sched: convert struct root_domain to cpumask_var_t.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
213}
214
c8bfff6d
KH
215static inline int rt_bandwidth_enabled(void)
216{
217 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
218}
219
220static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221{
222 ktime_t now;
223
0b148fa0 224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
d0b27fa7
PZ
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241}
242
243#ifdef CONFIG_RT_GROUP_SCHED
244static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245{
246 hrtimer_cancel(&rt_b->rt_period_timer);
247}
248#endif
249
712555ee
HC
250/*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254static DEFINE_MUTEX(sched_domains_mutex);
255
052f1dc7 256#ifdef CONFIG_GROUP_SCHED
29f59db3 257
68318b8e
SV
258#include <linux/cgroup.h>
259
29f59db3
SV
260struct cfs_rq;
261
6f505b16
PZ
262static LIST_HEAD(task_groups);
263
29f59db3 264/* task group related information */
4cf86d77 265struct task_group {
052f1dc7 266#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
267 struct cgroup_subsys_state css;
268#endif
052f1dc7
PZ
269
270#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
271 /* schedulable entities of this group on each cpu */
272 struct sched_entity **se;
273 /* runqueue "owned" by this group on each cpu */
274 struct cfs_rq **cfs_rq;
275 unsigned long shares;
052f1dc7
PZ
276#endif
277
278#ifdef CONFIG_RT_GROUP_SCHED
279 struct sched_rt_entity **rt_se;
280 struct rt_rq **rt_rq;
281
d0b27fa7 282 struct rt_bandwidth rt_bandwidth;
052f1dc7 283#endif
6b2d7700 284
ae8393e5 285 struct rcu_head rcu;
6f505b16 286 struct list_head list;
f473aa5e
PZ
287
288 struct task_group *parent;
289 struct list_head siblings;
290 struct list_head children;
29f59db3
SV
291};
292
354d60c2 293#ifdef CONFIG_USER_SCHED
eff766a6
PZ
294
295/*
296 * Root task group.
297 * Every UID task group (including init_task_group aka UID-0) will
298 * be a child to this group.
299 */
300struct task_group root_task_group;
301
052f1dc7 302#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
303/* Default task group's sched entity on each cpu */
304static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
305/* Default task group's cfs_rq on each cpu */
306static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 307#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
308
309#ifdef CONFIG_RT_GROUP_SCHED
310static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
311static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 312#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 313#else /* !CONFIG_USER_SCHED */
eff766a6 314#define root_task_group init_task_group
9a7e0b18 315#endif /* CONFIG_USER_SCHED */
6f505b16 316
8ed36996 317/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
318 * a task group's cpu shares.
319 */
8ed36996 320static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 321
052f1dc7 322#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
24e377a8 354 tg = p->user->tg;
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
456 int highest_prio; /* highest queued rt task prio */
457#endif
fa85ae24 458#ifdef CONFIG_SMP
73fe6aae 459 unsigned long rt_nr_migratory;
a22d7fc1 460 int overloaded;
fa85ae24 461#endif
6f505b16 462 int rt_throttled;
fa85ae24 463 u64 rt_time;
ac086bc2 464 u64 rt_runtime;
ea736ed5 465 /* Nests inside the rq lock: */
ac086bc2 466 spinlock_t rt_runtime_lock;
6f505b16 467
052f1dc7 468#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
469 unsigned long rt_nr_boosted;
470
6f505b16
PZ
471 struct rq *rq;
472 struct list_head leaf_rt_rq_list;
473 struct task_group *tg;
474 struct sched_rt_entity *rt_se;
475#endif
6aa645ea
IM
476};
477
57d885fe
GH
478#ifdef CONFIG_SMP
479
480/*
481 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
482 * variables. Each exclusive cpuset essentially defines an island domain by
483 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
484 * exclusive cpuset is created, we also create and attach a new root-domain
485 * object.
486 *
57d885fe
GH
487 */
488struct root_domain {
489 atomic_t refcount;
c6c4927b
RR
490 cpumask_var_t span;
491 cpumask_var_t online;
637f5085 492
0eab9146 493 /*
637f5085
GH
494 * The "RT overload" flag: it gets set if a CPU has more than
495 * one runnable RT task.
