sched: Allow update_cfs_load() to update global load
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
2069dd75
PZ
256
257 atomic_t load_weight;
052f1dc7
PZ
258#endif
259
260#ifdef CONFIG_RT_GROUP_SCHED
261 struct sched_rt_entity **rt_se;
262 struct rt_rq **rt_rq;
263
d0b27fa7 264 struct rt_bandwidth rt_bandwidth;
052f1dc7 265#endif
6b2d7700 266
ae8393e5 267 struct rcu_head rcu;
6f505b16 268 struct list_head list;
f473aa5e
PZ
269
270 struct task_group *parent;
271 struct list_head siblings;
272 struct list_head children;
29f59db3
SV
273};
274
eff766a6 275#define root_task_group init_task_group
6f505b16 276
3d4b47b4 277/* task_group_lock serializes the addition/removal of task groups */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
052f1dc7 282# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 283
cb4ad1ff 284/*
2e084786
LJ
285 * A weight of 0 or 1 can cause arithmetics problems.
286 * A weight of a cfs_rq is the sum of weights of which entities
287 * are queued on this cfs_rq, so a weight of a entity should not be
288 * too large, so as the shares value of a task group.
cb4ad1ff
MX
289 * (The default weight is 1024 - so there's no practical
290 * limitation from this.)
291 */
18d95a28 292#define MIN_SHARES 2
2e084786 293#define MAX_SHARES (1UL << 18)
18d95a28 294
052f1dc7
PZ
295static int init_task_group_load = INIT_TASK_GROUP_LOAD;
296#endif
297
29f59db3 298/* Default task group.
3a252015 299 * Every task in system belong to this group at bootup.
29f59db3 300 */
434d53b0 301struct task_group init_task_group;
29f59db3 302
7c941438 303#endif /* CONFIG_CGROUP_SCHED */
29f59db3 304
6aa645ea
IM
305/* CFS-related fields in a runqueue */
306struct cfs_rq {
307 struct load_weight load;
308 unsigned long nr_running;
309
6aa645ea 310 u64 exec_clock;
e9acbff6 311 u64 min_vruntime;
6aa645ea
IM
312
313 struct rb_root tasks_timeline;
314 struct rb_node *rb_leftmost;
4a55bd5e
PZ
315
316 struct list_head tasks;
317 struct list_head *balance_iterator;
318
319 /*
320 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
321 * It is set to NULL otherwise (i.e when none are currently running).
322 */
4793241b 323 struct sched_entity *curr, *next, *last;
ddc97297 324
5ac5c4d6 325 unsigned int nr_spread_over;
ddc97297 326
62160e3f 327#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
328 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
329
41a2d6cf
IM
330 /*
331 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
332 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
333 * (like users, containers etc.)
334 *
335 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
336 * list is used during load balance.
337 */
3d4b47b4 338 int on_list;
41a2d6cf
IM
339 struct list_head leaf_cfs_rq_list;
340 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
341
342#ifdef CONFIG_SMP
c09595f6 343 /*
c8cba857 344 * the part of load.weight contributed by tasks
c09595f6 345 */
c8cba857 346 unsigned long task_weight;
c09595f6 347
c8cba857
PZ
348 /*
349 * h_load = weight * f(tg)
350 *
351 * Where f(tg) is the recursive weight fraction assigned to
352 * this group.
353 */
354 unsigned long h_load;
c09595f6 355
3b3d190e
PT
356 /*
357 * Maintaining per-cpu shares distribution for group scheduling
358 *
359 * load_stamp is the last time we updated the load average
360 * load_last is the last time we updated the load average and saw load
361 * load_unacc_exec_time is currently unaccounted execution time
362 */
2069dd75
PZ
363 u64 load_avg;
364 u64 load_period;
3b3d190e 365 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 366
2069dd75 367 unsigned long load_contribution;
c09595f6 368#endif
6aa645ea
IM
369#endif
370};
1da177e4 371
6aa645ea
IM
372/* Real-Time classes' related field in a runqueue: */
373struct rt_rq {
374 struct rt_prio_array active;
63489e45 375 unsigned long rt_nr_running;
052f1dc7 376#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
377 struct {
378 int curr; /* highest queued rt task prio */
398a153b 379#ifdef CONFIG_SMP
e864c499 380 int next; /* next highest */
398a153b 381#endif
e864c499 382 } highest_prio;
6f505b16 383#endif
fa85ae24 384#ifdef CONFIG_SMP
73fe6aae 385 unsigned long rt_nr_migratory;
a1ba4d8b 386 unsigned long rt_nr_total;
a22d7fc1 387 int overloaded;
917b627d 388 struct plist_head pushable_tasks;
fa85ae24 389#endif
6f505b16 390 int rt_throttled;
fa85ae24 391 u64 rt_time;
ac086bc2 392 u64 rt_runtime;
ea736ed5 393 /* Nests inside the rq lock: */
0986b11b 394 raw_spinlock_t rt_runtime_lock;
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
397 unsigned long rt_nr_boosted;
398
6f505b16
PZ
399 struct rq *rq;
400 struct list_head leaf_rt_rq_list;
401 struct task_group *tg;
6f505b16 402#endif
6aa645ea
IM
403};
404
57d885fe
GH
405#ifdef CONFIG_SMP
406
407/*
408 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
409 * variables. Each exclusive cpuset essentially defines an island domain by
410 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
411 * exclusive cpuset is created, we also create and attach a new root-domain
412 * object.
413 *
57d885fe
GH
414 */
415struct root_domain {
416 atomic_t refcount;
c6c4927b
RR
417 cpumask_var_t span;
418 cpumask_var_t online;
637f5085 419
0eab9146 420 /*
637f5085
GH
421 * The "RT overload" flag: it gets set if a CPU has more than
422 * one runnable RT task.
423 */
c6c4927b 424 cpumask_var_t rto_mask;
0eab9146 425 atomic_t rto_count;
6e0534f2 426 struct cpupri cpupri;
57d885fe
GH
427};
428
dc938520
GH
429/*
430 * By default the system creates a single root-domain with all cpus as
431 * members (mimicking the global state we have today).
432 */
57d885fe
GH
433static struct root_domain def_root_domain;
434
ed2d372c 435#endif /* CONFIG_SMP */
57d885fe 436
1da177e4
LT
437/*
438 * This is the main, per-CPU runqueue data structure.
439 *
440 * Locking rule: those places that want to lock multiple runqueues
441 * (such as the load balancing or the thread migration code), lock
442 * acquire operations must be ordered by ascending &runqueue.
443 */
70b97a7f 444struct rq {
d8016491 445 /* runqueue lock: */
05fa785c 446 raw_spinlock_t lock;
1da177e4
LT
447
448 /*
449 * nr_running and cpu_load should be in the same cacheline because
450 * remote CPUs use both these fields when doing load calculation.
451 */
452 unsigned long nr_running;
6aa645ea
IM
453 #define CPU_LOAD_IDX_MAX 5
454 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 455 unsigned long last_load_update_tick;
46cb4b7c 456#ifdef CONFIG_NO_HZ
39c0cbe2 457 u64 nohz_stamp;
83cd4fe2 458 unsigned char nohz_balance_kick;
46cb4b7c 459#endif
a64692a3
MG
460 unsigned int skip_clock_update;
461
d8016491
IM
462 /* capture load from *all* tasks on this cpu: */
463 struct load_weight load;
6aa645ea
IM
464 unsigned long nr_load_updates;
465 u64 nr_switches;
466
467 struct cfs_rq cfs;
6f505b16 468 struct rt_rq rt;
6f505b16 469
6aa645ea 470#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
471 /* list of leaf cfs_rq on this cpu: */
472 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
473#endif
474#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 475 struct list_head leaf_rt_rq_list;
1da177e4 476#endif
1da177e4
LT
477
478 /*
479 * This is part of a global counter where only the total sum
480 * over all CPUs matters. A task can increase this counter on
481 * one CPU and if it got migrated afterwards it may decrease
482 * it on another CPU. Always updated under the runqueue lock:
483 */
484 unsigned long nr_uninterruptible;
485
34f971f6 486 struct task_struct *curr, *idle, *stop;
c9819f45 487 unsigned long next_balance;
1da177e4 488 struct mm_struct *prev_mm;
6aa645ea 489
3e51f33f 490 u64 clock;
305e6835 491 u64 clock_task;
6aa645ea 492
1da177e4
LT
493 atomic_t nr_iowait;
494
495#ifdef CONFIG_SMP
0eab9146 496 struct root_domain *rd;
1da177e4
LT
497 struct sched_domain *sd;
498
e51fd5e2
PZ
499 unsigned long cpu_power;
500
a0a522ce 501 unsigned char idle_at_tick;
1da177e4 502 /* For active balancing */
3f029d3c 503 int post_schedule;
1da177e4
LT
504 int active_balance;
505 int push_cpu;
969c7921 506 struct cpu_stop_work active_balance_work;
d8016491
IM
507 /* cpu of this runqueue: */
508 int cpu;
1f11eb6a 509 int online;
1da177e4 510
a8a51d5e 511 unsigned long avg_load_per_task;
1da177e4 512
e9e9250b
PZ
513 u64 rt_avg;
514 u64 age_stamp;
1b9508f6
MG
515 u64 idle_stamp;
516 u64 avg_idle;
1da177e4
LT
517#endif
518
aa483808
VP
519#ifdef CONFIG_IRQ_TIME_ACCOUNTING
520 u64 prev_irq_time;
521#endif
522
dce48a84
TG
523 /* calc_load related fields */
524 unsigned long calc_load_update;
525 long calc_load_active;
526
8f4d37ec 527#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
528#ifdef CONFIG_SMP
529 int hrtick_csd_pending;
530 struct call_single_data hrtick_csd;
531#endif
8f4d37ec
PZ
532 struct hrtimer hrtick_timer;
533#endif
534
1da177e4
LT
535#ifdef CONFIG_SCHEDSTATS
536 /* latency stats */
537 struct sched_info rq_sched_info;
9c2c4802
KC
538 unsigned long long rq_cpu_time;
539 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
540
541 /* sys_sched_yield() stats */
480b9434 542 unsigned int yld_count;
1da177e4
LT
543
544 /* schedule() stats */
480b9434
KC
545 unsigned int sched_switch;
546 unsigned int sched_count;
547 unsigned int sched_goidle;
1da177e4
LT
548
549 /* try_to_wake_up() stats */
480b9434
KC
550 unsigned int ttwu_count;
551 unsigned int ttwu_local;
b8efb561
IM
552
553 /* BKL stats */
480b9434 554 unsigned int bkl_count;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
7d478721
PZ
560static inline
561void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 562{
7d478721 563 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
564
565 /*
566 * A queue event has occurred, and we're going to schedule. In
567 * this case, we can save a useless back to back clock update.
568 */
569 if (test_tsk_need_resched(p))
570 rq->skip_clock_update = 1;
dd41f596
IM
571}
572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
583 rcu_dereference_check((p), \
584 rcu_read_lock_sched_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
615 struct cgroup_subsys_state *css;
616
617 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
618 lockdep_is_held(&task_rq(p)->lock));
619 return container_of(css, struct task_group, css);
620}
621
622/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
624{
625#ifdef CONFIG_FAIR_GROUP_SCHED
626 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
627 p->se.parent = task_group(p)->se[cpu];
628#endif
629
630#ifdef CONFIG_RT_GROUP_SCHED
631 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
632 p->rt.parent = task_group(p)->rt_se[cpu];
633#endif
634}
635
636#else /* CONFIG_CGROUP_SCHED */
637
638static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
639static inline struct task_group *task_group(struct task_struct *p)
640{
641 return NULL;
642}
643
644#endif /* CONFIG_CGROUP_SCHED */
645
305e6835 646static u64 irq_time_cpu(int cpu);
aa483808 647static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
305e6835 648
aa9c4c0f 649inline void update_rq_clock(struct rq *rq)
3e51f33f 650{
305e6835
VP
651 if (!rq->skip_clock_update) {
652 int cpu = cpu_of(rq);
653 u64 irq_time;
654
655 rq->clock = sched_clock_cpu(cpu);
656 irq_time = irq_time_cpu(cpu);
657 if (rq->clock - irq_time > rq->clock_task)
658 rq->clock_task = rq->clock - irq_time;
aa483808
VP
659
660 sched_irq_time_avg_update(rq, irq_time);
305e6835 661 }
3e51f33f
PZ
662}
663
bf5c91ba
IM
664/*
665 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 */
667#ifdef CONFIG_SCHED_DEBUG
668# define const_debug __read_mostly
669#else
670# define const_debug static const
671#endif
672
017730c1
IM
673/**
674 * runqueue_is_locked
e17b38bf 675 * @cpu: the processor in question.
017730c1
IM
676 *
677 * Returns true if the current cpu runqueue is locked.
678 * This interface allows printk to be called with the runqueue lock
679 * held and know whether or not it is OK to wake up the klogd.
680 */
89f19f04 681int runqueue_is_locked(int cpu)
017730c1 682{
05fa785c 683 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
684}
685
bf5c91ba
IM
686/*
687 * Debugging: various feature bits
688 */
f00b45c1
PZ
689
690#define SCHED_FEAT(name, enabled) \
691 __SCHED_FEAT_##name ,
692
bf5c91ba 693enum {
f00b45c1 694#include "sched_features.h"
bf5c91ba
IM
695};
696
f00b45c1
PZ
697#undef SCHED_FEAT
698
699#define SCHED_FEAT(name, enabled) \
700 (1UL << __SCHED_FEAT_##name) * enabled |
701
bf5c91ba 702const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
703#include "sched_features.h"
704 0;
705
706#undef SCHED_FEAT
707
708#ifdef CONFIG_SCHED_DEBUG
709#define SCHED_FEAT(name, enabled) \
710 #name ,
711
983ed7a6 712static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
713#include "sched_features.h"
714 NULL
715};
716
717#undef SCHED_FEAT
718
34f3a814 719static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 720{
f00b45c1
PZ
721 int i;
722
723 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
724 if (!(sysctl_sched_features & (1UL << i)))
725 seq_puts(m, "NO_");
726 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 727 }
34f3a814 728 seq_puts(m, "\n");
f00b45c1 729
34f3a814 730 return 0;
f00b45c1
PZ
731}
732
733static ssize_t
734sched_feat_write(struct file *filp, const char __user *ubuf,
735 size_t cnt, loff_t *ppos)
736{
737 char buf[64];
7740191c 738 char *cmp;
f00b45c1
PZ
739 int neg = 0;
740 int i;
741
742 if (cnt > 63)
743 cnt = 63;
744
745 if (copy_from_user(&buf, ubuf, cnt))
746 return -EFAULT;
747
748 buf[cnt] = 0;
7740191c 749 cmp = strstrip(buf);
f00b45c1 750
c24b7c52 751 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
752 neg = 1;
753 cmp += 3;
754 }
755
756 for (i = 0; sched_feat_names[i]; i++) {
7740191c 757 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
758 if (neg)
759 sysctl_sched_features &= ~(1UL << i);
760 else
761 sysctl_sched_features |= (1UL << i);
762 break;
763 }
764 }
765
766 if (!sched_feat_names[i])
767 return -EINVAL;
768
42994724 769 *ppos += cnt;
f00b45c1
PZ
770
771 return cnt;
772}
773
34f3a814
LZ
774static int sched_feat_open(struct inode *inode, struct file *filp)
775{
776 return single_open(filp, sched_feat_show, NULL);
777}
778
828c0950 779static const struct file_operations sched_feat_fops = {
34f3a814
LZ
780 .open = sched_feat_open,
781 .write = sched_feat_write,
782 .read = seq_read,
783 .llseek = seq_lseek,
784 .release = single_release,
f00b45c1
PZ
785};
786
787static __init int sched_init_debug(void)
788{
f00b45c1
PZ
789 debugfs_create_file("sched_features", 0644, NULL, NULL,
790 &sched_feat_fops);
791
792 return 0;
793}
794late_initcall(sched_init_debug);
795
796#endif
797
798#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 799
b82d9fdd
PZ
800/*
801 * Number of tasks to iterate in a single balance run.
802 * Limited because this is done with IRQs disabled.
803 */
804const_debug unsigned int sysctl_sched_nr_migrate = 32;
805
e9e9250b
PZ
806/*
807 * period over which we average the RT time consumption, measured
808 * in ms.
809 *
810 * default: 1s
811 */
812const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
813
fa85ae24 814/*
9f0c1e56 815 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
816 * default: 1s
817 */
9f0c1e56 818unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 819
6892b75e
IM
820static __read_mostly int scheduler_running;
821
9f0c1e56
PZ
822/*
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
825 */
826int sysctl_sched_rt_runtime = 950000;
fa85ae24 827
d0b27fa7
PZ
828static inline u64 global_rt_period(void)
829{
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831}
832
833static inline u64 global_rt_runtime(void)
834{
e26873bb 835 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
836 return RUNTIME_INF;
837
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839}
fa85ae24 840
1da177e4 841#ifndef prepare_arch_switch
4866cde0
NP
842# define prepare_arch_switch(next) do { } while (0)
843#endif
844#ifndef finish_arch_switch
845# define finish_arch_switch(prev) do { } while (0)
846#endif
847
051a1d1a
DA
848static inline int task_current(struct rq *rq, struct task_struct *p)
849{
850 return rq->curr == p;
851}
852
4866cde0 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 855{
051a1d1a 856 return task_current(rq, p);
4866cde0
NP
857}
858
70b97a7f 859static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
860{
861}
862
70b97a7f 863static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 864{
da04c035
IM
865#ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq->lock.owner = current;
868#endif
8a25d5de
IM
869 /*
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
872 * prev into current:
873 */
874 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
875
05fa785c 876 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
877}
878
879#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 880static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
881{
882#ifdef CONFIG_SMP
883 return p->oncpu;
884#else
051a1d1a 885 return task_current(rq, p);
4866cde0
NP
886#endif
887}
888
70b97a7f 889static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
890{
891#ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->oncpu = 1;
898#endif
899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 900 raw_spin_unlock_irq(&rq->lock);
4866cde0 901#else
05fa785c 902 raw_spin_unlock(&rq->lock);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->oncpu = 0;
916#endif
917#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
1da177e4 919#endif
4866cde0
NP
920}
921#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 922
0970d299 923/*
65cc8e48
PZ
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
0970d299
PZ
926 */
927static inline int task_is_waking(struct task_struct *p)
928{
0017d735 929 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
930}
931
b29739f9
IM
932/*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4
LT
950/*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 952 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
953 * explicitly disabling preemption.
954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4 959
3a5c359a
AK
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
05fa785c 963 raw_spin_lock(&rq->lock);
65cc8e48 964 if (likely(rq == task_rq(p)))
3a5c359a 965 return rq;
05fa785c 966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
05fa785c 979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
05fa785c 992 raw_spin_lock(&rq->lock);
1da177e4
LT
993
994 return rq;
995}
996
8f4d37ec
PZ
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
8f4d37ec
PZ
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
ba42059f 1018 if (!cpu_active(cpu_of(rq)))
b328ca18 1019 return 0;
8f4d37ec
PZ
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
05fa785c 1039 raw_spin_lock(&rq->lock);
3e51f33f 1040 update_rq_clock(rq);
8f4d37ec 1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1042 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1043
1044 return HRTIMER_NORESTART;
1045}
1046
95e904c7 1047#ifdef CONFIG_SMP
31656519
PZ
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
b328ca18 1052{
31656519 1053 struct rq *rq = arg;
b328ca18 1054
05fa785c 1055 raw_spin_lock(&rq->lock);
31656519
PZ
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
05fa785c 1058 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1059}
1060
31656519
PZ
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1067{
31656519
PZ
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1070
cc584b21 1071 hrtimer_set_expires(timer, time);
31656519
PZ
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
6e275637 1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1077 rq->hrtick_csd_pending = 1;
1078 }
b328ca18
PZ
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
31656519 1093 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
fa748203 1100static __init void init_hrtick(void)
b328ca18
PZ
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
31656519
PZ
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
7f1e2ca9 1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1113 HRTIMER_MODE_REL_PINNED, 0);
31656519 1114}
b328ca18 1115
006c75f1 1116static inline void init_hrtick(void)
8f4d37ec 1117{
8f4d37ec 1118}
31656519 1119#endif /* CONFIG_SMP */
8f4d37ec 1120
31656519 1121static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1122{
31656519
PZ
1123#ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
8f4d37ec 1125
31656519
PZ
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129#endif
8f4d37ec 1130
31656519
PZ
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
8f4d37ec 1133}
006c75f1 1134#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
8f4d37ec
PZ
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
b328ca18
PZ
1143static inline void init_hrtick(void)
1144{
1145}
006c75f1 1146#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1147
c24d20db
IM
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
31656519 1161static void resched_task(struct task_struct *p)
c24d20db
IM
1162{
1163 int cpu;
1164
05fa785c 1165 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1166
5ed0cec0 1167 if (test_tsk_need_resched(p))
c24d20db
IM
1168 return;
1169
5ed0cec0 1170 set_tsk_need_resched(p);
c24d20db
IM
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
05fa785c 1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1188 return;
1189 resched_task(cpu_curr(cpu));
05fa785c 1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1191}
06d8308c
TG
1192
1193#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1194/*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202int get_nohz_timer_target(void)
1203{
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214}
06d8308c
TG
1215/*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225void wake_up_idle_cpu(int cpu)
1226{
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
5ed0cec0 1247 set_tsk_need_resched(rq->idle);
06d8308c
TG
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253}
39c0cbe2 1254
6d6bc0ad 1255#endif /* CONFIG_NO_HZ */
06d8308c 1256
e9e9250b
PZ
1257static u64 sched_avg_period(void)
1258{
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262static void sched_avg_update(struct rq *rq)
1263{
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276}
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282}
1283
6d6bc0ad 1284#else /* !CONFIG_SMP */
31656519 1285static void resched_task(struct task_struct *p)
c24d20db 1286{
05fa785c 1287 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1288 set_tsk_need_resched(p);
c24d20db 1289}
e9e9250b
PZ
1290
1291static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292{
1293}
da2b71ed
SS
1294
1295static void sched_avg_update(struct rq *rq)
1296{
1297}
6d6bc0ad 1298#endif /* CONFIG_SMP */
c24d20db 1299
45bf76df
IM
1300#if BITS_PER_LONG == 32
1301# define WMULT_CONST (~0UL)
1302#else
1303# define WMULT_CONST (1UL << 32)
1304#endif
1305
1306#define WMULT_SHIFT 32
1307
194081eb
IM
1308/*
1309 * Shift right and round:
1310 */
cf2ab469 1311#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1312
a7be37ac
PZ
1313/*
1314 * delta *= weight / lw
1315 */
cb1c4fc9 1316static unsigned long
45bf76df
IM
1317calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319{
1320 u64 tmp;
1321
7a232e03
LJ
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
45bf76df
IM
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
194081eb 1334 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1336 WMULT_SHIFT/2);
1337 else
cf2ab469 1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1339
ecf691da 1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1344{
1345 lw->weight += inc;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
1091985b 1349static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1350{
1351 lw->weight -= dec;
e89996ae 1352 lw->inv_weight = 0;
45bf76df
IM
1353}
1354
2069dd75
PZ
1355static inline void update_load_set(struct load_weight *lw, unsigned long w)
1356{
1357 lw->weight = w;
1358 lw->inv_weight = 0;
1359}
1360
2dd73a4f
PW
1361/*
1362 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1363 * of tasks with abnormal "nice" values across CPUs the contribution that
1364 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1365 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1366 * scaled version of the new time slice allocation that they receive on time
1367 * slice expiry etc.
1368 */
1369
cce7ade8
PZ
1370#define WEIGHT_IDLEPRIO 3
1371#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1372
1373/*
1374 * Nice levels are multiplicative, with a gentle 10% change for every
1375 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1376 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1377 * that remained on nice 0.
1378 *
1379 * The "10% effect" is relative and cumulative: from _any_ nice level,
1380 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1381 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1382 * If a task goes up by ~10% and another task goes down by ~10% then
1383 * the relative distance between them is ~25%.)
dd41f596
IM
1384 */
1385static const int prio_to_weight[40] = {
254753dc
IM
1386 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1387 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1388 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1389 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1390 /* 0 */ 1024, 820, 655, 526, 423,
1391 /* 5 */ 335, 272, 215, 172, 137,
1392 /* 10 */ 110, 87, 70, 56, 45,
1393 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1394};
1395
5714d2de
IM
1396/*
1397 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1398 *
1399 * In cases where the weight does not change often, we can use the
1400 * precalculated inverse to speed up arithmetics by turning divisions
1401 * into multiplications:
1402 */
dd41f596 1403static const u32 prio_to_wmult[40] = {
254753dc
IM
1404 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1405 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1406 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1407 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1408 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1409 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1410 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1411 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1412};
2dd73a4f 1413
ef12fefa
BR
1414/* Time spent by the tasks of the cpu accounting group executing in ... */
1415enum cpuacct_stat_index {
1416 CPUACCT_STAT_USER, /* ... user mode */
1417 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1418
1419 CPUACCT_STAT_NSTATS,
1420};
1421
d842de87
SV
1422#ifdef CONFIG_CGROUP_CPUACCT
1423static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1424static void cpuacct_update_stats(struct task_struct *tsk,
1425 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1426#else
1427static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1428static inline void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1430#endif
1431
18d95a28
PZ
1432static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1433{
1434 update_load_add(&rq->load, load);
1435}
1436
1437static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_sub(&rq->load, load);
1440}
1441
7940ca36 1442#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1443typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1444
1445/*
1446 * Iterate the full tree, calling @down when first entering a node and @up when
1447 * leaving it for the final time.
1448 */
eb755805 1449static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1450{
1451 struct task_group *parent, *child;
eb755805 1452 int ret;
c09595f6
PZ
1453
1454 rcu_read_lock();
1455 parent = &root_task_group;
1456down:
eb755805
PZ
1457 ret = (*down)(parent, data);
1458 if (ret)
1459 goto out_unlock;
c09595f6
PZ
1460 list_for_each_entry_rcu(child, &parent->children, siblings) {
1461 parent = child;
1462 goto down;
1463
1464up:
1465 continue;
1466 }
eb755805
PZ
1467 ret = (*up)(parent, data);
1468 if (ret)
1469 goto out_unlock;
c09595f6
PZ
1470
1471 child = parent;
1472 parent = parent->parent;
1473 if (parent)
1474 goto up;
eb755805 1475out_unlock:
c09595f6 1476 rcu_read_unlock();
eb755805
PZ
1477
1478 return ret;
c09595f6
PZ
1479}
1480
eb755805
PZ
1481static int tg_nop(struct task_group *tg, void *data)
1482{
1483 return 0;
c09595f6 1484}
eb755805
PZ
1485#endif
1486
1487#ifdef CONFIG_SMP
f5f08f39
PZ
1488/* Used instead of source_load when we know the type == 0 */
1489static unsigned long weighted_cpuload(const int cpu)
1490{
1491 return cpu_rq(cpu)->load.weight;
1492}
1493
1494/*
1495 * Return a low guess at the load of a migration-source cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 *
1498 * We want to under-estimate the load of migration sources, to
1499 * balance conservatively.
1500 */
1501static unsigned long source_load(int cpu, int type)
1502{
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long total = weighted_cpuload(cpu);
1505
1506 if (type == 0 || !sched_feat(LB_BIAS))
1507 return total;
1508
1509 return min(rq->cpu_load[type-1], total);
1510}
1511
1512/*
1513 * Return a high guess at the load of a migration-target cpu weighted
1514 * according to the scheduling class and "nice" value.
1515 */
1516static unsigned long target_load(int cpu, int type)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519 unsigned long total = weighted_cpuload(cpu);
1520
1521 if (type == 0 || !sched_feat(LB_BIAS))
1522 return total;
1523
1524 return max(rq->cpu_load[type-1], total);
1525}
1526
ae154be1
PZ
1527static unsigned long power_of(int cpu)
1528{
e51fd5e2 1529 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1530}
1531
eb755805
PZ
1532static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1533
1534static unsigned long cpu_avg_load_per_task(int cpu)
1535{
1536 struct rq *rq = cpu_rq(cpu);
af6d596f 1537 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1538
4cd42620
SR
1539 if (nr_running)
1540 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1541 else
1542 rq->avg_load_per_task = 0;
eb755805
PZ
1543
1544 return rq->avg_load_per_task;
1545}
1546
1547#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1548
c09595f6 1549/*
c8cba857
PZ
1550 * Compute the cpu's hierarchical load factor for each task group.
1551 * This needs to be done in a top-down fashion because the load of a child
1552 * group is a fraction of its parents load.
c09595f6 1553 */
eb755805 1554static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1555{
c8cba857 1556 unsigned long load;
eb755805 1557 long cpu = (long)data;
c09595f6 1558
c8cba857
PZ
1559 if (!tg->parent) {
1560 load = cpu_rq(cpu)->load.weight;
1561 } else {
1562 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1563 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1564 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1565 }
c09595f6 1566
c8cba857 1567 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1568
eb755805 1569 return 0;
c09595f6
PZ
1570}
1571
eb755805 1572static void update_h_load(long cpu)
c09595f6 1573{
eb755805 1574 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1575}
1576
18d95a28
PZ
1577#endif
1578
8f45e2b5
GH
1579#ifdef CONFIG_PREEMPT
1580
b78bb868
PZ
1581static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582
70574a99 1583/*
8f45e2b5
GH
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
70574a99 1590 */
8f45e2b5
GH
1591static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1595{
05fa785c 1596 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1597 double_rq_lock(this_rq, busiest);
1598
1599 return 1;
1600}
1601
1602#else
1603/*
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1609 */
1610static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1614{
1615 int ret = 0;
1616
05fa785c 1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1618 if (busiest < this_rq) {
05fa785c
TG
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
70574a99
AD
1623 ret = 1;
1624 } else
05fa785c
TG
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
70574a99
AD
1627 }
1628 return ret;
1629}
1630
8f45e2b5
GH
1631#endif /* CONFIG_PREEMPT */
1632
1633/*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637{
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
05fa785c 1640 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1641 BUG_ON(1);
1642 }
1643
1644 return _double_lock_balance(this_rq, busiest);
1645}
1646
70574a99
AD
1647static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1649{
05fa785c 1650 raw_spin_unlock(&busiest->lock);
70574a99
AD
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1652}
1e3c88bd
PZ
1653
1654/*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663{
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1675 }
1676 }
1e3c88bd
PZ
1677}
1678
1679/*
1680 * double_rq_unlock - safely unlock two runqueues
1681 *
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1684 */
1685static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1688{
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1694}
1695
18d95a28
PZ
1696#endif
1697
74f5187a 1698static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1699static void update_sysctl(void);
acb4a848 1700static int get_update_sysctl_factor(void);
fdf3e95d 1701static void update_cpu_load(struct rq *this_rq);
dce48a84 1702
cd29fe6f
PZ
1703static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1704{
1705 set_task_rq(p, cpu);
1706#ifdef CONFIG_SMP
1707 /*
1708 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1709 * successfuly executed on another CPU. We must ensure that updates of
1710 * per-task data have been completed by this moment.
1711 */
1712 smp_wmb();
1713 task_thread_info(p)->cpu = cpu;
1714#endif
1715}
dce48a84 1716
1e3c88bd 1717static const struct sched_class rt_sched_class;
dd41f596 1718
34f971f6 1719#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1720#define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
dd41f596 1722
1e3c88bd
PZ
1723#include "sched_stats.h"
1724
c09595f6 1725static void inc_nr_running(struct rq *rq)
9c217245
IM
1726{
1727 rq->nr_running++;
9c217245
IM
1728}
1729
c09595f6 1730static void dec_nr_running(struct rq *rq)
9c217245
IM
1731{
1732 rq->nr_running--;
9c217245
IM
1733}
1734
45bf76df
IM
1735static void set_load_weight(struct task_struct *p)
1736{
dd41f596
IM
1737 /*
1738 * SCHED_IDLE tasks get minimal weight:
1739 */
1740 if (p->policy == SCHED_IDLE) {
1741 p->se.load.weight = WEIGHT_IDLEPRIO;
1742 p->se.load.inv_weight = WMULT_IDLEPRIO;
1743 return;
1744 }
71f8bd46 1745
dd41f596
IM
1746 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1747 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1748}
1749
371fd7e7 1750static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1751{
a64692a3 1752 update_rq_clock(rq);
dd41f596 1753 sched_info_queued(p);
371fd7e7 1754 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1755 p->se.on_rq = 1;
71f8bd46
IM
1756}
1757
371fd7e7 1758static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1759{
a64692a3 1760 update_rq_clock(rq);
46ac22ba 1761 sched_info_dequeued(p);
371fd7e7 1762 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1763 p->se.on_rq = 0;
71f8bd46
IM
1764}
1765
1e3c88bd
PZ
1766/*
1767 * activate_task - move a task to the runqueue.
