IM
2789 mm = next->mm;
2790 oldmm = prev->active_mm;
9226d125
ZA
2791 /*
2792 * For paravirt, this is coupled with an exit in switch_to to
2793 * combine the page table reload and the switch backend into
2794 * one hypercall.
2795 */
2796 arch_enter_lazy_cpu_mode();
2797
dd41f596 2798 if (unlikely(!mm)) {
1da177e4
LT
2799 next->active_mm = oldmm;
2800 atomic_inc(&oldmm->mm_count);
2801 enter_lazy_tlb(oldmm, next);
2802 } else
2803 switch_mm(oldmm, mm, next);
2804
dd41f596 2805 if (unlikely(!prev->mm)) {
1da177e4 2806 prev->active_mm = NULL;
1da177e4
LT
2807 rq->prev_mm = oldmm;
2808 }
3a5f5e48
IM
2809 /*
2810 * Since the runqueue lock will be released by the next
2811 * task (which is an invalid locking op but in the case
2812 * of the scheduler it's an obvious special-case), so we
2813 * do an early lockdep release here:
2814 */
2815#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2816 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2817#endif
1da177e4
LT
2818
2819 /* Here we just switch the register state and the stack. */
2820 switch_to(prev, next, prev);
2821
dd41f596
IM
2822 barrier();
2823 /*
2824 * this_rq must be evaluated again because prev may have moved
2825 * CPUs since it called schedule(), thus the 'rq' on its stack
2826 * frame will be invalid.
2827 */
2828 finish_task_switch(this_rq(), prev);
1da177e4
LT
2829}
2830
2831/*
2832 * nr_running, nr_uninterruptible and nr_context_switches:
2833 *
2834 * externally visible scheduler statistics: current number of runnable
2835 * threads, current number of uninterruptible-sleeping threads, total
2836 * number of context switches performed since bootup.
2837 */
2838unsigned long nr_running(void)
2839{
2840 unsigned long i, sum = 0;
2841
2842 for_each_online_cpu(i)
2843 sum += cpu_rq(i)->nr_running;
2844
2845 return sum;
2846}
2847
2848unsigned long nr_uninterruptible(void)
2849{
2850 unsigned long i, sum = 0;
2851
0a945022 2852 for_each_possible_cpu(i)
1da177e4
LT
2853 sum += cpu_rq(i)->nr_uninterruptible;
2854
2855 /*
2856 * Since we read the counters lockless, it might be slightly
2857 * inaccurate. Do not allow it to go below zero though:
2858 */
2859 if (unlikely((long)sum < 0))
2860 sum = 0;
2861
2862 return sum;
2863}
2864
2865unsigned long long nr_context_switches(void)
2866{
cc94abfc
SR
2867 int i;
2868 unsigned long long sum = 0;
1da177e4 2869
0a945022 2870 for_each_possible_cpu(i)
1da177e4
LT
2871 sum += cpu_rq(i)->nr_switches;
2872
2873 return sum;
2874}
2875
2876unsigned long nr_iowait(void)
2877{
2878 unsigned long i, sum = 0;
2879
0a945022 2880 for_each_possible_cpu(i)
1da177e4
LT
2881 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2882
2883 return sum;
2884}
2885
db1b1fef
JS
2886unsigned long nr_active(void)
2887{
2888 unsigned long i, running = 0, uninterruptible = 0;
2889
2890 for_each_online_cpu(i) {
2891 running += cpu_rq(i)->nr_running;
2892 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2893 }
2894
2895 if (unlikely((long)uninterruptible < 0))
2896 uninterruptible = 0;
2897
2898 return running + uninterruptible;
2899}
2900
48f24c4d 2901/*
dd41f596
IM
2902 * Update rq->cpu_load[] statistics. This function is usually called every
2903 * scheduler tick (TICK_NSEC).
48f24c4d 2904 */
dd41f596 2905static void update_cpu_load(struct rq *this_rq)
48f24c4d 2906{
495eca49 2907 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2908 int i, scale;
2909
2910 this_rq->nr_load_updates++;
dd41f596
IM
2911
2912 /* Update our load: */
2913 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2914 unsigned long old_load, new_load;
2915
2916 /* scale is effectively 1 << i now, and >> i divides by scale */
2917
2918 old_load = this_rq->cpu_load[i];
2919 new_load = this_load;
a25707f3
IM
2920 /*
2921 * Round up the averaging division if load is increasing. This
2922 * prevents us from getting stuck on 9 if the load is 10, for
2923 * example.
2924 */
2925 if (new_load > old_load)
2926 new_load += scale-1;
dd41f596
IM
2927 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2928 }
48f24c4d
IM
2929}
2930
dd41f596
IM
2931#ifdef CONFIG_SMP
2932
1da177e4
LT
2933/*
2934 * double_rq_lock - safely lock two runqueues
2935 *
2936 * Note this does not disable interrupts like task_rq_lock,
2937 * you need to do so manually before calling.
2938 */
70b97a7f 2939static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2940 __acquires(rq1->lock)
2941 __acquires(rq2->lock)
2942{
054b9108 2943 BUG_ON(!irqs_disabled());
1da177e4
LT
2944 if (rq1 == rq2) {
2945 spin_lock(&rq1->lock);
2946 __acquire(rq2->lock); /* Fake it out ;) */
2947 } else {
c96d145e 2948 if (rq1 < rq2) {
1da177e4
LT
2949 spin_lock(&rq1->lock);
2950 spin_lock(&rq2->lock);
2951 } else {
2952 spin_lock(&rq2->lock);
2953 spin_lock(&rq1->lock);
2954 }
2955 }
6e82a3be
IM
2956 update_rq_clock(rq1);
2957 update_rq_clock(rq2);
1da177e4
LT
2958}
2959
2960/*
2961 * double_rq_unlock - safely unlock two runqueues
2962 *
2963 * Note this does not restore interrupts like task_rq_unlock,
2964 * you need to do so manually after calling.
2965 */
70b97a7f 2966static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2967 __releases(rq1->lock)
2968 __releases(rq2->lock)
2969{
2970 spin_unlock(&rq1->lock);
2971 if (rq1 != rq2)
2972 spin_unlock(&rq2->lock);
2973 else
2974 __release(rq2->lock);
2975}
2976
2977/*
2978 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2979 */
e8fa1362 2980static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2981 __releases(this_rq->lock)
2982 __acquires(busiest->lock)
2983 __acquires(this_rq->lock)
2984{
e8fa1362
SR
2985 int ret = 0;
2986
054b9108
KK
2987 if (unlikely(!irqs_disabled())) {
2988 /* printk() doesn't work good under rq->lock */
2989 spin_unlock(&this_rq->lock);
2990 BUG_ON(1);
2991 }
1da177e4 2992 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2993 if (busiest < this_rq) {
1da177e4
LT
2994 spin_unlock(&this_rq->lock);
2995 spin_lock(&busiest->lock);
2996 spin_lock(&this_rq->lock);
e8fa1362 2997 ret = 1;
1da177e4
LT
2998 } else
2999 spin_lock(&busiest->lock);
3000 }
e8fa1362 3001 return ret;
1da177e4
LT
3002}
3003
1da177e4
LT
3004/*
3005 * If dest_cpu is allowed for this process, migrate the task to it.
3006 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3007 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3008 * the cpu_allowed mask is restored.
3009 */
36c8b586 3010static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3011{
70b97a7f 3012 struct migration_req req;
1da177e4 3013 unsigned long flags;
70b97a7f 3014 struct rq *rq;
1da177e4
LT
3015
3016 rq = task_rq_lock(p, &flags);
3017 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3018 || unlikely(cpu_is_offline(dest_cpu)))
3019 goto out;
3020
3021 /* force the process onto the specified CPU */
3022 if (migrate_task(p, dest_cpu, &req)) {
3023 /* Need to wait for migration thread (might exit: take ref). */
3024 struct task_struct *mt = rq->migration_thread;
36c8b586 3025
1da177e4
LT
3026 get_task_struct(mt);
3027 task_rq_unlock(rq, &flags);
3028 wake_up_process(mt);
3029 put_task_struct(mt);
3030 wait_for_completion(&req.done);
36c8b586 3031
1da177e4
LT
3032 return;
3033 }
3034out:
3035 task_rq_unlock(rq, &flags);
3036}
3037
3038/*
476d139c
NP
3039 * sched_exec - execve() is a valuable balancing opportunity, because at
3040 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3041 */
3042void sched_exec(void)
3043{
1da177e4 3044 int new_cpu, this_cpu = get_cpu();
476d139c 3045 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3046 put_cpu();
476d139c
NP
3047 if (new_cpu != this_cpu)
3048 sched_migrate_task(current, new_cpu);
1da177e4
LT
3049}
3050
3051/*
3052 * pull_task - move a task from a remote runqueue to the local runqueue.
3053 * Both runqueues must be locked.
3054 */
dd41f596
IM
3055static void pull_task(struct rq *src_rq, struct task_struct *p,
3056 struct rq *this_rq, int this_cpu)
1da177e4 3057{
2e1cb74a 3058 deactivate_task(src_rq, p, 0);
1da177e4 3059 set_task_cpu(p, this_cpu);
dd41f596 3060 activate_task(this_rq, p, 0);
1da177e4
LT
3061 /*
3062 * Note that idle threads have a prio of MAX_PRIO, for this test
3063 * to be always true for them.
3064 */
dd41f596 3065 check_preempt_curr(this_rq, p);
1da177e4
LT
3066}
3067
3068/*
3069 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3070 */
858119e1 3071static
70b97a7f 3072int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3073 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3074 int *all_pinned)
1da177e4
LT
3075{
3076 /*
3077 * We do not migrate tasks that are:
3078 * 1) running (obviously), or
3079 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3080 * 3) are cache-hot on their current CPU.
3081 */
cc367732
IM
3082 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3083 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3084 return 0;
cc367732 3085 }
81026794
NP
3086 *all_pinned = 0;
3087
cc367732
IM
3088 if (task_running(rq, p)) {
3089 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3090 return 0;
cc367732 3091 }
1da177e4 3092
da84d961
IM
3093 /*
3094 * Aggressive migration if:
3095 * 1) task is cache cold, or
3096 * 2) too many balance attempts have failed.
3097 */
3098
6bc1665b
IM
3099 if (!task_hot(p, rq->clock, sd) ||
3100 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3101#ifdef CONFIG_SCHEDSTATS
cc367732 3102 if (task_hot(p, rq->clock, sd)) {
da84d961 3103 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3104 schedstat_inc(p, se.nr_forced_migrations);
3105 }
da84d961
IM
3106#endif
3107 return 1;
3108 }
3109
cc367732
IM
3110 if (task_hot(p, rq->clock, sd)) {
3111 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3112 return 0;
cc367732 3113 }
1da177e4
LT
3114 return 1;
3115}
3116
e1d1484f
PW
3117static unsigned long
3118balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3119 unsigned long max_load_move, struct sched_domain *sd,
3120 enum cpu_idle_type idle, int *all_pinned,
3121 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3122{
b82d9fdd 3123 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
3124 struct task_struct *p;
3125 long rem_load_move = max_load_move;
1da177e4 3126
e1d1484f 3127 if (max_load_move == 0)
1da177e4
LT
3128 goto out;
3129
81026794
NP
3130 pinned = 1;
3131
1da177e4 3132 /*
dd41f596 3133 * Start the load-balancing iterator:
1da177e4 3134 */
dd41f596
IM
3135 p = iterator->start(iterator->arg);
3136next:
b82d9fdd 3137 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3138 goto out;
50ddd969 3139 /*
b82d9fdd 3140 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
3141 * skip a task if it will be the highest priority task (i.e. smallest
3142 * prio value) on its new queue regardless of its load weight
3143 */
dd41f596
IM
3144 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3145 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 3146 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 3147 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3148 p = iterator->next(iterator->arg);
3149 goto next;
1da177e4
LT
3150 }
3151
dd41f596 3152 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3153 pulled++;
dd41f596 3154 rem_load_move -= p->se.load.weight;
1da177e4 3155
2dd73a4f 3156 /*
b82d9fdd 3157 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3158 */
e1d1484f 3159 if (rem_load_move > 0) {
a4ac01c3
PW
3160 if (p->prio < *this_best_prio)
3161 *this_best_prio = p->prio;
dd41f596
IM
3162 p = iterator->next(iterator->arg);
3163 goto next;
1da177e4
LT
3164 }
3165out:
3166 /*
e1d1484f 3167 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3168 * so we can safely collect pull_task() stats here rather than
3169 * inside pull_task().
3170 */
3171 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3172
3173 if (all_pinned)
3174 *all_pinned = pinned;
e1d1484f
PW
3175
3176 return max_load_move - rem_load_move;
1da177e4
LT
3177}
3178
dd41f596 3179/*
43010659
PW
3180 * move_tasks tries to move up to max_load_move weighted load from busiest to
3181 * this_rq, as part of a balancing operation within domain "sd".
3182 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3183 *
3184 * Called with both runqueues locked.
3185 */
3186static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3187 unsigned long max_load_move,
dd41f596
IM
3188 struct sched_domain *sd, enum cpu_idle_type idle,
3189 int *all_pinned)
3190{
5522d5d5 3191 const struct sched_class *class = sched_class_highest;
43010659 3192 unsigned long total_load_moved = 0;
a4ac01c3 3193 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3194
3195 do {
43010659
PW
3196 total_load_moved +=
3197 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3198 max_load_move - total_load_moved,
a4ac01c3 3199 sd, idle, all_pinned, &this_best_prio);
dd41f596 3200 class = class->next;
43010659 3201 } while (class && max_load_move > total_load_moved);
dd41f596 3202
43010659
PW
3203 return total_load_moved > 0;
3204}
3205
e1d1484f
PW
3206static int
3207iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3208 struct sched_domain *sd, enum cpu_idle_type idle,
3209 struct rq_iterator *iterator)
3210{
3211 struct task_struct *p = iterator->start(iterator->arg);
3212 int pinned = 0;
3213
3214 while (p) {
3215 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3216 pull_task(busiest, p, this_rq, this_cpu);
3217 /*
3218 * Right now, this is only the second place pull_task()
3219 * is called, so we can safely collect pull_task()
3220 * stats here rather than inside pull_task().
3221 */
3222 schedstat_inc(sd, lb_gained[idle]);
3223
3224 return 1;
3225 }
3226 p = iterator->next(iterator->arg);
3227 }
3228
3229 return 0;
3230}
3231
43010659
PW
3232/*
3233 * move_one_task tries to move exactly one task from busiest to this_rq, as
3234 * part of active balancing operations within "domain".
3235 * Returns 1 if successful and 0 otherwise.
3236 *
3237 * Called with both runqueues locked.
3238 */
3239static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3240 struct sched_domain *sd, enum cpu_idle_type idle)
3241{
5522d5d5 3242 const struct sched_class *class;
43010659
PW
3243
3244 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3245 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3246 return 1;
3247
3248 return 0;
dd41f596
IM
3249}
3250
1da177e4
LT
3251/*
3252 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3253 * domain. It calculates and returns the amount of weighted load which
3254 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3255 */
3256static struct sched_group *
3257find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3258 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3259 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3260{
3261 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3262 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3263 unsigned long max_pull;
2dd73a4f
PW
3264 unsigned long busiest_load_per_task, busiest_nr_running;
3265 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3266 int load_idx, group_imb = 0;
5c45bf27
SS
3267#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3268 int power_savings_balance = 1;
3269 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3270 unsigned long min_nr_running = ULONG_MAX;
3271 struct sched_group *group_min = NULL, *group_leader = NULL;
3272#endif
1da177e4
LT
3273
3274 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3275 busiest_load_per_task = busiest_nr_running = 0;
3276 this_load_per_task = this_nr_running = 0;
d15bcfdb 3277 if (idle == CPU_NOT_IDLE)
7897986b 3278 load_idx = sd->busy_idx;
d15bcfdb 3279 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3280 load_idx = sd->newidle_idx;
3281 else
3282 load_idx = sd->idle_idx;
1da177e4
LT
3283
3284 do {
908a7c1b 3285 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3286 int local_group;
3287 int i;
908a7c1b 3288 int __group_imb = 0;
783609c6 3289 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3290 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3291
3292 local_group = cpu_isset(this_cpu, group->cpumask);
3293
783609c6
SS
3294 if (local_group)
3295 balance_cpu = first_cpu(group->cpumask);
3296
1da177e4 3297 /* Tally up the load of all CPUs in the group */
2dd73a4f 3298 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3299 max_cpu_load = 0;
3300 min_cpu_load = ~0UL;
1da177e4
LT
3301
3302 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3303 struct rq *rq;
3304
3305 if (!cpu_isset(i, *cpus))
3306 continue;
3307
3308 rq = cpu_rq(i);
2dd73a4f 3309
9439aab8 3310 if (*sd_idle && rq->nr_running)
5969fe06
NP
3311 *sd_idle = 0;
3312
1da177e4 3313 /* Bias balancing toward cpus of our domain */
783609c6
SS
3314 if (local_group) {
3315 if (idle_cpu(i) && !first_idle_cpu) {
3316 first_idle_cpu = 1;
3317 balance_cpu = i;
3318 }
3319
a2000572 3320 load = target_load(i, load_idx);
908a7c1b 3321 } else {
a2000572 3322 load = source_load(i, load_idx);
908a7c1b
KC
3323 if (load > max_cpu_load)
3324 max_cpu_load = load;
3325 if (min_cpu_load > load)
3326 min_cpu_load = load;
3327 }
1da177e4
LT
3328
3329 avg_load += load;
2dd73a4f 3330 sum_nr_running += rq->nr_running;
dd41f596 3331 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3332 }
3333
783609c6
SS
3334 /*
3335 * First idle cpu or the first cpu(busiest) in this sched group
3336 * is eligible for doing load balancing at this and above
9439aab8
SS
3337 * domains. In the newly idle case, we will allow all the cpu's
3338 * to do the newly idle load balance.
783609c6 3339 */
9439aab8
SS
3340 if (idle != CPU_NEWLY_IDLE && local_group &&
3341 balance_cpu != this_cpu && balance) {
783609c6
SS
3342 *balance = 0;
3343 goto ret;
3344 }
3345
1da177e4 3346 total_load += avg_load;
5517d86b 3347 total_pwr += group->__cpu_power;
1da177e4
LT
3348
3349 /* Adjust by relative CPU power of the group */
5517d86b
ED
3350 avg_load = sg_div_cpu_power(group,
3351 avg_load * SCHED_LOAD_SCALE);
1da177e4 3352
908a7c1b
KC
3353 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3354 __group_imb = 1;
3355
5517d86b 3356 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3357
1da177e4
LT
3358 if (local_group) {
3359 this_load = avg_load;
3360 this = group;
2dd73a4f
PW
3361 this_nr_running = sum_nr_running;
3362 this_load_per_task = sum_weighted_load;
3363 } else if (avg_load > max_load &&
908a7c1b 3364 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3365 max_load = avg_load;
3366 busiest = group;
2dd73a4f
PW
3367 busiest_nr_running = sum_nr_running;
3368 busiest_load_per_task = sum_weighted_load;
908a7c1b 3369 group_imb = __group_imb;
1da177e4 3370 }
5c45bf27
SS
3371
3372#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3373 /*
3374 * Busy processors will not participate in power savings
3375 * balance.
3376 */
dd41f596
IM
3377 if (idle == CPU_NOT_IDLE ||
3378 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3379 goto group_next;
5c45bf27
SS
3380
3381 /*
3382 * If the local group is idle or completely loaded
3383 * no need to do power savings balance at this domain
3384 */
3385 if (local_group && (this_nr_running >= group_capacity ||
3386 !this_nr_running))
3387 power_savings_balance = 0;
3388
dd41f596 3389 /*
5c45bf27
SS
3390 * If a group is already running at full capacity or idle,
3391 * don't include that group in power savings calculations
dd41f596
IM
3392 */
3393 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3394 || !sum_nr_running)
dd41f596 3395 goto group_next;
5c45bf27 3396
dd41f596 3397 /*
5c45bf27 3398 * Calculate the group which has the least non-idle load.
dd41f596
IM
3399 * This is the group from where we need to pick up the load
3400 * for saving power
3401 */
3402 if ((sum_nr_running < min_nr_running) ||
3403 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3404 first_cpu(group->cpumask) <
3405 first_cpu(group_min->cpumask))) {
dd41f596
IM
3406 group_min = group;
3407 min_nr_running = sum_nr_running;
5c45bf27
SS
3408 min_load_per_task = sum_weighted_load /
3409 sum_nr_running;
dd41f596 3410 }
5c45bf27 3411
dd41f596 3412 /*
5c45bf27 3413 * Calculate the group which is almost near its
dd41f596
IM
3414 * capacity but still has some space to pick up some load
3415 * from other group and save more power
3416 */
3417 if (sum_nr_running <= group_capacity - 1) {
3418 if (sum_nr_running > leader_nr_running ||
3419 (sum_nr_running == leader_nr_running &&
3420 first_cpu(group->cpumask) >
3421 first_cpu(group_leader->cpumask))) {
3422 group_leader = group;
3423 leader_nr_running = sum_nr_running;
3424 }
48f24c4d 3425 }
5c45bf27
SS
3426group_next:
3427#endif
1da177e4
LT
3428 group = group->next;
3429 } while (group != sd->groups);
3430
2dd73a4f 3431 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3432 goto out_balanced;
3433
3434 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3435
3436 if (this_load >= avg_load ||
3437 100*max_load <= sd->imbalance_pct*this_load)
3438 goto out_balanced;
3439
2dd73a4f 3440 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3441 if (group_imb)
3442 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3443
1da177e4
LT
3444 /*
3445 * We're trying to get all the cpus to the average_load, so we don't
3446 * want to push ourselves above the average load, nor do we wish to
3447 * reduce the max loaded cpu below the average load, as either of these
3448 * actions would just result in more rebalancing later, and ping-pong
3449 * tasks around. Thus we look for the minimum possible imbalance.
3450 * Negative imbalances (*we* are more loaded than anyone else) will
3451 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3452 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3453 * appear as very large values with unsigned longs.
3454 */
2dd73a4f
PW
3455 if (max_load <= busiest_load_per_task)
3456 goto out_balanced;
3457
3458 /*
3459 * In the presence of smp nice balancing, certain scenarios can have
3460 * max load less than avg load(as we skip the groups at or below
3461 * its cpu_power, while calculating max_load..)
3462 */
3463 if (max_load < avg_load) {
3464 *imbalance = 0;
3465 goto small_imbalance;
3466 }
0c117f1b
SS
3467
3468 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3469 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3470
1da177e4 3471 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3472 *imbalance = min(max_pull * busiest->__cpu_power,
3473 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3474 / SCHED_LOAD_SCALE;
3475
2dd73a4f
PW
3476 /*
3477 * if *imbalance is less than the average load per runnable task
3478 * there is no gaurantee that any tasks will be moved so we'll have
3479 * a think about bumping its value to force at least one task to be
3480 * moved
3481 */
7fd0d2dd 3482 if (*imbalance < busiest_load_per_task) {
48f24c4d 3483 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3484 unsigned int imbn;
3485
3486small_imbalance:
3487 pwr_move = pwr_now = 0;
3488 imbn = 2;
3489 if (this_nr_running) {
3490 this_load_per_task /= this_nr_running;
3491 if (busiest_load_per_task > this_load_per_task)
3492 imbn = 1;
3493 } else
3494 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3495
dd41f596
IM
3496 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3497 busiest_load_per_task * imbn) {
2dd73a4f 3498 *imbalance = busiest_load_per_task;
1da177e4
LT
3499 return busiest;
3500 }
3501
3502 /*
3503 * OK, we don't have enough imbalance to justify moving tasks,
3504 * however we may be able to increase total CPU power used by
3505 * moving them.
3506 */
3507
5517d86b
ED
3508 pwr_now += busiest->__cpu_power *
3509 min(busiest_load_per_task, max_load);
3510 pwr_now += this->__cpu_power *
3511 min(this_load_per_task, this_load);
1da177e4
LT
3512 pwr_now /= SCHED_LOAD_SCALE;
3513
3514 /* Amount of load we'd subtract */
5517d86b
ED
3515 tmp = sg_div_cpu_power(busiest,
3516 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3517 if (max_load > tmp)
5517d86b 3518 pwr_move += busiest->__cpu_power *
2dd73a4f 3519 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3520
3521 /* Amount of load we'd add */
5517d86b 3522 if (max_load * busiest->__cpu_power <
33859f7f 3523 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3524 tmp = sg_div_cpu_power(this,
3525 max_load * busiest->__cpu_power);
1da177e4 3526 else
5517d86b
ED
3527 tmp = sg_div_cpu_power(this,
3528 busiest_load_per_task * SCHED_LOAD_SCALE);
3529 pwr_move += this->__cpu_power *
3530 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3531 pwr_move /= SCHED_LOAD_SCALE;
3532
3533 /* Move if we gain throughput */
7fd0d2dd
SS
3534 if (pwr_move > pwr_now)
3535 *imbalance = busiest_load_per_task;
1da177e4
LT
3536 }
3537
1da177e4
LT
3538 return busiest;
3539
3540out_balanced:
5c45bf27 3541#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3542 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3543 goto ret;
1da177e4 3544
5c45bf27
SS
3545 if (this == group_leader && group_leader != group_min) {
3546 *imbalance = min_load_per_task;
3547 return group_min;
3548 }
5c45bf27 3549#endif
783609c6 3550ret:
1da177e4
LT
3551 *imbalance = 0;
3552 return NULL;
3553}
3554
3555/*
3556 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3557 */
70b97a7f 3558static struct rq *
d15bcfdb 3559find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3560 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3561{
70b97a7f 3562 struct rq *busiest = NULL, *rq;
2dd73a4f 3563 unsigned long max_load = 0;
1da177e4
LT
3564 int i;
3565
3566 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3567 unsigned long wl;
0a2966b4
CL
3568
3569 if (!cpu_isset(i, *cpus))
3570 continue;
3571
48f24c4d 3572 rq = cpu_rq(i);
dd41f596 3573 wl = weighted_cpuload(i);
2dd73a4f 3574
dd41f596 3575 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3576 continue;
1da177e4 3577
dd41f596
IM
3578 if (wl > max_load) {
3579 max_load = wl;
48f24c4d 3580 busiest = rq;
1da177e4
LT
3581 }
3582 }
3583
3584 return busiest;
3585}
3586
77391d71
NP
3587/*
3588 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3589 * so long as it is large enough.
