pcmcia: Fix broken abuse of dev->driver_data
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
d0b27fa7
PZ
114/*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117#define RUNTIME_INF ((u64)~0ULL)
118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
3f33a7ce 142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205}
206
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229}
230
231#ifdef CONFIG_RT_GROUP_SCHED
232static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233{
234 hrtimer_cancel(&rt_b->rt_period_timer);
235}
236#endif
237
712555ee
HC
238/*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242static DEFINE_MUTEX(sched_domains_mutex);
243
052f1dc7 244#ifdef CONFIG_GROUP_SCHED
29f59db3 245
68318b8e
SV
246#include <linux/cgroup.h>
247
29f59db3
SV
248struct cfs_rq;
249
6f505b16
PZ
250static LIST_HEAD(task_groups);
251
29f59db3 252/* task group related information */
4cf86d77 253struct task_group {
052f1dc7 254#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
255 struct cgroup_subsys_state css;
256#endif
052f1dc7
PZ
257
258#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
052f1dc7
PZ
264#endif
265
266#ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
d0b27fa7 270 struct rt_bandwidth rt_bandwidth;
052f1dc7 271#endif
6b2d7700 272
ae8393e5 273 struct rcu_head rcu;
6f505b16 274 struct list_head list;
f473aa5e
PZ
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
29f59db3
SV
279};
280
354d60c2 281#ifdef CONFIG_USER_SCHED
eff766a6
PZ
282
283/*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288struct task_group root_task_group;
289
052f1dc7 290#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
291/* Default task group's sched entity on each cpu */
292static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293/* Default task group's cfs_rq on each cpu */
294static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 295#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
296
297#ifdef CONFIG_RT_GROUP_SCHED
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
300#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 302#define root_task_group init_task_group
6d6bc0ad 303#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 304
8ed36996 305/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
306 * a task group's cpu shares.
307 */
8ed36996 308static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 309
052f1dc7 310#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
311#ifdef CONFIG_USER_SCHED
312# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 313#else /* !CONFIG_USER_SCHED */
052f1dc7 314# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 315#endif /* CONFIG_USER_SCHED */
052f1dc7 316
cb4ad1ff 317/*
2e084786
LJ
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
cb4ad1ff
MX
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
18d95a28 325#define MIN_SHARES 2
2e084786 326#define MAX_SHARES (1UL << 18)
18d95a28 327
052f1dc7
PZ
328static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329#endif
330
29f59db3 331/* Default task group.
3a252015 332 * Every task in system belong to this group at bootup.
29f59db3 333 */
434d53b0 334struct task_group init_task_group;
29f59db3
SV
335
336/* return group to which a task belongs */
4cf86d77 337static inline struct task_group *task_group(struct task_struct *p)
29f59db3 338{
4cf86d77 339 struct task_group *tg;
9b5b7751 340
052f1dc7 341#ifdef CONFIG_USER_SCHED
24e377a8 342 tg = p->user->tg;
052f1dc7 343#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
24e377a8 346#else
41a2d6cf 347 tg = &init_task_group;
24e377a8 348#endif
9b5b7751 349 return tg;
29f59db3
SV
350}
351
352/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 353static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 354{
052f1dc7 355#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
052f1dc7 358#endif
6f505b16 359
052f1dc7 360#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 363#endif
29f59db3
SV
364}
365
366#else
367
6f505b16 368static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
369static inline struct task_group *task_group(struct task_struct *p)
370{
371 return NULL;
372}
29f59db3 373
052f1dc7 374#endif /* CONFIG_GROUP_SCHED */
29f59db3 375
6aa645ea
IM
376/* CFS-related fields in a runqueue */
377struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
6aa645ea 381 u64 exec_clock;
e9acbff6 382 u64 min_vruntime;
103638d9 383 u64 pair_start;
6aa645ea
IM
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
4a55bd5e
PZ
387
388 struct list_head tasks;
389 struct list_head *balance_iterator;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
aa2ac252 395 struct sched_entity *curr, *next;
ddc97297
PZ
396
397 unsigned long nr_spread_over;
398
62160e3f 399#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
401
41a2d6cf
IM
402 /*
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
406 *
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
409 */
41a2d6cf
IM
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
412
413#ifdef CONFIG_SMP
c09595f6 414 /*
c8cba857 415 * the part of load.weight contributed by tasks
c09595f6 416 */
c8cba857 417 unsigned long task_weight;
c09595f6 418
c8cba857
PZ
419 /*
420 * h_load = weight * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long h_load;
c09595f6 426
c8cba857
PZ
427 /*
428 * this cpu's part of tg->shares
429 */
430 unsigned long shares;
f1d239f7
PZ
431
432 /*
433 * load.weight at the time we set shares
434 */
435 unsigned long rq_weight;
c09595f6 436#endif
6aa645ea
IM
437#endif
438};
1da177e4 439
6aa645ea
IM
440/* Real-Time classes' related field in a runqueue: */
441struct rt_rq {
442 struct rt_prio_array active;
63489e45 443 unsigned long rt_nr_running;
052f1dc7 444#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
445 int highest_prio; /* highest queued rt task prio */
446#endif
fa85ae24 447#ifdef CONFIG_SMP
73fe6aae 448 unsigned long rt_nr_migratory;
a22d7fc1 449 int overloaded;
fa85ae24 450#endif
6f505b16 451 int rt_throttled;
fa85ae24 452 u64 rt_time;
ac086bc2 453 u64 rt_runtime;
ea736ed5 454 /* Nests inside the rq lock: */
ac086bc2 455 spinlock_t rt_runtime_lock;
6f505b16 456
052f1dc7 457#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
458 unsigned long rt_nr_boosted;
459
6f505b16
PZ
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
464#endif
6aa645ea
IM
465};
466
57d885fe
GH
467#ifdef CONFIG_SMP
468
469/*
470 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
57d885fe
GH
476 */
477struct root_domain {
478 atomic_t refcount;
479 cpumask_t span;
480 cpumask_t online;
637f5085 481
0eab9146 482 /*
637f5085
GH
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
485 */
486 cpumask_t rto_mask;
0eab9146 487 atomic_t rto_count;
6e0534f2
GH
488#ifdef CONFIG_SMP
489 struct cpupri cpupri;
490#endif
57d885fe
GH
491};
492
dc938520
GH
493/*
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
496 */
57d885fe
GH
497static struct root_domain def_root_domain;
498
499#endif
500
1da177e4
LT
501/*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
70b97a7f 508struct rq {
d8016491
IM
509 /* runqueue lock: */
510 spinlock_t lock;
1da177e4
LT
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned long nr_running;
6aa645ea
IM
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 519 unsigned char idle_at_tick;
46cb4b7c 520#ifdef CONFIG_NO_HZ
15934a37 521 unsigned long last_tick_seen;
46cb4b7c
SS
522 unsigned char in_nohz_recently;
523#endif
d8016491
IM
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
6aa645ea
IM
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
6f505b16 530 struct rt_rq rt;
6f505b16 531
6aa645ea 532#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
535#endif
536#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 537 struct list_head leaf_rt_rq_list;
1da177e4 538#endif
1da177e4
LT
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
36c8b586 548 struct task_struct *curr, *idle;
c9819f45 549 unsigned long next_balance;
1da177e4 550 struct mm_struct *prev_mm;
6aa645ea 551
3e51f33f 552 u64 clock;
6aa645ea 553
1da177e4
LT
554 atomic_t nr_iowait;
555
556#ifdef CONFIG_SMP
0eab9146 557 struct root_domain *rd;
1da177e4
LT
558 struct sched_domain *sd;
559
560 /* For active balancing */
561 int active_balance;
562 int push_cpu;
d8016491
IM
563 /* cpu of this runqueue: */
564 int cpu;
1f11eb6a 565 int online;
1da177e4 566
a8a51d5e 567 unsigned long avg_load_per_task;
1da177e4 568
36c8b586 569 struct task_struct *migration_thread;
1da177e4
LT
570 struct list_head migration_queue;
571#endif
572
8f4d37ec 573#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
574#ifdef CONFIG_SMP
575 int hrtick_csd_pending;
576 struct call_single_data hrtick_csd;
577#endif
8f4d37ec
PZ
578 struct hrtimer hrtick_timer;
579#endif
580
1da177e4
LT
581#ifdef CONFIG_SCHEDSTATS
582 /* latency stats */
583 struct sched_info rq_sched_info;
584
585 /* sys_sched_yield() stats */
480b9434
KC
586 unsigned int yld_exp_empty;
587 unsigned int yld_act_empty;
588 unsigned int yld_both_empty;
589 unsigned int yld_count;
1da177e4
LT
590
591 /* schedule() stats */
480b9434
KC
592 unsigned int sched_switch;
593 unsigned int sched_count;
594 unsigned int sched_goidle;
1da177e4
LT
595
596 /* try_to_wake_up() stats */
480b9434
KC
597 unsigned int ttwu_count;
598 unsigned int ttwu_local;
b8efb561
IM
599
600 /* BKL stats */
480b9434 601 unsigned int bkl_count;
1da177e4
LT
602#endif
603};
604
f34e3b61 605static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 606
dd41f596
IM
607static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
608{
609 rq->curr->sched_class->check_preempt_curr(rq, p);
610}
611
0a2966b4
CL
612static inline int cpu_of(struct rq *rq)
613{
614#ifdef CONFIG_SMP
615 return rq->cpu;
616#else
617 return 0;
618#endif
619}
620
674311d5
NP
621/*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 623 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
48f24c4d
IM
628#define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
630
631#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632#define this_rq() (&__get_cpu_var(runqueues))
633#define task_rq(p) cpu_rq(task_cpu(p))
634#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635
3e51f33f
PZ
636static inline void update_rq_clock(struct rq *rq)
637{
638 rq->clock = sched_clock_cpu(cpu_of(rq));
639}
640
bf5c91ba
IM
641/*
642 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
643 */
644#ifdef CONFIG_SCHED_DEBUG
645# define const_debug __read_mostly
646#else
647# define const_debug static const
648#endif
649
017730c1
IM
650/**
651 * runqueue_is_locked
652 *
653 * Returns true if the current cpu runqueue is locked.
654 * This interface allows printk to be called with the runqueue lock
655 * held and know whether or not it is OK to wake up the klogd.
656 */
657int runqueue_is_locked(void)
658{
659 int cpu = get_cpu();
660 struct rq *rq = cpu_rq(cpu);
661 int ret;
662
663 ret = spin_is_locked(&rq->lock);
664 put_cpu();
665 return ret;
666}
667
bf5c91ba
IM
668/*
669 * Debugging: various feature bits
670 */
f00b45c1
PZ
671
672#define SCHED_FEAT(name, enabled) \
673 __SCHED_FEAT_##name ,
674
bf5c91ba 675enum {
f00b45c1 676#include "sched_features.h"
bf5c91ba
IM
677};
678
f00b45c1
PZ
679#undef SCHED_FEAT
680
681#define SCHED_FEAT(name, enabled) \
682 (1UL << __SCHED_FEAT_##name) * enabled |
683
bf5c91ba 684const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
685#include "sched_features.h"
686 0;
687
688#undef SCHED_FEAT
689
690#ifdef CONFIG_SCHED_DEBUG
691#define SCHED_FEAT(name, enabled) \
692 #name ,
693
983ed7a6 694static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
695#include "sched_features.h"
696 NULL
697};
698
699#undef SCHED_FEAT
700
983ed7a6 701static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
702{
703 filp->private_data = inode->i_private;
704 return 0;
705}
706
707static ssize_t
708sched_feat_read(struct file *filp, char __user *ubuf,
709 size_t cnt, loff_t *ppos)
710{
711 char *buf;
712 int r = 0;
713 int len = 0;
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
717 len += strlen(sched_feat_names[i]);
718 len += 4;
719 }
720
721 buf = kmalloc(len + 2, GFP_KERNEL);
722 if (!buf)
723 return -ENOMEM;
724
725 for (i = 0; sched_feat_names[i]; i++) {
726 if (sysctl_sched_features & (1UL << i))
727 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
728 else
c24b7c52 729 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
730 }
731
732 r += sprintf(buf + r, "\n");
733 WARN_ON(r >= len + 2);
734
735 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
736
737 kfree(buf);
738
739 return r;
740}
741
742static ssize_t
743sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
745{
746 char buf[64];
747 char *cmp = buf;
748 int neg = 0;
749 int i;
750
751 if (cnt > 63)
752 cnt = 63;
753
754 if (copy_from_user(&buf, ubuf, cnt))
755 return -EFAULT;
756
757 buf[cnt] = 0;
758
c24b7c52 759 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
766
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768 if (neg)
769 sysctl_sched_features &= ~(1UL << i);
770 else
771 sysctl_sched_features |= (1UL << i);
772 break;
773 }
774 }
775
776 if (!sched_feat_names[i])
777 return -EINVAL;
778
779 filp->f_pos += cnt;
780
781 return cnt;
782}
783
784static struct file_operations sched_feat_fops = {
785 .open = sched_feat_open,
786 .read = sched_feat_read,
787 .write = sched_feat_write,
788};
789
790static __init int sched_init_debug(void)
791{
f00b45c1
PZ
792 debugfs_create_file("sched_features", 0644, NULL, NULL,
793 &sched_feat_fops);
794
795 return 0;
796}
797late_initcall(sched_init_debug);
798
799#endif
800
801#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 802
b82d9fdd
PZ
803/*
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
806 */
807const_debug unsigned int sysctl_sched_nr_migrate = 32;
808
2398f2c6
PZ
809/*
810 * ratelimit for updating the group shares.
55cd5340 811 * default: 0.25ms
2398f2c6 812 */
55cd5340 813unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 814
fa85ae24 815/*
9f0c1e56 816 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
817 * default: 1s
818 */
9f0c1e56 819unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 820
6892b75e
IM
821static __read_mostly int scheduler_running;
822
9f0c1e56
PZ
823/*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827int sysctl_sched_rt_runtime = 950000;
fa85ae24 828
d0b27fa7
PZ
829static inline u64 global_rt_period(void)
830{
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832}
833
834static inline u64 global_rt_runtime(void)
835{
e26873bb 836 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840}
fa85ae24 841
1da177e4 842#ifndef prepare_arch_switch
4866cde0
NP
843# define prepare_arch_switch(next) do { } while (0)
844#endif
845#ifndef finish_arch_switch
846# define finish_arch_switch(prev) do { } while (0)
847#endif
848
051a1d1a
DA
849static inline int task_current(struct rq *rq, struct task_struct *p)
850{
851 return rq->curr == p;
852}
853
4866cde0 854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 855static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 856{
051a1d1a 857 return task_current(rq, p);
4866cde0
NP
858}
859
70b97a7f 860static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
861{
862}
863
70b97a7f 864static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 865{
da04c035
IM
866#ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869#endif
8a25d5de
IM
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
4866cde0
NP
877 spin_unlock_irq(&rq->lock);
878}
879
880#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 881static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
882{
883#ifdef CONFIG_SMP
884 return p->oncpu;
885#else
051a1d1a 886 return task_current(rq, p);
4866cde0
NP
887#endif
888}
889
70b97a7f 890static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
891{
892#ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899#endif
900#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 spin_unlock_irq(&rq->lock);
902#else
903 spin_unlock(&rq->lock);
904#endif
905}
906
70b97a7f 907static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917#endif
918#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
1da177e4 920#endif
4866cde0
NP
921}
922#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 923
b29739f9
IM
924/*
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
927 */
70b97a7f 928static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
929 __acquires(rq->lock)
930{
3a5c359a
AK
931 for (;;) {
932 struct rq *rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
b29739f9 936 spin_unlock(&rq->lock);
b29739f9 937 }
b29739f9
IM
938}
939
1da177e4
LT
940/*
941 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 942 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
943 * explicitly disabling preemption.
944 */
70b97a7f 945static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
946 __acquires(rq->lock)
947{
70b97a7f 948 struct rq *rq;
1da177e4 949
3a5c359a
AK
950 for (;;) {
951 local_irq_save(*flags);
952 rq = task_rq(p);
953 spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p)))
955 return rq;
1da177e4 956 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 957 }
1da177e4
LT
958}
959
a9957449 960static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
961 __releases(rq->lock)
962{
963 spin_unlock(&rq->lock);
964}
965
70b97a7f 966static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
967 __releases(rq->lock)
968{
969 spin_unlock_irqrestore(&rq->lock, *flags);
970}
971
1da177e4 972/*
cc2a73b5 973 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 974 */
a9957449 975static struct rq *this_rq_lock(void)
1da177e4
LT
976 __acquires(rq->lock)
977{
70b97a7f 978 struct rq *rq;
1da177e4
LT
979
980 local_irq_disable();
981 rq = this_rq();
982 spin_lock(&rq->lock);
983
984 return rq;
985}
986
8f4d37ec
PZ
987#ifdef CONFIG_SCHED_HRTICK
988/*
989 * Use HR-timers to deliver accurate preemption points.
990 *
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * reschedule event.
994 *
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
996 * rq->lock.
997 */
8f4d37ec
PZ
998
999/*
1000 * Use hrtick when:
1001 * - enabled by features
1002 * - hrtimer is actually high res
1003 */
1004static inline int hrtick_enabled(struct rq *rq)
1005{
1006 if (!sched_feat(HRTICK))
1007 return 0;
ba42059f 1008 if (!cpu_active(cpu_of(rq)))
b328ca18 1009 return 0;
8f4d37ec
PZ
1010 return hrtimer_is_hres_active(&rq->hrtick_timer);
1011}
1012
8f4d37ec
PZ
1013static void hrtick_clear(struct rq *rq)
1014{
1015 if (hrtimer_active(&rq->hrtick_timer))
1016 hrtimer_cancel(&rq->hrtick_timer);
1017}
1018
8f4d37ec
PZ
1019/*
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1022 */
1023static enum hrtimer_restart hrtick(struct hrtimer *timer)
1024{
1025 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1026
1027 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1028
1029 spin_lock(&rq->lock);
3e51f33f 1030 update_rq_clock(rq);
8f4d37ec
PZ
1031 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032 spin_unlock(&rq->lock);
1033
1034 return HRTIMER_NORESTART;
1035}
1036
95e904c7 1037#ifdef CONFIG_SMP
31656519
PZ
1038/*
1039 * called from hardirq (IPI) context
1040 */
1041static void __hrtick_start(void *arg)
b328ca18 1042{
31656519 1043 struct rq *rq = arg;
b328ca18 1044
31656519
PZ
1045 spin_lock(&rq->lock);
1046 hrtimer_restart(&rq->hrtick_timer);
1047 rq->hrtick_csd_pending = 0;
1048 spin_unlock(&rq->lock);
b328ca18
PZ
1049}
1050
31656519
PZ
1051/*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1057{
31656519
PZ
1058 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1060
31656519
PZ
1061 timer->expires = time;
1062
1063 if (rq == this_rq()) {
1064 hrtimer_restart(timer);
1065 } else if (!rq->hrtick_csd_pending) {
1066 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1067 rq->hrtick_csd_pending = 1;
1068 }
b328ca18
PZ
1069}
1070
1071static int
1072hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1073{
1074 int cpu = (int)(long)hcpu;
1075
1076 switch (action) {
1077 case CPU_UP_CANCELED:
1078 case CPU_UP_CANCELED_FROZEN:
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
1081 case CPU_DEAD:
1082 case CPU_DEAD_FROZEN:
31656519 1083 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1084 return NOTIFY_OK;
1085 }
1086
1087 return NOTIFY_DONE;
1088}
1089
1090static void init_hrtick(void)
1091{
1092 hotcpu_notifier(hotplug_hrtick, 0);
1093}
31656519
PZ
1094#else
1095/*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100static void hrtick_start(struct rq *rq, u64 delay)
1101{
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103}
b328ca18 1104
31656519 1105static void init_hrtick(void)
8f4d37ec 1106{
8f4d37ec 1107}
31656519 1108#endif /* CONFIG_SMP */
8f4d37ec 1109
31656519 1110static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1111{
31656519
PZ
1112#ifdef CONFIG_SMP
1113 rq->hrtick_csd_pending = 0;
8f4d37ec 1114
31656519
PZ
1115 rq->hrtick_csd.flags = 0;
1116 rq->hrtick_csd.func = __hrtick_start;
1117 rq->hrtick_csd.info = rq;
1118#endif
8f4d37ec 1119
31656519
PZ
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick;
1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
8f4d37ec
PZ
1123}
1124#else
1125static inline void hrtick_clear(struct rq *rq)
1126{
1127}
1128
8f4d37ec
PZ
1129static inline void init_rq_hrtick(struct rq *rq)
1130{
1131}
1132
b328ca18
PZ
1133static inline void init_hrtick(void)
1134{
1135}
8f4d37ec
PZ
1136#endif
1137
c24d20db
IM
1138/*
1139 * resched_task - mark a task 'to be rescheduled now'.
1140 *
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1143 * the target CPU.
1144 */
1145#ifdef CONFIG_SMP
1146
1147#ifndef tsk_is_polling
1148#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149#endif
1150
31656519 1151static void resched_task(struct task_struct *p)
c24d20db
IM
1152{
1153 int cpu;
1154
1155 assert_spin_locked(&task_rq(p)->lock);
1156
31656519 1157 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1158 return;
1159
31656519 1160 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1161
1162 cpu = task_cpu(p);
1163 if (cpu == smp_processor_id())
1164 return;
1165
1166 /* NEED_RESCHED must be visible before we test polling */
1167 smp_mb();
1168 if (!tsk_is_polling(p))
1169 smp_send_reschedule(cpu);
1170}
1171
1172static void resched_cpu(int cpu)
1173{
1174 struct rq *rq = cpu_rq(cpu);
1175 unsigned long flags;
1176
1177 if (!spin_trylock_irqsave(&rq->lock, flags))
1178 return;
1179 resched_task(cpu_curr(cpu));
1180 spin_unlock_irqrestore(&rq->lock, flags);
1181}
06d8308c
TG
1182
1183#ifdef CONFIG_NO_HZ
1184/*
1185 * When add_timer_on() enqueues a timer into the timer wheel of an
1186 * idle CPU then this timer might expire before the next timer event
1187 * which is scheduled to wake up that CPU. In case of a completely
1188 * idle system the next event might even be infinite time into the
1189 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190 * leaves the inner idle loop so the newly added timer is taken into
1191 * account when the CPU goes back to idle and evaluates the timer
1192 * wheel for the next timer event.
1193 */
1194void wake_up_idle_cpu(int cpu)
1195{
1196 struct rq *rq = cpu_rq(cpu);
1197
1198 if (cpu == smp_processor_id())
1199 return;
1200
1201 /*
1202 * This is safe, as this function is called with the timer
1203 * wheel base lock of (cpu) held. When the CPU is on the way
1204 * to idle and has not yet set rq->curr to idle then it will
1205 * be serialized on the timer wheel base lock and take the new
1206 * timer into account automatically.
1207 */
1208 if (rq->curr != rq->idle)
1209 return;
1210
1211 /*
1212 * We can set TIF_RESCHED on the idle task of the other CPU
1213 * lockless. The worst case is that the other CPU runs the
1214 * idle task through an additional NOOP schedule()
1215 */
1216 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1217
1218 /* NEED_RESCHED must be visible before we test polling */
1219 smp_mb();
1220 if (!tsk_is_polling(rq->idle))
1221 smp_send_reschedule(cpu);
1222}
6d6bc0ad 1223#endif /* CONFIG_NO_HZ */
06d8308c 1224
6d6bc0ad 1225#else /* !CONFIG_SMP */
31656519 1226static void resched_task(struct task_struct *p)
c24d20db
IM
1227{
1228 assert_spin_locked(&task_rq(p)->lock);
31656519 1229 set_tsk_need_resched(p);
c24d20db 1230}
6d6bc0ad 1231#endif /* CONFIG_SMP */
c24d20db 1232
45bf76df
IM
1233#if BITS_PER_LONG == 32
1234# define WMULT_CONST (~0UL)
1235#else
1236# define WMULT_CONST (1UL << 32)
1237#endif
1238
1239#define WMULT_SHIFT 32
1240
194081eb
IM
1241/*
1242 * Shift right and round:
1243 */
cf2ab469 1244#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1245
a7be37ac
PZ
1246/*
1247 * delta *= weight / lw
1248 */
cb1c4fc9 1249static unsigned long
45bf76df
IM
1250calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1251 struct load_weight *lw)
1252{
1253 u64 tmp;
1254
7a232e03
LJ
1255 if (!lw->inv_weight) {
1256 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1257 lw->inv_weight = 1;
1258 else
1259 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1260 / (lw->weight+1);
1261 }
45bf76df
IM
1262
1263 tmp = (u64)delta_exec * weight;
1264 /*
1265 * Check whether we'd overflow the 64-bit multiplication:
1266 */
194081eb 1267 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1268 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1269 WMULT_SHIFT/2);
1270 else
cf2ab469 1271 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1272
ecf691da 1273 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1274}
1275
1091985b 1276static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1277{
1278 lw->weight += inc;
e89996ae 1279 lw->inv_weight = 0;
45bf76df
IM
1280}
1281
1091985b 1282static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1283{
1284 lw->weight -= dec;
e89996ae 1285 lw->inv_weight = 0;
45bf76df
IM
1286}
1287
2dd73a4f
PW
1288/*
1289 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1290 * of tasks with abnormal "nice" values across CPUs the contribution that
1291 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1292 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1293 * scaled version of the new time slice allocation that they receive on time
1294 * slice expiry etc.
1295 */
1296
dd41f596
IM
1297#define WEIGHT_IDLEPRIO 2
1298#define WMULT_IDLEPRIO (1 << 31)
1299
1300/*
1301 * Nice levels are multiplicative, with a gentle 10% change for every
1302 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1303 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1304 * that remained on nice 0.
1305 *
1306 * The "10% effect" is relative and cumulative: from _any_ nice level,
1307 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1308 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1309 * If a task goes up by ~10% and another task goes down by ~10% then
1310 * the relative distance between them is ~25%.)
dd41f596
IM
1311 */
1312static const int prio_to_weight[40] = {
254753dc
IM
1313 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1314 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1315 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1316 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1317 /* 0 */ 1024, 820, 655, 526, 423,
1318 /* 5 */ 335, 272, 215, 172, 137,
1319 /* 10 */ 110, 87, 70, 56, 45,
1320 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1321};
1322
5714d2de
IM
1323/*
1324 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1325 *
1326 * In cases where the weight does not change often, we can use the
1327 * precalculated inverse to speed up arithmetics by turning divisions
1328 * into multiplications:
1329 */
dd41f596 1330static const u32 prio_to_wmult[40] = {
254753dc
IM
1331 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1332 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1333 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1334 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1335 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1336 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1337 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1338 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1339};
2dd73a4f 1340
dd41f596
IM
1341static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1342
1343/*
1344 * runqueue iterator, to support SMP load-balancing between different
1345 * scheduling classes, without having to expose their internal data
1346 * structures to the load-balancing proper:
1347 */
1348struct rq_iterator {
1349 void *arg;
1350 struct task_struct *(*start)(void *);
1351 struct task_struct *(*next)(void *);
1352};
1353
e1d1484f
PW
1354#ifdef CONFIG_SMP
1355static unsigned long
1356balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1357 unsigned long max_load_move, struct sched_domain *sd,
1358 enum cpu_idle_type idle, int *all_pinned,
1359 int *this_best_prio, struct rq_iterator *iterator);
1360
1361static int
1362iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 struct sched_domain *sd, enum cpu_idle_type idle,
1364 struct rq_iterator *iterator);
e1d1484f 1365#endif
dd41f596 1366
d842de87
SV
1367#ifdef CONFIG_CGROUP_CPUACCT
1368static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1369#else
1370static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1371#endif
1372
18d95a28
PZ
1373static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1374{
1375 update_load_add(&rq->load, load);
1376}
1377
1378static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1379{
1380 update_load_sub(&rq->load, load);
1381}
1382
e7693a36
GH
1383#ifdef CONFIG_SMP
1384static unsigned long source_load(int cpu, int type);
1385static unsigned long target_load(int cpu, int type);
e7693a36 1386static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1387
a8a51d5e
PZ
1388static unsigned long cpu_avg_load_per_task(int cpu)
1389{
1390 struct rq *rq = cpu_rq(cpu);
1391
1392 if (rq->nr_running)
1393 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1394
1395 return rq->avg_load_per_task;
1396}
18d95a28
PZ
1397
1398#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1399
c8cba857 1400typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1401
1402/*
1403 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time.
1405 */
c8cba857
PZ
1406static void
1407walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1408{
1409 struct task_group *parent, *child;
1410
1411 rcu_read_lock();
1412 parent = &root_task_group;
1413down:
b6a86c74 1414 (*down)(parent, cpu, sd);
c09595f6
PZ
1415 list_for_each_entry_rcu(child, &parent->children, siblings) {
1416 parent = child;
1417 goto down;
1418
1419up:
1420 continue;
1421 }
b6a86c74 1422 (*up)(parent, cpu, sd);
c09595f6
PZ
1423
1424 child = parent;
1425 parent = parent->parent;
1426 if (parent)
1427 goto up;
1428 rcu_read_unlock();
1429}
1430
c09595f6
PZ
1431static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1432
1433/*
1434 * Calculate and set the cpu's group shares.
1435 */
1436static void
b6a86c74 1437__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1438 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1439{
c09595f6
PZ
1440 int boost = 0;
1441 unsigned long shares;
1442 unsigned long rq_weight;
1443
c8cba857 1444 if (!tg->se[cpu])
c09595f6
PZ
1445 return;
1446
c8cba857 1447 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1448
1449 /*
1450 * If there are currently no tasks on the cpu pretend there is one of
1451 * average load so that when a new task gets to run here it will not
1452 * get delayed by group starvation.
1453 */
1454 if (!rq_weight) {
1455 boost = 1;
1456 rq_weight = NICE_0_LOAD;
1457 }
1458
c8cba857
PZ
1459 if (unlikely(rq_weight > sd_rq_weight))
1460 rq_weight = sd_rq_weight;
1461
c09595f6
PZ
1462 /*
1463 * \Sum shares * rq_weight
1464 * shares = -----------------------
1465 * \Sum rq_weight
1466 *
1467 */
c8cba857 1468 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1469
1470 /*
1471 * record the actual number of shares, not the boosted amount.
1472 */
c8cba857 1473 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1474 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1475
1476 if (shares < MIN_SHARES)
1477 shares = MIN_SHARES;
1478 else if (shares > MAX_SHARES)
1479 shares = MAX_SHARES;
1480
c8cba857 1481 __set_se_shares(tg->se[cpu], shares);
18d95a28 1482}
c09595f6
PZ
1483
1484/*
c8cba857
PZ
1485 * Re-compute the task group their per cpu shares over the given domain.
1486 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups.
c09595f6
PZ
1488 */
1489static void
c8cba857 1490tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1491{
c8cba857
PZ
1492 unsigned long rq_weight = 0;
1493 unsigned long shares = 0;
1494 int i;
c09595f6 1495
c8cba857
PZ
1496 for_each_cpu_mask(i, sd->span) {
1497 rq_weight += tg->cfs_rq[i]->load.weight;
1498 shares += tg->cfs_rq[i]->shares;
c09595f6 1499 }
c09595f6 1500
c8cba857
PZ
1501 if ((!shares && rq_weight) || shares > tg->shares)
1502 shares = tg->shares;
1503
1504 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1505 shares = tg->shares;
c09595f6 1506
cd80917e
PZ
1507 if (!rq_weight)
1508 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1509
c09595f6
PZ
1510 for_each_cpu_mask(i, sd->span) {
1511 struct rq *rq = cpu_rq(i);
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1515 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1516 spin_unlock_irqrestore(&rq->lock, flags);
1517 }
c09595f6
PZ
1518}
1519
1520/*
c8cba857
PZ
1521 * Compute the cpu's hierarchical load factor for each task group.
1522 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load.
c09595f6 1524 */
b6a86c74 1525static void
c8cba857 1526tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1527{
c8cba857 1528 unsigned long load;
c09595f6 1529
c8cba857
PZ
1530 if (!tg->parent) {
1531 load = cpu_rq(cpu)->load.weight;
1532 } else {
1533 load = tg->parent->cfs_rq[cpu]->h_load;
1534 load *= tg->cfs_rq[cpu]->shares;
1535 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1536 }
c09595f6 1537
c8cba857 1538 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1539}
1540
c8cba857
PZ
1541static void
1542tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1543{
c09595f6
PZ
1544}
1545
c8cba857 1546static void update_shares(struct sched_domain *sd)
4d8d595d 1547{
2398f2c6
PZ
1548 u64 now = cpu_clock(raw_smp_processor_id());
1549 s64 elapsed = now - sd->last_update;
1550
1551 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552 sd->last_update = now;
1553 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1554 }
4d8d595d
PZ
1555}
1556
3e5459b4
PZ
1557static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1558{
1559 spin_unlock(&rq->lock);
1560 update_shares(sd);
1561 spin_lock(&rq->lock);
1562}
1563
c8cba857 1564static void update_h_load(int cpu)
c09595f6 1565{
c8cba857 1566 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1567}
1568
c09595f6
PZ
1569#else
1570
c8cba857 1571static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1572{
1573}
1574
3e5459b4
PZ
1575static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1576{
1577}
1578
18d95a28
PZ
1579#endif
1580
18d95a28
PZ
1581#endif
1582
30432094 1583#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1584static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1585{
30432094 1586#ifdef CONFIG_SMP
34e83e85
IM
1587 cfs_rq->shares = shares;
1588#endif
1589}
30432094 1590#endif
e7693a36 1591
dd41f596 1592#include "sched_stats.h"
dd41f596 1593#include "sched_idletask.c"
5522d5d5
IM
1594#include "sched_fair.c"
1595#include "sched_rt.c"
dd41f596
IM
1596#ifdef CONFIG_SCHED_DEBUG
1597# include "sched_debug.c"
1598#endif
1599
1600#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1601#define for_each_class(class) \
1602 for (class = sched_class_highest; class; class = class->next)
dd41f596 1603
c09595f6 1604static void inc_nr_running(struct rq *rq)
9c217245
IM
1605{
1606 rq->nr_running++;
9c217245
IM
1607}
1608
c09595f6 1609static void dec_nr_running(struct rq *rq)
9c217245
IM
1610{
1611 rq->nr_running--;
9c217245
IM
1612}
1613
45bf76df
IM
1614static void set_load_weight(struct task_struct *p)
1615{
1616 if (task_has_rt_policy(p)) {
dd41f596
IM
1617 p->se.load.weight = prio_to_weight[0] * 2;
1618 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1619 return;
1620 }
45bf76df 1621
dd41f596
IM
1622 /*
1623 * SCHED_IDLE tasks get minimal weight:
1624 */
1625 if (p->policy == SCHED_IDLE) {
1626 p->se.load.weight = WEIGHT_IDLEPRIO;
1627 p->se.load.inv_weight = WMULT_IDLEPRIO;
1628 return;
1629 }
71f8bd46 1630
dd41f596
IM
1631 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1632 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1633}
1634
2087a1ad
GH
1635static void update_avg(u64 *avg, u64 sample)
1636{
1637 s64 diff = sample - *avg;
1638 *avg += diff >> 3;
1639}
1640
8159f87e 1641static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1642{
dd41f596 1643 sched_info_queued(p);
fd390f6a 1644 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1645 p->se.on_rq = 1;
71f8bd46
IM
1646}
1647
69be72c1 1648static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1649{
2087a1ad
GH
1650 if (sleep && p->se.last_wakeup) {
1651 update_avg(&p->se.avg_overlap,
1652 p->se.sum_exec_runtime - p->se.last_wakeup);
1653 p->se.last_wakeup = 0;
1654 }
1655
46ac22ba 1656 sched_info_dequeued(p);
f02231e5 1657 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1658 p->se.on_rq = 0;
71f8bd46
IM
1659}
1660
14531189 1661/*
dd41f596 1662 * __normal_prio - return the priority that is based on the static prio
14531189 1663 */
14531189
IM
1664static inline int __normal_prio(struct task_struct *p)
1665{
dd41f596 1666 return p->static_prio;
14531189
IM
1667}
1668
b29739f9
IM
1669/*
1670 * Calculate the expected normal priority: i.e. priority
1671 * without taking RT-inheritance into account. Might be
1672 * boosted by interactivity modifiers. Changes upon fork,
1673 * setprio syscalls, and whenever the interactivity
1674 * estimator recalculates.