1768 */
371fd7e7 1769static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1770{
1771 if (task_contributes_to_load(p))
1772 rq->nr_uninterruptible--;
1773
371fd7e7 1774 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1775 inc_nr_running(rq);
1776}
1777
1778/*
1779 * deactivate_task - remove a task from the runqueue.
1780 */
371fd7e7 1781static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1782{
1783 if (task_contributes_to_load(p))
1784 rq->nr_uninterruptible++;
1785
371fd7e7 1786 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1787 dec_nr_running(rq);
1788}
1789
b52bfee4
VP
1790#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1791
305e6835
VP
1792/*
1793 * There are no locks covering percpu hardirq/softirq time.
1794 * They are only modified in account_system_vtime, on corresponding CPU
1795 * with interrupts disabled. So, writes are safe.
1796 * They are read and saved off onto struct rq in update_rq_clock().
1797 * This may result in other CPU reading this CPU's irq time and can
1798 * race with irq/account_system_vtime on this CPU. We would either get old
1799 * or new value (or semi updated value on 32 bit) with a side effect of
1800 * accounting a slice of irq time to wrong task when irq is in progress
1801 * while we read rq->clock. That is a worthy compromise in place of having
1802 * locks on each irq in account_system_time.
1803 */
b52bfee4
VP
1804static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1805static DEFINE_PER_CPU(u64, cpu_softirq_time);
1806
1807static DEFINE_PER_CPU(u64, irq_start_time);
1808static int sched_clock_irqtime;
1809
1810void enable_sched_clock_irqtime(void)
1811{
1812 sched_clock_irqtime = 1;
1813}
1814
1815void disable_sched_clock_irqtime(void)
1816{
1817 sched_clock_irqtime = 0;
1818}
1819
305e6835
VP
1820static u64 irq_time_cpu(int cpu)
1821{
1822 if (!sched_clock_irqtime)
1823 return 0;
1824
1825 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1826}
1827
b52bfee4
VP
1828void account_system_vtime(struct task_struct *curr)
1829{
1830 unsigned long flags;
1831 int cpu;
1832 u64 now, delta;
1833
1834 if (!sched_clock_irqtime)
1835 return;
1836
1837 local_irq_save(flags);
1838
b52bfee4 1839 cpu = smp_processor_id();
d267f87f 1840 now = sched_clock_cpu(cpu);
b52bfee4
VP
1841 delta = now - per_cpu(irq_start_time, cpu);
1842 per_cpu(irq_start_time, cpu) = now;
1843 /*
1844 * We do not account for softirq time from ksoftirqd here.
1845 * We want to continue accounting softirq time to ksoftirqd thread
1846 * in that case, so as not to confuse scheduler with a special task
1847 * that do not consume any time, but still wants to run.
1848 */
1849 if (hardirq_count())
1850 per_cpu(cpu_hardirq_time, cpu) += delta;
1851 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1852 per_cpu(cpu_softirq_time, cpu) += delta;
1853
1854 local_irq_restore(flags);
1855}
b7dadc38 1856EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1857
aa483808
VP
1858static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1859{
1860 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1861 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
1862 rq->prev_irq_time = curr_irq_time;
1863 sched_rt_avg_update(rq, delta_irq);
1864 }
1865}
1866
305e6835
VP
1867#else
1868
1869static u64 irq_time_cpu(int cpu)
1870{
1871 return 0;
1872}
1873
aa483808
VP
1874static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
1875
b52bfee4
VP
1876#endif
1877
1e3c88bd
PZ
1878#include "sched_idletask.c"
1879#include "sched_fair.c"
1880#include "sched_rt.c"
34f971f6 1881#include "sched_stoptask.c"
1e3c88bd
PZ
1882#ifdef CONFIG_SCHED_DEBUG
1883# include "sched_debug.c"
1884#endif
1885
34f971f6
PZ
1886void sched_set_stop_task(int cpu, struct task_struct *stop)
1887{
1888 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1889 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1890
1891 if (stop) {
1892 /*
1893 * Make it appear like a SCHED_FIFO task, its something
1894 * userspace knows about and won't get confused about.
1895 *
1896 * Also, it will make PI more or less work without too
1897 * much confusion -- but then, stop work should not
1898 * rely on PI working anyway.
1899 */
1900 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1901
1902 stop->sched_class = &stop_sched_class;
1903 }
1904
1905 cpu_rq(cpu)->stop = stop;
1906
1907 if (old_stop) {
1908 /*
1909 * Reset it back to a normal scheduling class so that
1910 * it can die in pieces.
1911 */
1912 old_stop->sched_class = &rt_sched_class;
1913 }
1914}
1915
14531189 1916/*
dd41f596 1917 * __normal_prio - return the priority that is based on the static prio
14531189 1918 */
14531189
IM
1919static inline int __normal_prio(struct task_struct *p)
1920{
dd41f596 1921 return p->static_prio;
14531189
IM
1922}
1923
b29739f9
IM
1924/*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
36c8b586 1931static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1932{
1933 int prio;
1934
e05606d3 1935 if (task_has_rt_policy(p))
b29739f9
IM
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940}
1941
1942/*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
36c8b586 1949static int effective_prio(struct task_struct *p)
b29739f9
IM
1950{
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960}
1961
1da177e4
LT
1962/**
1963 * task_curr - is this task currently executing on a CPU?
1964 * @p: the task in question.
1965 */
36c8b586 1966inline int task_curr(const struct task_struct *p)
1da177e4
LT
1967{
1968 return cpu_curr(task_cpu(p)) == p;
1969}
1970
cb469845
SR
1971static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1972 const struct sched_class *prev_class,
1973 int oldprio, int running)
1974{
1975 if (prev_class != p->sched_class) {
1976 if (prev_class->switched_from)
1977 prev_class->switched_from(rq, p, running);
1978 p->sched_class->switched_to(rq, p, running);
1979 } else
1980 p->sched_class->prio_changed(rq, p, oldprio, running);
1981}
1982
1da177e4 1983#ifdef CONFIG_SMP
cc367732
IM
1984/*
1985 * Is this task likely cache-hot:
1986 */
e7693a36 1987static int
cc367732
IM
1988task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1989{
1990 s64 delta;
1991
e6c8fba7
PZ
1992 if (p->sched_class != &fair_sched_class)
1993 return 0;
1994
ef8002f6
NR
1995 if (unlikely(p->policy == SCHED_IDLE))
1996 return 0;
1997
f540a608
IM
1998 /*
1999 * Buddy candidates are cache hot:
2000 */
f685ceac 2001 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2002 (&p->se == cfs_rq_of(&p->se)->next ||
2003 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2004 return 1;
2005
6bc1665b
IM
2006 if (sysctl_sched_migration_cost == -1)
2007 return 1;
2008 if (sysctl_sched_migration_cost == 0)
2009 return 0;
2010
cc367732
IM
2011 delta = now - p->se.exec_start;
2012
2013 return delta < (s64)sysctl_sched_migration_cost;
2014}
2015
dd41f596 2016void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2017{
e2912009
PZ
2018#ifdef CONFIG_SCHED_DEBUG
2019 /*
2020 * We should never call set_task_cpu() on a blocked task,
2021 * ttwu() will sort out the placement.
2022 */
077614ee
PZ
2023 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2024 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2025#endif
2026
de1d7286 2027 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2028
0c69774e
PZ
2029 if (task_cpu(p) != new_cpu) {
2030 p->se.nr_migrations++;
2031 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2032 }
dd41f596
IM
2033
2034 __set_task_cpu(p, new_cpu);
c65cc870
IM
2035}
2036
969c7921 2037struct migration_arg {
36c8b586 2038 struct task_struct *task;
1da177e4 2039 int dest_cpu;
70b97a7f 2040};
1da177e4 2041
969c7921
TH
2042static int migration_cpu_stop(void *data);
2043
1da177e4
LT
2044/*
2045 * The task's runqueue lock must be held.
2046 * Returns true if you have to wait for migration thread.
2047 */
969c7921 2048static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2049{
70b97a7f 2050 struct rq *rq = task_rq(p);
1da177e4
LT
2051
2052 /*
2053 * If the task is not on a runqueue (and not running), then
e2912009 2054 * the next wake-up will properly place the task.
1da177e4 2055 */
969c7921 2056 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2057}
2058
2059/*
2060 * wait_task_inactive - wait for a thread to unschedule.
2061 *
85ba2d86
RM
2062 * If @match_state is nonzero, it's the @p->state value just checked and
2063 * not expected to change. If it changes, i.e. @p might have woken up,
2064 * then return zero. When we succeed in waiting for @p to be off its CPU,
2065 * we return a positive number (its total switch count). If a second call
2066 * a short while later returns the same number, the caller can be sure that
2067 * @p has remained unscheduled the whole time.
2068 *
1da177e4
LT
2069 * The caller must ensure that the task *will* unschedule sometime soon,
2070 * else this function might spin for a *long* time. This function can't
2071 * be called with interrupts off, or it may introduce deadlock with
2072 * smp_call_function() if an IPI is sent by the same process we are
2073 * waiting to become inactive.
2074 */
85ba2d86 2075unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2076{
2077 unsigned long flags;
dd41f596 2078 int running, on_rq;
85ba2d86 2079 unsigned long ncsw;
70b97a7f 2080 struct rq *rq;
1da177e4 2081
3a5c359a
AK
2082 for (;;) {
2083 /*
2084 * We do the initial early heuristics without holding
2085 * any task-queue locks at all. We'll only try to get
2086 * the runqueue lock when things look like they will
2087 * work out!
2088 */
2089 rq = task_rq(p);
fa490cfd 2090
3a5c359a
AK
2091 /*
2092 * If the task is actively running on another CPU
2093 * still, just relax and busy-wait without holding
2094 * any locks.
2095 *
2096 * NOTE! Since we don't hold any locks, it's not
2097 * even sure that "rq" stays as the right runqueue!
2098 * But we don't care, since "task_running()" will
2099 * return false if the runqueue has changed and p
2100 * is actually now running somewhere else!
2101 */
85ba2d86
RM
2102 while (task_running(rq, p)) {
2103 if (match_state && unlikely(p->state != match_state))
2104 return 0;
3a5c359a 2105 cpu_relax();
85ba2d86 2106 }
fa490cfd 2107
3a5c359a
AK
2108 /*
2109 * Ok, time to look more closely! We need the rq
2110 * lock now, to be *sure*. If we're wrong, we'll
2111 * just go back and repeat.
2112 */
2113 rq = task_rq_lock(p, &flags);
27a9da65 2114 trace_sched_wait_task(p);
3a5c359a
AK
2115 running = task_running(rq, p);
2116 on_rq = p->se.on_rq;
85ba2d86 2117 ncsw = 0;
f31e11d8 2118 if (!match_state || p->state == match_state)
93dcf55f 2119 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2120 task_rq_unlock(rq, &flags);
fa490cfd 2121
85ba2d86
RM
2122 /*
2123 * If it changed from the expected state, bail out now.
2124 */
2125 if (unlikely(!ncsw))
2126 break;
2127
3a5c359a
AK
2128 /*
2129 * Was it really running after all now that we
2130 * checked with the proper locks actually held?
2131 *
2132 * Oops. Go back and try again..
2133 */
2134 if (unlikely(running)) {
2135 cpu_relax();
2136 continue;
2137 }
fa490cfd 2138
3a5c359a
AK
2139 /*
2140 * It's not enough that it's not actively running,
2141 * it must be off the runqueue _entirely_, and not
2142 * preempted!
2143 *
80dd99b3 2144 * So if it was still runnable (but just not actively
3a5c359a
AK
2145 * running right now), it's preempted, and we should
2146 * yield - it could be a while.
2147 */
2148 if (unlikely(on_rq)) {
2149 schedule_timeout_uninterruptible(1);
2150 continue;
2151 }
fa490cfd 2152
3a5c359a
AK
2153 /*
2154 * Ahh, all good. It wasn't running, and it wasn't
2155 * runnable, which means that it will never become
2156 * running in the future either. We're all done!
2157 */
2158 break;
2159 }
85ba2d86
RM
2160
2161 return ncsw;
1da177e4
LT
2162}
2163
2164/***
2165 * kick_process - kick a running thread to enter/exit the kernel
2166 * @p: the to-be-kicked thread
2167 *
2168 * Cause a process which is running on another CPU to enter
2169 * kernel-mode, without any delay. (to get signals handled.)
2170 *
2171 * NOTE: this function doesnt have to take the runqueue lock,
2172 * because all it wants to ensure is that the remote task enters
2173 * the kernel. If the IPI races and the task has been migrated
2174 * to another CPU then no harm is done and the purpose has been
2175 * achieved as well.
2176 */
36c8b586 2177void kick_process(struct task_struct *p)
1da177e4
LT
2178{
2179 int cpu;
2180
2181 preempt_disable();
2182 cpu = task_cpu(p);
2183 if ((cpu != smp_processor_id()) && task_curr(p))
2184 smp_send_reschedule(cpu);
2185 preempt_enable();
2186}
b43e3521 2187EXPORT_SYMBOL_GPL(kick_process);
476d139c 2188#endif /* CONFIG_SMP */
1da177e4 2189
0793a61d
TG
2190/**
2191 * task_oncpu_function_call - call a function on the cpu on which a task runs
2192 * @p: the task to evaluate
2193 * @func: the function to be called
2194 * @info: the function call argument
2195 *
2196 * Calls the function @func when the task is currently running. This might
2197 * be on the current CPU, which just calls the function directly
2198 */
2199void task_oncpu_function_call(struct task_struct *p,
2200 void (*func) (void *info), void *info)
2201{
2202 int cpu;
2203
2204 preempt_disable();
2205 cpu = task_cpu(p);
2206 if (task_curr(p))
2207 smp_call_function_single(cpu, func, info, 1);
2208 preempt_enable();
2209}
2210
970b13ba 2211#ifdef CONFIG_SMP
30da688e
ON
2212/*
2213 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2214 */
5da9a0fb
PZ
2215static int select_fallback_rq(int cpu, struct task_struct *p)
2216{
2217 int dest_cpu;
2218 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2219
2220 /* Look for allowed, online CPU in same node. */
2221 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2222 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2223 return dest_cpu;
2224
2225 /* Any allowed, online CPU? */
2226 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2227 if (dest_cpu < nr_cpu_ids)
2228 return dest_cpu;
2229
2230 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2231 dest_cpu = cpuset_cpus_allowed_fallback(p);
2232 /*
2233 * Don't tell them about moving exiting tasks or
2234 * kernel threads (both mm NULL), since they never
2235 * leave kernel.
2236 */
2237 if (p->mm && printk_ratelimit()) {
2238 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2239 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2240 }
2241
2242 return dest_cpu;
2243}
2244
e2912009 2245/*
30da688e 2246 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2247 */
970b13ba 2248static inline
0017d735 2249int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2250{
0017d735 2251 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2252
2253 /*
2254 * In order not to call set_task_cpu() on a blocking task we need
2255 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2256 * cpu.
2257 *
2258 * Since this is common to all placement strategies, this lives here.
2259 *
2260 * [ this allows ->select_task() to simply return task_cpu(p) and
2261 * not worry about this generic constraint ]
2262 */
2263 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2264 !cpu_online(cpu)))
5da9a0fb 2265 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2266
2267 return cpu;
970b13ba 2268}
09a40af5
MG
2269
2270static void update_avg(u64 *avg, u64 sample)
2271{
2272 s64 diff = sample - *avg;
2273 *avg += diff >> 3;
2274}
970b13ba
PZ
2275#endif
2276
9ed3811a
TH
2277static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2278 bool is_sync, bool is_migrate, bool is_local,
2279 unsigned long en_flags)
2280{
2281 schedstat_inc(p, se.statistics.nr_wakeups);
2282 if (is_sync)
2283 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2284 if (is_migrate)
2285 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2286 if (is_local)
2287 schedstat_inc(p, se.statistics.nr_wakeups_local);
2288 else
2289 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2290
2291 activate_task(rq, p, en_flags);
2292}
2293
2294static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2295 int wake_flags, bool success)
2296{
2297 trace_sched_wakeup(p, success);
2298 check_preempt_curr(rq, p, wake_flags);
2299
2300 p->state = TASK_RUNNING;
2301#ifdef CONFIG_SMP
2302 if (p->sched_class->task_woken)
2303 p->sched_class->task_woken(rq, p);
2304
2305 if (unlikely(rq->idle_stamp)) {
2306 u64 delta = rq->clock - rq->idle_stamp;
2307 u64 max = 2*sysctl_sched_migration_cost;
2308
2309 if (delta > max)
2310 rq->avg_idle = max;
2311 else
2312 update_avg(&rq->avg_idle, delta);
2313 rq->idle_stamp = 0;
2314 }
2315#endif
21aa9af0
TH
2316 /* if a worker is waking up, notify workqueue */
2317 if ((p->flags & PF_WQ_WORKER) && success)
2318 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2319}
2320
2321/**
1da177e4 2322 * try_to_wake_up - wake up a thread
9ed3811a 2323 * @p: the thread to be awakened
1da177e4 2324 * @state: the mask of task states that can be woken
9ed3811a 2325 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2326 *
2327 * Put it on the run-queue if it's not already there. The "current"
2328 * thread is always on the run-queue (except when the actual
2329 * re-schedule is in progress), and as such you're allowed to do
2330 * the simpler "current->state = TASK_RUNNING" to mark yourself
2331 * runnable without the overhead of this.
2332 *
9ed3811a
TH
2333 * Returns %true if @p was woken up, %false if it was already running
2334 * or @state didn't match @p's state.
1da177e4 2335 */
7d478721
PZ
2336static int try_to_wake_up(struct task_struct *p, unsigned int state,
2337 int wake_flags)
1da177e4 2338{
cc367732 2339 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2340 unsigned long flags;
371fd7e7 2341 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2342 struct rq *rq;
1da177e4 2343
e9c84311 2344 this_cpu = get_cpu();
2398f2c6 2345
04e2f174 2346 smp_wmb();
ab3b3aa5 2347 rq = task_rq_lock(p, &flags);
e9c84311 2348 if (!(p->state & state))
1da177e4
LT
2349 goto out;
2350
dd41f596 2351 if (p->se.on_rq)
1da177e4
LT
2352 goto out_running;
2353
2354 cpu = task_cpu(p);
cc367732 2355 orig_cpu = cpu;
1da177e4
LT
2356
2357#ifdef CONFIG_SMP
2358 if (unlikely(task_running(rq, p)))
2359 goto out_activate;
2360
e9c84311
PZ
2361 /*
2362 * In order to handle concurrent wakeups and release the rq->lock
2363 * we put the task in TASK_WAKING state.
eb24073b
IM
2364 *
2365 * First fix up the nr_uninterruptible count:
e9c84311 2366 */
cc87f76a
PZ
2367 if (task_contributes_to_load(p)) {
2368 if (likely(cpu_online(orig_cpu)))
2369 rq->nr_uninterruptible--;
2370 else
2371 this_rq()->nr_uninterruptible--;
2372 }
e9c84311 2373 p->state = TASK_WAKING;
efbbd05a 2374
371fd7e7 2375 if (p->sched_class->task_waking) {
efbbd05a 2376 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2377 en_flags |= ENQUEUE_WAKING;
2378 }
efbbd05a 2379
0017d735
PZ
2380 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2381 if (cpu != orig_cpu)
5d2f5a61 2382 set_task_cpu(p, cpu);
0017d735 2383 __task_rq_unlock(rq);
ab19cb23 2384
0970d299
PZ
2385 rq = cpu_rq(cpu);
2386 raw_spin_lock(&rq->lock);
f5dc3753 2387
0970d299
PZ
2388 /*
2389 * We migrated the task without holding either rq->lock, however
2390 * since the task is not on the task list itself, nobody else
2391 * will try and migrate the task, hence the rq should match the
2392 * cpu we just moved it to.
2393 */
2394 WARN_ON(task_cpu(p) != cpu);
e9c84311 2395 WARN_ON(p->state != TASK_WAKING);
1da177e4 2396
e7693a36
GH
2397#ifdef CONFIG_SCHEDSTATS
2398 schedstat_inc(rq, ttwu_count);
2399 if (cpu == this_cpu)
2400 schedstat_inc(rq, ttwu_local);
2401 else {
2402 struct sched_domain *sd;
2403 for_each_domain(this_cpu, sd) {
758b2cdc 2404 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2405 schedstat_inc(sd, ttwu_wake_remote);
2406 break;
2407 }
2408 }
2409 }
6d6bc0ad 2410#endif /* CONFIG_SCHEDSTATS */
e7693a36 2411
1da177e4
LT
2412out_activate:
2413#endif /* CONFIG_SMP */
9ed3811a
TH
2414 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2415 cpu == this_cpu, en_flags);
1da177e4 2416 success = 1;
1da177e4 2417out_running:
9ed3811a 2418 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2419out:
2420 task_rq_unlock(rq, &flags);
e9c84311 2421 put_cpu();
1da177e4
LT
2422
2423 return success;
2424}
2425
21aa9af0
TH
2426/**
2427 * try_to_wake_up_local - try to wake up a local task with rq lock held
2428 * @p: the thread to be awakened
2429 *
2430 * Put @p on the run-queue if it's not alredy there. The caller must
2431 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2432 * the current task. this_rq() stays locked over invocation.
2433 */
2434static void try_to_wake_up_local(struct task_struct *p)
2435{
2436 struct rq *rq = task_rq(p);
2437 bool success = false;
2438
2439 BUG_ON(rq != this_rq());
2440 BUG_ON(p == current);
2441 lockdep_assert_held(&rq->lock);
2442
2443 if (!(p->state & TASK_NORMAL))
2444 return;
2445
2446 if (!p->se.on_rq) {
2447 if (likely(!task_running(rq, p))) {
2448 schedstat_inc(rq, ttwu_count);
2449 schedstat_inc(rq, ttwu_local);
2450 }
2451 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2452 success = true;
2453 }
2454 ttwu_post_activation(p, rq, 0, success);
2455}
2456
50fa610a
DH
2457/**
2458 * wake_up_process - Wake up a specific process
2459 * @p: The process to be woken up.
2460 *
2461 * Attempt to wake up the nominated process and move it to the set of runnable
2462 * processes. Returns 1 if the process was woken up, 0 if it was already
2463 * running.
2464 *
2465 * It may be assumed that this function implies a write memory barrier before
2466 * changing the task state if and only if any tasks are woken up.
2467 */
7ad5b3a5 2468int wake_up_process(struct task_struct *p)
1da177e4 2469{
d9514f6c 2470 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2471}
1da177e4
LT
2472EXPORT_SYMBOL(wake_up_process);
2473
7ad5b3a5 2474int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2475{
2476 return try_to_wake_up(p, state, 0);
2477}
2478
1da177e4
LT
2479/*
2480 * Perform scheduler related setup for a newly forked process p.
2481 * p is forked by current.
dd41f596
IM
2482 *
2483 * __sched_fork() is basic setup used by init_idle() too:
2484 */
2485static void __sched_fork(struct task_struct *p)
2486{
dd41f596
IM
2487 p->se.exec_start = 0;
2488 p->se.sum_exec_runtime = 0;
f6cf891c 2489 p->se.prev_sum_exec_runtime = 0;
6c594c21 2490 p->se.nr_migrations = 0;
6cfb0d5d
IM
2491
2492#ifdef CONFIG_SCHEDSTATS
41acab88 2493 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2494#endif
476d139c 2495
fa717060 2496 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2497 p->se.on_rq = 0;
4a55bd5e 2498 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2499
e107be36
AK
2500#ifdef CONFIG_PREEMPT_NOTIFIERS
2501 INIT_HLIST_HEAD(&p->preempt_notifiers);
2502#endif
dd41f596
IM
2503}
2504
2505/*
2506 * fork()/clone()-time setup:
2507 */
2508void sched_fork(struct task_struct *p, int clone_flags)
2509{
2510 int cpu = get_cpu();
2511
2512 __sched_fork(p);
06b83b5f 2513 /*
0017d735 2514 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2515 * nobody will actually run it, and a signal or other external
2516 * event cannot wake it up and insert it on the runqueue either.
2517 */
0017d735 2518 p->state = TASK_RUNNING;
dd41f596 2519
b9dc29e7
MG
2520 /*
2521 * Revert to default priority/policy on fork if requested.
2522 */
2523 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2524 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2525 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2526 p->normal_prio = p->static_prio;
2527 }
b9dc29e7 2528
6c697bdf
MG
2529 if (PRIO_TO_NICE(p->static_prio) < 0) {
2530 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2531 p->normal_prio = p->static_prio;
6c697bdf
MG
2532 set_load_weight(p);
2533 }
2534
b9dc29e7
MG
2535 /*
2536 * We don't need the reset flag anymore after the fork. It has
2537 * fulfilled its duty:
2538 */
2539 p->sched_reset_on_fork = 0;
2540 }
ca94c442 2541
f83f9ac2
PW
2542 /*
2543 * Make sure we do not leak PI boosting priority to the child.
2544 */
2545 p->prio = current->normal_prio;
2546
2ddbf952
HS
2547 if (!rt_prio(p->prio))
2548 p->sched_class = &fair_sched_class;
b29739f9 2549
cd29fe6f
PZ
2550 if (p->sched_class->task_fork)
2551 p->sched_class->task_fork(p);
2552
86951599
PZ
2553 /*
2554 * The child is not yet in the pid-hash so no cgroup attach races,
2555 * and the cgroup is pinned to this child due to cgroup_fork()
2556 * is ran before sched_fork().
2557 *
2558 * Silence PROVE_RCU.
2559 */
2560 rcu_read_lock();
5f3edc1b 2561 set_task_cpu(p, cpu);
86951599 2562 rcu_read_unlock();
5f3edc1b 2563
52f17b6c 2564#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2565 if (likely(sched_info_on()))
52f17b6c 2566 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2567#endif
d6077cb8 2568#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2569 p->oncpu = 0;
2570#endif
1da177e4 2571#ifdef CONFIG_PREEMPT
4866cde0 2572 /* Want to start with kernel preemption disabled. */
a1261f54 2573 task_thread_info(p)->preempt_count = 1;
1da177e4 2574#endif
917b627d
GH
2575 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2576
476d139c 2577 put_cpu();
1da177e4
LT
2578}
2579
2580/*
2581 * wake_up_new_task - wake up a newly created task for the first time.
2582 *
2583 * This function will do some initial scheduler statistics housekeeping
2584 * that must be done for every newly created context, then puts the task
2585 * on the runqueue and wakes it.
2586 */
7ad5b3a5 2587void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2588{
2589 unsigned long flags;
dd41f596 2590 struct rq *rq;
c890692b 2591 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2592
2593#ifdef CONFIG_SMP
0017d735
PZ
2594 rq = task_rq_lock(p, &flags);
2595 p->state = TASK_WAKING;
2596
fabf318e
PZ
2597 /*
2598 * Fork balancing, do it here and not earlier because:
2599 * - cpus_allowed can change in the fork path
2600 * - any previously selected cpu might disappear through hotplug
2601 *
0017d735
PZ
2602 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2603 * without people poking at ->cpus_allowed.
fabf318e 2604 */
0017d735 2605 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2606 set_task_cpu(p, cpu);
1da177e4 2607
06b83b5f 2608 p->state = TASK_RUNNING;
0017d735
PZ
2609 task_rq_unlock(rq, &flags);
2610#endif
2611
2612 rq = task_rq_lock(p, &flags);
cd29fe6f 2613 activate_task(rq, p, 0);
27a9da65 2614 trace_sched_wakeup_new(p, 1);
a7558e01 2615 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2616#ifdef CONFIG_SMP
efbbd05a
PZ
2617 if (p->sched_class->task_woken)
2618 p->sched_class->task_woken(rq, p);
9a897c5a 2619#endif
dd41f596 2620 task_rq_unlock(rq, &flags);
fabf318e 2621 put_cpu();
1da177e4
LT
2622}
2623
e107be36
AK
2624#ifdef CONFIG_PREEMPT_NOTIFIERS
2625
2626/**
80dd99b3 2627 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2628 * @notifier: notifier struct to register
e107be36
AK
2629 */
2630void preempt_notifier_register(struct preempt_notifier *notifier)
2631{
2632 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2633}
2634EXPORT_SYMBOL_GPL(preempt_notifier_register);
2635
2636/**
2637 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2638 * @notifier: notifier struct to unregister
e107be36
AK
2639 *
2640 * This is safe to call from within a preemption notifier.
2641 */
2642void preempt_notifier_unregister(struct preempt_notifier *notifier)
2643{
2644 hlist_del(&notifier->link);
2645}
2646EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2647
2648static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2649{
2650 struct preempt_notifier *notifier;
2651 struct hlist_node *node;
2652
2653 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2654 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2655}
2656
2657static void
2658fire_sched_out_preempt_notifiers(struct task_struct *curr,
2659 struct task_struct *next)
2660{
2661 struct preempt_notifier *notifier;
2662 struct hlist_node *node;
2663
2664 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2665 notifier->ops->sched_out(notifier, next);
2666}
2667
6d6bc0ad 2668#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2669
2670static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2671{
2672}
2673
2674static void
2675fire_sched_out_preempt_notifiers(struct task_struct *curr,
2676 struct task_struct *next)
2677{
2678}
2679
6d6bc0ad 2680#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2681
4866cde0
NP
2682/**
2683 * prepare_task_switch - prepare to switch tasks
2684 * @rq: the runqueue preparing to switch
421cee29 2685 * @prev: the current task that is being switched out
4866cde0
NP
2686 * @next: the task we are going to switch to.
2687 *
2688 * This is called with the rq lock held and interrupts off. It must
2689 * be paired with a subsequent finish_task_switch after the context
2690 * switch.
2691 *
2692 * prepare_task_switch sets up locking and calls architecture specific
2693 * hooks.
2694 */
e107be36
AK
2695static inline void
2696prepare_task_switch(struct rq *rq, struct task_struct *prev,
2697 struct task_struct *next)
4866cde0 2698{
e107be36 2699 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2700 prepare_lock_switch(rq, next);
2701 prepare_arch_switch(next);
2702}
2703
1da177e4
LT
2704/**
2705 * finish_task_switch - clean up after a task-switch
344babaa 2706 * @rq: runqueue associated with task-switch
1da177e4
LT
2707 * @prev: the thread we just switched away from.
2708 *
4866cde0
NP
2709 * finish_task_switch must be called after the context switch, paired
2710 * with a prepare_task_switch call before the context switch.
2711 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2712 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2713 *
2714 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2715 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2716 * with the lock held can cause deadlocks; see schedule() for
2717 * details.)
2718 */
a9957449 2719static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2720 __releases(rq->lock)
2721{
1da177e4 2722 struct mm_struct *mm = rq->prev_mm;
55a101f8 2723 long prev_state;
1da177e4
LT
2724
2725 rq->prev_mm = NULL;
2726
2727 /*
2728 * A task struct has one reference for the use as "current".
c394cc9f 2729 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2730 * schedule one last time. The schedule call will never return, and
2731 * the scheduled task must drop that reference.
c394cc9f 2732 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2733 * still held, otherwise prev could be scheduled on another cpu, die
2734 * there before we look at prev->state, and then the reference would
2735 * be dropped twice.
2736 * Manfred Spraul <manfred@colorfullife.com>
2737 */
55a101f8 2738 prev_state = prev->state;
4866cde0 2739 finish_arch_switch(prev);
8381f65d
JI
2740#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2741 local_irq_disable();
2742#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2743 perf_event_task_sched_in(current);
8381f65d
JI
2744#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2745 local_irq_enable();
2746#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2747 finish_lock_switch(rq, prev);
e8fa1362 2748
e107be36 2749 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2750 if (mm)
2751 mmdrop(mm);
c394cc9f 2752 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2753 /*
2754 * Remove function-return probe instances associated with this
2755 * task and put them back on the free list.
9761eea8 2756 */
c6fd91f0 2757 kprobe_flush_task(prev);
1da177e4 2758 put_task_struct(prev);
c6fd91f0 2759 }
1da177e4
LT
2760}
2761
3f029d3c
GH
2762#ifdef CONFIG_SMP
2763
2764/* assumes rq->lock is held */
2765static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2766{
2767 if (prev->sched_class->pre_schedule)
2768 prev->sched_class->pre_schedule(rq, prev);
2769}
2770
2771/* rq->lock is NOT held, but preemption is disabled */
2772static inline void post_schedule(struct rq *rq)
2773{
2774 if (rq->post_schedule) {
2775 unsigned long flags;
2776
05fa785c 2777 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2778 if (rq->curr->sched_class->post_schedule)
2779 rq->curr->sched_class->post_schedule(rq);
05fa785c 2780 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2781
2782 rq->post_schedule = 0;
2783 }
2784}
2785
2786#else
da19ab51 2787
3f029d3c
GH
2788static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2789{
2790}
2791
2792static inline void post_schedule(struct rq *rq)
2793{
1da177e4
LT
2794}
2795
3f029d3c
GH
2796#endif
2797
1da177e4
LT
2798/**
2799 * schedule_tail - first thing a freshly forked thread must call.