3590 */
3591#define MAX_PINNED_INTERVAL 512
3592
1da177e4
LT
3593/*
3594 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3595 * tasks if there is an imbalance.
1da177e4 3596 */
70b97a7f 3597static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3598 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3599 int *balance, cpumask_t *cpus)
1da177e4 3600{
43010659 3601 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3602 struct sched_group *group;
1da177e4 3603 unsigned long imbalance;
70b97a7f 3604 struct rq *busiest;
fe2eea3f 3605 unsigned long flags;
18d95a28 3606 int unlock_aggregate;
5969fe06 3607
7c16ec58
MT
3608 cpus_setall(*cpus);
3609
18d95a28
PZ
3610 unlock_aggregate = get_aggregate(sd);
3611
89c4710e
SS
3612 /*
3613 * When power savings policy is enabled for the parent domain, idle
3614 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3615 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3616 * portraying it as CPU_NOT_IDLE.
89c4710e 3617 */
d15bcfdb 3618 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3619 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3620 sd_idle = 1;
1da177e4 3621
2d72376b 3622 schedstat_inc(sd, lb_count[idle]);
1da177e4 3623
0a2966b4
CL
3624redo:
3625 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3626 cpus, balance);
783609c6 3627
06066714 3628 if (*balance == 0)
783609c6 3629 goto out_balanced;
783609c6 3630
1da177e4
LT
3631 if (!group) {
3632 schedstat_inc(sd, lb_nobusyg[idle]);
3633 goto out_balanced;
3634 }
3635
7c16ec58 3636 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3637 if (!busiest) {
3638 schedstat_inc(sd, lb_nobusyq[idle]);
3639 goto out_balanced;
3640 }
3641
db935dbd 3642 BUG_ON(busiest == this_rq);
1da177e4
LT
3643
3644 schedstat_add(sd, lb_imbalance[idle], imbalance);
3645
43010659 3646 ld_moved = 0;
1da177e4
LT
3647 if (busiest->nr_running > 1) {
3648 /*
3649 * Attempt to move tasks. If find_busiest_group has found
3650 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3651 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3652 * correctly treated as an imbalance.
3653 */
fe2eea3f 3654 local_irq_save(flags);
e17224bf 3655 double_rq_lock(this_rq, busiest);
43010659 3656 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3657 imbalance, sd, idle, &all_pinned);
e17224bf 3658 double_rq_unlock(this_rq, busiest);
fe2eea3f 3659 local_irq_restore(flags);
81026794 3660
46cb4b7c
SS
3661 /*
3662 * some other cpu did the load balance for us.
3663 */
43010659 3664 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3665 resched_cpu(this_cpu);
3666
81026794 3667 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3668 if (unlikely(all_pinned)) {
7c16ec58
MT
3669 cpu_clear(cpu_of(busiest), *cpus);
3670 if (!cpus_empty(*cpus))
0a2966b4 3671 goto redo;
81026794 3672 goto out_balanced;
0a2966b4 3673 }
1da177e4 3674 }
81026794 3675
43010659 3676 if (!ld_moved) {
1da177e4
LT
3677 schedstat_inc(sd, lb_failed[idle]);
3678 sd->nr_balance_failed++;
3679
3680 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3681
fe2eea3f 3682 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3683
3684 /* don't kick the migration_thread, if the curr
3685 * task on busiest cpu can't be moved to this_cpu
3686 */
3687 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3688 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3689 all_pinned = 1;
3690 goto out_one_pinned;
3691 }
3692
1da177e4
LT
3693 if (!busiest->active_balance) {
3694 busiest->active_balance = 1;
3695 busiest->push_cpu = this_cpu;
81026794 3696 active_balance = 1;
1da177e4 3697 }
fe2eea3f 3698 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3699 if (active_balance)
1da177e4
LT
3700 wake_up_process(busiest->migration_thread);
3701
3702 /*
3703 * We've kicked active balancing, reset the failure
3704 * counter.
3705 */
39507451 3706 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3707 }
81026794 3708 } else
1da177e4
LT
3709 sd->nr_balance_failed = 0;
3710
81026794 3711 if (likely(!active_balance)) {
1da177e4
LT
3712 /* We were unbalanced, so reset the balancing interval */
3713 sd->balance_interval = sd->min_interval;
81026794
NP
3714 } else {
3715 /*
3716 * If we've begun active balancing, start to back off. This
3717 * case may not be covered by the all_pinned logic if there
3718 * is only 1 task on the busy runqueue (because we don't call
3719 * move_tasks).
3720 */
3721 if (sd->balance_interval < sd->max_interval)
3722 sd->balance_interval *= 2;
1da177e4
LT
3723 }
3724
43010659 3725 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3726 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3727 ld_moved = -1;
3728
3729 goto out;
1da177e4
LT
3730
3731out_balanced:
1da177e4
LT
3732 schedstat_inc(sd, lb_balanced[idle]);
3733
16cfb1c0 3734 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3735
3736out_one_pinned:
1da177e4 3737 /* tune up the balancing interval */
77391d71
NP
3738 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3739 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3740 sd->balance_interval *= 2;
3741
48f24c4d 3742 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3743 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3744 ld_moved = -1;
3745 else
3746 ld_moved = 0;
3747out:
3748 if (unlock_aggregate)
3749 put_aggregate(sd);
3750 return ld_moved;
1da177e4
LT
3751}
3752
3753/*
3754 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3755 * tasks if there is an imbalance.
3756 *
d15bcfdb 3757 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3758 * this_rq is locked.
3759 */
48f24c4d 3760static int
7c16ec58
MT
3761load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3762 cpumask_t *cpus)
1da177e4
LT
3763{
3764 struct sched_group *group;
70b97a7f 3765 struct rq *busiest = NULL;
1da177e4 3766 unsigned long imbalance;
43010659 3767 int ld_moved = 0;
5969fe06 3768 int sd_idle = 0;
969bb4e4 3769 int all_pinned = 0;
7c16ec58
MT
3770
3771 cpus_setall(*cpus);
5969fe06 3772
89c4710e
SS
3773 /*
3774 * When power savings policy is enabled for the parent domain, idle
3775 * sibling can pick up load irrespective of busy siblings. In this case,
3776 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3777 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3778 */
3779 if (sd->flags & SD_SHARE_CPUPOWER &&
3780 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3781 sd_idle = 1;
1da177e4 3782
2d72376b 3783 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3784redo:
d15bcfdb 3785 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3786 &sd_idle, cpus, NULL);
1da177e4 3787 if (!group) {
d15bcfdb 3788 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3789 goto out_balanced;
1da177e4
LT
3790 }
3791
7c16ec58 3792 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3793 if (!busiest) {
d15bcfdb 3794 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3795 goto out_balanced;
1da177e4
LT
3796 }
3797
db935dbd
NP
3798 BUG_ON(busiest == this_rq);
3799
d15bcfdb 3800 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3801
43010659 3802 ld_moved = 0;
d6d5cfaf
NP
3803 if (busiest->nr_running > 1) {
3804 /* Attempt to move tasks */
3805 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3806 /* this_rq->clock is already updated */
3807 update_rq_clock(busiest);
43010659 3808 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3809 imbalance, sd, CPU_NEWLY_IDLE,
3810 &all_pinned);
d6d5cfaf 3811 spin_unlock(&busiest->lock);
0a2966b4 3812
969bb4e4 3813 if (unlikely(all_pinned)) {
7c16ec58
MT
3814 cpu_clear(cpu_of(busiest), *cpus);
3815 if (!cpus_empty(*cpus))
0a2966b4
CL
3816 goto redo;
3817 }
d6d5cfaf
NP
3818 }
3819
43010659 3820 if (!ld_moved) {
d15bcfdb 3821 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3822 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3823 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3824 return -1;
3825 } else
16cfb1c0 3826 sd->nr_balance_failed = 0;
1da177e4 3827
43010659 3828 return ld_moved;
16cfb1c0
NP
3829
3830out_balanced:
d15bcfdb 3831 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3832 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3833 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3834 return -1;
16cfb1c0 3835 sd->nr_balance_failed = 0;
48f24c4d 3836
16cfb1c0 3837 return 0;
1da177e4
LT
3838}
3839
3840/*
3841 * idle_balance is called by schedule() if this_cpu is about to become
3842 * idle. Attempts to pull tasks from other CPUs.
3843 */
70b97a7f 3844static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3845{
3846 struct sched_domain *sd;
dd41f596
IM
3847 int pulled_task = -1;
3848 unsigned long next_balance = jiffies + HZ;
7c16ec58 3849 cpumask_t tmpmask;
1da177e4
LT
3850
3851 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3852 unsigned long interval;
3853
3854 if (!(sd->flags & SD_LOAD_BALANCE))
3855 continue;
3856
3857 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3858 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3859 pulled_task = load_balance_newidle(this_cpu, this_rq,
3860 sd, &tmpmask);
92c4ca5c
CL
3861
3862 interval = msecs_to_jiffies(sd->balance_interval);
3863 if (time_after(next_balance, sd->last_balance + interval))
3864 next_balance = sd->last_balance + interval;
3865 if (pulled_task)
3866 break;
1da177e4 3867 }
dd41f596 3868 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3869 /*
3870 * We are going idle. next_balance may be set based on
3871 * a busy processor. So reset next_balance.
3872 */
3873 this_rq->next_balance = next_balance;
dd41f596 3874 }
1da177e4
LT
3875}
3876
3877/*
3878 * active_load_balance is run by migration threads. It pushes running tasks
3879 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3880 * running on each physical CPU where possible, and avoids physical /
3881 * logical imbalances.
3882 *
3883 * Called with busiest_rq locked.
3884 */
70b97a7f 3885static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3886{
39507451 3887 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3888 struct sched_domain *sd;
3889 struct rq *target_rq;
39507451 3890
48f24c4d 3891 /* Is there any task to move? */
39507451 3892 if (busiest_rq->nr_running <= 1)
39507451
NP
3893 return;
3894
3895 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3896
3897 /*
39507451 3898 * This condition is "impossible", if it occurs
41a2d6cf 3899 * we need to fix it. Originally reported by
39507451 3900 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3901 */
39507451 3902 BUG_ON(busiest_rq == target_rq);
1da177e4 3903
39507451
NP
3904 /* move a task from busiest_rq to target_rq */
3905 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3906 update_rq_clock(busiest_rq);
3907 update_rq_clock(target_rq);
39507451
NP
3908
3909 /* Search for an sd spanning us and the target CPU. */
c96d145e 3910 for_each_domain(target_cpu, sd) {
39507451 3911 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3912 cpu_isset(busiest_cpu, sd->span))
39507451 3913 break;
c96d145e 3914 }
39507451 3915
48f24c4d 3916 if (likely(sd)) {
2d72376b 3917 schedstat_inc(sd, alb_count);
39507451 3918
43010659
PW
3919 if (move_one_task(target_rq, target_cpu, busiest_rq,
3920 sd, CPU_IDLE))
48f24c4d
IM
3921 schedstat_inc(sd, alb_pushed);
3922 else
3923 schedstat_inc(sd, alb_failed);
3924 }
39507451 3925 spin_unlock(&target_rq->lock);
1da177e4
LT
3926}
3927
46cb4b7c
SS
3928#ifdef CONFIG_NO_HZ
3929static struct {
3930 atomic_t load_balancer;
41a2d6cf 3931 cpumask_t cpu_mask;
46cb4b7c
SS
3932} nohz ____cacheline_aligned = {
3933 .load_balancer = ATOMIC_INIT(-1),
3934 .cpu_mask = CPU_MASK_NONE,
3935};
3936
7835b98b 3937/*
46cb4b7c
SS
3938 * This routine will try to nominate the ilb (idle load balancing)
3939 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3940 * load balancing on behalf of all those cpus. If all the cpus in the system
3941 * go into this tickless mode, then there will be no ilb owner (as there is
3942 * no need for one) and all the cpus will sleep till the next wakeup event
3943 * arrives...
3944 *
3945 * For the ilb owner, tick is not stopped. And this tick will be used
3946 * for idle load balancing. ilb owner will still be part of
3947 * nohz.cpu_mask..
7835b98b 3948 *
46cb4b7c
SS
3949 * While stopping the tick, this cpu will become the ilb owner if there
3950 * is no other owner. And will be the owner till that cpu becomes busy
3951 * or if all cpus in the system stop their ticks at which point
3952 * there is no need for ilb owner.
3953 *
3954 * When the ilb owner becomes busy, it nominates another owner, during the
3955 * next busy scheduler_tick()
3956 */
3957int select_nohz_load_balancer(int stop_tick)
3958{
3959 int cpu = smp_processor_id();
3960
3961 if (stop_tick) {
3962 cpu_set(cpu, nohz.cpu_mask);
3963 cpu_rq(cpu)->in_nohz_recently = 1;
3964
3965 /*
3966 * If we are going offline and still the leader, give up!
3967 */
3968 if (cpu_is_offline(cpu) &&
3969 atomic_read(&nohz.load_balancer) == cpu) {
3970 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3971 BUG();
3972 return 0;
3973 }
3974
3975 /* time for ilb owner also to sleep */
3976 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3977 if (atomic_read(&nohz.load_balancer) == cpu)
3978 atomic_set(&nohz.load_balancer, -1);
3979 return 0;
3980 }
3981
3982 if (atomic_read(&nohz.load_balancer) == -1) {
3983 /* make me the ilb owner */
3984 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3985 return 1;
3986 } else if (atomic_read(&nohz.load_balancer) == cpu)
3987 return 1;
3988 } else {
3989 if (!cpu_isset(cpu, nohz.cpu_mask))
3990 return 0;
3991
3992 cpu_clear(cpu, nohz.cpu_mask);
3993
3994 if (atomic_read(&nohz.load_balancer) == cpu)
3995 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3996 BUG();
3997 }
3998 return 0;
3999}
4000#endif
4001
4002static DEFINE_SPINLOCK(balancing);
4003
4004/*
7835b98b
CL
4005 * It checks each scheduling domain to see if it is due to be balanced,
4006 * and initiates a balancing operation if so.
4007 *
4008 * Balancing parameters are set up in arch_init_sched_domains.
4009 */
a9957449 4010static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4011{
46cb4b7c
SS
4012 int balance = 1;
4013 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4014 unsigned long interval;
4015 struct sched_domain *sd;
46cb4b7c 4016 /* Earliest time when we have to do rebalance again */
c9819f45 4017 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4018 int update_next_balance = 0;
7c16ec58 4019 cpumask_t tmp;
1da177e4 4020
46cb4b7c 4021 for_each_domain(cpu, sd) {
1da177e4
LT
4022 if (!(sd->flags & SD_LOAD_BALANCE))
4023 continue;
4024
4025 interval = sd->balance_interval;
d15bcfdb 4026 if (idle != CPU_IDLE)
1da177e4
LT
4027 interval *= sd->busy_factor;
4028
4029 /* scale ms to jiffies */
4030 interval = msecs_to_jiffies(interval);
4031 if (unlikely(!interval))
4032 interval = 1;
dd41f596
IM
4033 if (interval > HZ*NR_CPUS/10)
4034 interval = HZ*NR_CPUS/10;
4035
1da177e4 4036
08c183f3
CL
4037 if (sd->flags & SD_SERIALIZE) {
4038 if (!spin_trylock(&balancing))
4039 goto out;
4040 }
4041
c9819f45 4042 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 4043 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
4044 /*
4045 * We've pulled tasks over so either we're no
5969fe06
NP
4046 * longer idle, or one of our SMT siblings is
4047 * not idle.
4048 */
d15bcfdb 4049 idle = CPU_NOT_IDLE;
1da177e4 4050 }
1bd77f2d 4051 sd->last_balance = jiffies;
1da177e4 4052 }
08c183f3
CL
4053 if (sd->flags & SD_SERIALIZE)
4054 spin_unlock(&balancing);
4055out:
f549da84 4056 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4057 next_balance = sd->last_balance + interval;
f549da84
SS
4058 update_next_balance = 1;
4059 }
783609c6
SS
4060
4061 /*
4062 * Stop the load balance at this level. There is another
4063 * CPU in our sched group which is doing load balancing more
4064 * actively.
4065 */
4066 if (!balance)
4067 break;
1da177e4 4068 }
f549da84
SS
4069
4070 /*
4071 * next_balance will be updated only when there is a need.
4072 * When the cpu is attached to null domain for ex, it will not be
4073 * updated.
4074 */
4075 if (likely(update_next_balance))
4076 rq->next_balance = next_balance;
46cb4b7c
SS
4077}
4078
4079/*
4080 * run_rebalance_domains is triggered when needed from the scheduler tick.
4081 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4082 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4083 */
4084static void run_rebalance_domains(struct softirq_action *h)
4085{
dd41f596
IM
4086 int this_cpu = smp_processor_id();
4087 struct rq *this_rq = cpu_rq(this_cpu);
4088 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4089 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4090
dd41f596 4091 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4092
4093#ifdef CONFIG_NO_HZ
4094 /*
4095 * If this cpu is the owner for idle load balancing, then do the
4096 * balancing on behalf of the other idle cpus whose ticks are
4097 * stopped.
4098 */
dd41f596
IM
4099 if (this_rq->idle_at_tick &&
4100 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4101 cpumask_t cpus = nohz.cpu_mask;
4102 struct rq *rq;
4103 int balance_cpu;
4104
dd41f596 4105 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
4106 for_each_cpu_mask(balance_cpu, cpus) {
4107 /*
4108 * If this cpu gets work to do, stop the load balancing
4109 * work being done for other cpus. Next load
4110 * balancing owner will pick it up.
4111 */
4112 if (need_resched())
4113 break;
4114
de0cf899 4115 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4116
4117 rq = cpu_rq(balance_cpu);
dd41f596
IM
4118 if (time_after(this_rq->next_balance, rq->next_balance))
4119 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4120 }
4121 }
4122#endif
4123}
4124
4125/*
4126 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4127 *
4128 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4129 * idle load balancing owner or decide to stop the periodic load balancing,
4130 * if the whole system is idle.
4131 */
dd41f596 4132static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4133{
46cb4b7c
SS
4134#ifdef CONFIG_NO_HZ
4135 /*
4136 * If we were in the nohz mode recently and busy at the current
4137 * scheduler tick, then check if we need to nominate new idle
4138 * load balancer.
4139 */
4140 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4141 rq->in_nohz_recently = 0;
4142
4143 if (atomic_read(&nohz.load_balancer) == cpu) {
4144 cpu_clear(cpu, nohz.cpu_mask);
4145 atomic_set(&nohz.load_balancer, -1);
4146 }
4147
4148 if (atomic_read(&nohz.load_balancer) == -1) {
4149 /*
4150 * simple selection for now: Nominate the
4151 * first cpu in the nohz list to be the next
4152 * ilb owner.
4153 *
4154 * TBD: Traverse the sched domains and nominate
4155 * the nearest cpu in the nohz.cpu_mask.
4156 */
4157 int ilb = first_cpu(nohz.cpu_mask);
4158
434d53b0 4159 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4160 resched_cpu(ilb);
4161 }
4162 }
4163
4164 /*
4165 * If this cpu is idle and doing idle load balancing for all the
4166 * cpus with ticks stopped, is it time for that to stop?
4167 */
4168 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4169 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4170 resched_cpu(cpu);
4171 return;
4172 }
4173
4174 /*
4175 * If this cpu is idle and the idle load balancing is done by
4176 * someone else, then no need raise the SCHED_SOFTIRQ
4177 */
4178 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4179 cpu_isset(cpu, nohz.cpu_mask))
4180 return;
4181#endif
4182 if (time_after_eq(jiffies, rq->next_balance))
4183 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4184}
dd41f596
IM
4185
4186#else /* CONFIG_SMP */
4187
1da177e4
LT
4188/*
4189 * on UP we do not need to balance between CPUs:
4190 */
70b97a7f 4191static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4192{
4193}
dd41f596 4194
1da177e4
LT
4195#endif
4196
1da177e4
LT
4197DEFINE_PER_CPU(struct kernel_stat, kstat);
4198
4199EXPORT_PER_CPU_SYMBOL(kstat);
4200
4201/*
41b86e9c
IM
4202 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4203 * that have not yet been banked in case the task is currently running.
1da177e4 4204 */
41b86e9c 4205unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4206{
1da177e4 4207 unsigned long flags;
41b86e9c
IM
4208 u64 ns, delta_exec;
4209 struct rq *rq;
48f24c4d 4210
41b86e9c
IM
4211 rq = task_rq_lock(p, &flags);
4212 ns = p->se.sum_exec_runtime;
051a1d1a 4213 if (task_current(rq, p)) {
a8e504d2
IM
4214 update_rq_clock(rq);
4215 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4216 if ((s64)delta_exec > 0)
4217 ns += delta_exec;
4218 }
4219 task_rq_unlock(rq, &flags);
48f24c4d 4220
1da177e4
LT
4221 return ns;
4222}
4223
1da177e4
LT
4224/*
4225 * Account user cpu time to a process.
4226 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4227 * @cputime: the cpu time spent in user space since the last update
4228 */
4229void account_user_time(struct task_struct *p, cputime_t cputime)
4230{
4231 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4232 cputime64_t tmp;
4233
4234 p->utime = cputime_add(p->utime, cputime);
4235
4236 /* Add user time to cpustat. */
4237 tmp = cputime_to_cputime64(cputime);
4238 if (TASK_NICE(p) > 0)
4239 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4240 else
4241 cpustat->user = cputime64_add(cpustat->user, tmp);
4242}
4243
94886b84
LV
4244/*
4245 * Account guest cpu time to a process.
4246 * @p: the process that the cpu time gets accounted to
4247 * @cputime: the cpu time spent in virtual machine since the last update
4248 */
f7402e03 4249static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4250{
4251 cputime64_t tmp;
4252 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4253
4254 tmp = cputime_to_cputime64(cputime);
4255
4256 p->utime = cputime_add(p->utime, cputime);
4257 p->gtime = cputime_add(p->gtime, cputime);
4258
4259 cpustat->user = cputime64_add(cpustat->user, tmp);
4260 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4261}
4262
c66f08be
MN
4263/*
4264 * Account scaled user cpu time to a process.
4265 * @p: the process that the cpu time gets accounted to
4266 * @cputime: the cpu time spent in user space since the last update
4267 */
4268void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4269{
4270 p->utimescaled = cputime_add(p->utimescaled, cputime);
4271}
4272
1da177e4
LT
4273/*
4274 * Account system cpu time to a process.
4275 * @p: the process that the cpu time gets accounted to
4276 * @hardirq_offset: the offset to subtract from hardirq_count()
4277 * @cputime: the cpu time spent in kernel space since the last update
4278 */
4279void account_system_time(struct task_struct *p, int hardirq_offset,
4280 cputime_t cputime)
4281{
4282 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4283 struct rq *rq = this_rq();
1da177e4
LT
4284 cputime64_t tmp;
4285
983ed7a6
HH
4286 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4287 account_guest_time(p, cputime);
4288 return;
4289 }
94886b84 4290
1da177e4
LT
4291 p->stime = cputime_add(p->stime, cputime);
4292
4293 /* Add system time to cpustat. */
4294 tmp = cputime_to_cputime64(cputime);
4295 if (hardirq_count() - hardirq_offset)
4296 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4297 else if (softirq_count())
4298 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4299 else if (p != rq->idle)
1da177e4 4300 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4301 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4302 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4303 else
4304 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4305 /* Account for system time used */
4306 acct_update_integrals(p);
1da177e4
LT
4307}
4308
c66f08be
MN
4309/*
4310 * Account scaled system cpu time to a process.
4311 * @p: the process that the cpu time gets accounted to
4312 * @hardirq_offset: the offset to subtract from hardirq_count()
4313 * @cputime: the cpu time spent in kernel space since the last update
4314 */
4315void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4316{
4317 p->stimescaled = cputime_add(p->stimescaled, cputime);
4318}
4319
1da177e4
LT
4320/*
4321 * Account for involuntary wait time.
4322 * @p: the process from which the cpu time has been stolen
4323 * @steal: the cpu time spent in involuntary wait
4324 */
4325void account_steal_time(struct task_struct *p, cputime_t steal)
4326{
4327 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4328 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4329 struct rq *rq = this_rq();
1da177e4
LT
4330
4331 if (p == rq->idle) {
4332 p->stime = cputime_add(p->stime, steal);
4333 if (atomic_read(&rq->nr_iowait) > 0)
4334 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4335 else
4336 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4337 } else
1da177e4
LT
4338 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4339}
4340
7835b98b
CL
4341/*
4342 * This function gets called by the timer code, with HZ frequency.
4343 * We call it with interrupts disabled.