496 */
c6c4927b 497 cpumask_var_t rto_mask;
0eab9146 498 atomic_t rto_count;
6e0534f2
GH
499#ifdef CONFIG_SMP
500 struct cpupri cpupri;
501#endif
57d885fe
GH
502};
503
dc938520
GH
504/*
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
507 */
57d885fe
GH
508static struct root_domain def_root_domain;
509
510#endif
511
1da177e4
LT
512/*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
70b97a7f 519struct rq {
d8016491
IM
520 /* runqueue lock: */
521 spinlock_t lock;
1da177e4
LT
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
527 unsigned long nr_running;
6aa645ea
IM
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 530 unsigned char idle_at_tick;
46cb4b7c 531#ifdef CONFIG_NO_HZ
15934a37 532 unsigned long last_tick_seen;
46cb4b7c
SS
533 unsigned char in_nohz_recently;
534#endif
d8016491
IM
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load;
6aa645ea
IM
537 unsigned long nr_load_updates;
538 u64 nr_switches;
539
540 struct cfs_rq cfs;
6f505b16 541 struct rt_rq rt;
6f505b16 542
6aa645ea 543#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
546#endif
547#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 548 struct list_head leaf_rt_rq_list;
1da177e4 549#endif
1da177e4
LT
550
551 /*
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
556 */
557 unsigned long nr_uninterruptible;
558
36c8b586 559 struct task_struct *curr, *idle;
c9819f45 560 unsigned long next_balance;
1da177e4 561 struct mm_struct *prev_mm;
6aa645ea 562
3e51f33f 563 u64 clock;
6aa645ea 564
1da177e4
LT
565 atomic_t nr_iowait;
566
567#ifdef CONFIG_SMP
0eab9146 568 struct root_domain *rd;
1da177e4
LT
569 struct sched_domain *sd;
570
571 /* For active balancing */
572 int active_balance;
573 int push_cpu;
d8016491
IM
574 /* cpu of this runqueue: */
575 int cpu;
1f11eb6a 576 int online;
1da177e4 577
a8a51d5e 578 unsigned long avg_load_per_task;
1da177e4 579
36c8b586 580 struct task_struct *migration_thread;
1da177e4
LT
581 struct list_head migration_queue;
582#endif
583
8f4d37ec 584#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
585#ifdef CONFIG_SMP
586 int hrtick_csd_pending;
587 struct call_single_data hrtick_csd;
588#endif
8f4d37ec
PZ
589 struct hrtimer hrtick_timer;
590#endif
591
1da177e4
LT
592#ifdef CONFIG_SCHEDSTATS
593 /* latency stats */
594 struct sched_info rq_sched_info;
595
596 /* sys_sched_yield() stats */
480b9434
KC
597 unsigned int yld_exp_empty;
598 unsigned int yld_act_empty;
599 unsigned int yld_both_empty;
600 unsigned int yld_count;
1da177e4
LT
601
602 /* schedule() stats */
480b9434
KC
603 unsigned int sched_switch;
604 unsigned int sched_count;
605 unsigned int sched_goidle;
1da177e4
LT
606
607 /* try_to_wake_up() stats */
480b9434
KC
608 unsigned int ttwu_count;
609 unsigned int ttwu_local;
b8efb561
IM
610
611 /* BKL stats */
480b9434 612 unsigned int bkl_count;
1da177e4
LT
613#endif
614};
615
f34e3b61 616static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 617
15afe09b 618static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 619{
15afe09b 620 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
621}
622
0a2966b4
CL
623static inline int cpu_of(struct rq *rq)
624{
625#ifdef CONFIG_SMP
626 return rq->cpu;
627#else
628 return 0;
629#endif
630}
631
674311d5
NP
632/*
633 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 634 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
635 *
636 * The domain tree of any CPU may only be accessed from within
637 * preempt-disabled sections.
638 */
48f24c4d
IM
639#define for_each_domain(cpu, __sd) \
640 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
641
642#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
643#define this_rq() (&__get_cpu_var(runqueues))
644#define task_rq(p) cpu_rq(task_cpu(p))
645#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
646
3e51f33f
PZ
647static inline void update_rq_clock(struct rq *rq)
648{
649 rq->clock = sched_clock_cpu(cpu_of(rq));
650}
651
bf5c91ba
IM
652/*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655#ifdef CONFIG_SCHED_DEBUG
656# define const_debug __read_mostly
657#else
658# define const_debug static const
659#endif
660
017730c1
IM
661/**
662 * runqueue_is_locked
663 *
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
667 */
668int runqueue_is_locked(void)
669{
670 int cpu = get_cpu();
671 struct rq *rq = cpu_rq(cpu);
672 int ret;
673
674 ret = spin_is_locked(&rq->lock);
675 put_cpu();
676 return ret;
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
731 char *cmp = buf;
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
742
c24b7c52 743 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
744 neg = 1;
745 cmp += 3;
746 }
747
748 for (i = 0; sched_feat_names[i]; i++) {
749 int len = strlen(sched_feat_names[i]);
750
751 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
752 if (neg)
753 sysctl_sched_features &= ~(1UL << i);
754 else
755 sysctl_sched_features |= (1UL << i);
756 break;
757 }
758 }
759
760 if (!sched_feat_names[i])
761 return -EINVAL;
762
763 filp->f_pos += cnt;
764
765 return cnt;
766}
767
34f3a814
LZ
768static int sched_feat_open(struct inode *inode, struct file *filp)
769{
770 return single_open(filp, sched_feat_show, NULL);
771}
772
f00b45c1 773static struct file_operations sched_feat_fops = {
34f3a814
LZ
774 .open = sched_feat_open,
775 .write = sched_feat_write,
776 .read = seq_read,
777 .llseek = seq_lseek,
778 .release = single_release,
f00b45c1
PZ
779};
780
781static __init int sched_init_debug(void)
782{
f00b45c1
PZ
783 debugfs_create_file("sched_features", 0644, NULL, NULL,
784 &sched_feat_fops);
785
786 return 0;
787}
788late_initcall(sched_init_debug);
789
790#endif
791
792#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 793
b82d9fdd
PZ
794/*
795 * Number of tasks to iterate in a single balance run.