2800 * @prev: the thread we just switched away from.
2801 */
36c8b586 2802asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2803 __releases(rq->lock)
2804{
70b97a7f
IM
2805 struct rq *rq = this_rq();
2806
4866cde0 2807 finish_task_switch(rq, prev);
da19ab51 2808
3f029d3c
GH
2809 /*
2810 * FIXME: do we need to worry about rq being invalidated by the
2811 * task_switch?
2812 */
2813 post_schedule(rq);
70b97a7f 2814
4866cde0
NP
2815#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2816 /* In this case, finish_task_switch does not reenable preemption */
2817 preempt_enable();
2818#endif
1da177e4 2819 if (current->set_child_tid)
b488893a 2820 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2821}
2822
2823/*
2824 * context_switch - switch to the new MM and the new
2825 * thread's register state.
2826 */
dd41f596 2827static inline void
70b97a7f 2828context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2829 struct task_struct *next)
1da177e4 2830{
dd41f596 2831 struct mm_struct *mm, *oldmm;
1da177e4 2832
e107be36 2833 prepare_task_switch(rq, prev, next);
27a9da65 2834 trace_sched_switch(prev, next);
dd41f596
IM
2835 mm = next->mm;
2836 oldmm = prev->active_mm;
9226d125
ZA
2837 /*
2838 * For paravirt, this is coupled with an exit in switch_to to
2839 * combine the page table reload and the switch backend into
2840 * one hypercall.
2841 */
224101ed 2842 arch_start_context_switch(prev);
9226d125 2843
31915ab4 2844 if (!mm) {
1da177e4
LT
2845 next->active_mm = oldmm;
2846 atomic_inc(&oldmm->mm_count);
2847 enter_lazy_tlb(oldmm, next);
2848 } else
2849 switch_mm(oldmm, mm, next);
2850
31915ab4 2851 if (!prev->mm) {
1da177e4 2852 prev->active_mm = NULL;
1da177e4
LT
2853 rq->prev_mm = oldmm;
2854 }
3a5f5e48
IM
2855 /*
2856 * Since the runqueue lock will be released by the next
2857 * task (which is an invalid locking op but in the case
2858 * of the scheduler it's an obvious special-case), so we
2859 * do an early lockdep release here:
2860 */
2861#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2862 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2863#endif
1da177e4
LT
2864
2865 /* Here we just switch the register state and the stack. */
2866 switch_to(prev, next, prev);
2867
dd41f596
IM
2868 barrier();
2869 /*
2870 * this_rq must be evaluated again because prev may have moved
2871 * CPUs since it called schedule(), thus the 'rq' on its stack
2872 * frame will be invalid.
2873 */
2874 finish_task_switch(this_rq(), prev);
1da177e4
LT
2875}
2876
2877/*
2878 * nr_running, nr_uninterruptible and nr_context_switches:
2879 *
2880 * externally visible scheduler statistics: current number of runnable
2881 * threads, current number of uninterruptible-sleeping threads, total
2882 * number of context switches performed since bootup.
2883 */
2884unsigned long nr_running(void)
2885{
2886 unsigned long i, sum = 0;
2887
2888 for_each_online_cpu(i)
2889 sum += cpu_rq(i)->nr_running;
2890
2891 return sum;
f711f609 2892}
1da177e4
LT
2893
2894unsigned long nr_uninterruptible(void)
f711f609 2895{
1da177e4 2896 unsigned long i, sum = 0;
f711f609 2897
0a945022 2898 for_each_possible_cpu(i)
1da177e4 2899 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2900
2901 /*
1da177e4
LT
2902 * Since we read the counters lockless, it might be slightly
2903 * inaccurate. Do not allow it to go below zero though:
f711f609 2904 */
1da177e4
LT
2905 if (unlikely((long)sum < 0))
2906 sum = 0;
f711f609 2907
1da177e4 2908 return sum;
f711f609 2909}
f711f609 2910
1da177e4 2911unsigned long long nr_context_switches(void)
46cb4b7c 2912{
cc94abfc
SR
2913 int i;
2914 unsigned long long sum = 0;
46cb4b7c 2915
0a945022 2916 for_each_possible_cpu(i)
1da177e4 2917 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2918
1da177e4
LT
2919 return sum;
2920}
483b4ee6 2921
1da177e4
LT
2922unsigned long nr_iowait(void)
2923{
2924 unsigned long i, sum = 0;
483b4ee6 2925
0a945022 2926 for_each_possible_cpu(i)
1da177e4 2927 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2928
1da177e4
LT
2929 return sum;
2930}
483b4ee6 2931
8c215bd3 2932unsigned long nr_iowait_cpu(int cpu)
69d25870 2933{
8c215bd3 2934 struct rq *this = cpu_rq(cpu);
69d25870
AV
2935 return atomic_read(&this->nr_iowait);
2936}
46cb4b7c 2937
69d25870
AV
2938unsigned long this_cpu_load(void)
2939{
2940 struct rq *this = this_rq();
2941 return this->cpu_load[0];
2942}
e790fb0b 2943
46cb4b7c 2944
dce48a84
TG
2945/* Variables and functions for calc_load */
2946static atomic_long_t calc_load_tasks;
2947static unsigned long calc_load_update;
2948unsigned long avenrun[3];
2949EXPORT_SYMBOL(avenrun);
46cb4b7c 2950
74f5187a
PZ
2951static long calc_load_fold_active(struct rq *this_rq)
2952{
2953 long nr_active, delta = 0;
2954
2955 nr_active = this_rq->nr_running;
2956 nr_active += (long) this_rq->nr_uninterruptible;
2957
2958 if (nr_active != this_rq->calc_load_active) {
2959 delta = nr_active - this_rq->calc_load_active;
2960 this_rq->calc_load_active = nr_active;
2961 }
2962
2963 return delta;
2964}
2965
2966#ifdef CONFIG_NO_HZ
2967/*
2968 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2969 *
2970 * When making the ILB scale, we should try to pull this in as well.
2971 */
2972static atomic_long_t calc_load_tasks_idle;
2973
2974static void calc_load_account_idle(struct rq *this_rq)
2975{
2976 long delta;
2977
2978 delta = calc_load_fold_active(this_rq);
2979 if (delta)
2980 atomic_long_add(delta, &calc_load_tasks_idle);
2981}
2982
2983static long calc_load_fold_idle(void)
2984{
2985 long delta = 0;
2986
2987 /*
2988 * Its got a race, we don't care...
2989 */
2990 if (atomic_long_read(&calc_load_tasks_idle))
2991 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2992
2993 return delta;
2994}
2995#else
2996static void calc_load_account_idle(struct rq *this_rq)
2997{
2998}
2999
3000static inline long calc_load_fold_idle(void)
3001{
3002 return 0;
3003}
3004#endif
3005
2d02494f
TG
3006/**
3007 * get_avenrun - get the load average array
3008 * @loads: pointer to dest load array
3009 * @offset: offset to add
3010 * @shift: shift count to shift the result left
3011 *
3012 * These values are estimates at best, so no need for locking.
3013 */
3014void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3015{
3016 loads[0] = (avenrun[0] + offset) << shift;
3017 loads[1] = (avenrun[1] + offset) << shift;
3018 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3019}
46cb4b7c 3020
dce48a84
TG
3021static unsigned long
3022calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3023{
dce48a84
TG
3024 load *= exp;
3025 load += active * (FIXED_1 - exp);
3026 return load >> FSHIFT;
3027}
46cb4b7c
SS
3028
3029/*
dce48a84
TG
3030 * calc_load - update the avenrun load estimates 10 ticks after the
3031 * CPUs have updated calc_load_tasks.
7835b98b 3032 */
dce48a84 3033void calc_global_load(void)
7835b98b 3034{
dce48a84
TG
3035 unsigned long upd = calc_load_update + 10;
3036 long active;
1da177e4 3037
dce48a84
TG
3038 if (time_before(jiffies, upd))
3039 return;
1da177e4 3040
dce48a84
TG
3041 active = atomic_long_read(&calc_load_tasks);
3042 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3043
dce48a84
TG
3044 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3045 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3046 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3047
dce48a84
TG
3048 calc_load_update += LOAD_FREQ;
3049}
1da177e4 3050
dce48a84 3051/*
74f5187a
PZ
3052 * Called from update_cpu_load() to periodically update this CPU's
3053 * active count.
dce48a84
TG
3054 */
3055static void calc_load_account_active(struct rq *this_rq)
3056{
74f5187a 3057 long delta;
08c183f3 3058
74f5187a
PZ
3059 if (time_before(jiffies, this_rq->calc_load_update))
3060 return;
783609c6 3061
74f5187a
PZ
3062 delta = calc_load_fold_active(this_rq);
3063 delta += calc_load_fold_idle();
3064 if (delta)
dce48a84 3065 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3066
3067 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3068}
3069
fdf3e95d
VP
3070/*
3071 * The exact cpuload at various idx values, calculated at every tick would be
3072 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3073 *
3074 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3075 * on nth tick when cpu may be busy, then we have:
3076 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3077 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3078 *
3079 * decay_load_missed() below does efficient calculation of
3080 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3081 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3082 *
3083 * The calculation is approximated on a 128 point scale.
3084 * degrade_zero_ticks is the number of ticks after which load at any
3085 * particular idx is approximated to be zero.
3086 * degrade_factor is a precomputed table, a row for each load idx.
3087 * Each column corresponds to degradation factor for a power of two ticks,
3088 * based on 128 point scale.
3089 * Example:
3090 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3091 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3092 *
3093 * With this power of 2 load factors, we can degrade the load n times
3094 * by looking at 1 bits in n and doing as many mult/shift instead of
3095 * n mult/shifts needed by the exact degradation.
3096 */
3097#define DEGRADE_SHIFT 7
3098static const unsigned char
3099 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3100static const unsigned char
3101 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3102 {0, 0, 0, 0, 0, 0, 0, 0},
3103 {64, 32, 8, 0, 0, 0, 0, 0},
3104 {96, 72, 40, 12, 1, 0, 0},
3105 {112, 98, 75, 43, 15, 1, 0},
3106 {120, 112, 98, 76, 45, 16, 2} };
3107
3108/*
3109 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3110 * would be when CPU is idle and so we just decay the old load without
3111 * adding any new load.
3112 */
3113static unsigned long
3114decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3115{
3116 int j = 0;
3117
3118 if (!missed_updates)
3119 return load;
3120
3121 if (missed_updates >= degrade_zero_ticks[idx])
3122 return 0;
3123
3124 if (idx == 1)
3125 return load >> missed_updates;
3126
3127 while (missed_updates) {
3128 if (missed_updates % 2)
3129 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3130
3131 missed_updates >>= 1;
3132 j++;
3133 }
3134 return load;
3135}
3136
46cb4b7c 3137/*
dd41f596 3138 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3139 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3140 * every tick. We fix it up based on jiffies.
46cb4b7c 3141 */
dd41f596 3142static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3143{
495eca49 3144 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3145 unsigned long curr_jiffies = jiffies;
3146 unsigned long pending_updates;
dd41f596 3147 int i, scale;
46cb4b7c 3148
dd41f596 3149 this_rq->nr_load_updates++;
46cb4b7c 3150
fdf3e95d
VP
3151 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3152 if (curr_jiffies == this_rq->last_load_update_tick)
3153 return;
3154
3155 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3156 this_rq->last_load_update_tick = curr_jiffies;
3157
dd41f596 3158 /* Update our load: */
fdf3e95d
VP
3159 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3160 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3161 unsigned long old_load, new_load;
7d1e6a9b 3162
dd41f596 3163 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3164
dd41f596 3165 old_load = this_rq->cpu_load[i];
fdf3e95d 3166 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3167 new_load = this_load;
a25707f3
IM
3168 /*
3169 * Round up the averaging division if load is increasing. This
3170 * prevents us from getting stuck on 9 if the load is 10, for
3171 * example.
3172 */
3173 if (new_load > old_load)
fdf3e95d
VP
3174 new_load += scale - 1;
3175
3176 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3177 }
da2b71ed
SS
3178
3179 sched_avg_update(this_rq);
fdf3e95d
VP
3180}
3181
3182static void update_cpu_load_active(struct rq *this_rq)
3183{
3184 update_cpu_load(this_rq);
46cb4b7c 3185
74f5187a 3186 calc_load_account_active(this_rq);
46cb4b7c
SS
3187}
3188
dd41f596 3189#ifdef CONFIG_SMP
8a0be9ef 3190
46cb4b7c 3191/*
38022906
PZ
3192 * sched_exec - execve() is a valuable balancing opportunity, because at
3193 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3194 */
38022906 3195void sched_exec(void)
46cb4b7c 3196{
38022906 3197 struct task_struct *p = current;
1da177e4 3198 unsigned long flags;
70b97a7f 3199 struct rq *rq;
0017d735 3200 int dest_cpu;
46cb4b7c 3201
1da177e4 3202 rq = task_rq_lock(p, &flags);
0017d735
PZ
3203 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3204 if (dest_cpu == smp_processor_id())
3205 goto unlock;
38022906 3206
46cb4b7c 3207 /*
38022906 3208 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3209 */
30da688e 3210 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3211 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3212 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3213
1da177e4 3214 task_rq_unlock(rq, &flags);
969c7921 3215 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3216 return;
3217 }
0017d735 3218unlock:
1da177e4 3219 task_rq_unlock(rq, &flags);
1da177e4 3220}
dd41f596 3221
1da177e4
LT
3222#endif
3223
1da177e4
LT
3224DEFINE_PER_CPU(struct kernel_stat, kstat);
3225
3226EXPORT_PER_CPU_SYMBOL(kstat);
3227
3228/*
c5f8d995 3229 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3230 * @p in case that task is currently running.
c5f8d995
HS
3231 *
3232 * Called with task_rq_lock() held on @rq.
1da177e4 3233 */
c5f8d995
HS
3234static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3235{
3236 u64 ns = 0;
3237
3238 if (task_current(rq, p)) {
3239 update_rq_clock(rq);
305e6835 3240 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3241 if ((s64)ns < 0)
3242 ns = 0;
3243 }
3244
3245 return ns;
3246}
3247
bb34d92f 3248unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3249{
1da177e4 3250 unsigned long flags;
41b86e9c 3251 struct rq *rq;
bb34d92f 3252 u64 ns = 0;
48f24c4d 3253
41b86e9c 3254 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3255 ns = do_task_delta_exec(p, rq);
3256 task_rq_unlock(rq, &flags);
1508487e 3257
c5f8d995
HS
3258 return ns;
3259}
f06febc9 3260
c5f8d995
HS
3261/*
3262 * Return accounted runtime for the task.
3263 * In case the task is currently running, return the runtime plus current's
3264 * pending runtime that have not been accounted yet.
3265 */
3266unsigned long long task_sched_runtime(struct task_struct *p)
3267{
3268 unsigned long flags;
3269 struct rq *rq;
3270 u64 ns = 0;
3271
3272 rq = task_rq_lock(p, &flags);
3273 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3274 task_rq_unlock(rq, &flags);
3275
3276 return ns;
3277}
48f24c4d 3278
c5f8d995
HS
3279/*
3280 * Return sum_exec_runtime for the thread group.
3281 * In case the task is currently running, return the sum plus current's
3282 * pending runtime that have not been accounted yet.
3283 *
3284 * Note that the thread group might have other running tasks as well,
3285 * so the return value not includes other pending runtime that other
3286 * running tasks might have.
3287 */
3288unsigned long long thread_group_sched_runtime(struct task_struct *p)
3289{
3290 struct task_cputime totals;
3291 unsigned long flags;
3292 struct rq *rq;
3293 u64 ns;
3294
3295 rq = task_rq_lock(p, &flags);
3296 thread_group_cputime(p, &totals);
3297 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3298 task_rq_unlock(rq, &flags);
48f24c4d 3299
1da177e4
LT
3300 return ns;
3301}
3302
1da177e4
LT
3303/*
3304 * Account user cpu time to a process.
3305 * @p: the process that the cpu time gets accounted to
1da177e4 3306 * @cputime: the cpu time spent in user space since the last update
457533a7 3307 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3308 */
457533a7
MS
3309void account_user_time(struct task_struct *p, cputime_t cputime,
3310 cputime_t cputime_scaled)
1da177e4
LT
3311{
3312 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3313 cputime64_t tmp;
3314
457533a7 3315 /* Add user time to process. */
1da177e4 3316 p->utime = cputime_add(p->utime, cputime);
457533a7 3317 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3318 account_group_user_time(p, cputime);
1da177e4
LT
3319
3320 /* Add user time to cpustat. */
3321 tmp = cputime_to_cputime64(cputime);
3322 if (TASK_NICE(p) > 0)
3323 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3324 else
3325 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3326
3327 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3328 /* Account for user time used */
3329 acct_update_integrals(p);
1da177e4
LT
3330}
3331
94886b84
LV
3332/*
3333 * Account guest cpu time to a process.
3334 * @p: the process that the cpu time gets accounted to
3335 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3336 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3337 */
457533a7
MS
3338static void account_guest_time(struct task_struct *p, cputime_t cputime,
3339 cputime_t cputime_scaled)
94886b84
LV
3340{
3341 cputime64_t tmp;
3342 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3343
3344 tmp = cputime_to_cputime64(cputime);
3345
457533a7 3346 /* Add guest time to process. */
94886b84 3347 p->utime = cputime_add(p->utime, cputime);
457533a7 3348 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3349 account_group_user_time(p, cputime);
94886b84
LV
3350 p->gtime = cputime_add(p->gtime, cputime);
3351
457533a7 3352 /* Add guest time to cpustat. */
ce0e7b28
RO
3353 if (TASK_NICE(p) > 0) {
3354 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3355 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3356 } else {
3357 cpustat->user = cputime64_add(cpustat->user, tmp);
3358 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3359 }
94886b84
LV
3360}
3361
1da177e4
LT
3362/*
3363 * Account system cpu time to a process.
3364 * @p: the process that the cpu time gets accounted to
3365 * @hardirq_offset: the offset to subtract from hardirq_count()
3366 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3367 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3368 */
3369void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3370 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3371{
3372 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3373 cputime64_t tmp;
3374
983ed7a6 3375 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3376 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3377 return;
3378 }
94886b84 3379
457533a7 3380 /* Add system time to process. */
1da177e4 3381 p->stime = cputime_add(p->stime, cputime);
457533a7 3382 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3383 account_group_system_time(p, cputime);
1da177e4
LT
3384
3385 /* Add system time to cpustat. */
3386 tmp = cputime_to_cputime64(cputime);
3387 if (hardirq_count() - hardirq_offset)
3388 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3389 else if (in_serving_softirq())
1da177e4 3390 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3391 else
79741dd3
MS
3392 cpustat->system = cputime64_add(cpustat->system, tmp);
3393
ef12fefa
BR
3394 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3395
1da177e4
LT
3396 /* Account for system time used */
3397 acct_update_integrals(p);
1da177e4
LT
3398}
3399
c66f08be 3400/*
1da177e4 3401 * Account for involuntary wait time.
1da177e4 3402 * @steal: the cpu time spent in involuntary wait
c66f08be 3403 */
79741dd3 3404void account_steal_time(cputime_t cputime)
c66f08be 3405{
79741dd3
MS
3406 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3407 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3408
3409 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3410}
3411
1da177e4 3412/*
79741dd3
MS
3413 * Account for idle time.
3414 * @cputime: the cpu time spent in idle wait
1da177e4 3415 */
79741dd3 3416void account_idle_time(cputime_t cputime)
1da177e4
LT
3417{
3418 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3419 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3420 struct rq *rq = this_rq();
1da177e4 3421
79741dd3
MS
3422 if (atomic_read(&rq->nr_iowait) > 0)
3423 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3424 else
3425 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3426}
3427
79741dd3
MS
3428#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3429
3430/*
3431 * Account a single tick of cpu time.
3432 * @p: the process that the cpu time gets accounted to
3433 * @user_tick: indicates if the tick is a user or a system tick
3434 */
3435void account_process_tick(struct task_struct *p, int user_tick)
3436{
a42548a1 3437 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3438 struct rq *rq = this_rq();
3439
3440 if (user_tick)
a42548a1 3441 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3442 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3443 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3444 one_jiffy_scaled);
3445 else
a42548a1 3446 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3447}
3448
3449/*
3450 * Account multiple ticks of steal time.
3451 * @p: the process from which the cpu time has been stolen
3452 * @ticks: number of stolen ticks
3453 */
3454void account_steal_ticks(unsigned long ticks)
3455{
3456 account_steal_time(jiffies_to_cputime(ticks));
3457}
3458
3459/*
3460 * Account multiple ticks of idle time.
3461 * @ticks: number of stolen ticks
3462 */
3463void account_idle_ticks(unsigned long ticks)
3464{
3465 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3466}
3467
79741dd3
MS
3468#endif
3469
49048622
BS
3470/*
3471 * Use precise platform statistics if available:
3472 */
3473#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3474void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3475{
d99ca3b9
HS
3476 *ut = p->utime;
3477 *st = p->stime;
49048622
BS
3478}
3479
0cf55e1e 3480void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3481{
0cf55e1e
HS
3482 struct task_cputime cputime;
3483
3484 thread_group_cputime(p, &cputime);
3485
3486 *ut = cputime.utime;
3487 *st = cputime.stime;
49048622
BS
3488}
3489#else
761b1d26
HS
3490
3491#ifndef nsecs_to_cputime
b7b20df9 3492# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3493#endif
3494
d180c5bc 3495void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3496{
d99ca3b9 3497 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3498
3499 /*
3500 * Use CFS's precise accounting:
3501 */
d180c5bc 3502 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3503
3504 if (total) {
e75e863d 3505 u64 temp = rtime;
d180c5bc 3506
e75e863d 3507 temp *= utime;
49048622 3508 do_div(temp, total);
d180c5bc
HS
3509 utime = (cputime_t)temp;
3510 } else
3511 utime = rtime;
49048622 3512
d180c5bc
HS
3513 /*
3514 * Compare with previous values, to keep monotonicity:
3515 */
761b1d26 3516 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3517 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3518
d99ca3b9
HS
3519 *ut = p->prev_utime;
3520 *st = p->prev_stime;
49048622
BS
3521}
3522
0cf55e1e
HS
3523/*
3524 * Must be called with siglock held.
3525 */
3526void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3527{
0cf55e1e
HS
3528 struct signal_struct *sig = p->signal;
3529 struct task_cputime cputime;
3530 cputime_t rtime, utime, total;
49048622 3531
0cf55e1e 3532 thread_group_cputime(p, &cputime);
49048622 3533
0cf55e1e
HS
3534 total = cputime_add(cputime.utime, cputime.stime);
3535 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3536
0cf55e1e 3537 if (total) {
e75e863d 3538 u64 temp = rtime;
49048622 3539
e75e863d 3540 temp *= cputime.utime;
0cf55e1e
HS
3541 do_div(temp, total);
3542 utime = (cputime_t)temp;
3543 } else
3544 utime = rtime;
3545
3546 sig->prev_utime = max(sig->prev_utime, utime);
3547 sig->prev_stime = max(sig->prev_stime,
3548 cputime_sub(rtime, sig->prev_utime));
3549
3550 *ut = sig->prev_utime;
3551 *st = sig->prev_stime;
49048622 3552}
49048622 3553#endif
49048622 3554
7835b98b
CL
3555/*
3556 * This function gets called by the timer code, with HZ frequency.
3557 * We call it with interrupts disabled.
3558 *
3559 * It also gets called by the fork code, when changing the parent's
3560 * timeslices.
3561 */
3562void scheduler_tick(void)
3563{
7835b98b
CL
3564 int cpu = smp_processor_id();
3565 struct rq *rq = cpu_rq(cpu);
dd41f596 3566 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3567
3568 sched_clock_tick();
dd41f596 3569
05fa785c 3570 raw_spin_lock(&rq->lock);
3e51f33f 3571 update_rq_clock(rq);
fdf3e95d 3572 update_cpu_load_active(rq);
fa85ae24 3573 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3574 raw_spin_unlock(&rq->lock);
7835b98b 3575
e9d2b064 3576 perf_event_task_tick();
e220d2dc 3577
e418e1c2 3578#ifdef CONFIG_SMP
dd41f596
IM
3579 rq->idle_at_tick = idle_cpu(cpu);
3580 trigger_load_balance(rq, cpu);
e418e1c2 3581#endif
1da177e4
LT
3582}
3583
132380a0 3584notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3585{
3586 if (in_lock_functions(addr)) {
3587 addr = CALLER_ADDR2;
3588 if (in_lock_functions(addr))
3589 addr = CALLER_ADDR3;
3590 }
3591 return addr;
3592}
1da177e4 3593
7e49fcce
SR
3594#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3595 defined(CONFIG_PREEMPT_TRACER))
3596
43627582 3597void __kprobes add_preempt_count(int val)
1da177e4 3598{
6cd8a4bb 3599#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3600 /*
3601 * Underflow?
3602 */
9a11b49a
IM
3603 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3604 return;
6cd8a4bb 3605#endif
1da177e4 3606 preempt_count() += val;
6cd8a4bb 3607#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3608 /*
3609 * Spinlock count overflowing soon?
3610 */
33859f7f
MOS
3611 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3612 PREEMPT_MASK - 10);
6cd8a4bb
SR
3613#endif
3614 if (preempt_count() == val)
3615 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3616}
3617EXPORT_SYMBOL(add_preempt_count);
3618
43627582 3619void __kprobes sub_preempt_count(int val)
1da177e4 3620{
6cd8a4bb 3621#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3622 /*
3623 * Underflow?
3624 */
01e3eb82 3625 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3626 return;
1da177e4
LT
3627 /*
3628 * Is the spinlock portion underflowing?
3629 */
9a11b49a
IM
3630 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3631 !(preempt_count() & PREEMPT_MASK)))
3632 return;
6cd8a4bb 3633#endif
9a11b49a 3634
6cd8a4bb
SR
3635 if (preempt_count() == val)
3636 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3637 preempt_count() -= val;
3638}
3639EXPORT_SYMBOL(sub_preempt_count);
3640
3641#endif
3642
3643/*
dd41f596 3644 * Print scheduling while atomic bug:
1da177e4 3645 */
dd41f596 3646static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3647{
838225b4
SS
3648 struct pt_regs *regs = get_irq_regs();
3649
3df0fc5b
PZ
3650 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3651 prev->comm, prev->pid, preempt_count());
838225b4 3652
dd41f596 3653 debug_show_held_locks(prev);
e21f5b15 3654 print_modules();
dd41f596
IM
3655 if (irqs_disabled())
3656 print_irqtrace_events(prev);
838225b4
SS
3657
3658 if (regs)
3659 show_regs(regs);
3660 else
3661 dump_stack();
dd41f596 3662}
1da177e4 3663
dd41f596
IM
3664/*
3665 * Various schedule()-time debugging checks and statistics:
3666 */
3667static inline void schedule_debug(struct task_struct *prev)
3668{
1da177e4 3669 /*
41a2d6cf 3670 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3671 * schedule() atomically, we ignore that path for now.
3672 * Otherwise, whine if we are scheduling when we should not be.
3673 */
3f33a7ce 3674 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3675 __schedule_bug(prev);
3676
1da177e4
LT
3677 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3678
2d72376b 3679 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3680#ifdef CONFIG_SCHEDSTATS
3681 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3682 schedstat_inc(this_rq(), bkl_count);
3683 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3684 }
3685#endif
dd41f596
IM
3686}
3687
6cecd084 3688static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3689{
a64692a3
MG
3690 if (prev->se.on_rq)
3691 update_rq_clock(rq);
3692 rq->skip_clock_update = 0;
6cecd084 3693 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3694}
3695
dd41f596
IM
3696/*
3697 * Pick up the highest-prio task:
3698 */
3699static inline struct task_struct *
b67802ea 3700pick_next_task(struct rq *rq)
dd41f596 3701{
5522d5d5 3702 const struct sched_class *class;
dd41f596 3703 struct task_struct *p;
1da177e4
LT
3704
3705 /*
dd41f596
IM
3706 * Optimization: we know that if all tasks are in
3707 * the fair class we can call that function directly:
1da177e4 3708 */
dd41f596 3709 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3710 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3711 if (likely(p))
3712 return p;
1da177e4
LT
3713 }
3714
34f971f6 3715 for_each_class(class) {
fb8d4724 3716 p = class->pick_next_task(rq);
dd41f596
IM
3717 if (p)
3718 return p;
dd41f596 3719 }
34f971f6
PZ
3720
3721 BUG(); /* the idle class will always have a runnable task */
dd41f596 3722}
1da177e4 3723
dd41f596
IM
3724/*
3725 * schedule() is the main scheduler function.
3726 */
ff743345 3727asmlinkage void __sched schedule(void)
dd41f596
IM
3728{
3729 struct task_struct *prev, *next;
67ca7bde 3730 unsigned long *switch_count;
dd41f596 3731 struct rq *rq;
31656519 3732 int cpu;
dd41f596 3733
ff743345
PZ
3734need_resched:
3735 preempt_disable();
dd41f596
IM
3736 cpu = smp_processor_id();
3737 rq = cpu_rq(cpu);
25502a6c 3738 rcu_note_context_switch(cpu);
dd41f596 3739 prev = rq->curr;
dd41f596
IM
3740
3741 release_kernel_lock(prev);
3742need_resched_nonpreemptible:
3743
3744 schedule_debug(prev);
1da177e4 3745
31656519 3746 if (sched_feat(HRTICK))
f333fdc9 3747 hrtick_clear(rq);
8f4d37ec 3748
05fa785c 3749 raw_spin_lock_irq(&rq->lock);
1e819950 3750 clear_tsk_need_resched(prev);
1da177e4 3751
246d86b5 3752 switch_count = &prev->nivcsw;
1da177e4 3753 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3754 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3755 prev->state = TASK_RUNNING;
21aa9af0
TH
3756 } else {
3757 /*
3758 * If a worker is going to sleep, notify and
3759 * ask workqueue whether it wants to wake up a
3760 * task to maintain concurrency. If so, wake
3761 * up the task.
3762 */
3763 if (prev->flags & PF_WQ_WORKER) {
3764 struct task_struct *to_wakeup;
3765
3766 to_wakeup = wq_worker_sleeping(prev, cpu);
3767 if (to_wakeup)
3768 try_to_wake_up_local(to_wakeup);
3769 }
371fd7e7 3770 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3771 }
dd41f596 3772 switch_count = &prev->nvcsw;
1da177e4
LT
3773 }
3774
3f029d3c 3775 pre_schedule(rq, prev);
f65eda4f 3776
dd41f596 3777 if (unlikely(!rq->nr_running))
1da177e4 3778 idle_balance(cpu, rq);
1da177e4 3779
df1c99d4 3780 put_prev_task(rq, prev);
b67802ea 3781 next = pick_next_task(rq);
1da177e4 3782
1da177e4 3783 if (likely(prev != next)) {
673a90a1 3784 sched_info_switch(prev, next);
49f47433 3785 perf_event_task_sched_out(prev, next);
673a90a1 3786
1da177e4
LT
3787 rq->nr_switches++;
3788 rq->curr = next;
3789 ++*switch_count;
3790
dd41f596 3791 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3792 /*
246d86b5
ON
3793 * The context switch have flipped the stack from under us
3794 * and restored the local variables which were saved when
3795 * this task called schedule() in the past. prev == current
3796 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3797 */
3798 cpu = smp_processor_id();
3799 rq = cpu_rq(cpu);
1da177e4 3800 } else
05fa785c 3801 raw_spin_unlock_irq(&rq->lock);
1da177e4 3802
3f029d3c 3803 post_schedule(rq);
1da177e4 3804
246d86b5 3805 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3806 goto need_resched_nonpreemptible;
8f4d37ec 3807
1da177e4 3808 preempt_enable_no_resched();
ff743345 3809 if (need_resched())
1da177e4
LT
3810 goto need_resched;
3811}
1da177e4
LT
3812EXPORT_SYMBOL(schedule);
3813
c08f7829 3814#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3815/*
3816 * Look out! "owner" is an entirely speculative pointer
3817 * access and not reliable.
3818 */
3819int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3820{
3821 unsigned int cpu;
3822 struct rq *rq;
3823
3824 if (!sched_feat(OWNER_SPIN))
3825 return 0;
3826
3827#ifdef CONFIG_DEBUG_PAGEALLOC
3828 /*
3829 * Need to access the cpu field knowing that
3830 * DEBUG_PAGEALLOC could have unmapped it if
3831 * the mutex owner just released it and exited.
3832 */
3833 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3834 return 0;
0d66bf6d
PZ
3835#else
3836 cpu = owner->cpu;
3837#endif
3838
3839 /*
3840 * Even if the access succeeded (likely case),
3841 * the cpu field may no longer be valid.