1675 */
36c8b586 1676static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1677{
1678 int prio;
1679
e05606d3 1680 if (task_has_rt_policy(p))
b29739f9
IM
1681 prio = MAX_RT_PRIO-1 - p->rt_priority;
1682 else
1683 prio = __normal_prio(p);
1684 return prio;
1685}
1686
1687/*
1688 * Calculate the current priority, i.e. the priority
1689 * taken into account by the scheduler. This value might
1690 * be boosted by RT tasks, or might be boosted by
1691 * interactivity modifiers. Will be RT if the task got
1692 * RT-boosted. If not then it returns p->normal_prio.
1693 */
36c8b586 1694static int effective_prio(struct task_struct *p)
b29739f9
IM
1695{
1696 p->normal_prio = normal_prio(p);
1697 /*
1698 * If we are RT tasks or we were boosted to RT priority,
1699 * keep the priority unchanged. Otherwise, update priority
1700 * to the normal priority:
1701 */
1702 if (!rt_prio(p->prio))
1703 return p->normal_prio;
1704 return p->prio;
1705}
1706
1da177e4 1707/*
dd41f596 1708 * activate_task - move a task to the runqueue.
1da177e4 1709 */
dd41f596 1710static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1711{
d9514f6c 1712 if (task_contributes_to_load(p))
dd41f596 1713 rq->nr_uninterruptible--;
1da177e4 1714
8159f87e 1715 enqueue_task(rq, p, wakeup);
c09595f6 1716 inc_nr_running(rq);
1da177e4
LT
1717}
1718
1da177e4
LT
1719/*
1720 * deactivate_task - remove a task from the runqueue.
1721 */
2e1cb74a 1722static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1723{
d9514f6c 1724 if (task_contributes_to_load(p))
dd41f596
IM
1725 rq->nr_uninterruptible++;
1726
69be72c1 1727 dequeue_task(rq, p, sleep);
c09595f6 1728 dec_nr_running(rq);
1da177e4
LT
1729}
1730
1da177e4
LT
1731/**
1732 * task_curr - is this task currently executing on a CPU?
1733 * @p: the task in question.
1734 */
36c8b586 1735inline int task_curr(const struct task_struct *p)
1da177e4
LT
1736{
1737 return cpu_curr(task_cpu(p)) == p;
1738}
1739
dd41f596
IM
1740static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1741{
6f505b16 1742 set_task_rq(p, cpu);
dd41f596 1743#ifdef CONFIG_SMP
ce96b5ac
DA
1744 /*
1745 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1746 * successfuly executed on another CPU. We must ensure that updates of
1747 * per-task data have been completed by this moment.
1748 */
1749 smp_wmb();
dd41f596 1750 task_thread_info(p)->cpu = cpu;
dd41f596 1751#endif
2dd73a4f
PW
1752}
1753
cb469845
SR
1754static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1755 const struct sched_class *prev_class,
1756 int oldprio, int running)
1757{
1758 if (prev_class != p->sched_class) {
1759 if (prev_class->switched_from)
1760 prev_class->switched_from(rq, p, running);
1761 p->sched_class->switched_to(rq, p, running);
1762 } else
1763 p->sched_class->prio_changed(rq, p, oldprio, running);
1764}
1765
1da177e4 1766#ifdef CONFIG_SMP
c65cc870 1767
e958b360
TG
1768/* Used instead of source_load when we know the type == 0 */
1769static unsigned long weighted_cpuload(const int cpu)
1770{
1771 return cpu_rq(cpu)->load.weight;
1772}
1773
cc367732
IM
1774/*
1775 * Is this task likely cache-hot:
1776 */
e7693a36 1777static int
cc367732
IM
1778task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1779{
1780 s64 delta;
1781
f540a608
IM
1782 /*
1783 * Buddy candidates are cache hot:
1784 */
d25ce4cd 1785 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1786 return 1;
1787
cc367732
IM
1788 if (p->sched_class != &fair_sched_class)
1789 return 0;
1790
6bc1665b
IM
1791 if (sysctl_sched_migration_cost == -1)
1792 return 1;
1793 if (sysctl_sched_migration_cost == 0)
1794 return 0;
1795
cc367732
IM
1796 delta = now - p->se.exec_start;
1797
1798 return delta < (s64)sysctl_sched_migration_cost;
1799}
1800
1801
dd41f596 1802void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1803{
dd41f596
IM
1804 int old_cpu = task_cpu(p);
1805 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1806 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1807 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1808 u64 clock_offset;
dd41f596
IM
1809
1810 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1811
1812#ifdef CONFIG_SCHEDSTATS
1813 if (p->se.wait_start)
1814 p->se.wait_start -= clock_offset;
dd41f596
IM
1815 if (p->se.sleep_start)
1816 p->se.sleep_start -= clock_offset;
1817 if (p->se.block_start)
1818 p->se.block_start -= clock_offset;
cc367732
IM
1819 if (old_cpu != new_cpu) {
1820 schedstat_inc(p, se.nr_migrations);
1821 if (task_hot(p, old_rq->clock, NULL))
1822 schedstat_inc(p, se.nr_forced2_migrations);
1823 }
6cfb0d5d 1824#endif
2830cf8c
SV
1825 p->se.vruntime -= old_cfsrq->min_vruntime -
1826 new_cfsrq->min_vruntime;
dd41f596
IM
1827
1828 __set_task_cpu(p, new_cpu);
c65cc870
IM
1829}
1830
70b97a7f 1831struct migration_req {
1da177e4 1832 struct list_head list;
1da177e4 1833
36c8b586 1834 struct task_struct *task;
1da177e4
LT
1835 int dest_cpu;
1836
1da177e4 1837 struct completion done;
70b97a7f 1838};
1da177e4
LT
1839
1840/*
1841 * The task's runqueue lock must be held.
1842 * Returns true if you have to wait for migration thread.
1843 */
36c8b586 1844static int
70b97a7f 1845migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1846{
70b97a7f 1847 struct rq *rq = task_rq(p);
1da177e4
LT
1848
1849 /*
1850 * If the task is not on a runqueue (and not running), then
1851 * it is sufficient to simply update the task's cpu field.
1852 */
dd41f596 1853 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1854 set_task_cpu(p, dest_cpu);
1855 return 0;
1856 }
1857
1858 init_completion(&req->done);
1da177e4
LT
1859 req->task = p;
1860 req->dest_cpu = dest_cpu;
1861 list_add(&req->list, &rq->migration_queue);
48f24c4d 1862
1da177e4
LT
1863 return 1;
1864}
1865
1866/*
1867 * wait_task_inactive - wait for a thread to unschedule.
1868 *
85ba2d86
RM
1869 * If @match_state is nonzero, it's the @p->state value just checked and
1870 * not expected to change. If it changes, i.e. @p might have woken up,
1871 * then return zero. When we succeed in waiting for @p to be off its CPU,
1872 * we return a positive number (its total switch count). If a second call
1873 * a short while later returns the same number, the caller can be sure that
1874 * @p has remained unscheduled the whole time.
1875 *
1da177e4
LT
1876 * The caller must ensure that the task *will* unschedule sometime soon,
1877 * else this function might spin for a *long* time. This function can't
1878 * be called with interrupts off, or it may introduce deadlock with
1879 * smp_call_function() if an IPI is sent by the same process we are
1880 * waiting to become inactive.
1881 */
85ba2d86 1882unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1883{
1884 unsigned long flags;
dd41f596 1885 int running, on_rq;
85ba2d86 1886 unsigned long ncsw;
70b97a7f 1887 struct rq *rq;
1da177e4 1888
3a5c359a
AK
1889 for (;;) {
1890 /*
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1894 * work out!
1895 */
1896 rq = task_rq(p);
fa490cfd 1897
3a5c359a
AK
1898 /*
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1901 * any locks.
1902 *
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1908 */
85ba2d86
RM
1909 while (task_running(rq, p)) {
1910 if (match_state && unlikely(p->state != match_state))
1911 return 0;
3a5c359a 1912 cpu_relax();
85ba2d86 1913 }
fa490cfd 1914
3a5c359a
AK
1915 /*
1916 * Ok, time to look more closely! We need the rq
1917 * lock now, to be *sure*. If we're wrong, we'll
1918 * just go back and repeat.
1919 */
1920 rq = task_rq_lock(p, &flags);
1921 running = task_running(rq, p);
1922 on_rq = p->se.on_rq;
85ba2d86
RM
1923 ncsw = 0;
1924 if (!match_state || p->state == match_state) {
1925 ncsw = p->nivcsw + p->nvcsw;
1926 if (unlikely(!ncsw))
1927 ncsw = 1;
1928 }
3a5c359a 1929 task_rq_unlock(rq, &flags);
fa490cfd 1930
85ba2d86
RM
1931 /*
1932 * If it changed from the expected state, bail out now.
1933 */
1934 if (unlikely(!ncsw))
1935 break;
1936
3a5c359a
AK
1937 /*
1938 * Was it really running after all now that we
1939 * checked with the proper locks actually held?
1940 *
1941 * Oops. Go back and try again..
1942 */
1943 if (unlikely(running)) {
1944 cpu_relax();
1945 continue;
1946 }
fa490cfd 1947
3a5c359a
AK
1948 /*
1949 * It's not enough that it's not actively running,
1950 * it must be off the runqueue _entirely_, and not
1951 * preempted!
1952 *
1953 * So if it wa still runnable (but just not actively
1954 * running right now), it's preempted, and we should
1955 * yield - it could be a while.
1956 */
1957 if (unlikely(on_rq)) {
1958 schedule_timeout_uninterruptible(1);
1959 continue;
1960 }
fa490cfd 1961
3a5c359a
AK
1962 /*
1963 * Ahh, all good. It wasn't running, and it wasn't
1964 * runnable, which means that it will never become
1965 * running in the future either. We're all done!
1966 */
1967 break;
1968 }
85ba2d86
RM
1969
1970 return ncsw;
1da177e4
LT
1971}
1972
1973/***
1974 * kick_process - kick a running thread to enter/exit the kernel
1975 * @p: the to-be-kicked thread
1976 *
1977 * Cause a process which is running on another CPU to enter
1978 * kernel-mode, without any delay. (to get signals handled.)
1979 *
1980 * NOTE: this function doesnt have to take the runqueue lock,
1981 * because all it wants to ensure is that the remote task enters
1982 * the kernel. If the IPI races and the task has been migrated
1983 * to another CPU then no harm is done and the purpose has been
1984 * achieved as well.
1985 */
36c8b586 1986void kick_process(struct task_struct *p)
1da177e4
LT
1987{
1988 int cpu;
1989
1990 preempt_disable();
1991 cpu = task_cpu(p);
1992 if ((cpu != smp_processor_id()) && task_curr(p))
1993 smp_send_reschedule(cpu);
1994 preempt_enable();
1995}
1996
1997/*
2dd73a4f
PW
1998 * Return a low guess at the load of a migration-source cpu weighted
1999 * according to the scheduling class and "nice" value.
1da177e4
LT
2000 *
2001 * We want to under-estimate the load of migration sources, to
2002 * balance conservatively.
2003 */
a9957449 2004static unsigned long source_load(int cpu, int type)
1da177e4 2005{
70b97a7f 2006 struct rq *rq = cpu_rq(cpu);
dd41f596 2007 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2008
93b75217 2009 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2010 return total;
b910472d 2011
dd41f596 2012 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2013}
2014
2015/*
2dd73a4f
PW
2016 * Return a high guess at the load of a migration-target cpu weighted
2017 * according to the scheduling class and "nice" value.
1da177e4 2018 */
a9957449 2019static unsigned long target_load(int cpu, int type)
1da177e4 2020{
70b97a7f 2021 struct rq *rq = cpu_rq(cpu);
dd41f596 2022 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2023
93b75217 2024 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2025 return total;
3b0bd9bc 2026
dd41f596 2027 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2028}
2029
147cbb4b
NP
2030/*
2031 * find_idlest_group finds and returns the least busy CPU group within the
2032 * domain.
2033 */
2034static struct sched_group *
2035find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2036{
2037 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2038 unsigned long min_load = ULONG_MAX, this_load = 0;
2039 int load_idx = sd->forkexec_idx;
2040 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2041
2042 do {
2043 unsigned long load, avg_load;
2044 int local_group;
2045 int i;
2046
da5a5522
BD
2047 /* Skip over this group if it has no CPUs allowed */
2048 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2049 continue;
da5a5522 2050
147cbb4b 2051 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2052
2053 /* Tally up the load of all CPUs in the group */
2054 avg_load = 0;
2055
363ab6f1 2056 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2057 /* Bias balancing toward cpus of our domain */
2058 if (local_group)
2059 load = source_load(i, load_idx);
2060 else
2061 load = target_load(i, load_idx);
2062
2063 avg_load += load;
2064 }
2065
2066 /* Adjust by relative CPU power of the group */
5517d86b
ED
2067 avg_load = sg_div_cpu_power(group,
2068 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2069
2070 if (local_group) {
2071 this_load = avg_load;
2072 this = group;
2073 } else if (avg_load < min_load) {
2074 min_load = avg_load;
2075 idlest = group;
2076 }
3a5c359a 2077 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2078
2079 if (!idlest || 100*this_load < imbalance*min_load)
2080 return NULL;
2081 return idlest;
2082}
2083
2084/*
0feaece9 2085 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2086 */
95cdf3b7 2087static int
7c16ec58
MT
2088find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2089 cpumask_t *tmp)
147cbb4b
NP
2090{
2091 unsigned long load, min_load = ULONG_MAX;
2092 int idlest = -1;
2093 int i;
2094
da5a5522 2095 /* Traverse only the allowed CPUs */
7c16ec58 2096 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2097
363ab6f1 2098 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2099 load = weighted_cpuload(i);
147cbb4b
NP
2100
2101 if (load < min_load || (load == min_load && i == this_cpu)) {
2102 min_load = load;
2103 idlest = i;
2104 }
2105 }
2106
2107 return idlest;
2108}
2109
476d139c
NP
2110/*
2111 * sched_balance_self: balance the current task (running on cpu) in domains
2112 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2113 * SD_BALANCE_EXEC.
2114 *
2115 * Balance, ie. select the least loaded group.
2116 *
2117 * Returns the target CPU number, or the same CPU if no balancing is needed.
2118 *
2119 * preempt must be disabled.
2120 */
2121static int sched_balance_self(int cpu, int flag)
2122{
2123 struct task_struct *t = current;
2124 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2125
c96d145e 2126 for_each_domain(cpu, tmp) {
9761eea8
IM
2127 /*
2128 * If power savings logic is enabled for a domain, stop there.
2129 */
5c45bf27
SS
2130 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2131 break;
476d139c
NP
2132 if (tmp->flags & flag)
2133 sd = tmp;
c96d145e 2134 }
476d139c 2135
039a1c41
PZ
2136 if (sd)
2137 update_shares(sd);
2138
476d139c 2139 while (sd) {
7c16ec58 2140 cpumask_t span, tmpmask;
476d139c 2141 struct sched_group *group;
1a848870
SS
2142 int new_cpu, weight;
2143
2144 if (!(sd->flags & flag)) {
2145 sd = sd->child;
2146 continue;
2147 }
476d139c
NP
2148
2149 span = sd->span;
2150 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2151 if (!group) {
2152 sd = sd->child;
2153 continue;
2154 }
476d139c 2155
7c16ec58 2156 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2157 if (new_cpu == -1 || new_cpu == cpu) {
2158 /* Now try balancing at a lower domain level of cpu */
2159 sd = sd->child;
2160 continue;
2161 }
476d139c 2162
1a848870 2163 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2164 cpu = new_cpu;
476d139c
NP
2165 sd = NULL;
2166 weight = cpus_weight(span);
2167 for_each_domain(cpu, tmp) {
2168 if (weight <= cpus_weight(tmp->span))
2169 break;
2170 if (tmp->flags & flag)
2171 sd = tmp;
2172 }
2173 /* while loop will break here if sd == NULL */
2174 }
2175
2176 return cpu;
2177}
2178
2179#endif /* CONFIG_SMP */
1da177e4 2180
1da177e4
LT
2181/***
2182 * try_to_wake_up - wake up a thread
2183 * @p: the to-be-woken-up thread
2184 * @state: the mask of task states that can be woken
2185 * @sync: do a synchronous wakeup?
2186 *
2187 * Put it on the run-queue if it's not already there. The "current"
2188 * thread is always on the run-queue (except when the actual
2189 * re-schedule is in progress), and as such you're allowed to do
2190 * the simpler "current->state = TASK_RUNNING" to mark yourself
2191 * runnable without the overhead of this.
2192 *
2193 * returns failure only if the task is already active.
2194 */
36c8b586 2195static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2196{
cc367732 2197 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2198 unsigned long flags;
2199 long old_state;
70b97a7f 2200 struct rq *rq;
1da177e4 2201
b85d0667
IM
2202 if (!sched_feat(SYNC_WAKEUPS))
2203 sync = 0;
2204
2398f2c6
PZ
2205#ifdef CONFIG_SMP
2206 if (sched_feat(LB_WAKEUP_UPDATE)) {
2207 struct sched_domain *sd;
2208
2209 this_cpu = raw_smp_processor_id();
2210 cpu = task_cpu(p);
2211
2212 for_each_domain(this_cpu, sd) {
2213 if (cpu_isset(cpu, sd->span)) {
2214 update_shares(sd);
2215 break;
2216 }
2217 }
2218 }
2219#endif
2220
04e2f174 2221 smp_wmb();
1da177e4
LT
2222 rq = task_rq_lock(p, &flags);
2223 old_state = p->state;
2224 if (!(old_state & state))
2225 goto out;
2226
dd41f596 2227 if (p->se.on_rq)
1da177e4
LT
2228 goto out_running;
2229
2230 cpu = task_cpu(p);
cc367732 2231 orig_cpu = cpu;
1da177e4
LT
2232 this_cpu = smp_processor_id();
2233
2234#ifdef CONFIG_SMP
2235 if (unlikely(task_running(rq, p)))
2236 goto out_activate;
2237
5d2f5a61
DA
2238 cpu = p->sched_class->select_task_rq(p, sync);
2239 if (cpu != orig_cpu) {
2240 set_task_cpu(p, cpu);
1da177e4
LT
2241 task_rq_unlock(rq, &flags);
2242 /* might preempt at this point */
2243 rq = task_rq_lock(p, &flags);
2244 old_state = p->state;
2245 if (!(old_state & state))
2246 goto out;
dd41f596 2247 if (p->se.on_rq)
1da177e4
LT
2248 goto out_running;
2249
2250 this_cpu = smp_processor_id();
2251 cpu = task_cpu(p);
2252 }
2253
e7693a36
GH
2254#ifdef CONFIG_SCHEDSTATS
2255 schedstat_inc(rq, ttwu_count);
2256 if (cpu == this_cpu)
2257 schedstat_inc(rq, ttwu_local);
2258 else {
2259 struct sched_domain *sd;
2260 for_each_domain(this_cpu, sd) {
2261 if (cpu_isset(cpu, sd->span)) {
2262 schedstat_inc(sd, ttwu_wake_remote);
2263 break;
2264 }
2265 }
2266 }
6d6bc0ad 2267#endif /* CONFIG_SCHEDSTATS */
e7693a36 2268
1da177e4
LT
2269out_activate:
2270#endif /* CONFIG_SMP */
cc367732
IM
2271 schedstat_inc(p, se.nr_wakeups);
2272 if (sync)
2273 schedstat_inc(p, se.nr_wakeups_sync);
2274 if (orig_cpu != cpu)
2275 schedstat_inc(p, se.nr_wakeups_migrate);
2276 if (cpu == this_cpu)
2277 schedstat_inc(p, se.nr_wakeups_local);
2278 else
2279 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2280 update_rq_clock(rq);
dd41f596 2281 activate_task(rq, p, 1);
1da177e4
LT
2282 success = 1;
2283
2284out_running:
5b82a1b0
MD
2285 trace_mark(kernel_sched_wakeup,
2286 "pid %d state %ld ## rq %p task %p rq->curr %p",
2287 p->pid, p->state, rq, p, rq->curr);
4ae7d5ce
IM
2288 check_preempt_curr(rq, p);
2289
1da177e4 2290 p->state = TASK_RUNNING;
9a897c5a
SR
2291#ifdef CONFIG_SMP
2292 if (p->sched_class->task_wake_up)
2293 p->sched_class->task_wake_up(rq, p);
2294#endif
1da177e4 2295out:
2087a1ad
GH
2296 current->se.last_wakeup = current->se.sum_exec_runtime;
2297
1da177e4
LT
2298 task_rq_unlock(rq, &flags);
2299
2300 return success;
2301}
2302
7ad5b3a5 2303int wake_up_process(struct task_struct *p)
1da177e4 2304{
d9514f6c 2305 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2306}
1da177e4
LT
2307EXPORT_SYMBOL(wake_up_process);
2308
7ad5b3a5 2309int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2310{
2311 return try_to_wake_up(p, state, 0);
2312}
2313
1da177e4
LT
2314/*
2315 * Perform scheduler related setup for a newly forked process p.
2316 * p is forked by current.
dd41f596
IM
2317 *
2318 * __sched_fork() is basic setup used by init_idle() too:
2319 */
2320static void __sched_fork(struct task_struct *p)
2321{
dd41f596
IM
2322 p->se.exec_start = 0;
2323 p->se.sum_exec_runtime = 0;
f6cf891c 2324 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2325 p->se.last_wakeup = 0;
2326 p->se.avg_overlap = 0;
6cfb0d5d
IM
2327
2328#ifdef CONFIG_SCHEDSTATS
2329 p->se.wait_start = 0;
dd41f596
IM
2330 p->se.sum_sleep_runtime = 0;
2331 p->se.sleep_start = 0;
dd41f596
IM
2332 p->se.block_start = 0;
2333 p->se.sleep_max = 0;
2334 p->se.block_max = 0;
2335 p->se.exec_max = 0;
eba1ed4b 2336 p->se.slice_max = 0;
dd41f596 2337 p->se.wait_max = 0;
6cfb0d5d 2338#endif
476d139c 2339
fa717060 2340 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2341 p->se.on_rq = 0;
4a55bd5e 2342 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2343
e107be36
AK
2344#ifdef CONFIG_PREEMPT_NOTIFIERS
2345 INIT_HLIST_HEAD(&p->preempt_notifiers);
2346#endif
2347
1da177e4
LT
2348 /*
2349 * We mark the process as running here, but have not actually
2350 * inserted it onto the runqueue yet. This guarantees that
2351 * nobody will actually run it, and a signal or other external
2352 * event cannot wake it up and insert it on the runqueue either.
2353 */
2354 p->state = TASK_RUNNING;
dd41f596
IM
2355}
2356
2357/*
2358 * fork()/clone()-time setup:
2359 */
2360void sched_fork(struct task_struct *p, int clone_flags)
2361{
2362 int cpu = get_cpu();
2363
2364 __sched_fork(p);
2365
2366#ifdef CONFIG_SMP
2367 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2368#endif
02e4bac2 2369 set_task_cpu(p, cpu);
b29739f9
IM
2370
2371 /*
2372 * Make sure we do not leak PI boosting priority to the child:
2373 */
2374 p->prio = current->normal_prio;
2ddbf952
HS
2375 if (!rt_prio(p->prio))
2376 p->sched_class = &fair_sched_class;
b29739f9 2377
52f17b6c 2378#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2379 if (likely(sched_info_on()))
52f17b6c 2380 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2381#endif
d6077cb8 2382#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2383 p->oncpu = 0;
2384#endif
1da177e4 2385#ifdef CONFIG_PREEMPT
4866cde0 2386 /* Want to start with kernel preemption disabled. */
a1261f54 2387 task_thread_info(p)->preempt_count = 1;
1da177e4 2388#endif
476d139c 2389 put_cpu();
1da177e4
LT
2390}
2391
2392/*
2393 * wake_up_new_task - wake up a newly created task for the first time.
2394 *
2395 * This function will do some initial scheduler statistics housekeeping
2396 * that must be done for every newly created context, then puts the task
2397 * on the runqueue and wakes it.
2398 */
7ad5b3a5 2399void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2400{
2401 unsigned long flags;
dd41f596 2402 struct rq *rq;
1da177e4
LT
2403
2404 rq = task_rq_lock(p, &flags);
147cbb4b 2405 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2406 update_rq_clock(rq);
1da177e4
LT
2407
2408 p->prio = effective_prio(p);
2409
b9dca1e0 2410 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2411 activate_task(rq, p, 0);
1da177e4 2412 } else {
1da177e4 2413 /*
dd41f596
IM
2414 * Let the scheduling class do new task startup
2415 * management (if any):
1da177e4 2416 */
ee0827d8 2417 p->sched_class->task_new(rq, p);
c09595f6 2418 inc_nr_running(rq);
1da177e4 2419 }
5b82a1b0
MD
2420 trace_mark(kernel_sched_wakeup_new,
2421 "pid %d state %ld ## rq %p task %p rq->curr %p",
2422 p->pid, p->state, rq, p, rq->curr);
dd41f596 2423 check_preempt_curr(rq, p);
9a897c5a
SR
2424#ifdef CONFIG_SMP
2425 if (p->sched_class->task_wake_up)
2426 p->sched_class->task_wake_up(rq, p);
2427#endif
dd41f596 2428 task_rq_unlock(rq, &flags);
1da177e4
LT
2429}
2430
e107be36
AK
2431#ifdef CONFIG_PREEMPT_NOTIFIERS
2432
2433/**
421cee29
RD
2434 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2435 * @notifier: notifier struct to register
e107be36
AK
2436 */
2437void preempt_notifier_register(struct preempt_notifier *notifier)
2438{
2439 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2440}
2441EXPORT_SYMBOL_GPL(preempt_notifier_register);
2442
2443/**
2444 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2445 * @notifier: notifier struct to unregister
e107be36
AK
2446 *
2447 * This is safe to call from within a preemption notifier.
2448 */
2449void preempt_notifier_unregister(struct preempt_notifier *notifier)
2450{
2451 hlist_del(&notifier->link);
2452}
2453EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2454
2455static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2456{
2457 struct preempt_notifier *notifier;
2458 struct hlist_node *node;
2459
2460 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2461 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2462}
2463
2464static void
2465fire_sched_out_preempt_notifiers(struct task_struct *curr,
2466 struct task_struct *next)
2467{
2468 struct preempt_notifier *notifier;
2469 struct hlist_node *node;
2470
2471 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2472 notifier->ops->sched_out(notifier, next);
2473}
2474
6d6bc0ad 2475#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2476
2477static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478{
2479}
2480
2481static void
2482fire_sched_out_preempt_notifiers(struct task_struct *curr,
2483 struct task_struct *next)
2484{
2485}
2486
6d6bc0ad 2487#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2488
4866cde0
NP
2489/**
2490 * prepare_task_switch - prepare to switch tasks
2491 * @rq: the runqueue preparing to switch
421cee29 2492 * @prev: the current task that is being switched out
4866cde0
NP
2493 * @next: the task we are going to switch to.
2494 *
2495 * This is called with the rq lock held and interrupts off. It must
2496 * be paired with a subsequent finish_task_switch after the context
2497 * switch.
2498 *
2499 * prepare_task_switch sets up locking and calls architecture specific
2500 * hooks.
2501 */
e107be36
AK
2502static inline void
2503prepare_task_switch(struct rq *rq, struct task_struct *prev,
2504 struct task_struct *next)
4866cde0 2505{
e107be36 2506 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2507 prepare_lock_switch(rq, next);
2508 prepare_arch_switch(next);
2509}
2510
1da177e4
LT
2511/**
2512 * finish_task_switch - clean up after a task-switch
344babaa 2513 * @rq: runqueue associated with task-switch
1da177e4
LT
2514 * @prev: the thread we just switched away from.
2515 *
4866cde0
NP
2516 * finish_task_switch must be called after the context switch, paired
2517 * with a prepare_task_switch call before the context switch.
2518 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2519 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2520 *
2521 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2522 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2523 * with the lock held can cause deadlocks; see schedule() for
2524 * details.)
2525 */
a9957449 2526static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2527 __releases(rq->lock)
2528{
1da177e4 2529 struct mm_struct *mm = rq->prev_mm;
55a101f8 2530 long prev_state;
1da177e4
LT
2531
2532 rq->prev_mm = NULL;
2533
2534 /*
2535 * A task struct has one reference for the use as "current".
c394cc9f 2536 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2537 * schedule one last time. The schedule call will never return, and
2538 * the scheduled task must drop that reference.
c394cc9f 2539 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2540 * still held, otherwise prev could be scheduled on another cpu, die
2541 * there before we look at prev->state, and then the reference would
2542 * be dropped twice.
2543 * Manfred Spraul <manfred@colorfullife.com>
2544 */
55a101f8 2545 prev_state = prev->state;
4866cde0
NP
2546 finish_arch_switch(prev);
2547 finish_lock_switch(rq, prev);
9a897c5a
SR
2548#ifdef CONFIG_SMP
2549 if (current->sched_class->post_schedule)
2550 current->sched_class->post_schedule(rq);
2551#endif
e8fa1362 2552
e107be36 2553 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2554 if (mm)
2555 mmdrop(mm);
c394cc9f 2556 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2557 /*
2558 * Remove function-return probe instances associated with this
2559 * task and put them back on the free list.
9761eea8 2560 */
c6fd91f0 2561 kprobe_flush_task(prev);
1da177e4 2562 put_task_struct(prev);
c6fd91f0 2563 }
1da177e4
LT
2564}
2565
2566/**
2567 * schedule_tail - first thing a freshly forked thread must call.
2568 * @prev: the thread we just switched away from.
2569 */
36c8b586 2570asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2571 __releases(rq->lock)
2572{
70b97a7f
IM
2573 struct rq *rq = this_rq();
2574
4866cde0
NP
2575 finish_task_switch(rq, prev);
2576#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2577 /* In this case, finish_task_switch does not reenable preemption */
2578 preempt_enable();
2579#endif
1da177e4 2580 if (current->set_child_tid)
b488893a 2581 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2582}
2583
2584/*
2585 * context_switch - switch to the new MM and the new
2586 * thread's register state.
2587 */
dd41f596 2588static inline void
70b97a7f 2589context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2590 struct task_struct *next)
1da177e4 2591{
dd41f596 2592 struct mm_struct *mm, *oldmm;
1da177e4 2593
e107be36 2594 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2595 trace_mark(kernel_sched_schedule,
2596 "prev_pid %d next_pid %d prev_state %ld "
2597 "## rq %p prev %p next %p",
2598 prev->pid, next->pid, prev->state,
2599 rq, prev, next);
dd41f596
IM
2600 mm = next->mm;
2601 oldmm = prev->active_mm;
9226d125
ZA
2602 /*
2603 * For paravirt, this is coupled with an exit in switch_to to
2604 * combine the page table reload and the switch backend into
2605 * one hypercall.
2606 */
2607 arch_enter_lazy_cpu_mode();
2608
dd41f596 2609 if (unlikely(!mm)) {
1da177e4
LT
2610 next->active_mm = oldmm;
2611 atomic_inc(&oldmm->mm_count);
2612 enter_lazy_tlb(oldmm, next);
2613 } else
2614 switch_mm(oldmm, mm, next);
2615
dd41f596 2616 if (unlikely(!prev->mm)) {
1da177e4 2617 prev->active_mm = NULL;
1da177e4
LT
2618 rq->prev_mm = oldmm;
2619 }
3a5f5e48
IM
2620 /*
2621 * Since the runqueue lock will be released by the next
2622 * task (which is an invalid locking op but in the case
2623 * of the scheduler it's an obvious special-case), so we
2624 * do an early lockdep release here:
2625 */
2626#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2627 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2628#endif
1da177e4
LT
2629
2630 /* Here we just switch the register state and the stack. */
2631 switch_to(prev, next, prev);
2632
dd41f596
IM
2633 barrier();
2634 /*
2635 * this_rq must be evaluated again because prev may have moved
2636 * CPUs since it called schedule(), thus the 'rq' on its stack
2637 * frame will be invalid.
2638 */
2639 finish_task_switch(this_rq(), prev);
1da177e4
LT
2640}
2641
2642/*
2643 * nr_running, nr_uninterruptible and nr_context_switches:
2644 *
2645 * externally visible scheduler statistics: current number of runnable
2646 * threads, current number of uninterruptible-sleeping threads, total
2647 * number of context switches performed since bootup.