796 * Limited because this is done with IRQs disabled.
797 */
798const_debug unsigned int sysctl_sched_nr_migrate = 32;
799
2398f2c6
PZ
800/*
801 * ratelimit for updating the group shares.
55cd5340 802 * default: 0.25ms
2398f2c6 803 */
55cd5340 804unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 805
ffda12a1
PZ
806/*
807 * Inject some fuzzyness into changing the per-cpu group shares
808 * this avoids remote rq-locks at the expense of fairness.
809 * default: 4
810 */
811unsigned int sysctl_sched_shares_thresh = 4;
812
fa85ae24 813/*
9f0c1e56 814 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
815 * default: 1s
816 */
9f0c1e56 817unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 818
6892b75e
IM
819static __read_mostly int scheduler_running;
820
9f0c1e56
PZ
821/*
822 * part of the period that we allow rt tasks to run in us.
823 * default: 0.95s
824 */
825int sysctl_sched_rt_runtime = 950000;
fa85ae24 826
d0b27fa7
PZ
827static inline u64 global_rt_period(void)
828{
829 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
830}
831
832static inline u64 global_rt_runtime(void)
833{
e26873bb 834 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
835 return RUNTIME_INF;
836
837 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
838}
fa85ae24 839
1da177e4 840#ifndef prepare_arch_switch
4866cde0
NP
841# define prepare_arch_switch(next) do { } while (0)
842#endif
843#ifndef finish_arch_switch
844# define finish_arch_switch(prev) do { } while (0)
845#endif
846
051a1d1a
DA
847static inline int task_current(struct rq *rq, struct task_struct *p)
848{
849 return rq->curr == p;
850}
851
4866cde0 852#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 853static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 854{
051a1d1a 855 return task_current(rq, p);
4866cde0
NP
856}
857
70b97a7f 858static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
859{
860}
861
70b97a7f 862static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 863{
da04c035
IM
864#ifdef CONFIG_DEBUG_SPINLOCK
865 /* this is a valid case when another task releases the spinlock */
866 rq->lock.owner = current;
867#endif
8a25d5de
IM
868 /*
869 * If we are tracking spinlock dependencies then we have to
870 * fix up the runqueue lock - which gets 'carried over' from
871 * prev into current:
872 */
873 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
874
4866cde0
NP
875 spin_unlock_irq(&rq->lock);
876}
877
878#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 879static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
880{
881#ifdef CONFIG_SMP
882 return p->oncpu;
883#else
051a1d1a 884 return task_current(rq, p);
4866cde0
NP
885#endif
886}
887
70b97a7f 888static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
889{
890#ifdef CONFIG_SMP
891 /*
892 * We can optimise this out completely for !SMP, because the
893 * SMP rebalancing from interrupt is the only thing that cares
894 * here.
895 */
896 next->oncpu = 1;
897#endif
898#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
899 spin_unlock_irq(&rq->lock);
900#else
901 spin_unlock(&rq->lock);
902#endif
903}
904
70b97a7f 905static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
906{
907#ifdef CONFIG_SMP
908 /*
909 * After ->oncpu is cleared, the task can be moved to a different CPU.
910 * We must ensure this doesn't happen until the switch is completely
911 * finished.
912 */
913 smp_wmb();
914 prev->oncpu = 0;
915#endif
916#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 local_irq_enable();
1da177e4 918#endif
4866cde0
NP
919}
920#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 921
b29739f9
IM
922/*
923 * __task_rq_lock - lock the runqueue a given task resides on.
924 * Must be called interrupts disabled.
925 */
70b97a7f 926static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
927 __acquires(rq->lock)
928{
3a5c359a
AK
929 for (;;) {
930 struct rq *rq = task_rq(p);
931 spin_lock(&rq->lock);
932 if (likely(rq == task_rq(p)))
933 return rq;
b29739f9 934 spin_unlock(&rq->lock);
b29739f9 935 }
b29739f9
IM
936}
937
1da177e4
LT
938/*
939 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 940 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
941 * explicitly disabling preemption.