3842 */
3843 if (cpu >= nr_cpumask_bits)
4b402210 3844 return 0;
0d66bf6d
PZ
3845
3846 /*
3847 * We need to validate that we can do a
3848 * get_cpu() and that we have the percpu area.
3849 */
3850 if (!cpu_online(cpu))
4b402210 3851 return 0;
0d66bf6d
PZ
3852
3853 rq = cpu_rq(cpu);
3854
3855 for (;;) {
3856 /*
3857 * Owner changed, break to re-assess state.
3858 */
9d0f4dcc
TC
3859 if (lock->owner != owner) {
3860 /*
3861 * If the lock has switched to a different owner,
3862 * we likely have heavy contention. Return 0 to quit
3863 * optimistic spinning and not contend further:
3864 */
3865 if (lock->owner)
3866 return 0;
0d66bf6d 3867 break;
9d0f4dcc 3868 }
0d66bf6d
PZ
3869
3870 /*
3871 * Is that owner really running on that cpu?
3872 */
3873 if (task_thread_info(rq->curr) != owner || need_resched())
3874 return 0;
3875
3876 cpu_relax();
3877 }
4b402210 3878
0d66bf6d
PZ
3879 return 1;
3880}
3881#endif
3882
1da177e4
LT
3883#ifdef CONFIG_PREEMPT
3884/*
2ed6e34f 3885 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3886 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3887 * occur there and call schedule directly.
3888 */
d1f74e20 3889asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3890{
3891 struct thread_info *ti = current_thread_info();
6478d880 3892
1da177e4
LT
3893 /*
3894 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3895 * we do not want to preempt the current task. Just return..
1da177e4 3896 */
beed33a8 3897 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3898 return;
3899
3a5c359a 3900 do {
d1f74e20 3901 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 3902 schedule();
d1f74e20 3903 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3904
3a5c359a
AK
3905 /*
3906 * Check again in case we missed a preemption opportunity
3907 * between schedule and now.
3908 */
3909 barrier();
5ed0cec0 3910 } while (need_resched());
1da177e4 3911}
1da177e4
LT
3912EXPORT_SYMBOL(preempt_schedule);
3913
3914/*
2ed6e34f 3915 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3916 * off of irq context.
3917 * Note, that this is called and return with irqs disabled. This will
3918 * protect us against recursive calling from irq.
3919 */
3920asmlinkage void __sched preempt_schedule_irq(void)
3921{
3922 struct thread_info *ti = current_thread_info();
6478d880 3923
2ed6e34f 3924 /* Catch callers which need to be fixed */
1da177e4
LT
3925 BUG_ON(ti->preempt_count || !irqs_disabled());
3926
3a5c359a
AK
3927 do {
3928 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3929 local_irq_enable();
3930 schedule();
3931 local_irq_disable();
3a5c359a 3932 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3933
3a5c359a
AK
3934 /*
3935 * Check again in case we missed a preemption opportunity
3936 * between schedule and now.
3937 */
3938 barrier();
5ed0cec0 3939 } while (need_resched());
1da177e4
LT
3940}
3941
3942#endif /* CONFIG_PREEMPT */
3943
63859d4f 3944int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3945 void *key)
1da177e4 3946{
63859d4f 3947 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3948}
1da177e4
LT
3949EXPORT_SYMBOL(default_wake_function);
3950
3951/*
41a2d6cf
IM
3952 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3953 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3954 * number) then we wake all the non-exclusive tasks and one exclusive task.
3955 *
3956 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3957 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3958 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3959 */
78ddb08f 3960static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3961 int nr_exclusive, int wake_flags, void *key)
1da177e4 3962{
2e45874c 3963 wait_queue_t *curr, *next;
1da177e4 3964
2e45874c 3965 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3966 unsigned flags = curr->flags;
3967
63859d4f 3968 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3969 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3970 break;
3971 }
3972}
3973
3974/**
3975 * __wake_up - wake up threads blocked on a waitqueue.
3976 * @q: the waitqueue
3977 * @mode: which threads
3978 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3979 * @key: is directly passed to the wakeup function
50fa610a
DH
3980 *
3981 * It may be assumed that this function implies a write memory barrier before
3982 * changing the task state if and only if any tasks are woken up.
1da177e4 3983 */
7ad5b3a5 3984void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3985 int nr_exclusive, void *key)
1da177e4
LT
3986{
3987 unsigned long flags;
3988
3989 spin_lock_irqsave(&q->lock, flags);
3990 __wake_up_common(q, mode, nr_exclusive, 0, key);
3991 spin_unlock_irqrestore(&q->lock, flags);
3992}
1da177e4
LT
3993EXPORT_SYMBOL(__wake_up);
3994
3995/*
3996 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3997 */
7ad5b3a5 3998void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3999{
4000 __wake_up_common(q, mode, 1, 0, NULL);
4001}
22c43c81 4002EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4003
4ede816a
DL
4004void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4005{
4006 __wake_up_common(q, mode, 1, 0, key);
4007}
4008
1da177e4 4009/**
4ede816a 4010 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4011 * @q: the waitqueue
4012 * @mode: which threads
4013 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4014 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4015 *
4016 * The sync wakeup differs that the waker knows that it will schedule
4017 * away soon, so while the target thread will be woken up, it will not
4018 * be migrated to another CPU - ie. the two threads are 'synchronized'
4019 * with each other. This can prevent needless bouncing between CPUs.
4020 *
4021 * On UP it can prevent extra preemption.
50fa610a
DH
4022 *
4023 * It may be assumed that this function implies a write memory barrier before
4024 * changing the task state if and only if any tasks are woken up.
1da177e4 4025 */
4ede816a
DL
4026void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4027 int nr_exclusive, void *key)
1da177e4
LT
4028{
4029 unsigned long flags;
7d478721 4030 int wake_flags = WF_SYNC;
1da177e4
LT
4031
4032 if (unlikely(!q))
4033 return;
4034
4035 if (unlikely(!nr_exclusive))
7d478721 4036 wake_flags = 0;
1da177e4
LT
4037
4038 spin_lock_irqsave(&q->lock, flags);
7d478721 4039 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4040 spin_unlock_irqrestore(&q->lock, flags);
4041}
4ede816a
DL
4042EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4043
4044/*
4045 * __wake_up_sync - see __wake_up_sync_key()
4046 */
4047void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4048{
4049 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4050}
1da177e4
LT
4051EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4052
65eb3dc6
KD
4053/**
4054 * complete: - signals a single thread waiting on this completion
4055 * @x: holds the state of this particular completion
4056 *
4057 * This will wake up a single thread waiting on this completion. Threads will be
4058 * awakened in the same order in which they were queued.
4059 *
4060 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4061 *
4062 * It may be assumed that this function implies a write memory barrier before
4063 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4064 */
b15136e9 4065void complete(struct completion *x)
1da177e4
LT
4066{
4067 unsigned long flags;
4068
4069 spin_lock_irqsave(&x->wait.lock, flags);
4070 x->done++;
d9514f6c 4071 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4072 spin_unlock_irqrestore(&x->wait.lock, flags);
4073}
4074EXPORT_SYMBOL(complete);
4075
65eb3dc6
KD
4076/**
4077 * complete_all: - signals all threads waiting on this completion
4078 * @x: holds the state of this particular completion
4079 *
4080 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4081 *
4082 * It may be assumed that this function implies a write memory barrier before
4083 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4084 */
b15136e9 4085void complete_all(struct completion *x)
1da177e4
LT
4086{
4087 unsigned long flags;
4088
4089 spin_lock_irqsave(&x->wait.lock, flags);
4090 x->done += UINT_MAX/2;
d9514f6c 4091 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4092 spin_unlock_irqrestore(&x->wait.lock, flags);
4093}
4094EXPORT_SYMBOL(complete_all);
4095
8cbbe86d
AK
4096static inline long __sched
4097do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4098{
1da177e4
LT
4099 if (!x->done) {
4100 DECLARE_WAITQUEUE(wait, current);
4101
a93d2f17 4102 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4103 do {
94d3d824 4104 if (signal_pending_state(state, current)) {
ea71a546
ON
4105 timeout = -ERESTARTSYS;
4106 break;
8cbbe86d
AK
4107 }
4108 __set_current_state(state);
1da177e4
LT
4109 spin_unlock_irq(&x->wait.lock);
4110 timeout = schedule_timeout(timeout);
4111 spin_lock_irq(&x->wait.lock);
ea71a546 4112 } while (!x->done && timeout);
1da177e4 4113 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4114 if (!x->done)
4115 return timeout;
1da177e4
LT
4116 }
4117 x->done--;
ea71a546 4118 return timeout ?: 1;
1da177e4 4119}
1da177e4 4120
8cbbe86d
AK
4121static long __sched
4122wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4123{
1da177e4
LT
4124 might_sleep();
4125
4126 spin_lock_irq(&x->wait.lock);
8cbbe86d 4127 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4128 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4129 return timeout;
4130}
1da177e4 4131
65eb3dc6
KD
4132/**
4133 * wait_for_completion: - waits for completion of a task
4134 * @x: holds the state of this particular completion
4135 *
4136 * This waits to be signaled for completion of a specific task. It is NOT
4137 * interruptible and there is no timeout.
4138 *
4139 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4140 * and interrupt capability. Also see complete().
4141 */
b15136e9 4142void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4143{
4144 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4145}
8cbbe86d 4146EXPORT_SYMBOL(wait_for_completion);
1da177e4 4147
65eb3dc6
KD
4148/**
4149 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4150 * @x: holds the state of this particular completion
4151 * @timeout: timeout value in jiffies
4152 *
4153 * This waits for either a completion of a specific task to be signaled or for a
4154 * specified timeout to expire. The timeout is in jiffies. It is not
4155 * interruptible.
4156 */
b15136e9 4157unsigned long __sched
8cbbe86d 4158wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4159{
8cbbe86d 4160 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4161}
8cbbe86d 4162EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4163
65eb3dc6
KD
4164/**
4165 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4166 * @x: holds the state of this particular completion
4167 *
4168 * This waits for completion of a specific task to be signaled. It is
4169 * interruptible.
4170 */
8cbbe86d 4171int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4172{
51e97990
AK
4173 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4174 if (t == -ERESTARTSYS)
4175 return t;
4176 return 0;
0fec171c 4177}
8cbbe86d 4178EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4179
65eb3dc6
KD
4180/**
4181 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4182 * @x: holds the state of this particular completion
4183 * @timeout: timeout value in jiffies
4184 *
4185 * This waits for either a completion of a specific task to be signaled or for a
4186 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4187 */
b15136e9 4188unsigned long __sched
8cbbe86d
AK
4189wait_for_completion_interruptible_timeout(struct completion *x,
4190 unsigned long timeout)
0fec171c 4191{
8cbbe86d 4192 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4193}
8cbbe86d 4194EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4195
65eb3dc6
KD
4196/**
4197 * wait_for_completion_killable: - waits for completion of a task (killable)
4198 * @x: holds the state of this particular completion
4199 *
4200 * This waits to be signaled for completion of a specific task. It can be
4201 * interrupted by a kill signal.
4202 */
009e577e
MW
4203int __sched wait_for_completion_killable(struct completion *x)
4204{
4205 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4206 if (t == -ERESTARTSYS)
4207 return t;
4208 return 0;
4209}
4210EXPORT_SYMBOL(wait_for_completion_killable);
4211
0aa12fb4
SW
4212/**
4213 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4214 * @x: holds the state of this particular completion
4215 * @timeout: timeout value in jiffies
4216 *
4217 * This waits for either a completion of a specific task to be
4218 * signaled or for a specified timeout to expire. It can be
4219 * interrupted by a kill signal. The timeout is in jiffies.
4220 */
4221unsigned long __sched
4222wait_for_completion_killable_timeout(struct completion *x,
4223 unsigned long timeout)
4224{
4225 return wait_for_common(x, timeout, TASK_KILLABLE);
4226}
4227EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4228
be4de352
DC
4229/**
4230 * try_wait_for_completion - try to decrement a completion without blocking
4231 * @x: completion structure
4232 *
4233 * Returns: 0 if a decrement cannot be done without blocking
4234 * 1 if a decrement succeeded.
4235 *
4236 * If a completion is being used as a counting completion,
4237 * attempt to decrement the counter without blocking. This
4238 * enables us to avoid waiting if the resource the completion
4239 * is protecting is not available.
4240 */
4241bool try_wait_for_completion(struct completion *x)
4242{
7539a3b3 4243 unsigned long flags;
be4de352
DC
4244 int ret = 1;
4245
7539a3b3 4246 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4247 if (!x->done)
4248 ret = 0;
4249 else
4250 x->done--;
7539a3b3 4251 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4252 return ret;
4253}
4254EXPORT_SYMBOL(try_wait_for_completion);
4255
4256/**
4257 * completion_done - Test to see if a completion has any waiters
4258 * @x: completion structure
4259 *
4260 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4261 * 1 if there are no waiters.
4262 *
4263 */
4264bool completion_done(struct completion *x)
4265{
7539a3b3 4266 unsigned long flags;
be4de352
DC
4267 int ret = 1;
4268
7539a3b3 4269 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4270 if (!x->done)
4271 ret = 0;
7539a3b3 4272 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4273 return ret;
4274}
4275EXPORT_SYMBOL(completion_done);
4276
8cbbe86d
AK
4277static long __sched
4278sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4279{
0fec171c
IM
4280 unsigned long flags;
4281 wait_queue_t wait;
4282
4283 init_waitqueue_entry(&wait, current);
1da177e4 4284
8cbbe86d 4285 __set_current_state(state);
1da177e4 4286
8cbbe86d
AK
4287 spin_lock_irqsave(&q->lock, flags);
4288 __add_wait_queue(q, &wait);
4289 spin_unlock(&q->lock);
4290 timeout = schedule_timeout(timeout);
4291 spin_lock_irq(&q->lock);
4292 __remove_wait_queue(q, &wait);
4293 spin_unlock_irqrestore(&q->lock, flags);
4294
4295 return timeout;
4296}
4297
4298void __sched interruptible_sleep_on(wait_queue_head_t *q)
4299{
4300 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4301}
1da177e4
LT
4302EXPORT_SYMBOL(interruptible_sleep_on);
4303
0fec171c 4304long __sched
95cdf3b7 4305interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4306{
8cbbe86d 4307 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4308}
1da177e4
LT
4309EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4310
0fec171c 4311void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4312{
8cbbe86d 4313 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4314}
1da177e4
LT
4315EXPORT_SYMBOL(sleep_on);
4316
0fec171c 4317long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4318{
8cbbe86d 4319 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4320}
1da177e4
LT
4321EXPORT_SYMBOL(sleep_on_timeout);
4322
b29739f9
IM
4323#ifdef CONFIG_RT_MUTEXES
4324
4325/*
4326 * rt_mutex_setprio - set the current priority of a task
4327 * @p: task
4328 * @prio: prio value (kernel-internal form)
4329 *
4330 * This function changes the 'effective' priority of a task. It does
4331 * not touch ->normal_prio like __setscheduler().
4332 *
4333 * Used by the rt_mutex code to implement priority inheritance logic.
4334 */
36c8b586 4335void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4336{
4337 unsigned long flags;
83b699ed 4338 int oldprio, on_rq, running;
70b97a7f 4339 struct rq *rq;
83ab0aa0 4340 const struct sched_class *prev_class;
b29739f9
IM
4341
4342 BUG_ON(prio < 0 || prio > MAX_PRIO);
4343
4344 rq = task_rq_lock(p, &flags);
4345
a8027073 4346 trace_sched_pi_setprio(p, prio);
d5f9f942 4347 oldprio = p->prio;
83ab0aa0 4348 prev_class = p->sched_class;
dd41f596 4349 on_rq = p->se.on_rq;
051a1d1a 4350 running = task_current(rq, p);
0e1f3483 4351 if (on_rq)
69be72c1 4352 dequeue_task(rq, p, 0);
0e1f3483
HS
4353 if (running)
4354 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4355
4356 if (rt_prio(prio))
4357 p->sched_class = &rt_sched_class;
4358 else
4359 p->sched_class = &fair_sched_class;
4360
b29739f9
IM
4361 p->prio = prio;
4362
0e1f3483
HS
4363 if (running)
4364 p->sched_class->set_curr_task(rq);
dd41f596 4365 if (on_rq) {
371fd7e7 4366 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4367
4368 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4369 }
4370 task_rq_unlock(rq, &flags);
4371}
4372
4373#endif
4374
36c8b586 4375void set_user_nice(struct task_struct *p, long nice)
1da177e4 4376{
dd41f596 4377 int old_prio, delta, on_rq;
1da177e4 4378 unsigned long flags;
70b97a7f 4379 struct rq *rq;
1da177e4
LT
4380
4381 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4382 return;
4383 /*
4384 * We have to be careful, if called from sys_setpriority(),
4385 * the task might be in the middle of scheduling on another CPU.
4386 */
4387 rq = task_rq_lock(p, &flags);
4388 /*
4389 * The RT priorities are set via sched_setscheduler(), but we still
4390 * allow the 'normal' nice value to be set - but as expected
4391 * it wont have any effect on scheduling until the task is
dd41f596 4392 * SCHED_FIFO/SCHED_RR:
1da177e4 4393 */
e05606d3 4394 if (task_has_rt_policy(p)) {
1da177e4
LT
4395 p->static_prio = NICE_TO_PRIO(nice);
4396 goto out_unlock;
4397 }
dd41f596 4398 on_rq = p->se.on_rq;
c09595f6 4399 if (on_rq)
69be72c1 4400 dequeue_task(rq, p, 0);
1da177e4 4401
1da177e4 4402 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4403 set_load_weight(p);
b29739f9
IM
4404 old_prio = p->prio;
4405 p->prio = effective_prio(p);
4406 delta = p->prio - old_prio;
1da177e4 4407
dd41f596 4408 if (on_rq) {
371fd7e7 4409 enqueue_task(rq, p, 0);
1da177e4 4410 /*
d5f9f942
AM
4411 * If the task increased its priority or is running and
4412 * lowered its priority, then reschedule its CPU:
1da177e4 4413 */
d5f9f942 4414 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4415 resched_task(rq->curr);
4416 }
4417out_unlock:
4418 task_rq_unlock(rq, &flags);
4419}
1da177e4
LT
4420EXPORT_SYMBOL(set_user_nice);
4421
e43379f1
MM
4422/*
4423 * can_nice - check if a task can reduce its nice value
4424 * @p: task
4425 * @nice: nice value
4426 */
36c8b586 4427int can_nice(const struct task_struct *p, const int nice)
e43379f1 4428{
024f4747
MM
4429 /* convert nice value [19,-20] to rlimit style value [1,40] */
4430 int nice_rlim = 20 - nice;
48f24c4d 4431
78d7d407 4432 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4433 capable(CAP_SYS_NICE));
4434}
4435
1da177e4
LT
4436#ifdef __ARCH_WANT_SYS_NICE
4437
4438/*
4439 * sys_nice - change the priority of the current process.
4440 * @increment: priority increment
4441 *
4442 * sys_setpriority is a more generic, but much slower function that
4443 * does similar things.
4444 */
5add95d4 4445SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4446{
48f24c4d 4447 long nice, retval;
1da177e4
LT
4448
4449 /*
4450 * Setpriority might change our priority at the same moment.
4451 * We don't have to worry. Conceptually one call occurs first
4452 * and we have a single winner.
4453 */
e43379f1
MM
4454 if (increment < -40)
4455 increment = -40;
1da177e4
LT
4456 if (increment > 40)
4457 increment = 40;
4458
2b8f836f 4459 nice = TASK_NICE(current) + increment;
1da177e4
LT
4460 if (nice < -20)
4461 nice = -20;
4462 if (nice > 19)
4463 nice = 19;
4464
e43379f1
MM
4465 if (increment < 0 && !can_nice(current, nice))
4466 return -EPERM;
4467
1da177e4
LT
4468 retval = security_task_setnice(current, nice);
4469 if (retval)
4470 return retval;
4471
4472 set_user_nice(current, nice);
4473 return 0;
4474}
4475
4476#endif
4477
4478/**
4479 * task_prio - return the priority value of a given task.
4480 * @p: the task in question.
4481 *
4482 * This is the priority value as seen by users in /proc.
4483 * RT tasks are offset by -200. Normal tasks are centered
4484 * around 0, value goes from -16 to +15.
4485 */
36c8b586 4486int task_prio(const struct task_struct *p)
1da177e4
LT
4487{
4488 return p->prio - MAX_RT_PRIO;
4489}
4490
4491/**
4492 * task_nice - return the nice value of a given task.
4493 * @p: the task in question.
4494 */
36c8b586 4495int task_nice(const struct task_struct *p)
1da177e4
LT
4496{
4497 return TASK_NICE(p);
4498}
150d8bed 4499EXPORT_SYMBOL(task_nice);
1da177e4
LT
4500
4501/**
4502 * idle_cpu - is a given cpu idle currently?
4503 * @cpu: the processor in question.
4504 */
4505int idle_cpu(int cpu)
4506{
4507 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4508}
4509
1da177e4
LT
4510/**
4511 * idle_task - return the idle task for a given cpu.
4512 * @cpu: the processor in question.
4513 */
36c8b586 4514struct task_struct *idle_task(int cpu)
1da177e4
LT
4515{
4516 return cpu_rq(cpu)->idle;
4517}
4518
4519/**
4520 * find_process_by_pid - find a process with a matching PID value.
4521 * @pid: the pid in question.
4522 */
a9957449 4523static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4524{
228ebcbe 4525 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4526}
4527
4528/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4529static void
4530__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4531{
dd41f596 4532 BUG_ON(p->se.on_rq);
48f24c4d 4533
1da177e4
LT
4534 p->policy = policy;
4535 p->rt_priority = prio;
b29739f9
IM
4536 p->normal_prio = normal_prio(p);
4537 /* we are holding p->pi_lock already */
4538 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4539 if (rt_prio(p->prio))
4540 p->sched_class = &rt_sched_class;
4541 else
4542 p->sched_class = &fair_sched_class;
2dd73a4f 4543 set_load_weight(p);
1da177e4
LT
4544}
4545
c69e8d9c
DH
4546/*
4547 * check the target process has a UID that matches the current process's
4548 */
4549static bool check_same_owner(struct task_struct *p)
4550{
4551 const struct cred *cred = current_cred(), *pcred;
4552 bool match;
4553
4554 rcu_read_lock();
4555 pcred = __task_cred(p);
4556 match = (cred->euid == pcred->euid ||
4557 cred->euid == pcred->uid);
4558 rcu_read_unlock();
4559 return match;
4560}
4561
961ccddd 4562static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4563 const struct sched_param *param, bool user)
1da177e4 4564{
83b699ed 4565 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4566 unsigned long flags;
83ab0aa0 4567 const struct sched_class *prev_class;
70b97a7f 4568 struct rq *rq;
ca94c442 4569 int reset_on_fork;
1da177e4 4570
66e5393a
SR
4571 /* may grab non-irq protected spin_locks */
4572 BUG_ON(in_interrupt());
1da177e4
LT
4573recheck:
4574 /* double check policy once rq lock held */
ca94c442
LP
4575 if (policy < 0) {
4576 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4577 policy = oldpolicy = p->policy;
ca94c442
LP
4578 } else {
4579 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4580 policy &= ~SCHED_RESET_ON_FORK;
4581
4582 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4583 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4584 policy != SCHED_IDLE)
4585 return -EINVAL;
4586 }
4587
1da177e4
LT
4588 /*
4589 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4590 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4591 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4592 */
4593 if (param->sched_priority < 0 ||
95cdf3b7 4594 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4595 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4596 return -EINVAL;
e05606d3 4597 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4598 return -EINVAL;
4599
37e4ab3f
OC
4600 /*
4601 * Allow unprivileged RT tasks to decrease priority:
4602 */
961ccddd 4603 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4604 if (rt_policy(policy)) {
a44702e8
ON
4605 unsigned long rlim_rtprio =
4606 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4607
4608 /* can't set/change the rt policy */
4609 if (policy != p->policy && !rlim_rtprio)
4610 return -EPERM;
4611
4612 /* can't increase priority */
4613 if (param->sched_priority > p->rt_priority &&
4614 param->sched_priority > rlim_rtprio)
4615 return -EPERM;
4616 }
dd41f596
IM
4617 /*
4618 * Like positive nice levels, dont allow tasks to
4619 * move out of SCHED_IDLE either:
4620 */
4621 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4622 return -EPERM;
5fe1d75f 4623
37e4ab3f 4624 /* can't change other user's priorities */
c69e8d9c 4625 if (!check_same_owner(p))
37e4ab3f 4626 return -EPERM;
ca94c442
LP
4627
4628 /* Normal users shall not reset the sched_reset_on_fork flag */
4629 if (p->sched_reset_on_fork && !reset_on_fork)
4630 return -EPERM;
37e4ab3f 4631 }
1da177e4 4632
725aad24 4633 if (user) {
b0ae1981 4634 retval = security_task_setscheduler(p);
725aad24
JF
4635 if (retval)
4636 return retval;
4637 }
4638
b29739f9
IM
4639 /*
4640 * make sure no PI-waiters arrive (or leave) while we are
4641 * changing the priority of the task:
4642 */
1d615482 4643 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4644 /*
4645 * To be able to change p->policy safely, the apropriate
4646 * runqueue lock must be held.
4647 */
b29739f9 4648 rq = __task_rq_lock(p);
dc61b1d6 4649
34f971f6
PZ
4650 /*
4651 * Changing the policy of the stop threads its a very bad idea
4652 */
4653 if (p == rq->stop) {
4654 __task_rq_unlock(rq);
4655 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4656 return -EINVAL;
4657 }
4658
dc61b1d6
PZ
4659#ifdef CONFIG_RT_GROUP_SCHED
4660 if (user) {
4661 /*
4662 * Do not allow realtime tasks into groups that have no runtime
4663 * assigned.
4664 */
4665 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4666 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4667 __task_rq_unlock(rq);
4668 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4669 return -EPERM;
4670 }
4671 }
4672#endif
4673
1da177e4
LT
4674 /* recheck policy now with rq lock held */
4675 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4676 policy = oldpolicy = -1;
b29739f9 4677 __task_rq_unlock(rq);
1d615482 4678 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4679 goto recheck;
4680 }
dd41f596 4681 on_rq = p->se.on_rq;
051a1d1a 4682 running = task_current(rq, p);
0e1f3483 4683 if (on_rq)
2e1cb74a 4684 deactivate_task(rq, p, 0);
0e1f3483
HS
4685 if (running)
4686 p->sched_class->put_prev_task(rq, p);
f6b53205 4687
ca94c442
LP
4688 p->sched_reset_on_fork = reset_on_fork;
4689
1da177e4 4690 oldprio = p->prio;
83ab0aa0 4691 prev_class = p->sched_class;
dd41f596 4692 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4693
0e1f3483
HS
4694 if (running)
4695 p->sched_class->set_curr_task(rq);
dd41f596
IM
4696 if (on_rq) {
4697 activate_task(rq, p, 0);
cb469845
SR
4698
4699 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4700 }
b29739f9 4701 __task_rq_unlock(rq);
1d615482 4702 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4703
95e02ca9
TG
4704 rt_mutex_adjust_pi(p);
4705
1da177e4
LT
4706 return 0;
4707}
961ccddd
RR
4708
4709/**
4710 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4711 * @p: the task in question.
4712 * @policy: new policy.
4713 * @param: structure containing the new RT priority.
4714 *
4715 * NOTE that the task may be already dead.
4716 */
4717int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4718 const struct sched_param *param)
961ccddd
RR
4719{
4720 return __sched_setscheduler(p, policy, param, true);
4721}
1da177e4
LT
4722EXPORT_SYMBOL_GPL(sched_setscheduler);
4723
961ccddd
RR
4724/**
4725 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4726 * @p: the task in question.
4727 * @policy: new policy.
4728 * @param: structure containing the new RT priority.
4729 *
4730 * Just like sched_setscheduler, only don't bother checking if the
4731 * current context has permission. For example, this is needed in
4732 * stop_machine(): we create temporary high priority worker threads,
4733 * but our caller might not have that capability.
4734 */
4735int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4736 const struct sched_param *param)
961ccddd
RR
4737{
4738 return __sched_setscheduler(p, policy, param, false);
4739}
4740
95cdf3b7
IM
4741static int
4742do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4743{
1da177e4
LT
4744 struct sched_param lparam;
4745 struct task_struct *p;
36c8b586 4746 int retval;
1da177e4
LT
4747
4748 if (!param || pid < 0)
4749 return -EINVAL;
4750 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4751 return -EFAULT;
5fe1d75f
ON
4752
4753 rcu_read_lock();
4754 retval = -ESRCH;
1da177e4 4755 p = find_process_by_pid(pid);
5fe1d75f
ON
4756 if (p != NULL)
4757 retval = sched_setscheduler(p, policy, &lparam);
4758 rcu_read_unlock();
36c8b586 4759
1da177e4
LT
4760 return retval;
4761}
4762
4763/**
4764 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4765 * @pid: the pid in question.
4766 * @policy: new policy.
4767 * @param: structure containing the new RT priority.
4768 */
5add95d4
HC
4769SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4770 struct sched_param __user *, param)
1da177e4 4771{
c21761f1
JB
4772 /* negative values for policy are not valid */
4773 if (policy < 0)
4774 return -EINVAL;
4775
1da177e4
LT
4776 return do_sched_setscheduler(pid, policy, param);
4777}
4778
4779/**
4780 * sys_sched_setparam - set/change the RT priority of a thread
4781 * @pid: the pid in question.
4782 * @param: structure containing the new RT priority.
4783 */
5add95d4 4784SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4785{
4786 return do_sched_setscheduler(pid, -1, param);
4787}
4788
4789/**
4790 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4791 * @pid: the pid in question.
4792 */
5add95d4 4793SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4794{
36c8b586 4795 struct task_struct *p;
3a5c359a 4796 int retval;
1da177e4
LT
4797
4798 if (pid < 0)
3a5c359a 4799 return -EINVAL;
1da177e4
LT
4800
4801 retval = -ESRCH;
5fe85be0 4802 rcu_read_lock();
1da177e4
LT
4803 p = find_process_by_pid(pid);
4804 if (p) {
4805 retval = security_task_getscheduler(p);
4806 if (!retval)
ca94c442
LP
4807 retval = p->policy
4808 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4809 }
5fe85be0 4810 rcu_read_unlock();
1da177e4
LT
4811 return retval;
4812}
4813
4814/**
ca94c442 4815 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4816 * @pid: the pid in question.
4817 * @param: structure containing the RT priority.
4818 */
5add95d4 4819SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4820{
4821 struct sched_param lp;
36c8b586 4822 struct task_struct *p;
3a5c359a 4823 int retval;
1da177e4
LT
4824
4825 if (!param || pid < 0)
3a5c359a 4826 return -EINVAL;
1da177e4 4827
5fe85be0 4828 rcu_read_lock();
1da177e4
LT
4829 p = find_process_by_pid(pid);
4830 retval = -ESRCH;
4831 if (!p)
4832 goto out_unlock;
4833
4834 retval = security_task_getscheduler(p);
4835 if (retval)
4836 goto out_unlock;
4837
4838 lp.sched_priority = p->rt_priority;
5fe85be0 4839 rcu_read_unlock();
1da177e4
LT
4840
4841 /*
4842 * This one might sleep, we cannot do it with a spinlock held ...