2648 */
2649unsigned long nr_running(void)
2650{
2651 unsigned long i, sum = 0;
2652
2653 for_each_online_cpu(i)
2654 sum += cpu_rq(i)->nr_running;
2655
2656 return sum;
2657}
2658
2659unsigned long nr_uninterruptible(void)
2660{
2661 unsigned long i, sum = 0;
2662
0a945022 2663 for_each_possible_cpu(i)
1da177e4
LT
2664 sum += cpu_rq(i)->nr_uninterruptible;
2665
2666 /*
2667 * Since we read the counters lockless, it might be slightly
2668 * inaccurate. Do not allow it to go below zero though:
2669 */
2670 if (unlikely((long)sum < 0))
2671 sum = 0;
2672
2673 return sum;
2674}
2675
2676unsigned long long nr_context_switches(void)
2677{
cc94abfc
SR
2678 int i;
2679 unsigned long long sum = 0;
1da177e4 2680
0a945022 2681 for_each_possible_cpu(i)
1da177e4
LT
2682 sum += cpu_rq(i)->nr_switches;
2683
2684 return sum;
2685}
2686
2687unsigned long nr_iowait(void)
2688{
2689 unsigned long i, sum = 0;
2690
0a945022 2691 for_each_possible_cpu(i)
1da177e4
LT
2692 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2693
2694 return sum;
2695}
2696
db1b1fef
JS
2697unsigned long nr_active(void)
2698{
2699 unsigned long i, running = 0, uninterruptible = 0;
2700
2701 for_each_online_cpu(i) {
2702 running += cpu_rq(i)->nr_running;
2703 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2704 }
2705
2706 if (unlikely((long)uninterruptible < 0))
2707 uninterruptible = 0;
2708
2709 return running + uninterruptible;
2710}
2711
48f24c4d 2712/*
dd41f596
IM
2713 * Update rq->cpu_load[] statistics. This function is usually called every
2714 * scheduler tick (TICK_NSEC).
48f24c4d 2715 */
dd41f596 2716static void update_cpu_load(struct rq *this_rq)
48f24c4d 2717{
495eca49 2718 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2719 int i, scale;
2720
2721 this_rq->nr_load_updates++;
dd41f596
IM
2722
2723 /* Update our load: */
2724 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2725 unsigned long old_load, new_load;
2726
2727 /* scale is effectively 1 << i now, and >> i divides by scale */
2728
2729 old_load = this_rq->cpu_load[i];
2730 new_load = this_load;
a25707f3
IM
2731 /*
2732 * Round up the averaging division if load is increasing. This
2733 * prevents us from getting stuck on 9 if the load is 10, for
2734 * example.
2735 */
2736 if (new_load > old_load)
2737 new_load += scale-1;
dd41f596
IM
2738 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2739 }
48f24c4d
IM
2740}
2741
dd41f596
IM
2742#ifdef CONFIG_SMP
2743
1da177e4
LT
2744/*
2745 * double_rq_lock - safely lock two runqueues
2746 *
2747 * Note this does not disable interrupts like task_rq_lock,
2748 * you need to do so manually before calling.
2749 */
70b97a7f 2750static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2751 __acquires(rq1->lock)
2752 __acquires(rq2->lock)
2753{
054b9108 2754 BUG_ON(!irqs_disabled());
1da177e4
LT
2755 if (rq1 == rq2) {
2756 spin_lock(&rq1->lock);
2757 __acquire(rq2->lock); /* Fake it out ;) */
2758 } else {
c96d145e 2759 if (rq1 < rq2) {
1da177e4 2760 spin_lock(&rq1->lock);
5e710e37 2761 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2762 } else {
2763 spin_lock(&rq2->lock);
5e710e37 2764 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2765 }
2766 }
6e82a3be
IM
2767 update_rq_clock(rq1);
2768 update_rq_clock(rq2);
1da177e4
LT
2769}
2770
2771/*
2772 * double_rq_unlock - safely unlock two runqueues
2773 *
2774 * Note this does not restore interrupts like task_rq_unlock,
2775 * you need to do so manually after calling.
2776 */
70b97a7f 2777static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2778 __releases(rq1->lock)
2779 __releases(rq2->lock)
2780{
2781 spin_unlock(&rq1->lock);
2782 if (rq1 != rq2)
2783 spin_unlock(&rq2->lock);
2784 else
2785 __release(rq2->lock);
2786}
2787
2788/*
2789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2790 */
e8fa1362 2791static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2792 __releases(this_rq->lock)
2793 __acquires(busiest->lock)
2794 __acquires(this_rq->lock)
2795{
e8fa1362
SR
2796 int ret = 0;
2797
054b9108
KK
2798 if (unlikely(!irqs_disabled())) {
2799 /* printk() doesn't work good under rq->lock */
2800 spin_unlock(&this_rq->lock);
2801 BUG_ON(1);
2802 }
1da177e4 2803 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2804 if (busiest < this_rq) {
1da177e4
LT
2805 spin_unlock(&this_rq->lock);
2806 spin_lock(&busiest->lock);
5e710e37 2807 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2808 ret = 1;
1da177e4 2809 } else
5e710e37 2810 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2811 }
e8fa1362 2812 return ret;
1da177e4
LT
2813}
2814
1b12bbc7
PZ
2815static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2816 __releases(busiest->lock)
2817{
2818 spin_unlock(&busiest->lock);
2819 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2820}
2821
1da177e4
LT
2822/*
2823 * If dest_cpu is allowed for this process, migrate the task to it.
2824 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2825 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2826 * the cpu_allowed mask is restored.
2827 */
36c8b586 2828static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2829{
70b97a7f 2830 struct migration_req req;
1da177e4 2831 unsigned long flags;
70b97a7f 2832 struct rq *rq;
1da177e4
LT
2833
2834 rq = task_rq_lock(p, &flags);
2835 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2836 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2837 goto out;
2838
2839 /* force the process onto the specified CPU */
2840 if (migrate_task(p, dest_cpu, &req)) {
2841 /* Need to wait for migration thread (might exit: take ref). */
2842 struct task_struct *mt = rq->migration_thread;
36c8b586 2843
1da177e4
LT
2844 get_task_struct(mt);
2845 task_rq_unlock(rq, &flags);
2846 wake_up_process(mt);
2847 put_task_struct(mt);
2848 wait_for_completion(&req.done);
36c8b586 2849
1da177e4
LT
2850 return;
2851 }
2852out:
2853 task_rq_unlock(rq, &flags);
2854}
2855
2856/*
476d139c
NP
2857 * sched_exec - execve() is a valuable balancing opportunity, because at
2858 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2859 */
2860void sched_exec(void)
2861{
1da177e4 2862 int new_cpu, this_cpu = get_cpu();
476d139c 2863 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2864 put_cpu();
476d139c
NP
2865 if (new_cpu != this_cpu)
2866 sched_migrate_task(current, new_cpu);
1da177e4
LT
2867}
2868
2869/*
2870 * pull_task - move a task from a remote runqueue to the local runqueue.
2871 * Both runqueues must be locked.
2872 */
dd41f596
IM
2873static void pull_task(struct rq *src_rq, struct task_struct *p,
2874 struct rq *this_rq, int this_cpu)
1da177e4 2875{
2e1cb74a 2876 deactivate_task(src_rq, p, 0);
1da177e4 2877 set_task_cpu(p, this_cpu);
dd41f596 2878 activate_task(this_rq, p, 0);
1da177e4
LT
2879 /*
2880 * Note that idle threads have a prio of MAX_PRIO, for this test
2881 * to be always true for them.
2882 */
dd41f596 2883 check_preempt_curr(this_rq, p);
1da177e4
LT
2884}
2885
2886/*
2887 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2888 */
858119e1 2889static
70b97a7f 2890int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2891 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2892 int *all_pinned)
1da177e4
LT
2893{
2894 /*
2895 * We do not migrate tasks that are:
2896 * 1) running (obviously), or
2897 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2898 * 3) are cache-hot on their current CPU.
2899 */
cc367732
IM
2900 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2901 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2902 return 0;
cc367732 2903 }
81026794
NP
2904 *all_pinned = 0;
2905
cc367732
IM
2906 if (task_running(rq, p)) {
2907 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2908 return 0;
cc367732 2909 }
1da177e4 2910
da84d961
IM
2911 /*
2912 * Aggressive migration if:
2913 * 1) task is cache cold, or
2914 * 2) too many balance attempts have failed.
2915 */
2916
6bc1665b
IM
2917 if (!task_hot(p, rq->clock, sd) ||
2918 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2919#ifdef CONFIG_SCHEDSTATS
cc367732 2920 if (task_hot(p, rq->clock, sd)) {
da84d961 2921 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2922 schedstat_inc(p, se.nr_forced_migrations);
2923 }
da84d961
IM
2924#endif
2925 return 1;
2926 }
2927
cc367732
IM
2928 if (task_hot(p, rq->clock, sd)) {
2929 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2930 return 0;
cc367732 2931 }
1da177e4
LT
2932 return 1;
2933}
2934
e1d1484f
PW
2935static unsigned long
2936balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2937 unsigned long max_load_move, struct sched_domain *sd,
2938 enum cpu_idle_type idle, int *all_pinned,
2939 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2940{
051c6764 2941 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2942 struct task_struct *p;
2943 long rem_load_move = max_load_move;
1da177e4 2944
e1d1484f 2945 if (max_load_move == 0)
1da177e4
LT
2946 goto out;
2947
81026794
NP
2948 pinned = 1;
2949
1da177e4 2950 /*
dd41f596 2951 * Start the load-balancing iterator:
1da177e4 2952 */
dd41f596
IM
2953 p = iterator->start(iterator->arg);
2954next:
b82d9fdd 2955 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2956 goto out;
051c6764
PZ
2957
2958 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2959 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2960 p = iterator->next(iterator->arg);
2961 goto next;
1da177e4
LT
2962 }
2963
dd41f596 2964 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2965 pulled++;
dd41f596 2966 rem_load_move -= p->se.load.weight;
1da177e4 2967
2dd73a4f 2968 /*
b82d9fdd 2969 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2970 */
e1d1484f 2971 if (rem_load_move > 0) {
a4ac01c3
PW
2972 if (p->prio < *this_best_prio)
2973 *this_best_prio = p->prio;
dd41f596
IM
2974 p = iterator->next(iterator->arg);
2975 goto next;
1da177e4
LT
2976 }
2977out:
2978 /*
e1d1484f 2979 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2980 * so we can safely collect pull_task() stats here rather than
2981 * inside pull_task().
2982 */
2983 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2984
2985 if (all_pinned)
2986 *all_pinned = pinned;
e1d1484f
PW
2987
2988 return max_load_move - rem_load_move;
1da177e4
LT
2989}
2990
dd41f596 2991/*
43010659
PW
2992 * move_tasks tries to move up to max_load_move weighted load from busiest to
2993 * this_rq, as part of a balancing operation within domain "sd".
2994 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2995 *
2996 * Called with both runqueues locked.
2997 */
2998static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2999 unsigned long max_load_move,
dd41f596
IM
3000 struct sched_domain *sd, enum cpu_idle_type idle,
3001 int *all_pinned)
3002{
5522d5d5 3003 const struct sched_class *class = sched_class_highest;
43010659 3004 unsigned long total_load_moved = 0;
a4ac01c3 3005 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3006
3007 do {
43010659
PW
3008 total_load_moved +=
3009 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3010 max_load_move - total_load_moved,
a4ac01c3 3011 sd, idle, all_pinned, &this_best_prio);
dd41f596 3012 class = class->next;
c4acb2c0
GH
3013
3014 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3015 break;
3016
43010659 3017 } while (class && max_load_move > total_load_moved);
dd41f596 3018
43010659
PW
3019 return total_load_moved > 0;
3020}
3021
e1d1484f
PW
3022static int
3023iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3024 struct sched_domain *sd, enum cpu_idle_type idle,
3025 struct rq_iterator *iterator)
3026{
3027 struct task_struct *p = iterator->start(iterator->arg);
3028 int pinned = 0;
3029
3030 while (p) {
3031 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3032 pull_task(busiest, p, this_rq, this_cpu);
3033 /*
3034 * Right now, this is only the second place pull_task()
3035 * is called, so we can safely collect pull_task()
3036 * stats here rather than inside pull_task().
3037 */
3038 schedstat_inc(sd, lb_gained[idle]);
3039
3040 return 1;
3041 }
3042 p = iterator->next(iterator->arg);
3043 }
3044
3045 return 0;
3046}
3047
43010659
PW
3048/*
3049 * move_one_task tries to move exactly one task from busiest to this_rq, as
3050 * part of active balancing operations within "domain".
3051 * Returns 1 if successful and 0 otherwise.
3052 *
3053 * Called with both runqueues locked.
3054 */
3055static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 struct sched_domain *sd, enum cpu_idle_type idle)
3057{
5522d5d5 3058 const struct sched_class *class;
43010659
PW
3059
3060 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3061 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3062 return 1;
3063
3064 return 0;
dd41f596
IM
3065}
3066
1da177e4
LT
3067/*
3068 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3069 * domain. It calculates and returns the amount of weighted load which
3070 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3071 */
3072static struct sched_group *
3073find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3074 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3075 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3076{
3077 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3078 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3079 unsigned long max_pull;
2dd73a4f
PW
3080 unsigned long busiest_load_per_task, busiest_nr_running;
3081 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3082 int load_idx, group_imb = 0;
5c45bf27
SS
3083#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3084 int power_savings_balance = 1;
3085 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3086 unsigned long min_nr_running = ULONG_MAX;
3087 struct sched_group *group_min = NULL, *group_leader = NULL;
3088#endif
1da177e4
LT
3089
3090 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3091 busiest_load_per_task = busiest_nr_running = 0;
3092 this_load_per_task = this_nr_running = 0;
408ed066 3093
d15bcfdb 3094 if (idle == CPU_NOT_IDLE)
7897986b 3095 load_idx = sd->busy_idx;
d15bcfdb 3096 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3097 load_idx = sd->newidle_idx;
3098 else
3099 load_idx = sd->idle_idx;
1da177e4
LT
3100
3101 do {
908a7c1b 3102 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3103 int local_group;
3104 int i;
908a7c1b 3105 int __group_imb = 0;
783609c6 3106 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3107 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3108 unsigned long sum_avg_load_per_task;
3109 unsigned long avg_load_per_task;
1da177e4
LT
3110
3111 local_group = cpu_isset(this_cpu, group->cpumask);
3112
783609c6
SS
3113 if (local_group)
3114 balance_cpu = first_cpu(group->cpumask);
3115
1da177e4 3116 /* Tally up the load of all CPUs in the group */
2dd73a4f 3117 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3118 sum_avg_load_per_task = avg_load_per_task = 0;
3119
908a7c1b
KC
3120 max_cpu_load = 0;
3121 min_cpu_load = ~0UL;
1da177e4 3122
363ab6f1 3123 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3124 struct rq *rq;
3125
3126 if (!cpu_isset(i, *cpus))
3127 continue;
3128
3129 rq = cpu_rq(i);
2dd73a4f 3130
9439aab8 3131 if (*sd_idle && rq->nr_running)
5969fe06
NP
3132 *sd_idle = 0;
3133
1da177e4 3134 /* Bias balancing toward cpus of our domain */
783609c6
SS
3135 if (local_group) {
3136 if (idle_cpu(i) && !first_idle_cpu) {
3137 first_idle_cpu = 1;
3138 balance_cpu = i;
3139 }
3140
a2000572 3141 load = target_load(i, load_idx);
908a7c1b 3142 } else {
a2000572 3143 load = source_load(i, load_idx);
908a7c1b
KC
3144 if (load > max_cpu_load)
3145 max_cpu_load = load;
3146 if (min_cpu_load > load)
3147 min_cpu_load = load;
3148 }
1da177e4
LT
3149
3150 avg_load += load;
2dd73a4f 3151 sum_nr_running += rq->nr_running;
dd41f596 3152 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3153
3154 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3155 }
3156
783609c6
SS
3157 /*
3158 * First idle cpu or the first cpu(busiest) in this sched group
3159 * is eligible for doing load balancing at this and above
9439aab8
SS
3160 * domains. In the newly idle case, we will allow all the cpu's
3161 * to do the newly idle load balance.
783609c6 3162 */
9439aab8
SS
3163 if (idle != CPU_NEWLY_IDLE && local_group &&
3164 balance_cpu != this_cpu && balance) {
783609c6
SS
3165 *balance = 0;
3166 goto ret;
3167 }
3168
1da177e4 3169 total_load += avg_load;
5517d86b 3170 total_pwr += group->__cpu_power;
1da177e4
LT
3171
3172 /* Adjust by relative CPU power of the group */
5517d86b
ED
3173 avg_load = sg_div_cpu_power(group,
3174 avg_load * SCHED_LOAD_SCALE);
1da177e4 3175
408ed066
PZ
3176
3177 /*
3178 * Consider the group unbalanced when the imbalance is larger
3179 * than the average weight of two tasks.
3180 *
3181 * APZ: with cgroup the avg task weight can vary wildly and
3182 * might not be a suitable number - should we keep a
3183 * normalized nr_running number somewhere that negates
3184 * the hierarchy?
3185 */
3186 avg_load_per_task = sg_div_cpu_power(group,
3187 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3188
3189 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3190 __group_imb = 1;
3191
5517d86b 3192 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3193
1da177e4
LT
3194 if (local_group) {
3195 this_load = avg_load;
3196 this = group;
2dd73a4f
PW
3197 this_nr_running = sum_nr_running;
3198 this_load_per_task = sum_weighted_load;
3199 } else if (avg_load > max_load &&
908a7c1b 3200 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3201 max_load = avg_load;
3202 busiest = group;
2dd73a4f
PW
3203 busiest_nr_running = sum_nr_running;
3204 busiest_load_per_task = sum_weighted_load;
908a7c1b 3205 group_imb = __group_imb;
1da177e4 3206 }
5c45bf27
SS
3207
3208#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3209 /*
3210 * Busy processors will not participate in power savings
3211 * balance.
3212 */
dd41f596
IM
3213 if (idle == CPU_NOT_IDLE ||
3214 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3215 goto group_next;
5c45bf27
SS
3216
3217 /*
3218 * If the local group is idle or completely loaded
3219 * no need to do power savings balance at this domain
3220 */
3221 if (local_group && (this_nr_running >= group_capacity ||
3222 !this_nr_running))
3223 power_savings_balance = 0;
3224
dd41f596 3225 /*
5c45bf27
SS
3226 * If a group is already running at full capacity or idle,
3227 * don't include that group in power savings calculations
dd41f596
IM
3228 */
3229 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3230 || !sum_nr_running)
dd41f596 3231 goto group_next;
5c45bf27 3232
dd41f596 3233 /*
5c45bf27 3234 * Calculate the group which has the least non-idle load.
dd41f596
IM
3235 * This is the group from where we need to pick up the load
3236 * for saving power
3237 */
3238 if ((sum_nr_running < min_nr_running) ||
3239 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3240 first_cpu(group->cpumask) <
3241 first_cpu(group_min->cpumask))) {
dd41f596
IM
3242 group_min = group;
3243 min_nr_running = sum_nr_running;
5c45bf27
SS
3244 min_load_per_task = sum_weighted_load /
3245 sum_nr_running;
dd41f596 3246 }
5c45bf27 3247
dd41f596 3248 /*
5c45bf27 3249 * Calculate the group which is almost near its
dd41f596
IM
3250 * capacity but still has some space to pick up some load
3251 * from other group and save more power
3252 */
3253 if (sum_nr_running <= group_capacity - 1) {
3254 if (sum_nr_running > leader_nr_running ||
3255 (sum_nr_running == leader_nr_running &&
3256 first_cpu(group->cpumask) >
3257 first_cpu(group_leader->cpumask))) {
3258 group_leader = group;
3259 leader_nr_running = sum_nr_running;
3260 }
48f24c4d 3261 }
5c45bf27
SS
3262group_next:
3263#endif
1da177e4
LT
3264 group = group->next;
3265 } while (group != sd->groups);
3266
2dd73a4f 3267 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3268 goto out_balanced;
3269
3270 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3271
3272 if (this_load >= avg_load ||
3273 100*max_load <= sd->imbalance_pct*this_load)
3274 goto out_balanced;
3275
2dd73a4f 3276 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3277 if (group_imb)
3278 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3279
1da177e4
LT
3280 /*
3281 * We're trying to get all the cpus to the average_load, so we don't
3282 * want to push ourselves above the average load, nor do we wish to
3283 * reduce the max loaded cpu below the average load, as either of these
3284 * actions would just result in more rebalancing later, and ping-pong
3285 * tasks around. Thus we look for the minimum possible imbalance.
3286 * Negative imbalances (*we* are more loaded than anyone else) will
3287 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3288 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3289 * appear as very large values with unsigned longs.
3290 */
2dd73a4f
PW
3291 if (max_load <= busiest_load_per_task)
3292 goto out_balanced;
3293
3294 /*
3295 * In the presence of smp nice balancing, certain scenarios can have
3296 * max load less than avg load(as we skip the groups at or below
3297 * its cpu_power, while calculating max_load..)
3298 */
3299 if (max_load < avg_load) {
3300 *imbalance = 0;
3301 goto small_imbalance;
3302 }
0c117f1b
SS
3303
3304 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3305 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3306
1da177e4 3307 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3308 *imbalance = min(max_pull * busiest->__cpu_power,
3309 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3310 / SCHED_LOAD_SCALE;
3311
2dd73a4f
PW
3312 /*
3313 * if *imbalance is less than the average load per runnable task
3314 * there is no gaurantee that any tasks will be moved so we'll have
3315 * a think about bumping its value to force at least one task to be
3316 * moved
3317 */
7fd0d2dd 3318 if (*imbalance < busiest_load_per_task) {
48f24c4d 3319 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3320 unsigned int imbn;
3321
3322small_imbalance:
3323 pwr_move = pwr_now = 0;
3324 imbn = 2;
3325 if (this_nr_running) {
3326 this_load_per_task /= this_nr_running;
3327 if (busiest_load_per_task > this_load_per_task)
3328 imbn = 1;
3329 } else
408ed066 3330 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3331
408ed066 3332 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3333 busiest_load_per_task * imbn) {
2dd73a4f 3334 *imbalance = busiest_load_per_task;
1da177e4
LT
3335 return busiest;
3336 }
3337
3338 /*
3339 * OK, we don't have enough imbalance to justify moving tasks,
3340 * however we may be able to increase total CPU power used by
3341 * moving them.
3342 */
3343
5517d86b
ED
3344 pwr_now += busiest->__cpu_power *
3345 min(busiest_load_per_task, max_load);
3346 pwr_now += this->__cpu_power *
3347 min(this_load_per_task, this_load);
1da177e4
LT
3348 pwr_now /= SCHED_LOAD_SCALE;
3349
3350 /* Amount of load we'd subtract */
5517d86b
ED
3351 tmp = sg_div_cpu_power(busiest,
3352 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3353 if (max_load > tmp)
5517d86b 3354 pwr_move += busiest->__cpu_power *
2dd73a4f 3355 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3356
3357 /* Amount of load we'd add */
5517d86b 3358 if (max_load * busiest->__cpu_power <
33859f7f 3359 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3360 tmp = sg_div_cpu_power(this,
3361 max_load * busiest->__cpu_power);
1da177e4 3362 else
5517d86b
ED
3363 tmp = sg_div_cpu_power(this,
3364 busiest_load_per_task * SCHED_LOAD_SCALE);
3365 pwr_move += this->__cpu_power *
3366 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3367 pwr_move /= SCHED_LOAD_SCALE;
3368
3369 /* Move if we gain throughput */
7fd0d2dd
SS
3370 if (pwr_move > pwr_now)
3371 *imbalance = busiest_load_per_task;
1da177e4
LT
3372 }
3373
1da177e4
LT
3374 return busiest;
3375
3376out_balanced:
5c45bf27 3377#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3378 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3379 goto ret;
1da177e4 3380
5c45bf27
SS
3381 if (this == group_leader && group_leader != group_min) {
3382 *imbalance = min_load_per_task;
3383 return group_min;
3384 }
5c45bf27 3385#endif
783609c6 3386ret:
1da177e4
LT
3387 *imbalance = 0;
3388 return NULL;
3389}
3390
3391/*
3392 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3393 */
70b97a7f 3394static struct rq *
d15bcfdb 3395find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3396 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3397{
70b97a7f 3398 struct rq *busiest = NULL, *rq;
2dd73a4f 3399 unsigned long max_load = 0;
1da177e4
LT
3400 int i;
3401
363ab6f1 3402 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3403 unsigned long wl;
0a2966b4
CL
3404
3405 if (!cpu_isset(i, *cpus))
3406 continue;
3407
48f24c4d 3408 rq = cpu_rq(i);
dd41f596 3409 wl = weighted_cpuload(i);
2dd73a4f 3410
dd41f596 3411 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3412 continue;
1da177e4 3413
dd41f596
IM
3414 if (wl > max_load) {
3415 max_load = wl;
48f24c4d 3416 busiest = rq;
1da177e4
LT
3417 }
3418 }
3419
3420 return busiest;
3421}
3422
77391d71
NP
3423/*
3424 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3425 * so long as it is large enough.
3426 */
3427#define MAX_PINNED_INTERVAL 512
3428
1da177e4
LT
3429/*
3430 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3431 * tasks if there is an imbalance.
1da177e4 3432 */
70b97a7f 3433static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3434 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3435 int *balance, cpumask_t *cpus)
1da177e4 3436{
43010659 3437 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3438 struct sched_group *group;
1da177e4 3439 unsigned long imbalance;
70b97a7f 3440 struct rq *busiest;
fe2eea3f 3441 unsigned long flags;
5969fe06 3442
7c16ec58
MT
3443 cpus_setall(*cpus);
3444
89c4710e
SS
3445 /*
3446 * When power savings policy is enabled for the parent domain, idle
3447 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3448 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3449 * portraying it as CPU_NOT_IDLE.
89c4710e 3450 */
d15bcfdb 3451 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3452 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3453 sd_idle = 1;
1da177e4 3454
2d72376b 3455 schedstat_inc(sd, lb_count[idle]);
1da177e4 3456
0a2966b4 3457redo:
c8cba857 3458 update_shares(sd);
0a2966b4 3459 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3460 cpus, balance);
783609c6 3461
06066714 3462 if (*balance == 0)
783609c6 3463 goto out_balanced;
783609c6 3464
1da177e4
LT
3465 if (!group) {
3466 schedstat_inc(sd, lb_nobusyg[idle]);
3467 goto out_balanced;
3468 }
3469
7c16ec58 3470 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3471 if (!busiest) {
3472 schedstat_inc(sd, lb_nobusyq[idle]);
3473 goto out_balanced;
3474 }
3475
db935dbd 3476 BUG_ON(busiest == this_rq);
1da177e4
LT
3477
3478 schedstat_add(sd, lb_imbalance[idle], imbalance);
3479
43010659 3480 ld_moved = 0;
1da177e4
LT
3481 if (busiest->nr_running > 1) {
3482 /*
3483 * Attempt to move tasks. If find_busiest_group has found
3484 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3485 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3486 * correctly treated as an imbalance.
3487 */
fe2eea3f 3488 local_irq_save(flags);
e17224bf 3489 double_rq_lock(this_rq, busiest);
43010659 3490 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3491 imbalance, sd, idle, &all_pinned);
e17224bf 3492 double_rq_unlock(this_rq, busiest);
fe2eea3f 3493 local_irq_restore(flags);
81026794 3494
46cb4b7c
SS
3495 /*
3496 * some other cpu did the load balance for us.
3497 */
43010659 3498 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3499 resched_cpu(this_cpu);
3500
81026794 3501 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3502 if (unlikely(all_pinned)) {
7c16ec58
MT
3503 cpu_clear(cpu_of(busiest), *cpus);
3504 if (!cpus_empty(*cpus))
0a2966b4 3505 goto redo;
81026794 3506 goto out_balanced;
0a2966b4 3507 }
1da177e4 3508 }
81026794 3509
43010659 3510 if (!ld_moved) {
1da177e4
LT
3511 schedstat_inc(sd, lb_failed[idle]);
3512 sd->nr_balance_failed++;
3513
3514 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3515
fe2eea3f 3516 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3517
3518 /* don't kick the migration_thread, if the curr
3519 * task on busiest cpu can't be moved to this_cpu
3520 */
3521 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3522 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3523 all_pinned = 1;
3524 goto out_one_pinned;
3525 }
3526
1da177e4
LT
3527 if (!busiest->active_balance) {
3528 busiest->active_balance = 1;
3529 busiest->push_cpu = this_cpu;
81026794 3530 active_balance = 1;
1da177e4 3531 }
fe2eea3f 3532 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3533 if (active_balance)
1da177e4
LT
3534 wake_up_process(busiest->migration_thread);
3535
3536 /*
3537 * We've kicked active balancing, reset the failure
3538 * counter.
3539 */
39507451 3540 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3541 }
81026794 3542 } else
1da177e4
LT
3543 sd->nr_balance_failed = 0;
3544
81026794 3545 if (likely(!active_balance)) {
1da177e4
LT
3546 /* We were unbalanced, so reset the balancing interval */
3547 sd->balance_interval = sd->min_interval;
81026794
NP
3548 } else {
3549 /*
3550 * If we've begun active balancing, start to back off. This
3551 * case may not be covered by the all_pinned logic if there
3552 * is only 1 task on the busy runqueue (because we don't call
3553 * move_tasks).
3554 */
3555 if (sd->balance_interval < sd->max_interval)
3556 sd->balance_interval *= 2;
1da177e4
LT
3557 }
3558
43010659 3559 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3560 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3561 ld_moved = -1;
3562
3563 goto out;
1da177e4
LT
3564
3565out_balanced:
1da177e4
LT
3566 schedstat_inc(sd, lb_balanced[idle]);
3567
16cfb1c0 3568 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3569
3570out_one_pinned:
1da177e4 3571 /* tune up the balancing interval */
77391d71
NP
3572 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3573 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3574 sd->balance_interval *= 2;
3575
48f24c4d 3576 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3577 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3578 ld_moved = -1;
3579 else
3580 ld_moved = 0;
3581out:
c8cba857
PZ
3582 if (ld_moved)
3583 update_shares(sd);
c09595f6 3584 return ld_moved;
1da177e4
LT
3585}
3586
3587/*
3588 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3589 * tasks if there is an imbalance.
3590 *
d15bcfdb 3591 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3592 * this_rq is locked.
3593 */
48f24c4d 3594static int
7c16ec58
MT
3595load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3596 cpumask_t *cpus)
1da177e4
LT
3597{
3598 struct sched_group *group;
70b97a7f 3599 struct rq *busiest = NULL;
1da177e4 3600 unsigned long imbalance;
43010659 3601 int ld_moved = 0;
5969fe06 3602 int sd_idle = 0;
969bb4e4 3603 int all_pinned = 0;
7c16ec58
MT
3604
3605 cpus_setall(*cpus);
5969fe06 3606
89c4710e
SS
3607 /*
3608 * When power savings policy is enabled for the parent domain, idle
3609 * sibling can pick up load irrespective of busy siblings. In this case,
3610 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3611 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3612 */
3613 if (sd->flags & SD_SHARE_CPUPOWER &&
3614 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3615 sd_idle = 1;
1da177e4 3616
2d72376b 3617 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3618redo:
3e5459b4 3619 update_shares_locked(this_rq, sd);
d15bcfdb 3620 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3621 &sd_idle, cpus, NULL);
1da177e4 3622 if (!group) {
d15bcfdb 3623 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3624 goto out_balanced;
1da177e4
LT
3625 }
3626
7c16ec58 3627 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3628 if (!busiest) {
d15bcfdb 3629 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3630 goto out_balanced;
1da177e4
LT
3631 }
3632
db935dbd
NP
3633 BUG_ON(busiest == this_rq);
3634
d15bcfdb 3635 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3636
43010659 3637 ld_moved = 0;
d6d5cfaf
NP
3638 if (busiest->nr_running > 1) {
3639 /* Attempt to move tasks */
3640 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3641 /* this_rq->clock is already updated */
3642 update_rq_clock(busiest);
43010659 3643 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3644 imbalance, sd, CPU_NEWLY_IDLE,
3645 &all_pinned);
1b12bbc7 3646 double_unlock_balance(this_rq, busiest);
0a2966b4 3647
969bb4e4 3648 if (unlikely(all_pinned)) {
7c16ec58
MT
3649 cpu_clear(cpu_of(busiest), *cpus);
3650 if (!cpus_empty(*cpus))
0a2966b4
CL
3651 goto redo;
3652 }
d6d5cfaf
NP
3653 }
3654
43010659 3655 if (!ld_moved) {
d15bcfdb 3656 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3657 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3658 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3659 return -1;
3660 } else
16cfb1c0 3661 sd->nr_balance_failed = 0;
1da177e4 3662
3e5459b4 3663 update_shares_locked(this_rq, sd);
43010659 3664 return ld_moved;
16cfb1c0
NP
3665
3666out_balanced:
d15bcfdb 3667 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3668 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3669 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3670 return -1;
16cfb1c0 3671 sd->nr_balance_failed = 0;
48f24c4d 3672
16cfb1c0 3673 return 0;
1da177e4
LT
3674}
3675
3676/*
3677 * idle_balance is called by schedule() if this_cpu is about to become
3678 * idle. Attempts to pull tasks from other CPUs.
3679 */
70b97a7f 3680static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3681{
3682 struct sched_domain *sd;
dd41f596
IM
3683 int pulled_task = -1;
3684 unsigned long next_balance = jiffies + HZ;
7c16ec58 3685 cpumask_t tmpmask;
1da177e4
LT
3686
3687 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3688 unsigned long interval;
3689
3690 if (!(sd->flags & SD_LOAD_BALANCE))
3691 continue;
3692
3693 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3694 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3695 pulled_task = load_balance_newidle(this_cpu, this_rq,
3696 sd, &tmpmask);
92c4ca5c
CL
3697
3698 interval = msecs_to_jiffies(sd->balance_interval);
3699 if (time_after(next_balance, sd->last_balance + interval))
3700 next_balance = sd->last_balance + interval;
3701 if (pulled_task)
3702 break;
1da177e4 3703 }
dd41f596 3704 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3705 /*
3706 * We are going idle. next_balance may be set based on
3707 * a busy processor. So reset next_balance.
3708 */
3709 this_rq->next_balance = next_balance;
dd41f596 3710 }
1da177e4
LT
3711}
3712
3713/*
3714 * active_load_balance is run by migration threads. It pushes running tasks
3715 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3716 * running on each physical CPU where possible, and avoids physical /
3717 * logical imbalances.
3718 *
3719 * Called with busiest_rq locked.