942 */
70b97a7f 943static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
944 __acquires(rq->lock)
945{
70b97a7f 946 struct rq *rq;
1da177e4 947
3a5c359a
AK
948 for (;;) {
949 local_irq_save(*flags);
950 rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
1da177e4 954 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 955 }
1da177e4
LT
956}
957
ad474cac
ON
958void task_rq_unlock_wait(struct task_struct *p)
959{
960 struct rq *rq = task_rq(p);
961
962 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
963 spin_unlock_wait(&rq->lock);
964}
965
a9957449 966static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
967 __releases(rq->lock)
968{
969 spin_unlock(&rq->lock);
970}
971
70b97a7f 972static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
973 __releases(rq->lock)
974{
975 spin_unlock_irqrestore(&rq->lock, *flags);
976}
977
1da177e4 978/*
cc2a73b5 979 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 980 */
a9957449 981static struct rq *this_rq_lock(void)
1da177e4
LT
982 __acquires(rq->lock)
983{
70b97a7f 984 struct rq *rq;
1da177e4
LT
985
986 local_irq_disable();
987 rq = this_rq();
988 spin_lock(&rq->lock);
989
990 return rq;
991}
992
8f4d37ec
PZ
993#ifdef CONFIG_SCHED_HRTICK
994/*
995 * Use HR-timers to deliver accurate preemption points.
996 *
997 * Its all a bit involved since we cannot program an hrt while holding the
998 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
999 * reschedule event.
1000 *
1001 * When we get rescheduled we reprogram the hrtick_timer outside of the
1002 * rq->lock.
1003 */
8f4d37ec
PZ
1004
1005/*
1006 * Use hrtick when:
1007 * - enabled by features
1008 * - hrtimer is actually high res
1009 */
1010static inline int hrtick_enabled(struct rq *rq)
1011{
1012 if (!sched_feat(HRTICK))
1013 return 0;
ba42059f 1014 if (!cpu_active(cpu_of(rq)))
b328ca18 1015 return 0;
8f4d37ec
PZ
1016 return hrtimer_is_hres_active(&rq->hrtick_timer);
1017}
1018
8f4d37ec
PZ
1019static void hrtick_clear(struct rq *rq)
1020{
1021 if (hrtimer_active(&rq->hrtick_timer))
1022 hrtimer_cancel(&rq->hrtick_timer);
1023}
1024
8f4d37ec
PZ
1025/*
1026 * High-resolution timer tick.
1027 * Runs from hardirq context with interrupts disabled.
1028 */
1029static enum hrtimer_restart hrtick(struct hrtimer *timer)
1030{
1031 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1032
1033 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1034
1035 spin_lock(&rq->lock);
3e51f33f 1036 update_rq_clock(rq);
8f4d37ec
PZ
1037 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1038 spin_unlock(&rq->lock);
1039
1040 return HRTIMER_NORESTART;
1041}
1042
95e904c7 1043#ifdef CONFIG_SMP
31656519
PZ
1044/*
1045 * called from hardirq (IPI) context
1046 */
1047static void __hrtick_start(void *arg)
b328ca18 1048{
31656519 1049 struct rq *rq = arg;
b328ca18 1050
31656519
PZ
1051 spin_lock(&rq->lock);
1052 hrtimer_restart(&rq->hrtick_timer);
1053 rq->hrtick_csd_pending = 0;
1054 spin_unlock(&rq->lock);
b328ca18
PZ
1055}
1056
31656519
PZ
1057/*
1058 * Called to set the hrtick timer state.
1059 *
1060 * called with rq->lock held and irqs disabled
1061 */
1062static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1063{
31656519
PZ
1064 struct hrtimer *timer = &rq->hrtick_timer;
1065 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1066
cc584b21 1067 hrtimer_set_expires(timer, time);
31656519
PZ
1068
1069 if (rq == this_rq()) {
1070 hrtimer_restart(timer);
1071 } else if (!rq->hrtick_csd_pending) {
1072 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1073 rq->hrtick_csd_pending = 1;
1074 }
b328ca18
PZ
1075}
1076
1077static int
1078hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1079{
1080 int cpu = (int)(long)hcpu;
1081
1082 switch (action) {
1083 case CPU_UP_CANCELED:
1084 case CPU_UP_CANCELED_FROZEN:
1085 case CPU_DOWN_PREPARE:
1086 case CPU_DOWN_PREPARE_FROZEN:
1087 case CPU_DEAD:
1088 case CPU_DEAD_FROZEN:
31656519 1089 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1090 return NOTIFY_OK;
1091 }
1092
1093 return NOTIFY_DONE;
1094}
1095
fa748203 1096static __init void init_hrtick(void)
b328ca18
PZ
1097{
1098 hotcpu_notifier(hotplug_hrtick, 0);
1099}
31656519
PZ
1100#else
1101/*
1102 * Called to set the hrtick timer state.