4344 *
4345 * It also gets called by the fork code, when changing the parent's
4346 * timeslices.
4347 */
4348void scheduler_tick(void)
4349{
7835b98b
CL
4350 int cpu = smp_processor_id();
4351 struct rq *rq = cpu_rq(cpu);
dd41f596 4352 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4353
4354 sched_clock_tick();
dd41f596
IM
4355
4356 spin_lock(&rq->lock);
3e51f33f 4357 update_rq_clock(rq);
f1a438d8 4358 update_cpu_load(rq);
fa85ae24 4359 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4360 spin_unlock(&rq->lock);
7835b98b 4361
e418e1c2 4362#ifdef CONFIG_SMP
dd41f596
IM
4363 rq->idle_at_tick = idle_cpu(cpu);
4364 trigger_load_balance(rq, cpu);
e418e1c2 4365#endif
1da177e4
LT
4366}
4367
1da177e4
LT
4368#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4369
43627582 4370void __kprobes add_preempt_count(int val)
1da177e4
LT
4371{
4372 /*
4373 * Underflow?
4374 */
9a11b49a
IM
4375 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4376 return;
1da177e4
LT
4377 preempt_count() += val;
4378 /*
4379 * Spinlock count overflowing soon?
4380 */
33859f7f
MOS
4381 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4382 PREEMPT_MASK - 10);
1da177e4
LT
4383}
4384EXPORT_SYMBOL(add_preempt_count);
4385
43627582 4386void __kprobes sub_preempt_count(int val)
1da177e4
LT
4387{
4388 /*
4389 * Underflow?
4390 */
9a11b49a
IM
4391 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4392 return;
1da177e4
LT
4393 /*
4394 * Is the spinlock portion underflowing?
4395 */
9a11b49a
IM
4396 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4397 !(preempt_count() & PREEMPT_MASK)))
4398 return;
4399
1da177e4
LT
4400 preempt_count() -= val;
4401}
4402EXPORT_SYMBOL(sub_preempt_count);
4403
4404#endif
4405
4406/*
dd41f596 4407 * Print scheduling while atomic bug:
1da177e4 4408 */
dd41f596 4409static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4410{
838225b4
SS
4411 struct pt_regs *regs = get_irq_regs();
4412
4413 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4414 prev->comm, prev->pid, preempt_count());
4415
dd41f596
IM
4416 debug_show_held_locks(prev);
4417 if (irqs_disabled())
4418 print_irqtrace_events(prev);
838225b4
SS
4419
4420 if (regs)
4421 show_regs(regs);
4422 else
4423 dump_stack();
dd41f596 4424}
1da177e4 4425
dd41f596
IM
4426/*
4427 * Various schedule()-time debugging checks and statistics:
4428 */
4429static inline void schedule_debug(struct task_struct *prev)
4430{
1da177e4 4431 /*
41a2d6cf 4432 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4433 * schedule() atomically, we ignore that path for now.
4434 * Otherwise, whine if we are scheduling when we should not be.
4435 */
dd41f596
IM
4436 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4437 __schedule_bug(prev);
4438
1da177e4
LT
4439 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4440
2d72376b 4441 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4442#ifdef CONFIG_SCHEDSTATS
4443 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4444 schedstat_inc(this_rq(), bkl_count);
4445 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4446 }
4447#endif
dd41f596
IM
4448}
4449
4450/*
4451 * Pick up the highest-prio task:
4452 */
4453static inline struct task_struct *
ff95f3df 4454pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4455{
5522d5d5 4456 const struct sched_class *class;
dd41f596 4457 struct task_struct *p;
1da177e4
LT
4458
4459 /*
dd41f596
IM
4460 * Optimization: we know that if all tasks are in
4461 * the fair class we can call that function directly:
1da177e4 4462 */
dd41f596 4463 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4464 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4465 if (likely(p))
4466 return p;
1da177e4
LT
4467 }
4468
dd41f596
IM
4469 class = sched_class_highest;
4470 for ( ; ; ) {
fb8d4724 4471 p = class->pick_next_task(rq);
dd41f596
IM
4472 if (p)
4473 return p;
4474 /*
4475 * Will never be NULL as the idle class always
4476 * returns a non-NULL p:
4477 */
4478 class = class->next;
4479 }
4480}
1da177e4 4481
dd41f596
IM
4482/*
4483 * schedule() is the main scheduler function.
4484 */
4485asmlinkage void __sched schedule(void)
4486{
4487 struct task_struct *prev, *next;
67ca7bde 4488 unsigned long *switch_count;
dd41f596 4489 struct rq *rq;
dd41f596
IM
4490 int cpu;
4491
4492need_resched:
4493 preempt_disable();
4494 cpu = smp_processor_id();
4495 rq = cpu_rq(cpu);
4496 rcu_qsctr_inc(cpu);
4497 prev = rq->curr;
4498 switch_count = &prev->nivcsw;
4499
4500 release_kernel_lock(prev);
4501need_resched_nonpreemptible:
4502
4503 schedule_debug(prev);
1da177e4 4504
8f4d37ec
PZ
4505 hrtick_clear(rq);
4506
1e819950
IM
4507 /*
4508 * Do the rq-clock update outside the rq lock:
4509 */
4510 local_irq_disable();
3e51f33f 4511 update_rq_clock(rq);
1e819950
IM
4512 spin_lock(&rq->lock);
4513 clear_tsk_need_resched(prev);
1da177e4 4514
1da177e4 4515 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4516 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4517 signal_pending(prev))) {
1da177e4 4518 prev->state = TASK_RUNNING;
dd41f596 4519 } else {
2e1cb74a 4520 deactivate_task(rq, prev, 1);
1da177e4 4521 }
dd41f596 4522 switch_count = &prev->nvcsw;
1da177e4
LT
4523 }
4524
9a897c5a
SR
4525#ifdef CONFIG_SMP
4526 if (prev->sched_class->pre_schedule)
4527 prev->sched_class->pre_schedule(rq, prev);
4528#endif
f65eda4f 4529
dd41f596 4530 if (unlikely(!rq->nr_running))
1da177e4 4531 idle_balance(cpu, rq);
1da177e4 4532
31ee529c 4533 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4534 next = pick_next_task(rq, prev);
1da177e4 4535
1da177e4 4536 if (likely(prev != next)) {
673a90a1
DS
4537 sched_info_switch(prev, next);
4538
1da177e4
LT
4539 rq->nr_switches++;
4540 rq->curr = next;
4541 ++*switch_count;
4542
dd41f596 4543 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4544 /*
4545 * the context switch might have flipped the stack from under
4546 * us, hence refresh the local variables.
4547 */
4548 cpu = smp_processor_id();
4549 rq = cpu_rq(cpu);
1da177e4
LT
4550 } else
4551 spin_unlock_irq(&rq->lock);
4552
8f4d37ec
PZ
4553 hrtick_set(rq);
4554
4555 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4556 goto need_resched_nonpreemptible;
8f4d37ec 4557
1da177e4
LT
4558 preempt_enable_no_resched();
4559 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4560 goto need_resched;
4561}
1da177e4
LT
4562EXPORT_SYMBOL(schedule);
4563
4564#ifdef CONFIG_PREEMPT
4565/*
2ed6e34f 4566 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4567 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4568 * occur there and call schedule directly.
4569 */
4570asmlinkage void __sched preempt_schedule(void)
4571{
4572 struct thread_info *ti = current_thread_info();
6478d880 4573
1da177e4
LT
4574 /*
4575 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4576 * we do not want to preempt the current task. Just return..
1da177e4 4577 */
beed33a8 4578 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4579 return;
4580
3a5c359a
AK
4581 do {
4582 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4583 schedule();
3a5c359a 4584 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4585
3a5c359a
AK
4586 /*
4587 * Check again in case we missed a preemption opportunity
4588 * between schedule and now.
4589 */
4590 barrier();
4591 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4592}
1da177e4
LT
4593EXPORT_SYMBOL(preempt_schedule);
4594
4595/*
2ed6e34f 4596 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4597 * off of irq context.
4598 * Note, that this is called and return with irqs disabled. This will
4599 * protect us against recursive calling from irq.
4600 */
4601asmlinkage void __sched preempt_schedule_irq(void)
4602{
4603 struct thread_info *ti = current_thread_info();
6478d880 4604
2ed6e34f 4605 /* Catch callers which need to be fixed */
1da177e4
LT
4606 BUG_ON(ti->preempt_count || !irqs_disabled());
4607
3a5c359a
AK
4608 do {
4609 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4610 local_irq_enable();
4611 schedule();
4612 local_irq_disable();
3a5c359a 4613 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4614
3a5c359a
AK
4615 /*
4616 * Check again in case we missed a preemption opportunity
4617 * between schedule and now.
4618 */
4619 barrier();
4620 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4621}
4622
4623#endif /* CONFIG_PREEMPT */
4624
95cdf3b7
IM
4625int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4626 void *key)
1da177e4 4627{
48f24c4d 4628 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4629}
1da177e4
LT
4630EXPORT_SYMBOL(default_wake_function);
4631
4632/*
41a2d6cf
IM
4633 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4634 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4635 * number) then we wake all the non-exclusive tasks and one exclusive task.
4636 *
4637 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4638 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4639 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4640 */
4641static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4642 int nr_exclusive, int sync, void *key)
4643{
2e45874c 4644 wait_queue_t *curr, *next;
1da177e4 4645
2e45874c 4646 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4647 unsigned flags = curr->flags;
4648
1da177e4 4649 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4650 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4651 break;
4652 }
4653}
4654
4655/**
4656 * __wake_up - wake up threads blocked on a waitqueue.
4657 * @q: the waitqueue
4658 * @mode: which threads
4659 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4660 * @key: is directly passed to the wakeup function
1da177e4 4661 */
7ad5b3a5 4662void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4663 int nr_exclusive, void *key)
1da177e4
LT
4664{
4665 unsigned long flags;
4666
4667 spin_lock_irqsave(&q->lock, flags);
4668 __wake_up_common(q, mode, nr_exclusive, 0, key);
4669 spin_unlock_irqrestore(&q->lock, flags);
4670}
1da177e4
LT
4671EXPORT_SYMBOL(__wake_up);
4672
4673/*
4674 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4675 */
7ad5b3a5 4676void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4677{
4678 __wake_up_common(q, mode, 1, 0, NULL);
4679}
4680
4681/**
67be2dd1 4682 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4683 * @q: the waitqueue
4684 * @mode: which threads
4685 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4686 *
4687 * The sync wakeup differs that the waker knows that it will schedule
4688 * away soon, so while the target thread will be woken up, it will not
4689 * be migrated to another CPU - ie. the two threads are 'synchronized'
4690 * with each other. This can prevent needless bouncing between CPUs.
4691 *
4692 * On UP it can prevent extra preemption.
4693 */
7ad5b3a5 4694void
95cdf3b7 4695__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4696{
4697 unsigned long flags;
4698 int sync = 1;
4699
4700 if (unlikely(!q))
4701 return;
4702
4703 if (unlikely(!nr_exclusive))
4704 sync = 0;
4705
4706 spin_lock_irqsave(&q->lock, flags);
4707 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4708 spin_unlock_irqrestore(&q->lock, flags);
4709}
4710EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4711
b15136e9 4712void complete(struct completion *x)
1da177e4
LT
4713{
4714 unsigned long flags;
4715
4716 spin_lock_irqsave(&x->wait.lock, flags);
4717 x->done++;
d9514f6c 4718 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4719 spin_unlock_irqrestore(&x->wait.lock, flags);
4720}
4721EXPORT_SYMBOL(complete);
4722
b15136e9 4723void complete_all(struct completion *x)
1da177e4
LT
4724{
4725 unsigned long flags;
4726
4727 spin_lock_irqsave(&x->wait.lock, flags);
4728 x->done += UINT_MAX/2;
d9514f6c 4729 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4730 spin_unlock_irqrestore(&x->wait.lock, flags);
4731}
4732EXPORT_SYMBOL(complete_all);
4733
8cbbe86d
AK
4734static inline long __sched
4735do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4736{
1da177e4
LT
4737 if (!x->done) {
4738 DECLARE_WAITQUEUE(wait, current);
4739
4740 wait.flags |= WQ_FLAG_EXCLUSIVE;
4741 __add_wait_queue_tail(&x->wait, &wait);
4742 do {
009e577e
MW
4743 if ((state == TASK_INTERRUPTIBLE &&
4744 signal_pending(current)) ||
4745 (state == TASK_KILLABLE &&
4746 fatal_signal_pending(current))) {
8cbbe86d
AK
4747 __remove_wait_queue(&x->wait, &wait);
4748 return -ERESTARTSYS;
4749 }
4750 __set_current_state(state);
1da177e4
LT
4751 spin_unlock_irq(&x->wait.lock);
4752 timeout = schedule_timeout(timeout);
4753 spin_lock_irq(&x->wait.lock);
4754 if (!timeout) {
4755 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4756 return timeout;
1da177e4
LT
4757 }
4758 } while (!x->done);
4759 __remove_wait_queue(&x->wait, &wait);
4760 }
4761 x->done--;
1da177e4
LT
4762 return timeout;
4763}
1da177e4 4764
8cbbe86d
AK
4765static long __sched
4766wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4767{
1da177e4
LT
4768 might_sleep();
4769
4770 spin_lock_irq(&x->wait.lock);
8cbbe86d 4771 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4772 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4773 return timeout;
4774}
1da177e4 4775
b15136e9 4776void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4777{
4778 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4779}
8cbbe86d 4780EXPORT_SYMBOL(wait_for_completion);
1da177e4 4781
b15136e9 4782unsigned long __sched
8cbbe86d 4783wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4784{
8cbbe86d 4785 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4786}
8cbbe86d 4787EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4788
8cbbe86d 4789int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4790{
51e97990
AK
4791 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4792 if (t == -ERESTARTSYS)
4793 return t;
4794 return 0;
0fec171c 4795}
8cbbe86d 4796EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4797
b15136e9 4798unsigned long __sched
8cbbe86d
AK
4799wait_for_completion_interruptible_timeout(struct completion *x,
4800 unsigned long timeout)
0fec171c 4801{
8cbbe86d 4802 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4803}
8cbbe86d 4804EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4805
009e577e
MW
4806int __sched wait_for_completion_killable(struct completion *x)
4807{
4808 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4809 if (t == -ERESTARTSYS)
4810 return t;
4811 return 0;
4812}
4813EXPORT_SYMBOL(wait_for_completion_killable);
4814
8cbbe86d
AK
4815static long __sched
4816sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4817{
0fec171c
IM
4818 unsigned long flags;
4819 wait_queue_t wait;
4820
4821 init_waitqueue_entry(&wait, current);
1da177e4 4822
8cbbe86d 4823 __set_current_state(state);
1da177e4 4824
8cbbe86d
AK
4825 spin_lock_irqsave(&q->lock, flags);
4826 __add_wait_queue(q, &wait);
4827 spin_unlock(&q->lock);
4828 timeout = schedule_timeout(timeout);
4829 spin_lock_irq(&q->lock);
4830 __remove_wait_queue(q, &wait);
4831 spin_unlock_irqrestore(&q->lock, flags);
4832
4833 return timeout;
4834}
4835
4836void __sched interruptible_sleep_on(wait_queue_head_t *q)
4837{
4838 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4839}
1da177e4
LT
4840EXPORT_SYMBOL(interruptible_sleep_on);
4841
0fec171c 4842long __sched
95cdf3b7 4843interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4844{
8cbbe86d 4845 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4846}
1da177e4
LT
4847EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4848
0fec171c 4849void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4850{
8cbbe86d 4851 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4852}
1da177e4
LT
4853EXPORT_SYMBOL(sleep_on);
4854
0fec171c 4855long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4856{
8cbbe86d 4857 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4858}
1da177e4
LT
4859EXPORT_SYMBOL(sleep_on_timeout);
4860
b29739f9
IM
4861#ifdef CONFIG_RT_MUTEXES
4862
4863/*
4864 * rt_mutex_setprio - set the current priority of a task
4865 * @p: task
4866 * @prio: prio value (kernel-internal form)
4867 *
4868 * This function changes the 'effective' priority of a task. It does
4869 * not touch ->normal_prio like __setscheduler().
4870 *
4871 * Used by the rt_mutex code to implement priority inheritance logic.
4872 */
36c8b586 4873void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4874{
4875 unsigned long flags;
83b699ed 4876 int oldprio, on_rq, running;
70b97a7f 4877 struct rq *rq;
cb469845 4878 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4879
4880 BUG_ON(prio < 0 || prio > MAX_PRIO);
4881
4882 rq = task_rq_lock(p, &flags);
a8e504d2 4883 update_rq_clock(rq);
b29739f9 4884
d5f9f942 4885 oldprio = p->prio;
dd41f596 4886 on_rq = p->se.on_rq;
051a1d1a 4887 running = task_current(rq, p);
0e1f3483 4888 if (on_rq)
69be72c1 4889 dequeue_task(rq, p, 0);
0e1f3483
HS
4890 if (running)
4891 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4892
4893 if (rt_prio(prio))
4894 p->sched_class = &rt_sched_class;
4895 else
4896 p->sched_class = &fair_sched_class;
4897
b29739f9
IM
4898 p->prio = prio;
4899
0e1f3483
HS
4900 if (running)
4901 p->sched_class->set_curr_task(rq);
dd41f596 4902 if (on_rq) {
8159f87e 4903 enqueue_task(rq, p, 0);
cb469845
SR
4904
4905 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4906 }
4907 task_rq_unlock(rq, &flags);
4908}
4909
4910#endif
4911
36c8b586 4912void set_user_nice(struct task_struct *p, long nice)
1da177e4 4913{
dd41f596 4914 int old_prio, delta, on_rq;
1da177e4 4915 unsigned long flags;
70b97a7f 4916 struct rq *rq;
1da177e4
LT
4917
4918 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4919 return;
4920 /*
4921 * We have to be careful, if called from sys_setpriority(),
4922 * the task might be in the middle of scheduling on another CPU.
4923 */
4924 rq = task_rq_lock(p, &flags);
a8e504d2 4925 update_rq_clock(rq);
1da177e4
LT
4926 /*
4927 * The RT priorities are set via sched_setscheduler(), but we still
4928 * allow the 'normal' nice value to be set - but as expected
4929 * it wont have any effect on scheduling until the task is
dd41f596 4930 * SCHED_FIFO/SCHED_RR:
1da177e4 4931 */
e05606d3 4932 if (task_has_rt_policy(p)) {
1da177e4
LT
4933 p->static_prio = NICE_TO_PRIO(nice);
4934 goto out_unlock;
4935 }
dd41f596 4936 on_rq = p->se.on_rq;
18d95a28 4937 if (on_rq)
69be72c1 4938 dequeue_task(rq, p, 0);
1da177e4 4939
1da177e4 4940 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4941 set_load_weight(p);
b29739f9
IM
4942 old_prio = p->prio;
4943 p->prio = effective_prio(p);
4944 delta = p->prio - old_prio;
1da177e4 4945
dd41f596 4946 if (on_rq) {
8159f87e 4947 enqueue_task(rq, p, 0);
1da177e4 4948 /*
d5f9f942
AM
4949 * If the task increased its priority or is running and
4950 * lowered its priority, then reschedule its CPU:
1da177e4 4951 */
d5f9f942 4952 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4953 resched_task(rq->curr);
4954 }
4955out_unlock:
4956 task_rq_unlock(rq, &flags);
4957}
1da177e4
LT
4958EXPORT_SYMBOL(set_user_nice);
4959
e43379f1
MM
4960/*
4961 * can_nice - check if a task can reduce its nice value
4962 * @p: task
4963 * @nice: nice value
4964 */
36c8b586 4965int can_nice(const struct task_struct *p, const int nice)
e43379f1 4966{
024f4747
MM
4967 /* convert nice value [19,-20] to rlimit style value [1,40] */
4968 int nice_rlim = 20 - nice;
48f24c4d 4969
e43379f1
MM
4970 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4971 capable(CAP_SYS_NICE));
4972}
4973
1da177e4
LT
4974#ifdef __ARCH_WANT_SYS_NICE
4975
4976/*
4977 * sys_nice - change the priority of the current process.
4978 * @increment: priority increment
4979 *
4980 * sys_setpriority is a more generic, but much slower function that
4981 * does similar things.
4982 */
4983asmlinkage long sys_nice(int increment)
4984{
48f24c4d 4985 long nice, retval;
1da177e4
LT
4986
4987 /*
4988 * Setpriority might change our priority at the same moment.
4989 * We don't have to worry. Conceptually one call occurs first
4990 * and we have a single winner.
4991 */
e43379f1
MM
4992 if (increment < -40)
4993 increment = -40;
1da177e4
LT
4994 if (increment > 40)
4995 increment = 40;
4996
4997 nice = PRIO_TO_NICE(current->static_prio) + increment;
4998 if (nice < -20)
4999 nice = -20;
5000 if (nice > 19)
5001 nice = 19;
5002
e43379f1
MM
5003 if (increment < 0 && !can_nice(current, nice))
5004 return -EPERM;
5005
1da177e4
LT
5006 retval = security_task_setnice(current, nice);
5007 if (retval)
5008 return retval;
5009
5010 set_user_nice(current, nice);
5011 return 0;
5012}
5013
5014#endif
5015
5016/**
5017 * task_prio - return the priority value of a given task.
5018 * @p: the task in question.
5019 *
5020 * This is the priority value as seen by users in /proc.
5021 * RT tasks are offset by -200. Normal tasks are centered
5022 * around 0, value goes from -16 to +15.
5023 */
36c8b586 5024int task_prio(const struct task_struct *p)
1da177e4
LT
5025{
5026 return p->prio - MAX_RT_PRIO;
5027}
5028
5029/**
5030 * task_nice - return the nice value of a given task.
5031 * @p: the task in question.
5032 */
36c8b586 5033int task_nice(const struct task_struct *p)
1da177e4
LT
5034{
5035 return TASK_NICE(p);
5036}
150d8bed 5037EXPORT_SYMBOL(task_nice);
1da177e4
LT
5038
5039/**
5040 * idle_cpu - is a given cpu idle currently?
5041 * @cpu: the processor in question.
5042 */
5043int idle_cpu(int cpu)
5044{
5045 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5046}
5047
1da177e4
LT
5048/**
5049 * idle_task - return the idle task for a given cpu.
5050 * @cpu: the processor in question.
5051 */
36c8b586 5052struct task_struct *idle_task(int cpu)
1da177e4
LT
5053{
5054 return cpu_rq(cpu)->idle;
5055}
5056
5057/**
5058 * find_process_by_pid - find a process with a matching PID value.
5059 * @pid: the pid in question.
5060 */
a9957449 5061static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5062{
228ebcbe 5063 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5064}
5065
5066/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5067static void
5068__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5069{
dd41f596 5070 BUG_ON(p->se.on_rq);
48f24c4d 5071
1da177e4 5072 p->policy = policy;
dd41f596
IM
5073 switch (p->policy) {
5074 case SCHED_NORMAL:
5075 case SCHED_BATCH:
5076 case SCHED_IDLE:
5077 p->sched_class = &fair_sched_class;
5078 break;
5079 case SCHED_FIFO:
5080 case SCHED_RR:
5081 p->sched_class = &rt_sched_class;
5082 break;
5083 }
5084
1da177e4 5085 p->rt_priority = prio;
b29739f9
IM
5086 p->normal_prio = normal_prio(p);
5087 /* we are holding p->pi_lock already */
5088 p->prio = rt_mutex_getprio(p);
2dd73a4f 5089 set_load_weight(p);
1da177e4
LT
5090}
5091
5092/**
72fd4a35 5093 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
5094 * @p: the task in question.
5095 * @policy: new policy.
5096 * @param: structure containing the new RT priority.
5fe1d75f 5097 *
72fd4a35 5098 * NOTE that the task may be already dead.
1da177e4 5099 */
95cdf3b7
IM
5100int sched_setscheduler(struct task_struct *p, int policy,
5101 struct sched_param *param)
1da177e4 5102{
83b699ed 5103 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5104 unsigned long flags;
cb469845 5105 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5106 struct rq *rq;
1da177e4 5107
66e5393a
SR
5108 /* may grab non-irq protected spin_locks */
5109 BUG_ON(in_interrupt());
1da177e4
LT
5110recheck:
5111 /* double check policy once rq lock held */
5112 if (policy < 0)
5113 policy = oldpolicy = p->policy;
5114 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5115 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5116 policy != SCHED_IDLE)
b0a9499c 5117 return -EINVAL;
1da177e4
LT
5118 /*
5119 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5120 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5121 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5122 */
5123 if (param->sched_priority < 0 ||
95cdf3b7 5124 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5125 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5126 return -EINVAL;
e05606d3 5127 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5128 return -EINVAL;
5129
37e4ab3f
OC
5130 /*
5131 * Allow unprivileged RT tasks to decrease priority:
5132 */
5133 if (!capable(CAP_SYS_NICE)) {
e05606d3 5134 if (rt_policy(policy)) {
8dc3e909 5135 unsigned long rlim_rtprio;
8dc3e909
ON
5136
5137 if (!lock_task_sighand(p, &flags))
5138 return -ESRCH;
5139 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5140 unlock_task_sighand(p, &flags);
5141
5142 /* can't set/change the rt policy */
5143 if (policy != p->policy && !rlim_rtprio)
5144 return -EPERM;
5145
5146 /* can't increase priority */
5147 if (param->sched_priority > p->rt_priority &&
5148 param->sched_priority > rlim_rtprio)
5149 return -EPERM;
5150 }
dd41f596
IM
5151 /*
5152 * Like positive nice levels, dont allow tasks to
5153 * move out of SCHED_IDLE either:
5154 */
5155 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5156 return -EPERM;
5fe1d75f 5157
37e4ab3f
OC
5158 /* can't change other user's priorities */
5159 if ((current->euid != p->euid) &&
5160 (current->euid != p->uid))
5161 return -EPERM;
5162 }
1da177e4 5163
b68aa230
PZ
5164#ifdef CONFIG_RT_GROUP_SCHED
5165 /*
5166 * Do not allow realtime tasks into groups that have no runtime
5167 * assigned.