3720 */
70b97a7f 3721static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3722{
39507451 3723 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3724 struct sched_domain *sd;
3725 struct rq *target_rq;
39507451 3726
48f24c4d 3727 /* Is there any task to move? */
39507451 3728 if (busiest_rq->nr_running <= 1)
39507451
NP
3729 return;
3730
3731 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3732
3733 /*
39507451 3734 * This condition is "impossible", if it occurs
41a2d6cf 3735 * we need to fix it. Originally reported by
39507451 3736 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3737 */
39507451 3738 BUG_ON(busiest_rq == target_rq);
1da177e4 3739
39507451
NP
3740 /* move a task from busiest_rq to target_rq */
3741 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3742 update_rq_clock(busiest_rq);
3743 update_rq_clock(target_rq);
39507451
NP
3744
3745 /* Search for an sd spanning us and the target CPU. */
c96d145e 3746 for_each_domain(target_cpu, sd) {
39507451 3747 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3748 cpu_isset(busiest_cpu, sd->span))
39507451 3749 break;
c96d145e 3750 }
39507451 3751
48f24c4d 3752 if (likely(sd)) {
2d72376b 3753 schedstat_inc(sd, alb_count);
39507451 3754
43010659
PW
3755 if (move_one_task(target_rq, target_cpu, busiest_rq,
3756 sd, CPU_IDLE))
48f24c4d
IM
3757 schedstat_inc(sd, alb_pushed);
3758 else
3759 schedstat_inc(sd, alb_failed);
3760 }
1b12bbc7 3761 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3762}
3763
46cb4b7c
SS
3764#ifdef CONFIG_NO_HZ
3765static struct {
3766 atomic_t load_balancer;
41a2d6cf 3767 cpumask_t cpu_mask;
46cb4b7c
SS
3768} nohz ____cacheline_aligned = {
3769 .load_balancer = ATOMIC_INIT(-1),
3770 .cpu_mask = CPU_MASK_NONE,
3771};
3772
7835b98b 3773/*
46cb4b7c
SS
3774 * This routine will try to nominate the ilb (idle load balancing)
3775 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3776 * load balancing on behalf of all those cpus. If all the cpus in the system
3777 * go into this tickless mode, then there will be no ilb owner (as there is
3778 * no need for one) and all the cpus will sleep till the next wakeup event
3779 * arrives...
3780 *
3781 * For the ilb owner, tick is not stopped. And this tick will be used
3782 * for idle load balancing. ilb owner will still be part of
3783 * nohz.cpu_mask..
7835b98b 3784 *
46cb4b7c
SS
3785 * While stopping the tick, this cpu will become the ilb owner if there
3786 * is no other owner. And will be the owner till that cpu becomes busy
3787 * or if all cpus in the system stop their ticks at which point
3788 * there is no need for ilb owner.
3789 *
3790 * When the ilb owner becomes busy, it nominates another owner, during the
3791 * next busy scheduler_tick()
3792 */
3793int select_nohz_load_balancer(int stop_tick)
3794{
3795 int cpu = smp_processor_id();
3796
3797 if (stop_tick) {
3798 cpu_set(cpu, nohz.cpu_mask);
3799 cpu_rq(cpu)->in_nohz_recently = 1;
3800
3801 /*
3802 * If we are going offline and still the leader, give up!
3803 */
e761b772 3804 if (!cpu_active(cpu) &&
46cb4b7c
SS
3805 atomic_read(&nohz.load_balancer) == cpu) {
3806 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3807 BUG();
3808 return 0;
3809 }
3810
3811 /* time for ilb owner also to sleep */
3812 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3813 if (atomic_read(&nohz.load_balancer) == cpu)
3814 atomic_set(&nohz.load_balancer, -1);
3815 return 0;
3816 }
3817
3818 if (atomic_read(&nohz.load_balancer) == -1) {
3819 /* make me the ilb owner */
3820 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3821 return 1;
3822 } else if (atomic_read(&nohz.load_balancer) == cpu)
3823 return 1;
3824 } else {
3825 if (!cpu_isset(cpu, nohz.cpu_mask))
3826 return 0;
3827
3828 cpu_clear(cpu, nohz.cpu_mask);
3829
3830 if (atomic_read(&nohz.load_balancer) == cpu)
3831 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3832 BUG();
3833 }
3834 return 0;
3835}
3836#endif
3837
3838static DEFINE_SPINLOCK(balancing);
3839
3840/*
7835b98b
CL
3841 * It checks each scheduling domain to see if it is due to be balanced,
3842 * and initiates a balancing operation if so.
3843 *
3844 * Balancing parameters are set up in arch_init_sched_domains.
3845 */
a9957449 3846static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3847{
46cb4b7c
SS
3848 int balance = 1;
3849 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3850 unsigned long interval;
3851 struct sched_domain *sd;
46cb4b7c 3852 /* Earliest time when we have to do rebalance again */
c9819f45 3853 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3854 int update_next_balance = 0;
d07355f5 3855 int need_serialize;
7c16ec58 3856 cpumask_t tmp;
1da177e4 3857
46cb4b7c 3858 for_each_domain(cpu, sd) {
1da177e4
LT
3859 if (!(sd->flags & SD_LOAD_BALANCE))
3860 continue;
3861
3862 interval = sd->balance_interval;
d15bcfdb 3863 if (idle != CPU_IDLE)
1da177e4
LT
3864 interval *= sd->busy_factor;
3865
3866 /* scale ms to jiffies */
3867 interval = msecs_to_jiffies(interval);
3868 if (unlikely(!interval))
3869 interval = 1;
dd41f596
IM
3870 if (interval > HZ*NR_CPUS/10)
3871 interval = HZ*NR_CPUS/10;
3872
d07355f5 3873 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3874
d07355f5 3875 if (need_serialize) {
08c183f3
CL
3876 if (!spin_trylock(&balancing))
3877 goto out;
3878 }
3879
c9819f45 3880 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3881 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3882 /*
3883 * We've pulled tasks over so either we're no
5969fe06
NP
3884 * longer idle, or one of our SMT siblings is
3885 * not idle.
3886 */
d15bcfdb 3887 idle = CPU_NOT_IDLE;
1da177e4 3888 }
1bd77f2d 3889 sd->last_balance = jiffies;
1da177e4 3890 }
d07355f5 3891 if (need_serialize)
08c183f3
CL
3892 spin_unlock(&balancing);
3893out:
f549da84 3894 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3895 next_balance = sd->last_balance + interval;
f549da84
SS
3896 update_next_balance = 1;
3897 }
783609c6
SS
3898
3899 /*
3900 * Stop the load balance at this level. There is another
3901 * CPU in our sched group which is doing load balancing more
3902 * actively.
3903 */
3904 if (!balance)
3905 break;
1da177e4 3906 }
f549da84
SS
3907
3908 /*
3909 * next_balance will be updated only when there is a need.
3910 * When the cpu is attached to null domain for ex, it will not be
3911 * updated.
3912 */
3913 if (likely(update_next_balance))
3914 rq->next_balance = next_balance;
46cb4b7c
SS
3915}
3916
3917/*
3918 * run_rebalance_domains is triggered when needed from the scheduler tick.
3919 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3920 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3921 */
3922static void run_rebalance_domains(struct softirq_action *h)
3923{
dd41f596
IM
3924 int this_cpu = smp_processor_id();
3925 struct rq *this_rq = cpu_rq(this_cpu);
3926 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3927 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3928
dd41f596 3929 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3930
3931#ifdef CONFIG_NO_HZ
3932 /*
3933 * If this cpu is the owner for idle load balancing, then do the
3934 * balancing on behalf of the other idle cpus whose ticks are
3935 * stopped.
3936 */
dd41f596
IM
3937 if (this_rq->idle_at_tick &&
3938 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3939 cpumask_t cpus = nohz.cpu_mask;
3940 struct rq *rq;
3941 int balance_cpu;
3942
dd41f596 3943 cpu_clear(this_cpu, cpus);
363ab6f1 3944 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3945 /*
3946 * If this cpu gets work to do, stop the load balancing
3947 * work being done for other cpus. Next load
3948 * balancing owner will pick it up.
3949 */
3950 if (need_resched())
3951 break;
3952
de0cf899 3953 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3954
3955 rq = cpu_rq(balance_cpu);
dd41f596
IM
3956 if (time_after(this_rq->next_balance, rq->next_balance))
3957 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3958 }
3959 }
3960#endif
3961}
3962
3963/*
3964 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3965 *
3966 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3967 * idle load balancing owner or decide to stop the periodic load balancing,
3968 * if the whole system is idle.
3969 */
dd41f596 3970static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3971{
46cb4b7c
SS
3972#ifdef CONFIG_NO_HZ
3973 /*
3974 * If we were in the nohz mode recently and busy at the current
3975 * scheduler tick, then check if we need to nominate new idle
3976 * load balancer.
3977 */
3978 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3979 rq->in_nohz_recently = 0;
3980
3981 if (atomic_read(&nohz.load_balancer) == cpu) {
3982 cpu_clear(cpu, nohz.cpu_mask);
3983 atomic_set(&nohz.load_balancer, -1);
3984 }
3985
3986 if (atomic_read(&nohz.load_balancer) == -1) {
3987 /*
3988 * simple selection for now: Nominate the
3989 * first cpu in the nohz list to be the next
3990 * ilb owner.
3991 *
3992 * TBD: Traverse the sched domains and nominate
3993 * the nearest cpu in the nohz.cpu_mask.
3994 */
3995 int ilb = first_cpu(nohz.cpu_mask);
3996
434d53b0 3997 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3998 resched_cpu(ilb);
3999 }
4000 }
4001
4002 /*
4003 * If this cpu is idle and doing idle load balancing for all the
4004 * cpus with ticks stopped, is it time for that to stop?
4005 */
4006 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4007 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4008 resched_cpu(cpu);
4009 return;
4010 }
4011
4012 /*
4013 * If this cpu is idle and the idle load balancing is done by
4014 * someone else, then no need raise the SCHED_SOFTIRQ
4015 */
4016 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4017 cpu_isset(cpu, nohz.cpu_mask))
4018 return;
4019#endif
4020 if (time_after_eq(jiffies, rq->next_balance))
4021 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4022}
dd41f596
IM
4023
4024#else /* CONFIG_SMP */
4025
1da177e4
LT
4026/*
4027 * on UP we do not need to balance between CPUs:
4028 */
70b97a7f 4029static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4030{
4031}
dd41f596 4032
1da177e4
LT
4033#endif
4034
1da177e4
LT
4035DEFINE_PER_CPU(struct kernel_stat, kstat);
4036
4037EXPORT_PER_CPU_SYMBOL(kstat);
4038
4039/*
41b86e9c
IM
4040 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4041 * that have not yet been banked in case the task is currently running.
1da177e4 4042 */
41b86e9c 4043unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4044{
1da177e4 4045 unsigned long flags;
41b86e9c
IM
4046 u64 ns, delta_exec;
4047 struct rq *rq;
48f24c4d 4048
41b86e9c
IM
4049 rq = task_rq_lock(p, &flags);
4050 ns = p->se.sum_exec_runtime;
051a1d1a 4051 if (task_current(rq, p)) {
a8e504d2
IM
4052 update_rq_clock(rq);
4053 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4054 if ((s64)delta_exec > 0)
4055 ns += delta_exec;
4056 }
4057 task_rq_unlock(rq, &flags);
48f24c4d 4058
1da177e4
LT
4059 return ns;
4060}
4061
1da177e4
LT
4062/*
4063 * Account user cpu time to a process.
4064 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4065 * @cputime: the cpu time spent in user space since the last update
4066 */
4067void account_user_time(struct task_struct *p, cputime_t cputime)
4068{
4069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4070 cputime64_t tmp;
4071
4072 p->utime = cputime_add(p->utime, cputime);
4073
4074 /* Add user time to cpustat. */
4075 tmp = cputime_to_cputime64(cputime);
4076 if (TASK_NICE(p) > 0)
4077 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4078 else
4079 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4080 /* Account for user time used */
4081 acct_update_integrals(p);
1da177e4
LT
4082}
4083
94886b84
LV
4084/*
4085 * Account guest cpu time to a process.
4086 * @p: the process that the cpu time gets accounted to
4087 * @cputime: the cpu time spent in virtual machine since the last update
4088 */
f7402e03 4089static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4090{
4091 cputime64_t tmp;
4092 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4093
4094 tmp = cputime_to_cputime64(cputime);
4095
4096 p->utime = cputime_add(p->utime, cputime);
4097 p->gtime = cputime_add(p->gtime, cputime);
4098
4099 cpustat->user = cputime64_add(cpustat->user, tmp);
4100 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4101}
4102
c66f08be
MN
4103/*
4104 * Account scaled user cpu time to a process.
4105 * @p: the process that the cpu time gets accounted to
4106 * @cputime: the cpu time spent in user space since the last update
4107 */
4108void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4109{
4110 p->utimescaled = cputime_add(p->utimescaled, cputime);
4111}
4112
1da177e4
LT
4113/*
4114 * Account system cpu time to a process.
4115 * @p: the process that the cpu time gets accounted to
4116 * @hardirq_offset: the offset to subtract from hardirq_count()
4117 * @cputime: the cpu time spent in kernel space since the last update
4118 */
4119void account_system_time(struct task_struct *p, int hardirq_offset,
4120 cputime_t cputime)
4121{
4122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4123 struct rq *rq = this_rq();
1da177e4
LT
4124 cputime64_t tmp;
4125
983ed7a6
HH
4126 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4127 account_guest_time(p, cputime);
4128 return;
4129 }
94886b84 4130
1da177e4
LT
4131 p->stime = cputime_add(p->stime, cputime);
4132
4133 /* Add system time to cpustat. */
4134 tmp = cputime_to_cputime64(cputime);
4135 if (hardirq_count() - hardirq_offset)
4136 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4137 else if (softirq_count())
4138 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4139 else if (p != rq->idle)
1da177e4 4140 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4141 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4142 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4143 else
4144 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4145 /* Account for system time used */
4146 acct_update_integrals(p);
1da177e4
LT
4147}
4148
c66f08be
MN
4149/*
4150 * Account scaled system cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @hardirq_offset: the offset to subtract from hardirq_count()
4153 * @cputime: the cpu time spent in kernel space since the last update
4154 */
4155void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4156{
4157 p->stimescaled = cputime_add(p->stimescaled, cputime);
4158}
4159
1da177e4
LT
4160/*
4161 * Account for involuntary wait time.
4162 * @p: the process from which the cpu time has been stolen
4163 * @steal: the cpu time spent in involuntary wait
4164 */
4165void account_steal_time(struct task_struct *p, cputime_t steal)
4166{
4167 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4168 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4169 struct rq *rq = this_rq();
1da177e4
LT
4170
4171 if (p == rq->idle) {
4172 p->stime = cputime_add(p->stime, steal);
4173 if (atomic_read(&rq->nr_iowait) > 0)
4174 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4175 else
4176 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4177 } else
1da177e4
LT
4178 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4179}
4180
49048622
BS
4181/*
4182 * Use precise platform statistics if available:
4183 */
4184#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4185cputime_t task_utime(struct task_struct *p)
4186{
4187 return p->utime;
4188}
4189
4190cputime_t task_stime(struct task_struct *p)
4191{
4192 return p->stime;
4193}
4194#else
4195cputime_t task_utime(struct task_struct *p)
4196{
4197 clock_t utime = cputime_to_clock_t(p->utime),
4198 total = utime + cputime_to_clock_t(p->stime);
4199 u64 temp;
4200
4201 /*
4202 * Use CFS's precise accounting:
4203 */
4204 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4205
4206 if (total) {
4207 temp *= utime;
4208 do_div(temp, total);
4209 }
4210 utime = (clock_t)temp;
4211
4212 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4213 return p->prev_utime;
4214}
4215
4216cputime_t task_stime(struct task_struct *p)
4217{
4218 clock_t stime;
4219
4220 /*
4221 * Use CFS's precise accounting. (we subtract utime from
4222 * the total, to make sure the total observed by userspace
4223 * grows monotonically - apps rely on that):
4224 */
4225 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4226 cputime_to_clock_t(task_utime(p));
4227
4228 if (stime >= 0)
4229 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4230
4231 return p->prev_stime;
4232}
4233#endif
4234
4235inline cputime_t task_gtime(struct task_struct *p)
4236{
4237 return p->gtime;
4238}
4239
7835b98b
CL
4240/*
4241 * This function gets called by the timer code, with HZ frequency.
4242 * We call it with interrupts disabled.
4243 *
4244 * It also gets called by the fork code, when changing the parent's
4245 * timeslices.
4246 */
4247void scheduler_tick(void)
4248{
7835b98b
CL
4249 int cpu = smp_processor_id();
4250 struct rq *rq = cpu_rq(cpu);
dd41f596 4251 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4252
4253 sched_clock_tick();
dd41f596
IM
4254
4255 spin_lock(&rq->lock);
3e51f33f 4256 update_rq_clock(rq);
f1a438d8 4257 update_cpu_load(rq);
fa85ae24 4258 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4259 spin_unlock(&rq->lock);
7835b98b 4260
e418e1c2 4261#ifdef CONFIG_SMP
dd41f596
IM
4262 rq->idle_at_tick = idle_cpu(cpu);
4263 trigger_load_balance(rq, cpu);
e418e1c2 4264#endif
1da177e4
LT
4265}
4266
6cd8a4bb
SR
4267#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4269
4270static inline unsigned long get_parent_ip(unsigned long addr)
4271{
4272 if (in_lock_functions(addr)) {
4273 addr = CALLER_ADDR2;
4274 if (in_lock_functions(addr))
4275 addr = CALLER_ADDR3;
4276 }
4277 return addr;
4278}
1da177e4 4279
43627582 4280void __kprobes add_preempt_count(int val)
1da177e4 4281{
6cd8a4bb 4282#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4283 /*
4284 * Underflow?
4285 */
9a11b49a
IM
4286 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4287 return;
6cd8a4bb 4288#endif
1da177e4 4289 preempt_count() += val;
6cd8a4bb 4290#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4291 /*
4292 * Spinlock count overflowing soon?
4293 */
33859f7f
MOS
4294 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4295 PREEMPT_MASK - 10);
6cd8a4bb
SR
4296#endif
4297 if (preempt_count() == val)
4298 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4299}
4300EXPORT_SYMBOL(add_preempt_count);
4301
43627582 4302void __kprobes sub_preempt_count(int val)
1da177e4 4303{
6cd8a4bb 4304#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4305 /*
4306 * Underflow?
4307 */
9a11b49a
IM
4308 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4309 return;
1da177e4
LT
4310 /*
4311 * Is the spinlock portion underflowing?
4312 */
9a11b49a
IM
4313 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4314 !(preempt_count() & PREEMPT_MASK)))
4315 return;
6cd8a4bb 4316#endif
9a11b49a 4317
6cd8a4bb
SR
4318 if (preempt_count() == val)
4319 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4320 preempt_count() -= val;
4321}
4322EXPORT_SYMBOL(sub_preempt_count);
4323
4324#endif
4325
4326/*
dd41f596 4327 * Print scheduling while atomic bug:
1da177e4 4328 */
dd41f596 4329static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4330{
838225b4
SS
4331 struct pt_regs *regs = get_irq_regs();
4332
4333 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4334 prev->comm, prev->pid, preempt_count());
4335
dd41f596 4336 debug_show_held_locks(prev);
e21f5b15 4337 print_modules();
dd41f596
IM
4338 if (irqs_disabled())
4339 print_irqtrace_events(prev);
838225b4
SS
4340
4341 if (regs)
4342 show_regs(regs);
4343 else
4344 dump_stack();
dd41f596 4345}
1da177e4 4346
dd41f596
IM
4347/*
4348 * Various schedule()-time debugging checks and statistics:
4349 */
4350static inline void schedule_debug(struct task_struct *prev)
4351{
1da177e4 4352 /*
41a2d6cf 4353 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4354 * schedule() atomically, we ignore that path for now.
4355 * Otherwise, whine if we are scheduling when we should not be.
4356 */
3f33a7ce 4357 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4358 __schedule_bug(prev);
4359
1da177e4
LT
4360 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4361
2d72376b 4362 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4363#ifdef CONFIG_SCHEDSTATS
4364 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4365 schedstat_inc(this_rq(), bkl_count);
4366 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4367 }
4368#endif
dd41f596
IM
4369}
4370
4371/*
4372 * Pick up the highest-prio task:
4373 */
4374static inline struct task_struct *
ff95f3df 4375pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4376{
5522d5d5 4377 const struct sched_class *class;
dd41f596 4378 struct task_struct *p;
1da177e4
LT
4379
4380 /*
dd41f596
IM
4381 * Optimization: we know that if all tasks are in
4382 * the fair class we can call that function directly:
1da177e4 4383 */
dd41f596 4384 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4385 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4386 if (likely(p))
4387 return p;
1da177e4
LT
4388 }
4389
dd41f596
IM
4390 class = sched_class_highest;
4391 for ( ; ; ) {
fb8d4724 4392 p = class->pick_next_task(rq);
dd41f596
IM
4393 if (p)
4394 return p;
4395 /*
4396 * Will never be NULL as the idle class always
4397 * returns a non-NULL p:
4398 */
4399 class = class->next;
4400 }
4401}
1da177e4 4402
dd41f596
IM
4403/*
4404 * schedule() is the main scheduler function.
4405 */
4406asmlinkage void __sched schedule(void)
4407{
4408 struct task_struct *prev, *next;
67ca7bde 4409 unsigned long *switch_count;
dd41f596 4410 struct rq *rq;
31656519 4411 int cpu;
dd41f596
IM
4412
4413need_resched:
4414 preempt_disable();
4415 cpu = smp_processor_id();
4416 rq = cpu_rq(cpu);
4417 rcu_qsctr_inc(cpu);
4418 prev = rq->curr;
4419 switch_count = &prev->nivcsw;
4420
4421 release_kernel_lock(prev);
4422need_resched_nonpreemptible:
4423
4424 schedule_debug(prev);
1da177e4 4425
31656519 4426 if (sched_feat(HRTICK))
f333fdc9 4427 hrtick_clear(rq);
8f4d37ec 4428
1e819950
IM
4429 /*
4430 * Do the rq-clock update outside the rq lock:
4431 */
4432 local_irq_disable();
3e51f33f 4433 update_rq_clock(rq);
1e819950
IM
4434 spin_lock(&rq->lock);
4435 clear_tsk_need_resched(prev);
1da177e4 4436
1da177e4 4437 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4438 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4439 prev->state = TASK_RUNNING;
16882c1e 4440 else
2e1cb74a 4441 deactivate_task(rq, prev, 1);
dd41f596 4442 switch_count = &prev->nvcsw;
1da177e4
LT
4443 }
4444
9a897c5a
SR
4445#ifdef CONFIG_SMP
4446 if (prev->sched_class->pre_schedule)
4447 prev->sched_class->pre_schedule(rq, prev);
4448#endif
f65eda4f 4449
dd41f596 4450 if (unlikely(!rq->nr_running))
1da177e4 4451 idle_balance(cpu, rq);
1da177e4 4452
31ee529c 4453 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4454 next = pick_next_task(rq, prev);
1da177e4 4455
1da177e4 4456 if (likely(prev != next)) {
673a90a1
DS
4457 sched_info_switch(prev, next);
4458
1da177e4
LT
4459 rq->nr_switches++;
4460 rq->curr = next;
4461 ++*switch_count;
4462
dd41f596 4463 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4464 /*
4465 * the context switch might have flipped the stack from under
4466 * us, hence refresh the local variables.
4467 */
4468 cpu = smp_processor_id();
4469 rq = cpu_rq(cpu);
1da177e4
LT
4470 } else
4471 spin_unlock_irq(&rq->lock);
4472
8f4d37ec 4473 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4474 goto need_resched_nonpreemptible;
8f4d37ec 4475
1da177e4
LT
4476 preempt_enable_no_resched();
4477 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4478 goto need_resched;
4479}
1da177e4
LT
4480EXPORT_SYMBOL(schedule);
4481
4482#ifdef CONFIG_PREEMPT
4483/*
2ed6e34f 4484 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4485 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4486 * occur there and call schedule directly.
4487 */
4488asmlinkage void __sched preempt_schedule(void)
4489{
4490 struct thread_info *ti = current_thread_info();
6478d880 4491
1da177e4
LT
4492 /*
4493 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4494 * we do not want to preempt the current task. Just return..
1da177e4 4495 */
beed33a8 4496 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4497 return;
4498
3a5c359a
AK
4499 do {
4500 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4501 schedule();
3a5c359a 4502 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4503
3a5c359a
AK
4504 /*
4505 * Check again in case we missed a preemption opportunity
4506 * between schedule and now.
4507 */
4508 barrier();
4509 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4510}
1da177e4
LT
4511EXPORT_SYMBOL(preempt_schedule);
4512
4513/*
2ed6e34f 4514 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4515 * off of irq context.
4516 * Note, that this is called and return with irqs disabled. This will
4517 * protect us against recursive calling from irq.
4518 */
4519asmlinkage void __sched preempt_schedule_irq(void)
4520{
4521 struct thread_info *ti = current_thread_info();
6478d880 4522
2ed6e34f 4523 /* Catch callers which need to be fixed */
1da177e4
LT
4524 BUG_ON(ti->preempt_count || !irqs_disabled());
4525
3a5c359a
AK
4526 do {
4527 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4528 local_irq_enable();
4529 schedule();
4530 local_irq_disable();
3a5c359a 4531 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4532
3a5c359a
AK
4533 /*
4534 * Check again in case we missed a preemption opportunity
4535 * between schedule and now.
4536 */
4537 barrier();
4538 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4539}
4540
4541#endif /* CONFIG_PREEMPT */
4542
95cdf3b7
IM
4543int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4544 void *key)
1da177e4 4545{
48f24c4d 4546 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4547}
1da177e4
LT
4548EXPORT_SYMBOL(default_wake_function);
4549
4550/*
41a2d6cf
IM
4551 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4552 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4553 * number) then we wake all the non-exclusive tasks and one exclusive task.
4554 *
4555 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4556 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4557 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4558 */
4559static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4560 int nr_exclusive, int sync, void *key)
4561{
2e45874c 4562 wait_queue_t *curr, *next;
1da177e4 4563
2e45874c 4564 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4565 unsigned flags = curr->flags;
4566
1da177e4 4567 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4568 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4569 break;
4570 }
4571}
4572
4573/**
4574 * __wake_up - wake up threads blocked on a waitqueue.
4575 * @q: the waitqueue
4576 * @mode: which threads
4577 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4578 * @key: is directly passed to the wakeup function
1da177e4 4579 */
7ad5b3a5 4580void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4581 int nr_exclusive, void *key)
1da177e4
LT
4582{
4583 unsigned long flags;
4584
4585 spin_lock_irqsave(&q->lock, flags);
4586 __wake_up_common(q, mode, nr_exclusive, 0, key);
4587 spin_unlock_irqrestore(&q->lock, flags);
4588}
1da177e4
LT
4589EXPORT_SYMBOL(__wake_up);
4590
4591/*
4592 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4593 */
7ad5b3a5 4594void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4595{
4596 __wake_up_common(q, mode, 1, 0, NULL);
4597}
4598
4599/**
67be2dd1 4600 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4601 * @q: the waitqueue
4602 * @mode: which threads
4603 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4604 *
4605 * The sync wakeup differs that the waker knows that it will schedule
4606 * away soon, so while the target thread will be woken up, it will not
4607 * be migrated to another CPU - ie. the two threads are 'synchronized'
4608 * with each other. This can prevent needless bouncing between CPUs.
4609 *
4610 * On UP it can prevent extra preemption.
4611 */
7ad5b3a5 4612void
95cdf3b7 4613__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4614{
4615 unsigned long flags;
4616 int sync = 1;
4617
4618 if (unlikely(!q))
4619 return;
4620
4621 if (unlikely(!nr_exclusive))
4622 sync = 0;
4623
4624 spin_lock_irqsave(&q->lock, flags);
4625 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4626 spin_unlock_irqrestore(&q->lock, flags);
4627}
4628EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4629
b15136e9 4630void complete(struct completion *x)
1da177e4
LT
4631{
4632 unsigned long flags;
4633
4634 spin_lock_irqsave(&x->wait.lock, flags);
4635 x->done++;
d9514f6c 4636 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4637 spin_unlock_irqrestore(&x->wait.lock, flags);
4638}
4639EXPORT_SYMBOL(complete);
4640
b15136e9 4641void complete_all(struct completion *x)
1da177e4
LT
4642{
4643 unsigned long flags;
4644
4645 spin_lock_irqsave(&x->wait.lock, flags);
4646 x->done += UINT_MAX/2;
d9514f6c 4647 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4648 spin_unlock_irqrestore(&x->wait.lock, flags);
4649}
4650EXPORT_SYMBOL(complete_all);
4651
8cbbe86d
AK
4652static inline long __sched
4653do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4654{
1da177e4
LT
4655 if (!x->done) {
4656 DECLARE_WAITQUEUE(wait, current);
4657
4658 wait.flags |= WQ_FLAG_EXCLUSIVE;
4659 __add_wait_queue_tail(&x->wait, &wait);
4660 do {
009e577e
MW
4661 if ((state == TASK_INTERRUPTIBLE &&
4662 signal_pending(current)) ||
4663 (state == TASK_KILLABLE &&
4664 fatal_signal_pending(current))) {
ea71a546
ON
4665 timeout = -ERESTARTSYS;
4666 break;
8cbbe86d
AK
4667 }
4668 __set_current_state(state);
1da177e4
LT
4669 spin_unlock_irq(&x->wait.lock);
4670 timeout = schedule_timeout(timeout);
4671 spin_lock_irq(&x->wait.lock);
ea71a546 4672 } while (!x->done && timeout);
1da177e4 4673 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4674 if (!x->done)
4675 return timeout;
1da177e4
LT
4676 }
4677 x->done--;
ea71a546 4678 return timeout ?: 1;
1da177e4 4679}
1da177e4 4680
8cbbe86d
AK
4681static long __sched
4682wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4683{
1da177e4
LT
4684 might_sleep();
4685
4686 spin_lock_irq(&x->wait.lock);
8cbbe86d 4687 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4688 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4689 return timeout;
4690}
1da177e4 4691
b15136e9 4692void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4693{
4694 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4695}
8cbbe86d 4696EXPORT_SYMBOL(wait_for_completion);
1da177e4 4697
b15136e9 4698unsigned long __sched
8cbbe86d 4699wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4700{
8cbbe86d 4701 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4702}
8cbbe86d 4703EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4704
8cbbe86d 4705int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4706{
51e97990
AK
4707 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4708 if (t == -ERESTARTSYS)
4709 return t;
4710 return 0;
0fec171c 4711}
8cbbe86d 4712EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4713
b15136e9 4714unsigned long __sched
8cbbe86d
AK
4715wait_for_completion_interruptible_timeout(struct completion *x,
4716 unsigned long timeout)
0fec171c 4717{
8cbbe86d 4718 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4719}
8cbbe86d 4720EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4721
009e577e
MW
4722int __sched wait_for_completion_killable(struct completion *x)
4723{
4724 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4725 if (t == -ERESTARTSYS)
4726 return t;
4727 return 0;
4728}
4729EXPORT_SYMBOL(wait_for_completion_killable);
4730
be4de352
DC
4731/**
4732 * try_wait_for_completion - try to decrement a completion without blocking
4733 * @x: completion structure
4734 *
4735 * Returns: 0 if a decrement cannot be done without blocking
4736 * 1 if a decrement succeeded.
4737 *
4738 * If a completion is being used as a counting completion,
4739 * attempt to decrement the counter without blocking. This
4740 * enables us to avoid waiting if the resource the completion
4741 * is protecting is not available.
4742 */
4743bool try_wait_for_completion(struct completion *x)
4744{
4745 int ret = 1;
4746
4747 spin_lock_irq(&x->wait.lock);
4748 if (!x->done)
4749 ret = 0;
4750 else
4751 x->done--;
4752 spin_unlock_irq(&x->wait.lock);
4753 return ret;
4754}
4755EXPORT_SYMBOL(try_wait_for_completion);
4756
4757/**
4758 * completion_done - Test to see if a completion has any waiters
4759 * @x: completion structure
4760 *
4761 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4762 * 1 if there are no waiters.
4763 *
4764 */
4765bool completion_done(struct completion *x)
4766{
4767 int ret = 1;
4768
4769 spin_lock_irq(&x->wait.lock);
4770 if (!x->done)
4771 ret = 0;
4772 spin_unlock_irq(&x->wait.lock);
4773 return ret;
4774}
4775EXPORT_SYMBOL(completion_done);
4776
8cbbe86d
AK
4777static long __sched
4778sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4779{
0fec171c
IM
4780 unsigned long flags;
4781 wait_queue_t wait;
4782
4783 init_waitqueue_entry(&wait, current);
1da177e4 4784
8cbbe86d 4785 __set_current_state(state);
1da177e4 4786
8cbbe86d
AK
4787 spin_lock_irqsave(&q->lock, flags);
4788 __add_wait_queue(q, &wait);
4789 spin_unlock(&q->lock);
4790 timeout = schedule_timeout(timeout);
4791 spin_lock_irq(&q->lock);
4792 __remove_wait_queue(q, &wait);
4793 spin_unlock_irqrestore(&q->lock, flags);
4794
4795 return timeout;
4796}
4797
4798void __sched interruptible_sleep_on(wait_queue_head_t *q)
4799{
4800 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4801}
1da177e4
LT
4802EXPORT_SYMBOL(interruptible_sleep_on);
4803
0fec171c 4804long __sched
95cdf3b7 4805interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4806{
8cbbe86d 4807 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4808}
1da177e4
LT
4809EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4810
0fec171c 4811void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4812{
8cbbe86d 4813 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4814}
1da177e4
LT
4815EXPORT_SYMBOL(sleep_on);
4816
0fec171c 4817long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4818{
8cbbe86d 4819 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4820}
1da177e4
LT
4821EXPORT_SYMBOL(sleep_on_timeout);
4822
b29739f9
IM
4823#ifdef CONFIG_RT_MUTEXES
4824
4825/*
4826 * rt_mutex_setprio - set the current priority of a task
4827 * @p: task
4828 * @prio: prio value (kernel-internal form)
4829 *
4830 * This function changes the 'effective' priority of a task. It does
4831 * not touch ->normal_prio like __setscheduler().
4832 *
4833 * Used by the rt_mutex code to implement priority inheritance logic.