1103 *
1104 * called with rq->lock held and irqs disabled
1105 */
1106static void hrtick_start(struct rq *rq, u64 delay)
1107{
1108 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1109}
b328ca18 1110
006c75f1 1111static inline void init_hrtick(void)
8f4d37ec 1112{
8f4d37ec 1113}
31656519 1114#endif /* CONFIG_SMP */
8f4d37ec 1115
31656519 1116static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1117{
31656519
PZ
1118#ifdef CONFIG_SMP
1119 rq->hrtick_csd_pending = 0;
8f4d37ec 1120
31656519
PZ
1121 rq->hrtick_csd.flags = 0;
1122 rq->hrtick_csd.func = __hrtick_start;
1123 rq->hrtick_csd.info = rq;
1124#endif
8f4d37ec 1125
31656519
PZ
1126 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1127 rq->hrtick_timer.function = hrtick;
ccc7dadf 1128 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1129}
006c75f1 1130#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1131static inline void hrtick_clear(struct rq *rq)
1132{
1133}
1134
8f4d37ec
PZ
1135static inline void init_rq_hrtick(struct rq *rq)
1136{
1137}
1138
b328ca18
PZ
1139static inline void init_hrtick(void)
1140{
1141}
006c75f1 1142#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1143
c24d20db
IM
1144/*
1145 * resched_task - mark a task 'to be rescheduled now'.
1146 *
1147 * On UP this means the setting of the need_resched flag, on SMP it
1148 * might also involve a cross-CPU call to trigger the scheduler on
1149 * the target CPU.
1150 */
1151#ifdef CONFIG_SMP
1152
1153#ifndef tsk_is_polling
1154#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1155#endif
1156
31656519 1157static void resched_task(struct task_struct *p)
c24d20db
IM
1158{
1159 int cpu;
1160
1161 assert_spin_locked(&task_rq(p)->lock);
1162
31656519 1163 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1164 return;
1165
31656519 1166 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1167
1168 cpu = task_cpu(p);
1169 if (cpu == smp_processor_id())
1170 return;
1171
1172 /* NEED_RESCHED must be visible before we test polling */
1173 smp_mb();
1174 if (!tsk_is_polling(p))
1175 smp_send_reschedule(cpu);
1176}
1177
1178static void resched_cpu(int cpu)
1179{
1180 struct rq *rq = cpu_rq(cpu);
1181 unsigned long flags;
1182
1183 if (!spin_trylock_irqsave(&rq->lock, flags))
1184 return;
1185 resched_task(cpu_curr(cpu));
1186 spin_unlock_irqrestore(&rq->lock, flags);
1187}
06d8308c
TG
1188
1189#ifdef CONFIG_NO_HZ
1190/*
1191 * When add_timer_on() enqueues a timer into the timer wheel of an
1192 * idle CPU then this timer might expire before the next timer event
1193 * which is scheduled to wake up that CPU. In case of a completely
1194 * idle system the next event might even be infinite time into the
1195 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1196 * leaves the inner idle loop so the newly added timer is taken into
1197 * account when the CPU goes back to idle and evaluates the timer
1198 * wheel for the next timer event.
1199 */
1200void wake_up_idle_cpu(int cpu)
1201{
1202 struct rq *rq = cpu_rq(cpu);
1203
1204 if (cpu == smp_processor_id())
1205 return;
1206
1207 /*
1208 * This is safe, as this function is called with the timer
1209 * wheel base lock of (cpu) held. When the CPU is on the way
1210 * to idle and has not yet set rq->curr to idle then it will
1211 * be serialized on the timer wheel base lock and take the new
1212 * timer into account automatically.
1213 */
1214 if (rq->curr != rq->idle)
1215 return;
1216
1217 /*
1218 * We can set TIF_RESCHED on the idle task of the other CPU
1219 * lockless. The worst case is that the other CPU runs the
1220 * idle task through an additional NOOP schedule()
1221 */
1222 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(rq->idle))
1227 smp_send_reschedule(cpu);
1228}
6d6bc0ad 1229#endif /* CONFIG_NO_HZ */
06d8308c 1230
6d6bc0ad 1231#else /* !CONFIG_SMP */
31656519 1232static void resched_task(struct task_struct *p)
c24d20db
IM
1233{
1234 assert_spin_locked(&task_rq(p)->lock);
31656519 1235 set_tsk_need_resched(p);
c24d20db 1236}
6d6bc0ad 1237#endif /* CONFIG_SMP */
c24d20db 1238
45bf76df
IM
1239#if BITS_PER_LONG == 32
1240# define WMULT_CONST (~0UL)
1241#else
1242# define WMULT_CONST (1UL << 32)
1243#endif
1244
1245#define WMULT_SHIFT 32
1246
194081eb
IM
1247/*
1248 * Shift right and round:
1249 */
cf2ab469 1250#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1251
a7be37ac
PZ
1252/*
1253 * delta *= weight / lw
1254 */
cb1c4fc9 1255static unsigned long
45bf76df
IM
1256calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1257 struct load_weight *lw)
1258{
1259 u64 tmp;
1260
7a232e03
LJ
1261 if (!lw->inv_weight) {
1262 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1263 lw->inv_weight = 1;
1264 else
1265 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1266 / (lw->weight+1);
1267 }
45bf76df
IM
1268
1269 tmp = (u64)delta_exec * weight;
1270 /*
1271 * Check whether we'd overflow the 64-bit multiplication:
1272 */
194081eb 1273 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1274 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1275 WMULT_SHIFT/2);
1276 else
cf2ab469 1277 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1278
ecf691da 1279 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1280}
1281
1091985b 1282static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1283{
1284 lw->weight += inc;
e89996ae 1285 lw->inv_weight = 0;
45bf76df
IM
1286}
1287
1091985b 1288static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1289{
1290 lw->weight -= dec;
e89996ae 1291 lw->inv_weight = 0;
45bf76df
IM
1292}
1293
2dd73a4f
PW
1294/*
1295 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1296 * of tasks with abnormal "nice" values across CPUs the contribution that
1297 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1298 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1299 * scaled version of the new time slice allocation that they receive on time
1300 * slice expiry etc.