5168 */
d0b27fa7 5169 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5170 return -EPERM;
5171#endif
5172
1da177e4
LT
5173 retval = security_task_setscheduler(p, policy, param);
5174 if (retval)
5175 return retval;
b29739f9
IM
5176 /*
5177 * make sure no PI-waiters arrive (or leave) while we are
5178 * changing the priority of the task:
5179 */
5180 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5181 /*
5182 * To be able to change p->policy safely, the apropriate
5183 * runqueue lock must be held.
5184 */
b29739f9 5185 rq = __task_rq_lock(p);
1da177e4
LT
5186 /* recheck policy now with rq lock held */
5187 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5188 policy = oldpolicy = -1;
b29739f9
IM
5189 __task_rq_unlock(rq);
5190 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5191 goto recheck;
5192 }
2daa3577 5193 update_rq_clock(rq);
dd41f596 5194 on_rq = p->se.on_rq;
051a1d1a 5195 running = task_current(rq, p);
0e1f3483 5196 if (on_rq)
2e1cb74a 5197 deactivate_task(rq, p, 0);
0e1f3483
HS
5198 if (running)
5199 p->sched_class->put_prev_task(rq, p);
f6b53205 5200
1da177e4 5201 oldprio = p->prio;
dd41f596 5202 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5203
0e1f3483
HS
5204 if (running)
5205 p->sched_class->set_curr_task(rq);
dd41f596
IM
5206 if (on_rq) {
5207 activate_task(rq, p, 0);
cb469845
SR
5208
5209 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5210 }
b29739f9
IM
5211 __task_rq_unlock(rq);
5212 spin_unlock_irqrestore(&p->pi_lock, flags);
5213
95e02ca9
TG
5214 rt_mutex_adjust_pi(p);
5215
1da177e4
LT
5216 return 0;
5217}
5218EXPORT_SYMBOL_GPL(sched_setscheduler);
5219
95cdf3b7
IM
5220static int
5221do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5222{
1da177e4
LT
5223 struct sched_param lparam;
5224 struct task_struct *p;
36c8b586 5225 int retval;
1da177e4
LT
5226
5227 if (!param || pid < 0)
5228 return -EINVAL;
5229 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5230 return -EFAULT;
5fe1d75f
ON
5231
5232 rcu_read_lock();
5233 retval = -ESRCH;
1da177e4 5234 p = find_process_by_pid(pid);
5fe1d75f
ON
5235 if (p != NULL)
5236 retval = sched_setscheduler(p, policy, &lparam);
5237 rcu_read_unlock();
36c8b586 5238
1da177e4
LT
5239 return retval;
5240}
5241
5242/**
5243 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5244 * @pid: the pid in question.
5245 * @policy: new policy.
5246 * @param: structure containing the new RT priority.
5247 */
41a2d6cf
IM
5248asmlinkage long
5249sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5250{
c21761f1
JB
5251 /* negative values for policy are not valid */
5252 if (policy < 0)
5253 return -EINVAL;
5254
1da177e4
LT
5255 return do_sched_setscheduler(pid, policy, param);
5256}
5257
5258/**
5259 * sys_sched_setparam - set/change the RT priority of a thread
5260 * @pid: the pid in question.
5261 * @param: structure containing the new RT priority.
5262 */
5263asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5264{
5265 return do_sched_setscheduler(pid, -1, param);
5266}
5267
5268/**
5269 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5270 * @pid: the pid in question.
5271 */
5272asmlinkage long sys_sched_getscheduler(pid_t pid)
5273{
36c8b586 5274 struct task_struct *p;
3a5c359a 5275 int retval;
1da177e4
LT
5276
5277 if (pid < 0)
3a5c359a 5278 return -EINVAL;
1da177e4
LT
5279
5280 retval = -ESRCH;
5281 read_lock(&tasklist_lock);
5282 p = find_process_by_pid(pid);
5283 if (p) {
5284 retval = security_task_getscheduler(p);
5285 if (!retval)
5286 retval = p->policy;
5287 }
5288 read_unlock(&tasklist_lock);
1da177e4
LT
5289 return retval;
5290}
5291
5292/**
5293 * sys_sched_getscheduler - get the RT priority of a thread
5294 * @pid: the pid in question.
5295 * @param: structure containing the RT priority.
5296 */
5297asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5298{
5299 struct sched_param lp;
36c8b586 5300 struct task_struct *p;
3a5c359a 5301 int retval;
1da177e4
LT
5302
5303 if (!param || pid < 0)
3a5c359a 5304 return -EINVAL;
1da177e4
LT
5305
5306 read_lock(&tasklist_lock);
5307 p = find_process_by_pid(pid);
5308 retval = -ESRCH;
5309 if (!p)
5310 goto out_unlock;
5311
5312 retval = security_task_getscheduler(p);
5313 if (retval)
5314 goto out_unlock;
5315
5316 lp.sched_priority = p->rt_priority;
5317 read_unlock(&tasklist_lock);
5318
5319 /*
5320 * This one might sleep, we cannot do it with a spinlock held ...
5321 */
5322 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5323
1da177e4
LT
5324 return retval;
5325
5326out_unlock:
5327 read_unlock(&tasklist_lock);
5328 return retval;
5329}
5330
b53e921b 5331long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5332{
1da177e4 5333 cpumask_t cpus_allowed;
b53e921b 5334 cpumask_t new_mask = *in_mask;
36c8b586
IM
5335 struct task_struct *p;
5336 int retval;
1da177e4 5337
95402b38 5338 get_online_cpus();
1da177e4
LT
5339 read_lock(&tasklist_lock);
5340
5341 p = find_process_by_pid(pid);
5342 if (!p) {
5343 read_unlock(&tasklist_lock);
95402b38 5344 put_online_cpus();
1da177e4
LT
5345 return -ESRCH;
5346 }
5347
5348 /*
5349 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5350 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5351 * usage count and then drop tasklist_lock.
5352 */
5353 get_task_struct(p);
5354 read_unlock(&tasklist_lock);
5355
5356 retval = -EPERM;
5357 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5358 !capable(CAP_SYS_NICE))
5359 goto out_unlock;
5360
e7834f8f
DQ
5361 retval = security_task_setscheduler(p, 0, NULL);
5362 if (retval)
5363 goto out_unlock;
5364
f9a86fcb 5365 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5366 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5367 again:
7c16ec58 5368 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5369
8707d8b8 5370 if (!retval) {
f9a86fcb 5371 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5372 if (!cpus_subset(new_mask, cpus_allowed)) {
5373 /*
5374 * We must have raced with a concurrent cpuset
5375 * update. Just reset the cpus_allowed to the
5376 * cpuset's cpus_allowed
5377 */
5378 new_mask = cpus_allowed;
5379 goto again;
5380 }
5381 }
1da177e4
LT
5382out_unlock:
5383 put_task_struct(p);
95402b38 5384 put_online_cpus();
1da177e4
LT
5385 return retval;
5386}
5387
5388static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5389 cpumask_t *new_mask)
5390{
5391 if (len < sizeof(cpumask_t)) {
5392 memset(new_mask, 0, sizeof(cpumask_t));
5393 } else if (len > sizeof(cpumask_t)) {
5394 len = sizeof(cpumask_t);
5395 }
5396 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5397}
5398
5399/**
5400 * sys_sched_setaffinity - set the cpu affinity of a process
5401 * @pid: pid of the process
5402 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5403 * @user_mask_ptr: user-space pointer to the new cpu mask
5404 */
5405asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5406 unsigned long __user *user_mask_ptr)
5407{
5408 cpumask_t new_mask;
5409 int retval;
5410
5411 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5412 if (retval)
5413 return retval;
5414
b53e921b 5415 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5416}
5417
5418/*
5419 * Represents all cpu's present in the system
5420 * In systems capable of hotplug, this map could dynamically grow
5421 * as new cpu's are detected in the system via any platform specific
5422 * method, such as ACPI for e.g.
5423 */
5424
4cef0c61 5425cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5426EXPORT_SYMBOL(cpu_present_map);
5427
5428#ifndef CONFIG_SMP
4cef0c61 5429cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5430EXPORT_SYMBOL(cpu_online_map);
5431
4cef0c61 5432cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5433EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5434#endif
5435
5436long sched_getaffinity(pid_t pid, cpumask_t *mask)
5437{
36c8b586 5438 struct task_struct *p;
1da177e4 5439 int retval;
1da177e4 5440
95402b38 5441 get_online_cpus();
1da177e4
LT
5442 read_lock(&tasklist_lock);
5443
5444 retval = -ESRCH;
5445 p = find_process_by_pid(pid);
5446 if (!p)
5447 goto out_unlock;
5448
e7834f8f
DQ
5449 retval = security_task_getscheduler(p);
5450 if (retval)
5451 goto out_unlock;
5452
2f7016d9 5453 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5454
5455out_unlock:
5456 read_unlock(&tasklist_lock);
95402b38 5457 put_online_cpus();
1da177e4 5458
9531b62f 5459 return retval;
1da177e4
LT
5460}
5461
5462/**
5463 * sys_sched_getaffinity - get the cpu affinity of a process
5464 * @pid: pid of the process
5465 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5466 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5467 */
5468asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5469 unsigned long __user *user_mask_ptr)
5470{
5471 int ret;
5472 cpumask_t mask;
5473
5474 if (len < sizeof(cpumask_t))
5475 return -EINVAL;
5476
5477 ret = sched_getaffinity(pid, &mask);
5478 if (ret < 0)
5479 return ret;
5480
5481 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5482 return -EFAULT;
5483
5484 return sizeof(cpumask_t);
5485}
5486
5487/**
5488 * sys_sched_yield - yield the current processor to other threads.
5489 *
dd41f596
IM
5490 * This function yields the current CPU to other tasks. If there are no
5491 * other threads running on this CPU then this function will return.
1da177e4
LT
5492 */
5493asmlinkage long sys_sched_yield(void)
5494{
70b97a7f 5495 struct rq *rq = this_rq_lock();
1da177e4 5496
2d72376b 5497 schedstat_inc(rq, yld_count);
4530d7ab 5498 current->sched_class->yield_task(rq);
1da177e4
LT
5499
5500 /*
5501 * Since we are going to call schedule() anyway, there's
5502 * no need to preempt or enable interrupts:
5503 */
5504 __release(rq->lock);
8a25d5de 5505 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5506 _raw_spin_unlock(&rq->lock);
5507 preempt_enable_no_resched();
5508
5509 schedule();
5510
5511 return 0;
5512}
5513
e7b38404 5514static void __cond_resched(void)
1da177e4 5515{
8e0a43d8
IM
5516#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5517 __might_sleep(__FILE__, __LINE__);
5518#endif
5bbcfd90
IM
5519 /*
5520 * The BKS might be reacquired before we have dropped
5521 * PREEMPT_ACTIVE, which could trigger a second
5522 * cond_resched() call.
5523 */
1da177e4
LT
5524 do {
5525 add_preempt_count(PREEMPT_ACTIVE);
5526 schedule();
5527 sub_preempt_count(PREEMPT_ACTIVE);
5528 } while (need_resched());
5529}
5530
02b67cc3 5531int __sched _cond_resched(void)
1da177e4 5532{
9414232f
IM
5533 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5534 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5535 __cond_resched();
5536 return 1;
5537 }
5538 return 0;
5539}
02b67cc3 5540EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5541
5542/*
5543 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5544 * call schedule, and on return reacquire the lock.
5545 *
41a2d6cf 5546 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5547 * operations here to prevent schedule() from being called twice (once via
5548 * spin_unlock(), once by hand).
5549 */
95cdf3b7 5550int cond_resched_lock(spinlock_t *lock)
1da177e4 5551{
95c354fe 5552 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5553 int ret = 0;
5554
95c354fe 5555 if (spin_needbreak(lock) || resched) {
1da177e4 5556 spin_unlock(lock);
95c354fe
NP
5557 if (resched && need_resched())
5558 __cond_resched();
5559 else
5560 cpu_relax();
6df3cecb 5561 ret = 1;
1da177e4 5562 spin_lock(lock);
1da177e4 5563 }
6df3cecb 5564 return ret;
1da177e4 5565}
1da177e4
LT
5566EXPORT_SYMBOL(cond_resched_lock);
5567
5568int __sched cond_resched_softirq(void)
5569{
5570 BUG_ON(!in_softirq());
5571
9414232f 5572 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5573 local_bh_enable();
1da177e4
LT
5574 __cond_resched();
5575 local_bh_disable();
5576 return 1;
5577 }
5578 return 0;
5579}
1da177e4
LT
5580EXPORT_SYMBOL(cond_resched_softirq);
5581
1da177e4
LT
5582/**
5583 * yield - yield the current processor to other threads.
5584 *
72fd4a35 5585 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5586 * thread runnable and calls sys_sched_yield().
5587 */
5588void __sched yield(void)
5589{
5590 set_current_state(TASK_RUNNING);
5591 sys_sched_yield();
5592}
1da177e4
LT
5593EXPORT_SYMBOL(yield);
5594
5595/*
41a2d6cf 5596 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5597 * that process accounting knows that this is a task in IO wait state.
5598 *
5599 * But don't do that if it is a deliberate, throttling IO wait (this task
5600 * has set its backing_dev_info: the queue against which it should throttle)
5601 */
5602void __sched io_schedule(void)
5603{
70b97a7f 5604 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5605
0ff92245 5606 delayacct_blkio_start();
1da177e4
LT
5607 atomic_inc(&rq->nr_iowait);
5608 schedule();
5609 atomic_dec(&rq->nr_iowait);
0ff92245 5610 delayacct_blkio_end();
1da177e4 5611}
1da177e4
LT
5612EXPORT_SYMBOL(io_schedule);
5613
5614long __sched io_schedule_timeout(long timeout)
5615{
70b97a7f 5616 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5617 long ret;
5618
0ff92245 5619 delayacct_blkio_start();
1da177e4
LT
5620 atomic_inc(&rq->nr_iowait);
5621 ret = schedule_timeout(timeout);
5622 atomic_dec(&rq->nr_iowait);
0ff92245 5623 delayacct_blkio_end();
1da177e4
LT
5624 return ret;
5625}
5626
5627/**
5628 * sys_sched_get_priority_max - return maximum RT priority.
5629 * @policy: scheduling class.
5630 *
5631 * this syscall returns the maximum rt_priority that can be used
5632 * by a given scheduling class.
5633 */
5634asmlinkage long sys_sched_get_priority_max(int policy)
5635{
5636 int ret = -EINVAL;
5637
5638 switch (policy) {
5639 case SCHED_FIFO:
5640 case SCHED_RR:
5641 ret = MAX_USER_RT_PRIO-1;
5642 break;
5643 case SCHED_NORMAL:
b0a9499c 5644 case SCHED_BATCH:
dd41f596 5645 case SCHED_IDLE:
1da177e4
LT
5646 ret = 0;
5647 break;
5648 }
5649 return ret;
5650}
5651
5652/**
5653 * sys_sched_get_priority_min - return minimum RT priority.
5654 * @policy: scheduling class.
5655 *
5656 * this syscall returns the minimum rt_priority that can be used
5657 * by a given scheduling class.
5658 */
5659asmlinkage long sys_sched_get_priority_min(int policy)
5660{
5661 int ret = -EINVAL;
5662
5663 switch (policy) {
5664 case SCHED_FIFO:
5665 case SCHED_RR:
5666 ret = 1;
5667 break;
5668 case SCHED_NORMAL:
b0a9499c 5669 case SCHED_BATCH:
dd41f596 5670 case SCHED_IDLE:
1da177e4
LT
5671 ret = 0;
5672 }
5673 return ret;
5674}
5675
5676/**
5677 * sys_sched_rr_get_interval - return the default timeslice of a process.
5678 * @pid: pid of the process.
5679 * @interval: userspace pointer to the timeslice value.
5680 *
5681 * this syscall writes the default timeslice value of a given process
5682 * into the user-space timespec buffer. A value of '0' means infinity.
5683 */
5684asmlinkage
5685long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5686{
36c8b586 5687 struct task_struct *p;
a4ec24b4 5688 unsigned int time_slice;
3a5c359a 5689 int retval;
1da177e4 5690 struct timespec t;
1da177e4
LT
5691
5692 if (pid < 0)
3a5c359a 5693 return -EINVAL;
1da177e4
LT
5694
5695 retval = -ESRCH;
5696 read_lock(&tasklist_lock);
5697 p = find_process_by_pid(pid);
5698 if (!p)
5699 goto out_unlock;
5700
5701 retval = security_task_getscheduler(p);
5702 if (retval)
5703 goto out_unlock;
5704
77034937
IM
5705 /*
5706 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5707 * tasks that are on an otherwise idle runqueue:
5708 */
5709 time_slice = 0;
5710 if (p->policy == SCHED_RR) {
a4ec24b4 5711 time_slice = DEF_TIMESLICE;
1868f958 5712 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5713 struct sched_entity *se = &p->se;
5714 unsigned long flags;
5715 struct rq *rq;
5716
5717 rq = task_rq_lock(p, &flags);
77034937
IM
5718 if (rq->cfs.load.weight)
5719 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5720 task_rq_unlock(rq, &flags);
5721 }
1da177e4 5722 read_unlock(&tasklist_lock);
a4ec24b4 5723 jiffies_to_timespec(time_slice, &t);
1da177e4 5724 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5725 return retval;
3a5c359a 5726
1da177e4
LT
5727out_unlock:
5728 read_unlock(&tasklist_lock);
5729 return retval;
5730}
5731
2ed6e34f 5732static const char stat_nam[] = "RSDTtZX";
36c8b586 5733
82a1fcb9 5734void sched_show_task(struct task_struct *p)
1da177e4 5735{
1da177e4 5736 unsigned long free = 0;
36c8b586 5737 unsigned state;
1da177e4 5738
1da177e4 5739 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5740 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5741 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5742#if BITS_PER_LONG == 32
1da177e4 5743 if (state == TASK_RUNNING)
cc4ea795 5744 printk(KERN_CONT " running ");
1da177e4 5745 else
cc4ea795 5746 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5747#else
5748 if (state == TASK_RUNNING)
cc4ea795 5749 printk(KERN_CONT " running task ");
1da177e4 5750 else
cc4ea795 5751 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5752#endif
5753#ifdef CONFIG_DEBUG_STACK_USAGE
5754 {
10ebffde 5755 unsigned long *n = end_of_stack(p);
1da177e4
LT
5756 while (!*n)
5757 n++;
10ebffde 5758 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5759 }
5760#endif
ba25f9dc 5761 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5762 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5763
5fb5e6de 5764 show_stack(p, NULL);
1da177e4
LT
5765}
5766
e59e2ae2 5767void show_state_filter(unsigned long state_filter)
1da177e4 5768{
36c8b586 5769 struct task_struct *g, *p;
1da177e4 5770
4bd77321
IM
5771#if BITS_PER_LONG == 32
5772 printk(KERN_INFO
5773 " task PC stack pid father\n");
1da177e4 5774#else
4bd77321
IM
5775 printk(KERN_INFO
5776 " task PC stack pid father\n");
1da177e4
LT
5777#endif
5778 read_lock(&tasklist_lock);
5779 do_each_thread(g, p) {
5780 /*
5781 * reset the NMI-timeout, listing all files on a slow
5782 * console might take alot of time:
5783 */
5784 touch_nmi_watchdog();
39bc89fd 5785 if (!state_filter || (p->state & state_filter))
82a1fcb9 5786 sched_show_task(p);
1da177e4
LT
5787 } while_each_thread(g, p);
5788
04c9167f
JF
5789 touch_all_softlockup_watchdogs();
5790
dd41f596
IM
5791#ifdef CONFIG_SCHED_DEBUG
5792 sysrq_sched_debug_show();
5793#endif
1da177e4 5794 read_unlock(&tasklist_lock);
e59e2ae2
IM
5795 /*
5796 * Only show locks if all tasks are dumped:
5797 */
5798 if (state_filter == -1)
5799 debug_show_all_locks();
1da177e4
LT
5800}
5801
1df21055
IM
5802void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5803{
dd41f596 5804 idle->sched_class = &idle_sched_class;
1df21055
IM
5805}
5806
f340c0d1
IM
5807/**
5808 * init_idle - set up an idle thread for a given CPU
5809 * @idle: task in question
5810 * @cpu: cpu the idle task belongs to
5811 *
5812 * NOTE: this function does not set the idle thread's NEED_RESCHED
5813 * flag, to make booting more robust.
5814 */
5c1e1767 5815void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5816{
70b97a7f 5817 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5818 unsigned long flags;
5819
dd41f596
IM
5820 __sched_fork(idle);
5821 idle->se.exec_start = sched_clock();
5822
b29739f9 5823 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5824 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5825 __set_task_cpu(idle, cpu);
1da177e4
LT
5826
5827 spin_lock_irqsave(&rq->lock, flags);
5828 rq->curr = rq->idle = idle;
4866cde0
NP
5829#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5830 idle->oncpu = 1;
5831#endif
1da177e4
LT
5832 spin_unlock_irqrestore(&rq->lock, flags);
5833
5834 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5835#if defined(CONFIG_PREEMPT)
5836 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5837#else
a1261f54 5838 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5839#endif
dd41f596
IM
5840 /*
5841 * The idle tasks have their own, simple scheduling class:
5842 */
5843 idle->sched_class = &idle_sched_class;
1da177e4
LT
5844}
5845
5846/*
5847 * In a system that switches off the HZ timer nohz_cpu_mask
5848 * indicates which cpus entered this state. This is used
5849 * in the rcu update to wait only for active cpus. For system
5850 * which do not switch off the HZ timer nohz_cpu_mask should
5851 * always be CPU_MASK_NONE.
5852 */
5853cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5854
19978ca6
IM
5855/*
5856 * Increase the granularity value when there are more CPUs,
5857 * because with more CPUs the 'effective latency' as visible
5858 * to users decreases. But the relationship is not linear,
5859 * so pick a second-best guess by going with the log2 of the
5860 * number of CPUs.
5861 *
5862 * This idea comes from the SD scheduler of Con Kolivas:
5863 */
5864static inline void sched_init_granularity(void)
5865{
5866 unsigned int factor = 1 + ilog2(num_online_cpus());
5867 const unsigned long limit = 200000000;
5868
5869 sysctl_sched_min_granularity *= factor;
5870 if (sysctl_sched_min_granularity > limit)
5871 sysctl_sched_min_granularity = limit;
5872
5873 sysctl_sched_latency *= factor;
5874 if (sysctl_sched_latency > limit)
5875 sysctl_sched_latency = limit;
5876
5877 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5878}
5879
1da177e4
LT
5880#ifdef CONFIG_SMP
5881/*
5882 * This is how migration works:
5883 *
70b97a7f 5884 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5885 * runqueue and wake up that CPU's migration thread.
5886 * 2) we down() the locked semaphore => thread blocks.
5887 * 3) migration thread wakes up (implicitly it forces the migrated
5888 * thread off the CPU)
5889 * 4) it gets the migration request and checks whether the migrated
5890 * task is still in the wrong runqueue.
5891 * 5) if it's in the wrong runqueue then the migration thread removes
5892 * it and puts it into the right queue.
5893 * 6) migration thread up()s the semaphore.
5894 * 7) we wake up and the migration is done.
5895 */
5896
5897/*
5898 * Change a given task's CPU affinity. Migrate the thread to a
5899 * proper CPU and schedule it away if the CPU it's executing on
5900 * is removed from the allowed bitmask.
5901 *
5902 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5903 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5904 * call is not atomic; no spinlocks may be held.
5905 */
cd8ba7cd 5906int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5907{
70b97a7f 5908 struct migration_req req;
1da177e4 5909 unsigned long flags;
70b97a7f 5910 struct rq *rq;
48f24c4d 5911 int ret = 0;
1da177e4
LT
5912
5913 rq = task_rq_lock(p, &flags);
cd8ba7cd 5914 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5915 ret = -EINVAL;
5916 goto out;
5917 }
5918
73fe6aae 5919 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5920 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5921 else {
cd8ba7cd
MT
5922 p->cpus_allowed = *new_mask;
5923 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5924 }
5925
1da177e4 5926 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5927 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5928 goto out;
5929
cd8ba7cd 5930 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5931 /* Need help from migration thread: drop lock and wait. */
5932 task_rq_unlock(rq, &flags);
5933 wake_up_process(rq->migration_thread);
5934 wait_for_completion(&req.done);
5935 tlb_migrate_finish(p->mm);
5936 return 0;
5937 }
5938out:
5939 task_rq_unlock(rq, &flags);
48f24c4d 5940
1da177e4
LT
5941 return ret;
5942}
cd8ba7cd 5943EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5944
5945/*
41a2d6cf 5946 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5947 * this because either it can't run here any more (set_cpus_allowed()
5948 * away from this CPU, or CPU going down), or because we're
5949 * attempting to rebalance this task on exec (sched_exec).
5950 *
5951 * So we race with normal scheduler movements, but that's OK, as long
5952 * as the task is no longer on this CPU.
efc30814
KK
5953 *
5954 * Returns non-zero if task was successfully migrated.