4843 */
4844 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4845
1da177e4
LT
4846 return retval;
4847
4848out_unlock:
5fe85be0 4849 rcu_read_unlock();
1da177e4
LT
4850 return retval;
4851}
4852
96f874e2 4853long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4854{
5a16f3d3 4855 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4856 struct task_struct *p;
4857 int retval;
1da177e4 4858
95402b38 4859 get_online_cpus();
23f5d142 4860 rcu_read_lock();
1da177e4
LT
4861
4862 p = find_process_by_pid(pid);
4863 if (!p) {
23f5d142 4864 rcu_read_unlock();
95402b38 4865 put_online_cpus();
1da177e4
LT
4866 return -ESRCH;
4867 }
4868
23f5d142 4869 /* Prevent p going away */
1da177e4 4870 get_task_struct(p);
23f5d142 4871 rcu_read_unlock();
1da177e4 4872
5a16f3d3
RR
4873 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4874 retval = -ENOMEM;
4875 goto out_put_task;
4876 }
4877 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4878 retval = -ENOMEM;
4879 goto out_free_cpus_allowed;
4880 }
1da177e4 4881 retval = -EPERM;
c69e8d9c 4882 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4883 goto out_unlock;
4884
b0ae1981 4885 retval = security_task_setscheduler(p);
e7834f8f
DQ
4886 if (retval)
4887 goto out_unlock;
4888
5a16f3d3
RR
4889 cpuset_cpus_allowed(p, cpus_allowed);
4890 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4891again:
5a16f3d3 4892 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4893
8707d8b8 4894 if (!retval) {
5a16f3d3
RR
4895 cpuset_cpus_allowed(p, cpus_allowed);
4896 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4897 /*
4898 * We must have raced with a concurrent cpuset
4899 * update. Just reset the cpus_allowed to the
4900 * cpuset's cpus_allowed
4901 */
5a16f3d3 4902 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4903 goto again;
4904 }
4905 }
1da177e4 4906out_unlock:
5a16f3d3
RR
4907 free_cpumask_var(new_mask);
4908out_free_cpus_allowed:
4909 free_cpumask_var(cpus_allowed);
4910out_put_task:
1da177e4 4911 put_task_struct(p);
95402b38 4912 put_online_cpus();
1da177e4
LT
4913 return retval;
4914}
4915
4916static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4917 struct cpumask *new_mask)
1da177e4 4918{
96f874e2
RR
4919 if (len < cpumask_size())
4920 cpumask_clear(new_mask);
4921 else if (len > cpumask_size())
4922 len = cpumask_size();
4923
1da177e4
LT
4924 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4925}
4926
4927/**
4928 * sys_sched_setaffinity - set the cpu affinity of a process
4929 * @pid: pid of the process
4930 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4931 * @user_mask_ptr: user-space pointer to the new cpu mask
4932 */
5add95d4
HC
4933SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4934 unsigned long __user *, user_mask_ptr)
1da177e4 4935{
5a16f3d3 4936 cpumask_var_t new_mask;
1da177e4
LT
4937 int retval;
4938
5a16f3d3
RR
4939 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4940 return -ENOMEM;
1da177e4 4941
5a16f3d3
RR
4942 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4943 if (retval == 0)
4944 retval = sched_setaffinity(pid, new_mask);
4945 free_cpumask_var(new_mask);
4946 return retval;
1da177e4
LT
4947}
4948
96f874e2 4949long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4950{
36c8b586 4951 struct task_struct *p;
31605683
TG
4952 unsigned long flags;
4953 struct rq *rq;
1da177e4 4954 int retval;
1da177e4 4955
95402b38 4956 get_online_cpus();
23f5d142 4957 rcu_read_lock();
1da177e4
LT
4958
4959 retval = -ESRCH;
4960 p = find_process_by_pid(pid);
4961 if (!p)
4962 goto out_unlock;
4963
e7834f8f
DQ
4964 retval = security_task_getscheduler(p);
4965 if (retval)
4966 goto out_unlock;
4967
31605683 4968 rq = task_rq_lock(p, &flags);
96f874e2 4969 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4970 task_rq_unlock(rq, &flags);
1da177e4
LT
4971
4972out_unlock:
23f5d142 4973 rcu_read_unlock();
95402b38 4974 put_online_cpus();
1da177e4 4975
9531b62f 4976 return retval;
1da177e4
LT
4977}
4978
4979/**
4980 * sys_sched_getaffinity - get the cpu affinity of a process
4981 * @pid: pid of the process
4982 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4983 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4984 */
5add95d4
HC
4985SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4986 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4987{
4988 int ret;
f17c8607 4989 cpumask_var_t mask;
1da177e4 4990
84fba5ec 4991 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4992 return -EINVAL;
4993 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4994 return -EINVAL;
4995
f17c8607
RR
4996 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4997 return -ENOMEM;
1da177e4 4998
f17c8607
RR
4999 ret = sched_getaffinity(pid, mask);
5000 if (ret == 0) {
8bc037fb 5001 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5002
5003 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5004 ret = -EFAULT;
5005 else
cd3d8031 5006 ret = retlen;
f17c8607
RR
5007 }
5008 free_cpumask_var(mask);
1da177e4 5009
f17c8607 5010 return ret;
1da177e4
LT
5011}
5012
5013/**
5014 * sys_sched_yield - yield the current processor to other threads.
5015 *
dd41f596
IM
5016 * This function yields the current CPU to other tasks. If there are no
5017 * other threads running on this CPU then this function will return.
1da177e4 5018 */
5add95d4 5019SYSCALL_DEFINE0(sched_yield)
1da177e4 5020{
70b97a7f 5021 struct rq *rq = this_rq_lock();
1da177e4 5022
2d72376b 5023 schedstat_inc(rq, yld_count);
4530d7ab 5024 current->sched_class->yield_task(rq);
1da177e4
LT
5025
5026 /*
5027 * Since we are going to call schedule() anyway, there's
5028 * no need to preempt or enable interrupts:
5029 */
5030 __release(rq->lock);
8a25d5de 5031 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5032 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5033 preempt_enable_no_resched();
5034
5035 schedule();
5036
5037 return 0;
5038}
5039
d86ee480
PZ
5040static inline int should_resched(void)
5041{
5042 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5043}
5044
e7b38404 5045static void __cond_resched(void)
1da177e4 5046{
e7aaaa69
FW
5047 add_preempt_count(PREEMPT_ACTIVE);
5048 schedule();
5049 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5050}
5051
02b67cc3 5052int __sched _cond_resched(void)
1da177e4 5053{
d86ee480 5054 if (should_resched()) {
1da177e4
LT
5055 __cond_resched();
5056 return 1;
5057 }
5058 return 0;
5059}
02b67cc3 5060EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5061
5062/*
613afbf8 5063 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5064 * call schedule, and on return reacquire the lock.
5065 *
41a2d6cf 5066 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5067 * operations here to prevent schedule() from being called twice (once via
5068 * spin_unlock(), once by hand).
5069 */
613afbf8 5070int __cond_resched_lock(spinlock_t *lock)
1da177e4 5071{
d86ee480 5072 int resched = should_resched();
6df3cecb
JK
5073 int ret = 0;
5074
f607c668
PZ
5075 lockdep_assert_held(lock);
5076
95c354fe 5077 if (spin_needbreak(lock) || resched) {
1da177e4 5078 spin_unlock(lock);
d86ee480 5079 if (resched)
95c354fe
NP
5080 __cond_resched();
5081 else
5082 cpu_relax();
6df3cecb 5083 ret = 1;
1da177e4 5084 spin_lock(lock);
1da177e4 5085 }
6df3cecb 5086 return ret;
1da177e4 5087}
613afbf8 5088EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5089
613afbf8 5090int __sched __cond_resched_softirq(void)
1da177e4
LT
5091{
5092 BUG_ON(!in_softirq());
5093
d86ee480 5094 if (should_resched()) {
98d82567 5095 local_bh_enable();
1da177e4
LT
5096 __cond_resched();
5097 local_bh_disable();
5098 return 1;
5099 }
5100 return 0;
5101}
613afbf8 5102EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5103
1da177e4
LT
5104/**
5105 * yield - yield the current processor to other threads.
5106 *
72fd4a35 5107 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5108 * thread runnable and calls sys_sched_yield().
5109 */
5110void __sched yield(void)
5111{
5112 set_current_state(TASK_RUNNING);
5113 sys_sched_yield();
5114}
1da177e4
LT
5115EXPORT_SYMBOL(yield);
5116
5117/*
41a2d6cf 5118 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5119 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5120 */
5121void __sched io_schedule(void)
5122{
54d35f29 5123 struct rq *rq = raw_rq();
1da177e4 5124
0ff92245 5125 delayacct_blkio_start();
1da177e4 5126 atomic_inc(&rq->nr_iowait);
8f0dfc34 5127 current->in_iowait = 1;
1da177e4 5128 schedule();
8f0dfc34 5129 current->in_iowait = 0;
1da177e4 5130 atomic_dec(&rq->nr_iowait);
0ff92245 5131 delayacct_blkio_end();
1da177e4 5132}
1da177e4
LT
5133EXPORT_SYMBOL(io_schedule);
5134
5135long __sched io_schedule_timeout(long timeout)
5136{
54d35f29 5137 struct rq *rq = raw_rq();
1da177e4
LT
5138 long ret;
5139
0ff92245 5140 delayacct_blkio_start();
1da177e4 5141 atomic_inc(&rq->nr_iowait);
8f0dfc34 5142 current->in_iowait = 1;
1da177e4 5143 ret = schedule_timeout(timeout);
8f0dfc34 5144 current->in_iowait = 0;
1da177e4 5145 atomic_dec(&rq->nr_iowait);
0ff92245 5146 delayacct_blkio_end();
1da177e4
LT
5147 return ret;
5148}
5149
5150/**
5151 * sys_sched_get_priority_max - return maximum RT priority.
5152 * @policy: scheduling class.
5153 *
5154 * this syscall returns the maximum rt_priority that can be used
5155 * by a given scheduling class.
5156 */
5add95d4 5157SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5158{
5159 int ret = -EINVAL;
5160
5161 switch (policy) {
5162 case SCHED_FIFO:
5163 case SCHED_RR:
5164 ret = MAX_USER_RT_PRIO-1;
5165 break;
5166 case SCHED_NORMAL:
b0a9499c 5167 case SCHED_BATCH:
dd41f596 5168 case SCHED_IDLE:
1da177e4
LT
5169 ret = 0;
5170 break;
5171 }
5172 return ret;
5173}
5174
5175/**
5176 * sys_sched_get_priority_min - return minimum RT priority.
5177 * @policy: scheduling class.
5178 *
5179 * this syscall returns the minimum rt_priority that can be used
5180 * by a given scheduling class.
5181 */
5add95d4 5182SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5183{
5184 int ret = -EINVAL;
5185
5186 switch (policy) {
5187 case SCHED_FIFO:
5188 case SCHED_RR:
5189 ret = 1;
5190 break;
5191 case SCHED_NORMAL:
b0a9499c 5192 case SCHED_BATCH:
dd41f596 5193 case SCHED_IDLE:
1da177e4
LT
5194 ret = 0;
5195 }
5196 return ret;
5197}
5198
5199/**
5200 * sys_sched_rr_get_interval - return the default timeslice of a process.
5201 * @pid: pid of the process.
5202 * @interval: userspace pointer to the timeslice value.
5203 *
5204 * this syscall writes the default timeslice value of a given process
5205 * into the user-space timespec buffer. A value of '0' means infinity.
5206 */
17da2bd9 5207SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5208 struct timespec __user *, interval)
1da177e4 5209{
36c8b586 5210 struct task_struct *p;
a4ec24b4 5211 unsigned int time_slice;
dba091b9
TG
5212 unsigned long flags;
5213 struct rq *rq;
3a5c359a 5214 int retval;
1da177e4 5215 struct timespec t;
1da177e4
LT
5216
5217 if (pid < 0)
3a5c359a 5218 return -EINVAL;
1da177e4
LT
5219
5220 retval = -ESRCH;
1a551ae7 5221 rcu_read_lock();
1da177e4
LT
5222 p = find_process_by_pid(pid);
5223 if (!p)
5224 goto out_unlock;
5225
5226 retval = security_task_getscheduler(p);
5227 if (retval)
5228 goto out_unlock;
5229
dba091b9
TG
5230 rq = task_rq_lock(p, &flags);
5231 time_slice = p->sched_class->get_rr_interval(rq, p);
5232 task_rq_unlock(rq, &flags);
a4ec24b4 5233
1a551ae7 5234 rcu_read_unlock();
a4ec24b4 5235 jiffies_to_timespec(time_slice, &t);
1da177e4 5236 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5237 return retval;
3a5c359a 5238
1da177e4 5239out_unlock:
1a551ae7 5240 rcu_read_unlock();
1da177e4
LT
5241 return retval;
5242}
5243
7c731e0a 5244static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5245
82a1fcb9 5246void sched_show_task(struct task_struct *p)
1da177e4 5247{
1da177e4 5248 unsigned long free = 0;
36c8b586 5249 unsigned state;
1da177e4 5250
1da177e4 5251 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5252 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5253 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5254#if BITS_PER_LONG == 32
1da177e4 5255 if (state == TASK_RUNNING)
3df0fc5b 5256 printk(KERN_CONT " running ");
1da177e4 5257 else
3df0fc5b 5258 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5259#else
5260 if (state == TASK_RUNNING)
3df0fc5b 5261 printk(KERN_CONT " running task ");
1da177e4 5262 else
3df0fc5b 5263 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5264#endif
5265#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5266 free = stack_not_used(p);
1da177e4 5267#endif
3df0fc5b 5268 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5269 task_pid_nr(p), task_pid_nr(p->real_parent),
5270 (unsigned long)task_thread_info(p)->flags);
1da177e4 5271
5fb5e6de 5272 show_stack(p, NULL);
1da177e4
LT
5273}
5274
e59e2ae2 5275void show_state_filter(unsigned long state_filter)
1da177e4 5276{
36c8b586 5277 struct task_struct *g, *p;
1da177e4 5278
4bd77321 5279#if BITS_PER_LONG == 32
3df0fc5b
PZ
5280 printk(KERN_INFO
5281 " task PC stack pid father\n");
1da177e4 5282#else
3df0fc5b
PZ
5283 printk(KERN_INFO
5284 " task PC stack pid father\n");
1da177e4
LT
5285#endif
5286 read_lock(&tasklist_lock);
5287 do_each_thread(g, p) {
5288 /*
5289 * reset the NMI-timeout, listing all files on a slow
5290 * console might take alot of time:
5291 */
5292 touch_nmi_watchdog();
39bc89fd 5293 if (!state_filter || (p->state & state_filter))
82a1fcb9 5294 sched_show_task(p);
1da177e4
LT
5295 } while_each_thread(g, p);
5296
04c9167f
JF
5297 touch_all_softlockup_watchdogs();
5298
dd41f596
IM
5299#ifdef CONFIG_SCHED_DEBUG
5300 sysrq_sched_debug_show();
5301#endif
1da177e4 5302 read_unlock(&tasklist_lock);
e59e2ae2
IM
5303 /*
5304 * Only show locks if all tasks are dumped:
5305 */
93335a21 5306 if (!state_filter)
e59e2ae2 5307 debug_show_all_locks();
1da177e4
LT
5308}
5309
1df21055
IM
5310void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5311{
dd41f596 5312 idle->sched_class = &idle_sched_class;
1df21055
IM
5313}
5314
f340c0d1
IM
5315/**
5316 * init_idle - set up an idle thread for a given CPU
5317 * @idle: task in question
5318 * @cpu: cpu the idle task belongs to
5319 *
5320 * NOTE: this function does not set the idle thread's NEED_RESCHED
5321 * flag, to make booting more robust.
5322 */
5c1e1767 5323void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5324{
70b97a7f 5325 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5326 unsigned long flags;
5327
05fa785c 5328 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5329
dd41f596 5330 __sched_fork(idle);
06b83b5f 5331 idle->state = TASK_RUNNING;
dd41f596
IM
5332 idle->se.exec_start = sched_clock();
5333
96f874e2 5334 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5335 /*
5336 * We're having a chicken and egg problem, even though we are
5337 * holding rq->lock, the cpu isn't yet set to this cpu so the
5338 * lockdep check in task_group() will fail.
5339 *
5340 * Similar case to sched_fork(). / Alternatively we could
5341 * use task_rq_lock() here and obtain the other rq->lock.
5342 *
5343 * Silence PROVE_RCU
5344 */
5345 rcu_read_lock();
dd41f596 5346 __set_task_cpu(idle, cpu);
6506cf6c 5347 rcu_read_unlock();
1da177e4 5348
1da177e4 5349 rq->curr = rq->idle = idle;
4866cde0
NP
5350#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5351 idle->oncpu = 1;
5352#endif
05fa785c 5353 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5354
5355 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5356#if defined(CONFIG_PREEMPT)
5357 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5358#else
a1261f54 5359 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5360#endif
dd41f596
IM
5361 /*
5362 * The idle tasks have their own, simple scheduling class:
5363 */
5364 idle->sched_class = &idle_sched_class;
fb52607a 5365 ftrace_graph_init_task(idle);
1da177e4
LT
5366}
5367
5368/*
5369 * In a system that switches off the HZ timer nohz_cpu_mask
5370 * indicates which cpus entered this state. This is used
5371 * in the rcu update to wait only for active cpus. For system
5372 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5373 * always be CPU_BITS_NONE.
1da177e4 5374 */
6a7b3dc3 5375cpumask_var_t nohz_cpu_mask;
1da177e4 5376
19978ca6
IM
5377/*
5378 * Increase the granularity value when there are more CPUs,
5379 * because with more CPUs the 'effective latency' as visible
5380 * to users decreases. But the relationship is not linear,
5381 * so pick a second-best guess by going with the log2 of the
5382 * number of CPUs.
5383 *
5384 * This idea comes from the SD scheduler of Con Kolivas:
5385 */
acb4a848 5386static int get_update_sysctl_factor(void)
19978ca6 5387{
4ca3ef71 5388 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5389 unsigned int factor;
5390
5391 switch (sysctl_sched_tunable_scaling) {
5392 case SCHED_TUNABLESCALING_NONE:
5393 factor = 1;
5394 break;
5395 case SCHED_TUNABLESCALING_LINEAR:
5396 factor = cpus;
5397 break;
5398 case SCHED_TUNABLESCALING_LOG:
5399 default:
5400 factor = 1 + ilog2(cpus);
5401 break;
5402 }
19978ca6 5403
acb4a848
CE
5404 return factor;
5405}
19978ca6 5406
acb4a848
CE
5407static void update_sysctl(void)
5408{
5409 unsigned int factor = get_update_sysctl_factor();
19978ca6 5410
0bcdcf28
CE
5411#define SET_SYSCTL(name) \
5412 (sysctl_##name = (factor) * normalized_sysctl_##name)
5413 SET_SYSCTL(sched_min_granularity);
5414 SET_SYSCTL(sched_latency);
5415 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5416#undef SET_SYSCTL
5417}
55cd5340 5418
0bcdcf28
CE
5419static inline void sched_init_granularity(void)
5420{
5421 update_sysctl();
19978ca6
IM
5422}
5423
1da177e4
LT
5424#ifdef CONFIG_SMP
5425/*
5426 * This is how migration works:
5427 *
969c7921
TH
5428 * 1) we invoke migration_cpu_stop() on the target CPU using
5429 * stop_one_cpu().
5430 * 2) stopper starts to run (implicitly forcing the migrated thread
5431 * off the CPU)
5432 * 3) it checks whether the migrated task is still in the wrong runqueue.
5433 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5434 * it and puts it into the right queue.
969c7921
TH
5435 * 5) stopper completes and stop_one_cpu() returns and the migration
5436 * is done.
1da177e4
LT
5437 */
5438
5439/*
5440 * Change a given task's CPU affinity. Migrate the thread to a
5441 * proper CPU and schedule it away if the CPU it's executing on
5442 * is removed from the allowed bitmask.
5443 *
5444 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5445 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5446 * call is not atomic; no spinlocks may be held.
5447 */
96f874e2 5448int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5449{
5450 unsigned long flags;
70b97a7f 5451 struct rq *rq;
969c7921 5452 unsigned int dest_cpu;
48f24c4d 5453 int ret = 0;
1da177e4 5454
65cc8e48
PZ
5455 /*
5456 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5457 * drop the rq->lock and still rely on ->cpus_allowed.
5458 */
5459again:
5460 while (task_is_waking(p))
5461 cpu_relax();
1da177e4 5462 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5463 if (task_is_waking(p)) {
5464 task_rq_unlock(rq, &flags);
5465 goto again;
5466 }
e2912009 5467
6ad4c188 5468 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5469 ret = -EINVAL;
5470 goto out;
5471 }
5472
9985b0ba 5473 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5474 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5475 ret = -EINVAL;
5476 goto out;
5477 }
5478
73fe6aae 5479 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5480 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5481 else {
96f874e2
RR
5482 cpumask_copy(&p->cpus_allowed, new_mask);
5483 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5484 }
5485
1da177e4 5486 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5487 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5488 goto out;
5489
969c7921
TH
5490 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5491 if (migrate_task(p, dest_cpu)) {
5492 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5493 /* Need help from migration thread: drop lock and wait. */
5494 task_rq_unlock(rq, &flags);
969c7921 5495 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5496 tlb_migrate_finish(p->mm);
5497 return 0;
5498 }
5499out:
5500 task_rq_unlock(rq, &flags);
48f24c4d 5501
1da177e4
LT
5502 return ret;
5503}
cd8ba7cd 5504EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5505
5506/*
41a2d6cf 5507 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5508 * this because either it can't run here any more (set_cpus_allowed()
5509 * away from this CPU, or CPU going down), or because we're
5510 * attempting to rebalance this task on exec (sched_exec).
5511 *
5512 * So we race with normal scheduler movements, but that's OK, as long
5513 * as the task is no longer on this CPU.
efc30814
KK
5514 *
5515 * Returns non-zero if task was successfully migrated.
1da177e4 5516 */
efc30814 5517static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5518{
70b97a7f 5519 struct rq *rq_dest, *rq_src;
e2912009 5520 int ret = 0;
1da177e4 5521
e761b772 5522 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5523 return ret;
1da177e4
LT
5524
5525 rq_src = cpu_rq(src_cpu);
5526 rq_dest = cpu_rq(dest_cpu);
5527
5528 double_rq_lock(rq_src, rq_dest);
5529 /* Already moved. */
5530 if (task_cpu(p) != src_cpu)
b1e38734 5531 goto done;
1da177e4 5532 /* Affinity changed (again). */
96f874e2 5533 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5534 goto fail;
1da177e4 5535
e2912009
PZ
5536 /*
5537 * If we're not on a rq, the next wake-up will ensure we're
5538 * placed properly.
5539 */
5540 if (p->se.on_rq) {
2e1cb74a 5541 deactivate_task(rq_src, p, 0);
e2912009 5542 set_task_cpu(p, dest_cpu);
dd41f596 5543 activate_task(rq_dest, p, 0);
15afe09b 5544 check_preempt_curr(rq_dest, p, 0);
1da177e4 5545 }
b1e38734 5546done:
efc30814 5547 ret = 1;
b1e38734 5548fail:
1da177e4 5549 double_rq_unlock(rq_src, rq_dest);
efc30814 5550 return ret;
1da177e4
LT
5551}
5552
5553/*
969c7921
TH
5554 * migration_cpu_stop - this will be executed by a highprio stopper thread
5555 * and performs thread migration by bumping thread off CPU then
5556 * 'pushing' onto another runqueue.
1da177e4 5557 */
969c7921 5558static int migration_cpu_stop(void *data)
1da177e4 5559{
969c7921 5560 struct migration_arg *arg = data;
f7b4cddc 5561
969c7921
TH
5562 /*
5563 * The original target cpu might have gone down and we might
5564 * be on another cpu but it doesn't matter.
5565 */
f7b4cddc 5566 local_irq_disable();
969c7921 5567 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5568 local_irq_enable();
1da177e4 5569 return 0;
f7b4cddc
ON
5570}
5571
1da177e4 5572#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5573
054b9108 5574/*
48c5ccae
PZ
5575 * Ensures that the idle task is using init_mm right before its cpu goes
5576 * offline.
054b9108 5577 */
48c5ccae 5578void idle_task_exit(void)
1da177e4 5579{
48c5ccae 5580 struct mm_struct *mm = current->active_mm;
e76bd8d9 5581
48c5ccae 5582 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5583
48c5ccae
PZ
5584 if (mm != &init_mm)
5585 switch_mm(mm, &init_mm, current);
5586 mmdrop(mm);
1da177e4
LT
5587}
5588
5589/*
5590 * While a dead CPU has no uninterruptible tasks queued at this point,
5591 * it might still have a nonzero ->nr_uninterruptible counter, because
5592 * for performance reasons the counter is not stricly tracking tasks to
5593 * their home CPUs. So we just add the counter to another CPU's counter,
5594 * to keep the global sum constant after CPU-down:
5595 */
70b97a7f 5596static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5597{
6ad4c188 5598 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5599
1da177e4
LT
5600 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5601 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5602}
5603
dd41f596 5604/*
48c5ccae 5605 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5606 */
48c5ccae 5607static void calc_global_load_remove(struct rq *rq)
1da177e4 5608{
48c5ccae
PZ
5609 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5610 rq->calc_load_active = 0;
1da177e4
LT
5611}
5612
48f24c4d 5613/*
48c5ccae
PZ
5614 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5615 * try_to_wake_up()->select_task_rq().
5616 *
5617 * Called with rq->lock held even though we'er in stop_machine() and
5618 * there's no concurrency possible, we hold the required locks anyway
5619 * because of lock validation efforts.
1da177e4 5620 */
48c5ccae 5621static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5622{
70b97a7f 5623 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5624 struct task_struct *next, *stop = rq->stop;
5625 int dest_cpu;
1da177e4
LT
5626
5627 /*
48c5ccae
PZ
5628 * Fudge the rq selection such that the below task selection loop
5629 * doesn't get stuck on the currently eligible stop task.
5630 *
5631 * We're currently inside stop_machine() and the rq is either stuck
5632 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5633 * either way we should never end up calling schedule() until we're
5634 * done here.
1da177e4 5635 */
48c5ccae 5636 rq->stop = NULL;
48f24c4d 5637
dd41f596 5638 for ( ; ; ) {
48c5ccae
PZ
5639 /*
5640 * There's this thread running, bail when that's the only
5641 * remaining thread.
5642 */
5643 if (rq->nr_running == 1)
dd41f596 5644 break;
48c5ccae 5645
b67802ea 5646 next = pick_next_task(rq);
48c5ccae 5647 BUG_ON(!next);
79c53799 5648 next->sched_class->put_prev_task(rq, next);
e692ab53 5649
48c5ccae
PZ
5650 /* Find suitable destination for @next, with force if needed. */
5651 dest_cpu = select_fallback_rq(dead_cpu, next);
5652 raw_spin_unlock(&rq->lock);
5653
5654 __migrate_task(next, dead_cpu, dest_cpu);
5655
5656 raw_spin_lock(&rq->lock);
1da177e4 5657 }
dce48a84 5658
48c5ccae 5659 rq->stop = stop;
dce48a84 5660}
48c5ccae 5661
1da177e4
LT
5662#endif /* CONFIG_HOTPLUG_CPU */
5663
e692ab53
NP
5664#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5665
5666static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5667 {
5668 .procname = "sched_domain",
c57baf1e 5669 .mode = 0555,
e0361851 5670 },
56992309 5671 {}
e692ab53
NP
5672};
5673
5674static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5675 {
5676 .procname = "kernel",
c57baf1e 5677 .mode = 0555,
e0361851
AD
5678 .child = sd_ctl_dir,
5679 },
56992309 5680 {}
e692ab53
NP
5681};
5682
5683static struct ctl_table *sd_alloc_ctl_entry(int n)
5684{
5685 struct ctl_table *entry =
5cf9f062 5686 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5687
e692ab53
NP
5688 return entry;
5689}
5690
6382bc90
MM
5691static void sd_free_ctl_entry(struct ctl_table **tablep)
5692{
cd790076 5693 struct ctl_table *entry;
6382bc90 5694
cd790076
MM
5695 /*
5696 * In the intermediate directories, both the child directory and
5697 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5698 * will always be set. In the lowest directory the names are
cd790076
MM
5699 * static strings and all have proc handlers.
5700 */
5701 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5702 if (entry->child)
5703 sd_free_ctl_entry(&entry->child);
cd790076
MM
5704 if (entry->proc_handler == NULL)
5705 kfree(entry->procname);
5706 }
6382bc90
MM
5707
5708 kfree(*tablep);
5709 *tablep = NULL;
5710}
5711
e692ab53 5712static void
e0361851 5713set_table_entry(struct ctl_table *entry,
e692ab53
NP
5714 const char *procname, void *data, int maxlen,
5715 mode_t mode, proc_handler *proc_handler)
5716{
e692ab53
NP
5717 entry->procname = procname;
5718 entry->data = data;
5719 entry->maxlen = maxlen;
5720 entry->mode = mode;
5721 entry->proc_handler = proc_handler;
5722}
5723
5724static struct ctl_table *
5725sd_alloc_ctl_domain_table(struct sched_domain *sd)
5726{
a5d8c348 5727 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5728
ad1cdc1d
MM
5729 if (table == NULL)
5730 return NULL;
5731
e0361851 5732 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5733 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5734 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5735 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5736 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5737 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5738 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5739 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5740 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5741 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5742 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5743 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5744 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5745 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5746 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5747 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5748 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5749 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5750 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5751 &sd->cache_nice_tries,
5752 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5753 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5754 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5755 set_table_entry(&table[11], "name", sd->name,
5756 CORENAME_MAX_SIZE, 0444, proc_dostring);
5757 /* &table[12] is terminator */
e692ab53
NP
5758
5759 return table;
5760}
5761
9a4e7159 5762static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5763{
5764 struct ctl_table *entry, *table;
5765 struct sched_domain *sd;
5766 int domain_num = 0, i;
5767 char buf[32];
5768
5769 for_each_domain(cpu, sd)
5770 domain_num++;
5771 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5772 if (table == NULL)
5773 return NULL;
e692ab53
NP
5774
5775 i = 0;
5776 for_each_domain(cpu, sd) {
5777 snprintf(buf, 32, "domain%d", i);
e692ab53 5778 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5779 entry->mode = 0555;
e692ab53
NP
5780 entry->child = sd_alloc_ctl_domain_table(sd);
5781 entry++;
5782 i++;
5783 }
5784 return table;
5785}
5786
5787static struct ctl_table_header *sd_sysctl_header;
6382bc90 5788static void register_sched_domain_sysctl(void)
e692ab53 5789{
6ad4c188 5790 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5791 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5792 char buf[32];
5793
7378547f
MM
5794 WARN_ON(sd_ctl_dir[0].child);
5795 sd_ctl_dir[0].child = entry;
5796
ad1cdc1d
MM
5797 if (entry == NULL)
5798 return;
5799
6ad4c188 5800 for_each_possible_cpu(i) {
e692ab53 5801 snprintf(buf, 32, "cpu%d", i);
e692ab53 5802 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5803 entry->mode = 0555;
e692ab53 5804 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5805 entry++;
e692ab53 5806 }
7378547f
MM
5807
5808 WARN_ON(sd_sysctl_header);
e692ab53
NP
5809 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5810}
6382bc90 5811
7378547f 5812/* may be called multiple times per register */
6382bc90
MM
5813static void unregister_sched_domain_sysctl(void)
5814{
7378547f
MM
5815 if (sd_sysctl_header)
5816 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5817 sd_sysctl_header = NULL;
7378547f
MM
5818 if (sd_ctl_dir[0].child)
5819 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5820}
e692ab53 5821#else
6382bc90
MM
5822static void register_sched_domain_sysctl(void)
5823{
5824}
5825static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5826{
5827}
5828#endif
5829
1f11eb6a
GH
5830static void set_rq_online(struct rq *rq)
5831{
5832 if (!rq->online) {
5833 const struct sched_class *class;
5834
c6c4927b 5835 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5836 rq->online = 1;
5837
5838 for_each_class(class) {
5839 if (class->rq_online)
5840 class->rq_online(rq);
5841 }
5842 }
5843}
5844
5845static void set_rq_offline(struct rq *rq)
5846{
5847 if (rq->online) {
5848 const struct sched_class *class;
5849
5850 for_each_class(class) {
5851 if (class->rq_offline)
5852 class->rq_offline(rq);
5853 }
5854
c6c4927b 5855 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5856 rq->online = 0;
5857 }
5858}
5859
1da177e4
LT
5860/*
5861 * migration_call - callback that gets triggered when a CPU is added.
5862 * Here we can start up the necessary migration thread for the new CPU.
5863 */
48f24c4d
IM
5864static int __cpuinit
5865migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5866{
48f24c4d 5867 int cpu = (long)hcpu;
1da177e4 5868 unsigned long flags;
969c7921 5869 struct rq *rq = cpu_rq(cpu);
1da177e4 5870
48c5ccae 5871 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5872
1da177e4 5873 case CPU_UP_PREPARE:
a468d389 5874 rq->calc_load_update = calc_load_update;
1da177e4 5875 break;
48f24c4d 5876
1da177e4 5877 case CPU_ONLINE:
1f94ef59 5878 /* Update our root-domain */
05fa785c 5879 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5880 if (rq->rd) {
c6c4927b 5881 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5882
5883 set_rq_online(rq);
1f94ef59 5884 }
05fa785c 5885 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5886 break;
48f24c4d 5887
1da177e4 5888#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5889 case CPU_DYING:
57d885fe 5890 /* Update our root-domain */
05fa785c 5891 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5892 if (rq->rd) {
c6c4927b 5893 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5894 set_rq_offline(rq);
57d885fe 5895 }
48c5ccae
PZ
5896 migrate_tasks(cpu);
5897 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5898 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5899
5900 migrate_nr_uninterruptible(rq);
5901 calc_global_load_remove(rq);
57d885fe 5902 break;
1da177e4
LT
5903#endif
5904 }
5905 return NOTIFY_OK;
5906}
5907
f38b0820
PM
5908/*
5909 * Register at high priority so that task migration (migrate_all_tasks)
5910 * happens before everything else. This has to be lower priority than
cdd6c482 5911 * the notifier in the perf_event subsystem, though.