1301 */
1302
dd41f596
IM
1303#define WEIGHT_IDLEPRIO 2
1304#define WMULT_IDLEPRIO (1 << 31)
1305
1306/*
1307 * Nice levels are multiplicative, with a gentle 10% change for every
1308 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1309 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1310 * that remained on nice 0.
1311 *
1312 * The "10% effect" is relative and cumulative: from _any_ nice level,
1313 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1314 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1315 * If a task goes up by ~10% and another task goes down by ~10% then
1316 * the relative distance between them is ~25%.)
dd41f596
IM
1317 */
1318static const int prio_to_weight[40] = {
254753dc
IM
1319 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1320 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1321 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1322 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1323 /* 0 */ 1024, 820, 655, 526, 423,
1324 /* 5 */ 335, 272, 215, 172, 137,
1325 /* 10 */ 110, 87, 70, 56, 45,
1326 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1327};
1328
5714d2de
IM
1329/*
1330 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1331 *
1332 * In cases where the weight does not change often, we can use the
1333 * precalculated inverse to speed up arithmetics by turning divisions
1334 * into multiplications:
1335 */
dd41f596 1336static const u32 prio_to_wmult[40] = {
254753dc
IM
1337 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1338 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1339 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1340 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1341 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1342 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1343 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1344 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1345};
2dd73a4f 1346
dd41f596
IM
1347static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1348
1349/*
1350 * runqueue iterator, to support SMP load-balancing between different
1351 * scheduling classes, without having to expose their internal data
1352 * structures to the load-balancing proper:
1353 */
1354struct rq_iterator {
1355 void *arg;
1356 struct task_struct *(*start)(void *);
1357 struct task_struct *(*next)(void *);
1358};
1359
e1d1484f
PW
1360#ifdef CONFIG_SMP
1361static unsigned long
1362balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 unsigned long max_load_move, struct sched_domain *sd,
1364 enum cpu_idle_type idle, int *all_pinned,
1365 int *this_best_prio, struct rq_iterator *iterator);
1366
1367static int
1368iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1369 struct sched_domain *sd, enum cpu_idle_type idle,
1370 struct rq_iterator *iterator);
e1d1484f 1371#endif
dd41f596 1372
d842de87
SV
1373#ifdef CONFIG_CGROUP_CPUACCT
1374static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1375#else
1376static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1377#endif
1378
18d95a28
PZ
1379static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1380{
1381 update_load_add(&rq->load, load);
1382}
1383
1384static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1385{
1386 update_load_sub(&rq->load, load);
1387}
1388
7940ca36 1389#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1390typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1391
1392/*
1393 * Iterate the full tree, calling @down when first entering a node and @up when
1394 * leaving it for the final time.
1395 */
eb755805 1396static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1397{
1398 struct task_group *parent, *child;
eb755805 1399 int ret;
c09595f6
PZ
1400
1401 rcu_read_lock();
1402 parent = &root_task_group;
1403down:
eb755805
PZ
1404 ret = (*down)(parent, data);
1405 if (ret)
1406 goto out_unlock;
c09595f6
PZ
1407 list_for_each_entry_rcu(child, &parent->children, siblings) {
1408 parent = child;
1409 goto down;
1410
1411up:
1412 continue;
1413 }
eb755805
PZ
1414 ret = (*up)(parent, data);
1415 if (ret)
1416 goto out_unlock;
c09595f6
PZ
1417
1418 child = parent;
1419 parent = parent->parent;
1420 if (parent)
1421 goto up;
eb755805 1422out_unlock:
c09595f6 1423 rcu_read_unlock();
eb755805
PZ
1424
1425 return ret;
c09595f6
PZ
1426}
1427
eb755805
PZ
1428static int tg_nop(struct task_group *tg, void *data)
1429{
1430 return 0;
c09595f6 1431}
eb755805
PZ
1432#endif
1433
1434#ifdef CONFIG_SMP
1435static unsigned long source_load(int cpu, int type);
1436static unsigned long target_load(int cpu, int type);
1437static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1438
1439static unsigned long cpu_avg_load_per_task(int cpu)
1440{
1441 struct rq *rq = cpu_rq(cpu);
1442
1443 if (rq->nr_running)
1444 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
a2d47777
BS
1445 else
1446 rq->avg_load_per_task = 0;
eb755805
PZ
1447
1448 return rq->avg_load_per_task;
1449}
1450
1451#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1452
c09595f6
PZ
1453static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1454
1455/*
1456 * Calculate and set the cpu's group shares.