1da177e4 5955 */
efc30814 5956static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5957{
70b97a7f 5958 struct rq *rq_dest, *rq_src;
dd41f596 5959 int ret = 0, on_rq;
1da177e4
LT
5960
5961 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5962 return ret;
1da177e4
LT
5963
5964 rq_src = cpu_rq(src_cpu);
5965 rq_dest = cpu_rq(dest_cpu);
5966
5967 double_rq_lock(rq_src, rq_dest);
5968 /* Already moved. */
5969 if (task_cpu(p) != src_cpu)
5970 goto out;
5971 /* Affinity changed (again). */
5972 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5973 goto out;
5974
dd41f596 5975 on_rq = p->se.on_rq;
6e82a3be 5976 if (on_rq)
2e1cb74a 5977 deactivate_task(rq_src, p, 0);
6e82a3be 5978
1da177e4 5979 set_task_cpu(p, dest_cpu);
dd41f596
IM
5980 if (on_rq) {
5981 activate_task(rq_dest, p, 0);
5982 check_preempt_curr(rq_dest, p);
1da177e4 5983 }
efc30814 5984 ret = 1;
1da177e4
LT
5985out:
5986 double_rq_unlock(rq_src, rq_dest);
efc30814 5987 return ret;
1da177e4
LT
5988}
5989
5990/*
5991 * migration_thread - this is a highprio system thread that performs
5992 * thread migration by bumping thread off CPU then 'pushing' onto
5993 * another runqueue.
5994 */
95cdf3b7 5995static int migration_thread(void *data)
1da177e4 5996{
1da177e4 5997 int cpu = (long)data;
70b97a7f 5998 struct rq *rq;
1da177e4
LT
5999
6000 rq = cpu_rq(cpu);
6001 BUG_ON(rq->migration_thread != current);
6002
6003 set_current_state(TASK_INTERRUPTIBLE);
6004 while (!kthread_should_stop()) {
70b97a7f 6005 struct migration_req *req;
1da177e4 6006 struct list_head *head;
1da177e4 6007
1da177e4
LT
6008 spin_lock_irq(&rq->lock);
6009
6010 if (cpu_is_offline(cpu)) {
6011 spin_unlock_irq(&rq->lock);
6012 goto wait_to_die;
6013 }
6014
6015 if (rq->active_balance) {
6016 active_load_balance(rq, cpu);
6017 rq->active_balance = 0;
6018 }
6019
6020 head = &rq->migration_queue;
6021
6022 if (list_empty(head)) {
6023 spin_unlock_irq(&rq->lock);
6024 schedule();
6025 set_current_state(TASK_INTERRUPTIBLE);
6026 continue;
6027 }
70b97a7f 6028 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6029 list_del_init(head->next);
6030
674311d5
NP
6031 spin_unlock(&rq->lock);
6032 __migrate_task(req->task, cpu, req->dest_cpu);
6033 local_irq_enable();
1da177e4
LT
6034
6035 complete(&req->done);
6036 }
6037 __set_current_state(TASK_RUNNING);
6038 return 0;
6039
6040wait_to_die:
6041 /* Wait for kthread_stop */
6042 set_current_state(TASK_INTERRUPTIBLE);
6043 while (!kthread_should_stop()) {
6044 schedule();
6045 set_current_state(TASK_INTERRUPTIBLE);
6046 }
6047 __set_current_state(TASK_RUNNING);
6048 return 0;
6049}
6050
6051#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6052
6053static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6054{
6055 int ret;
6056
6057 local_irq_disable();
6058 ret = __migrate_task(p, src_cpu, dest_cpu);
6059 local_irq_enable();
6060 return ret;
6061}
6062
054b9108 6063/*
3a4fa0a2 6064 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6065 * NOTE: interrupts should be disabled by the caller
6066 */
48f24c4d 6067static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6068{
efc30814 6069 unsigned long flags;
1da177e4 6070 cpumask_t mask;
70b97a7f
IM
6071 struct rq *rq;
6072 int dest_cpu;
1da177e4 6073
3a5c359a
AK
6074 do {
6075 /* On same node? */
6076 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6077 cpus_and(mask, mask, p->cpus_allowed);
6078 dest_cpu = any_online_cpu(mask);
6079
6080 /* On any allowed CPU? */
434d53b0 6081 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6082 dest_cpu = any_online_cpu(p->cpus_allowed);
6083
6084 /* No more Mr. Nice Guy. */
434d53b0 6085 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6086 cpumask_t cpus_allowed;
6087
6088 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6089 /*
6090 * Try to stay on the same cpuset, where the
6091 * current cpuset may be a subset of all cpus.
6092 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6093 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6094 * called within calls to cpuset_lock/cpuset_unlock.
6095 */
3a5c359a 6096 rq = task_rq_lock(p, &flags);
470fd646 6097 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6098 dest_cpu = any_online_cpu(p->cpus_allowed);
6099 task_rq_unlock(rq, &flags);
1da177e4 6100
3a5c359a
AK
6101 /*
6102 * Don't tell them about moving exiting tasks or
6103 * kernel threads (both mm NULL), since they never
6104 * leave kernel.
6105 */
41a2d6cf 6106 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6107 printk(KERN_INFO "process %d (%s) no "
6108 "longer affine to cpu%d\n",
41a2d6cf
IM
6109 task_pid_nr(p), p->comm, dead_cpu);
6110 }
3a5c359a 6111 }
f7b4cddc 6112 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6113}
6114
6115/*
6116 * While a dead CPU has no uninterruptible tasks queued at this point,
6117 * it might still have a nonzero ->nr_uninterruptible counter, because
6118 * for performance reasons the counter is not stricly tracking tasks to
6119 * their home CPUs. So we just add the counter to another CPU's counter,
6120 * to keep the global sum constant after CPU-down:
6121 */
70b97a7f 6122static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6123{
7c16ec58 6124 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6125 unsigned long flags;
6126
6127 local_irq_save(flags);
6128 double_rq_lock(rq_src, rq_dest);
6129 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6130 rq_src->nr_uninterruptible = 0;
6131 double_rq_unlock(rq_src, rq_dest);
6132 local_irq_restore(flags);
6133}
6134
6135/* Run through task list and migrate tasks from the dead cpu. */
6136static void migrate_live_tasks(int src_cpu)
6137{
48f24c4d 6138 struct task_struct *p, *t;
1da177e4 6139
f7b4cddc 6140 read_lock(&tasklist_lock);
1da177e4 6141
48f24c4d
IM
6142 do_each_thread(t, p) {
6143 if (p == current)
1da177e4
LT
6144 continue;
6145
48f24c4d
IM
6146 if (task_cpu(p) == src_cpu)
6147 move_task_off_dead_cpu(src_cpu, p);
6148 } while_each_thread(t, p);
1da177e4 6149
f7b4cddc 6150 read_unlock(&tasklist_lock);
1da177e4
LT
6151}
6152
dd41f596
IM
6153/*
6154 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6155 * It does so by boosting its priority to highest possible.
6156 * Used by CPU offline code.
1da177e4
LT
6157 */
6158void sched_idle_next(void)
6159{
48f24c4d 6160 int this_cpu = smp_processor_id();
70b97a7f 6161 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6162 struct task_struct *p = rq->idle;
6163 unsigned long flags;
6164
6165 /* cpu has to be offline */
48f24c4d 6166 BUG_ON(cpu_online(this_cpu));
1da177e4 6167
48f24c4d
IM
6168 /*
6169 * Strictly not necessary since rest of the CPUs are stopped by now
6170 * and interrupts disabled on the current cpu.
1da177e4
LT
6171 */
6172 spin_lock_irqsave(&rq->lock, flags);
6173
dd41f596 6174 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6175
94bc9a7b
DA
6176 update_rq_clock(rq);
6177 activate_task(rq, p, 0);
1da177e4
LT
6178
6179 spin_unlock_irqrestore(&rq->lock, flags);
6180}
6181
48f24c4d
IM
6182/*
6183 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6184 * offline.
6185 */
6186void idle_task_exit(void)
6187{
6188 struct mm_struct *mm = current->active_mm;
6189
6190 BUG_ON(cpu_online(smp_processor_id()));
6191
6192 if (mm != &init_mm)
6193 switch_mm(mm, &init_mm, current);
6194 mmdrop(mm);
6195}
6196
054b9108 6197/* called under rq->lock with disabled interrupts */
36c8b586 6198static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6199{
70b97a7f 6200 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6201
6202 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6203 BUG_ON(!p->exit_state);
1da177e4
LT
6204
6205 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6206 BUG_ON(p->state == TASK_DEAD);
1da177e4 6207
48f24c4d 6208 get_task_struct(p);
1da177e4
LT
6209
6210 /*
6211 * Drop lock around migration; if someone else moves it,
41a2d6cf 6212 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6213 * fine.
6214 */
f7b4cddc 6215 spin_unlock_irq(&rq->lock);
48f24c4d 6216 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6217 spin_lock_irq(&rq->lock);
1da177e4 6218
48f24c4d 6219 put_task_struct(p);
1da177e4
LT
6220}
6221
6222/* release_task() removes task from tasklist, so we won't find dead tasks. */
6223static void migrate_dead_tasks(unsigned int dead_cpu)
6224{
70b97a7f 6225 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6226 struct task_struct *next;
48f24c4d 6227
dd41f596
IM
6228 for ( ; ; ) {
6229 if (!rq->nr_running)
6230 break;
a8e504d2 6231 update_rq_clock(rq);
ff95f3df 6232 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6233 if (!next)
6234 break;
6235 migrate_dead(dead_cpu, next);
e692ab53 6236
1da177e4
LT
6237 }
6238}
6239#endif /* CONFIG_HOTPLUG_CPU */
6240
e692ab53
NP
6241#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6242
6243static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6244 {
6245 .procname = "sched_domain",
c57baf1e 6246 .mode = 0555,
e0361851 6247 },
38605cae 6248 {0, },
e692ab53
NP
6249};
6250
6251static struct ctl_table sd_ctl_root[] = {
e0361851 6252 {
c57baf1e 6253 .ctl_name = CTL_KERN,
e0361851 6254 .procname = "kernel",
c57baf1e 6255 .mode = 0555,
e0361851
AD
6256 .child = sd_ctl_dir,
6257 },
38605cae 6258 {0, },
e692ab53
NP
6259};
6260
6261static struct ctl_table *sd_alloc_ctl_entry(int n)
6262{
6263 struct ctl_table *entry =
5cf9f062 6264 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6265
e692ab53
NP
6266 return entry;
6267}
6268
6382bc90
MM
6269static void sd_free_ctl_entry(struct ctl_table **tablep)
6270{
cd790076 6271 struct ctl_table *entry;
6382bc90 6272
cd790076
MM
6273 /*
6274 * In the intermediate directories, both the child directory and
6275 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6276 * will always be set. In the lowest directory the names are
cd790076
MM
6277 * static strings and all have proc handlers.
6278 */
6279 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6280 if (entry->child)
6281 sd_free_ctl_entry(&entry->child);
cd790076
MM
6282 if (entry->proc_handler == NULL)
6283 kfree(entry->procname);
6284 }
6382bc90
MM
6285
6286 kfree(*tablep);
6287 *tablep = NULL;
6288}
6289
e692ab53 6290static void
e0361851 6291set_table_entry(struct ctl_table *entry,
e692ab53
NP
6292 const char *procname, void *data, int maxlen,
6293 mode_t mode, proc_handler *proc_handler)
6294{
e692ab53
NP
6295 entry->procname = procname;
6296 entry->data = data;
6297 entry->maxlen = maxlen;
6298 entry->mode = mode;
6299 entry->proc_handler = proc_handler;
6300}
6301
6302static struct ctl_table *
6303sd_alloc_ctl_domain_table(struct sched_domain *sd)
6304{
ace8b3d6 6305 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6306
ad1cdc1d
MM
6307 if (table == NULL)
6308 return NULL;
6309
e0361851 6310 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6311 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6312 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6313 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6314 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6315 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6316 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6317 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6318 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6319 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6320 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6321 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6322 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6323 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6324 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6325 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6326 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6327 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6328 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6329 &sd->cache_nice_tries,
6330 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6331 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6332 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6333 /* &table[11] is terminator */
e692ab53
NP
6334
6335 return table;
6336}
6337
9a4e7159 6338static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6339{
6340 struct ctl_table *entry, *table;
6341 struct sched_domain *sd;
6342 int domain_num = 0, i;
6343 char buf[32];
6344
6345 for_each_domain(cpu, sd)
6346 domain_num++;
6347 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6348 if (table == NULL)
6349 return NULL;
e692ab53
NP
6350
6351 i = 0;
6352 for_each_domain(cpu, sd) {
6353 snprintf(buf, 32, "domain%d", i);
e692ab53 6354 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6355 entry->mode = 0555;
e692ab53
NP
6356 entry->child = sd_alloc_ctl_domain_table(sd);
6357 entry++;
6358 i++;
6359 }
6360 return table;
6361}
6362
6363static struct ctl_table_header *sd_sysctl_header;
6382bc90 6364static void register_sched_domain_sysctl(void)
e692ab53
NP
6365{
6366 int i, cpu_num = num_online_cpus();
6367 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6368 char buf[32];
6369
7378547f
MM
6370 WARN_ON(sd_ctl_dir[0].child);
6371 sd_ctl_dir[0].child = entry;
6372
ad1cdc1d
MM
6373 if (entry == NULL)
6374 return;
6375
97b6ea7b 6376 for_each_online_cpu(i) {
e692ab53 6377 snprintf(buf, 32, "cpu%d", i);
e692ab53 6378 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6379 entry->mode = 0555;
e692ab53 6380 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6381 entry++;
e692ab53 6382 }
7378547f
MM
6383
6384 WARN_ON(sd_sysctl_header);
e692ab53
NP
6385 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6386}
6382bc90 6387
7378547f 6388/* may be called multiple times per register */
6382bc90
MM
6389static void unregister_sched_domain_sysctl(void)
6390{
7378547f
MM
6391 if (sd_sysctl_header)
6392 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6393 sd_sysctl_header = NULL;
7378547f
MM
6394 if (sd_ctl_dir[0].child)
6395 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6396}
e692ab53 6397#else
6382bc90
MM
6398static void register_sched_domain_sysctl(void)
6399{
6400}
6401static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6402{
6403}
6404#endif
6405
1da177e4
LT
6406/*
6407 * migration_call - callback that gets triggered when a CPU is added.
6408 * Here we can start up the necessary migration thread for the new CPU.
6409 */
48f24c4d
IM
6410static int __cpuinit
6411migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6412{
1da177e4 6413 struct task_struct *p;
48f24c4d 6414 int cpu = (long)hcpu;
1da177e4 6415 unsigned long flags;
70b97a7f 6416 struct rq *rq;
1da177e4
LT
6417
6418 switch (action) {
5be9361c 6419
1da177e4 6420 case CPU_UP_PREPARE:
8bb78442 6421 case CPU_UP_PREPARE_FROZEN:
dd41f596 6422 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6423 if (IS_ERR(p))
6424 return NOTIFY_BAD;
1da177e4
LT
6425 kthread_bind(p, cpu);
6426 /* Must be high prio: stop_machine expects to yield to it. */
6427 rq = task_rq_lock(p, &flags);
dd41f596 6428 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6429 task_rq_unlock(rq, &flags);
6430 cpu_rq(cpu)->migration_thread = p;
6431 break;
48f24c4d 6432
1da177e4 6433 case CPU_ONLINE:
8bb78442 6434 case CPU_ONLINE_FROZEN:
3a4fa0a2 6435 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6436 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6437
6438 /* Update our root-domain */
6439 rq = cpu_rq(cpu);
6440 spin_lock_irqsave(&rq->lock, flags);
6441 if (rq->rd) {
6442 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6443 cpu_set(cpu, rq->rd->online);
6444 }
6445 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6446 break;
48f24c4d 6447
1da177e4
LT
6448#ifdef CONFIG_HOTPLUG_CPU
6449 case CPU_UP_CANCELED:
8bb78442 6450 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6451 if (!cpu_rq(cpu)->migration_thread)
6452 break;
41a2d6cf 6453 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6454 kthread_bind(cpu_rq(cpu)->migration_thread,
6455 any_online_cpu(cpu_online_map));
1da177e4
LT
6456 kthread_stop(cpu_rq(cpu)->migration_thread);
6457 cpu_rq(cpu)->migration_thread = NULL;
6458 break;
48f24c4d 6459
1da177e4 6460 case CPU_DEAD:
8bb78442 6461 case CPU_DEAD_FROZEN:
470fd646 6462 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6463 migrate_live_tasks(cpu);
6464 rq = cpu_rq(cpu);
6465 kthread_stop(rq->migration_thread);
6466 rq->migration_thread = NULL;
6467 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6468 spin_lock_irq(&rq->lock);
a8e504d2 6469 update_rq_clock(rq);
2e1cb74a 6470 deactivate_task(rq, rq->idle, 0);
1da177e4 6471 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6472 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6473 rq->idle->sched_class = &idle_sched_class;
1da177e4 6474 migrate_dead_tasks(cpu);
d2da272a 6475 spin_unlock_irq(&rq->lock);
470fd646 6476 cpuset_unlock();
1da177e4
LT
6477 migrate_nr_uninterruptible(rq);
6478 BUG_ON(rq->nr_running != 0);
6479
41a2d6cf
IM
6480 /*
6481 * No need to migrate the tasks: it was best-effort if
6482 * they didn't take sched_hotcpu_mutex. Just wake up
6483 * the requestors.
6484 */
1da177e4
LT
6485 spin_lock_irq(&rq->lock);
6486 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6487 struct migration_req *req;
6488
1da177e4 6489 req = list_entry(rq->migration_queue.next,
70b97a7f 6490 struct migration_req, list);
1da177e4
LT
6491 list_del_init(&req->list);
6492 complete(&req->done);
6493 }
6494 spin_unlock_irq(&rq->lock);
6495 break;
57d885fe 6496
08f503b0
GH
6497 case CPU_DYING:
6498 case CPU_DYING_FROZEN:
57d885fe
GH
6499 /* Update our root-domain */
6500 rq = cpu_rq(cpu);
6501 spin_lock_irqsave(&rq->lock, flags);
6502 if (rq->rd) {
6503 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6504 cpu_clear(cpu, rq->rd->online);
6505 }
6506 spin_unlock_irqrestore(&rq->lock, flags);
6507 break;
1da177e4
LT
6508#endif
6509 }
6510 return NOTIFY_OK;
6511}
6512
6513/* Register at highest priority so that task migration (migrate_all_tasks)
6514 * happens before everything else.
6515 */
26c2143b 6516static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6517 .notifier_call = migration_call,
6518 .priority = 10
6519};
6520
e6fe6649 6521void __init migration_init(void)
1da177e4
LT
6522{
6523 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6524 int err;
48f24c4d
IM
6525
6526 /* Start one for the boot CPU: */
07dccf33
AM
6527 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6528 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6529 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6530 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6531}
6532#endif
6533
6534#ifdef CONFIG_SMP
476f3534 6535
3e9830dc 6536#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6537
7c16ec58
MT
6538static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6539 cpumask_t *groupmask)
1da177e4 6540{
4dcf6aff 6541 struct sched_group *group = sd->groups;
434d53b0 6542 char str[256];
1da177e4 6543
434d53b0 6544 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6545 cpus_clear(*groupmask);
4dcf6aff
IM
6546
6547 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6548
6549 if (!(sd->flags & SD_LOAD_BALANCE)) {
6550 printk("does not load-balance\n");
6551 if (sd->parent)
6552 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6553 " has parent");
6554 return -1;
41c7ce9a
NP
6555 }
6556
4dcf6aff
IM
6557 printk(KERN_CONT "span %s\n", str);
6558
6559 if (!cpu_isset(cpu, sd->span)) {
6560 printk(KERN_ERR "ERROR: domain->span does not contain "
6561 "CPU%d\n", cpu);
6562 }
6563 if (!cpu_isset(cpu, group->cpumask)) {
6564 printk(KERN_ERR "ERROR: domain->groups does not contain"
6565 " CPU%d\n", cpu);
6566 }
1da177e4 6567
4dcf6aff 6568 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6569 do {
4dcf6aff
IM
6570 if (!group) {
6571 printk("\n");
6572 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6573 break;
6574 }
6575
4dcf6aff
IM
6576 if (!group->__cpu_power) {
6577 printk(KERN_CONT "\n");
6578 printk(KERN_ERR "ERROR: domain->cpu_power not "
6579 "set\n");
6580 break;
6581 }
1da177e4 6582
4dcf6aff
IM
6583 if (!cpus_weight(group->cpumask)) {
6584 printk(KERN_CONT "\n");
6585 printk(KERN_ERR "ERROR: empty group\n");
6586 break;
6587 }
1da177e4 6588
7c16ec58 6589 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6590 printk(KERN_CONT "\n");
6591 printk(KERN_ERR "ERROR: repeated CPUs\n");
6592 break;
6593 }
1da177e4 6594
7c16ec58 6595 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6596
434d53b0 6597 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6598 printk(KERN_CONT " %s", str);
1da177e4 6599
4dcf6aff
IM
6600 group = group->next;
6601 } while (group != sd->groups);
6602 printk(KERN_CONT "\n");
1da177e4 6603
7c16ec58 6604 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6605 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6606
7c16ec58 6607 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6608 printk(KERN_ERR "ERROR: parent span is not a superset "
6609 "of domain->span\n");
6610 return 0;
6611}
1da177e4 6612
4dcf6aff
IM
6613static void sched_domain_debug(struct sched_domain *sd, int cpu)
6614{
7c16ec58 6615 cpumask_t *groupmask;
4dcf6aff 6616 int level = 0;
1da177e4 6617
4dcf6aff
IM
6618 if (!sd) {
6619 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6620 return;
6621 }
1da177e4 6622
4dcf6aff
IM
6623 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6624
7c16ec58
MT
6625 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6626 if (!groupmask) {
6627 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6628 return;
6629 }
6630
4dcf6aff 6631 for (;;) {
7c16ec58 6632 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6633 break;
1da177e4
LT
6634 level++;
6635 sd = sd->parent;
33859f7f 6636 if (!sd)
4dcf6aff
IM
6637 break;
6638 }
7c16ec58 6639 kfree(groupmask);
1da177e4
LT
6640}
6641#else
48f24c4d 6642# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6643#endif
6644
1a20ff27 6645static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6646{
6647 if (cpus_weight(sd->span) == 1)
6648 return 1;
6649
6650 /* Following flags need at least 2 groups */
6651 if (sd->flags & (SD_LOAD_BALANCE |
6652 SD_BALANCE_NEWIDLE |
6653 SD_BALANCE_FORK |
89c4710e
SS
6654 SD_BALANCE_EXEC |
6655 SD_SHARE_CPUPOWER |
6656 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6657 if (sd->groups != sd->groups->next)
6658 return 0;
6659 }
6660
6661 /* Following flags don't use groups */
6662 if (sd->flags & (SD_WAKE_IDLE |
6663 SD_WAKE_AFFINE |
6664 SD_WAKE_BALANCE))
6665 return 0;
6666
6667 return 1;
6668}
6669
48f24c4d
IM
6670static int
6671sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6672{
6673 unsigned long cflags = sd->flags, pflags = parent->flags;
6674
6675 if (sd_degenerate(parent))
6676 return 1;
6677
6678 if (!cpus_equal(sd->span, parent->span))
6679 return 0;
6680
6681 /* Does parent contain flags not in child? */
6682 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6683 if (cflags & SD_WAKE_AFFINE)
6684 pflags &= ~SD_WAKE_BALANCE;
6685 /* Flags needing groups don't count if only 1 group in parent */
6686 if (parent->groups == parent->groups->next) {
6687 pflags &= ~(SD_LOAD_BALANCE |
6688 SD_BALANCE_NEWIDLE |
6689 SD_BALANCE_FORK |
89c4710e
SS
6690 SD_BALANCE_EXEC |
6691 SD_SHARE_CPUPOWER |
6692 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6693 }
6694 if (~cflags & pflags)
6695 return 0;
6696
6697 return 1;
6698}
6699
57d885fe
GH
6700static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6701{
6702 unsigned long flags;
6703 const struct sched_class *class;
6704
6705 spin_lock_irqsave(&rq->lock, flags);
6706
6707 if (rq->rd) {
6708 struct root_domain *old_rd = rq->rd;
6709
0eab9146 6710 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6711 if (class->leave_domain)
6712 class->leave_domain(rq);
0eab9146 6713 }
57d885fe 6714
dc938520
GH
6715 cpu_clear(rq->cpu, old_rd->span);
6716 cpu_clear(rq->cpu, old_rd->online);
6717
57d885fe
GH
6718 if (atomic_dec_and_test(&old_rd->refcount))
6719 kfree(old_rd);
6720 }
6721
6722 atomic_inc(&rd->refcount);
6723 rq->rd = rd;
6724
dc938520 6725 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6726 if (cpu_isset(rq->cpu, cpu_online_map))
6727 cpu_set(rq->cpu, rd->online);
dc938520 6728
0eab9146 6729 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6730 if (class->join_domain)
6731 class->join_domain(rq);
0eab9146 6732 }
57d885fe
GH
6733
6734 spin_unlock_irqrestore(&rq->lock, flags);
6735}
6736
dc938520 6737static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6738{
6739 memset(rd, 0, sizeof(*rd));
6740
dc938520
GH
6741 cpus_clear(rd->span);
6742 cpus_clear(rd->online);
57d885fe
GH
6743}
6744
6745static void init_defrootdomain(void)
6746{
dc938520 6747 init_rootdomain(&def_root_domain);
57d885fe
GH
6748 atomic_set(&def_root_domain.refcount, 1);
6749}
6750
dc938520 6751static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6752{
6753 struct root_domain *rd;
6754
6755 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6756 if (!rd)
6757 return NULL;
6758
dc938520 6759 init_rootdomain(rd);
57d885fe
GH
6760
6761 return rd;
6762}
6763
1da177e4 6764/*
0eab9146 6765 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6766 * hold the hotplug lock.