1da177e4 5912 */
26c2143b 5913static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5914 .notifier_call = migration_call,
50a323b7 5915 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5916};
5917
3a101d05
TH
5918static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5919 unsigned long action, void *hcpu)
5920{
5921 switch (action & ~CPU_TASKS_FROZEN) {
5922 case CPU_ONLINE:
5923 case CPU_DOWN_FAILED:
5924 set_cpu_active((long)hcpu, true);
5925 return NOTIFY_OK;
5926 default:
5927 return NOTIFY_DONE;
5928 }
5929}
5930
5931static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5932 unsigned long action, void *hcpu)
5933{
5934 switch (action & ~CPU_TASKS_FROZEN) {
5935 case CPU_DOWN_PREPARE:
5936 set_cpu_active((long)hcpu, false);
5937 return NOTIFY_OK;
5938 default:
5939 return NOTIFY_DONE;
5940 }
5941}
5942
7babe8db 5943static int __init migration_init(void)
1da177e4
LT
5944{
5945 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5946 int err;
48f24c4d 5947
3a101d05 5948 /* Initialize migration for the boot CPU */
07dccf33
AM
5949 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5950 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5951 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5952 register_cpu_notifier(&migration_notifier);
7babe8db 5953
3a101d05
TH
5954 /* Register cpu active notifiers */
5955 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5956 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5957
a004cd42 5958 return 0;
1da177e4 5959}
7babe8db 5960early_initcall(migration_init);
1da177e4
LT
5961#endif
5962
5963#ifdef CONFIG_SMP
476f3534 5964
3e9830dc 5965#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5966
f6630114
MT
5967static __read_mostly int sched_domain_debug_enabled;
5968
5969static int __init sched_domain_debug_setup(char *str)
5970{
5971 sched_domain_debug_enabled = 1;
5972
5973 return 0;
5974}
5975early_param("sched_debug", sched_domain_debug_setup);
5976
7c16ec58 5977static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5978 struct cpumask *groupmask)
1da177e4 5979{
4dcf6aff 5980 struct sched_group *group = sd->groups;
434d53b0 5981 char str[256];
1da177e4 5982
968ea6d8 5983 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5984 cpumask_clear(groupmask);
4dcf6aff
IM
5985
5986 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5987
5988 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5989 printk("does not load-balance\n");
4dcf6aff 5990 if (sd->parent)
3df0fc5b
PZ
5991 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5992 " has parent");
4dcf6aff 5993 return -1;
41c7ce9a
NP
5994 }
5995
3df0fc5b 5996 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5997
758b2cdc 5998 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5999 printk(KERN_ERR "ERROR: domain->span does not contain "
6000 "CPU%d\n", cpu);
4dcf6aff 6001 }
758b2cdc 6002 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6003 printk(KERN_ERR "ERROR: domain->groups does not contain"
6004 " CPU%d\n", cpu);
4dcf6aff 6005 }
1da177e4 6006
4dcf6aff 6007 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6008 do {
4dcf6aff 6009 if (!group) {
3df0fc5b
PZ
6010 printk("\n");
6011 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6012 break;
6013 }
6014
18a3885f 6015 if (!group->cpu_power) {
3df0fc5b
PZ
6016 printk(KERN_CONT "\n");
6017 printk(KERN_ERR "ERROR: domain->cpu_power not "
6018 "set\n");
4dcf6aff
IM
6019 break;
6020 }
1da177e4 6021
758b2cdc 6022 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6023 printk(KERN_CONT "\n");
6024 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6025 break;
6026 }
1da177e4 6027
758b2cdc 6028 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6029 printk(KERN_CONT "\n");
6030 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6031 break;
6032 }
1da177e4 6033
758b2cdc 6034 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6035
968ea6d8 6036 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6037
3df0fc5b 6038 printk(KERN_CONT " %s", str);
18a3885f 6039 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6040 printk(KERN_CONT " (cpu_power = %d)",
6041 group->cpu_power);
381512cf 6042 }
1da177e4 6043
4dcf6aff
IM
6044 group = group->next;
6045 } while (group != sd->groups);
3df0fc5b 6046 printk(KERN_CONT "\n");
1da177e4 6047
758b2cdc 6048 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6049 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6050
758b2cdc
RR
6051 if (sd->parent &&
6052 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6053 printk(KERN_ERR "ERROR: parent span is not a superset "
6054 "of domain->span\n");
4dcf6aff
IM
6055 return 0;
6056}
1da177e4 6057
4dcf6aff
IM
6058static void sched_domain_debug(struct sched_domain *sd, int cpu)
6059{
d5dd3db1 6060 cpumask_var_t groupmask;
4dcf6aff 6061 int level = 0;
1da177e4 6062
f6630114
MT
6063 if (!sched_domain_debug_enabled)
6064 return;
6065
4dcf6aff
IM
6066 if (!sd) {
6067 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6068 return;
6069 }
1da177e4 6070
4dcf6aff
IM
6071 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6072
d5dd3db1 6073 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6074 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6075 return;
6076 }
6077
4dcf6aff 6078 for (;;) {
7c16ec58 6079 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6080 break;
1da177e4
LT
6081 level++;
6082 sd = sd->parent;
33859f7f 6083 if (!sd)
4dcf6aff
IM
6084 break;
6085 }
d5dd3db1 6086 free_cpumask_var(groupmask);
1da177e4 6087}
6d6bc0ad 6088#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6089# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6090#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6091
1a20ff27 6092static int sd_degenerate(struct sched_domain *sd)
245af2c7 6093{
758b2cdc 6094 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6095 return 1;
6096
6097 /* Following flags need at least 2 groups */
6098 if (sd->flags & (SD_LOAD_BALANCE |
6099 SD_BALANCE_NEWIDLE |
6100 SD_BALANCE_FORK |
89c4710e
SS
6101 SD_BALANCE_EXEC |
6102 SD_SHARE_CPUPOWER |
6103 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6104 if (sd->groups != sd->groups->next)
6105 return 0;
6106 }
6107
6108 /* Following flags don't use groups */
c88d5910 6109 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6110 return 0;
6111
6112 return 1;
6113}
6114
48f24c4d
IM
6115static int
6116sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6117{
6118 unsigned long cflags = sd->flags, pflags = parent->flags;
6119
6120 if (sd_degenerate(parent))
6121 return 1;
6122
758b2cdc 6123 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6124 return 0;
6125
245af2c7
SS
6126 /* Flags needing groups don't count if only 1 group in parent */
6127 if (parent->groups == parent->groups->next) {
6128 pflags &= ~(SD_LOAD_BALANCE |
6129 SD_BALANCE_NEWIDLE |
6130 SD_BALANCE_FORK |
89c4710e
SS
6131 SD_BALANCE_EXEC |
6132 SD_SHARE_CPUPOWER |
6133 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6134 if (nr_node_ids == 1)
6135 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6136 }
6137 if (~cflags & pflags)
6138 return 0;
6139
6140 return 1;
6141}
6142
c6c4927b
RR
6143static void free_rootdomain(struct root_domain *rd)
6144{
047106ad
PZ
6145 synchronize_sched();
6146
68e74568
RR
6147 cpupri_cleanup(&rd->cpupri);
6148
c6c4927b
RR
6149 free_cpumask_var(rd->rto_mask);
6150 free_cpumask_var(rd->online);
6151 free_cpumask_var(rd->span);
6152 kfree(rd);
6153}
6154
57d885fe
GH
6155static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6156{
a0490fa3 6157 struct root_domain *old_rd = NULL;
57d885fe 6158 unsigned long flags;
57d885fe 6159
05fa785c 6160 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6161
6162 if (rq->rd) {
a0490fa3 6163 old_rd = rq->rd;
57d885fe 6164
c6c4927b 6165 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6166 set_rq_offline(rq);
57d885fe 6167
c6c4927b 6168 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6169
a0490fa3
IM
6170 /*
6171 * If we dont want to free the old_rt yet then
6172 * set old_rd to NULL to skip the freeing later
6173 * in this function:
6174 */
6175 if (!atomic_dec_and_test(&old_rd->refcount))
6176 old_rd = NULL;
57d885fe
GH
6177 }
6178
6179 atomic_inc(&rd->refcount);
6180 rq->rd = rd;
6181
c6c4927b 6182 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6183 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6184 set_rq_online(rq);
57d885fe 6185
05fa785c 6186 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6187
6188 if (old_rd)
6189 free_rootdomain(old_rd);
57d885fe
GH
6190}
6191
68c38fc3 6192static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6193{
6194 memset(rd, 0, sizeof(*rd));
6195
68c38fc3 6196 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6197 goto out;
68c38fc3 6198 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6199 goto free_span;
68c38fc3 6200 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6201 goto free_online;
6e0534f2 6202
68c38fc3 6203 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6204 goto free_rto_mask;
c6c4927b 6205 return 0;
6e0534f2 6206
68e74568
RR
6207free_rto_mask:
6208 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6209free_online:
6210 free_cpumask_var(rd->online);
6211free_span:
6212 free_cpumask_var(rd->span);
0c910d28 6213out:
c6c4927b 6214 return -ENOMEM;
57d885fe
GH
6215}
6216
6217static void init_defrootdomain(void)
6218{
68c38fc3 6219 init_rootdomain(&def_root_domain);
c6c4927b 6220
57d885fe
GH
6221 atomic_set(&def_root_domain.refcount, 1);
6222}
6223
dc938520 6224static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6225{
6226 struct root_domain *rd;
6227
6228 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6229 if (!rd)
6230 return NULL;
6231
68c38fc3 6232 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6233 kfree(rd);
6234 return NULL;
6235 }
57d885fe
GH
6236
6237 return rd;
6238}
6239
1da177e4 6240/*
0eab9146 6241 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6242 * hold the hotplug lock.
6243 */
0eab9146
IM
6244static void
6245cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6246{
70b97a7f 6247 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6248 struct sched_domain *tmp;
6249
669c55e9
PZ
6250 for (tmp = sd; tmp; tmp = tmp->parent)
6251 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6252
245af2c7 6253 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6254 for (tmp = sd; tmp; ) {
245af2c7
SS
6255 struct sched_domain *parent = tmp->parent;
6256 if (!parent)
6257 break;
f29c9b1c 6258
1a848870 6259 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6260 tmp->parent = parent->parent;
1a848870
SS
6261 if (parent->parent)
6262 parent->parent->child = tmp;
f29c9b1c
LZ
6263 } else
6264 tmp = tmp->parent;
245af2c7
SS
6265 }
6266
1a848870 6267 if (sd && sd_degenerate(sd)) {
245af2c7 6268 sd = sd->parent;
1a848870
SS
6269 if (sd)
6270 sd->child = NULL;
6271 }
1da177e4
LT
6272
6273 sched_domain_debug(sd, cpu);
6274
57d885fe 6275 rq_attach_root(rq, rd);
674311d5 6276 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6277}
6278
6279/* cpus with isolated domains */
dcc30a35 6280static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6281
6282/* Setup the mask of cpus configured for isolated domains */
6283static int __init isolated_cpu_setup(char *str)
6284{
bdddd296 6285 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6286 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6287 return 1;
6288}
6289
8927f494 6290__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6291
6292/*
6711cab4
SS
6293 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6294 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6295 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6296 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6297 *
6298 * init_sched_build_groups will build a circular linked list of the groups
6299 * covered by the given span, and will set each group's ->cpumask correctly,
6300 * and ->cpu_power to 0.
6301 */
a616058b 6302static void
96f874e2
RR
6303init_sched_build_groups(const struct cpumask *span,
6304 const struct cpumask *cpu_map,
6305 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6306 struct sched_group **sg,
96f874e2
RR
6307 struct cpumask *tmpmask),
6308 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6309{
6310 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6311 int i;
6312
96f874e2 6313 cpumask_clear(covered);
7c16ec58 6314
abcd083a 6315 for_each_cpu(i, span) {
6711cab4 6316 struct sched_group *sg;
7c16ec58 6317 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6318 int j;
6319
758b2cdc 6320 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6321 continue;
6322
758b2cdc 6323 cpumask_clear(sched_group_cpus(sg));
18a3885f 6324 sg->cpu_power = 0;
1da177e4 6325
abcd083a 6326 for_each_cpu(j, span) {
7c16ec58 6327 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6328 continue;
6329
96f874e2 6330 cpumask_set_cpu(j, covered);
758b2cdc 6331 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6332 }
6333 if (!first)
6334 first = sg;
6335 if (last)
6336 last->next = sg;
6337 last = sg;
6338 }
6339 last->next = first;
6340}
6341
9c1cfda2 6342#define SD_NODES_PER_DOMAIN 16
1da177e4 6343
9c1cfda2 6344#ifdef CONFIG_NUMA
198e2f18 6345
9c1cfda2
JH
6346/**
6347 * find_next_best_node - find the next node to include in a sched_domain
6348 * @node: node whose sched_domain we're building
6349 * @used_nodes: nodes already in the sched_domain
6350 *
41a2d6cf 6351 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6352 * finds the closest node not already in the @used_nodes map.
6353 *
6354 * Should use nodemask_t.
6355 */
c5f59f08 6356static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6357{
6358 int i, n, val, min_val, best_node = 0;
6359
6360 min_val = INT_MAX;
6361
076ac2af 6362 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6363 /* Start at @node */
076ac2af 6364 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6365
6366 if (!nr_cpus_node(n))
6367 continue;
6368
6369 /* Skip already used nodes */
c5f59f08 6370 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6371 continue;
6372
6373 /* Simple min distance search */
6374 val = node_distance(node, n);
6375
6376 if (val < min_val) {
6377 min_val = val;
6378 best_node = n;
6379 }
6380 }
6381
c5f59f08 6382 node_set(best_node, *used_nodes);
9c1cfda2
JH
6383 return best_node;
6384}
6385
6386/**
6387 * sched_domain_node_span - get a cpumask for a node's sched_domain
6388 * @node: node whose cpumask we're constructing
73486722 6389 * @span: resulting cpumask
9c1cfda2 6390 *
41a2d6cf 6391 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6392 * should be one that prevents unnecessary balancing, but also spreads tasks
6393 * out optimally.
6394 */
96f874e2 6395static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6396{
c5f59f08 6397 nodemask_t used_nodes;
48f24c4d 6398 int i;
9c1cfda2 6399
6ca09dfc 6400 cpumask_clear(span);
c5f59f08 6401 nodes_clear(used_nodes);
9c1cfda2 6402
6ca09dfc 6403 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6404 node_set(node, used_nodes);
9c1cfda2
JH
6405
6406 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6407 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6408
6ca09dfc 6409 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6410 }
9c1cfda2 6411}
6d6bc0ad 6412#endif /* CONFIG_NUMA */
9c1cfda2 6413
5c45bf27 6414int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6415
6c99e9ad
RR
6416/*
6417 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6418 *
6419 * ( See the the comments in include/linux/sched.h:struct sched_group
6420 * and struct sched_domain. )
6c99e9ad
RR
6421 */
6422struct static_sched_group {
6423 struct sched_group sg;
6424 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6425};
6426
6427struct static_sched_domain {
6428 struct sched_domain sd;
6429 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6430};
6431
49a02c51
AH
6432struct s_data {
6433#ifdef CONFIG_NUMA
6434 int sd_allnodes;
6435 cpumask_var_t domainspan;
6436 cpumask_var_t covered;
6437 cpumask_var_t notcovered;
6438#endif
6439 cpumask_var_t nodemask;
6440 cpumask_var_t this_sibling_map;
6441 cpumask_var_t this_core_map;
01a08546 6442 cpumask_var_t this_book_map;
49a02c51
AH
6443 cpumask_var_t send_covered;
6444 cpumask_var_t tmpmask;
6445 struct sched_group **sched_group_nodes;
6446 struct root_domain *rd;
6447};
6448
2109b99e
AH
6449enum s_alloc {
6450 sa_sched_groups = 0,
6451 sa_rootdomain,
6452 sa_tmpmask,
6453 sa_send_covered,
01a08546 6454 sa_this_book_map,
2109b99e
AH
6455 sa_this_core_map,
6456 sa_this_sibling_map,
6457 sa_nodemask,
6458 sa_sched_group_nodes,
6459#ifdef CONFIG_NUMA
6460 sa_notcovered,
6461 sa_covered,
6462 sa_domainspan,
6463#endif
6464 sa_none,
6465};
6466
9c1cfda2 6467/*
48f24c4d 6468 * SMT sched-domains:
9c1cfda2 6469 */
1da177e4 6470#ifdef CONFIG_SCHED_SMT
6c99e9ad 6471static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6472static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6473
41a2d6cf 6474static int
96f874e2
RR
6475cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6476 struct sched_group **sg, struct cpumask *unused)
1da177e4 6477{
6711cab4 6478 if (sg)
1871e52c 6479 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6480 return cpu;
6481}
6d6bc0ad 6482#endif /* CONFIG_SCHED_SMT */
1da177e4 6483
48f24c4d
IM
6484/*
6485 * multi-core sched-domains:
6486 */
1e9f28fa 6487#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6488static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6489static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6490
41a2d6cf 6491static int
96f874e2
RR
6492cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6493 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6494{
6711cab4 6495 int group;
f269893c 6496#ifdef CONFIG_SCHED_SMT
c69fc56d 6497 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6498 group = cpumask_first(mask);
f269893c
HC
6499#else
6500 group = cpu;
6501#endif
6711cab4 6502 if (sg)
6c99e9ad 6503 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6504 return group;
1e9f28fa 6505}
f269893c 6506#endif /* CONFIG_SCHED_MC */
1e9f28fa 6507
01a08546
HC
6508/*
6509 * book sched-domains:
6510 */
6511#ifdef CONFIG_SCHED_BOOK
6512static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6513static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6514
41a2d6cf 6515static int
01a08546
HC
6516cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6517 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6518{
01a08546
HC
6519 int group = cpu;
6520#ifdef CONFIG_SCHED_MC
6521 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6522 group = cpumask_first(mask);
6523#elif defined(CONFIG_SCHED_SMT)
6524 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6525 group = cpumask_first(mask);
6526#endif
6711cab4 6527 if (sg)
01a08546
HC
6528 *sg = &per_cpu(sched_group_book, group).sg;
6529 return group;
1e9f28fa 6530}
01a08546 6531#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6532
6c99e9ad
RR
6533static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6534static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6535
41a2d6cf 6536static int
96f874e2
RR
6537cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6538 struct sched_group **sg, struct cpumask *mask)
1da177e4 6539{
6711cab4 6540 int group;
01a08546
HC
6541#ifdef CONFIG_SCHED_BOOK
6542 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6543 group = cpumask_first(mask);
6544#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6545 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6546 group = cpumask_first(mask);
1e9f28fa 6547#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6548 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6549 group = cpumask_first(mask);
1da177e4 6550#else
6711cab4 6551 group = cpu;
1da177e4 6552#endif
6711cab4 6553 if (sg)
6c99e9ad 6554 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6555 return group;
1da177e4
LT
6556}
6557
6558#ifdef CONFIG_NUMA
1da177e4 6559/*
9c1cfda2
JH
6560 * The init_sched_build_groups can't handle what we want to do with node
6561 * groups, so roll our own. Now each node has its own list of groups which
6562 * gets dynamically allocated.
1da177e4 6563 */
62ea9ceb 6564static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6565static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6566
62ea9ceb 6567static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6568static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6569
96f874e2
RR
6570static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6571 struct sched_group **sg,
6572 struct cpumask *nodemask)
9c1cfda2 6573{
6711cab4
SS
6574 int group;
6575
6ca09dfc 6576 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6577 group = cpumask_first(nodemask);
6711cab4
SS
6578
6579 if (sg)
6c99e9ad 6580 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6581 return group;
1da177e4 6582}
6711cab4 6583
08069033
SS
6584static void init_numa_sched_groups_power(struct sched_group *group_head)
6585{
6586 struct sched_group *sg = group_head;
6587 int j;
6588
6589 if (!sg)
6590 return;
3a5c359a 6591 do {
758b2cdc 6592 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6593 struct sched_domain *sd;
08069033 6594
6c99e9ad 6595 sd = &per_cpu(phys_domains, j).sd;
13318a71 6596 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6597 /*
6598 * Only add "power" once for each
6599 * physical package.
6600 */
6601 continue;
6602 }
08069033 6603
18a3885f 6604 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6605 }
6606 sg = sg->next;
6607 } while (sg != group_head);
08069033 6608}
0601a88d
AH
6609
6610static int build_numa_sched_groups(struct s_data *d,
6611 const struct cpumask *cpu_map, int num)
6612{
6613 struct sched_domain *sd;
6614 struct sched_group *sg, *prev;
6615 int n, j;
6616
6617 cpumask_clear(d->covered);
6618 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6619 if (cpumask_empty(d->nodemask)) {
6620 d->sched_group_nodes[num] = NULL;
6621 goto out;
6622 }
6623
6624 sched_domain_node_span(num, d->domainspan);
6625 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6626
6627 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6628 GFP_KERNEL, num);
6629 if (!sg) {
3df0fc5b
PZ
6630 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6631 num);
0601a88d
AH
6632 return -ENOMEM;
6633 }
6634 d->sched_group_nodes[num] = sg;
6635
6636 for_each_cpu(j, d->nodemask) {
6637 sd = &per_cpu(node_domains, j).sd;
6638 sd->groups = sg;
6639 }
6640
18a3885f 6641 sg->cpu_power = 0;
0601a88d
AH
6642 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6643 sg->next = sg;
6644 cpumask_or(d->covered, d->covered, d->nodemask);
6645
6646 prev = sg;
6647 for (j = 0; j < nr_node_ids; j++) {
6648 n = (num + j) % nr_node_ids;
6649 cpumask_complement(d->notcovered, d->covered);
6650 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6651 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6652 if (cpumask_empty(d->tmpmask))
6653 break;
6654 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6655 if (cpumask_empty(d->tmpmask))
6656 continue;
6657 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6658 GFP_KERNEL, num);
6659 if (!sg) {
3df0fc5b
PZ
6660 printk(KERN_WARNING
6661 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6662 return -ENOMEM;
6663 }
18a3885f 6664 sg->cpu_power = 0;
0601a88d
AH
6665 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6666 sg->next = prev->next;
6667 cpumask_or(d->covered, d->covered, d->tmpmask);
6668 prev->next = sg;
6669 prev = sg;
6670 }
6671out:
6672 return 0;
6673}
6d6bc0ad 6674#endif /* CONFIG_NUMA */
1da177e4 6675
a616058b 6676#ifdef CONFIG_NUMA
51888ca2 6677/* Free memory allocated for various sched_group structures */
96f874e2
RR
6678static void free_sched_groups(const struct cpumask *cpu_map,
6679 struct cpumask *nodemask)
51888ca2 6680{
a616058b 6681 int cpu, i;
51888ca2 6682
abcd083a 6683 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6684 struct sched_group **sched_group_nodes
6685 = sched_group_nodes_bycpu[cpu];
6686
51888ca2
SV
6687 if (!sched_group_nodes)
6688 continue;
6689
076ac2af 6690 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6691 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6692
6ca09dfc 6693 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6694 if (cpumask_empty(nodemask))
51888ca2
SV
6695 continue;
6696
6697 if (sg == NULL)
6698 continue;
6699 sg = sg->next;
6700next_sg:
6701 oldsg = sg;
6702 sg = sg->next;
6703 kfree(oldsg);
6704 if (oldsg != sched_group_nodes[i])
6705 goto next_sg;
6706 }
6707 kfree(sched_group_nodes);
6708 sched_group_nodes_bycpu[cpu] = NULL;
6709 }
51888ca2 6710}
6d6bc0ad 6711#else /* !CONFIG_NUMA */
96f874e2
RR
6712static void free_sched_groups(const struct cpumask *cpu_map,
6713 struct cpumask *nodemask)
a616058b
SS
6714{
6715}
6d6bc0ad 6716#endif /* CONFIG_NUMA */
51888ca2 6717
89c4710e
SS
6718/*
6719 * Initialize sched groups cpu_power.
6720 *
6721 * cpu_power indicates the capacity of sched group, which is used while
6722 * distributing the load between different sched groups in a sched domain.
6723 * Typically cpu_power for all the groups in a sched domain will be same unless
6724 * there are asymmetries in the topology. If there are asymmetries, group
6725 * having more cpu_power will pickup more load compared to the group having
6726 * less cpu_power.
89c4710e
SS
6727 */
6728static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6729{
6730 struct sched_domain *child;
6731 struct sched_group *group;
f93e65c1
PZ
6732 long power;
6733 int weight;
89c4710e
SS
6734
6735 WARN_ON(!sd || !sd->groups);
6736
13318a71 6737 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6738 return;
6739
6740 child = sd->child;
6741
18a3885f 6742 sd->groups->cpu_power = 0;
5517d86b 6743
f93e65c1
PZ
6744 if (!child) {
6745 power = SCHED_LOAD_SCALE;
6746 weight = cpumask_weight(sched_domain_span(sd));
6747 /*
6748 * SMT siblings share the power of a single core.
a52bfd73
PZ
6749 * Usually multiple threads get a better yield out of
6750 * that one core than a single thread would have,
6751 * reflect that in sd->smt_gain.
f93e65c1 6752 */
a52bfd73
PZ
6753 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6754 power *= sd->smt_gain;
f93e65c1 6755 power /= weight;
a52bfd73
PZ
6756 power >>= SCHED_LOAD_SHIFT;
6757 }
18a3885f 6758 sd->groups->cpu_power += power;
89c4710e
SS
6759 return;
6760 }
6761
89c4710e 6762 /*
f93e65c1 6763 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6764 */
6765 group = child->groups;
6766 do {
18a3885f 6767 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6768 group = group->next;
6769 } while (group != child->groups);
6770}
6771
7c16ec58
MT
6772/*
6773 * Initializers for schedule domains
6774 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6775 */
6776
a5d8c348
IM
6777#ifdef CONFIG_SCHED_DEBUG
6778# define SD_INIT_NAME(sd, type) sd->name = #type
6779#else
6780# define SD_INIT_NAME(sd, type) do { } while (0)
6781#endif
6782
7c16ec58 6783#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6784
7c16ec58
MT
6785#define SD_INIT_FUNC(type) \
6786static noinline void sd_init_##type(struct sched_domain *sd) \
6787{ \
6788 memset(sd, 0, sizeof(*sd)); \
6789 *sd = SD_##type##_INIT; \
1d3504fc 6790 sd->level = SD_LV_##type; \
a5d8c348 6791 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6792}
6793
6794SD_INIT_FUNC(CPU)
6795#ifdef CONFIG_NUMA
6796 SD_INIT_FUNC(ALLNODES)
6797 SD_INIT_FUNC(NODE)
6798#endif
6799#ifdef CONFIG_SCHED_SMT
6800 SD_INIT_FUNC(SIBLING)
6801#endif
6802#ifdef CONFIG_SCHED_MC
6803 SD_INIT_FUNC(MC)
6804#endif
01a08546
HC
6805#ifdef CONFIG_SCHED_BOOK
6806 SD_INIT_FUNC(BOOK)
6807#endif
7c16ec58 6808
1d3504fc
HS
6809static int default_relax_domain_level = -1;
6810
6811static int __init setup_relax_domain_level(char *str)
6812{
30e0e178
LZ
6813 unsigned long val;
6814
6815 val = simple_strtoul(str, NULL, 0);
6816 if (val < SD_LV_MAX)
6817 default_relax_domain_level = val;
6818
1d3504fc
HS
6819 return 1;
6820}
6821__setup("relax_domain_level=", setup_relax_domain_level);
6822
6823static void set_domain_attribute(struct sched_domain *sd,
6824 struct sched_domain_attr *attr)
6825{
6826 int request;
6827
6828 if (!attr || attr->relax_domain_level < 0) {
6829 if (default_relax_domain_level < 0)
6830 return;
6831 else
6832 request = default_relax_domain_level;
6833 } else
6834 request = attr->relax_domain_level;
6835 if (request < sd->level) {
6836 /* turn off idle balance on this domain */
c88d5910 6837 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6838 } else {
6839 /* turn on idle balance on this domain */
c88d5910 6840 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6841 }
6842}
6843
2109b99e
AH
6844static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6845 const struct cpumask *cpu_map)
6846{
6847 switch (what) {
6848 case sa_sched_groups:
6849 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6850 d->sched_group_nodes = NULL;
6851 case sa_rootdomain:
6852 free_rootdomain(d->rd); /* fall through */
6853 case sa_tmpmask:
6854 free_cpumask_var(d->tmpmask); /* fall through */
6855 case sa_send_covered:
6856 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
6857 case sa_this_book_map:
6858 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
6859 case sa_this_core_map:
6860 free_cpumask_var(d->this_core_map); /* fall through */
6861 case sa_this_sibling_map:
6862 free_cpumask_var(d->this_sibling_map); /* fall through */
6863 case sa_nodemask:
6864 free_cpumask_var(d->nodemask); /* fall through */
6865 case sa_sched_group_nodes:
d1b55138 6866#ifdef CONFIG_NUMA
2109b99e
AH
6867 kfree(d->sched_group_nodes); /* fall through */
6868 case sa_notcovered:
6869 free_cpumask_var(d->notcovered); /* fall through */
6870 case sa_covered:
6871 free_cpumask_var(d->covered); /* fall through */
6872 case sa_domainspan:
6873 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6874#endif
2109b99e
AH
6875 case sa_none:
6876 break;
6877 }
6878}
3404c8d9 6879
2109b99e
AH
6880static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6881 const struct cpumask *cpu_map)
6882{
3404c8d9 6883#ifdef CONFIG_NUMA
2109b99e
AH
6884 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6885 return sa_none;
6886 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6887 return sa_domainspan;
6888 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6889 return sa_covered;
6890 /* Allocate the per-node list of sched groups */
6891 d->sched_group_nodes = kcalloc(nr_node_ids,
6892 sizeof(struct sched_group *), GFP_KERNEL);
6893 if (!d->sched_group_nodes) {
3df0fc5b 6894 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6895 return sa_notcovered;
d1b55138 6896 }
2109b99e 6897 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6898#endif
2109b99e
AH
6899 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6900 return sa_sched_group_nodes;
6901 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6902 return sa_nodemask;
6903 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6904 return sa_this_sibling_map;
01a08546 6905 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 6906 return sa_this_core_map;
01a08546
HC
6907 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6908 return sa_this_book_map;
2109b99e
AH
6909 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6910 return sa_send_covered;
6911 d->rd = alloc_rootdomain();
6912 if (!d->rd) {
3df0fc5b 6913 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6914 return sa_tmpmask;
57d885fe 6915 }
2109b99e
AH
6916 return sa_rootdomain;
6917}
57d885fe 6918
7f4588f3
AH
6919static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6920 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6921{
6922 struct sched_domain *sd = NULL;
7c16ec58 6923#ifdef CONFIG_NUMA
7f4588f3 6924 struct sched_domain *parent;
1da177e4 6925
7f4588f3
AH
6926 d->sd_allnodes = 0;
6927 if (cpumask_weight(cpu_map) >
6928 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6929 sd = &per_cpu(allnodes_domains, i).sd;
6930 SD_INIT(sd, ALLNODES);
1d3504fc 6931 set_domain_attribute(sd, attr);
7f4588f3
AH
6932 cpumask_copy(sched_domain_span(sd), cpu_map);
6933 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6934 d->sd_allnodes = 1;
6935 }
6936 parent = sd;
6937
6938 sd = &per_cpu(node_domains, i).sd;
6939 SD_INIT(sd, NODE);
6940 set_domain_attribute(sd, attr);
6941 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6942 sd->parent = parent;
6943 if (parent)
6944 parent->child = sd;
6945 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6946#endif
7f4588f3
AH
6947 return sd;
6948}
1da177e4 6949
87cce662
AH
6950static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6951 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6952 struct sched_domain *parent, int i)
6953{
6954 struct sched_domain *sd;
6955 sd = &per_cpu(phys_domains, i).sd;
6956 SD_INIT(sd, CPU);
6957 set_domain_attribute(sd, attr);
6958 cpumask_copy(sched_domain_span(sd), d->nodemask);
6959 sd->parent = parent;
6960 if (parent)
6961 parent->child = sd;
6962 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6963 return sd;
6964}
1da177e4 6965
01a08546
HC
6966static struct sched_domain *__build_book_sched_domain(struct s_data *d,
6967 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6968 struct sched_domain *parent, int i)
6969{
6970 struct sched_domain *sd = parent;
6971#ifdef CONFIG_SCHED_BOOK
6972 sd = &per_cpu(book_domains, i).sd;
6973 SD_INIT(sd, BOOK);
6974 set_domain_attribute(sd, attr);
6975 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
6976 sd->parent = parent;
6977 parent->child = sd;
6978 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
6979#endif
6980 return sd;
6981}
6982
410c4081
AH
6983static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6984 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6985 struct sched_domain *parent, int i)
6986{
6987 struct sched_domain *sd = parent;
1e9f28fa 6988#ifdef CONFIG_SCHED_MC
410c4081
AH
6989 sd = &per_cpu(core_domains, i).sd;
6990 SD_INIT(sd, MC);
6991 set_domain_attribute(sd, attr);
6992 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6993 sd->parent = parent;
6994 parent->child = sd;
6995 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6996#endif
410c4081
AH
6997 return sd;
6998}
1e9f28fa 6999
d8173535
AH
7000static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7001 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7002 struct sched_domain *parent, int i)
7003{
7004 struct sched_domain *sd = parent;
1da177e4 7005#ifdef CONFIG_SCHED_SMT
d8173535
AH
7006 sd = &per_cpu(cpu_domains, i).sd;
7007 SD_INIT(sd, SIBLING);
7008 set_domain_attribute(sd, attr);
7009 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7010 sd->parent = parent;
7011 parent->child = sd;
7012 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7013#endif
d8173535
AH
7014 return sd;
7015}
1da177e4 7016
0e8e85c9
AH
7017static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7018 const struct cpumask *cpu_map, int cpu)
7019{
7020 switch (l) {
1da177e4 7021#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7022 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7023 cpumask_and(d->this_sibling_map, cpu_map,
7024 topology_thread_cpumask(cpu));
7025 if (cpu == cpumask_first(d->this_sibling_map))
7026 init_sched_build_groups(d->this_sibling_map, cpu_map,
7027 &cpu_to_cpu_group,
7028 d->send_covered, d->tmpmask);
7029 break;
1da177e4 7030#endif
1e9f28fa 7031#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7032 case SD_LV_MC: /* set up multi-core groups */
7033 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7034 if (cpu == cpumask_first(d->this_core_map))
7035 init_sched_build_groups(d->this_core_map, cpu_map,
7036 &cpu_to_core_group,
7037 d->send_covered, d->tmpmask);
7038 break;
01a08546
HC
7039#endif
7040#ifdef CONFIG_SCHED_BOOK
7041 case SD_LV_BOOK: /* set up book groups */
7042 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7043 if (cpu == cpumask_first(d->this_book_map))
7044 init_sched_build_groups(d->this_book_map, cpu_map,
7045 &cpu_to_book_group,
7046 d->send_covered, d->tmpmask);
7047 break;
1e9f28fa 7048#endif
86548096
AH
7049 case SD_LV_CPU: /* set up physical groups */
7050 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7051 if (!cpumask_empty(d->nodemask))
7052 init_sched_build_groups(d->nodemask, cpu_map,
7053 &cpu_to_phys_group,
7054 d->send_covered, d->tmpmask);
7055 break;
1da177e4 7056#ifdef CONFIG_NUMA
de616e36
AH
7057 case SD_LV_ALLNODES:
7058 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7059 d->send_covered, d->tmpmask);
7060 break;
7061#endif
0e8e85c9
AH
7062 default:
7063 break;
7c16ec58 7064 }
0e8e85c9 7065}
9c1cfda2 7066
2109b99e
AH
7067/*
7068 * Build sched domains for a given set of cpus and attach the sched domains
7069 * to the individual cpus
7070 */
7071static int __build_sched_domains(const struct cpumask *cpu_map,
7072 struct sched_domain_attr *attr)
7073{
7074 enum s_alloc alloc_state = sa_none;
7075 struct s_data d;
294b0c96 7076 struct sched_domain *sd;
2109b99e 7077 int i;
7c16ec58 7078#ifdef CONFIG_NUMA
2109b99e 7079 d.sd_allnodes = 0;
7c16ec58 7080#endif
9c1cfda2 7081
2109b99e
AH
7082 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7083 if (alloc_state != sa_rootdomain)
7084 goto error;
7085 alloc_state = sa_sched_groups;
9c1cfda2 7086
1da177e4 7087 /*
1a20ff27 7088 * Set up domains for cpus specified by the cpu_map.