4834 */
36c8b586 4835void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4836{
4837 unsigned long flags;
83b699ed 4838 int oldprio, on_rq, running;
70b97a7f 4839 struct rq *rq;
cb469845 4840 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4841
4842 BUG_ON(prio < 0 || prio > MAX_PRIO);
4843
4844 rq = task_rq_lock(p, &flags);
a8e504d2 4845 update_rq_clock(rq);
b29739f9 4846
d5f9f942 4847 oldprio = p->prio;
dd41f596 4848 on_rq = p->se.on_rq;
051a1d1a 4849 running = task_current(rq, p);
0e1f3483 4850 if (on_rq)
69be72c1 4851 dequeue_task(rq, p, 0);
0e1f3483
HS
4852 if (running)
4853 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4854
4855 if (rt_prio(prio))
4856 p->sched_class = &rt_sched_class;
4857 else
4858 p->sched_class = &fair_sched_class;
4859
b29739f9
IM
4860 p->prio = prio;
4861
0e1f3483
HS
4862 if (running)
4863 p->sched_class->set_curr_task(rq);
dd41f596 4864 if (on_rq) {
8159f87e 4865 enqueue_task(rq, p, 0);
cb469845
SR
4866
4867 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4868 }
4869 task_rq_unlock(rq, &flags);
4870}
4871
4872#endif
4873
36c8b586 4874void set_user_nice(struct task_struct *p, long nice)
1da177e4 4875{
dd41f596 4876 int old_prio, delta, on_rq;
1da177e4 4877 unsigned long flags;
70b97a7f 4878 struct rq *rq;
1da177e4
LT
4879
4880 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4881 return;
4882 /*
4883 * We have to be careful, if called from sys_setpriority(),
4884 * the task might be in the middle of scheduling on another CPU.
4885 */
4886 rq = task_rq_lock(p, &flags);
a8e504d2 4887 update_rq_clock(rq);
1da177e4
LT
4888 /*
4889 * The RT priorities are set via sched_setscheduler(), but we still
4890 * allow the 'normal' nice value to be set - but as expected
4891 * it wont have any effect on scheduling until the task is
dd41f596 4892 * SCHED_FIFO/SCHED_RR:
1da177e4 4893 */
e05606d3 4894 if (task_has_rt_policy(p)) {
1da177e4
LT
4895 p->static_prio = NICE_TO_PRIO(nice);
4896 goto out_unlock;
4897 }
dd41f596 4898 on_rq = p->se.on_rq;
c09595f6 4899 if (on_rq)
69be72c1 4900 dequeue_task(rq, p, 0);
1da177e4 4901
1da177e4 4902 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4903 set_load_weight(p);
b29739f9
IM
4904 old_prio = p->prio;
4905 p->prio = effective_prio(p);
4906 delta = p->prio - old_prio;
1da177e4 4907
dd41f596 4908 if (on_rq) {
8159f87e 4909 enqueue_task(rq, p, 0);
1da177e4 4910 /*
d5f9f942
AM
4911 * If the task increased its priority or is running and
4912 * lowered its priority, then reschedule its CPU:
1da177e4 4913 */
d5f9f942 4914 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4915 resched_task(rq->curr);
4916 }
4917out_unlock:
4918 task_rq_unlock(rq, &flags);
4919}
1da177e4
LT
4920EXPORT_SYMBOL(set_user_nice);
4921
e43379f1
MM
4922/*
4923 * can_nice - check if a task can reduce its nice value
4924 * @p: task
4925 * @nice: nice value
4926 */
36c8b586 4927int can_nice(const struct task_struct *p, const int nice)
e43379f1 4928{
024f4747
MM
4929 /* convert nice value [19,-20] to rlimit style value [1,40] */
4930 int nice_rlim = 20 - nice;
48f24c4d 4931
e43379f1
MM
4932 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4933 capable(CAP_SYS_NICE));
4934}
4935
1da177e4
LT
4936#ifdef __ARCH_WANT_SYS_NICE
4937
4938/*
4939 * sys_nice - change the priority of the current process.
4940 * @increment: priority increment
4941 *
4942 * sys_setpriority is a more generic, but much slower function that
4943 * does similar things.
4944 */
4945asmlinkage long sys_nice(int increment)
4946{
48f24c4d 4947 long nice, retval;
1da177e4
LT
4948
4949 /*
4950 * Setpriority might change our priority at the same moment.
4951 * We don't have to worry. Conceptually one call occurs first
4952 * and we have a single winner.
4953 */
e43379f1
MM
4954 if (increment < -40)
4955 increment = -40;
1da177e4
LT
4956 if (increment > 40)
4957 increment = 40;
4958
4959 nice = PRIO_TO_NICE(current->static_prio) + increment;
4960 if (nice < -20)
4961 nice = -20;
4962 if (nice > 19)
4963 nice = 19;
4964
e43379f1
MM
4965 if (increment < 0 && !can_nice(current, nice))
4966 return -EPERM;
4967
1da177e4
LT
4968 retval = security_task_setnice(current, nice);
4969 if (retval)
4970 return retval;
4971
4972 set_user_nice(current, nice);
4973 return 0;
4974}
4975
4976#endif
4977
4978/**
4979 * task_prio - return the priority value of a given task.
4980 * @p: the task in question.
4981 *
4982 * This is the priority value as seen by users in /proc.
4983 * RT tasks are offset by -200. Normal tasks are centered
4984 * around 0, value goes from -16 to +15.
4985 */
36c8b586 4986int task_prio(const struct task_struct *p)
1da177e4
LT
4987{
4988 return p->prio - MAX_RT_PRIO;
4989}
4990
4991/**
4992 * task_nice - return the nice value of a given task.
4993 * @p: the task in question.
4994 */
36c8b586 4995int task_nice(const struct task_struct *p)
1da177e4
LT
4996{
4997 return TASK_NICE(p);
4998}
150d8bed 4999EXPORT_SYMBOL(task_nice);
1da177e4
LT
5000
5001/**
5002 * idle_cpu - is a given cpu idle currently?
5003 * @cpu: the processor in question.
5004 */
5005int idle_cpu(int cpu)
5006{
5007 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5008}
5009
1da177e4
LT
5010/**
5011 * idle_task - return the idle task for a given cpu.
5012 * @cpu: the processor in question.
5013 */
36c8b586 5014struct task_struct *idle_task(int cpu)
1da177e4
LT
5015{
5016 return cpu_rq(cpu)->idle;
5017}
5018
5019/**
5020 * find_process_by_pid - find a process with a matching PID value.
5021 * @pid: the pid in question.
5022 */
a9957449 5023static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5024{
228ebcbe 5025 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5026}
5027
5028/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5029static void
5030__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5031{
dd41f596 5032 BUG_ON(p->se.on_rq);
48f24c4d 5033
1da177e4 5034 p->policy = policy;
dd41f596
IM
5035 switch (p->policy) {
5036 case SCHED_NORMAL:
5037 case SCHED_BATCH:
5038 case SCHED_IDLE:
5039 p->sched_class = &fair_sched_class;
5040 break;
5041 case SCHED_FIFO:
5042 case SCHED_RR:
5043 p->sched_class = &rt_sched_class;
5044 break;
5045 }
5046
1da177e4 5047 p->rt_priority = prio;
b29739f9
IM
5048 p->normal_prio = normal_prio(p);
5049 /* we are holding p->pi_lock already */
5050 p->prio = rt_mutex_getprio(p);
2dd73a4f 5051 set_load_weight(p);
1da177e4
LT
5052}
5053
961ccddd
RR
5054static int __sched_setscheduler(struct task_struct *p, int policy,
5055 struct sched_param *param, bool user)
1da177e4 5056{
83b699ed 5057 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5058 unsigned long flags;
cb469845 5059 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5060 struct rq *rq;
1da177e4 5061
66e5393a
SR
5062 /* may grab non-irq protected spin_locks */
5063 BUG_ON(in_interrupt());
1da177e4
LT
5064recheck:
5065 /* double check policy once rq lock held */
5066 if (policy < 0)
5067 policy = oldpolicy = p->policy;
5068 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5069 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5070 policy != SCHED_IDLE)
b0a9499c 5071 return -EINVAL;
1da177e4
LT
5072 /*
5073 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5074 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5075 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5076 */
5077 if (param->sched_priority < 0 ||
95cdf3b7 5078 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5079 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5080 return -EINVAL;
e05606d3 5081 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5082 return -EINVAL;
5083
37e4ab3f
OC
5084 /*
5085 * Allow unprivileged RT tasks to decrease priority:
5086 */
961ccddd 5087 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5088 if (rt_policy(policy)) {
8dc3e909 5089 unsigned long rlim_rtprio;
8dc3e909
ON
5090
5091 if (!lock_task_sighand(p, &flags))
5092 return -ESRCH;
5093 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5094 unlock_task_sighand(p, &flags);
5095
5096 /* can't set/change the rt policy */
5097 if (policy != p->policy && !rlim_rtprio)
5098 return -EPERM;
5099
5100 /* can't increase priority */
5101 if (param->sched_priority > p->rt_priority &&
5102 param->sched_priority > rlim_rtprio)
5103 return -EPERM;
5104 }
dd41f596
IM
5105 /*
5106 * Like positive nice levels, dont allow tasks to
5107 * move out of SCHED_IDLE either:
5108 */
5109 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5110 return -EPERM;
5fe1d75f 5111
37e4ab3f
OC
5112 /* can't change other user's priorities */
5113 if ((current->euid != p->euid) &&
5114 (current->euid != p->uid))
5115 return -EPERM;
5116 }
1da177e4 5117
725aad24 5118 if (user) {
b68aa230 5119#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5120 /*
5121 * Do not allow realtime tasks into groups that have no runtime
5122 * assigned.
5123 */
5124 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5125 return -EPERM;
b68aa230
PZ
5126#endif
5127
725aad24
JF
5128 retval = security_task_setscheduler(p, policy, param);
5129 if (retval)
5130 return retval;
5131 }
5132
b29739f9
IM
5133 /*
5134 * make sure no PI-waiters arrive (or leave) while we are
5135 * changing the priority of the task:
5136 */
5137 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5138 /*
5139 * To be able to change p->policy safely, the apropriate
5140 * runqueue lock must be held.
5141 */
b29739f9 5142 rq = __task_rq_lock(p);
1da177e4
LT
5143 /* recheck policy now with rq lock held */
5144 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5145 policy = oldpolicy = -1;
b29739f9
IM
5146 __task_rq_unlock(rq);
5147 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5148 goto recheck;
5149 }
2daa3577 5150 update_rq_clock(rq);
dd41f596 5151 on_rq = p->se.on_rq;
051a1d1a 5152 running = task_current(rq, p);
0e1f3483 5153 if (on_rq)
2e1cb74a 5154 deactivate_task(rq, p, 0);
0e1f3483
HS
5155 if (running)
5156 p->sched_class->put_prev_task(rq, p);
f6b53205 5157
1da177e4 5158 oldprio = p->prio;
dd41f596 5159 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5160
0e1f3483
HS
5161 if (running)
5162 p->sched_class->set_curr_task(rq);
dd41f596
IM
5163 if (on_rq) {
5164 activate_task(rq, p, 0);
cb469845
SR
5165
5166 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5167 }
b29739f9
IM
5168 __task_rq_unlock(rq);
5169 spin_unlock_irqrestore(&p->pi_lock, flags);
5170
95e02ca9
TG
5171 rt_mutex_adjust_pi(p);
5172
1da177e4
LT
5173 return 0;
5174}
961ccddd
RR
5175
5176/**
5177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5178 * @p: the task in question.
5179 * @policy: new policy.
5180 * @param: structure containing the new RT priority.
5181 *
5182 * NOTE that the task may be already dead.
5183 */
5184int sched_setscheduler(struct task_struct *p, int policy,
5185 struct sched_param *param)
5186{
5187 return __sched_setscheduler(p, policy, param, true);
5188}
1da177e4
LT
5189EXPORT_SYMBOL_GPL(sched_setscheduler);
5190
961ccddd
RR
5191/**
5192 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5193 * @p: the task in question.
5194 * @policy: new policy.
5195 * @param: structure containing the new RT priority.
5196 *
5197 * Just like sched_setscheduler, only don't bother checking if the
5198 * current context has permission. For example, this is needed in
5199 * stop_machine(): we create temporary high priority worker threads,
5200 * but our caller might not have that capability.
5201 */
5202int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5203 struct sched_param *param)
5204{
5205 return __sched_setscheduler(p, policy, param, false);
5206}
5207
95cdf3b7
IM
5208static int
5209do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5210{
1da177e4
LT
5211 struct sched_param lparam;
5212 struct task_struct *p;
36c8b586 5213 int retval;
1da177e4
LT
5214
5215 if (!param || pid < 0)
5216 return -EINVAL;
5217 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5218 return -EFAULT;
5fe1d75f
ON
5219
5220 rcu_read_lock();
5221 retval = -ESRCH;
1da177e4 5222 p = find_process_by_pid(pid);
5fe1d75f
ON
5223 if (p != NULL)
5224 retval = sched_setscheduler(p, policy, &lparam);
5225 rcu_read_unlock();
36c8b586 5226
1da177e4
LT
5227 return retval;
5228}
5229
5230/**
5231 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5232 * @pid: the pid in question.
5233 * @policy: new policy.
5234 * @param: structure containing the new RT priority.
5235 */
41a2d6cf
IM
5236asmlinkage long
5237sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5238{
c21761f1
JB
5239 /* negative values for policy are not valid */
5240 if (policy < 0)
5241 return -EINVAL;
5242
1da177e4
LT
5243 return do_sched_setscheduler(pid, policy, param);
5244}
5245
5246/**
5247 * sys_sched_setparam - set/change the RT priority of a thread
5248 * @pid: the pid in question.
5249 * @param: structure containing the new RT priority.
5250 */
5251asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5252{
5253 return do_sched_setscheduler(pid, -1, param);
5254}
5255
5256/**
5257 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5258 * @pid: the pid in question.
5259 */
5260asmlinkage long sys_sched_getscheduler(pid_t pid)
5261{
36c8b586 5262 struct task_struct *p;
3a5c359a 5263 int retval;
1da177e4
LT
5264
5265 if (pid < 0)
3a5c359a 5266 return -EINVAL;
1da177e4
LT
5267
5268 retval = -ESRCH;
5269 read_lock(&tasklist_lock);
5270 p = find_process_by_pid(pid);
5271 if (p) {
5272 retval = security_task_getscheduler(p);
5273 if (!retval)
5274 retval = p->policy;
5275 }
5276 read_unlock(&tasklist_lock);
1da177e4
LT
5277 return retval;
5278}
5279
5280/**
5281 * sys_sched_getscheduler - get the RT priority of a thread
5282 * @pid: the pid in question.
5283 * @param: structure containing the RT priority.
5284 */
5285asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5286{
5287 struct sched_param lp;
36c8b586 5288 struct task_struct *p;
3a5c359a 5289 int retval;
1da177e4
LT
5290
5291 if (!param || pid < 0)
3a5c359a 5292 return -EINVAL;
1da177e4
LT
5293
5294 read_lock(&tasklist_lock);
5295 p = find_process_by_pid(pid);
5296 retval = -ESRCH;
5297 if (!p)
5298 goto out_unlock;
5299
5300 retval = security_task_getscheduler(p);
5301 if (retval)
5302 goto out_unlock;
5303
5304 lp.sched_priority = p->rt_priority;
5305 read_unlock(&tasklist_lock);
5306
5307 /*
5308 * This one might sleep, we cannot do it with a spinlock held ...
5309 */
5310 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5311
1da177e4
LT
5312 return retval;
5313
5314out_unlock:
5315 read_unlock(&tasklist_lock);
5316 return retval;
5317}
5318
b53e921b 5319long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5320{
1da177e4 5321 cpumask_t cpus_allowed;
b53e921b 5322 cpumask_t new_mask = *in_mask;
36c8b586
IM
5323 struct task_struct *p;
5324 int retval;
1da177e4 5325
95402b38 5326 get_online_cpus();
1da177e4
LT
5327 read_lock(&tasklist_lock);
5328
5329 p = find_process_by_pid(pid);
5330 if (!p) {
5331 read_unlock(&tasklist_lock);
95402b38 5332 put_online_cpus();
1da177e4
LT
5333 return -ESRCH;
5334 }
5335
5336 /*
5337 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5338 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5339 * usage count and then drop tasklist_lock.
5340 */
5341 get_task_struct(p);
5342 read_unlock(&tasklist_lock);
5343
5344 retval = -EPERM;
5345 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5346 !capable(CAP_SYS_NICE))
5347 goto out_unlock;
5348
e7834f8f
DQ
5349 retval = security_task_setscheduler(p, 0, NULL);
5350 if (retval)
5351 goto out_unlock;
5352
f9a86fcb 5353 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5354 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5355 again:
7c16ec58 5356 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5357
8707d8b8 5358 if (!retval) {
f9a86fcb 5359 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5360 if (!cpus_subset(new_mask, cpus_allowed)) {
5361 /*
5362 * We must have raced with a concurrent cpuset
5363 * update. Just reset the cpus_allowed to the
5364 * cpuset's cpus_allowed
5365 */
5366 new_mask = cpus_allowed;
5367 goto again;
5368 }
5369 }
1da177e4
LT
5370out_unlock:
5371 put_task_struct(p);
95402b38 5372 put_online_cpus();
1da177e4
LT
5373 return retval;
5374}
5375
5376static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5377 cpumask_t *new_mask)
5378{
5379 if (len < sizeof(cpumask_t)) {
5380 memset(new_mask, 0, sizeof(cpumask_t));
5381 } else if (len > sizeof(cpumask_t)) {
5382 len = sizeof(cpumask_t);
5383 }
5384 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5385}
5386
5387/**
5388 * sys_sched_setaffinity - set the cpu affinity of a process
5389 * @pid: pid of the process
5390 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5391 * @user_mask_ptr: user-space pointer to the new cpu mask
5392 */
5393asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5394 unsigned long __user *user_mask_ptr)
5395{
5396 cpumask_t new_mask;
5397 int retval;
5398
5399 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5400 if (retval)
5401 return retval;
5402
b53e921b 5403 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5404}
5405
1da177e4
LT
5406long sched_getaffinity(pid_t pid, cpumask_t *mask)
5407{
36c8b586 5408 struct task_struct *p;
1da177e4 5409 int retval;
1da177e4 5410
95402b38 5411 get_online_cpus();
1da177e4
LT
5412 read_lock(&tasklist_lock);
5413
5414 retval = -ESRCH;
5415 p = find_process_by_pid(pid);
5416 if (!p)
5417 goto out_unlock;
5418
e7834f8f
DQ
5419 retval = security_task_getscheduler(p);
5420 if (retval)
5421 goto out_unlock;
5422
2f7016d9 5423 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5424
5425out_unlock:
5426 read_unlock(&tasklist_lock);
95402b38 5427 put_online_cpus();
1da177e4 5428
9531b62f 5429 return retval;
1da177e4
LT
5430}
5431
5432/**
5433 * sys_sched_getaffinity - get the cpu affinity of a process
5434 * @pid: pid of the process
5435 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5436 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5437 */
5438asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5439 unsigned long __user *user_mask_ptr)
5440{
5441 int ret;
5442 cpumask_t mask;
5443
5444 if (len < sizeof(cpumask_t))
5445 return -EINVAL;
5446
5447 ret = sched_getaffinity(pid, &mask);
5448 if (ret < 0)
5449 return ret;
5450
5451 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5452 return -EFAULT;
5453
5454 return sizeof(cpumask_t);
5455}
5456
5457/**
5458 * sys_sched_yield - yield the current processor to other threads.
5459 *
dd41f596
IM
5460 * This function yields the current CPU to other tasks. If there are no
5461 * other threads running on this CPU then this function will return.
1da177e4
LT
5462 */
5463asmlinkage long sys_sched_yield(void)
5464{
70b97a7f 5465 struct rq *rq = this_rq_lock();
1da177e4 5466
2d72376b 5467 schedstat_inc(rq, yld_count);
4530d7ab 5468 current->sched_class->yield_task(rq);
1da177e4
LT
5469
5470 /*
5471 * Since we are going to call schedule() anyway, there's
5472 * no need to preempt or enable interrupts:
5473 */
5474 __release(rq->lock);
8a25d5de 5475 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5476 _raw_spin_unlock(&rq->lock);
5477 preempt_enable_no_resched();
5478
5479 schedule();
5480
5481 return 0;
5482}
5483
e7b38404 5484static void __cond_resched(void)
1da177e4 5485{
8e0a43d8
IM
5486#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5487 __might_sleep(__FILE__, __LINE__);
5488#endif
5bbcfd90
IM
5489 /*
5490 * The BKS might be reacquired before we have dropped
5491 * PREEMPT_ACTIVE, which could trigger a second
5492 * cond_resched() call.
5493 */
1da177e4
LT
5494 do {
5495 add_preempt_count(PREEMPT_ACTIVE);
5496 schedule();
5497 sub_preempt_count(PREEMPT_ACTIVE);
5498 } while (need_resched());
5499}
5500
02b67cc3 5501int __sched _cond_resched(void)
1da177e4 5502{
9414232f
IM
5503 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5504 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5505 __cond_resched();
5506 return 1;
5507 }
5508 return 0;
5509}
02b67cc3 5510EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5511
5512/*
5513 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5514 * call schedule, and on return reacquire the lock.
5515 *
41a2d6cf 5516 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5517 * operations here to prevent schedule() from being called twice (once via
5518 * spin_unlock(), once by hand).
5519 */
95cdf3b7 5520int cond_resched_lock(spinlock_t *lock)
1da177e4 5521{
95c354fe 5522 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5523 int ret = 0;
5524
95c354fe 5525 if (spin_needbreak(lock) || resched) {
1da177e4 5526 spin_unlock(lock);
95c354fe
NP
5527 if (resched && need_resched())
5528 __cond_resched();
5529 else
5530 cpu_relax();
6df3cecb 5531 ret = 1;
1da177e4 5532 spin_lock(lock);
1da177e4 5533 }
6df3cecb 5534 return ret;
1da177e4 5535}
1da177e4
LT
5536EXPORT_SYMBOL(cond_resched_lock);
5537
5538int __sched cond_resched_softirq(void)
5539{
5540 BUG_ON(!in_softirq());
5541
9414232f 5542 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5543 local_bh_enable();
1da177e4
LT
5544 __cond_resched();
5545 local_bh_disable();
5546 return 1;
5547 }
5548 return 0;
5549}
1da177e4
LT
5550EXPORT_SYMBOL(cond_resched_softirq);
5551
1da177e4
LT
5552/**
5553 * yield - yield the current processor to other threads.
5554 *
72fd4a35 5555 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5556 * thread runnable and calls sys_sched_yield().
5557 */
5558void __sched yield(void)
5559{
5560 set_current_state(TASK_RUNNING);
5561 sys_sched_yield();
5562}
1da177e4
LT
5563EXPORT_SYMBOL(yield);
5564
5565/*
41a2d6cf 5566 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5567 * that process accounting knows that this is a task in IO wait state.
5568 *
5569 * But don't do that if it is a deliberate, throttling IO wait (this task
5570 * has set its backing_dev_info: the queue against which it should throttle)
5571 */
5572void __sched io_schedule(void)
5573{
70b97a7f 5574 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5575
0ff92245 5576 delayacct_blkio_start();
1da177e4
LT
5577 atomic_inc(&rq->nr_iowait);
5578 schedule();
5579 atomic_dec(&rq->nr_iowait);
0ff92245 5580 delayacct_blkio_end();
1da177e4 5581}
1da177e4
LT
5582EXPORT_SYMBOL(io_schedule);
5583
5584long __sched io_schedule_timeout(long timeout)
5585{
70b97a7f 5586 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5587 long ret;
5588
0ff92245 5589 delayacct_blkio_start();
1da177e4
LT
5590 atomic_inc(&rq->nr_iowait);
5591 ret = schedule_timeout(timeout);
5592 atomic_dec(&rq->nr_iowait);
0ff92245 5593 delayacct_blkio_end();
1da177e4
LT
5594 return ret;
5595}
5596
5597/**
5598 * sys_sched_get_priority_max - return maximum RT priority.
5599 * @policy: scheduling class.
5600 *
5601 * this syscall returns the maximum rt_priority that can be used
5602 * by a given scheduling class.
5603 */
5604asmlinkage long sys_sched_get_priority_max(int policy)
5605{
5606 int ret = -EINVAL;
5607
5608 switch (policy) {
5609 case SCHED_FIFO:
5610 case SCHED_RR:
5611 ret = MAX_USER_RT_PRIO-1;
5612 break;
5613 case SCHED_NORMAL:
b0a9499c 5614 case SCHED_BATCH:
dd41f596 5615 case SCHED_IDLE:
1da177e4
LT
5616 ret = 0;
5617 break;
5618 }
5619 return ret;
5620}
5621
5622/**
5623 * sys_sched_get_priority_min - return minimum RT priority.
5624 * @policy: scheduling class.
5625 *
5626 * this syscall returns the minimum rt_priority that can be used
5627 * by a given scheduling class.
5628 */
5629asmlinkage long sys_sched_get_priority_min(int policy)
5630{
5631 int ret = -EINVAL;
5632
5633 switch (policy) {
5634 case SCHED_FIFO:
5635 case SCHED_RR:
5636 ret = 1;
5637 break;
5638 case SCHED_NORMAL:
b0a9499c 5639 case SCHED_BATCH:
dd41f596 5640 case SCHED_IDLE:
1da177e4
LT
5641 ret = 0;
5642 }
5643 return ret;
5644}
5645
5646/**
5647 * sys_sched_rr_get_interval - return the default timeslice of a process.
5648 * @pid: pid of the process.
5649 * @interval: userspace pointer to the timeslice value.
5650 *
5651 * this syscall writes the default timeslice value of a given process
5652 * into the user-space timespec buffer. A value of '0' means infinity.
5653 */
5654asmlinkage
5655long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5656{
36c8b586 5657 struct task_struct *p;
a4ec24b4 5658 unsigned int time_slice;
3a5c359a 5659 int retval;
1da177e4 5660 struct timespec t;
1da177e4
LT
5661
5662 if (pid < 0)
3a5c359a 5663 return -EINVAL;
1da177e4
LT
5664
5665 retval = -ESRCH;
5666 read_lock(&tasklist_lock);
5667 p = find_process_by_pid(pid);
5668 if (!p)
5669 goto out_unlock;
5670
5671 retval = security_task_getscheduler(p);
5672 if (retval)
5673 goto out_unlock;
5674
77034937
IM
5675 /*
5676 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5677 * tasks that are on an otherwise idle runqueue:
5678 */
5679 time_slice = 0;
5680 if (p->policy == SCHED_RR) {
a4ec24b4 5681 time_slice = DEF_TIMESLICE;
1868f958 5682 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5683 struct sched_entity *se = &p->se;
5684 unsigned long flags;
5685 struct rq *rq;
5686
5687 rq = task_rq_lock(p, &flags);
77034937
IM
5688 if (rq->cfs.load.weight)
5689 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5690 task_rq_unlock(rq, &flags);
5691 }
1da177e4 5692 read_unlock(&tasklist_lock);
a4ec24b4 5693 jiffies_to_timespec(time_slice, &t);
1da177e4 5694 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5695 return retval;
3a5c359a 5696
1da177e4
LT
5697out_unlock:
5698 read_unlock(&tasklist_lock);
5699 return retval;
5700}
5701
7c731e0a 5702static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5703
82a1fcb9 5704void sched_show_task(struct task_struct *p)
1da177e4 5705{
1da177e4 5706 unsigned long free = 0;
36c8b586 5707 unsigned state;
1da177e4 5708
1da177e4 5709 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5710 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5711 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5712#if BITS_PER_LONG == 32
1da177e4 5713 if (state == TASK_RUNNING)
cc4ea795 5714 printk(KERN_CONT " running ");
1da177e4 5715 else
cc4ea795 5716 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5717#else
5718 if (state == TASK_RUNNING)
cc4ea795 5719 printk(KERN_CONT " running task ");
1da177e4 5720 else
cc4ea795 5721 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5722#endif
5723#ifdef CONFIG_DEBUG_STACK_USAGE
5724 {
10ebffde 5725 unsigned long *n = end_of_stack(p);
1da177e4
LT
5726 while (!*n)
5727 n++;
10ebffde 5728 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5729 }
5730#endif
ba25f9dc 5731 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5732 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5733
5fb5e6de 5734 show_stack(p, NULL);
1da177e4
LT
5735}
5736
e59e2ae2 5737void show_state_filter(unsigned long state_filter)
1da177e4 5738{
36c8b586 5739 struct task_struct *g, *p;
1da177e4 5740
4bd77321
IM
5741#if BITS_PER_LONG == 32
5742 printk(KERN_INFO
5743 " task PC stack pid father\n");
1da177e4 5744#else
4bd77321
IM
5745 printk(KERN_INFO
5746 " task PC stack pid father\n");
1da177e4
LT
5747#endif
5748 read_lock(&tasklist_lock);
5749 do_each_thread(g, p) {
5750 /*
5751 * reset the NMI-timeout, listing all files on a slow
5752 * console might take alot of time:
5753 */
5754 touch_nmi_watchdog();
39bc89fd 5755 if (!state_filter || (p->state & state_filter))
82a1fcb9 5756 sched_show_task(p);
1da177e4
LT
5757 } while_each_thread(g, p);
5758
04c9167f
JF
5759 touch_all_softlockup_watchdogs();
5760
dd41f596
IM
5761#ifdef CONFIG_SCHED_DEBUG
5762 sysrq_sched_debug_show();
5763#endif
1da177e4 5764 read_unlock(&tasklist_lock);
e59e2ae2
IM
5765 /*
5766 * Only show locks if all tasks are dumped:
5767 */
5768 if (state_filter == -1)
5769 debug_show_all_locks();
1da177e4
LT
5770}
5771
1df21055
IM
5772void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5773{
dd41f596 5774 idle->sched_class = &idle_sched_class;
1df21055
IM
5775}
5776
f340c0d1
IM
5777/**
5778 * init_idle - set up an idle thread for a given CPU
5779 * @idle: task in question
5780 * @cpu: cpu the idle task belongs to
5781 *
5782 * NOTE: this function does not set the idle thread's NEED_RESCHED
5783 * flag, to make booting more robust.
5784 */
5c1e1767 5785void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5786{
70b97a7f 5787 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5788 unsigned long flags;
5789
dd41f596
IM
5790 __sched_fork(idle);
5791 idle->se.exec_start = sched_clock();
5792
b29739f9 5793 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5794 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5795 __set_task_cpu(idle, cpu);
1da177e4
LT
5796
5797 spin_lock_irqsave(&rq->lock, flags);
5798 rq->curr = rq->idle = idle;
4866cde0
NP
5799#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5800 idle->oncpu = 1;
5801#endif
1da177e4
LT
5802 spin_unlock_irqrestore(&rq->lock, flags);
5803
5804 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5805#if defined(CONFIG_PREEMPT)
5806 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5807#else
a1261f54 5808 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5809#endif
dd41f596
IM
5810 /*
5811 * The idle tasks have their own, simple scheduling class:
5812 */
5813 idle->sched_class = &idle_sched_class;
1da177e4
LT
5814}
5815
5816/*
5817 * In a system that switches off the HZ timer nohz_cpu_mask
5818 * indicates which cpus entered this state. This is used
5819 * in the rcu update to wait only for active cpus. For system
5820 * which do not switch off the HZ timer nohz_cpu_mask should
5821 * always be CPU_MASK_NONE.
5822 */
5823cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5824
19978ca6
IM
5825/*
5826 * Increase the granularity value when there are more CPUs,
5827 * because with more CPUs the 'effective latency' as visible
5828 * to users decreases. But the relationship is not linear,
5829 * so pick a second-best guess by going with the log2 of the
5830 * number of CPUs.
5831 *
5832 * This idea comes from the SD scheduler of Con Kolivas:
5833 */
5834static inline void sched_init_granularity(void)
5835{
5836 unsigned int factor = 1 + ilog2(num_online_cpus());
5837 const unsigned long limit = 200000000;
5838
5839 sysctl_sched_min_granularity *= factor;
5840 if (sysctl_sched_min_granularity > limit)
5841 sysctl_sched_min_granularity = limit;
5842
5843 sysctl_sched_latency *= factor;
5844 if (sysctl_sched_latency > limit)
5845 sysctl_sched_latency = limit;
5846
5847 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5848
5849 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5850}
5851
1da177e4
LT
5852#ifdef CONFIG_SMP
5853/*
5854 * This is how migration works:
5855 *
70b97a7f 5856 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5857 * runqueue and wake up that CPU's migration thread.
5858 * 2) we down() the locked semaphore => thread blocks.
5859 * 3) migration thread wakes up (implicitly it forces the migrated
5860 * thread off the CPU)
5861 * 4) it gets the migration request and checks whether the migrated
5862 * task is still in the wrong runqueue.
5863 * 5) if it's in the wrong runqueue then the migration thread removes
5864 * it and puts it into the right queue.
5865 * 6) migration thread up()s the semaphore.
5866 * 7) we wake up and the migration is done.
5867 */
5868
5869/*
5870 * Change a given task's CPU affinity. Migrate the thread to a
5871 * proper CPU and schedule it away if the CPU it's executing on
5872 * is removed from the allowed bitmask.
5873 *
5874 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5875 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5876 * call is not atomic; no spinlocks may be held.
5877 */
cd8ba7cd 5878int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5879{
70b97a7f 5880 struct migration_req req;
1da177e4 5881 unsigned long flags;
70b97a7f 5882 struct rq *rq;
48f24c4d 5883 int ret = 0;
1da177e4
LT
5884
5885 rq = task_rq_lock(p, &flags);
cd8ba7cd 5886 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5887 ret = -EINVAL;
5888 goto out;
5889 }
5890
9985b0ba
DR
5891 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5892 !cpus_equal(p->cpus_allowed, *new_mask))) {
5893 ret = -EINVAL;
5894 goto out;
5895 }
5896
73fe6aae 5897 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5898 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5899 else {
cd8ba7cd
MT
5900 p->cpus_allowed = *new_mask;
5901 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5902 }
5903
1da177e4 5904 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5905 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5906 goto out;
5907
cd8ba7cd 5908 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5909 /* Need help from migration thread: drop lock and wait. */
5910 task_rq_unlock(rq, &flags);
5911 wake_up_process(rq->migration_thread);
5912 wait_for_completion(&req.done);
5913 tlb_migrate_finish(p->mm);
5914 return 0;
5915 }
5916out:
5917 task_rq_unlock(rq, &flags);
48f24c4d 5918
1da177e4
LT
5919 return ret;
5920}
cd8ba7cd 5921EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5922
5923/*
41a2d6cf 5924 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5925 * this because either it can't run here any more (set_cpus_allowed()
5926 * away from this CPU, or CPU going down), or because we're
5927 * attempting to rebalance this task on exec (sched_exec).
5928 *
5929 * So we race with normal scheduler movements, but that's OK, as long
5930 * as the task is no longer on this CPU.
efc30814
KK
5931 *
5932 * Returns non-zero if task was successfully migrated.