6767 */
0eab9146
IM
6768static void
6769cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6770{
70b97a7f 6771 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6772 struct sched_domain *tmp;
6773
6774 /* Remove the sched domains which do not contribute to scheduling. */
6775 for (tmp = sd; tmp; tmp = tmp->parent) {
6776 struct sched_domain *parent = tmp->parent;
6777 if (!parent)
6778 break;
1a848870 6779 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6780 tmp->parent = parent->parent;
1a848870
SS
6781 if (parent->parent)
6782 parent->parent->child = tmp;
6783 }
245af2c7
SS
6784 }
6785
1a848870 6786 if (sd && sd_degenerate(sd)) {
245af2c7 6787 sd = sd->parent;
1a848870
SS
6788 if (sd)
6789 sd->child = NULL;
6790 }
1da177e4
LT
6791
6792 sched_domain_debug(sd, cpu);
6793
57d885fe 6794 rq_attach_root(rq, rd);
674311d5 6795 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6796}
6797
6798/* cpus with isolated domains */
67af63a6 6799static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6800
6801/* Setup the mask of cpus configured for isolated domains */
6802static int __init isolated_cpu_setup(char *str)
6803{
6804 int ints[NR_CPUS], i;
6805
6806 str = get_options(str, ARRAY_SIZE(ints), ints);
6807 cpus_clear(cpu_isolated_map);
6808 for (i = 1; i <= ints[0]; i++)
6809 if (ints[i] < NR_CPUS)
6810 cpu_set(ints[i], cpu_isolated_map);
6811 return 1;
6812}
6813
8927f494 6814__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6815
6816/*
6711cab4
SS
6817 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6818 * to a function which identifies what group(along with sched group) a CPU
6819 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6820 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6821 *
6822 * init_sched_build_groups will build a circular linked list of the groups
6823 * covered by the given span, and will set each group's ->cpumask correctly,
6824 * and ->cpu_power to 0.
6825 */
a616058b 6826static void
7c16ec58 6827init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6828 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6829 struct sched_group **sg,
6830 cpumask_t *tmpmask),
6831 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6832{
6833 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6834 int i;
6835
7c16ec58
MT
6836 cpus_clear(*covered);
6837
6838 for_each_cpu_mask(i, *span) {
6711cab4 6839 struct sched_group *sg;
7c16ec58 6840 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6841 int j;
6842
7c16ec58 6843 if (cpu_isset(i, *covered))
1da177e4
LT
6844 continue;
6845
7c16ec58 6846 cpus_clear(sg->cpumask);
5517d86b 6847 sg->__cpu_power = 0;
1da177e4 6848
7c16ec58
MT
6849 for_each_cpu_mask(j, *span) {
6850 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6851 continue;
6852
7c16ec58 6853 cpu_set(j, *covered);
1da177e4
LT
6854 cpu_set(j, sg->cpumask);
6855 }
6856 if (!first)
6857 first = sg;
6858 if (last)
6859 last->next = sg;
6860 last = sg;
6861 }
6862 last->next = first;
6863}
6864
9c1cfda2 6865#define SD_NODES_PER_DOMAIN 16
1da177e4 6866
9c1cfda2 6867#ifdef CONFIG_NUMA
198e2f18 6868
9c1cfda2
JH
6869/**
6870 * find_next_best_node - find the next node to include in a sched_domain
6871 * @node: node whose sched_domain we're building
6872 * @used_nodes: nodes already in the sched_domain
6873 *
41a2d6cf 6874 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6875 * finds the closest node not already in the @used_nodes map.
6876 *
6877 * Should use nodemask_t.
6878 */
c5f59f08 6879static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6880{
6881 int i, n, val, min_val, best_node = 0;
6882
6883 min_val = INT_MAX;
6884
6885 for (i = 0; i < MAX_NUMNODES; i++) {
6886 /* Start at @node */
6887 n = (node + i) % MAX_NUMNODES;
6888
6889 if (!nr_cpus_node(n))
6890 continue;
6891
6892 /* Skip already used nodes */
c5f59f08 6893 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6894 continue;
6895
6896 /* Simple min distance search */
6897 val = node_distance(node, n);
6898
6899 if (val < min_val) {
6900 min_val = val;
6901 best_node = n;
6902 }
6903 }
6904
c5f59f08 6905 node_set(best_node, *used_nodes);
9c1cfda2
JH
6906 return best_node;
6907}
6908
6909/**
6910 * sched_domain_node_span - get a cpumask for a node's sched_domain
6911 * @node: node whose cpumask we're constructing
73486722 6912 * @span: resulting cpumask
9c1cfda2 6913 *
41a2d6cf 6914 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6915 * should be one that prevents unnecessary balancing, but also spreads tasks
6916 * out optimally.
6917 */
4bdbaad3 6918static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6919{
c5f59f08 6920 nodemask_t used_nodes;
c5f59f08 6921 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6922 int i;
9c1cfda2 6923
4bdbaad3 6924 cpus_clear(*span);
c5f59f08 6925 nodes_clear(used_nodes);
9c1cfda2 6926
4bdbaad3 6927 cpus_or(*span, *span, *nodemask);
c5f59f08 6928 node_set(node, used_nodes);
9c1cfda2
JH
6929
6930 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6931 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6932
c5f59f08 6933 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6934 cpus_or(*span, *span, *nodemask);
9c1cfda2 6935 }
9c1cfda2
JH
6936}
6937#endif
6938
5c45bf27 6939int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6940
9c1cfda2 6941/*
48f24c4d 6942 * SMT sched-domains:
9c1cfda2 6943 */
1da177e4
LT
6944#ifdef CONFIG_SCHED_SMT
6945static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6946static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6947
41a2d6cf 6948static int
7c16ec58
MT
6949cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6950 cpumask_t *unused)
1da177e4 6951{
6711cab4
SS
6952 if (sg)
6953 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6954 return cpu;
6955}
6956#endif
6957
48f24c4d
IM
6958/*
6959 * multi-core sched-domains:
6960 */
1e9f28fa
SS
6961#ifdef CONFIG_SCHED_MC
6962static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6963static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6964#endif
6965
6966#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6967static int
7c16ec58
MT
6968cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6969 cpumask_t *mask)
1e9f28fa 6970{
6711cab4 6971 int group;
7c16ec58
MT
6972
6973 *mask = per_cpu(cpu_sibling_map, cpu);
6974 cpus_and(*mask, *mask, *cpu_map);
6975 group = first_cpu(*mask);
6711cab4
SS
6976 if (sg)
6977 *sg = &per_cpu(sched_group_core, group);
6978 return group;
1e9f28fa
SS
6979}
6980#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6981static int
7c16ec58
MT
6982cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6983 cpumask_t *unused)
1e9f28fa 6984{
6711cab4
SS
6985 if (sg)
6986 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6987 return cpu;
6988}
6989#endif
6990
1da177e4 6991static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6992static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6993
41a2d6cf 6994static int
7c16ec58
MT
6995cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6996 cpumask_t *mask)
1da177e4 6997{
6711cab4 6998 int group;
48f24c4d 6999#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7000 *mask = cpu_coregroup_map(cpu);
7001 cpus_and(*mask, *mask, *cpu_map);
7002 group = first_cpu(*mask);
1e9f28fa 7003#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7004 *mask = per_cpu(cpu_sibling_map, cpu);
7005 cpus_and(*mask, *mask, *cpu_map);
7006 group = first_cpu(*mask);
1da177e4 7007#else
6711cab4 7008 group = cpu;
1da177e4 7009#endif
6711cab4
SS
7010 if (sg)
7011 *sg = &per_cpu(sched_group_phys, group);
7012 return group;
1da177e4
LT
7013}
7014
7015#ifdef CONFIG_NUMA
1da177e4 7016/*
9c1cfda2
JH
7017 * The init_sched_build_groups can't handle what we want to do with node
7018 * groups, so roll our own. Now each node has its own list of groups which
7019 * gets dynamically allocated.
1da177e4 7020 */
9c1cfda2 7021static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7022static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7023
9c1cfda2 7024static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7025static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7026
6711cab4 7027static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7028 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7029{
6711cab4
SS
7030 int group;
7031
7c16ec58
MT
7032 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7033 cpus_and(*nodemask, *nodemask, *cpu_map);
7034 group = first_cpu(*nodemask);
6711cab4
SS
7035
7036 if (sg)
7037 *sg = &per_cpu(sched_group_allnodes, group);
7038 return group;
1da177e4 7039}
6711cab4 7040
08069033
SS
7041static void init_numa_sched_groups_power(struct sched_group *group_head)
7042{
7043 struct sched_group *sg = group_head;
7044 int j;
7045
7046 if (!sg)
7047 return;
3a5c359a
AK
7048 do {
7049 for_each_cpu_mask(j, sg->cpumask) {
7050 struct sched_domain *sd;
08069033 7051
3a5c359a
AK
7052 sd = &per_cpu(phys_domains, j);
7053 if (j != first_cpu(sd->groups->cpumask)) {
7054 /*
7055 * Only add "power" once for each
7056 * physical package.
7057 */
7058 continue;
7059 }
08069033 7060
3a5c359a
AK
7061 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7062 }
7063 sg = sg->next;
7064 } while (sg != group_head);
08069033 7065}
1da177e4
LT
7066#endif
7067
a616058b 7068#ifdef CONFIG_NUMA
51888ca2 7069/* Free memory allocated for various sched_group structures */
7c16ec58 7070static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7071{
a616058b 7072 int cpu, i;
51888ca2
SV
7073
7074 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
7075 struct sched_group **sched_group_nodes
7076 = sched_group_nodes_bycpu[cpu];
7077
51888ca2
SV
7078 if (!sched_group_nodes)
7079 continue;
7080
7081 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
7082 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7083
7c16ec58
MT
7084 *nodemask = node_to_cpumask(i);
7085 cpus_and(*nodemask, *nodemask, *cpu_map);
7086 if (cpus_empty(*nodemask))
51888ca2
SV
7087 continue;
7088
7089 if (sg == NULL)
7090 continue;
7091 sg = sg->next;
7092next_sg:
7093 oldsg = sg;
7094 sg = sg->next;
7095 kfree(oldsg);
7096 if (oldsg != sched_group_nodes[i])
7097 goto next_sg;
7098 }
7099 kfree(sched_group_nodes);
7100 sched_group_nodes_bycpu[cpu] = NULL;
7101 }
51888ca2 7102}
a616058b 7103#else
7c16ec58 7104static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7105{
7106}
7107#endif
51888ca2 7108
89c4710e
SS
7109/*
7110 * Initialize sched groups cpu_power.
7111 *
7112 * cpu_power indicates the capacity of sched group, which is used while
7113 * distributing the load between different sched groups in a sched domain.
7114 * Typically cpu_power for all the groups in a sched domain will be same unless
7115 * there are asymmetries in the topology. If there are asymmetries, group
7116 * having more cpu_power will pickup more load compared to the group having
7117 * less cpu_power.
7118 *
7119 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7120 * the maximum number of tasks a group can handle in the presence of other idle
7121 * or lightly loaded groups in the same sched domain.
7122 */
7123static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7124{
7125 struct sched_domain *child;
7126 struct sched_group *group;
7127
7128 WARN_ON(!sd || !sd->groups);
7129
7130 if (cpu != first_cpu(sd->groups->cpumask))
7131 return;
7132
7133 child = sd->child;
7134
5517d86b
ED
7135 sd->groups->__cpu_power = 0;
7136
89c4710e
SS
7137 /*
7138 * For perf policy, if the groups in child domain share resources
7139 * (for example cores sharing some portions of the cache hierarchy
7140 * or SMT), then set this domain groups cpu_power such that each group
7141 * can handle only one task, when there are other idle groups in the
7142 * same sched domain.
7143 */
7144 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7145 (child->flags &
7146 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7147 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7148 return;
7149 }
7150
89c4710e
SS
7151 /*
7152 * add cpu_power of each child group to this groups cpu_power
7153 */
7154 group = child->groups;
7155 do {
5517d86b 7156 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7157 group = group->next;
7158 } while (group != child->groups);
7159}
7160
7c16ec58
MT
7161/*
7162 * Initializers for schedule domains
7163 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7164 */
7165
7166#define SD_INIT(sd, type) sd_init_##type(sd)
7167#define SD_INIT_FUNC(type) \
7168static noinline void sd_init_##type(struct sched_domain *sd) \
7169{ \
7170 memset(sd, 0, sizeof(*sd)); \
7171 *sd = SD_##type##_INIT; \
1d3504fc 7172 sd->level = SD_LV_##type; \
7c16ec58
MT
7173}
7174
7175SD_INIT_FUNC(CPU)
7176#ifdef CONFIG_NUMA
7177 SD_INIT_FUNC(ALLNODES)
7178 SD_INIT_FUNC(NODE)
7179#endif
7180#ifdef CONFIG_SCHED_SMT
7181 SD_INIT_FUNC(SIBLING)
7182#endif
7183#ifdef CONFIG_SCHED_MC
7184 SD_INIT_FUNC(MC)
7185#endif
7186
7187/*
7188 * To minimize stack usage kmalloc room for cpumasks and share the
7189 * space as the usage in build_sched_domains() dictates. Used only
7190 * if the amount of space is significant.
7191 */
7192struct allmasks {
7193 cpumask_t tmpmask; /* make this one first */
7194 union {
7195 cpumask_t nodemask;
7196 cpumask_t this_sibling_map;
7197 cpumask_t this_core_map;
7198 };
7199 cpumask_t send_covered;
7200
7201#ifdef CONFIG_NUMA
7202 cpumask_t domainspan;
7203 cpumask_t covered;
7204 cpumask_t notcovered;
7205#endif
7206};
7207
7208#if NR_CPUS > 128
7209#define SCHED_CPUMASK_ALLOC 1
7210#define SCHED_CPUMASK_FREE(v) kfree(v)
7211#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7212#else
7213#define SCHED_CPUMASK_ALLOC 0
7214#define SCHED_CPUMASK_FREE(v)
7215#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7216#endif
7217
7218#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7219 ((unsigned long)(a) + offsetof(struct allmasks, v))
7220
1d3504fc
HS
7221static int default_relax_domain_level = -1;
7222
7223static int __init setup_relax_domain_level(char *str)
7224{
7225 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7226 return 1;
7227}
7228__setup("relax_domain_level=", setup_relax_domain_level);
7229
7230static void set_domain_attribute(struct sched_domain *sd,
7231 struct sched_domain_attr *attr)
7232{
7233 int request;
7234
7235 if (!attr || attr->relax_domain_level < 0) {
7236 if (default_relax_domain_level < 0)
7237 return;
7238 else
7239 request = default_relax_domain_level;
7240 } else
7241 request = attr->relax_domain_level;
7242 if (request < sd->level) {
7243 /* turn off idle balance on this domain */
7244 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7245 } else {
7246 /* turn on idle balance on this domain */
7247 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7248 }
7249}
7250
1da177e4 7251/*
1a20ff27
DG
7252 * Build sched domains for a given set of cpus and attach the sched domains
7253 * to the individual cpus
1da177e4 7254 */
1d3504fc
HS
7255static int __build_sched_domains(const cpumask_t *cpu_map,
7256 struct sched_domain_attr *attr)
1da177e4
LT
7257{
7258 int i;
57d885fe 7259 struct root_domain *rd;
7c16ec58
MT
7260 SCHED_CPUMASK_DECLARE(allmasks);
7261 cpumask_t *tmpmask;
d1b55138
JH
7262#ifdef CONFIG_NUMA
7263 struct sched_group **sched_group_nodes = NULL;
6711cab4 7264 int sd_allnodes = 0;
d1b55138
JH
7265
7266 /*
7267 * Allocate the per-node list of sched groups
7268 */
5cf9f062 7269 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7270 GFP_KERNEL);
d1b55138
JH
7271 if (!sched_group_nodes) {
7272 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7273 return -ENOMEM;
d1b55138 7274 }
d1b55138 7275#endif
1da177e4 7276
dc938520 7277 rd = alloc_rootdomain();
57d885fe
GH
7278 if (!rd) {
7279 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7280#ifdef CONFIG_NUMA
7281 kfree(sched_group_nodes);
7282#endif
57d885fe
GH
7283 return -ENOMEM;
7284 }
7285
7c16ec58
MT
7286#if SCHED_CPUMASK_ALLOC
7287 /* get space for all scratch cpumask variables */
7288 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7289 if (!allmasks) {
7290 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7291 kfree(rd);
7292#ifdef CONFIG_NUMA
7293 kfree(sched_group_nodes);
7294#endif
7295 return -ENOMEM;
7296 }
7297#endif
7298 tmpmask = (cpumask_t *)allmasks;
7299
7300
7301#ifdef CONFIG_NUMA
7302 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7303#endif
7304
1da177e4 7305 /*
1a20ff27 7306 * Set up domains for cpus specified by the cpu_map.
1da177e4 7307 */
1a20ff27 7308 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7309 struct sched_domain *sd = NULL, *p;
7c16ec58 7310 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7311
7c16ec58
MT
7312 *nodemask = node_to_cpumask(cpu_to_node(i));
7313 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7314
7315#ifdef CONFIG_NUMA
dd41f596 7316 if (cpus_weight(*cpu_map) >
7c16ec58 7317 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7318 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7319 SD_INIT(sd, ALLNODES);
1d3504fc 7320 set_domain_attribute(sd, attr);
9c1cfda2 7321 sd->span = *cpu_map;
18d95a28 7322 sd->first_cpu = first_cpu(sd->span);
7c16ec58 7323 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7324 p = sd;
6711cab4 7325 sd_allnodes = 1;
9c1cfda2
JH
7326 } else
7327 p = NULL;
7328
1da177e4 7329 sd = &per_cpu(node_domains, i);
7c16ec58 7330 SD_INIT(sd, NODE);
1d3504fc 7331 set_domain_attribute(sd, attr);
4bdbaad3 7332 sched_domain_node_span(cpu_to_node(i), &sd->span);
18d95a28 7333 sd->first_cpu = first_cpu(sd->span);
9c1cfda2 7334 sd->parent = p;
1a848870
SS
7335 if (p)
7336 p->child = sd;
9c1cfda2 7337 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7338#endif
7339
7340 p = sd;
7341 sd = &per_cpu(phys_domains, i);
7c16ec58 7342 SD_INIT(sd, CPU);
1d3504fc 7343 set_domain_attribute(sd, attr);
7c16ec58 7344 sd->span = *nodemask;
18d95a28 7345 sd->first_cpu = first_cpu(sd->span);
1da177e4 7346 sd->parent = p;
1a848870
SS
7347 if (p)
7348 p->child = sd;
7c16ec58 7349 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7350
1e9f28fa
SS
7351#ifdef CONFIG_SCHED_MC
7352 p = sd;
7353 sd = &per_cpu(core_domains, i);
7c16ec58 7354 SD_INIT(sd, MC);
1d3504fc 7355 set_domain_attribute(sd, attr);
1e9f28fa 7356 sd->span = cpu_coregroup_map(i);
18d95a28 7357 sd->first_cpu = first_cpu(sd->span);
1e9f28fa
SS
7358 cpus_and(sd->span, sd->span, *cpu_map);
7359 sd->parent = p;
1a848870 7360 p->child = sd;
7c16ec58 7361 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7362#endif
7363
1da177e4
LT
7364#ifdef CONFIG_SCHED_SMT
7365 p = sd;
7366 sd = &per_cpu(cpu_domains, i);
7c16ec58 7367 SD_INIT(sd, SIBLING);
1d3504fc 7368 set_domain_attribute(sd, attr);
d5a7430d 7369 sd->span = per_cpu(cpu_sibling_map, i);
18d95a28 7370 sd->first_cpu = first_cpu(sd->span);
1a20ff27 7371 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7372 sd->parent = p;
1a848870 7373 p->child = sd;
7c16ec58 7374 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7375#endif
7376 }
7377
7378#ifdef CONFIG_SCHED_SMT
7379 /* Set up CPU (sibling) groups */
9c1cfda2 7380 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7381 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7382 SCHED_CPUMASK_VAR(send_covered, allmasks);
7383
7384 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7385 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7386 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7387 continue;
7388
dd41f596 7389 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7390 &cpu_to_cpu_group,
7391 send_covered, tmpmask);
1da177e4
LT
7392 }
7393#endif
7394
1e9f28fa
SS
7395#ifdef CONFIG_SCHED_MC
7396 /* Set up multi-core groups */
7397 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7398 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7399 SCHED_CPUMASK_VAR(send_covered, allmasks);
7400
7401 *this_core_map = cpu_coregroup_map(i);
7402 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7403 if (i != first_cpu(*this_core_map))
1e9f28fa 7404 continue;
7c16ec58 7405
dd41f596 7406 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7407 &cpu_to_core_group,
7408 send_covered, tmpmask);
1e9f28fa
SS
7409 }
7410#endif
7411
1da177e4
LT
7412 /* Set up physical groups */
7413 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7414 SCHED_CPUMASK_VAR(nodemask, allmasks);
7415 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7416
7c16ec58
MT
7417 *nodemask = node_to_cpumask(i);
7418 cpus_and(*nodemask, *nodemask, *cpu_map);
7419 if (cpus_empty(*nodemask))
1da177e4
LT
7420 continue;
7421
7c16ec58
MT
7422 init_sched_build_groups(nodemask, cpu_map,
7423 &cpu_to_phys_group,
7424 send_covered, tmpmask);
1da177e4
LT
7425 }
7426
7427#ifdef CONFIG_NUMA
7428 /* Set up node groups */
7c16ec58
MT
7429 if (sd_allnodes) {
7430 SCHED_CPUMASK_VAR(send_covered, allmasks);
7431
7432 init_sched_build_groups(cpu_map, cpu_map,
7433 &cpu_to_allnodes_group,
7434 send_covered, tmpmask);
7435 }
9c1cfda2
JH
7436
7437 for (i = 0; i < MAX_NUMNODES; i++) {
7438 /* Set up node groups */
7439 struct sched_group *sg, *prev;
7c16ec58
MT
7440 SCHED_CPUMASK_VAR(nodemask, allmasks);
7441 SCHED_CPUMASK_VAR(domainspan, allmasks);
7442 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7443 int j;
7444
7c16ec58
MT
7445 *nodemask = node_to_cpumask(i);
7446 cpus_clear(*covered);
7447
7448 cpus_and(*nodemask, *nodemask, *cpu_map);
7449 if (cpus_empty(*nodemask)) {
d1b55138 7450 sched_group_nodes[i] = NULL;
9c1cfda2 7451 continue;
d1b55138 7452 }
9c1cfda2 7453
4bdbaad3 7454 sched_domain_node_span(i, domainspan);
7c16ec58 7455 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7456
15f0b676 7457 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7458 if (!sg) {
7459 printk(KERN_WARNING "Can not alloc domain group for "
7460 "node %d\n", i);
7461 goto error;
7462 }
9c1cfda2 7463 sched_group_nodes[i] = sg;
7c16ec58 7464 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7465 struct sched_domain *sd;
9761eea8 7466
9c1cfda2
JH
7467 sd = &per_cpu(node_domains, j);
7468 sd->groups = sg;
9c1cfda2 7469 }
5517d86b 7470 sg->__cpu_power = 0;
7c16ec58 7471 sg->cpumask = *nodemask;
51888ca2 7472 sg->next = sg;
7c16ec58 7473 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7474 prev = sg;
7475
7476 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7477 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7478 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7479 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7480
7c16ec58
MT
7481 cpus_complement(*notcovered, *covered);
7482 cpus_and(*tmpmask, *notcovered, *cpu_map);
7483 cpus_and(*tmpmask, *tmpmask, *domainspan);
7484 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7485 break;
7486
7c16ec58
MT
7487 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7488 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7489 continue;
7490
15f0b676
SV
7491 sg = kmalloc_node(sizeof(struct sched_group),
7492 GFP_KERNEL, i);
9c1cfda2
JH
7493 if (!sg) {
7494 printk(KERN_WARNING
7495 "Can not alloc domain group for node %d\n", j);
51888ca2 7496 goto error;
9c1cfda2 7497 }
5517d86b 7498 sg->__cpu_power = 0;
7c16ec58 7499 sg->cpumask = *tmpmask;
51888ca2 7500 sg->next = prev->next;
7c16ec58 7501 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7502 prev->next = sg;
7503 prev = sg;
7504 }
9c1cfda2 7505 }
1da177e4
LT
7506#endif
7507
7508 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7509#ifdef CONFIG_SCHED_SMT
1a20ff27 7510 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7511 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7512
89c4710e 7513 init_sched_groups_power(i, sd);
5c45bf27 7514 }
1da177e4 7515#endif
1e9f28fa 7516#ifdef CONFIG_SCHED_MC
5c45bf27 7517 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7518 struct sched_domain *sd = &per_cpu(core_domains, i);
7519
89c4710e 7520 init_sched_groups_power(i, sd);
5c45bf27
SS
7521 }
7522#endif
1e9f28fa 7523
5c45bf27 7524 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7525 struct sched_domain *sd = &per_cpu(phys_domains, i);
7526
89c4710e 7527 init_sched_groups_power(i, sd);
1da177e4
LT
7528 }
7529
9c1cfda2 7530#ifdef CONFIG_NUMA
08069033
SS
7531 for (i = 0; i < MAX_NUMNODES; i++)
7532 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7533
6711cab4
SS
7534 if (sd_allnodes) {
7535 struct sched_group *sg;
f712c0c7 7536
7c16ec58
MT
7537 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7538 tmpmask);
f712c0c7
SS
7539 init_numa_sched_groups_power(sg);
7540 }
9c1cfda2
JH
7541#endif
7542
1da177e4 7543 /* Attach the domains */
1a20ff27 7544 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7545 struct sched_domain *sd;
7546#ifdef CONFIG_SCHED_SMT
7547 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7548#elif defined(CONFIG_SCHED_MC)
7549 sd = &per_cpu(core_domains, i);
1da177e4
LT
7550#else
7551 sd = &per_cpu(phys_domains, i);
7552#endif
57d885fe 7553 cpu_attach_domain(sd, rd, i);
1da177e4 7554 }
51888ca2 7555
7c16ec58 7556 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7557 return 0;
7558
a616058b 7559#ifdef CONFIG_NUMA
51888ca2 7560error:
7c16ec58
MT
7561 free_sched_groups(cpu_map, tmpmask);
7562 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7563 return -ENOMEM;
a616058b 7564#endif
1da177e4 7565}
029190c5 7566
1d3504fc
HS
7567static int build_sched_domains(const cpumask_t *cpu_map)
7568{
7569 return __build_sched_domains(cpu_map, NULL);
7570}
7571
029190c5
PJ
7572static cpumask_t *doms_cur; /* current sched domains */
7573static int ndoms_cur; /* number of sched domains in 'doms_cur' */
1d3504fc
HS
7574static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7575 in 'doms_cur' */
029190c5
PJ
7576
7577/*
7578 * Special case: If a kmalloc of a doms_cur partition (array of
7579 * cpumask_t) fails, then fallback to a single sched domain,
7580 * as determined by the single cpumask_t fallback_doms.