1da177e4 7089 */
abcd083a 7090 for_each_cpu(i, cpu_map) {
49a02c51
AH
7091 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7092 cpu_map);
9761eea8 7093
7f4588f3 7094 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7095 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7096 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7097 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7098 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7099 }
9c1cfda2 7100
abcd083a 7101 for_each_cpu(i, cpu_map) {
0e8e85c9 7102 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7103 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7104 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7105 }
9c1cfda2 7106
1da177e4 7107 /* Set up physical groups */
86548096
AH
7108 for (i = 0; i < nr_node_ids; i++)
7109 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7110
1da177e4
LT
7111#ifdef CONFIG_NUMA
7112 /* Set up node groups */
de616e36
AH
7113 if (d.sd_allnodes)
7114 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7115
0601a88d
AH
7116 for (i = 0; i < nr_node_ids; i++)
7117 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7118 goto error;
1da177e4
LT
7119#endif
7120
7121 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7122#ifdef CONFIG_SCHED_SMT
abcd083a 7123 for_each_cpu(i, cpu_map) {
294b0c96 7124 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7125 init_sched_groups_power(i, sd);
5c45bf27 7126 }
1da177e4 7127#endif
1e9f28fa 7128#ifdef CONFIG_SCHED_MC
abcd083a 7129 for_each_cpu(i, cpu_map) {
294b0c96 7130 sd = &per_cpu(core_domains, i).sd;
89c4710e 7131 init_sched_groups_power(i, sd);
5c45bf27
SS
7132 }
7133#endif
01a08546
HC
7134#ifdef CONFIG_SCHED_BOOK
7135 for_each_cpu(i, cpu_map) {
7136 sd = &per_cpu(book_domains, i).sd;
7137 init_sched_groups_power(i, sd);
7138 }
7139#endif
1e9f28fa 7140
abcd083a 7141 for_each_cpu(i, cpu_map) {
294b0c96 7142 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7143 init_sched_groups_power(i, sd);
1da177e4
LT
7144 }
7145
9c1cfda2 7146#ifdef CONFIG_NUMA
076ac2af 7147 for (i = 0; i < nr_node_ids; i++)
49a02c51 7148 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7149
49a02c51 7150 if (d.sd_allnodes) {
6711cab4 7151 struct sched_group *sg;
f712c0c7 7152
96f874e2 7153 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7154 d.tmpmask);
f712c0c7
SS
7155 init_numa_sched_groups_power(sg);
7156 }
9c1cfda2
JH
7157#endif
7158
1da177e4 7159 /* Attach the domains */
abcd083a 7160 for_each_cpu(i, cpu_map) {
1da177e4 7161#ifdef CONFIG_SCHED_SMT
6c99e9ad 7162 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7163#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7164 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7165#elif defined(CONFIG_SCHED_BOOK)
7166 sd = &per_cpu(book_domains, i).sd;
1da177e4 7167#else
6c99e9ad 7168 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7169#endif
49a02c51 7170 cpu_attach_domain(sd, d.rd, i);
1da177e4 7171 }
51888ca2 7172
2109b99e
AH
7173 d.sched_group_nodes = NULL; /* don't free this we still need it */
7174 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7175 return 0;
51888ca2 7176
51888ca2 7177error:
2109b99e
AH
7178 __free_domain_allocs(&d, alloc_state, cpu_map);
7179 return -ENOMEM;
1da177e4 7180}
029190c5 7181
96f874e2 7182static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7183{
7184 return __build_sched_domains(cpu_map, NULL);
7185}
7186
acc3f5d7 7187static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7188static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7189static struct sched_domain_attr *dattr_cur;
7190 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7191
7192/*
7193 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7194 * cpumask) fails, then fallback to a single sched domain,
7195 * as determined by the single cpumask fallback_doms.
029190c5 7196 */
4212823f 7197static cpumask_var_t fallback_doms;
029190c5 7198
ee79d1bd
HC
7199/*
7200 * arch_update_cpu_topology lets virtualized architectures update the
7201 * cpu core maps. It is supposed to return 1 if the topology changed
7202 * or 0 if it stayed the same.
7203 */
7204int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7205{
ee79d1bd 7206 return 0;
22e52b07
HC
7207}
7208
acc3f5d7
RR
7209cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7210{
7211 int i;
7212 cpumask_var_t *doms;
7213
7214 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7215 if (!doms)
7216 return NULL;
7217 for (i = 0; i < ndoms; i++) {
7218 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7219 free_sched_domains(doms, i);
7220 return NULL;
7221 }
7222 }
7223 return doms;
7224}
7225
7226void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7227{
7228 unsigned int i;
7229 for (i = 0; i < ndoms; i++)
7230 free_cpumask_var(doms[i]);
7231 kfree(doms);
7232}
7233
1a20ff27 7234/*
41a2d6cf 7235 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7236 * For now this just excludes isolated cpus, but could be used to
7237 * exclude other special cases in the future.
1a20ff27 7238 */
96f874e2 7239static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7240{
7378547f
MM
7241 int err;
7242
22e52b07 7243 arch_update_cpu_topology();
029190c5 7244 ndoms_cur = 1;
acc3f5d7 7245 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7246 if (!doms_cur)
acc3f5d7
RR
7247 doms_cur = &fallback_doms;
7248 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7249 dattr_cur = NULL;
acc3f5d7 7250 err = build_sched_domains(doms_cur[0]);
6382bc90 7251 register_sched_domain_sysctl();
7378547f
MM
7252
7253 return err;
1a20ff27
DG
7254}
7255
96f874e2
RR
7256static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7257 struct cpumask *tmpmask)
1da177e4 7258{
7c16ec58 7259 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7260}
1da177e4 7261
1a20ff27
DG
7262/*
7263 * Detach sched domains from a group of cpus specified in cpu_map
7264 * These cpus will now be attached to the NULL domain
7265 */
96f874e2 7266static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7267{
96f874e2
RR
7268 /* Save because hotplug lock held. */
7269 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7270 int i;
7271
abcd083a 7272 for_each_cpu(i, cpu_map)
57d885fe 7273 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7274 synchronize_sched();
96f874e2 7275 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7276}
7277
1d3504fc
HS
7278/* handle null as "default" */
7279static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7280 struct sched_domain_attr *new, int idx_new)
7281{
7282 struct sched_domain_attr tmp;
7283
7284 /* fast path */
7285 if (!new && !cur)
7286 return 1;
7287
7288 tmp = SD_ATTR_INIT;
7289 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7290 new ? (new + idx_new) : &tmp,
7291 sizeof(struct sched_domain_attr));
7292}
7293
029190c5
PJ
7294/*
7295 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7296 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7297 * doms_new[] to the current sched domain partitioning, doms_cur[].
7298 * It destroys each deleted domain and builds each new domain.
7299 *
acc3f5d7 7300 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7301 * The masks don't intersect (don't overlap.) We should setup one
7302 * sched domain for each mask. CPUs not in any of the cpumasks will
7303 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7304 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7305 * it as it is.
7306 *
acc3f5d7
RR
7307 * The passed in 'doms_new' should be allocated using
7308 * alloc_sched_domains. This routine takes ownership of it and will
7309 * free_sched_domains it when done with it. If the caller failed the
7310 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7311 * and partition_sched_domains() will fallback to the single partition
7312 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7313 *
96f874e2 7314 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7315 * ndoms_new == 0 is a special case for destroying existing domains,
7316 * and it will not create the default domain.
dfb512ec 7317 *
029190c5
PJ
7318 * Call with hotplug lock held
7319 */
acc3f5d7 7320void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7321 struct sched_domain_attr *dattr_new)
029190c5 7322{
dfb512ec 7323 int i, j, n;
d65bd5ec 7324 int new_topology;
029190c5 7325
712555ee 7326 mutex_lock(&sched_domains_mutex);
a1835615 7327
7378547f
MM
7328 /* always unregister in case we don't destroy any domains */
7329 unregister_sched_domain_sysctl();
7330
d65bd5ec
HC
7331 /* Let architecture update cpu core mappings. */
7332 new_topology = arch_update_cpu_topology();
7333
dfb512ec 7334 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7335
7336 /* Destroy deleted domains */
7337 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7338 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7339 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7340 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7341 goto match1;
7342 }
7343 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7344 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7345match1:
7346 ;
7347 }
7348
e761b772
MK
7349 if (doms_new == NULL) {
7350 ndoms_cur = 0;
acc3f5d7 7351 doms_new = &fallback_doms;
6ad4c188 7352 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7353 WARN_ON_ONCE(dattr_new);
e761b772
MK
7354 }
7355
029190c5
PJ
7356 /* Build new domains */
7357 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7358 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7359 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7360 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7361 goto match2;
7362 }
7363 /* no match - add a new doms_new */
acc3f5d7 7364 __build_sched_domains(doms_new[i],
1d3504fc 7365 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7366match2:
7367 ;
7368 }
7369
7370 /* Remember the new sched domains */
acc3f5d7
RR
7371 if (doms_cur != &fallback_doms)
7372 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7373 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7374 doms_cur = doms_new;
1d3504fc 7375 dattr_cur = dattr_new;
029190c5 7376 ndoms_cur = ndoms_new;
7378547f
MM
7377
7378 register_sched_domain_sysctl();
a1835615 7379
712555ee 7380 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7381}
7382
5c45bf27 7383#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7384static void arch_reinit_sched_domains(void)
5c45bf27 7385{
95402b38 7386 get_online_cpus();
dfb512ec
MK
7387
7388 /* Destroy domains first to force the rebuild */
7389 partition_sched_domains(0, NULL, NULL);
7390
e761b772 7391 rebuild_sched_domains();
95402b38 7392 put_online_cpus();
5c45bf27
SS
7393}
7394
7395static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7396{
afb8a9b7 7397 unsigned int level = 0;
5c45bf27 7398
afb8a9b7
GS
7399 if (sscanf(buf, "%u", &level) != 1)
7400 return -EINVAL;
7401
7402 /*
7403 * level is always be positive so don't check for
7404 * level < POWERSAVINGS_BALANCE_NONE which is 0
7405 * What happens on 0 or 1 byte write,
7406 * need to check for count as well?
7407 */
7408
7409 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7410 return -EINVAL;
7411
7412 if (smt)
afb8a9b7 7413 sched_smt_power_savings = level;
5c45bf27 7414 else
afb8a9b7 7415 sched_mc_power_savings = level;
5c45bf27 7416
c70f22d2 7417 arch_reinit_sched_domains();
5c45bf27 7418
c70f22d2 7419 return count;
5c45bf27
SS
7420}
7421
5c45bf27 7422#ifdef CONFIG_SCHED_MC
f718cd4a 7423static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7424 struct sysdev_class_attribute *attr,
f718cd4a 7425 char *page)
5c45bf27
SS
7426{
7427 return sprintf(page, "%u\n", sched_mc_power_savings);
7428}
f718cd4a 7429static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7430 struct sysdev_class_attribute *attr,
48f24c4d 7431 const char *buf, size_t count)
5c45bf27
SS
7432{
7433 return sched_power_savings_store(buf, count, 0);
7434}
f718cd4a
AK
7435static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7436 sched_mc_power_savings_show,
7437 sched_mc_power_savings_store);
5c45bf27
SS
7438#endif
7439
7440#ifdef CONFIG_SCHED_SMT
f718cd4a 7441static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7442 struct sysdev_class_attribute *attr,
f718cd4a 7443 char *page)
5c45bf27
SS
7444{
7445 return sprintf(page, "%u\n", sched_smt_power_savings);
7446}
f718cd4a 7447static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7448 struct sysdev_class_attribute *attr,
48f24c4d 7449 const char *buf, size_t count)
5c45bf27
SS
7450{
7451 return sched_power_savings_store(buf, count, 1);
7452}
f718cd4a
AK
7453static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7454 sched_smt_power_savings_show,
6707de00
AB
7455 sched_smt_power_savings_store);
7456#endif
7457
39aac648 7458int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7459{
7460 int err = 0;
7461
7462#ifdef CONFIG_SCHED_SMT
7463 if (smt_capable())
7464 err = sysfs_create_file(&cls->kset.kobj,
7465 &attr_sched_smt_power_savings.attr);
7466#endif
7467#ifdef CONFIG_SCHED_MC
7468 if (!err && mc_capable())
7469 err = sysfs_create_file(&cls->kset.kobj,
7470 &attr_sched_mc_power_savings.attr);
7471#endif
7472 return err;
7473}
6d6bc0ad 7474#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7475
1da177e4 7476/*
3a101d05
TH
7477 * Update cpusets according to cpu_active mask. If cpusets are
7478 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7479 * around partition_sched_domains().
1da177e4 7480 */
0b2e918a
TH
7481static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7482 void *hcpu)
e761b772 7483{
3a101d05 7484 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7485 case CPU_ONLINE:
6ad4c188 7486 case CPU_DOWN_FAILED:
3a101d05 7487 cpuset_update_active_cpus();
e761b772 7488 return NOTIFY_OK;
3a101d05
TH
7489 default:
7490 return NOTIFY_DONE;
7491 }
7492}
e761b772 7493
0b2e918a
TH
7494static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7495 void *hcpu)
3a101d05
TH
7496{
7497 switch (action & ~CPU_TASKS_FROZEN) {
7498 case CPU_DOWN_PREPARE:
7499 cpuset_update_active_cpus();
7500 return NOTIFY_OK;
e761b772
MK
7501 default:
7502 return NOTIFY_DONE;
7503 }
7504}
e761b772
MK
7505
7506static int update_runtime(struct notifier_block *nfb,
7507 unsigned long action, void *hcpu)
1da177e4 7508{
7def2be1
PZ
7509 int cpu = (int)(long)hcpu;
7510
1da177e4 7511 switch (action) {
1da177e4 7512 case CPU_DOWN_PREPARE:
8bb78442 7513 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7514 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7515 return NOTIFY_OK;
7516
1da177e4 7517 case CPU_DOWN_FAILED:
8bb78442 7518 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7519 case CPU_ONLINE:
8bb78442 7520 case CPU_ONLINE_FROZEN:
7def2be1 7521 enable_runtime(cpu_rq(cpu));
e761b772
MK
7522 return NOTIFY_OK;
7523
1da177e4
LT
7524 default:
7525 return NOTIFY_DONE;
7526 }
1da177e4 7527}
1da177e4
LT
7528
7529void __init sched_init_smp(void)
7530{
dcc30a35
RR
7531 cpumask_var_t non_isolated_cpus;
7532
7533 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7534 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7535
434d53b0
MT
7536#if defined(CONFIG_NUMA)
7537 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7538 GFP_KERNEL);
7539 BUG_ON(sched_group_nodes_bycpu == NULL);
7540#endif
95402b38 7541 get_online_cpus();
712555ee 7542 mutex_lock(&sched_domains_mutex);
6ad4c188 7543 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7544 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7545 if (cpumask_empty(non_isolated_cpus))
7546 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7547 mutex_unlock(&sched_domains_mutex);
95402b38 7548 put_online_cpus();
e761b772 7549
3a101d05
TH
7550 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7551 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7552
7553 /* RT runtime code needs to handle some hotplug events */
7554 hotcpu_notifier(update_runtime, 0);
7555
b328ca18 7556 init_hrtick();
5c1e1767
NP
7557
7558 /* Move init over to a non-isolated CPU */
dcc30a35 7559 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7560 BUG();
19978ca6 7561 sched_init_granularity();
dcc30a35 7562 free_cpumask_var(non_isolated_cpus);
4212823f 7563
0e3900e6 7564 init_sched_rt_class();
1da177e4
LT
7565}
7566#else
7567void __init sched_init_smp(void)
7568{
19978ca6 7569 sched_init_granularity();
1da177e4
LT
7570}
7571#endif /* CONFIG_SMP */
7572
cd1bb94b
AB
7573const_debug unsigned int sysctl_timer_migration = 1;
7574
1da177e4
LT
7575int in_sched_functions(unsigned long addr)
7576{
1da177e4
LT
7577 return in_lock_functions(addr) ||
7578 (addr >= (unsigned long)__sched_text_start
7579 && addr < (unsigned long)__sched_text_end);
7580}
7581
a9957449 7582static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7583{
7584 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7585 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7586#ifdef CONFIG_FAIR_GROUP_SCHED
7587 cfs_rq->rq = rq;
7588#endif
67e9fb2a 7589 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7590}
7591
fa85ae24
PZ
7592static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7593{
7594 struct rt_prio_array *array;
7595 int i;
7596
7597 array = &rt_rq->active;
7598 for (i = 0; i < MAX_RT_PRIO; i++) {
7599 INIT_LIST_HEAD(array->queue + i);
7600 __clear_bit(i, array->bitmap);
7601 }
7602 /* delimiter for bitsearch: */
7603 __set_bit(MAX_RT_PRIO, array->bitmap);
7604
052f1dc7 7605#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7606 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7607#ifdef CONFIG_SMP
e864c499 7608 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7609#endif
48d5e258 7610#endif
fa85ae24
PZ
7611#ifdef CONFIG_SMP
7612 rt_rq->rt_nr_migratory = 0;
fa85ae24 7613 rt_rq->overloaded = 0;
05fa785c 7614 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7615#endif
7616
7617 rt_rq->rt_time = 0;
7618 rt_rq->rt_throttled = 0;
ac086bc2 7619 rt_rq->rt_runtime = 0;
0986b11b 7620 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7621
052f1dc7 7622#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7623 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7624 rt_rq->rq = rq;
7625#endif
fa85ae24
PZ
7626}
7627
6f505b16 7628#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7629static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7630 struct sched_entity *se, int cpu,
ec7dc8ac 7631 struct sched_entity *parent)
6f505b16 7632{
ec7dc8ac 7633 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7634 tg->cfs_rq[cpu] = cfs_rq;
7635 init_cfs_rq(cfs_rq, rq);
7636 cfs_rq->tg = tg;
6f505b16
PZ
7637
7638 tg->se[cpu] = se;
354d60c2
DG
7639 /* se could be NULL for init_task_group */
7640 if (!se)
7641 return;
7642
ec7dc8ac
DG
7643 if (!parent)
7644 se->cfs_rq = &rq->cfs;
7645 else
7646 se->cfs_rq = parent->my_q;
7647
6f505b16 7648 se->my_q = cfs_rq;
2069dd75 7649 update_load_set(&se->load, tg->shares);
ec7dc8ac 7650 se->parent = parent;
6f505b16 7651}
052f1dc7 7652#endif
6f505b16 7653
052f1dc7 7654#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7655static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7656 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7657 struct sched_rt_entity *parent)
6f505b16 7658{
ec7dc8ac
DG
7659 struct rq *rq = cpu_rq(cpu);
7660
6f505b16
PZ
7661 tg->rt_rq[cpu] = rt_rq;
7662 init_rt_rq(rt_rq, rq);
7663 rt_rq->tg = tg;
ac086bc2 7664 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7665
7666 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7667 if (!rt_se)
7668 return;
7669
ec7dc8ac
DG
7670 if (!parent)
7671 rt_se->rt_rq = &rq->rt;
7672 else
7673 rt_se->rt_rq = parent->my_q;
7674
6f505b16 7675 rt_se->my_q = rt_rq;
ec7dc8ac 7676 rt_se->parent = parent;
6f505b16
PZ
7677 INIT_LIST_HEAD(&rt_se->run_list);
7678}
7679#endif
7680
1da177e4
LT
7681void __init sched_init(void)
7682{
dd41f596 7683 int i, j;
434d53b0
MT
7684 unsigned long alloc_size = 0, ptr;
7685
7686#ifdef CONFIG_FAIR_GROUP_SCHED
7687 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7688#endif
7689#ifdef CONFIG_RT_GROUP_SCHED
7690 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7691#endif
df7c8e84 7692#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7693 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7694#endif
434d53b0 7695 if (alloc_size) {
36b7b6d4 7696 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7697
7698#ifdef CONFIG_FAIR_GROUP_SCHED
7699 init_task_group.se = (struct sched_entity **)ptr;
7700 ptr += nr_cpu_ids * sizeof(void **);
7701
7702 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7703 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7704
6d6bc0ad 7705#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7706#ifdef CONFIG_RT_GROUP_SCHED
7707 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7708 ptr += nr_cpu_ids * sizeof(void **);
7709
7710 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7711 ptr += nr_cpu_ids * sizeof(void **);
7712
6d6bc0ad 7713#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7714#ifdef CONFIG_CPUMASK_OFFSTACK
7715 for_each_possible_cpu(i) {
7716 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7717 ptr += cpumask_size();
7718 }
7719#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7720 }
dd41f596 7721
57d885fe
GH
7722#ifdef CONFIG_SMP
7723 init_defrootdomain();
7724#endif
7725
d0b27fa7
PZ
7726 init_rt_bandwidth(&def_rt_bandwidth,
7727 global_rt_period(), global_rt_runtime());
7728
7729#ifdef CONFIG_RT_GROUP_SCHED
7730 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7731 global_rt_period(), global_rt_runtime());
6d6bc0ad 7732#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7733
7c941438 7734#ifdef CONFIG_CGROUP_SCHED
6f505b16 7735 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7736 INIT_LIST_HEAD(&init_task_group.children);
7737
7c941438 7738#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7739
0a945022 7740 for_each_possible_cpu(i) {
70b97a7f 7741 struct rq *rq;
1da177e4
LT
7742
7743 rq = cpu_rq(i);
05fa785c 7744 raw_spin_lock_init(&rq->lock);
7897986b 7745 rq->nr_running = 0;
dce48a84
TG
7746 rq->calc_load_active = 0;
7747 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7748 init_cfs_rq(&rq->cfs, rq);
6f505b16 7749 init_rt_rq(&rq->rt, rq);
dd41f596 7750#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7751 init_task_group.shares = init_task_group_load;
6f505b16 7752 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7753#ifdef CONFIG_CGROUP_SCHED
7754 /*
7755 * How much cpu bandwidth does init_task_group get?
7756 *
7757 * In case of task-groups formed thr' the cgroup filesystem, it
7758 * gets 100% of the cpu resources in the system. This overall
7759 * system cpu resource is divided among the tasks of
7760 * init_task_group and its child task-groups in a fair manner,
7761 * based on each entity's (task or task-group's) weight
7762 * (se->load.weight).
7763 *
7764 * In other words, if init_task_group has 10 tasks of weight
7765 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7766 * then A0's share of the cpu resource is:
7767 *
0d905bca 7768 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7769 *
7770 * We achieve this by letting init_task_group's tasks sit
7771 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7772 */
3d4b47b4 7773 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
052f1dc7 7774#endif
354d60c2
DG
7775#endif /* CONFIG_FAIR_GROUP_SCHED */
7776
7777 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7778#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7779 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7780#ifdef CONFIG_CGROUP_SCHED
3d4b47b4 7781 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
354d60c2 7782#endif
dd41f596 7783#endif
1da177e4 7784
dd41f596
IM
7785 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7786 rq->cpu_load[j] = 0;
fdf3e95d
VP
7787
7788 rq->last_load_update_tick = jiffies;
7789
1da177e4 7790#ifdef CONFIG_SMP
41c7ce9a 7791 rq->sd = NULL;
57d885fe 7792 rq->rd = NULL;
e51fd5e2 7793 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7794 rq->post_schedule = 0;
1da177e4 7795 rq->active_balance = 0;
dd41f596 7796 rq->next_balance = jiffies;
1da177e4 7797 rq->push_cpu = 0;
0a2966b4 7798 rq->cpu = i;
1f11eb6a 7799 rq->online = 0;
eae0c9df
MG
7800 rq->idle_stamp = 0;
7801 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7802 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7803#ifdef CONFIG_NO_HZ
7804 rq->nohz_balance_kick = 0;
7805 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7806#endif
1da177e4 7807#endif
8f4d37ec 7808 init_rq_hrtick(rq);
1da177e4 7809 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7810 }
7811
2dd73a4f 7812 set_load_weight(&init_task);
b50f60ce 7813
e107be36
AK
7814#ifdef CONFIG_PREEMPT_NOTIFIERS
7815 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7816#endif
7817
c9819f45 7818#ifdef CONFIG_SMP
962cf36c 7819 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7820#endif
7821
b50f60ce 7822#ifdef CONFIG_RT_MUTEXES
1d615482 7823 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7824#endif
7825
1da177e4
LT
7826 /*
7827 * The boot idle thread does lazy MMU switching as well:
7828 */
7829 atomic_inc(&init_mm.mm_count);
7830 enter_lazy_tlb(&init_mm, current);
7831
7832 /*
7833 * Make us the idle thread. Technically, schedule() should not be
7834 * called from this thread, however somewhere below it might be,
7835 * but because we are the idle thread, we just pick up running again
7836 * when this runqueue becomes "idle".
7837 */
7838 init_idle(current, smp_processor_id());
dce48a84
TG
7839
7840 calc_load_update = jiffies + LOAD_FREQ;
7841
dd41f596
IM
7842 /*
7843 * During early bootup we pretend to be a normal task:
7844 */
7845 current->sched_class = &fair_sched_class;
6892b75e 7846
6a7b3dc3 7847 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7848 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7849#ifdef CONFIG_SMP
7d1e6a9b 7850#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7851 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7852 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7853 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7854 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7855 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7856#endif
bdddd296
RR
7857 /* May be allocated at isolcpus cmdline parse time */
7858 if (cpu_isolated_map == NULL)
7859 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7860#endif /* SMP */
6a7b3dc3 7861
cdd6c482 7862 perf_event_init();
0d905bca 7863
6892b75e 7864 scheduler_running = 1;
1da177e4
LT
7865}
7866
7867#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7868static inline int preempt_count_equals(int preempt_offset)
7869{
234da7bc 7870 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7871
7872 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7873}
7874
d894837f 7875void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7876{
48f24c4d 7877#ifdef in_atomic
1da177e4
LT
7878 static unsigned long prev_jiffy; /* ratelimiting */
7879
e4aafea2
FW
7880 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7881 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7882 return;
7883 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7884 return;
7885 prev_jiffy = jiffies;
7886
3df0fc5b
PZ
7887 printk(KERN_ERR
7888 "BUG: sleeping function called from invalid context at %s:%d\n",
7889 file, line);
7890 printk(KERN_ERR
7891 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7892 in_atomic(), irqs_disabled(),
7893 current->pid, current->comm);
aef745fc
IM
7894
7895 debug_show_held_locks(current);
7896 if (irqs_disabled())
7897 print_irqtrace_events(current);
7898 dump_stack();
1da177e4
LT
7899#endif
7900}
7901EXPORT_SYMBOL(__might_sleep);
7902#endif
7903
7904#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7905static void normalize_task(struct rq *rq, struct task_struct *p)
7906{
7907 int on_rq;
3e51f33f 7908
3a5e4dc1
AK
7909 on_rq = p->se.on_rq;
7910 if (on_rq)
7911 deactivate_task(rq, p, 0);
7912 __setscheduler(rq, p, SCHED_NORMAL, 0);
7913 if (on_rq) {
7914 activate_task(rq, p, 0);
7915 resched_task(rq->curr);
7916 }
7917}
7918
1da177e4
LT
7919void normalize_rt_tasks(void)
7920{
a0f98a1c 7921 struct task_struct *g, *p;
1da177e4 7922 unsigned long flags;
70b97a7f 7923 struct rq *rq;
1da177e4 7924
4cf5d77a 7925 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7926 do_each_thread(g, p) {
178be793
IM
7927 /*
7928 * Only normalize user tasks:
7929 */
7930 if (!p->mm)
7931 continue;
7932
6cfb0d5d 7933 p->se.exec_start = 0;
6cfb0d5d 7934#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7935 p->se.statistics.wait_start = 0;
7936 p->se.statistics.sleep_start = 0;
7937 p->se.statistics.block_start = 0;
6cfb0d5d 7938#endif
dd41f596
IM
7939
7940 if (!rt_task(p)) {
7941 /*
7942 * Renice negative nice level userspace
7943 * tasks back to 0:
7944 */
7945 if (TASK_NICE(p) < 0 && p->mm)
7946 set_user_nice(p, 0);
1da177e4 7947 continue;
dd41f596 7948 }
1da177e4 7949
1d615482 7950 raw_spin_lock(&p->pi_lock);
b29739f9 7951 rq = __task_rq_lock(p);
1da177e4 7952
178be793 7953 normalize_task(rq, p);
3a5e4dc1 7954
b29739f9 7955 __task_rq_unlock(rq);
1d615482 7956 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7957 } while_each_thread(g, p);
7958
4cf5d77a 7959 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7960}
7961
7962#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7963
67fc4e0c 7964#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7965/*
67fc4e0c 7966 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7967 *
7968 * They can only be called when the whole system has been
7969 * stopped - every CPU needs to be quiescent, and no scheduling
7970 * activity can take place. Using them for anything else would
7971 * be a serious bug, and as a result, they aren't even visible
7972 * under any other configuration.
7973 */
7974
7975/**
7976 * curr_task - return the current task for a given cpu.
7977 * @cpu: the processor in question.