1da177e4 5933 */
efc30814 5934static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5935{
70b97a7f 5936 struct rq *rq_dest, *rq_src;
dd41f596 5937 int ret = 0, on_rq;
1da177e4 5938
e761b772 5939 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5940 return ret;
1da177e4
LT
5941
5942 rq_src = cpu_rq(src_cpu);
5943 rq_dest = cpu_rq(dest_cpu);
5944
5945 double_rq_lock(rq_src, rq_dest);
5946 /* Already moved. */
5947 if (task_cpu(p) != src_cpu)
b1e38734 5948 goto done;
1da177e4
LT
5949 /* Affinity changed (again). */
5950 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 5951 goto fail;
1da177e4 5952
dd41f596 5953 on_rq = p->se.on_rq;
6e82a3be 5954 if (on_rq)
2e1cb74a 5955 deactivate_task(rq_src, p, 0);
6e82a3be 5956
1da177e4 5957 set_task_cpu(p, dest_cpu);
dd41f596
IM
5958 if (on_rq) {
5959 activate_task(rq_dest, p, 0);
5960 check_preempt_curr(rq_dest, p);
1da177e4 5961 }
b1e38734 5962done:
efc30814 5963 ret = 1;
b1e38734 5964fail:
1da177e4 5965 double_rq_unlock(rq_src, rq_dest);
efc30814 5966 return ret;
1da177e4
LT
5967}
5968
5969/*
5970 * migration_thread - this is a highprio system thread that performs
5971 * thread migration by bumping thread off CPU then 'pushing' onto
5972 * another runqueue.
5973 */
95cdf3b7 5974static int migration_thread(void *data)
1da177e4 5975{
1da177e4 5976 int cpu = (long)data;
70b97a7f 5977 struct rq *rq;
1da177e4
LT
5978
5979 rq = cpu_rq(cpu);
5980 BUG_ON(rq->migration_thread != current);
5981
5982 set_current_state(TASK_INTERRUPTIBLE);
5983 while (!kthread_should_stop()) {
70b97a7f 5984 struct migration_req *req;
1da177e4 5985 struct list_head *head;
1da177e4 5986
1da177e4
LT
5987 spin_lock_irq(&rq->lock);
5988
5989 if (cpu_is_offline(cpu)) {
5990 spin_unlock_irq(&rq->lock);
5991 goto wait_to_die;
5992 }
5993
5994 if (rq->active_balance) {
5995 active_load_balance(rq, cpu);
5996 rq->active_balance = 0;
5997 }
5998
5999 head = &rq->migration_queue;
6000
6001 if (list_empty(head)) {
6002 spin_unlock_irq(&rq->lock);
6003 schedule();
6004 set_current_state(TASK_INTERRUPTIBLE);
6005 continue;
6006 }
70b97a7f 6007 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6008 list_del_init(head->next);
6009
674311d5
NP
6010 spin_unlock(&rq->lock);
6011 __migrate_task(req->task, cpu, req->dest_cpu);
6012 local_irq_enable();
1da177e4
LT
6013
6014 complete(&req->done);
6015 }
6016 __set_current_state(TASK_RUNNING);
6017 return 0;
6018
6019wait_to_die:
6020 /* Wait for kthread_stop */
6021 set_current_state(TASK_INTERRUPTIBLE);
6022 while (!kthread_should_stop()) {
6023 schedule();
6024 set_current_state(TASK_INTERRUPTIBLE);
6025 }
6026 __set_current_state(TASK_RUNNING);
6027 return 0;
6028}
6029
6030#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6031
6032static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6033{
6034 int ret;
6035
6036 local_irq_disable();
6037 ret = __migrate_task(p, src_cpu, dest_cpu);
6038 local_irq_enable();
6039 return ret;
6040}
6041
054b9108 6042/*
3a4fa0a2 6043 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6044 * NOTE: interrupts should be disabled by the caller
6045 */
48f24c4d 6046static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6047{
efc30814 6048 unsigned long flags;
1da177e4 6049 cpumask_t mask;
70b97a7f
IM
6050 struct rq *rq;
6051 int dest_cpu;
1da177e4 6052
3a5c359a
AK
6053 do {
6054 /* On same node? */
6055 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6056 cpus_and(mask, mask, p->cpus_allowed);
6057 dest_cpu = any_online_cpu(mask);
6058
6059 /* On any allowed CPU? */
434d53b0 6060 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6061 dest_cpu = any_online_cpu(p->cpus_allowed);
6062
6063 /* No more Mr. Nice Guy. */
434d53b0 6064 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6065 cpumask_t cpus_allowed;
6066
6067 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6068 /*
6069 * Try to stay on the same cpuset, where the
6070 * current cpuset may be a subset of all cpus.
6071 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6072 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6073 * called within calls to cpuset_lock/cpuset_unlock.
6074 */
3a5c359a 6075 rq = task_rq_lock(p, &flags);
470fd646 6076 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6077 dest_cpu = any_online_cpu(p->cpus_allowed);
6078 task_rq_unlock(rq, &flags);
1da177e4 6079
3a5c359a
AK
6080 /*
6081 * Don't tell them about moving exiting tasks or
6082 * kernel threads (both mm NULL), since they never
6083 * leave kernel.
6084 */
41a2d6cf 6085 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6086 printk(KERN_INFO "process %d (%s) no "
6087 "longer affine to cpu%d\n",
41a2d6cf
IM
6088 task_pid_nr(p), p->comm, dead_cpu);
6089 }
3a5c359a 6090 }
f7b4cddc 6091 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6092}
6093
6094/*
6095 * While a dead CPU has no uninterruptible tasks queued at this point,
6096 * it might still have a nonzero ->nr_uninterruptible counter, because
6097 * for performance reasons the counter is not stricly tracking tasks to
6098 * their home CPUs. So we just add the counter to another CPU's counter,
6099 * to keep the global sum constant after CPU-down:
6100 */
70b97a7f 6101static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6102{
7c16ec58 6103 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6104 unsigned long flags;
6105
6106 local_irq_save(flags);
6107 double_rq_lock(rq_src, rq_dest);
6108 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6109 rq_src->nr_uninterruptible = 0;
6110 double_rq_unlock(rq_src, rq_dest);
6111 local_irq_restore(flags);
6112}
6113
6114/* Run through task list and migrate tasks from the dead cpu. */
6115static void migrate_live_tasks(int src_cpu)
6116{
48f24c4d 6117 struct task_struct *p, *t;
1da177e4 6118
f7b4cddc 6119 read_lock(&tasklist_lock);
1da177e4 6120
48f24c4d
IM
6121 do_each_thread(t, p) {
6122 if (p == current)
1da177e4
LT
6123 continue;
6124
48f24c4d
IM
6125 if (task_cpu(p) == src_cpu)
6126 move_task_off_dead_cpu(src_cpu, p);
6127 } while_each_thread(t, p);
1da177e4 6128
f7b4cddc 6129 read_unlock(&tasklist_lock);
1da177e4
LT
6130}
6131
dd41f596
IM
6132/*
6133 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6134 * It does so by boosting its priority to highest possible.
6135 * Used by CPU offline code.
1da177e4
LT
6136 */
6137void sched_idle_next(void)
6138{
48f24c4d 6139 int this_cpu = smp_processor_id();
70b97a7f 6140 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6141 struct task_struct *p = rq->idle;
6142 unsigned long flags;
6143
6144 /* cpu has to be offline */
48f24c4d 6145 BUG_ON(cpu_online(this_cpu));
1da177e4 6146
48f24c4d
IM
6147 /*
6148 * Strictly not necessary since rest of the CPUs are stopped by now
6149 * and interrupts disabled on the current cpu.
1da177e4
LT
6150 */
6151 spin_lock_irqsave(&rq->lock, flags);
6152
dd41f596 6153 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6154
94bc9a7b
DA
6155 update_rq_clock(rq);
6156 activate_task(rq, p, 0);
1da177e4
LT
6157
6158 spin_unlock_irqrestore(&rq->lock, flags);
6159}
6160
48f24c4d
IM
6161/*
6162 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6163 * offline.
6164 */
6165void idle_task_exit(void)
6166{
6167 struct mm_struct *mm = current->active_mm;
6168
6169 BUG_ON(cpu_online(smp_processor_id()));
6170
6171 if (mm != &init_mm)
6172 switch_mm(mm, &init_mm, current);
6173 mmdrop(mm);
6174}
6175
054b9108 6176/* called under rq->lock with disabled interrupts */
36c8b586 6177static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6178{
70b97a7f 6179 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6180
6181 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6182 BUG_ON(!p->exit_state);
1da177e4
LT
6183
6184 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6185 BUG_ON(p->state == TASK_DEAD);
1da177e4 6186
48f24c4d 6187 get_task_struct(p);
1da177e4
LT
6188
6189 /*
6190 * Drop lock around migration; if someone else moves it,
41a2d6cf 6191 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6192 * fine.
6193 */
f7b4cddc 6194 spin_unlock_irq(&rq->lock);
48f24c4d 6195 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6196 spin_lock_irq(&rq->lock);
1da177e4 6197
48f24c4d 6198 put_task_struct(p);
1da177e4
LT
6199}
6200
6201/* release_task() removes task from tasklist, so we won't find dead tasks. */
6202static void migrate_dead_tasks(unsigned int dead_cpu)
6203{
70b97a7f 6204 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6205 struct task_struct *next;
48f24c4d 6206
dd41f596
IM
6207 for ( ; ; ) {
6208 if (!rq->nr_running)
6209 break;
a8e504d2 6210 update_rq_clock(rq);
ff95f3df 6211 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6212 if (!next)
6213 break;
79c53799 6214 next->sched_class->put_prev_task(rq, next);
dd41f596 6215 migrate_dead(dead_cpu, next);
e692ab53 6216
1da177e4
LT
6217 }
6218}
6219#endif /* CONFIG_HOTPLUG_CPU */
6220
e692ab53
NP
6221#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6222
6223static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6224 {
6225 .procname = "sched_domain",
c57baf1e 6226 .mode = 0555,
e0361851 6227 },
38605cae 6228 {0, },
e692ab53
NP
6229};
6230
6231static struct ctl_table sd_ctl_root[] = {
e0361851 6232 {
c57baf1e 6233 .ctl_name = CTL_KERN,
e0361851 6234 .procname = "kernel",
c57baf1e 6235 .mode = 0555,
e0361851
AD
6236 .child = sd_ctl_dir,
6237 },
38605cae 6238 {0, },
e692ab53
NP
6239};
6240
6241static struct ctl_table *sd_alloc_ctl_entry(int n)
6242{
6243 struct ctl_table *entry =
5cf9f062 6244 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6245
e692ab53
NP
6246 return entry;
6247}
6248
6382bc90
MM
6249static void sd_free_ctl_entry(struct ctl_table **tablep)
6250{
cd790076 6251 struct ctl_table *entry;
6382bc90 6252
cd790076
MM
6253 /*
6254 * In the intermediate directories, both the child directory and
6255 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6256 * will always be set. In the lowest directory the names are
cd790076
MM
6257 * static strings and all have proc handlers.
6258 */
6259 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6260 if (entry->child)
6261 sd_free_ctl_entry(&entry->child);
cd790076
MM
6262 if (entry->proc_handler == NULL)
6263 kfree(entry->procname);
6264 }
6382bc90
MM
6265
6266 kfree(*tablep);
6267 *tablep = NULL;
6268}
6269
e692ab53 6270static void
e0361851 6271set_table_entry(struct ctl_table *entry,
e692ab53
NP
6272 const char *procname, void *data, int maxlen,
6273 mode_t mode, proc_handler *proc_handler)
6274{
e692ab53
NP
6275 entry->procname = procname;
6276 entry->data = data;
6277 entry->maxlen = maxlen;
6278 entry->mode = mode;
6279 entry->proc_handler = proc_handler;
6280}
6281
6282static struct ctl_table *
6283sd_alloc_ctl_domain_table(struct sched_domain *sd)
6284{
ace8b3d6 6285 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6286
ad1cdc1d
MM
6287 if (table == NULL)
6288 return NULL;
6289
e0361851 6290 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6291 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6292 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6293 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6294 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6295 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6296 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6297 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6298 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6299 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6300 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6301 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6302 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6303 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6304 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6305 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6306 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6307 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6308 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6309 &sd->cache_nice_tries,
6310 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6311 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6312 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6313 /* &table[11] is terminator */
e692ab53
NP
6314
6315 return table;
6316}
6317
9a4e7159 6318static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6319{
6320 struct ctl_table *entry, *table;
6321 struct sched_domain *sd;
6322 int domain_num = 0, i;
6323 char buf[32];
6324
6325 for_each_domain(cpu, sd)
6326 domain_num++;
6327 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6328 if (table == NULL)
6329 return NULL;
e692ab53
NP
6330
6331 i = 0;
6332 for_each_domain(cpu, sd) {
6333 snprintf(buf, 32, "domain%d", i);
e692ab53 6334 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6335 entry->mode = 0555;
e692ab53
NP
6336 entry->child = sd_alloc_ctl_domain_table(sd);
6337 entry++;
6338 i++;
6339 }
6340 return table;
6341}
6342
6343static struct ctl_table_header *sd_sysctl_header;
6382bc90 6344static void register_sched_domain_sysctl(void)
e692ab53
NP
6345{
6346 int i, cpu_num = num_online_cpus();
6347 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6348 char buf[32];
6349
7378547f
MM
6350 WARN_ON(sd_ctl_dir[0].child);
6351 sd_ctl_dir[0].child = entry;
6352
ad1cdc1d
MM
6353 if (entry == NULL)
6354 return;
6355
97b6ea7b 6356 for_each_online_cpu(i) {
e692ab53 6357 snprintf(buf, 32, "cpu%d", i);
e692ab53 6358 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6359 entry->mode = 0555;
e692ab53 6360 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6361 entry++;
e692ab53 6362 }
7378547f
MM
6363
6364 WARN_ON(sd_sysctl_header);
e692ab53
NP
6365 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6366}
6382bc90 6367
7378547f 6368/* may be called multiple times per register */
6382bc90
MM
6369static void unregister_sched_domain_sysctl(void)
6370{
7378547f
MM
6371 if (sd_sysctl_header)
6372 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6373 sd_sysctl_header = NULL;
7378547f
MM
6374 if (sd_ctl_dir[0].child)
6375 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6376}
e692ab53 6377#else
6382bc90
MM
6378static void register_sched_domain_sysctl(void)
6379{
6380}
6381static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6382{
6383}
6384#endif
6385
1f11eb6a
GH
6386static void set_rq_online(struct rq *rq)
6387{
6388 if (!rq->online) {
6389 const struct sched_class *class;
6390
6391 cpu_set(rq->cpu, rq->rd->online);
6392 rq->online = 1;
6393
6394 for_each_class(class) {
6395 if (class->rq_online)
6396 class->rq_online(rq);
6397 }
6398 }
6399}
6400
6401static void set_rq_offline(struct rq *rq)
6402{
6403 if (rq->online) {
6404 const struct sched_class *class;
6405
6406 for_each_class(class) {
6407 if (class->rq_offline)
6408 class->rq_offline(rq);
6409 }
6410
6411 cpu_clear(rq->cpu, rq->rd->online);
6412 rq->online = 0;
6413 }
6414}
6415
1da177e4
LT
6416/*
6417 * migration_call - callback that gets triggered when a CPU is added.
6418 * Here we can start up the necessary migration thread for the new CPU.
6419 */
48f24c4d
IM
6420static int __cpuinit
6421migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6422{
1da177e4 6423 struct task_struct *p;
48f24c4d 6424 int cpu = (long)hcpu;
1da177e4 6425 unsigned long flags;
70b97a7f 6426 struct rq *rq;
1da177e4
LT
6427
6428 switch (action) {
5be9361c 6429
1da177e4 6430 case CPU_UP_PREPARE:
8bb78442 6431 case CPU_UP_PREPARE_FROZEN:
dd41f596 6432 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6433 if (IS_ERR(p))
6434 return NOTIFY_BAD;
1da177e4
LT
6435 kthread_bind(p, cpu);
6436 /* Must be high prio: stop_machine expects to yield to it. */
6437 rq = task_rq_lock(p, &flags);
dd41f596 6438 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6439 task_rq_unlock(rq, &flags);
6440 cpu_rq(cpu)->migration_thread = p;
6441 break;
48f24c4d 6442
1da177e4 6443 case CPU_ONLINE:
8bb78442 6444 case CPU_ONLINE_FROZEN:
3a4fa0a2 6445 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6446 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6447
6448 /* Update our root-domain */
6449 rq = cpu_rq(cpu);
6450 spin_lock_irqsave(&rq->lock, flags);
6451 if (rq->rd) {
6452 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6453
6454 set_rq_online(rq);
1f94ef59
GH
6455 }
6456 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6457 break;
48f24c4d 6458
1da177e4
LT
6459#ifdef CONFIG_HOTPLUG_CPU
6460 case CPU_UP_CANCELED:
8bb78442 6461 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6462 if (!cpu_rq(cpu)->migration_thread)
6463 break;
41a2d6cf 6464 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6465 kthread_bind(cpu_rq(cpu)->migration_thread,
6466 any_online_cpu(cpu_online_map));
1da177e4
LT
6467 kthread_stop(cpu_rq(cpu)->migration_thread);
6468 cpu_rq(cpu)->migration_thread = NULL;
6469 break;
48f24c4d 6470
1da177e4 6471 case CPU_DEAD:
8bb78442 6472 case CPU_DEAD_FROZEN:
470fd646 6473 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6474 migrate_live_tasks(cpu);
6475 rq = cpu_rq(cpu);
6476 kthread_stop(rq->migration_thread);
6477 rq->migration_thread = NULL;
6478 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6479 spin_lock_irq(&rq->lock);
a8e504d2 6480 update_rq_clock(rq);
2e1cb74a 6481 deactivate_task(rq, rq->idle, 0);
1da177e4 6482 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6483 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6484 rq->idle->sched_class = &idle_sched_class;
1da177e4 6485 migrate_dead_tasks(cpu);
d2da272a 6486 spin_unlock_irq(&rq->lock);
470fd646 6487 cpuset_unlock();
1da177e4
LT
6488 migrate_nr_uninterruptible(rq);
6489 BUG_ON(rq->nr_running != 0);
6490
41a2d6cf
IM
6491 /*
6492 * No need to migrate the tasks: it was best-effort if
6493 * they didn't take sched_hotcpu_mutex. Just wake up
6494 * the requestors.
6495 */
1da177e4
LT
6496 spin_lock_irq(&rq->lock);
6497 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6498 struct migration_req *req;
6499
1da177e4 6500 req = list_entry(rq->migration_queue.next,
70b97a7f 6501 struct migration_req, list);
1da177e4
LT
6502 list_del_init(&req->list);
6503 complete(&req->done);
6504 }
6505 spin_unlock_irq(&rq->lock);
6506 break;
57d885fe 6507
08f503b0
GH
6508 case CPU_DYING:
6509 case CPU_DYING_FROZEN:
57d885fe
GH
6510 /* Update our root-domain */
6511 rq = cpu_rq(cpu);
6512 spin_lock_irqsave(&rq->lock, flags);
6513 if (rq->rd) {
6514 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6515 set_rq_offline(rq);
57d885fe
GH
6516 }
6517 spin_unlock_irqrestore(&rq->lock, flags);
6518 break;
1da177e4
LT
6519#endif
6520 }
6521 return NOTIFY_OK;
6522}
6523
6524/* Register at highest priority so that task migration (migrate_all_tasks)
6525 * happens before everything else.
6526 */
26c2143b 6527static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6528 .notifier_call = migration_call,
6529 .priority = 10
6530};
6531
7babe8db 6532static int __init migration_init(void)
1da177e4
LT
6533{
6534 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6535 int err;
48f24c4d
IM
6536
6537 /* Start one for the boot CPU: */
07dccf33
AM
6538 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6539 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6540 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6541 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6542
6543 return err;
1da177e4 6544}
7babe8db 6545early_initcall(migration_init);
1da177e4
LT
6546#endif
6547
6548#ifdef CONFIG_SMP
476f3534 6549
3e9830dc 6550#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6551
099f98c8
GS
6552static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6553{
6554 switch (lvl) {
6555 case SD_LV_NONE:
6556 return "NONE";
6557 case SD_LV_SIBLING:
6558 return "SIBLING";
6559 case SD_LV_MC:
6560 return "MC";
6561 case SD_LV_CPU:
6562 return "CPU";
6563 case SD_LV_NODE:
6564 return "NODE";
6565 case SD_LV_ALLNODES:
6566 return "ALLNODES";
6567 case SD_LV_MAX:
6568 return "MAX";
6569
6570 }
6571 return "MAX";
6572}
6573
7c16ec58
MT
6574static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6575 cpumask_t *groupmask)
1da177e4 6576{
4dcf6aff 6577 struct sched_group *group = sd->groups;
434d53b0 6578 char str[256];
1da177e4 6579
434d53b0 6580 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6581 cpus_clear(*groupmask);
4dcf6aff
IM
6582
6583 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6584
6585 if (!(sd->flags & SD_LOAD_BALANCE)) {
6586 printk("does not load-balance\n");
6587 if (sd->parent)
6588 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6589 " has parent");
6590 return -1;
41c7ce9a
NP
6591 }
6592
099f98c8
GS
6593 printk(KERN_CONT "span %s level %s\n",
6594 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6595
6596 if (!cpu_isset(cpu, sd->span)) {
6597 printk(KERN_ERR "ERROR: domain->span does not contain "
6598 "CPU%d\n", cpu);
6599 }
6600 if (!cpu_isset(cpu, group->cpumask)) {
6601 printk(KERN_ERR "ERROR: domain->groups does not contain"
6602 " CPU%d\n", cpu);
6603 }
1da177e4 6604
4dcf6aff 6605 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6606 do {
4dcf6aff
IM
6607 if (!group) {
6608 printk("\n");
6609 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6610 break;
6611 }
6612
4dcf6aff
IM
6613 if (!group->__cpu_power) {
6614 printk(KERN_CONT "\n");
6615 printk(KERN_ERR "ERROR: domain->cpu_power not "
6616 "set\n");
6617 break;
6618 }
1da177e4 6619
4dcf6aff
IM
6620 if (!cpus_weight(group->cpumask)) {
6621 printk(KERN_CONT "\n");
6622 printk(KERN_ERR "ERROR: empty group\n");
6623 break;
6624 }
1da177e4 6625
7c16ec58 6626 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6627 printk(KERN_CONT "\n");
6628 printk(KERN_ERR "ERROR: repeated CPUs\n");
6629 break;
6630 }
1da177e4 6631
7c16ec58 6632 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6633
434d53b0 6634 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6635 printk(KERN_CONT " %s", str);
1da177e4 6636
4dcf6aff
IM
6637 group = group->next;
6638 } while (group != sd->groups);
6639 printk(KERN_CONT "\n");
1da177e4 6640
7c16ec58 6641 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6642 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6643
7c16ec58 6644 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6645 printk(KERN_ERR "ERROR: parent span is not a superset "
6646 "of domain->span\n");
6647 return 0;
6648}
1da177e4 6649
4dcf6aff
IM
6650static void sched_domain_debug(struct sched_domain *sd, int cpu)
6651{
7c16ec58 6652 cpumask_t *groupmask;
4dcf6aff 6653 int level = 0;
1da177e4 6654
4dcf6aff
IM
6655 if (!sd) {
6656 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6657 return;
6658 }
1da177e4 6659
4dcf6aff
IM
6660 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6661
7c16ec58
MT
6662 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6663 if (!groupmask) {
6664 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6665 return;
6666 }
6667
4dcf6aff 6668 for (;;) {
7c16ec58 6669 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6670 break;
1da177e4
LT
6671 level++;
6672 sd = sd->parent;
33859f7f 6673 if (!sd)
4dcf6aff
IM
6674 break;
6675 }
7c16ec58 6676 kfree(groupmask);
1da177e4 6677}
6d6bc0ad 6678#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6679# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6680#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6681
1a20ff27 6682static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6683{
6684 if (cpus_weight(sd->span) == 1)
6685 return 1;
6686
6687 /* Following flags need at least 2 groups */
6688 if (sd->flags & (SD_LOAD_BALANCE |
6689 SD_BALANCE_NEWIDLE |
6690 SD_BALANCE_FORK |
89c4710e
SS
6691 SD_BALANCE_EXEC |
6692 SD_SHARE_CPUPOWER |
6693 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6694 if (sd->groups != sd->groups->next)
6695 return 0;
6696 }
6697
6698 /* Following flags don't use groups */
6699 if (sd->flags & (SD_WAKE_IDLE |
6700 SD_WAKE_AFFINE |
6701 SD_WAKE_BALANCE))
6702 return 0;
6703
6704 return 1;
6705}
6706
48f24c4d
IM
6707static int
6708sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6709{
6710 unsigned long cflags = sd->flags, pflags = parent->flags;
6711
6712 if (sd_degenerate(parent))
6713 return 1;
6714
6715 if (!cpus_equal(sd->span, parent->span))
6716 return 0;
6717
6718 /* Does parent contain flags not in child? */
6719 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6720 if (cflags & SD_WAKE_AFFINE)
6721 pflags &= ~SD_WAKE_BALANCE;
6722 /* Flags needing groups don't count if only 1 group in parent */
6723 if (parent->groups == parent->groups->next) {
6724 pflags &= ~(SD_LOAD_BALANCE |
6725 SD_BALANCE_NEWIDLE |
6726 SD_BALANCE_FORK |
89c4710e
SS
6727 SD_BALANCE_EXEC |
6728 SD_SHARE_CPUPOWER |
6729 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6730 }
6731 if (~cflags & pflags)
6732 return 0;
6733
6734 return 1;
6735}
6736
57d885fe
GH
6737static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6738{
6739 unsigned long flags;
57d885fe
GH
6740
6741 spin_lock_irqsave(&rq->lock, flags);
6742
6743 if (rq->rd) {
6744 struct root_domain *old_rd = rq->rd;
6745
1f11eb6a
GH
6746 if (cpu_isset(rq->cpu, old_rd->online))
6747 set_rq_offline(rq);
57d885fe 6748
dc938520 6749 cpu_clear(rq->cpu, old_rd->span);
dc938520 6750
57d885fe
GH
6751 if (atomic_dec_and_test(&old_rd->refcount))
6752 kfree(old_rd);
6753 }
6754
6755 atomic_inc(&rd->refcount);
6756 rq->rd = rd;
6757
dc938520 6758 cpu_set(rq->cpu, rd->span);
1f94ef59 6759 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6760 set_rq_online(rq);
57d885fe
GH
6761
6762 spin_unlock_irqrestore(&rq->lock, flags);
6763}
6764
dc938520 6765static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6766{
6767 memset(rd, 0, sizeof(*rd));
6768
dc938520
GH
6769 cpus_clear(rd->span);
6770 cpus_clear(rd->online);
6e0534f2
GH
6771
6772 cpupri_init(&rd->cpupri);
57d885fe
GH
6773}
6774
6775static void init_defrootdomain(void)
6776{
dc938520 6777 init_rootdomain(&def_root_domain);
57d885fe
GH
6778 atomic_set(&def_root_domain.refcount, 1);
6779}
6780
dc938520 6781static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6782{
6783 struct root_domain *rd;
6784
6785 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6786 if (!rd)
6787 return NULL;
6788
dc938520 6789 init_rootdomain(rd);
57d885fe
GH
6790
6791 return rd;
6792}
6793
1da177e4 6794/*
0eab9146 6795 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6796 * hold the hotplug lock.
6797 */
0eab9146
IM
6798static void
6799cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6800{
70b97a7f 6801 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6802 struct sched_domain *tmp;
6803
6804 /* Remove the sched domains which do not contribute to scheduling. */
6805 for (tmp = sd; tmp; tmp = tmp->parent) {
6806 struct sched_domain *parent = tmp->parent;
6807 if (!parent)
6808 break;
1a848870 6809 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6810 tmp->parent = parent->parent;
1a848870
SS
6811 if (parent->parent)
6812 parent->parent->child = tmp;
6813 }
245af2c7
SS
6814 }
6815
1a848870 6816 if (sd && sd_degenerate(sd)) {
245af2c7 6817 sd = sd->parent;
1a848870
SS
6818 if (sd)
6819 sd->child = NULL;
6820 }
1da177e4
LT
6821
6822 sched_domain_debug(sd, cpu);
6823
57d885fe 6824 rq_attach_root(rq, rd);
674311d5 6825 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6826}
6827
6828/* cpus with isolated domains */
67af63a6 6829static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6830
6831/* Setup the mask of cpus configured for isolated domains */
6832static int __init isolated_cpu_setup(char *str)
6833{
13b40c1e
MT
6834 static int __initdata ints[NR_CPUS];
6835 int i;
1da177e4
LT
6836
6837 str = get_options(str, ARRAY_SIZE(ints), ints);
6838 cpus_clear(cpu_isolated_map);
6839 for (i = 1; i <= ints[0]; i++)
6840 if (ints[i] < NR_CPUS)
6841 cpu_set(ints[i], cpu_isolated_map);
6842 return 1;
6843}
6844
8927f494 6845__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6846
6847/*
6711cab4
SS
6848 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6849 * to a function which identifies what group(along with sched group) a CPU
6850 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6851 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6852 *
6853 * init_sched_build_groups will build a circular linked list of the groups
6854 * covered by the given span, and will set each group's ->cpumask correctly,
6855 * and ->cpu_power to 0.
6856 */
a616058b 6857static void
7c16ec58 6858init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6859 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6860 struct sched_group **sg,
6861 cpumask_t *tmpmask),
6862 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6863{
6864 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6865 int i;
6866
7c16ec58
MT
6867 cpus_clear(*covered);
6868
363ab6f1 6869 for_each_cpu_mask_nr(i, *span) {
6711cab4 6870 struct sched_group *sg;
7c16ec58 6871 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6872 int j;
6873
7c16ec58 6874 if (cpu_isset(i, *covered))
1da177e4
LT
6875 continue;
6876
7c16ec58 6877 cpus_clear(sg->cpumask);
5517d86b 6878 sg->__cpu_power = 0;
1da177e4 6879
363ab6f1 6880 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6881 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6882 continue;
6883
7c16ec58 6884 cpu_set(j, *covered);
1da177e4
LT
6885 cpu_set(j, sg->cpumask);
6886 }
6887 if (!first)
6888 first = sg;
6889 if (last)
6890 last->next = sg;
6891 last = sg;
6892 }
6893 last->next = first;
6894}
6895
9c1cfda2 6896#define SD_NODES_PER_DOMAIN 16
1da177e4 6897
9c1cfda2 6898#ifdef CONFIG_NUMA
198e2f18 6899
9c1cfda2
JH
6900/**
6901 * find_next_best_node - find the next node to include in a sched_domain
6902 * @node: node whose sched_domain we're building
6903 * @used_nodes: nodes already in the sched_domain
6904 *
41a2d6cf 6905 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6906 * finds the closest node not already in the @used_nodes map.
6907 *
6908 * Should use nodemask_t.
6909 */
c5f59f08 6910static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6911{
6912 int i, n, val, min_val, best_node = 0;
6913
6914 min_val = INT_MAX;
6915
076ac2af 6916 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6917 /* Start at @node */
076ac2af 6918 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6919
6920 if (!nr_cpus_node(n))
6921 continue;
6922
6923 /* Skip already used nodes */
c5f59f08 6924 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6925 continue;
6926
6927 /* Simple min distance search */
6928 val = node_distance(node, n);
6929
6930 if (val < min_val) {
6931 min_val = val;
6932 best_node = n;
6933 }
6934 }
6935
c5f59f08 6936 node_set(best_node, *used_nodes);
9c1cfda2
JH
6937 return best_node;
6938}
6939
6940/**
6941 * sched_domain_node_span - get a cpumask for a node's sched_domain
6942 * @node: node whose cpumask we're constructing
73486722 6943 * @span: resulting cpumask
9c1cfda2 6944 *
41a2d6cf 6945 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6946 * should be one that prevents unnecessary balancing, but also spreads tasks
6947 * out optimally.
6948 */
4bdbaad3 6949static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6950{
c5f59f08 6951 nodemask_t used_nodes;
c5f59f08 6952 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6953 int i;
9c1cfda2 6954
4bdbaad3 6955 cpus_clear(*span);
c5f59f08 6956 nodes_clear(used_nodes);
9c1cfda2 6957
4bdbaad3 6958 cpus_or(*span, *span, *nodemask);
c5f59f08 6959 node_set(node, used_nodes);
9c1cfda2
JH
6960
6961 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6962 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6963
c5f59f08 6964 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6965 cpus_or(*span, *span, *nodemask);
9c1cfda2 6966 }
9c1cfda2 6967}
6d6bc0ad 6968#endif /* CONFIG_NUMA */
9c1cfda2 6969
5c45bf27 6970int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6971
9c1cfda2 6972/*
48f24c4d 6973 * SMT sched-domains:
9c1cfda2 6974 */
1da177e4
LT
6975#ifdef CONFIG_SCHED_SMT
6976static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6977static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6978
41a2d6cf 6979static int
7c16ec58
MT
6980cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6981 cpumask_t *unused)
1da177e4 6982{
6711cab4
SS
6983 if (sg)
6984 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6985 return cpu;
6986}
6d6bc0ad 6987#endif /* CONFIG_SCHED_SMT */
1da177e4 6988
48f24c4d
IM
6989/*
6990 * multi-core sched-domains:
6991 */
1e9f28fa
SS
6992#ifdef CONFIG_SCHED_MC
6993static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6994static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6995#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6996
6997#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6998static int
7c16ec58
MT
6999cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7000 cpumask_t *mask)
1e9f28fa 7001{
6711cab4 7002 int group;
7c16ec58
MT
7003
7004 *mask = per_cpu(cpu_sibling_map, cpu);
7005 cpus_and(*mask, *mask, *cpu_map);
7006 group = first_cpu(*mask);
6711cab4
SS
7007 if (sg)
7008 *sg = &per_cpu(sched_group_core, group);
7009 return group;
1e9f28fa
SS
7010}
7011#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7012static int
7c16ec58
MT
7013cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7014 cpumask_t *unused)
1e9f28fa 7015{
6711cab4
SS
7016 if (sg)
7017 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7018 return cpu;
7019}
7020#endif
7021
1da177e4 7022static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7023static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7024
41a2d6cf 7025static int
7c16ec58
MT
7026cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7027 cpumask_t *mask)
1da177e4 7028{
6711cab4 7029 int group;
48f24c4d 7030#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7031 *mask = cpu_coregroup_map(cpu);
7032 cpus_and(*mask, *mask, *cpu_map);
7033 group = first_cpu(*mask);
1e9f28fa 7034#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7035 *mask = per_cpu(cpu_sibling_map, cpu);
7036 cpus_and(*mask, *mask, *cpu_map);
7037 group = first_cpu(*mask);
1da177e4 7038#else
6711cab4 7039 group = cpu;
1da177e4 7040#endif
6711cab4
SS
7041 if (sg)
7042 *sg = &per_cpu(sched_group_phys, group);
7043 return group;
1da177e4
LT
7044}
7045
7046#ifdef CONFIG_NUMA
1da177e4 7047/*
9c1cfda2
JH
7048 * The init_sched_build_groups can't handle what we want to do with node
7049 * groups, so roll our own. Now each node has its own list of groups which
7050 * gets dynamically allocated.