7581 */
7582static cpumask_t fallback_doms;
7583
22e52b07
HC
7584void __attribute__((weak)) arch_update_cpu_topology(void)
7585{
7586}
7587
1a20ff27 7588/*
41a2d6cf 7589 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7590 * For now this just excludes isolated cpus, but could be used to
7591 * exclude other special cases in the future.
1a20ff27 7592 */
51888ca2 7593static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7594{
7378547f
MM
7595 int err;
7596
22e52b07 7597 arch_update_cpu_topology();
029190c5
PJ
7598 ndoms_cur = 1;
7599 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7600 if (!doms_cur)
7601 doms_cur = &fallback_doms;
7602 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7603 dattr_cur = NULL;
7378547f 7604 err = build_sched_domains(doms_cur);
6382bc90 7605 register_sched_domain_sysctl();
7378547f
MM
7606
7607 return err;
1a20ff27
DG
7608}
7609
7c16ec58
MT
7610static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7611 cpumask_t *tmpmask)
1da177e4 7612{
7c16ec58 7613 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7614}
1da177e4 7615
1a20ff27
DG
7616/*
7617 * Detach sched domains from a group of cpus specified in cpu_map
7618 * These cpus will now be attached to the NULL domain
7619 */
858119e1 7620static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7621{
7c16ec58 7622 cpumask_t tmpmask;
1a20ff27
DG
7623 int i;
7624
6382bc90
MM
7625 unregister_sched_domain_sysctl();
7626
1a20ff27 7627 for_each_cpu_mask(i, *cpu_map)
57d885fe 7628 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7629 synchronize_sched();
7c16ec58 7630 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7631}
7632
1d3504fc
HS
7633/* handle null as "default" */
7634static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7635 struct sched_domain_attr *new, int idx_new)
7636{
7637 struct sched_domain_attr tmp;
7638
7639 /* fast path */
7640 if (!new && !cur)
7641 return 1;
7642
7643 tmp = SD_ATTR_INIT;
7644 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7645 new ? (new + idx_new) : &tmp,
7646 sizeof(struct sched_domain_attr));
7647}
7648
029190c5
PJ
7649/*
7650 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7651 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7652 * doms_new[] to the current sched domain partitioning, doms_cur[].
7653 * It destroys each deleted domain and builds each new domain.
7654 *
7655 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7656 * The masks don't intersect (don't overlap.) We should setup one
7657 * sched domain for each mask. CPUs not in any of the cpumasks will
7658 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7659 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7660 * it as it is.
7661 *
41a2d6cf
IM
7662 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7663 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7664 * failed the kmalloc call, then it can pass in doms_new == NULL,
7665 * and partition_sched_domains() will fallback to the single partition
7666 * 'fallback_doms'.
7667 *
7668 * Call with hotplug lock held
7669 */
1d3504fc
HS
7670void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7671 struct sched_domain_attr *dattr_new)
029190c5
PJ
7672{
7673 int i, j;
7674
712555ee 7675 mutex_lock(&sched_domains_mutex);
a1835615 7676
7378547f
MM
7677 /* always unregister in case we don't destroy any domains */
7678 unregister_sched_domain_sysctl();
7679
029190c5
PJ
7680 if (doms_new == NULL) {
7681 ndoms_new = 1;
7682 doms_new = &fallback_doms;
7683 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7684 dattr_new = NULL;
029190c5
PJ
7685 }
7686
7687 /* Destroy deleted domains */
7688 for (i = 0; i < ndoms_cur; i++) {
7689 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7690 if (cpus_equal(doms_cur[i], doms_new[j])
7691 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7692 goto match1;
7693 }
7694 /* no match - a current sched domain not in new doms_new[] */
7695 detach_destroy_domains(doms_cur + i);
7696match1:
7697 ;
7698 }
7699
7700 /* Build new domains */
7701 for (i = 0; i < ndoms_new; i++) {
7702 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7703 if (cpus_equal(doms_new[i], doms_cur[j])
7704 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7705 goto match2;
7706 }
7707 /* no match - add a new doms_new */
1d3504fc
HS
7708 __build_sched_domains(doms_new + i,
7709 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7710match2:
7711 ;
7712 }
7713
7714 /* Remember the new sched domains */
7715 if (doms_cur != &fallback_doms)
7716 kfree(doms_cur);
1d3504fc 7717 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7718 doms_cur = doms_new;
1d3504fc 7719 dattr_cur = dattr_new;
029190c5 7720 ndoms_cur = ndoms_new;
7378547f
MM
7721
7722 register_sched_domain_sysctl();
a1835615 7723
712555ee 7724 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7725}
7726
5c45bf27 7727#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7728int arch_reinit_sched_domains(void)
5c45bf27
SS
7729{
7730 int err;
7731
95402b38 7732 get_online_cpus();
712555ee 7733 mutex_lock(&sched_domains_mutex);
5c45bf27
SS
7734 detach_destroy_domains(&cpu_online_map);
7735 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7736 mutex_unlock(&sched_domains_mutex);
95402b38 7737 put_online_cpus();
5c45bf27
SS
7738
7739 return err;
7740}
7741
7742static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7743{
7744 int ret;
7745
7746 if (buf[0] != '0' && buf[0] != '1')
7747 return -EINVAL;
7748
7749 if (smt)
7750 sched_smt_power_savings = (buf[0] == '1');
7751 else
7752 sched_mc_power_savings = (buf[0] == '1');
7753
7754 ret = arch_reinit_sched_domains();
7755
7756 return ret ? ret : count;
7757}
7758
5c45bf27
SS
7759#ifdef CONFIG_SCHED_MC
7760static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7761{
7762 return sprintf(page, "%u\n", sched_mc_power_savings);
7763}
48f24c4d
IM
7764static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7765 const char *buf, size_t count)
5c45bf27
SS
7766{
7767 return sched_power_savings_store(buf, count, 0);
7768}
6707de00
AB
7769static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7770 sched_mc_power_savings_store);
5c45bf27
SS
7771#endif
7772
7773#ifdef CONFIG_SCHED_SMT
7774static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7775{
7776 return sprintf(page, "%u\n", sched_smt_power_savings);
7777}
48f24c4d
IM
7778static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7779 const char *buf, size_t count)
5c45bf27
SS
7780{
7781 return sched_power_savings_store(buf, count, 1);
7782}
6707de00
AB
7783static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7784 sched_smt_power_savings_store);
7785#endif
7786
7787int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7788{
7789 int err = 0;
7790
7791#ifdef CONFIG_SCHED_SMT
7792 if (smt_capable())
7793 err = sysfs_create_file(&cls->kset.kobj,
7794 &attr_sched_smt_power_savings.attr);
7795#endif
7796#ifdef CONFIG_SCHED_MC
7797 if (!err && mc_capable())
7798 err = sysfs_create_file(&cls->kset.kobj,
7799 &attr_sched_mc_power_savings.attr);
7800#endif
7801 return err;
7802}
5c45bf27
SS
7803#endif
7804
1da177e4 7805/*
41a2d6cf 7806 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7807 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7808 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7809 * which will prevent rebalancing while the sched domains are recalculated.
7810 */
7811static int update_sched_domains(struct notifier_block *nfb,
7812 unsigned long action, void *hcpu)
7813{
1da177e4
LT
7814 switch (action) {
7815 case CPU_UP_PREPARE:
8bb78442 7816 case CPU_UP_PREPARE_FROZEN:
1da177e4 7817 case CPU_DOWN_PREPARE:
8bb78442 7818 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7819 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7820 return NOTIFY_OK;
7821
7822 case CPU_UP_CANCELED:
8bb78442 7823 case CPU_UP_CANCELED_FROZEN:
1da177e4 7824 case CPU_DOWN_FAILED:
8bb78442 7825 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7826 case CPU_ONLINE:
8bb78442 7827 case CPU_ONLINE_FROZEN:
1da177e4 7828 case CPU_DEAD:
8bb78442 7829 case CPU_DEAD_FROZEN:
1da177e4
LT
7830 /*
7831 * Fall through and re-initialise the domains.
7832 */
7833 break;
7834 default:
7835 return NOTIFY_DONE;
7836 }
7837
7838 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7839 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7840
7841 return NOTIFY_OK;
7842}
1da177e4
LT
7843
7844void __init sched_init_smp(void)
7845{
5c1e1767
NP
7846 cpumask_t non_isolated_cpus;
7847
434d53b0
MT
7848#if defined(CONFIG_NUMA)
7849 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7850 GFP_KERNEL);
7851 BUG_ON(sched_group_nodes_bycpu == NULL);
7852#endif
95402b38 7853 get_online_cpus();
712555ee 7854 mutex_lock(&sched_domains_mutex);
1a20ff27 7855 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7856 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7857 if (cpus_empty(non_isolated_cpus))
7858 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7859 mutex_unlock(&sched_domains_mutex);
95402b38 7860 put_online_cpus();
1da177e4
LT
7861 /* XXX: Theoretical race here - CPU may be hotplugged now */
7862 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7863 init_hrtick();
5c1e1767
NP
7864
7865 /* Move init over to a non-isolated CPU */
7c16ec58 7866 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7867 BUG();
19978ca6 7868 sched_init_granularity();
1da177e4
LT
7869}
7870#else
7871void __init sched_init_smp(void)
7872{
19978ca6 7873 sched_init_granularity();
1da177e4
LT
7874}
7875#endif /* CONFIG_SMP */
7876
7877int in_sched_functions(unsigned long addr)
7878{
1da177e4
LT
7879 return in_lock_functions(addr) ||
7880 (addr >= (unsigned long)__sched_text_start
7881 && addr < (unsigned long)__sched_text_end);
7882}
7883
a9957449 7884static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7885{
7886 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7887 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7888#ifdef CONFIG_FAIR_GROUP_SCHED
7889 cfs_rq->rq = rq;
7890#endif
67e9fb2a 7891 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7892}
7893
fa85ae24
PZ
7894static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7895{
7896 struct rt_prio_array *array;
7897 int i;
7898
7899 array = &rt_rq->active;
7900 for (i = 0; i < MAX_RT_PRIO; i++) {
7901 INIT_LIST_HEAD(array->queue + i);
7902 __clear_bit(i, array->bitmap);
7903 }
7904 /* delimiter for bitsearch: */
7905 __set_bit(MAX_RT_PRIO, array->bitmap);
7906
052f1dc7 7907#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7908 rt_rq->highest_prio = MAX_RT_PRIO;
7909#endif
fa85ae24
PZ
7910#ifdef CONFIG_SMP
7911 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7912 rt_rq->overloaded = 0;
7913#endif
7914
7915 rt_rq->rt_time = 0;
7916 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7917 rt_rq->rt_runtime = 0;
7918 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7919
052f1dc7 7920#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7921 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7922 rt_rq->rq = rq;
7923#endif
fa85ae24
PZ
7924}
7925
6f505b16 7926#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7927static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7928 struct sched_entity *se, int cpu, int add,
7929 struct sched_entity *parent)
6f505b16 7930{
ec7dc8ac 7931 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7932 tg->cfs_rq[cpu] = cfs_rq;
7933 init_cfs_rq(cfs_rq, rq);
7934 cfs_rq->tg = tg;
7935 if (add)
7936 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7937
7938 tg->se[cpu] = se;
354d60c2
DG
7939 /* se could be NULL for init_task_group */
7940 if (!se)
7941 return;
7942
ec7dc8ac
DG
7943 if (!parent)
7944 se->cfs_rq = &rq->cfs;
7945 else
7946 se->cfs_rq = parent->my_q;
7947
6f505b16
PZ
7948 se->my_q = cfs_rq;
7949 se->load.weight = tg->shares;
e05510d0 7950 se->load.inv_weight = 0;
ec7dc8ac 7951 se->parent = parent;
6f505b16 7952}
052f1dc7 7953#endif
6f505b16 7954
052f1dc7 7955#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7956static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7957 struct sched_rt_entity *rt_se, int cpu, int add,
7958 struct sched_rt_entity *parent)
6f505b16 7959{
ec7dc8ac
DG
7960 struct rq *rq = cpu_rq(cpu);
7961
6f505b16
PZ
7962 tg->rt_rq[cpu] = rt_rq;
7963 init_rt_rq(rt_rq, rq);
7964 rt_rq->tg = tg;
7965 rt_rq->rt_se = rt_se;
ac086bc2 7966 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7967 if (add)
7968 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7969
7970 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7971 if (!rt_se)
7972 return;
7973
ec7dc8ac
DG
7974 if (!parent)
7975 rt_se->rt_rq = &rq->rt;
7976 else
7977 rt_se->rt_rq = parent->my_q;
7978
6f505b16
PZ
7979 rt_se->rt_rq = &rq->rt;
7980 rt_se->my_q = rt_rq;
ec7dc8ac 7981 rt_se->parent = parent;
6f505b16
PZ
7982 INIT_LIST_HEAD(&rt_se->run_list);
7983}
7984#endif
7985
1da177e4
LT
7986void __init sched_init(void)
7987{
dd41f596 7988 int i, j;
434d53b0
MT
7989 unsigned long alloc_size = 0, ptr;
7990
7991#ifdef CONFIG_FAIR_GROUP_SCHED
7992 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7993#endif
7994#ifdef CONFIG_RT_GROUP_SCHED
7995 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7996#endif
7997#ifdef CONFIG_USER_SCHED
7998 alloc_size *= 2;
434d53b0
MT
7999#endif
8000 /*
8001 * As sched_init() is called before page_alloc is setup,
8002 * we use alloc_bootmem().
8003 */
8004 if (alloc_size) {
5a9d3225 8005 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8006
8007#ifdef CONFIG_FAIR_GROUP_SCHED
8008 init_task_group.se = (struct sched_entity **)ptr;
8009 ptr += nr_cpu_ids * sizeof(void **);
8010
8011 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8012 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8013
8014#ifdef CONFIG_USER_SCHED
8015 root_task_group.se = (struct sched_entity **)ptr;
8016 ptr += nr_cpu_ids * sizeof(void **);
8017
8018 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8019 ptr += nr_cpu_ids * sizeof(void **);
8020#endif
434d53b0
MT
8021#endif
8022#ifdef CONFIG_RT_GROUP_SCHED
8023 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8024 ptr += nr_cpu_ids * sizeof(void **);
8025
8026 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8027 ptr += nr_cpu_ids * sizeof(void **);
8028
8029#ifdef CONFIG_USER_SCHED
8030 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8031 ptr += nr_cpu_ids * sizeof(void **);
8032
8033 root_task_group.rt_rq = (struct rt_rq **)ptr;
8034 ptr += nr_cpu_ids * sizeof(void **);
8035#endif
434d53b0
MT
8036#endif
8037 }
dd41f596 8038
57d885fe 8039#ifdef CONFIG_SMP
18d95a28 8040 init_aggregate();
57d885fe
GH
8041 init_defrootdomain();
8042#endif
8043
d0b27fa7
PZ
8044 init_rt_bandwidth(&def_rt_bandwidth,
8045 global_rt_period(), global_rt_runtime());
8046
8047#ifdef CONFIG_RT_GROUP_SCHED
8048 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8049 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8050#ifdef CONFIG_USER_SCHED
8051 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8052 global_rt_period(), RUNTIME_INF);
8053#endif
d0b27fa7
PZ
8054#endif
8055
052f1dc7 8056#ifdef CONFIG_GROUP_SCHED
6f505b16 8057 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8058 INIT_LIST_HEAD(&init_task_group.children);
8059
8060#ifdef CONFIG_USER_SCHED
8061 INIT_LIST_HEAD(&root_task_group.children);
8062 init_task_group.parent = &root_task_group;
8063 list_add(&init_task_group.siblings, &root_task_group.children);
8064#endif
6f505b16
PZ
8065#endif
8066
0a945022 8067 for_each_possible_cpu(i) {
70b97a7f 8068 struct rq *rq;
1da177e4
LT
8069
8070 rq = cpu_rq(i);
8071 spin_lock_init(&rq->lock);
fcb99371 8072 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 8073 rq->nr_running = 0;
dd41f596 8074 init_cfs_rq(&rq->cfs, rq);
6f505b16 8075 init_rt_rq(&rq->rt, rq);
dd41f596 8076#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8077 init_task_group.shares = init_task_group_load;
6f505b16 8078 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8079#ifdef CONFIG_CGROUP_SCHED
8080 /*
8081 * How much cpu bandwidth does init_task_group get?
8082 *
8083 * In case of task-groups formed thr' the cgroup filesystem, it
8084 * gets 100% of the cpu resources in the system. This overall
8085 * system cpu resource is divided among the tasks of
8086 * init_task_group and its child task-groups in a fair manner,
8087 * based on each entity's (task or task-group's) weight
8088 * (se->load.weight).
8089 *
8090 * In other words, if init_task_group has 10 tasks of weight
8091 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8092 * then A0's share of the cpu resource is:
8093 *
8094 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8095 *
8096 * We achieve this by letting init_task_group's tasks sit
8097 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8098 */
ec7dc8ac 8099 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8100#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8101 root_task_group.shares = NICE_0_LOAD;
8102 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8103 /*
8104 * In case of task-groups formed thr' the user id of tasks,
8105 * init_task_group represents tasks belonging to root user.
8106 * Hence it forms a sibling of all subsequent groups formed.
8107 * In this case, init_task_group gets only a fraction of overall
8108 * system cpu resource, based on the weight assigned to root
8109 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8110 * by letting tasks of init_task_group sit in a separate cfs_rq
8111 * (init_cfs_rq) and having one entity represent this group of
8112 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8113 */
ec7dc8ac 8114 init_tg_cfs_entry(&init_task_group,
6f505b16 8115 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8116 &per_cpu(init_sched_entity, i), i, 1,
8117 root_task_group.se[i]);
6f505b16 8118
052f1dc7 8119#endif
354d60c2
DG
8120#endif /* CONFIG_FAIR_GROUP_SCHED */
8121
8122 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8123#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8124 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8125#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8126 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8127#elif defined CONFIG_USER_SCHED
eff766a6 8128 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8129 init_tg_rt_entry(&init_task_group,
6f505b16 8130 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8131 &per_cpu(init_sched_rt_entity, i), i, 1,
8132 root_task_group.rt_se[i]);
354d60c2 8133#endif
dd41f596 8134#endif
1da177e4 8135
dd41f596
IM
8136 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8137 rq->cpu_load[j] = 0;
1da177e4 8138#ifdef CONFIG_SMP
41c7ce9a 8139 rq->sd = NULL;
57d885fe 8140 rq->rd = NULL;
1da177e4 8141 rq->active_balance = 0;
dd41f596 8142 rq->next_balance = jiffies;
1da177e4 8143 rq->push_cpu = 0;
0a2966b4 8144 rq->cpu = i;
1da177e4
LT
8145 rq->migration_thread = NULL;
8146 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8147 rq_attach_root(rq, &def_root_domain);
1da177e4 8148#endif
8f4d37ec 8149 init_rq_hrtick(rq);
1da177e4 8150 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8151 }
8152
2dd73a4f 8153 set_load_weight(&init_task);
b50f60ce 8154
e107be36
AK
8155#ifdef CONFIG_PREEMPT_NOTIFIERS
8156 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8157#endif
8158
c9819f45
CL
8159#ifdef CONFIG_SMP
8160 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8161#endif
8162
b50f60ce
HC
8163#ifdef CONFIG_RT_MUTEXES
8164 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8165#endif
8166
1da177e4
LT
8167 /*
8168 * The boot idle thread does lazy MMU switching as well:
8169 */
8170 atomic_inc(&init_mm.mm_count);
8171 enter_lazy_tlb(&init_mm, current);
8172
8173 /*
8174 * Make us the idle thread. Technically, schedule() should not be
8175 * called from this thread, however somewhere below it might be,
8176 * but because we are the idle thread, we just pick up running again
8177 * when this runqueue becomes "idle".
8178 */
8179 init_idle(current, smp_processor_id());
dd41f596
IM
8180 /*
8181 * During early bootup we pretend to be a normal task:
8182 */
8183 current->sched_class = &fair_sched_class;
6892b75e
IM
8184
8185 scheduler_running = 1;
1da177e4
LT
8186}
8187
8188#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8189void __might_sleep(char *file, int line)
8190{
48f24c4d 8191#ifdef in_atomic
1da177e4
LT
8192 static unsigned long prev_jiffy; /* ratelimiting */
8193
8194 if ((in_atomic() || irqs_disabled()) &&
8195 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8196 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8197 return;
8198 prev_jiffy = jiffies;
91368d73 8199 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8200 " context at %s:%d\n", file, line);
8201 printk("in_atomic():%d, irqs_disabled():%d\n",
8202 in_atomic(), irqs_disabled());
a4c410f0 8203 debug_show_held_locks(current);
3117df04
IM
8204 if (irqs_disabled())
8205 print_irqtrace_events(current);
1da177e4
LT
8206 dump_stack();
8207 }
8208#endif
8209}
8210EXPORT_SYMBOL(__might_sleep);
8211#endif
8212
8213#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8214static void normalize_task(struct rq *rq, struct task_struct *p)
8215{
8216 int on_rq;
3e51f33f 8217
3a5e4dc1
AK
8218 update_rq_clock(rq);
8219 on_rq = p->se.on_rq;
8220 if (on_rq)
8221 deactivate_task(rq, p, 0);
8222 __setscheduler(rq, p, SCHED_NORMAL, 0);
8223 if (on_rq) {
8224 activate_task(rq, p, 0);
8225 resched_task(rq->curr);
8226 }
8227}
8228
1da177e4
LT
8229void normalize_rt_tasks(void)
8230{
a0f98a1c 8231 struct task_struct *g, *p;
1da177e4 8232 unsigned long flags;
70b97a7f 8233 struct rq *rq;
1da177e4 8234
4cf5d77a 8235 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8236 do_each_thread(g, p) {
178be793
IM
8237 /*
8238 * Only normalize user tasks:
8239 */
8240 if (!p->mm)
8241 continue;
8242
6cfb0d5d 8243 p->se.exec_start = 0;
6cfb0d5d 8244#ifdef CONFIG_SCHEDSTATS
dd41f596 8245 p->se.wait_start = 0;
dd41f596 8246 p->se.sleep_start = 0;
dd41f596 8247 p->se.block_start = 0;
6cfb0d5d 8248#endif
dd41f596
IM
8249
8250 if (!rt_task(p)) {
8251 /*
8252 * Renice negative nice level userspace
8253 * tasks back to 0:
8254 */
8255 if (TASK_NICE(p) < 0 && p->mm)
8256 set_user_nice(p, 0);
1da177e4 8257 continue;
dd41f596 8258 }
1da177e4 8259
4cf5d77a 8260 spin_lock(&p->pi_lock);
b29739f9 8261 rq = __task_rq_lock(p);
1da177e4 8262
178be793 8263 normalize_task(rq, p);
3a5e4dc1 8264
b29739f9 8265 __task_rq_unlock(rq);
4cf5d77a 8266 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8267 } while_each_thread(g, p);
8268
4cf5d77a 8269 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8270}
8271
8272#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8273
8274#ifdef CONFIG_IA64
8275/*
8276 * These functions are only useful for the IA64 MCA handling.
8277 *
8278 * They can only be called when the whole system has been
8279 * stopped - every CPU needs to be quiescent, and no scheduling
8280 * activity can take place. Using them for anything else would
8281 * be a serious bug, and as a result, they aren't even visible
8282 * under any other configuration.
8283 */
8284
8285/**
8286 * curr_task - return the current task for a given cpu.
8287 * @cpu: the processor in question.