7978 *
7979 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7980 */
36c8b586 7981struct task_struct *curr_task(int cpu)
1df5c10a
LT
7982{
7983 return cpu_curr(cpu);
7984}
7985
67fc4e0c
JW
7986#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7987
7988#ifdef CONFIG_IA64
1df5c10a
LT
7989/**
7990 * set_curr_task - set the current task for a given cpu.
7991 * @cpu: the processor in question.
7992 * @p: the task pointer to set.
7993 *
7994 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7995 * are serviced on a separate stack. It allows the architecture to switch the
7996 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7997 * must be called with all CPU's synchronized, and interrupts disabled, the
7998 * and caller must save the original value of the current task (see
7999 * curr_task() above) and restore that value before reenabling interrupts and
8000 * re-starting the system.
8001 *
8002 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8003 */
36c8b586 8004void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8005{
8006 cpu_curr(cpu) = p;
8007}
8008
8009#endif
29f59db3 8010
bccbe08a
PZ
8011#ifdef CONFIG_FAIR_GROUP_SCHED
8012static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8013{
8014 int i;
8015
8016 for_each_possible_cpu(i) {
8017 if (tg->cfs_rq)
8018 kfree(tg->cfs_rq[i]);
8019 if (tg->se)
8020 kfree(tg->se[i]);
6f505b16
PZ
8021 }
8022
8023 kfree(tg->cfs_rq);
8024 kfree(tg->se);
6f505b16
PZ
8025}
8026
ec7dc8ac
DG
8027static
8028int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8029{
29f59db3 8030 struct cfs_rq *cfs_rq;
eab17229 8031 struct sched_entity *se;
9b5b7751 8032 struct rq *rq;
29f59db3
SV
8033 int i;
8034
434d53b0 8035 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8036 if (!tg->cfs_rq)
8037 goto err;
434d53b0 8038 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8039 if (!tg->se)
8040 goto err;
052f1dc7
PZ
8041
8042 tg->shares = NICE_0_LOAD;
29f59db3
SV
8043
8044 for_each_possible_cpu(i) {
9b5b7751 8045 rq = cpu_rq(i);
29f59db3 8046
eab17229
LZ
8047 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8048 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8049 if (!cfs_rq)
8050 goto err;
8051
eab17229
LZ
8052 se = kzalloc_node(sizeof(struct sched_entity),
8053 GFP_KERNEL, cpu_to_node(i));
29f59db3 8054 if (!se)
dfc12eb2 8055 goto err_free_rq;
29f59db3 8056
3d4b47b4 8057 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8058 }
8059
8060 return 1;
8061
49246274 8062err_free_rq:
dfc12eb2 8063 kfree(cfs_rq);
49246274 8064err:
bccbe08a
PZ
8065 return 0;
8066}
8067
bccbe08a
PZ
8068static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8069{
3d4b47b4
PZ
8070 struct rq *rq = cpu_rq(cpu);
8071 unsigned long flags;
8072 int i;
8073
8074 /*
8075 * Only empty task groups can be destroyed; so we can speculatively
8076 * check on_list without danger of it being re-added.
8077 */
8078 if (!tg->cfs_rq[cpu]->on_list)
8079 return;
8080
8081 raw_spin_lock_irqsave(&rq->lock, flags);
8082 list_del_leaf_cfs_rq(tg->cfs_rq[i]);
8083 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8084}
6d6bc0ad 8085#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8086static inline void free_fair_sched_group(struct task_group *tg)
8087{
8088}
8089
ec7dc8ac
DG
8090static inline
8091int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8092{
8093 return 1;
8094}
8095
bccbe08a
PZ
8096static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8097{
8098}
6d6bc0ad 8099#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8100
8101#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8102static void free_rt_sched_group(struct task_group *tg)
8103{
8104 int i;
8105
d0b27fa7
PZ
8106 destroy_rt_bandwidth(&tg->rt_bandwidth);
8107
bccbe08a
PZ
8108 for_each_possible_cpu(i) {
8109 if (tg->rt_rq)
8110 kfree(tg->rt_rq[i]);
8111 if (tg->rt_se)
8112 kfree(tg->rt_se[i]);
8113 }
8114
8115 kfree(tg->rt_rq);
8116 kfree(tg->rt_se);
8117}
8118
ec7dc8ac
DG
8119static
8120int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8121{
8122 struct rt_rq *rt_rq;
eab17229 8123 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8124 struct rq *rq;
8125 int i;
8126
434d53b0 8127 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8128 if (!tg->rt_rq)
8129 goto err;
434d53b0 8130 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8131 if (!tg->rt_se)
8132 goto err;
8133
d0b27fa7
PZ
8134 init_rt_bandwidth(&tg->rt_bandwidth,
8135 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8136
8137 for_each_possible_cpu(i) {
8138 rq = cpu_rq(i);
8139
eab17229
LZ
8140 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8141 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8142 if (!rt_rq)
8143 goto err;
29f59db3 8144
eab17229
LZ
8145 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8146 GFP_KERNEL, cpu_to_node(i));
6f505b16 8147 if (!rt_se)
dfc12eb2 8148 goto err_free_rq;
29f59db3 8149
3d4b47b4 8150 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8151 }
8152
bccbe08a
PZ
8153 return 1;
8154
49246274 8155err_free_rq:
dfc12eb2 8156 kfree(rt_rq);
49246274 8157err:
bccbe08a
PZ
8158 return 0;
8159}
6d6bc0ad 8160#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8161static inline void free_rt_sched_group(struct task_group *tg)
8162{
8163}
8164
ec7dc8ac
DG
8165static inline
8166int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8167{
8168 return 1;
8169}
6d6bc0ad 8170#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8171
7c941438 8172#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8173static void free_sched_group(struct task_group *tg)
8174{
8175 free_fair_sched_group(tg);
8176 free_rt_sched_group(tg);
8177 kfree(tg);
8178}
8179
8180/* allocate runqueue etc for a new task group */
ec7dc8ac 8181struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8182{
8183 struct task_group *tg;
8184 unsigned long flags;
bccbe08a
PZ
8185
8186 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8187 if (!tg)
8188 return ERR_PTR(-ENOMEM);
8189
ec7dc8ac 8190 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8191 goto err;
8192
ec7dc8ac 8193 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8194 goto err;
8195
8ed36996 8196 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8197 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8198
8199 WARN_ON(!parent); /* root should already exist */
8200
8201 tg->parent = parent;
f473aa5e 8202 INIT_LIST_HEAD(&tg->children);
09f2724a 8203 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8204 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8205
9b5b7751 8206 return tg;
29f59db3
SV
8207
8208err:
6f505b16 8209 free_sched_group(tg);
29f59db3
SV
8210 return ERR_PTR(-ENOMEM);
8211}
8212
9b5b7751 8213/* rcu callback to free various structures associated with a task group */
6f505b16 8214static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8215{
29f59db3 8216 /* now it should be safe to free those cfs_rqs */
6f505b16 8217 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8218}
8219
9b5b7751 8220/* Destroy runqueue etc associated with a task group */
4cf86d77 8221void sched_destroy_group(struct task_group *tg)
29f59db3 8222{
8ed36996 8223 unsigned long flags;
9b5b7751 8224 int i;
29f59db3 8225
3d4b47b4
PZ
8226 /* end participation in shares distribution */
8227 for_each_possible_cpu(i)
bccbe08a 8228 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8229
8230 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8231 list_del_rcu(&tg->list);
f473aa5e 8232 list_del_rcu(&tg->siblings);
8ed36996 8233 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8234
9b5b7751 8235 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8236 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8237}
8238
9b5b7751 8239/* change task's runqueue when it moves between groups.
3a252015
IM
8240 * The caller of this function should have put the task in its new group
8241 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8242 * reflect its new group.
9b5b7751
SV
8243 */
8244void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8245{
8246 int on_rq, running;
8247 unsigned long flags;
8248 struct rq *rq;
8249
8250 rq = task_rq_lock(tsk, &flags);
8251
051a1d1a 8252 running = task_current(rq, tsk);
29f59db3
SV
8253 on_rq = tsk->se.on_rq;
8254
0e1f3483 8255 if (on_rq)
29f59db3 8256 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8257 if (unlikely(running))
8258 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8259
810b3817 8260#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8261 if (tsk->sched_class->task_move_group)
8262 tsk->sched_class->task_move_group(tsk, on_rq);
8263 else
810b3817 8264#endif
b2b5ce02 8265 set_task_rq(tsk, task_cpu(tsk));
810b3817 8266
0e1f3483
HS
8267 if (unlikely(running))
8268 tsk->sched_class->set_curr_task(rq);
8269 if (on_rq)
371fd7e7 8270 enqueue_task(rq, tsk, 0);
29f59db3 8271
29f59db3
SV
8272 task_rq_unlock(rq, &flags);
8273}
7c941438 8274#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8275
052f1dc7 8276#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8277static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8278{
8279 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8280 int on_rq;
8281
29f59db3 8282 on_rq = se->on_rq;
62fb1851 8283 if (on_rq)
29f59db3
SV
8284 dequeue_entity(cfs_rq, se, 0);
8285
2069dd75 8286 update_load_set(&se->load, shares);
29f59db3 8287
62fb1851 8288 if (on_rq)
29f59db3 8289 enqueue_entity(cfs_rq, se, 0);
c09595f6 8290}
62fb1851 8291
c09595f6
PZ
8292static void set_se_shares(struct sched_entity *se, unsigned long shares)
8293{
8294 struct cfs_rq *cfs_rq = se->cfs_rq;
8295 struct rq *rq = cfs_rq->rq;
8296 unsigned long flags;
8297
05fa785c 8298 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8299 __set_se_shares(se, shares);
05fa785c 8300 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8301}
8302
8ed36996
PZ
8303static DEFINE_MUTEX(shares_mutex);
8304
4cf86d77 8305int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8306{
8307 int i;
c61935fd 8308
ec7dc8ac
DG
8309 /*
8310 * We can't change the weight of the root cgroup.
8311 */
8312 if (!tg->se[0])
8313 return -EINVAL;
8314
18d95a28
PZ
8315 if (shares < MIN_SHARES)
8316 shares = MIN_SHARES;
cb4ad1ff
MX
8317 else if (shares > MAX_SHARES)
8318 shares = MAX_SHARES;
62fb1851 8319
8ed36996 8320 mutex_lock(&shares_mutex);
9b5b7751 8321 if (tg->shares == shares)
5cb350ba 8322 goto done;
29f59db3 8323
9b5b7751 8324 tg->shares = shares;
c09595f6
PZ
8325 for_each_possible_cpu(i) {
8326 /*
8327 * force a rebalance
8328 */
cb4ad1ff 8329 set_se_shares(tg->se[i], shares);
c09595f6 8330 }
29f59db3 8331
5cb350ba 8332done:
8ed36996 8333 mutex_unlock(&shares_mutex);
9b5b7751 8334 return 0;
29f59db3
SV
8335}
8336
5cb350ba
DG
8337unsigned long sched_group_shares(struct task_group *tg)
8338{
8339 return tg->shares;
8340}
052f1dc7 8341#endif
5cb350ba 8342
052f1dc7 8343#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8344/*
9f0c1e56 8345 * Ensure that the real time constraints are schedulable.
6f505b16 8346 */
9f0c1e56
PZ
8347static DEFINE_MUTEX(rt_constraints_mutex);
8348
8349static unsigned long to_ratio(u64 period, u64 runtime)
8350{
8351 if (runtime == RUNTIME_INF)
9a7e0b18 8352 return 1ULL << 20;
9f0c1e56 8353
9a7e0b18 8354 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8355}
8356
9a7e0b18
PZ
8357/* Must be called with tasklist_lock held */
8358static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8359{
9a7e0b18 8360 struct task_struct *g, *p;
b40b2e8e 8361
9a7e0b18
PZ
8362 do_each_thread(g, p) {
8363 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8364 return 1;
8365 } while_each_thread(g, p);
b40b2e8e 8366
9a7e0b18
PZ
8367 return 0;
8368}
b40b2e8e 8369
9a7e0b18
PZ
8370struct rt_schedulable_data {
8371 struct task_group *tg;
8372 u64 rt_period;
8373 u64 rt_runtime;
8374};
b40b2e8e 8375
9a7e0b18
PZ
8376static int tg_schedulable(struct task_group *tg, void *data)
8377{
8378 struct rt_schedulable_data *d = data;
8379 struct task_group *child;
8380 unsigned long total, sum = 0;
8381 u64 period, runtime;
b40b2e8e 8382
9a7e0b18
PZ
8383 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8384 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8385
9a7e0b18
PZ
8386 if (tg == d->tg) {
8387 period = d->rt_period;
8388 runtime = d->rt_runtime;
b40b2e8e 8389 }
b40b2e8e 8390
4653f803
PZ
8391 /*
8392 * Cannot have more runtime than the period.
8393 */
8394 if (runtime > period && runtime != RUNTIME_INF)
8395 return -EINVAL;
6f505b16 8396
4653f803
PZ
8397 /*
8398 * Ensure we don't starve existing RT tasks.
8399 */
9a7e0b18
PZ
8400 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8401 return -EBUSY;
6f505b16 8402
9a7e0b18 8403 total = to_ratio(period, runtime);
6f505b16 8404
4653f803
PZ
8405 /*
8406 * Nobody can have more than the global setting allows.
8407 */
8408 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8409 return -EINVAL;
6f505b16 8410
4653f803
PZ
8411 /*
8412 * The sum of our children's runtime should not exceed our own.
8413 */
9a7e0b18
PZ
8414 list_for_each_entry_rcu(child, &tg->children, siblings) {
8415 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8416 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8417
9a7e0b18
PZ
8418 if (child == d->tg) {
8419 period = d->rt_period;
8420 runtime = d->rt_runtime;
8421 }
6f505b16 8422
9a7e0b18 8423 sum += to_ratio(period, runtime);
9f0c1e56 8424 }
6f505b16 8425
9a7e0b18
PZ
8426 if (sum > total)
8427 return -EINVAL;
8428
8429 return 0;
6f505b16
PZ
8430}
8431
9a7e0b18 8432static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8433{
9a7e0b18
PZ
8434 struct rt_schedulable_data data = {
8435 .tg = tg,
8436 .rt_period = period,
8437 .rt_runtime = runtime,
8438 };
8439
8440 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8441}
8442
d0b27fa7
PZ
8443static int tg_set_bandwidth(struct task_group *tg,
8444 u64 rt_period, u64 rt_runtime)
6f505b16 8445{
ac086bc2 8446 int i, err = 0;
9f0c1e56 8447
9f0c1e56 8448 mutex_lock(&rt_constraints_mutex);
521f1a24 8449 read_lock(&tasklist_lock);
9a7e0b18
PZ
8450 err = __rt_schedulable(tg, rt_period, rt_runtime);
8451 if (err)
9f0c1e56 8452 goto unlock;
ac086bc2 8453
0986b11b 8454 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8455 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8456 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8457
8458 for_each_possible_cpu(i) {
8459 struct rt_rq *rt_rq = tg->rt_rq[i];
8460
0986b11b 8461 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8462 rt_rq->rt_runtime = rt_runtime;
0986b11b 8463 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8464 }
0986b11b 8465 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8466unlock:
521f1a24 8467 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8468 mutex_unlock(&rt_constraints_mutex);
8469
8470 return err;
6f505b16
PZ
8471}
8472
d0b27fa7
PZ
8473int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8474{
8475 u64 rt_runtime, rt_period;
8476
8477 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8478 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8479 if (rt_runtime_us < 0)
8480 rt_runtime = RUNTIME_INF;
8481
8482 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8483}
8484
9f0c1e56
PZ
8485long sched_group_rt_runtime(struct task_group *tg)
8486{
8487 u64 rt_runtime_us;
8488
d0b27fa7 8489 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8490 return -1;
8491
d0b27fa7 8492 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8493 do_div(rt_runtime_us, NSEC_PER_USEC);
8494 return rt_runtime_us;
8495}
d0b27fa7
PZ
8496
8497int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8498{
8499 u64 rt_runtime, rt_period;
8500
8501 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8502 rt_runtime = tg->rt_bandwidth.rt_runtime;
8503
619b0488
R
8504 if (rt_period == 0)
8505 return -EINVAL;
8506
d0b27fa7
PZ
8507 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8508}
8509
8510long sched_group_rt_period(struct task_group *tg)
8511{
8512 u64 rt_period_us;
8513
8514 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8515 do_div(rt_period_us, NSEC_PER_USEC);
8516 return rt_period_us;
8517}
8518
8519static int sched_rt_global_constraints(void)
8520{
4653f803 8521 u64 runtime, period;
d0b27fa7
PZ
8522 int ret = 0;
8523
ec5d4989
HS
8524 if (sysctl_sched_rt_period <= 0)
8525 return -EINVAL;
8526
4653f803
PZ
8527 runtime = global_rt_runtime();
8528 period = global_rt_period();
8529
8530 /*
8531 * Sanity check on the sysctl variables.
8532 */
8533 if (runtime > period && runtime != RUNTIME_INF)
8534 return -EINVAL;
10b612f4 8535
d0b27fa7 8536 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8537 read_lock(&tasklist_lock);
4653f803 8538 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8539 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8540 mutex_unlock(&rt_constraints_mutex);
8541
8542 return ret;
8543}
54e99124
DG
8544
8545int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8546{
8547 /* Don't accept realtime tasks when there is no way for them to run */
8548 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8549 return 0;
8550
8551 return 1;
8552}
8553
6d6bc0ad 8554#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8555static int sched_rt_global_constraints(void)
8556{
ac086bc2
PZ
8557 unsigned long flags;
8558 int i;
8559
ec5d4989
HS
8560 if (sysctl_sched_rt_period <= 0)
8561 return -EINVAL;
8562
60aa605d
PZ
8563 /*
8564 * There's always some RT tasks in the root group
8565 * -- migration, kstopmachine etc..
8566 */
8567 if (sysctl_sched_rt_runtime == 0)
8568 return -EBUSY;
8569
0986b11b 8570 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8571 for_each_possible_cpu(i) {
8572 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8573
0986b11b 8574 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8575 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8576 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8577 }
0986b11b 8578 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8579
d0b27fa7
PZ
8580 return 0;
8581}
6d6bc0ad 8582#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8583
8584int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8585 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8586 loff_t *ppos)
8587{
8588 int ret;
8589 int old_period, old_runtime;
8590 static DEFINE_MUTEX(mutex);
8591
8592 mutex_lock(&mutex);
8593 old_period = sysctl_sched_rt_period;
8594 old_runtime = sysctl_sched_rt_runtime;
8595
8d65af78 8596 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8597
8598 if (!ret && write) {
8599 ret = sched_rt_global_constraints();
8600 if (ret) {
8601 sysctl_sched_rt_period = old_period;
8602 sysctl_sched_rt_runtime = old_runtime;
8603 } else {
8604 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8605 def_rt_bandwidth.rt_period =
8606 ns_to_ktime(global_rt_period());
8607 }
8608 }
8609 mutex_unlock(&mutex);
8610
8611 return ret;
8612}
68318b8e 8613
052f1dc7 8614#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8615
8616/* return corresponding task_group object of a cgroup */
2b01dfe3 8617static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8618{
2b01dfe3
PM
8619 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8620 struct task_group, css);
68318b8e
SV
8621}
8622
8623static struct cgroup_subsys_state *
2b01dfe3 8624cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8625{
ec7dc8ac 8626 struct task_group *tg, *parent;
68318b8e 8627
2b01dfe3 8628 if (!cgrp->parent) {
68318b8e 8629 /* This is early initialization for the top cgroup */
68318b8e
SV
8630 return &init_task_group.css;
8631 }
8632
ec7dc8ac
DG
8633 parent = cgroup_tg(cgrp->parent);
8634 tg = sched_create_group(parent);
68318b8e
SV
8635 if (IS_ERR(tg))
8636 return ERR_PTR(-ENOMEM);
8637
68318b8e
SV
8638 return &tg->css;
8639}
8640
41a2d6cf
IM
8641static void
8642cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8643{
2b01dfe3 8644 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8645
8646 sched_destroy_group(tg);
8647}
8648
41a2d6cf 8649static int
be367d09 8650cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8651{
b68aa230 8652#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8653 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8654 return -EINVAL;
8655#else
68318b8e
SV
8656 /* We don't support RT-tasks being in separate groups */
8657 if (tsk->sched_class != &fair_sched_class)
8658 return -EINVAL;
b68aa230 8659#endif
be367d09
BB
8660 return 0;
8661}
68318b8e 8662
be367d09
BB
8663static int
8664cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8665 struct task_struct *tsk, bool threadgroup)
8666{
8667 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8668 if (retval)
8669 return retval;
8670 if (threadgroup) {
8671 struct task_struct *c;
8672 rcu_read_lock();
8673 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8674 retval = cpu_cgroup_can_attach_task(cgrp, c);
8675 if (retval) {
8676 rcu_read_unlock();
8677 return retval;
8678 }
8679 }
8680 rcu_read_unlock();
8681 }
68318b8e
SV
8682 return 0;
8683}
8684
8685static void
2b01dfe3 8686cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8687 struct cgroup *old_cont, struct task_struct *tsk,
8688 bool threadgroup)
68318b8e
SV
8689{
8690 sched_move_task(tsk);
be367d09
BB
8691 if (threadgroup) {
8692 struct task_struct *c;
8693 rcu_read_lock();
8694 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8695 sched_move_task(c);
8696 }
8697 rcu_read_unlock();
8698 }
68318b8e
SV
8699}
8700
052f1dc7 8701#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8702static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8703 u64 shareval)
68318b8e 8704{
2b01dfe3 8705 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8706}
8707
f4c753b7 8708static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8709{
2b01dfe3 8710 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8711
8712 return (u64) tg->shares;
8713}
6d6bc0ad 8714#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8715
052f1dc7 8716#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8717static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8718 s64 val)
6f505b16 8719{
06ecb27c 8720 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8721}
8722
06ecb27c 8723static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8724{
06ecb27c 8725 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8726}
d0b27fa7
PZ
8727
8728static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8729 u64 rt_period_us)
8730{
8731 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8732}
8733
8734static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8735{
8736 return sched_group_rt_period(cgroup_tg(cgrp));
8737}
6d6bc0ad 8738#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8739
fe5c7cc2 8740static struct cftype cpu_files[] = {
052f1dc7 8741#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8742 {
8743 .name = "shares",
f4c753b7
PM
8744 .read_u64 = cpu_shares_read_u64,
8745 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8746 },
052f1dc7
PZ
8747#endif
8748#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8749 {
9f0c1e56 8750 .name = "rt_runtime_us",
06ecb27c
PM
8751 .read_s64 = cpu_rt_runtime_read,
8752 .write_s64 = cpu_rt_runtime_write,
6f505b16 8753 },
d0b27fa7
PZ
8754 {
8755 .name = "rt_period_us",
f4c753b7
PM
8756 .read_u64 = cpu_rt_period_read_uint,
8757 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8758 },
052f1dc7 8759#endif
68318b8e
SV
8760};
8761
8762static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8763{
fe5c7cc2 8764 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8765}
8766
8767struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8768 .name = "cpu",
8769 .create = cpu_cgroup_create,
8770 .destroy = cpu_cgroup_destroy,
8771 .can_attach = cpu_cgroup_can_attach,
8772 .attach = cpu_cgroup_attach,
8773 .populate = cpu_cgroup_populate,
8774 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8775 .early_init = 1,
8776};
8777
052f1dc7 8778#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8779
8780#ifdef CONFIG_CGROUP_CPUACCT
8781
8782/*
8783 * CPU accounting code for task groups.
8784 *
8785 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8786 * (balbir@in.ibm.com).
8787 */
8788
934352f2 8789/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8790struct cpuacct {
8791 struct cgroup_subsys_state css;
8792 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8793 u64 __percpu *cpuusage;
ef12fefa 8794 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8795 struct cpuacct *parent;
d842de87
SV
8796};
8797
8798struct cgroup_subsys cpuacct_subsys;
8799
8800/* return cpu accounting group corresponding to this container */
32cd756a 8801static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8802{
32cd756a 8803 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8804 struct cpuacct, css);
8805}
8806
8807/* return cpu accounting group to which this task belongs */
8808static inline struct cpuacct *task_ca(struct task_struct *tsk)
8809{
8810 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8811 struct cpuacct, css);
8812}
8813
8814/* create a new cpu accounting group */
8815static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8816 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8817{
8818 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8819 int i;
d842de87
SV
8820
8821 if (!ca)
ef12fefa 8822 goto out;
d842de87
SV
8823
8824 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8825 if (!ca->cpuusage)
8826 goto out_free_ca;
8827
8828 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8829 if (percpu_counter_init(&ca->cpustat[i], 0))
8830 goto out_free_counters;
d842de87 8831
934352f2
BR
8832 if (cgrp->parent)
8833 ca->parent = cgroup_ca(cgrp->parent);
8834
d842de87 8835 return &ca->css;
ef12fefa
BR
8836
8837out_free_counters:
8838 while (--i >= 0)
8839 percpu_counter_destroy(&ca->cpustat[i]);
8840 free_percpu(ca->cpuusage);
8841out_free_ca:
8842 kfree(ca);
8843out:
8844 return ERR_PTR(-ENOMEM);
d842de87
SV
8845}
8846
8847/* destroy an existing cpu accounting group */
41a2d6cf 8848static void
32cd756a 8849cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8850{
32cd756a 8851 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8852 int i;
d842de87 8853
ef12fefa
BR
8854 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8855 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8856 free_percpu(ca->cpuusage);
8857 kfree(ca);
8858}
8859
720f5498
KC
8860static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8861{
b36128c8 8862 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8863 u64 data;
8864
8865#ifndef CONFIG_64BIT
8866 /*
8867 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8868 */
05fa785c 8869 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8870 data = *cpuusage;
05fa785c 8871 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8872#else
8873 data = *cpuusage;
8874#endif
8875
8876 return data;
8877}
8878
8879static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8880{
b36128c8 8881 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8882
8883#ifndef CONFIG_64BIT
8884 /*
8885 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8886 */
05fa785c 8887 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8888 *cpuusage = val;
05fa785c 8889 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8890#else
8891 *cpuusage = val;
8892#endif
8893}
8894
d842de87 8895/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8896static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8897{
32cd756a 8898 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8899 u64 totalcpuusage = 0;
8900 int i;
8901
720f5498
KC
8902 for_each_present_cpu(i)
8903 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8904
8905 return totalcpuusage;
8906}
8907
0297b803
DG
8908static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8909 u64 reset)
8910{
8911 struct cpuacct *ca = cgroup_ca(cgrp);
8912 int err = 0;
8913 int i;
8914
8915 if (reset) {
8916 err = -EINVAL;
8917 goto out;
8918 }
8919
720f5498
KC
8920 for_each_present_cpu(i)
8921 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8922
0297b803
DG
8923out:
8924 return err;
8925}
8926
e9515c3c
KC
8927static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8928 struct seq_file *m)
8929{
8930 struct cpuacct *ca = cgroup_ca(cgroup);
8931 u64 percpu;
8932 int i;
8933
8934 for_each_present_cpu(i) {
8935 percpu = cpuacct_cpuusage_read(ca, i);
8936 seq_printf(m, "%llu ", (unsigned long long) percpu);
8937 }
8938 seq_printf(m, "\n");
8939 return 0;
8940}
8941
ef12fefa
BR
8942static const char *cpuacct_stat_desc[] = {
8943 [CPUACCT_STAT_USER] = "user",
8944 [CPUACCT_STAT_SYSTEM] = "system",
8945};
8946
8947static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8948 struct cgroup_map_cb *cb)
8949{
8950 struct cpuacct *ca = cgroup_ca(cgrp);
8951 int i;
8952
8953 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8954 s64 val = percpu_counter_read(&ca->cpustat[i]);
8955 val = cputime64_to_clock_t(val);
8956 cb->fill(cb, cpuacct_stat_desc[i], val);
8957 }
8958 return 0;
8959}
8960
d842de87
SV
8961static struct cftype files[] = {
8962 {
8963 .name = "usage",
f4c753b7
PM
8964 .read_u64 = cpuusage_read,
8965 .write_u64 = cpuusage_write,
d842de87 8966 },
e9515c3c
KC
8967 {
8968 .name = "usage_percpu",
8969 .read_seq_string = cpuacct_percpu_seq_read,
8970 },
ef12fefa
BR
8971 {
8972 .name = "stat",
8973 .read_map = cpuacct_stats_show,
8974 },
d842de87
SV
8975};
8976
32cd756a 8977static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8978{
32cd756a 8979 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8980}
8981
8982/*
8983 * charge this task's execution time to its accounting group.
8984 *
8985 * called with rq->lock held.
8986 */
8987static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8988{
8989 struct cpuacct *ca;
934352f2 8990 int cpu;
d842de87 8991
c40c6f85 8992 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8993 return;
8994
934352f2 8995 cpu = task_cpu(tsk);
a18b83b7
BR
8996
8997 rcu_read_lock();
8998
d842de87 8999 ca = task_ca(tsk);
d842de87 9000
934352f2 9001 for (; ca; ca = ca->parent) {
b36128c8 9002 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9003 *cpuusage += cputime;
9004 }
a18b83b7
BR
9005
9006 rcu_read_unlock();
d842de87
SV
9007}
9008
fa535a77
AB
9009/*
9010 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9011 * in cputime_t units. As a result, cpuacct_update_stats calls
9012 * percpu_counter_add with values large enough to always overflow the
9013 * per cpu batch limit causing bad SMP scalability.
9014 *
9015 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9016 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9017 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9018 */
9019#ifdef CONFIG_SMP
9020#define CPUACCT_BATCH \
9021 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9022#else
9023#define CPUACCT_BATCH 0
9024#endif
9025
ef12fefa
BR
9026/*
9027 * Charge the system/user time to the task's accounting group.
9028 */
9029static void cpuacct_update_stats(struct task_struct *tsk,
9030 enum cpuacct_stat_index idx, cputime_t val)
9031{
9032 struct cpuacct *ca;
fa535a77 9033 int batch = CPUACCT_BATCH;
ef12fefa
BR
9034
9035 if (unlikely(!cpuacct_subsys.active))
9036 return;
9037
9038 rcu_read_lock();
9039 ca = task_ca(tsk);
9040
9041 do {
fa535a77 9042 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9043 ca = ca->parent;
9044 } while (ca);
9045 rcu_read_unlock();
9046}
9047
d842de87
SV
9048struct cgroup_subsys cpuacct_subsys = {
9049 .name = "cpuacct",
9050 .create = cpuacct_create,
9051 .destroy = cpuacct_destroy,
9052 .populate = cpuacct_populate,
9053 .subsys_id = cpuacct_subsys_id,
9054};
9055#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9056
9057#ifndef CONFIG_SMP
9058
03b042bf
PM
9059void synchronize_sched_expedited(void)
9060{
fc390cde 9061 barrier();
03b042bf
PM
9062}
9063EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9064
9065#else /* #ifndef CONFIG_SMP */
9066
cc631fb7 9067static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9068
cc631fb7 9069static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9070{
969c7921
TH
9071 /*
9072 * There must be a full memory barrier on each affected CPU
9073 * between the time that try_stop_cpus() is called and the
9074 * time that it returns.
9075 *
9076 * In the current initial implementation of cpu_stop, the
9077 * above condition is already met when the control reaches
9078 * this point and the following smp_mb() is not strictly
9079 * necessary. Do smp_mb() anyway for documentation and
9080 * robustness against future implementation changes.
9081 */
cc631fb7 9082 smp_mb(); /* See above comment block. */
969c7921 9083 return 0;
03b042bf 9084}
03b042bf
PM
9085
9086/*
9087 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9088 * approach to force grace period to end quickly. This consumes
9089 * significant time on all CPUs, and is thus not recommended for
9090 * any sort of common-case code.
9091 *
9092 * Note that it is illegal to call this function while holding any
9093 * lock that is acquired by a CPU-hotplug notifier. Failing to
9094 * observe this restriction will result in deadlock.
9095 */
9096void synchronize_sched_expedited(void)
9097{
969c7921 9098 int snap, trycount = 0;
03b042bf
PM
9099
9100 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9101 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9102 get_online_cpus();
969c7921
TH
9103 while (try_stop_cpus(cpu_online_mask,
9104 synchronize_sched_expedited_cpu_stop,
94458d5e 9105 NULL) == -EAGAIN) {
03b042bf
PM
9106 put_online_cpus();
9107 if (trycount++ < 10)
9108 udelay(trycount * num_online_cpus());
9109 else {
9110 synchronize_sched();
9111 return;
9112 }
969c7921 9113 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9114 smp_mb(); /* ensure test happens before caller kfree */
9115 return;
9116 }
9117 get_online_cpus();
9118 }
969c7921 9119 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9120 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9121 put_online_cpus();
03b042bf
PM
9122}
9123EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9124
9125#endif /* #else #ifndef CONFIG_SMP */