1da177e4 7051 */
9c1cfda2 7052static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7053static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7054
9c1cfda2 7055static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7056static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7057
6711cab4 7058static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7059 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7060{
6711cab4
SS
7061 int group;
7062
7c16ec58
MT
7063 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7064 cpus_and(*nodemask, *nodemask, *cpu_map);
7065 group = first_cpu(*nodemask);
6711cab4
SS
7066
7067 if (sg)
7068 *sg = &per_cpu(sched_group_allnodes, group);
7069 return group;
1da177e4 7070}
6711cab4 7071
08069033
SS
7072static void init_numa_sched_groups_power(struct sched_group *group_head)
7073{
7074 struct sched_group *sg = group_head;
7075 int j;
7076
7077 if (!sg)
7078 return;
3a5c359a 7079 do {
363ab6f1 7080 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7081 struct sched_domain *sd;
08069033 7082
3a5c359a
AK
7083 sd = &per_cpu(phys_domains, j);
7084 if (j != first_cpu(sd->groups->cpumask)) {
7085 /*
7086 * Only add "power" once for each
7087 * physical package.
7088 */
7089 continue;
7090 }
08069033 7091
3a5c359a
AK
7092 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7093 }
7094 sg = sg->next;
7095 } while (sg != group_head);
08069033 7096}
6d6bc0ad 7097#endif /* CONFIG_NUMA */
1da177e4 7098
a616058b 7099#ifdef CONFIG_NUMA
51888ca2 7100/* Free memory allocated for various sched_group structures */
7c16ec58 7101static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7102{
a616058b 7103 int cpu, i;
51888ca2 7104
363ab6f1 7105 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7106 struct sched_group **sched_group_nodes
7107 = sched_group_nodes_bycpu[cpu];
7108
51888ca2
SV
7109 if (!sched_group_nodes)
7110 continue;
7111
076ac2af 7112 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7113 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7114
7c16ec58
MT
7115 *nodemask = node_to_cpumask(i);
7116 cpus_and(*nodemask, *nodemask, *cpu_map);
7117 if (cpus_empty(*nodemask))
51888ca2
SV
7118 continue;
7119
7120 if (sg == NULL)
7121 continue;
7122 sg = sg->next;
7123next_sg:
7124 oldsg = sg;
7125 sg = sg->next;
7126 kfree(oldsg);
7127 if (oldsg != sched_group_nodes[i])
7128 goto next_sg;
7129 }
7130 kfree(sched_group_nodes);
7131 sched_group_nodes_bycpu[cpu] = NULL;
7132 }
51888ca2 7133}
6d6bc0ad 7134#else /* !CONFIG_NUMA */
7c16ec58 7135static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7136{
7137}
6d6bc0ad 7138#endif /* CONFIG_NUMA */
51888ca2 7139
89c4710e
SS
7140/*
7141 * Initialize sched groups cpu_power.
7142 *
7143 * cpu_power indicates the capacity of sched group, which is used while
7144 * distributing the load between different sched groups in a sched domain.
7145 * Typically cpu_power for all the groups in a sched domain will be same unless
7146 * there are asymmetries in the topology. If there are asymmetries, group
7147 * having more cpu_power will pickup more load compared to the group having
7148 * less cpu_power.
7149 *
7150 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7151 * the maximum number of tasks a group can handle in the presence of other idle
7152 * or lightly loaded groups in the same sched domain.
7153 */
7154static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7155{
7156 struct sched_domain *child;
7157 struct sched_group *group;
7158
7159 WARN_ON(!sd || !sd->groups);
7160
7161 if (cpu != first_cpu(sd->groups->cpumask))
7162 return;
7163
7164 child = sd->child;
7165
5517d86b
ED
7166 sd->groups->__cpu_power = 0;
7167
89c4710e
SS
7168 /*
7169 * For perf policy, if the groups in child domain share resources
7170 * (for example cores sharing some portions of the cache hierarchy
7171 * or SMT), then set this domain groups cpu_power such that each group
7172 * can handle only one task, when there are other idle groups in the
7173 * same sched domain.
7174 */
7175 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7176 (child->flags &
7177 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7178 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7179 return;
7180 }
7181
89c4710e
SS
7182 /*
7183 * add cpu_power of each child group to this groups cpu_power
7184 */
7185 group = child->groups;
7186 do {
5517d86b 7187 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7188 group = group->next;
7189 } while (group != child->groups);
7190}
7191
7c16ec58
MT
7192/*
7193 * Initializers for schedule domains
7194 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7195 */
7196
7197#define SD_INIT(sd, type) sd_init_##type(sd)
7198#define SD_INIT_FUNC(type) \
7199static noinline void sd_init_##type(struct sched_domain *sd) \
7200{ \
7201 memset(sd, 0, sizeof(*sd)); \
7202 *sd = SD_##type##_INIT; \
1d3504fc 7203 sd->level = SD_LV_##type; \
7c16ec58
MT
7204}
7205
7206SD_INIT_FUNC(CPU)
7207#ifdef CONFIG_NUMA
7208 SD_INIT_FUNC(ALLNODES)
7209 SD_INIT_FUNC(NODE)
7210#endif
7211#ifdef CONFIG_SCHED_SMT
7212 SD_INIT_FUNC(SIBLING)
7213#endif
7214#ifdef CONFIG_SCHED_MC
7215 SD_INIT_FUNC(MC)
7216#endif
7217
7218/*
7219 * To minimize stack usage kmalloc room for cpumasks and share the
7220 * space as the usage in build_sched_domains() dictates. Used only
7221 * if the amount of space is significant.
7222 */
7223struct allmasks {
7224 cpumask_t tmpmask; /* make this one first */
7225 union {
7226 cpumask_t nodemask;
7227 cpumask_t this_sibling_map;
7228 cpumask_t this_core_map;
7229 };
7230 cpumask_t send_covered;
7231
7232#ifdef CONFIG_NUMA
7233 cpumask_t domainspan;
7234 cpumask_t covered;
7235 cpumask_t notcovered;
7236#endif
7237};
7238
7239#if NR_CPUS > 128
7240#define SCHED_CPUMASK_ALLOC 1
7241#define SCHED_CPUMASK_FREE(v) kfree(v)
7242#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7243#else
7244#define SCHED_CPUMASK_ALLOC 0
7245#define SCHED_CPUMASK_FREE(v)
7246#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7247#endif
7248
7249#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7250 ((unsigned long)(a) + offsetof(struct allmasks, v))
7251
1d3504fc
HS
7252static int default_relax_domain_level = -1;
7253
7254static int __init setup_relax_domain_level(char *str)
7255{
30e0e178
LZ
7256 unsigned long val;
7257
7258 val = simple_strtoul(str, NULL, 0);
7259 if (val < SD_LV_MAX)
7260 default_relax_domain_level = val;
7261
1d3504fc
HS
7262 return 1;
7263}
7264__setup("relax_domain_level=", setup_relax_domain_level);
7265
7266static void set_domain_attribute(struct sched_domain *sd,
7267 struct sched_domain_attr *attr)
7268{
7269 int request;
7270
7271 if (!attr || attr->relax_domain_level < 0) {
7272 if (default_relax_domain_level < 0)
7273 return;
7274 else
7275 request = default_relax_domain_level;
7276 } else
7277 request = attr->relax_domain_level;
7278 if (request < sd->level) {
7279 /* turn off idle balance on this domain */
7280 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7281 } else {
7282 /* turn on idle balance on this domain */
7283 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7284 }
7285}
7286
1da177e4 7287/*
1a20ff27
DG
7288 * Build sched domains for a given set of cpus and attach the sched domains
7289 * to the individual cpus
1da177e4 7290 */
1d3504fc
HS
7291static int __build_sched_domains(const cpumask_t *cpu_map,
7292 struct sched_domain_attr *attr)
1da177e4
LT
7293{
7294 int i;
57d885fe 7295 struct root_domain *rd;
7c16ec58
MT
7296 SCHED_CPUMASK_DECLARE(allmasks);
7297 cpumask_t *tmpmask;
d1b55138
JH
7298#ifdef CONFIG_NUMA
7299 struct sched_group **sched_group_nodes = NULL;
6711cab4 7300 int sd_allnodes = 0;
d1b55138
JH
7301
7302 /*
7303 * Allocate the per-node list of sched groups
7304 */
076ac2af 7305 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7306 GFP_KERNEL);
d1b55138
JH
7307 if (!sched_group_nodes) {
7308 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7309 return -ENOMEM;
d1b55138 7310 }
d1b55138 7311#endif
1da177e4 7312
dc938520 7313 rd = alloc_rootdomain();
57d885fe
GH
7314 if (!rd) {
7315 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7316#ifdef CONFIG_NUMA
7317 kfree(sched_group_nodes);
7318#endif
57d885fe
GH
7319 return -ENOMEM;
7320 }
7321
7c16ec58
MT
7322#if SCHED_CPUMASK_ALLOC
7323 /* get space for all scratch cpumask variables */
7324 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7325 if (!allmasks) {
7326 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7327 kfree(rd);
7328#ifdef CONFIG_NUMA
7329 kfree(sched_group_nodes);
7330#endif
7331 return -ENOMEM;
7332 }
7333#endif
7334 tmpmask = (cpumask_t *)allmasks;
7335
7336
7337#ifdef CONFIG_NUMA
7338 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7339#endif
7340
1da177e4 7341 /*
1a20ff27 7342 * Set up domains for cpus specified by the cpu_map.
1da177e4 7343 */
363ab6f1 7344 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7345 struct sched_domain *sd = NULL, *p;
7c16ec58 7346 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7347
7c16ec58
MT
7348 *nodemask = node_to_cpumask(cpu_to_node(i));
7349 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7350
7351#ifdef CONFIG_NUMA
dd41f596 7352 if (cpus_weight(*cpu_map) >
7c16ec58 7353 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7354 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7355 SD_INIT(sd, ALLNODES);
1d3504fc 7356 set_domain_attribute(sd, attr);
9c1cfda2 7357 sd->span = *cpu_map;
7c16ec58 7358 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7359 p = sd;
6711cab4 7360 sd_allnodes = 1;
9c1cfda2
JH
7361 } else
7362 p = NULL;
7363
1da177e4 7364 sd = &per_cpu(node_domains, i);
7c16ec58 7365 SD_INIT(sd, NODE);
1d3504fc 7366 set_domain_attribute(sd, attr);
4bdbaad3 7367 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7368 sd->parent = p;
1a848870
SS
7369 if (p)
7370 p->child = sd;
9c1cfda2 7371 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7372#endif
7373
7374 p = sd;
7375 sd = &per_cpu(phys_domains, i);
7c16ec58 7376 SD_INIT(sd, CPU);
1d3504fc 7377 set_domain_attribute(sd, attr);
7c16ec58 7378 sd->span = *nodemask;
1da177e4 7379 sd->parent = p;
1a848870
SS
7380 if (p)
7381 p->child = sd;
7c16ec58 7382 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7383
1e9f28fa
SS
7384#ifdef CONFIG_SCHED_MC
7385 p = sd;
7386 sd = &per_cpu(core_domains, i);
7c16ec58 7387 SD_INIT(sd, MC);
1d3504fc 7388 set_domain_attribute(sd, attr);
1e9f28fa
SS
7389 sd->span = cpu_coregroup_map(i);
7390 cpus_and(sd->span, sd->span, *cpu_map);
7391 sd->parent = p;
1a848870 7392 p->child = sd;
7c16ec58 7393 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7394#endif
7395
1da177e4
LT
7396#ifdef CONFIG_SCHED_SMT
7397 p = sd;
7398 sd = &per_cpu(cpu_domains, i);
7c16ec58 7399 SD_INIT(sd, SIBLING);
1d3504fc 7400 set_domain_attribute(sd, attr);
d5a7430d 7401 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7402 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7403 sd->parent = p;
1a848870 7404 p->child = sd;
7c16ec58 7405 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7406#endif
7407 }
7408
7409#ifdef CONFIG_SCHED_SMT
7410 /* Set up CPU (sibling) groups */
363ab6f1 7411 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7412 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7413 SCHED_CPUMASK_VAR(send_covered, allmasks);
7414
7415 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7416 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7417 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7418 continue;
7419
dd41f596 7420 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7421 &cpu_to_cpu_group,
7422 send_covered, tmpmask);
1da177e4
LT
7423 }
7424#endif
7425
1e9f28fa
SS
7426#ifdef CONFIG_SCHED_MC
7427 /* Set up multi-core groups */
363ab6f1 7428 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7429 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7430 SCHED_CPUMASK_VAR(send_covered, allmasks);
7431
7432 *this_core_map = cpu_coregroup_map(i);
7433 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7434 if (i != first_cpu(*this_core_map))
1e9f28fa 7435 continue;
7c16ec58 7436
dd41f596 7437 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7438 &cpu_to_core_group,
7439 send_covered, tmpmask);
1e9f28fa
SS
7440 }
7441#endif
7442
1da177e4 7443 /* Set up physical groups */
076ac2af 7444 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7445 SCHED_CPUMASK_VAR(nodemask, allmasks);
7446 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7447
7c16ec58
MT
7448 *nodemask = node_to_cpumask(i);
7449 cpus_and(*nodemask, *nodemask, *cpu_map);
7450 if (cpus_empty(*nodemask))
1da177e4
LT
7451 continue;
7452
7c16ec58
MT
7453 init_sched_build_groups(nodemask, cpu_map,
7454 &cpu_to_phys_group,
7455 send_covered, tmpmask);
1da177e4
LT
7456 }
7457
7458#ifdef CONFIG_NUMA
7459 /* Set up node groups */
7c16ec58
MT
7460 if (sd_allnodes) {
7461 SCHED_CPUMASK_VAR(send_covered, allmasks);
7462
7463 init_sched_build_groups(cpu_map, cpu_map,
7464 &cpu_to_allnodes_group,
7465 send_covered, tmpmask);
7466 }
9c1cfda2 7467
076ac2af 7468 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7469 /* Set up node groups */
7470 struct sched_group *sg, *prev;
7c16ec58
MT
7471 SCHED_CPUMASK_VAR(nodemask, allmasks);
7472 SCHED_CPUMASK_VAR(domainspan, allmasks);
7473 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7474 int j;
7475
7c16ec58
MT
7476 *nodemask = node_to_cpumask(i);
7477 cpus_clear(*covered);
7478
7479 cpus_and(*nodemask, *nodemask, *cpu_map);
7480 if (cpus_empty(*nodemask)) {
d1b55138 7481 sched_group_nodes[i] = NULL;
9c1cfda2 7482 continue;
d1b55138 7483 }
9c1cfda2 7484
4bdbaad3 7485 sched_domain_node_span(i, domainspan);
7c16ec58 7486 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7487
15f0b676 7488 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7489 if (!sg) {
7490 printk(KERN_WARNING "Can not alloc domain group for "
7491 "node %d\n", i);
7492 goto error;
7493 }
9c1cfda2 7494 sched_group_nodes[i] = sg;
363ab6f1 7495 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7496 struct sched_domain *sd;
9761eea8 7497
9c1cfda2
JH
7498 sd = &per_cpu(node_domains, j);
7499 sd->groups = sg;
9c1cfda2 7500 }
5517d86b 7501 sg->__cpu_power = 0;
7c16ec58 7502 sg->cpumask = *nodemask;
51888ca2 7503 sg->next = sg;
7c16ec58 7504 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7505 prev = sg;
7506
076ac2af 7507 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7508 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7509 int n = (i + j) % nr_node_ids;
c5f59f08 7510 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7511
7c16ec58
MT
7512 cpus_complement(*notcovered, *covered);
7513 cpus_and(*tmpmask, *notcovered, *cpu_map);
7514 cpus_and(*tmpmask, *tmpmask, *domainspan);
7515 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7516 break;
7517
7c16ec58
MT
7518 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7519 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7520 continue;
7521
15f0b676
SV
7522 sg = kmalloc_node(sizeof(struct sched_group),
7523 GFP_KERNEL, i);
9c1cfda2
JH
7524 if (!sg) {
7525 printk(KERN_WARNING
7526 "Can not alloc domain group for node %d\n", j);
51888ca2 7527 goto error;
9c1cfda2 7528 }
5517d86b 7529 sg->__cpu_power = 0;
7c16ec58 7530 sg->cpumask = *tmpmask;
51888ca2 7531 sg->next = prev->next;
7c16ec58 7532 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7533 prev->next = sg;
7534 prev = sg;
7535 }
9c1cfda2 7536 }
1da177e4
LT
7537#endif
7538
7539 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7540#ifdef CONFIG_SCHED_SMT
363ab6f1 7541 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7542 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7543
89c4710e 7544 init_sched_groups_power(i, sd);
5c45bf27 7545 }
1da177e4 7546#endif
1e9f28fa 7547#ifdef CONFIG_SCHED_MC
363ab6f1 7548 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7549 struct sched_domain *sd = &per_cpu(core_domains, i);
7550
89c4710e 7551 init_sched_groups_power(i, sd);
5c45bf27
SS
7552 }
7553#endif
1e9f28fa 7554
363ab6f1 7555 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7556 struct sched_domain *sd = &per_cpu(phys_domains, i);
7557
89c4710e 7558 init_sched_groups_power(i, sd);
1da177e4
LT
7559 }
7560
9c1cfda2 7561#ifdef CONFIG_NUMA
076ac2af 7562 for (i = 0; i < nr_node_ids; i++)
08069033 7563 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7564
6711cab4
SS
7565 if (sd_allnodes) {
7566 struct sched_group *sg;
f712c0c7 7567
7c16ec58
MT
7568 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7569 tmpmask);
f712c0c7
SS
7570 init_numa_sched_groups_power(sg);
7571 }
9c1cfda2
JH
7572#endif
7573
1da177e4 7574 /* Attach the domains */
363ab6f1 7575 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7576 struct sched_domain *sd;
7577#ifdef CONFIG_SCHED_SMT
7578 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7579#elif defined(CONFIG_SCHED_MC)
7580 sd = &per_cpu(core_domains, i);
1da177e4
LT
7581#else
7582 sd = &per_cpu(phys_domains, i);
7583#endif
57d885fe 7584 cpu_attach_domain(sd, rd, i);
1da177e4 7585 }
51888ca2 7586
7c16ec58 7587 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7588 return 0;
7589
a616058b 7590#ifdef CONFIG_NUMA
51888ca2 7591error:
7c16ec58
MT
7592 free_sched_groups(cpu_map, tmpmask);
7593 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7594 return -ENOMEM;
a616058b 7595#endif
1da177e4 7596}
029190c5 7597
1d3504fc
HS
7598static int build_sched_domains(const cpumask_t *cpu_map)
7599{
7600 return __build_sched_domains(cpu_map, NULL);
7601}
7602
029190c5
PJ
7603static cpumask_t *doms_cur; /* current sched domains */
7604static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7605static struct sched_domain_attr *dattr_cur;
7606 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7607
7608/*
7609 * Special case: If a kmalloc of a doms_cur partition (array of
7610 * cpumask_t) fails, then fallback to a single sched domain,
7611 * as determined by the single cpumask_t fallback_doms.
7612 */
7613static cpumask_t fallback_doms;
7614
22e52b07
HC
7615void __attribute__((weak)) arch_update_cpu_topology(void)
7616{
7617}
7618
1a20ff27 7619/*
41a2d6cf 7620 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7621 * For now this just excludes isolated cpus, but could be used to
7622 * exclude other special cases in the future.
1a20ff27 7623 */
51888ca2 7624static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7625{
7378547f
MM
7626 int err;
7627
22e52b07 7628 arch_update_cpu_topology();
029190c5
PJ
7629 ndoms_cur = 1;
7630 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7631 if (!doms_cur)
7632 doms_cur = &fallback_doms;
7633 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7634 dattr_cur = NULL;
7378547f 7635 err = build_sched_domains(doms_cur);
6382bc90 7636 register_sched_domain_sysctl();
7378547f
MM
7637
7638 return err;
1a20ff27
DG
7639}
7640
7c16ec58
MT
7641static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7642 cpumask_t *tmpmask)
1da177e4 7643{
7c16ec58 7644 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7645}
1da177e4 7646
1a20ff27
DG
7647/*
7648 * Detach sched domains from a group of cpus specified in cpu_map
7649 * These cpus will now be attached to the NULL domain
7650 */
858119e1 7651static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7652{
7c16ec58 7653 cpumask_t tmpmask;
1a20ff27
DG
7654 int i;
7655
6382bc90
MM
7656 unregister_sched_domain_sysctl();
7657
363ab6f1 7658 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7659 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7660 synchronize_sched();
7c16ec58 7661 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7662}
7663
1d3504fc
HS
7664/* handle null as "default" */
7665static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7666 struct sched_domain_attr *new, int idx_new)
7667{
7668 struct sched_domain_attr tmp;
7669
7670 /* fast path */
7671 if (!new && !cur)
7672 return 1;
7673
7674 tmp = SD_ATTR_INIT;
7675 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7676 new ? (new + idx_new) : &tmp,
7677 sizeof(struct sched_domain_attr));
7678}
7679
029190c5
PJ
7680/*
7681 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7682 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7683 * doms_new[] to the current sched domain partitioning, doms_cur[].
7684 * It destroys each deleted domain and builds each new domain.
7685 *
7686 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7687 * The masks don't intersect (don't overlap.) We should setup one
7688 * sched domain for each mask. CPUs not in any of the cpumasks will
7689 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7690 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7691 * it as it is.
7692 *
41a2d6cf
IM
7693 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7694 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7695 * failed the kmalloc call, then it can pass in doms_new == NULL,
7696 * and partition_sched_domains() will fallback to the single partition
e761b772 7697 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7698 *
dfb512ec
MK
7699 * If doms_new==NULL it will be replaced with cpu_online_map.
7700 * ndoms_new==0 is a special case for destroying existing domains.
7701 * It will not create the default domain.
7702 *
029190c5
PJ
7703 * Call with hotplug lock held
7704 */
1d3504fc
HS
7705void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7706 struct sched_domain_attr *dattr_new)
029190c5 7707{
dfb512ec 7708 int i, j, n;
029190c5 7709
712555ee 7710 mutex_lock(&sched_domains_mutex);
a1835615 7711
7378547f
MM
7712 /* always unregister in case we don't destroy any domains */
7713 unregister_sched_domain_sysctl();
7714
dfb512ec 7715 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7716
7717 /* Destroy deleted domains */
7718 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7719 for (j = 0; j < n; j++) {
1d3504fc
HS
7720 if (cpus_equal(doms_cur[i], doms_new[j])
7721 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7722 goto match1;
7723 }
7724 /* no match - a current sched domain not in new doms_new[] */
7725 detach_destroy_domains(doms_cur + i);
7726match1:
7727 ;
7728 }
7729
e761b772
MK
7730 if (doms_new == NULL) {
7731 ndoms_cur = 0;
e761b772
MK
7732 doms_new = &fallback_doms;
7733 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7734 dattr_new = NULL;
7735 }
7736
029190c5
PJ
7737 /* Build new domains */
7738 for (i = 0; i < ndoms_new; i++) {
7739 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7740 if (cpus_equal(doms_new[i], doms_cur[j])
7741 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7742 goto match2;
7743 }
7744 /* no match - add a new doms_new */
1d3504fc
HS
7745 __build_sched_domains(doms_new + i,
7746 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7747match2:
7748 ;
7749 }
7750
7751 /* Remember the new sched domains */
7752 if (doms_cur != &fallback_doms)
7753 kfree(doms_cur);
1d3504fc 7754 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7755 doms_cur = doms_new;
1d3504fc 7756 dattr_cur = dattr_new;
029190c5 7757 ndoms_cur = ndoms_new;
7378547f
MM
7758
7759 register_sched_domain_sysctl();
a1835615 7760
712555ee 7761 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7762}
7763
5c45bf27 7764#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7765int arch_reinit_sched_domains(void)
5c45bf27 7766{
95402b38 7767 get_online_cpus();
dfb512ec
MK
7768
7769 /* Destroy domains first to force the rebuild */
7770 partition_sched_domains(0, NULL, NULL);
7771
e761b772 7772 rebuild_sched_domains();
95402b38 7773 put_online_cpus();
dfb512ec 7774
e761b772 7775 return 0;
5c45bf27
SS
7776}
7777
7778static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7779{
7780 int ret;
7781
7782 if (buf[0] != '0' && buf[0] != '1')
7783 return -EINVAL;
7784
7785 if (smt)
7786 sched_smt_power_savings = (buf[0] == '1');
7787 else
7788 sched_mc_power_savings = (buf[0] == '1');
7789
7790 ret = arch_reinit_sched_domains();
7791
7792 return ret ? ret : count;
7793}
7794
5c45bf27 7795#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7796static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7797 char *page)
5c45bf27
SS
7798{
7799 return sprintf(page, "%u\n", sched_mc_power_savings);
7800}
f718cd4a 7801static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7802 const char *buf, size_t count)
5c45bf27
SS
7803{
7804 return sched_power_savings_store(buf, count, 0);
7805}
f718cd4a
AK
7806static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7807 sched_mc_power_savings_show,
7808 sched_mc_power_savings_store);
5c45bf27
SS
7809#endif
7810
7811#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7812static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7813 char *page)
5c45bf27
SS
7814{
7815 return sprintf(page, "%u\n", sched_smt_power_savings);
7816}
f718cd4a 7817static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7818 const char *buf, size_t count)
5c45bf27
SS
7819{
7820 return sched_power_savings_store(buf, count, 1);
7821}
f718cd4a
AK
7822static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7823 sched_smt_power_savings_show,
6707de00
AB
7824 sched_smt_power_savings_store);
7825#endif
7826
7827int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7828{
7829 int err = 0;
7830
7831#ifdef CONFIG_SCHED_SMT
7832 if (smt_capable())
7833 err = sysfs_create_file(&cls->kset.kobj,
7834 &attr_sched_smt_power_savings.attr);
7835#endif
7836#ifdef CONFIG_SCHED_MC
7837 if (!err && mc_capable())
7838 err = sysfs_create_file(&cls->kset.kobj,
7839 &attr_sched_mc_power_savings.attr);
7840#endif
7841 return err;
7842}
6d6bc0ad 7843#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7844
e761b772 7845#ifndef CONFIG_CPUSETS
1da177e4 7846/*
e761b772
MK
7847 * Add online and remove offline CPUs from the scheduler domains.
7848 * When cpusets are enabled they take over this function.
1da177e4
LT
7849 */
7850static int update_sched_domains(struct notifier_block *nfb,
7851 unsigned long action, void *hcpu)
e761b772
MK
7852{
7853 switch (action) {
7854 case CPU_ONLINE:
7855 case CPU_ONLINE_FROZEN:
7856 case CPU_DEAD:
7857 case CPU_DEAD_FROZEN:
dfb512ec 7858 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7859 return NOTIFY_OK;
7860
7861 default:
7862 return NOTIFY_DONE;
7863 }
7864}
7865#endif
7866
7867static int update_runtime(struct notifier_block *nfb,
7868 unsigned long action, void *hcpu)
1da177e4 7869{
7def2be1
PZ
7870 int cpu = (int)(long)hcpu;
7871
1da177e4 7872 switch (action) {
1da177e4 7873 case CPU_DOWN_PREPARE:
8bb78442 7874 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7875 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7876 return NOTIFY_OK;
7877
1da177e4 7878 case CPU_DOWN_FAILED:
8bb78442 7879 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7880 case CPU_ONLINE:
8bb78442 7881 case CPU_ONLINE_FROZEN:
7def2be1 7882 enable_runtime(cpu_rq(cpu));
e761b772
MK
7883 return NOTIFY_OK;
7884
1da177e4
LT
7885 default:
7886 return NOTIFY_DONE;
7887 }
1da177e4 7888}
1da177e4
LT
7889
7890void __init sched_init_smp(void)
7891{
5c1e1767
NP
7892 cpumask_t non_isolated_cpus;
7893
434d53b0
MT
7894#if defined(CONFIG_NUMA)
7895 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7896 GFP_KERNEL);
7897 BUG_ON(sched_group_nodes_bycpu == NULL);
7898#endif
95402b38 7899 get_online_cpus();
712555ee 7900 mutex_lock(&sched_domains_mutex);
1a20ff27 7901 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7902 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7903 if (cpus_empty(non_isolated_cpus))
7904 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7905 mutex_unlock(&sched_domains_mutex);
95402b38 7906 put_online_cpus();
e761b772
MK
7907
7908#ifndef CONFIG_CPUSETS
1da177e4
LT
7909 /* XXX: Theoretical race here - CPU may be hotplugged now */
7910 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7911#endif
7912
7913 /* RT runtime code needs to handle some hotplug events */
7914 hotcpu_notifier(update_runtime, 0);
7915
b328ca18 7916 init_hrtick();
5c1e1767
NP
7917
7918 /* Move init over to a non-isolated CPU */
7c16ec58 7919 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7920 BUG();
19978ca6 7921 sched_init_granularity();
1da177e4
LT
7922}
7923#else
7924void __init sched_init_smp(void)
7925{
19978ca6 7926 sched_init_granularity();
1da177e4
LT
7927}
7928#endif /* CONFIG_SMP */
7929
7930int in_sched_functions(unsigned long addr)
7931{
1da177e4
LT
7932 return in_lock_functions(addr) ||
7933 (addr >= (unsigned long)__sched_text_start
7934 && addr < (unsigned long)__sched_text_end);
7935}
7936
a9957449 7937static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7938{
7939 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7940 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7941#ifdef CONFIG_FAIR_GROUP_SCHED
7942 cfs_rq->rq = rq;
7943#endif
67e9fb2a 7944 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7945}
7946
fa85ae24
PZ
7947static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7948{
7949 struct rt_prio_array *array;
7950 int i;
7951
7952 array = &rt_rq->active;
7953 for (i = 0; i < MAX_RT_PRIO; i++) {
7954 INIT_LIST_HEAD(array->queue + i);
7955 __clear_bit(i, array->bitmap);
7956 }
7957 /* delimiter for bitsearch: */
7958 __set_bit(MAX_RT_PRIO, array->bitmap);
7959
052f1dc7 7960#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7961 rt_rq->highest_prio = MAX_RT_PRIO;
7962#endif
fa85ae24
PZ
7963#ifdef CONFIG_SMP
7964 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7965 rt_rq->overloaded = 0;
7966#endif
7967
7968 rt_rq->rt_time = 0;
7969 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7970 rt_rq->rt_runtime = 0;
7971 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7972
052f1dc7 7973#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7974 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7975 rt_rq->rq = rq;
7976#endif
fa85ae24
PZ
7977}
7978
6f505b16 7979#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7980static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7981 struct sched_entity *se, int cpu, int add,
7982 struct sched_entity *parent)
6f505b16 7983{
ec7dc8ac 7984 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7985 tg->cfs_rq[cpu] = cfs_rq;
7986 init_cfs_rq(cfs_rq, rq);
7987 cfs_rq->tg = tg;
7988 if (add)
7989 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7990
7991 tg->se[cpu] = se;
354d60c2
DG
7992 /* se could be NULL for init_task_group */
7993 if (!se)
7994 return;
7995
ec7dc8ac
DG
7996 if (!parent)
7997 se->cfs_rq = &rq->cfs;
7998 else
7999 se->cfs_rq = parent->my_q;
8000
6f505b16
PZ
8001 se->my_q = cfs_rq;
8002 se->load.weight = tg->shares;
e05510d0 8003 se->load.inv_weight = 0;
ec7dc8ac 8004 se->parent = parent;
6f505b16 8005}
052f1dc7 8006#endif
6f505b16 8007
052f1dc7 8008#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8009static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8010 struct sched_rt_entity *rt_se, int cpu, int add,
8011 struct sched_rt_entity *parent)
6f505b16 8012{
ec7dc8ac
DG
8013 struct rq *rq = cpu_rq(cpu);
8014
6f505b16
PZ
8015 tg->rt_rq[cpu] = rt_rq;
8016 init_rt_rq(rt_rq, rq);
8017 rt_rq->tg = tg;
8018 rt_rq->rt_se = rt_se;
ac086bc2 8019 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8020 if (add)
8021 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8022
8023 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8024 if (!rt_se)
8025 return;
8026
ec7dc8ac
DG
8027 if (!parent)
8028 rt_se->rt_rq = &rq->rt;
8029 else
8030 rt_se->rt_rq = parent->my_q;
8031
6f505b16 8032 rt_se->my_q = rt_rq;
ec7dc8ac 8033 rt_se->parent = parent;
6f505b16
PZ
8034 INIT_LIST_HEAD(&rt_se->run_list);
8035}
8036#endif
8037
1da177e4
LT
8038void __init sched_init(void)
8039{
dd41f596 8040 int i, j;
434d53b0
MT
8041 unsigned long alloc_size = 0, ptr;
8042
8043#ifdef CONFIG_FAIR_GROUP_SCHED
8044 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8045#endif
8046#ifdef CONFIG_RT_GROUP_SCHED
8047 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8048#endif
8049#ifdef CONFIG_USER_SCHED
8050 alloc_size *= 2;
434d53b0
MT
8051#endif
8052 /*
8053 * As sched_init() is called before page_alloc is setup,
8054 * we use alloc_bootmem().