1457 */
1458static void
ffda12a1
PZ
1459update_group_shares_cpu(struct task_group *tg, int cpu,
1460 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1461{
c09595f6
PZ
1462 unsigned long shares;
1463 unsigned long rq_weight;
1464
c8cba857 1465 if (!tg->se[cpu])
c09595f6
PZ
1466 return;
1467
ec4e0e2f 1468 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1469
c09595f6
PZ
1470 /*
1471 * \Sum shares * rq_weight
1472 * shares = -----------------------
1473 * \Sum rq_weight
1474 *
1475 */
ec4e0e2f 1476 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1477 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1478
ffda12a1
PZ
1479 if (abs(shares - tg->se[cpu]->load.weight) >
1480 sysctl_sched_shares_thresh) {
1481 struct rq *rq = cpu_rq(cpu);
1482 unsigned long flags;
c09595f6 1483
ffda12a1 1484 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1485 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1486
ffda12a1
PZ
1487 __set_se_shares(tg->se[cpu], shares);
1488 spin_unlock_irqrestore(&rq->lock, flags);
1489 }
18d95a28 1490}
c09595f6
PZ
1491
1492/*
c8cba857
PZ
1493 * Re-compute the task group their per cpu shares over the given domain.
1494 * This needs to be done in a bottom-up fashion because the rq weight of a
1495 * parent group depends on the shares of its child groups.
c09595f6 1496 */
eb755805 1497static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1498{
ec4e0e2f 1499 unsigned long weight, rq_weight = 0;
c8cba857 1500 unsigned long shares = 0;
eb755805 1501 struct sched_domain *sd = data;
c8cba857 1502 int i;
c09595f6 1503
758b2cdc 1504 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1505 /*
1506 * If there are currently no tasks on the cpu pretend there
1507 * is one of average load so that when a new task gets to
1508 * run here it will not get delayed by group starvation.
1509 */
1510 weight = tg->cfs_rq[i]->load.weight;
1511 if (!weight)
1512 weight = NICE_0_LOAD;
1513
1514 tg->cfs_rq[i]->rq_weight = weight;
1515 rq_weight += weight;
c8cba857 1516 shares += tg->cfs_rq[i]->shares;
c09595f6 1517 }
c09595f6 1518
c8cba857
PZ
1519 if ((!shares && rq_weight) || shares > tg->shares)
1520 shares = tg->shares;
1521
1522 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1523 shares = tg->shares;
c09595f6 1524
758b2cdc 1525 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1526 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1527
1528 return 0;
c09595f6
PZ
1529}
1530
1531/*
c8cba857
PZ
1532 * Compute the cpu's hierarchical load factor for each task group.
1533 * This needs to be done in a top-down fashion because the load of a child
1534 * group is a fraction of its parents load.
c09595f6 1535 */
eb755805 1536static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1537{
c8cba857 1538 unsigned long load;
eb755805 1539 long cpu = (long)data;
c09595f6 1540
c8cba857
PZ
1541 if (!tg->parent) {
1542 load = cpu_rq(cpu)->load.weight;
1543 } else {
1544 load = tg->parent->cfs_rq[cpu]->h_load;
1545 load *= tg->cfs_rq[cpu]->shares;
1546 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1547 }
c09595f6 1548
c8cba857 1549 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1550
eb755805 1551 return 0;
c09595f6
PZ
1552}
1553
c8cba857 1554static void update_shares(struct sched_domain *sd)
4d8d595d 1555{
2398f2c6
PZ
1556 u64 now = cpu_clock(raw_smp_processor_id());
1557 s64 elapsed = now - sd->last_update;
1558
1559 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1560 sd->last_update = now;
eb755805 1561 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1562 }
4d8d595d
PZ
1563}
1564
3e5459b4
PZ
1565static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1566{
1567 spin_unlock(&rq->lock);
1568 update_shares(sd);
1569 spin_lock(&rq->lock);
1570}
1571
eb755805 1572static void update_h_load(long cpu)
c09595f6 1573{
eb755805 1574 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1575}
1576
c09595f6
PZ
1577#else
1578
c8cba857 1579static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1580{
1581}
1582
3e5459b4
PZ
1583static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1584{
1585}
1586
18d95a28
PZ
1587#endif
1588
18d95a28
PZ
1589#endif
1590
30432094 1591#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1592static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1593{
30432094 1594#ifdef CONFIG_SMP
34e83e85
IM
1595 cfs_rq->shares = shares;
1596#endif