8288 *
8289 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8290 */
36c8b586 8291struct task_struct *curr_task(int cpu)
1df5c10a
LT
8292{
8293 return cpu_curr(cpu);
8294}
8295
8296/**
8297 * set_curr_task - set the current task for a given cpu.
8298 * @cpu: the processor in question.
8299 * @p: the task pointer to set.
8300 *
8301 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8302 * are serviced on a separate stack. It allows the architecture to switch the
8303 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8304 * must be called with all CPU's synchronized, and interrupts disabled, the
8305 * and caller must save the original value of the current task (see
8306 * curr_task() above) and restore that value before reenabling interrupts and
8307 * re-starting the system.
8308 *
8309 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8310 */
36c8b586 8311void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8312{
8313 cpu_curr(cpu) = p;
8314}
8315
8316#endif
29f59db3 8317
bccbe08a
PZ
8318#ifdef CONFIG_FAIR_GROUP_SCHED
8319static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8320{
8321 int i;
8322
8323 for_each_possible_cpu(i) {
8324 if (tg->cfs_rq)
8325 kfree(tg->cfs_rq[i]);
8326 if (tg->se)
8327 kfree(tg->se[i]);
6f505b16
PZ
8328 }
8329
8330 kfree(tg->cfs_rq);
8331 kfree(tg->se);
6f505b16
PZ
8332}
8333
ec7dc8ac
DG
8334static
8335int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8336{
29f59db3 8337 struct cfs_rq *cfs_rq;
ec7dc8ac 8338 struct sched_entity *se, *parent_se;
9b5b7751 8339 struct rq *rq;
29f59db3
SV
8340 int i;
8341
434d53b0 8342 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8343 if (!tg->cfs_rq)
8344 goto err;
434d53b0 8345 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8346 if (!tg->se)
8347 goto err;
052f1dc7
PZ
8348
8349 tg->shares = NICE_0_LOAD;
29f59db3
SV
8350
8351 for_each_possible_cpu(i) {
9b5b7751 8352 rq = cpu_rq(i);
29f59db3 8353
6f505b16
PZ
8354 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8355 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8356 if (!cfs_rq)
8357 goto err;
8358
6f505b16
PZ
8359 se = kmalloc_node(sizeof(struct sched_entity),
8360 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8361 if (!se)
8362 goto err;
8363
ec7dc8ac
DG
8364 parent_se = parent ? parent->se[i] : NULL;
8365 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8366 }
8367
8368 return 1;
8369
8370 err:
8371 return 0;
8372}
8373
8374static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8375{
8376 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8377 &cpu_rq(cpu)->leaf_cfs_rq_list);
8378}
8379
8380static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8381{
8382 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8383}
8384#else
8385static inline void free_fair_sched_group(struct task_group *tg)
8386{
8387}
8388
ec7dc8ac
DG
8389static inline
8390int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8391{
8392 return 1;
8393}
8394
8395static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8396{
8397}
8398
8399static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8400{
8401}
052f1dc7
PZ
8402#endif
8403
8404#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8405static void free_rt_sched_group(struct task_group *tg)
8406{
8407 int i;
8408
d0b27fa7
PZ
8409 destroy_rt_bandwidth(&tg->rt_bandwidth);
8410
bccbe08a
PZ
8411 for_each_possible_cpu(i) {
8412 if (tg->rt_rq)
8413 kfree(tg->rt_rq[i]);
8414 if (tg->rt_se)
8415 kfree(tg->rt_se[i]);
8416 }
8417
8418 kfree(tg->rt_rq);
8419 kfree(tg->rt_se);
8420}
8421
ec7dc8ac
DG
8422static
8423int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8424{
8425 struct rt_rq *rt_rq;
ec7dc8ac 8426 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8427 struct rq *rq;
8428 int i;
8429
434d53b0 8430 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8431 if (!tg->rt_rq)
8432 goto err;
434d53b0 8433 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8434 if (!tg->rt_se)
8435 goto err;
8436
d0b27fa7
PZ
8437 init_rt_bandwidth(&tg->rt_bandwidth,
8438 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8439
8440 for_each_possible_cpu(i) {
8441 rq = cpu_rq(i);
8442
6f505b16
PZ
8443 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8444 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8445 if (!rt_rq)
8446 goto err;
29f59db3 8447
6f505b16
PZ
8448 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8449 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8450 if (!rt_se)
8451 goto err;
29f59db3 8452
ec7dc8ac
DG
8453 parent_se = parent ? parent->rt_se[i] : NULL;
8454 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8455 }
8456
bccbe08a
PZ
8457 return 1;
8458
8459 err:
8460 return 0;
8461}
8462
8463static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8464{
8465 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8466 &cpu_rq(cpu)->leaf_rt_rq_list);
8467}
8468
8469static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8470{
8471 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8472}
8473#else
8474static inline void free_rt_sched_group(struct task_group *tg)
8475{
8476}
8477
ec7dc8ac
DG
8478static inline
8479int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8480{
8481 return 1;
8482}
8483
8484static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8485{
8486}
8487
8488static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8489{
8490}
8491#endif
8492
d0b27fa7 8493#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8494static void free_sched_group(struct task_group *tg)
8495{
8496 free_fair_sched_group(tg);
8497 free_rt_sched_group(tg);
8498 kfree(tg);
8499}
8500
8501/* allocate runqueue etc for a new task group */
ec7dc8ac 8502struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8503{
8504 struct task_group *tg;
8505 unsigned long flags;
8506 int i;
8507
8508 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8509 if (!tg)
8510 return ERR_PTR(-ENOMEM);
8511
ec7dc8ac 8512 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8513 goto err;
8514
ec7dc8ac 8515 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8516 goto err;
8517
8ed36996 8518 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8519 for_each_possible_cpu(i) {
bccbe08a
PZ
8520 register_fair_sched_group(tg, i);
8521 register_rt_sched_group(tg, i);
9b5b7751 8522 }
6f505b16 8523 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8524
8525 WARN_ON(!parent); /* root should already exist */
8526
8527 tg->parent = parent;
8528 list_add_rcu(&tg->siblings, &parent->children);
8529 INIT_LIST_HEAD(&tg->children);
8ed36996 8530 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8531
9b5b7751 8532 return tg;
29f59db3
SV
8533
8534err:
6f505b16 8535 free_sched_group(tg);
29f59db3
SV
8536 return ERR_PTR(-ENOMEM);
8537}
8538
9b5b7751 8539/* rcu callback to free various structures associated with a task group */
6f505b16 8540static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8541{
29f59db3 8542 /* now it should be safe to free those cfs_rqs */
6f505b16 8543 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8544}
8545
9b5b7751 8546/* Destroy runqueue etc associated with a task group */
4cf86d77 8547void sched_destroy_group(struct task_group *tg)
29f59db3 8548{
8ed36996 8549 unsigned long flags;
9b5b7751 8550 int i;
29f59db3 8551
8ed36996 8552 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8553 for_each_possible_cpu(i) {
bccbe08a
PZ
8554 unregister_fair_sched_group(tg, i);
8555 unregister_rt_sched_group(tg, i);
9b5b7751 8556 }
6f505b16 8557 list_del_rcu(&tg->list);
f473aa5e 8558 list_del_rcu(&tg->siblings);
8ed36996 8559 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8560
9b5b7751 8561 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8562 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8563}
8564
9b5b7751 8565/* change task's runqueue when it moves between groups.
3a252015
IM
8566 * The caller of this function should have put the task in its new group
8567 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8568 * reflect its new group.
9b5b7751
SV
8569 */
8570void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8571{
8572 int on_rq, running;
8573 unsigned long flags;
8574 struct rq *rq;
8575
8576 rq = task_rq_lock(tsk, &flags);
8577
29f59db3
SV
8578 update_rq_clock(rq);
8579
051a1d1a 8580 running = task_current(rq, tsk);
29f59db3
SV
8581 on_rq = tsk->se.on_rq;
8582
0e1f3483 8583 if (on_rq)
29f59db3 8584 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8585 if (unlikely(running))
8586 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8587
6f505b16 8588 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8589
810b3817
PZ
8590#ifdef CONFIG_FAIR_GROUP_SCHED
8591 if (tsk->sched_class->moved_group)
8592 tsk->sched_class->moved_group(tsk);
8593#endif
8594
0e1f3483
HS
8595 if (unlikely(running))
8596 tsk->sched_class->set_curr_task(rq);
8597 if (on_rq)
7074badb 8598 enqueue_task(rq, tsk, 0);
29f59db3 8599
29f59db3
SV
8600 task_rq_unlock(rq, &flags);
8601}
d0b27fa7 8602#endif
29f59db3 8603
052f1dc7 8604#ifdef CONFIG_FAIR_GROUP_SCHED
18d95a28 8605static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8606{
8607 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8608 int on_rq;
8609
29f59db3 8610 on_rq = se->on_rq;
62fb1851 8611 if (on_rq)
29f59db3
SV
8612 dequeue_entity(cfs_rq, se, 0);
8613
8614 se->load.weight = shares;
e05510d0 8615 se->load.inv_weight = 0;
29f59db3 8616
62fb1851 8617 if (on_rq)
29f59db3 8618 enqueue_entity(cfs_rq, se, 0);
18d95a28 8619}
62fb1851 8620
18d95a28
PZ
8621static void set_se_shares(struct sched_entity *se, unsigned long shares)
8622{
8623 struct cfs_rq *cfs_rq = se->cfs_rq;
8624 struct rq *rq = cfs_rq->rq;
8625 unsigned long flags;
8626
8627 spin_lock_irqsave(&rq->lock, flags);
8628 __set_se_shares(se, shares);
8629 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8630}
8631
8ed36996
PZ
8632static DEFINE_MUTEX(shares_mutex);
8633
4cf86d77 8634int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8635{
8636 int i;
8ed36996 8637 unsigned long flags;
c61935fd 8638
ec7dc8ac
DG
8639 /*
8640 * We can't change the weight of the root cgroup.
8641 */
8642 if (!tg->se[0])
8643 return -EINVAL;
8644
18d95a28
PZ
8645 if (shares < MIN_SHARES)
8646 shares = MIN_SHARES;
cb4ad1ff
MX
8647 else if (shares > MAX_SHARES)
8648 shares = MAX_SHARES;
62fb1851 8649
8ed36996 8650 mutex_lock(&shares_mutex);
9b5b7751 8651 if (tg->shares == shares)
5cb350ba 8652 goto done;
29f59db3 8653
8ed36996 8654 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8655 for_each_possible_cpu(i)
8656 unregister_fair_sched_group(tg, i);
f473aa5e 8657 list_del_rcu(&tg->siblings);
8ed36996 8658 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8659
8660 /* wait for any ongoing reference to this group to finish */
8661 synchronize_sched();
8662
8663 /*
8664 * Now we are free to modify the group's share on each cpu
8665 * w/o tripping rebalance_share or load_balance_fair.
8666 */
9b5b7751 8667 tg->shares = shares;
18d95a28
PZ
8668 for_each_possible_cpu(i) {
8669 /*
8670 * force a rebalance
8671 */
8672 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8673 set_se_shares(tg->se[i], shares);
18d95a28 8674 }
29f59db3 8675
6b2d7700
SV
8676 /*
8677 * Enable load balance activity on this group, by inserting it back on
8678 * each cpu's rq->leaf_cfs_rq_list.
8679 */
8ed36996 8680 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8681 for_each_possible_cpu(i)
8682 register_fair_sched_group(tg, i);
f473aa5e 8683 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8684 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8685done:
8ed36996 8686 mutex_unlock(&shares_mutex);
9b5b7751 8687 return 0;
29f59db3
SV
8688}
8689
5cb350ba
DG
8690unsigned long sched_group_shares(struct task_group *tg)
8691{
8692 return tg->shares;
8693}
052f1dc7 8694#endif
5cb350ba 8695
052f1dc7 8696#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8697/*
9f0c1e56 8698 * Ensure that the real time constraints are schedulable.
6f505b16 8699 */
9f0c1e56
PZ
8700static DEFINE_MUTEX(rt_constraints_mutex);
8701
8702static unsigned long to_ratio(u64 period, u64 runtime)
8703{
8704 if (runtime == RUNTIME_INF)
8705 return 1ULL << 16;
8706
6f6d6a1a 8707 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8708}
8709
b40b2e8e
PZ
8710#ifdef CONFIG_CGROUP_SCHED
8711static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8712{
8713 struct task_group *tgi, *parent = tg->parent;
8714 unsigned long total = 0;
8715
8716 if (!parent) {
8717 if (global_rt_period() < period)
8718 return 0;
8719
8720 return to_ratio(period, runtime) <
8721 to_ratio(global_rt_period(), global_rt_runtime());
8722 }
8723
8724 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8725 return 0;
8726
8727 rcu_read_lock();
8728 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8729 if (tgi == tg)
8730 continue;
8731
8732 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8733 tgi->rt_bandwidth.rt_runtime);
8734 }
8735 rcu_read_unlock();
8736
8737 return total + to_ratio(period, runtime) <
8738 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8739 parent->rt_bandwidth.rt_runtime);
8740}
8741#elif defined CONFIG_USER_SCHED
9f0c1e56 8742static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8743{
8744 struct task_group *tgi;
8745 unsigned long total = 0;
9f0c1e56 8746 unsigned long global_ratio =
d0b27fa7 8747 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8748
8749 rcu_read_lock();
9f0c1e56
PZ
8750 list_for_each_entry_rcu(tgi, &task_groups, list) {
8751 if (tgi == tg)
8752 continue;
6f505b16 8753
d0b27fa7
PZ
8754 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8755 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8756 }
8757 rcu_read_unlock();
6f505b16 8758
9f0c1e56 8759 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8760}
b40b2e8e 8761#endif
6f505b16 8762
521f1a24
DG
8763/* Must be called with tasklist_lock held */
8764static inline int tg_has_rt_tasks(struct task_group *tg)
8765{
8766 struct task_struct *g, *p;
8767 do_each_thread(g, p) {
8768 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8769 return 1;
8770 } while_each_thread(g, p);
8771 return 0;
8772}
8773
d0b27fa7
PZ
8774static int tg_set_bandwidth(struct task_group *tg,
8775 u64 rt_period, u64 rt_runtime)
6f505b16 8776{
ac086bc2 8777 int i, err = 0;
9f0c1e56 8778
9f0c1e56 8779 mutex_lock(&rt_constraints_mutex);
521f1a24 8780 read_lock(&tasklist_lock);
ac086bc2 8781 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8782 err = -EBUSY;
8783 goto unlock;
8784 }
9f0c1e56
PZ
8785 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8786 err = -EINVAL;
8787 goto unlock;
8788 }
ac086bc2
PZ
8789
8790 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8791 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8792 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8793
8794 for_each_possible_cpu(i) {
8795 struct rt_rq *rt_rq = tg->rt_rq[i];
8796
8797 spin_lock(&rt_rq->rt_runtime_lock);
8798 rt_rq->rt_runtime = rt_runtime;
8799 spin_unlock(&rt_rq->rt_runtime_lock);
8800 }
8801 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8802 unlock:
521f1a24 8803 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8804 mutex_unlock(&rt_constraints_mutex);
8805
8806 return err;
6f505b16
PZ
8807}
8808
d0b27fa7
PZ
8809int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8810{
8811 u64 rt_runtime, rt_period;
8812
8813 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8814 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8815 if (rt_runtime_us < 0)
8816 rt_runtime = RUNTIME_INF;
8817
8818 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8819}
8820
9f0c1e56
PZ
8821long sched_group_rt_runtime(struct task_group *tg)
8822{
8823 u64 rt_runtime_us;
8824
d0b27fa7 8825 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8826 return -1;
8827
d0b27fa7 8828 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8829 do_div(rt_runtime_us, NSEC_PER_USEC);
8830 return rt_runtime_us;
8831}
d0b27fa7
PZ
8832
8833int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8834{
8835 u64 rt_runtime, rt_period;
8836
8837 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8838 rt_runtime = tg->rt_bandwidth.rt_runtime;
8839
8840 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8841}
8842
8843long sched_group_rt_period(struct task_group *tg)
8844{
8845 u64 rt_period_us;
8846
8847 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8848 do_div(rt_period_us, NSEC_PER_USEC);
8849 return rt_period_us;
8850}
8851
8852static int sched_rt_global_constraints(void)
8853{
8854 int ret = 0;
8855
8856 mutex_lock(&rt_constraints_mutex);
8857 if (!__rt_schedulable(NULL, 1, 0))
8858 ret = -EINVAL;
8859 mutex_unlock(&rt_constraints_mutex);
8860
8861 return ret;
8862}
8863#else
8864static int sched_rt_global_constraints(void)
8865{
ac086bc2
PZ
8866 unsigned long flags;
8867 int i;
8868
8869 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8870 for_each_possible_cpu(i) {
8871 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8872
8873 spin_lock(&rt_rq->rt_runtime_lock);
8874 rt_rq->rt_runtime = global_rt_runtime();
8875 spin_unlock(&rt_rq->rt_runtime_lock);
8876 }
8877 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8878
d0b27fa7
PZ
8879 return 0;
8880}
052f1dc7 8881#endif
d0b27fa7
PZ
8882
8883int sched_rt_handler(struct ctl_table *table, int write,
8884 struct file *filp, void __user *buffer, size_t *lenp,
8885 loff_t *ppos)
8886{
8887 int ret;
8888 int old_period, old_runtime;
8889 static DEFINE_MUTEX(mutex);
8890
8891 mutex_lock(&mutex);
8892 old_period = sysctl_sched_rt_period;
8893 old_runtime = sysctl_sched_rt_runtime;
8894
8895 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8896
8897 if (!ret && write) {
8898 ret = sched_rt_global_constraints();
8899 if (ret) {
8900 sysctl_sched_rt_period = old_period;
8901 sysctl_sched_rt_runtime = old_runtime;
8902 } else {
8903 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8904 def_rt_bandwidth.rt_period =
8905 ns_to_ktime(global_rt_period());
8906 }
8907 }
8908 mutex_unlock(&mutex);
8909
8910 return ret;
8911}
68318b8e 8912
052f1dc7 8913#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8914
8915/* return corresponding task_group object of a cgroup */
2b01dfe3 8916static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8917{
2b01dfe3
PM
8918 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8919 struct task_group, css);
68318b8e
SV
8920}
8921
8922static struct cgroup_subsys_state *
2b01dfe3 8923cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8924{
ec7dc8ac 8925 struct task_group *tg, *parent;
68318b8e 8926
2b01dfe3 8927 if (!cgrp->parent) {
68318b8e 8928 /* This is early initialization for the top cgroup */
2b01dfe3 8929 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8930 return &init_task_group.css;
8931 }
8932
ec7dc8ac
DG
8933 parent = cgroup_tg(cgrp->parent);
8934 tg = sched_create_group(parent);
68318b8e
SV
8935 if (IS_ERR(tg))
8936 return ERR_PTR(-ENOMEM);
8937
8938 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8939 tg->css.cgroup = cgrp;
68318b8e
SV
8940
8941 return &tg->css;
8942}
8943
41a2d6cf
IM
8944static void
8945cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8946{
2b01dfe3 8947 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8948
8949 sched_destroy_group(tg);
8950}
8951
41a2d6cf
IM
8952static int
8953cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8954 struct task_struct *tsk)
68318b8e 8955{
b68aa230
PZ
8956#ifdef CONFIG_RT_GROUP_SCHED
8957 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8958 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8959 return -EINVAL;
8960#else
68318b8e
SV
8961 /* We don't support RT-tasks being in separate groups */
8962 if (tsk->sched_class != &fair_sched_class)
8963 return -EINVAL;
b68aa230 8964#endif
68318b8e
SV
8965
8966 return 0;
8967}
8968
8969static void
2b01dfe3 8970cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8971 struct cgroup *old_cont, struct task_struct *tsk)
8972{
8973 sched_move_task(tsk);
8974}
8975
052f1dc7 8976#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8977static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8978 u64 shareval)
68318b8e 8979{
2b01dfe3 8980 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8981}
8982
f4c753b7 8983static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8984{
2b01dfe3 8985 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8986
8987 return (u64) tg->shares;
8988}
052f1dc7 8989#endif
68318b8e 8990
052f1dc7 8991#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8992static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8993 s64 val)
6f505b16 8994{
06ecb27c 8995 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8996}
8997
06ecb27c 8998static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8999{
06ecb27c 9000 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9001}
d0b27fa7
PZ
9002
9003static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9004 u64 rt_period_us)
9005{
9006 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9007}
9008
9009static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9010{
9011 return sched_group_rt_period(cgroup_tg(cgrp));
9012}
052f1dc7 9013#endif
6f505b16 9014
fe5c7cc2 9015static struct cftype cpu_files[] = {
052f1dc7 9016#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9017 {
9018 .name = "shares",
f4c753b7
PM
9019 .read_u64 = cpu_shares_read_u64,
9020 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9021 },
052f1dc7
PZ
9022#endif
9023#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9024 {
9f0c1e56 9025 .name = "rt_runtime_us",
06ecb27c
PM
9026 .read_s64 = cpu_rt_runtime_read,
9027 .write_s64 = cpu_rt_runtime_write,
6f505b16 9028 },
d0b27fa7
PZ
9029 {
9030 .name = "rt_period_us",
f4c753b7
PM
9031 .read_u64 = cpu_rt_period_read_uint,
9032 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9033 },
052f1dc7 9034#endif
68318b8e
SV
9035};
9036
9037static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9038{
fe5c7cc2 9039 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9040}
9041
9042struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9043 .name = "cpu",
9044 .create = cpu_cgroup_create,
9045 .destroy = cpu_cgroup_destroy,
9046 .can_attach = cpu_cgroup_can_attach,
9047 .attach = cpu_cgroup_attach,
9048 .populate = cpu_cgroup_populate,
9049 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9050 .early_init = 1,
9051};
9052
052f1dc7 9053#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9054
9055#ifdef CONFIG_CGROUP_CPUACCT
9056
9057/*
9058 * CPU accounting code for task groups.
9059 *
9060 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9061 * (balbir@in.ibm.com).
9062 */
9063
9064/* track cpu usage of a group of tasks */
9065struct cpuacct {
9066 struct cgroup_subsys_state css;
9067 /* cpuusage holds pointer to a u64-type object on every cpu */
9068 u64 *cpuusage;
9069};
9070
9071struct cgroup_subsys cpuacct_subsys;
9072
9073/* return cpu accounting group corresponding to this container */
32cd756a 9074static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9075{
32cd756a 9076 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9077 struct cpuacct, css);
9078}
9079
9080/* return cpu accounting group to which this task belongs */
9081static inline struct cpuacct *task_ca(struct task_struct *tsk)
9082{
9083 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9084 struct cpuacct, css);
9085}
9086
9087/* create a new cpu accounting group */
9088static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9089 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9090{
9091 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9092
9093 if (!ca)
9094 return ERR_PTR(-ENOMEM);
9095
9096 ca->cpuusage = alloc_percpu(u64);
9097 if (!ca->cpuusage) {
9098 kfree(ca);
9099 return ERR_PTR(-ENOMEM);
9100 }
9101
9102 return &ca->css;
9103}
9104
9105/* destroy an existing cpu accounting group */
41a2d6cf 9106static void
32cd756a 9107cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9108{
32cd756a 9109 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9110
9111 free_percpu(ca->cpuusage);
9112 kfree(ca);
9113}
9114
9115/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9116static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9117{
32cd756a 9118 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9119 u64 totalcpuusage = 0;
9120 int i;
9121
9122 for_each_possible_cpu(i) {
9123 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9124
9125 /*
9126 * Take rq->lock to make 64-bit addition safe on 32-bit
9127 * platforms.
9128 */
9129 spin_lock_irq(&cpu_rq(i)->lock);
9130 totalcpuusage += *cpuusage;
9131 spin_unlock_irq(&cpu_rq(i)->lock);
9132 }
9133
9134 return totalcpuusage;
9135}
9136
0297b803
DG
9137static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9138 u64 reset)
9139{
9140 struct cpuacct *ca = cgroup_ca(cgrp);
9141 int err = 0;
9142 int i;
9143
9144 if (reset) {
9145 err = -EINVAL;
9146 goto out;
9147 }
9148
9149 for_each_possible_cpu(i) {
9150 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9151
9152 spin_lock_irq(&cpu_rq(i)->lock);
9153 *cpuusage = 0;
9154 spin_unlock_irq(&cpu_rq(i)->lock);
9155 }
9156out:
9157 return err;
9158}
9159
d842de87
SV
9160static struct cftype files[] = {
9161 {
9162 .name = "usage",
f4c753b7
PM
9163 .read_u64 = cpuusage_read,
9164 .write_u64 = cpuusage_write,
d842de87
SV
9165 },
9166};
9167
32cd756a 9168static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9169{
32cd756a 9170 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9171}
9172
9173/*
9174 * charge this task's execution time to its accounting group.
9175 *
9176 * called with rq->lock held.
9177 */
9178static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9179{
9180 struct cpuacct *ca;
9181
9182 if (!cpuacct_subsys.active)
9183 return;
9184
9185 ca = task_ca(tsk);
9186 if (ca) {
9187 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9188
9189 *cpuusage += cputime;
9190 }
9191}
9192
9193struct cgroup_subsys cpuacct_subsys = {
9194 .name = "cpuacct",
9195 .create = cpuacct_create,
9196 .destroy = cpuacct_destroy,
9197 .populate = cpuacct_populate,
9198 .subsys_id = cpuacct_subsys_id,
9199};
9200#endif /* CONFIG_CGROUP_CPUACCT */