8055 */
8056 if (alloc_size) {
5a9d3225 8057 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8058
8059#ifdef CONFIG_FAIR_GROUP_SCHED
8060 init_task_group.se = (struct sched_entity **)ptr;
8061 ptr += nr_cpu_ids * sizeof(void **);
8062
8063 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8064 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8065
8066#ifdef CONFIG_USER_SCHED
8067 root_task_group.se = (struct sched_entity **)ptr;
8068 ptr += nr_cpu_ids * sizeof(void **);
8069
8070 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8071 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8072#endif /* CONFIG_USER_SCHED */
8073#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8074#ifdef CONFIG_RT_GROUP_SCHED
8075 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8076 ptr += nr_cpu_ids * sizeof(void **);
8077
8078 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8079 ptr += nr_cpu_ids * sizeof(void **);
8080
8081#ifdef CONFIG_USER_SCHED
8082 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8083 ptr += nr_cpu_ids * sizeof(void **);
8084
8085 root_task_group.rt_rq = (struct rt_rq **)ptr;
8086 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8087#endif /* CONFIG_USER_SCHED */
8088#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8089 }
dd41f596 8090
57d885fe
GH
8091#ifdef CONFIG_SMP
8092 init_defrootdomain();
8093#endif
8094
d0b27fa7
PZ
8095 init_rt_bandwidth(&def_rt_bandwidth,
8096 global_rt_period(), global_rt_runtime());
8097
8098#ifdef CONFIG_RT_GROUP_SCHED
8099 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8100 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8101#ifdef CONFIG_USER_SCHED
8102 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8103 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8104#endif /* CONFIG_USER_SCHED */
8105#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8106
052f1dc7 8107#ifdef CONFIG_GROUP_SCHED
6f505b16 8108 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8109 INIT_LIST_HEAD(&init_task_group.children);
8110
8111#ifdef CONFIG_USER_SCHED
8112 INIT_LIST_HEAD(&root_task_group.children);
8113 init_task_group.parent = &root_task_group;
8114 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8115#endif /* CONFIG_USER_SCHED */
8116#endif /* CONFIG_GROUP_SCHED */
6f505b16 8117
0a945022 8118 for_each_possible_cpu(i) {
70b97a7f 8119 struct rq *rq;
1da177e4
LT
8120
8121 rq = cpu_rq(i);
8122 spin_lock_init(&rq->lock);
7897986b 8123 rq->nr_running = 0;
dd41f596 8124 init_cfs_rq(&rq->cfs, rq);
6f505b16 8125 init_rt_rq(&rq->rt, rq);
dd41f596 8126#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8127 init_task_group.shares = init_task_group_load;
6f505b16 8128 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8129#ifdef CONFIG_CGROUP_SCHED
8130 /*
8131 * How much cpu bandwidth does init_task_group get?
8132 *
8133 * In case of task-groups formed thr' the cgroup filesystem, it
8134 * gets 100% of the cpu resources in the system. This overall
8135 * system cpu resource is divided among the tasks of
8136 * init_task_group and its child task-groups in a fair manner,
8137 * based on each entity's (task or task-group's) weight
8138 * (se->load.weight).
8139 *
8140 * In other words, if init_task_group has 10 tasks of weight
8141 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8142 * then A0's share of the cpu resource is:
8143 *
8144 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8145 *
8146 * We achieve this by letting init_task_group's tasks sit
8147 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8148 */
ec7dc8ac 8149 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8150#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8151 root_task_group.shares = NICE_0_LOAD;
8152 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8153 /*
8154 * In case of task-groups formed thr' the user id of tasks,
8155 * init_task_group represents tasks belonging to root user.
8156 * Hence it forms a sibling of all subsequent groups formed.
8157 * In this case, init_task_group gets only a fraction of overall
8158 * system cpu resource, based on the weight assigned to root
8159 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8160 * by letting tasks of init_task_group sit in a separate cfs_rq
8161 * (init_cfs_rq) and having one entity represent this group of
8162 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8163 */
ec7dc8ac 8164 init_tg_cfs_entry(&init_task_group,
6f505b16 8165 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8166 &per_cpu(init_sched_entity, i), i, 1,
8167 root_task_group.se[i]);
6f505b16 8168
052f1dc7 8169#endif
354d60c2
DG
8170#endif /* CONFIG_FAIR_GROUP_SCHED */
8171
8172 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8173#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8174 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8175#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8176 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8177#elif defined CONFIG_USER_SCHED
eff766a6 8178 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8179 init_tg_rt_entry(&init_task_group,
6f505b16 8180 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8181 &per_cpu(init_sched_rt_entity, i), i, 1,
8182 root_task_group.rt_se[i]);
354d60c2 8183#endif
dd41f596 8184#endif
1da177e4 8185
dd41f596
IM
8186 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8187 rq->cpu_load[j] = 0;
1da177e4 8188#ifdef CONFIG_SMP
41c7ce9a 8189 rq->sd = NULL;
57d885fe 8190 rq->rd = NULL;
1da177e4 8191 rq->active_balance = 0;
dd41f596 8192 rq->next_balance = jiffies;
1da177e4 8193 rq->push_cpu = 0;
0a2966b4 8194 rq->cpu = i;
1f11eb6a 8195 rq->online = 0;
1da177e4
LT
8196 rq->migration_thread = NULL;
8197 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8198 rq_attach_root(rq, &def_root_domain);
1da177e4 8199#endif
8f4d37ec 8200 init_rq_hrtick(rq);
1da177e4 8201 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8202 }
8203
2dd73a4f 8204 set_load_weight(&init_task);
b50f60ce 8205
e107be36
AK
8206#ifdef CONFIG_PREEMPT_NOTIFIERS
8207 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8208#endif
8209
c9819f45 8210#ifdef CONFIG_SMP
962cf36c 8211 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8212#endif
8213
b50f60ce
HC
8214#ifdef CONFIG_RT_MUTEXES
8215 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8216#endif
8217
1da177e4
LT
8218 /*
8219 * The boot idle thread does lazy MMU switching as well:
8220 */
8221 atomic_inc(&init_mm.mm_count);
8222 enter_lazy_tlb(&init_mm, current);
8223
8224 /*
8225 * Make us the idle thread. Technically, schedule() should not be
8226 * called from this thread, however somewhere below it might be,
8227 * but because we are the idle thread, we just pick up running again
8228 * when this runqueue becomes "idle".
8229 */
8230 init_idle(current, smp_processor_id());
dd41f596
IM
8231 /*
8232 * During early bootup we pretend to be a normal task:
8233 */
8234 current->sched_class = &fair_sched_class;
6892b75e
IM
8235
8236 scheduler_running = 1;
1da177e4
LT
8237}
8238
8239#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8240void __might_sleep(char *file, int line)
8241{
48f24c4d 8242#ifdef in_atomic
1da177e4
LT
8243 static unsigned long prev_jiffy; /* ratelimiting */
8244
8245 if ((in_atomic() || irqs_disabled()) &&
8246 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8247 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8248 return;
8249 prev_jiffy = jiffies;
91368d73 8250 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8251 " context at %s:%d\n", file, line);
8252 printk("in_atomic():%d, irqs_disabled():%d\n",
8253 in_atomic(), irqs_disabled());
a4c410f0 8254 debug_show_held_locks(current);
3117df04
IM
8255 if (irqs_disabled())
8256 print_irqtrace_events(current);
1da177e4
LT
8257 dump_stack();
8258 }
8259#endif
8260}
8261EXPORT_SYMBOL(__might_sleep);
8262#endif
8263
8264#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8265static void normalize_task(struct rq *rq, struct task_struct *p)
8266{
8267 int on_rq;
3e51f33f 8268
3a5e4dc1
AK
8269 update_rq_clock(rq);
8270 on_rq = p->se.on_rq;
8271 if (on_rq)
8272 deactivate_task(rq, p, 0);
8273 __setscheduler(rq, p, SCHED_NORMAL, 0);
8274 if (on_rq) {
8275 activate_task(rq, p, 0);
8276 resched_task(rq->curr);
8277 }
8278}
8279
1da177e4
LT
8280void normalize_rt_tasks(void)
8281{
a0f98a1c 8282 struct task_struct *g, *p;
1da177e4 8283 unsigned long flags;
70b97a7f 8284 struct rq *rq;
1da177e4 8285
4cf5d77a 8286 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8287 do_each_thread(g, p) {
178be793
IM
8288 /*
8289 * Only normalize user tasks:
8290 */
8291 if (!p->mm)
8292 continue;
8293
6cfb0d5d 8294 p->se.exec_start = 0;
6cfb0d5d 8295#ifdef CONFIG_SCHEDSTATS
dd41f596 8296 p->se.wait_start = 0;
dd41f596 8297 p->se.sleep_start = 0;
dd41f596 8298 p->se.block_start = 0;
6cfb0d5d 8299#endif
dd41f596
IM
8300
8301 if (!rt_task(p)) {
8302 /*
8303 * Renice negative nice level userspace
8304 * tasks back to 0:
8305 */
8306 if (TASK_NICE(p) < 0 && p->mm)
8307 set_user_nice(p, 0);
1da177e4 8308 continue;
dd41f596 8309 }
1da177e4 8310
4cf5d77a 8311 spin_lock(&p->pi_lock);
b29739f9 8312 rq = __task_rq_lock(p);
1da177e4 8313
178be793 8314 normalize_task(rq, p);
3a5e4dc1 8315
b29739f9 8316 __task_rq_unlock(rq);
4cf5d77a 8317 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8318 } while_each_thread(g, p);
8319
4cf5d77a 8320 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8321}
8322
8323#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8324
8325#ifdef CONFIG_IA64
8326/*
8327 * These functions are only useful for the IA64 MCA handling.
8328 *
8329 * They can only be called when the whole system has been
8330 * stopped - every CPU needs to be quiescent, and no scheduling
8331 * activity can take place. Using them for anything else would
8332 * be a serious bug, and as a result, they aren't even visible
8333 * under any other configuration.
8334 */
8335
8336/**
8337 * curr_task - return the current task for a given cpu.
8338 * @cpu: the processor in question.
8339 *
8340 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8341 */
36c8b586 8342struct task_struct *curr_task(int cpu)
1df5c10a
LT
8343{
8344 return cpu_curr(cpu);
8345}
8346
8347/**
8348 * set_curr_task - set the current task for a given cpu.
8349 * @cpu: the processor in question.
8350 * @p: the task pointer to set.
8351 *
8352 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8353 * are serviced on a separate stack. It allows the architecture to switch the
8354 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8355 * must be called with all CPU's synchronized, and interrupts disabled, the
8356 * and caller must save the original value of the current task (see
8357 * curr_task() above) and restore that value before reenabling interrupts and
8358 * re-starting the system.
8359 *
8360 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8361 */
36c8b586 8362void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8363{
8364 cpu_curr(cpu) = p;
8365}
8366
8367#endif
29f59db3 8368
bccbe08a
PZ
8369#ifdef CONFIG_FAIR_GROUP_SCHED
8370static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8371{
8372 int i;
8373
8374 for_each_possible_cpu(i) {
8375 if (tg->cfs_rq)
8376 kfree(tg->cfs_rq[i]);
8377 if (tg->se)
8378 kfree(tg->se[i]);
6f505b16
PZ
8379 }
8380
8381 kfree(tg->cfs_rq);
8382 kfree(tg->se);
6f505b16
PZ
8383}
8384
ec7dc8ac
DG
8385static
8386int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8387{
29f59db3 8388 struct cfs_rq *cfs_rq;
ec7dc8ac 8389 struct sched_entity *se, *parent_se;
9b5b7751 8390 struct rq *rq;
29f59db3
SV
8391 int i;
8392
434d53b0 8393 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8394 if (!tg->cfs_rq)
8395 goto err;
434d53b0 8396 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8397 if (!tg->se)
8398 goto err;
052f1dc7
PZ
8399
8400 tg->shares = NICE_0_LOAD;
29f59db3
SV
8401
8402 for_each_possible_cpu(i) {
9b5b7751 8403 rq = cpu_rq(i);
29f59db3 8404
6f505b16
PZ
8405 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8406 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8407 if (!cfs_rq)
8408 goto err;
8409
6f505b16
PZ
8410 se = kmalloc_node(sizeof(struct sched_entity),
8411 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8412 if (!se)
8413 goto err;
8414
ec7dc8ac
DG
8415 parent_se = parent ? parent->se[i] : NULL;
8416 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8417 }
8418
8419 return 1;
8420
8421 err:
8422 return 0;
8423}
8424
8425static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8426{
8427 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8428 &cpu_rq(cpu)->leaf_cfs_rq_list);
8429}
8430
8431static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8432{
8433 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8434}
6d6bc0ad 8435#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8436static inline void free_fair_sched_group(struct task_group *tg)
8437{
8438}
8439
ec7dc8ac
DG
8440static inline
8441int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8442{
8443 return 1;
8444}
8445
8446static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8447{
8448}
8449
8450static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8451{
8452}
6d6bc0ad 8453#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8454
8455#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8456static void free_rt_sched_group(struct task_group *tg)
8457{
8458 int i;
8459
d0b27fa7
PZ
8460 destroy_rt_bandwidth(&tg->rt_bandwidth);
8461
bccbe08a
PZ
8462 for_each_possible_cpu(i) {
8463 if (tg->rt_rq)
8464 kfree(tg->rt_rq[i]);
8465 if (tg->rt_se)
8466 kfree(tg->rt_se[i]);
8467 }
8468
8469 kfree(tg->rt_rq);
8470 kfree(tg->rt_se);
8471}
8472
ec7dc8ac
DG
8473static
8474int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8475{
8476 struct rt_rq *rt_rq;
ec7dc8ac 8477 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8478 struct rq *rq;
8479 int i;
8480
434d53b0 8481 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8482 if (!tg->rt_rq)
8483 goto err;
434d53b0 8484 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8485 if (!tg->rt_se)
8486 goto err;
8487
d0b27fa7
PZ
8488 init_rt_bandwidth(&tg->rt_bandwidth,
8489 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8490
8491 for_each_possible_cpu(i) {
8492 rq = cpu_rq(i);
8493
6f505b16
PZ
8494 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8495 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8496 if (!rt_rq)
8497 goto err;
29f59db3 8498
6f505b16
PZ
8499 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8500 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8501 if (!rt_se)
8502 goto err;
29f59db3 8503
ec7dc8ac
DG
8504 parent_se = parent ? parent->rt_se[i] : NULL;
8505 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8506 }
8507
bccbe08a
PZ
8508 return 1;
8509
8510 err:
8511 return 0;
8512}
8513
8514static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8515{
8516 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8517 &cpu_rq(cpu)->leaf_rt_rq_list);
8518}
8519
8520static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8521{
8522 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8523}
6d6bc0ad 8524#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8525static inline void free_rt_sched_group(struct task_group *tg)
8526{
8527}
8528
ec7dc8ac
DG
8529static inline
8530int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8531{
8532 return 1;
8533}
8534
8535static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8536{
8537}
8538
8539static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8540{
8541}
6d6bc0ad 8542#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8543
d0b27fa7 8544#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8545static void free_sched_group(struct task_group *tg)
8546{
8547 free_fair_sched_group(tg);
8548 free_rt_sched_group(tg);
8549 kfree(tg);
8550}
8551
8552/* allocate runqueue etc for a new task group */
ec7dc8ac 8553struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8554{
8555 struct task_group *tg;
8556 unsigned long flags;
8557 int i;
8558
8559 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8560 if (!tg)
8561 return ERR_PTR(-ENOMEM);
8562
ec7dc8ac 8563 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8564 goto err;
8565
ec7dc8ac 8566 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8567 goto err;
8568
8ed36996 8569 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8570 for_each_possible_cpu(i) {
bccbe08a
PZ
8571 register_fair_sched_group(tg, i);
8572 register_rt_sched_group(tg, i);
9b5b7751 8573 }
6f505b16 8574 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8575
8576 WARN_ON(!parent); /* root should already exist */
8577
8578 tg->parent = parent;
f473aa5e 8579 INIT_LIST_HEAD(&tg->children);
09f2724a 8580 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8581 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8582
9b5b7751 8583 return tg;
29f59db3
SV
8584
8585err:
6f505b16 8586 free_sched_group(tg);
29f59db3
SV
8587 return ERR_PTR(-ENOMEM);
8588}
8589
9b5b7751 8590/* rcu callback to free various structures associated with a task group */
6f505b16 8591static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8592{
29f59db3 8593 /* now it should be safe to free those cfs_rqs */
6f505b16 8594 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8595}
8596
9b5b7751 8597/* Destroy runqueue etc associated with a task group */
4cf86d77 8598void sched_destroy_group(struct task_group *tg)
29f59db3 8599{
8ed36996 8600 unsigned long flags;
9b5b7751 8601 int i;
29f59db3 8602
8ed36996 8603 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8604 for_each_possible_cpu(i) {
bccbe08a
PZ
8605 unregister_fair_sched_group(tg, i);
8606 unregister_rt_sched_group(tg, i);
9b5b7751 8607 }
6f505b16 8608 list_del_rcu(&tg->list);
f473aa5e 8609 list_del_rcu(&tg->siblings);
8ed36996 8610 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8611
9b5b7751 8612 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8613 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8614}
8615
9b5b7751 8616/* change task's runqueue when it moves between groups.
3a252015
IM
8617 * The caller of this function should have put the task in its new group
8618 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8619 * reflect its new group.
9b5b7751
SV
8620 */
8621void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8622{
8623 int on_rq, running;
8624 unsigned long flags;
8625 struct rq *rq;
8626
8627 rq = task_rq_lock(tsk, &flags);
8628
29f59db3
SV
8629 update_rq_clock(rq);
8630
051a1d1a 8631 running = task_current(rq, tsk);
29f59db3
SV
8632 on_rq = tsk->se.on_rq;
8633
0e1f3483 8634 if (on_rq)
29f59db3 8635 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8636 if (unlikely(running))
8637 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8638
6f505b16 8639 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8640
810b3817
PZ
8641#ifdef CONFIG_FAIR_GROUP_SCHED
8642 if (tsk->sched_class->moved_group)
8643 tsk->sched_class->moved_group(tsk);
8644#endif
8645
0e1f3483
HS
8646 if (unlikely(running))
8647 tsk->sched_class->set_curr_task(rq);
8648 if (on_rq)
7074badb 8649 enqueue_task(rq, tsk, 0);
29f59db3 8650
29f59db3
SV
8651 task_rq_unlock(rq, &flags);
8652}
6d6bc0ad 8653#endif /* CONFIG_GROUP_SCHED */
29f59db3 8654
052f1dc7 8655#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8656static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8657{
8658 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8659 int on_rq;
8660
29f59db3 8661 on_rq = se->on_rq;
62fb1851 8662 if (on_rq)
29f59db3
SV
8663 dequeue_entity(cfs_rq, se, 0);
8664
8665 se->load.weight = shares;
e05510d0 8666 se->load.inv_weight = 0;
29f59db3 8667
62fb1851 8668 if (on_rq)
29f59db3 8669 enqueue_entity(cfs_rq, se, 0);
c09595f6 8670}
62fb1851 8671
c09595f6
PZ
8672static void set_se_shares(struct sched_entity *se, unsigned long shares)
8673{
8674 struct cfs_rq *cfs_rq = se->cfs_rq;
8675 struct rq *rq = cfs_rq->rq;
8676 unsigned long flags;
8677
8678 spin_lock_irqsave(&rq->lock, flags);
8679 __set_se_shares(se, shares);
8680 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8681}
8682
8ed36996
PZ
8683static DEFINE_MUTEX(shares_mutex);
8684
4cf86d77 8685int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8686{
8687 int i;
8ed36996 8688 unsigned long flags;
c61935fd 8689
ec7dc8ac
DG
8690 /*
8691 * We can't change the weight of the root cgroup.
8692 */
8693 if (!tg->se[0])
8694 return -EINVAL;
8695
18d95a28
PZ
8696 if (shares < MIN_SHARES)
8697 shares = MIN_SHARES;
cb4ad1ff
MX
8698 else if (shares > MAX_SHARES)
8699 shares = MAX_SHARES;
62fb1851 8700
8ed36996 8701 mutex_lock(&shares_mutex);
9b5b7751 8702 if (tg->shares == shares)
5cb350ba 8703 goto done;
29f59db3 8704
8ed36996 8705 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8706 for_each_possible_cpu(i)
8707 unregister_fair_sched_group(tg, i);
f473aa5e 8708 list_del_rcu(&tg->siblings);
8ed36996 8709 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8710
8711 /* wait for any ongoing reference to this group to finish */
8712 synchronize_sched();
8713
8714 /*
8715 * Now we are free to modify the group's share on each cpu
8716 * w/o tripping rebalance_share or load_balance_fair.
8717 */
9b5b7751 8718 tg->shares = shares;
c09595f6
PZ
8719 for_each_possible_cpu(i) {
8720 /*
8721 * force a rebalance
8722 */
8723 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8724 set_se_shares(tg->se[i], shares);
c09595f6 8725 }
29f59db3 8726
6b2d7700
SV
8727 /*
8728 * Enable load balance activity on this group, by inserting it back on
8729 * each cpu's rq->leaf_cfs_rq_list.
8730 */
8ed36996 8731 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8732 for_each_possible_cpu(i)
8733 register_fair_sched_group(tg, i);
f473aa5e 8734 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8735 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8736done:
8ed36996 8737 mutex_unlock(&shares_mutex);
9b5b7751 8738 return 0;
29f59db3
SV
8739}
8740
5cb350ba
DG
8741unsigned long sched_group_shares(struct task_group *tg)
8742{
8743 return tg->shares;
8744}
052f1dc7 8745#endif
5cb350ba 8746
052f1dc7 8747#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8748/*
9f0c1e56 8749 * Ensure that the real time constraints are schedulable.
6f505b16 8750 */
9f0c1e56
PZ
8751static DEFINE_MUTEX(rt_constraints_mutex);
8752
8753static unsigned long to_ratio(u64 period, u64 runtime)
8754{
8755 if (runtime == RUNTIME_INF)
8756 return 1ULL << 16;
8757
6f6d6a1a 8758 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8759}
8760
b40b2e8e
PZ
8761#ifdef CONFIG_CGROUP_SCHED
8762static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8763{
10b612f4 8764 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8765 unsigned long total = 0;
8766
8767 if (!parent) {
8768 if (global_rt_period() < period)
8769 return 0;
8770
8771 return to_ratio(period, runtime) <
8772 to_ratio(global_rt_period(), global_rt_runtime());
8773 }
8774
8775 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8776 return 0;
8777
8778 rcu_read_lock();
8779 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8780 if (tgi == tg)
8781 continue;
8782
8783 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8784 tgi->rt_bandwidth.rt_runtime);
8785 }
8786 rcu_read_unlock();
8787
10b612f4 8788 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8789 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8790 parent->rt_bandwidth.rt_runtime);
8791}
8792#elif defined CONFIG_USER_SCHED
9f0c1e56 8793static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8794{
8795 struct task_group *tgi;
8796 unsigned long total = 0;
9f0c1e56 8797 unsigned long global_ratio =
d0b27fa7 8798 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8799
8800 rcu_read_lock();
9f0c1e56
PZ
8801 list_for_each_entry_rcu(tgi, &task_groups, list) {
8802 if (tgi == tg)
8803 continue;
6f505b16 8804
d0b27fa7
PZ
8805 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8806 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8807 }
8808 rcu_read_unlock();
6f505b16 8809
9f0c1e56 8810 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8811}
b40b2e8e 8812#endif
6f505b16 8813
521f1a24
DG
8814/* Must be called with tasklist_lock held */
8815static inline int tg_has_rt_tasks(struct task_group *tg)
8816{
8817 struct task_struct *g, *p;
8818 do_each_thread(g, p) {
8819 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8820 return 1;
8821 } while_each_thread(g, p);
8822 return 0;
8823}
8824
d0b27fa7
PZ
8825static int tg_set_bandwidth(struct task_group *tg,
8826 u64 rt_period, u64 rt_runtime)
6f505b16 8827{
ac086bc2 8828 int i, err = 0;
9f0c1e56 8829
9f0c1e56 8830 mutex_lock(&rt_constraints_mutex);
521f1a24 8831 read_lock(&tasklist_lock);
ac086bc2 8832 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8833 err = -EBUSY;
8834 goto unlock;
8835 }
9f0c1e56
PZ
8836 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8837 err = -EINVAL;
8838 goto unlock;
8839 }
ac086bc2
PZ
8840
8841 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8842 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8843 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8844
8845 for_each_possible_cpu(i) {
8846 struct rt_rq *rt_rq = tg->rt_rq[i];
8847
8848 spin_lock(&rt_rq->rt_runtime_lock);
8849 rt_rq->rt_runtime = rt_runtime;
8850 spin_unlock(&rt_rq->rt_runtime_lock);
8851 }
8852 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8853 unlock:
521f1a24 8854 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8855 mutex_unlock(&rt_constraints_mutex);
8856
8857 return err;
6f505b16
PZ
8858}
8859
d0b27fa7
PZ
8860int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8861{
8862 u64 rt_runtime, rt_period;
8863
8864 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8865 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8866 if (rt_runtime_us < 0)
8867 rt_runtime = RUNTIME_INF;
8868
8869 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8870}
8871
9f0c1e56
PZ
8872long sched_group_rt_runtime(struct task_group *tg)
8873{
8874 u64 rt_runtime_us;
8875
d0b27fa7 8876 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8877 return -1;
8878
d0b27fa7 8879 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8880 do_div(rt_runtime_us, NSEC_PER_USEC);
8881 return rt_runtime_us;
8882}
d0b27fa7
PZ
8883
8884int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8885{
8886 u64 rt_runtime, rt_period;
8887
8888 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8889 rt_runtime = tg->rt_bandwidth.rt_runtime;
8890
619b0488
R
8891 if (rt_period == 0)
8892 return -EINVAL;
8893
d0b27fa7
PZ
8894 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8895}
8896
8897long sched_group_rt_period(struct task_group *tg)
8898{
8899 u64 rt_period_us;
8900
8901 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8902 do_div(rt_period_us, NSEC_PER_USEC);
8903 return rt_period_us;
8904}
8905
8906static int sched_rt_global_constraints(void)
8907{
10b612f4
PZ
8908 struct task_group *tg = &root_task_group;
8909 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8910 int ret = 0;
8911
ec5d4989
HS
8912 if (sysctl_sched_rt_period <= 0)
8913 return -EINVAL;
8914
10b612f4
PZ
8915 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8916 rt_runtime = tg->rt_bandwidth.rt_runtime;
8917
d0b27fa7 8918 mutex_lock(&rt_constraints_mutex);
10b612f4 8919 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8920 ret = -EINVAL;
8921 mutex_unlock(&rt_constraints_mutex);
8922
8923 return ret;
8924}
6d6bc0ad 8925#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8926static int sched_rt_global_constraints(void)
8927{
ac086bc2
PZ
8928 unsigned long flags;
8929 int i;
8930
ec5d4989
HS
8931 if (sysctl_sched_rt_period <= 0)
8932 return -EINVAL;
8933
ac086bc2
PZ
8934 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8935 for_each_possible_cpu(i) {
8936 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8937
8938 spin_lock(&rt_rq->rt_runtime_lock);
8939 rt_rq->rt_runtime = global_rt_runtime();
8940 spin_unlock(&rt_rq->rt_runtime_lock);
8941 }
8942 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8943
d0b27fa7
PZ
8944 return 0;
8945}
6d6bc0ad 8946#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8947
8948int sched_rt_handler(struct ctl_table *table, int write,
8949 struct file *filp, void __user *buffer, size_t *lenp,
8950 loff_t *ppos)
8951{
8952 int ret;
8953 int old_period, old_runtime;
8954 static DEFINE_MUTEX(mutex);
8955
8956 mutex_lock(&mutex);
8957 old_period = sysctl_sched_rt_period;
8958 old_runtime = sysctl_sched_rt_runtime;
8959
8960 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8961
8962 if (!ret && write) {
8963 ret = sched_rt_global_constraints();
8964 if (ret) {
8965 sysctl_sched_rt_period = old_period;
8966 sysctl_sched_rt_runtime = old_runtime;
8967 } else {
8968 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8969 def_rt_bandwidth.rt_period =
8970 ns_to_ktime(global_rt_period());
8971 }
8972 }
8973 mutex_unlock(&mutex);
8974
8975 return ret;
8976}
68318b8e 8977
052f1dc7 8978#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8979
8980/* return corresponding task_group object of a cgroup */
2b01dfe3 8981static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8982{
2b01dfe3
PM
8983 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8984 struct task_group, css);
68318b8e
SV
8985}
8986
8987static struct cgroup_subsys_state *
2b01dfe3 8988cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8989{
ec7dc8ac 8990 struct task_group *tg, *parent;
68318b8e 8991
2b01dfe3 8992 if (!cgrp->parent) {
68318b8e 8993 /* This is early initialization for the top cgroup */
2b01dfe3 8994 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8995 return &init_task_group.css;
8996 }
8997
ec7dc8ac
DG
8998 parent = cgroup_tg(cgrp->parent);
8999 tg = sched_create_group(parent);
68318b8e
SV
9000 if (IS_ERR(tg))
9001 return ERR_PTR(-ENOMEM);
9002
9003 /* Bind the cgroup to task_group object we just created */
2b01dfe3 9004 tg->css.cgroup = cgrp;
68318b8e
SV
9005
9006 return &tg->css;
9007}
9008
41a2d6cf
IM
9009static void
9010cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9011{
2b01dfe3 9012 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9013
9014 sched_destroy_group(tg);
9015}
9016
41a2d6cf
IM
9017static int
9018cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9019 struct task_struct *tsk)
68318b8e 9020{
b68aa230
PZ
9021#ifdef CONFIG_RT_GROUP_SCHED
9022 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9023 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9024 return -EINVAL;
9025#else
68318b8e
SV
9026 /* We don't support RT-tasks being in separate groups */
9027 if (tsk->sched_class != &fair_sched_class)
9028 return -EINVAL;
b68aa230 9029#endif
68318b8e
SV
9030
9031 return 0;
9032}
9033
9034static void
2b01dfe3 9035cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9036 struct cgroup *old_cont, struct task_struct *tsk)
9037{
9038 sched_move_task(tsk);
9039}
9040
052f1dc7 9041#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9042static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9043 u64 shareval)
68318b8e 9044{
2b01dfe3 9045 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9046}
9047
f4c753b7 9048static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9049{
2b01dfe3 9050 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9051
9052 return (u64) tg->shares;
9053}
6d6bc0ad 9054#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9055
052f1dc7 9056#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9057static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9058 s64 val)
6f505b16 9059{
06ecb27c 9060 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9061}
9062
06ecb27c 9063static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9064{
06ecb27c 9065 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9066}
d0b27fa7
PZ
9067
9068static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9069 u64 rt_period_us)
9070{
9071 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9072}
9073
9074static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9075{
9076 return sched_group_rt_period(cgroup_tg(cgrp));
9077}
6d6bc0ad 9078#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9079
fe5c7cc2 9080static struct cftype cpu_files[] = {
052f1dc7 9081#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9082 {
9083 .name = "shares",
f4c753b7
PM
9084 .read_u64 = cpu_shares_read_u64,
9085 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9086 },
052f1dc7
PZ
9087#endif
9088#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9089 {
9f0c1e56 9090 .name = "rt_runtime_us",
06ecb27c
PM
9091 .read_s64 = cpu_rt_runtime_read,
9092 .write_s64 = cpu_rt_runtime_write,
6f505b16 9093 },
d0b27fa7
PZ
9094 {
9095 .name = "rt_period_us",
f4c753b7
PM
9096 .read_u64 = cpu_rt_period_read_uint,
9097 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9098 },
052f1dc7 9099#endif
68318b8e
SV
9100};
9101
9102static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9103{
fe5c7cc2 9104 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9105}
9106
9107struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9108 .name = "cpu",
9109 .create = cpu_cgroup_create,
9110 .destroy = cpu_cgroup_destroy,
9111 .can_attach = cpu_cgroup_can_attach,
9112 .attach = cpu_cgroup_attach,
9113 .populate = cpu_cgroup_populate,
9114 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9115 .early_init = 1,
9116};
9117
052f1dc7 9118#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9119
9120#ifdef CONFIG_CGROUP_CPUACCT
9121
9122/*
9123 * CPU accounting code for task groups.
9124 *
9125 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9126 * (balbir@in.ibm.com).
9127 */
9128
9129/* track cpu usage of a group of tasks */
9130struct cpuacct {
9131 struct cgroup_subsys_state css;
9132 /* cpuusage holds pointer to a u64-type object on every cpu */
9133 u64 *cpuusage;
9134};
9135
9136struct cgroup_subsys cpuacct_subsys;
9137
9138/* return cpu accounting group corresponding to this container */
32cd756a 9139static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9140{
32cd756a 9141 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9142 struct cpuacct, css);
9143}
9144
9145/* return cpu accounting group to which this task belongs */
9146static inline struct cpuacct *task_ca(struct task_struct *tsk)
9147{
9148 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9149 struct cpuacct, css);
9150}
9151
9152/* create a new cpu accounting group */
9153static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9154 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9155{
9156 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9157
9158 if (!ca)
9159 return ERR_PTR(-ENOMEM);
9160
9161 ca->cpuusage = alloc_percpu(u64);
9162 if (!ca->cpuusage) {
9163 kfree(ca);
9164 return ERR_PTR(-ENOMEM);
9165 }
9166
9167 return &ca->css;
9168}
9169
9170/* destroy an existing cpu accounting group */
41a2d6cf 9171static void
32cd756a 9172cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9173{
32cd756a 9174 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9175
9176 free_percpu(ca->cpuusage);
9177 kfree(ca);
9178}
9179
9180/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9181static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9182{
32cd756a 9183 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9184 u64 totalcpuusage = 0;
9185 int i;
9186
9187 for_each_possible_cpu(i) {
9188 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9189
9190 /*
9191 * Take rq->lock to make 64-bit addition safe on 32-bit
9192 * platforms.
9193 */
9194 spin_lock_irq(&cpu_rq(i)->lock);
9195 totalcpuusage += *cpuusage;
9196 spin_unlock_irq(&cpu_rq(i)->lock);
9197 }
9198
9199 return totalcpuusage;
9200}
9201
0297b803
DG
9202static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9203 u64 reset)
9204{
9205 struct cpuacct *ca = cgroup_ca(cgrp);
9206 int err = 0;
9207 int i;
9208
9209 if (reset) {
9210 err = -EINVAL;
9211 goto out;
9212 }
9213
9214 for_each_possible_cpu(i) {
9215 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9216
9217 spin_lock_irq(&cpu_rq(i)->lock);
9218 *cpuusage = 0;
9219 spin_unlock_irq(&cpu_rq(i)->lock);
9220 }
9221out:
9222 return err;
9223}
9224
d842de87
SV
9225static struct cftype files[] = {
9226 {
9227 .name = "usage",
f4c753b7
PM
9228 .read_u64 = cpuusage_read,
9229 .write_u64 = cpuusage_write,
d842de87
SV
9230 },
9231};
9232
32cd756a 9233static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9234{
32cd756a 9235 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9236}
9237
9238/*
9239 * charge this task's execution time to its accounting group.
9240 *
9241 * called with rq->lock held.
9242 */
9243static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9244{
9245 struct cpuacct *ca;
9246
9247 if (!cpuacct_subsys.active)
9248 return;
9249
9250 ca = task_ca(tsk);
9251 if (ca) {
9252 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9253
9254 *cpuusage += cputime;
9255 }
9256}
9257
9258struct cgroup_subsys cpuacct_subsys = {
9259 .name = "cpuacct",
9260 .create = cpuacct_create,
9261 .destroy = cpuacct_destroy,
9262 .populate = cpuacct_populate,
9263 .subsys_id = cpuacct_subsys_id,
9264};
9265#endif /* CONFIG_CGROUP_CPUACCT */