1597}
30432094 1598#endif
e7693a36 1599
dd41f596 1600#include "sched_stats.h"
dd41f596 1601#include "sched_idletask.c"
5522d5d5
IM
1602#include "sched_fair.c"
1603#include "sched_rt.c"
dd41f596
IM
1604#ifdef CONFIG_SCHED_DEBUG
1605# include "sched_debug.c"
1606#endif
1607
1608#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1609#define for_each_class(class) \
1610 for (class = sched_class_highest; class; class = class->next)
dd41f596 1611
c09595f6 1612static void inc_nr_running(struct rq *rq)
9c217245
IM
1613{
1614 rq->nr_running++;
9c217245
IM
1615}
1616
c09595f6 1617static void dec_nr_running(struct rq *rq)
9c217245
IM
1618{
1619 rq->nr_running--;
9c217245
IM
1620}
1621
45bf76df
IM
1622static void set_load_weight(struct task_struct *p)
1623{
1624 if (task_has_rt_policy(p)) {
dd41f596
IM
1625 p->se.load.weight = prio_to_weight[0] * 2;
1626 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1627 return;
1628 }
45bf76df 1629
dd41f596
IM
1630 /*
1631 * SCHED_IDLE tasks get minimal weight:
1632 */
1633 if (p->policy == SCHED_IDLE) {
1634 p->se.load.weight = WEIGHT_IDLEPRIO;
1635 p->se.load.inv_weight = WMULT_IDLEPRIO;
1636 return;
1637 }
71f8bd46 1638
dd41f596
IM
1639 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1640 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1641}
1642
2087a1ad
GH
1643static void update_avg(u64 *avg, u64 sample)
1644{
1645 s64 diff = sample - *avg;
1646 *avg += diff >> 3;
1647}
1648
8159f87e 1649static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1650{
dd41f596 1651 sched_info_queued(p);
fd390f6a 1652 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1653 p->se.on_rq = 1;
71f8bd46
IM
1654}
1655
69be72c1 1656static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1657{
2087a1ad
GH
1658 if (sleep && p->se.last_wakeup) {
1659 update_avg(&p->se.avg_overlap,
1660 p->se.sum_exec_runtime - p->se.last_wakeup);
1661 p->se.last_wakeup = 0;
1662 }
1663
46ac22ba 1664 sched_info_dequeued(p);
f02231e5 1665 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1666 p->se.on_rq = 0;
71f8bd46
IM
1667}
1668
14531189 1669/*
dd41f596 1670 * __normal_prio - return the priority that is based on the static prio
14531189 1671 */
14531189
IM
1672static inline int __normal_prio(struct task_struct *p)
1673{
dd41f596 1674 return p->static_prio;
14531189
IM
1675}
1676
b29739f9
IM
1677/*
1678 * Calculate the expected normal priority: i.e. priority
1679 * without taking RT-inheritance into account. Might be
1680 * boosted by interactivity modifiers. Changes upon fork,
1681 * setprio syscalls, and whenever the interactivity
1682 * estimator recalculates.
1683 */
36c8b586 1684static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1685{
1686 int prio;
1687
e05606d3 1688 if (task_has_rt_policy(p))
b29739f9
IM
1689 prio = MAX_RT_PRIO-1 - p->rt_priority;
1690 else
1691 prio = __normal_prio(p);
1692 return prio;
1693}
1694
1695/*
1696 * Calculate the current priority, i.e. the priority
1697 * taken into account by the scheduler. This value might
1698 * be boosted by RT tasks, or might be boosted by
1699 * interactivity modifiers. Will be RT if the task got
1700 * RT-boosted. If not then it returns p->normal_prio.
1701 */
36c8b586 1702static int effective_prio(struct task_struct *p)
b29739f9
IM
1703{
1704 p->normal_prio = normal_prio(p);
1705 /*
1706 * If we are RT tasks or we were boosted to RT priority,
1707 * keep the priority unchanged. Otherwise, update priority
1708 * to the normal priority:
1709 */
1710 if (!rt_prio(p->prio))
1711 return p->normal_prio;
1712 return p->prio;
1713}
1714
1da177e4 1715/*
dd41f596 1716 * activate_task - move a task to the runqueue.
1da177e4 1717 */
dd41f596 1718static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1719{
d9514f6c 1720 if (task_contributes_to_load(p))
dd41f596 1721 rq->nr_uninterruptible--;
1da177e4 1722
8159f87e 1723 enqueue_task(rq, p, wakeup);
c09595f6 1724 inc_nr_running(rq);
1da177e4
LT
1725}
1726
1da177e4
LT
1727/*
1728 * deactivate_task - remove a task from the runqueue.
1729 */
2e1cb74a 1730static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1731{
d9514f6c 1732 if (task_contributes_to_load(p))
dd41f596
IM
1733 rq->nr_uninterruptible++;
1734
69be72c1 1735 dequeue_task(rq, p, sleep);
c09595f6 1736 dec_nr_running(rq);
1da177e4
LT
1737}
1738
1da177e4
LT
1739/**
1740 * task_curr - is this task currently executing on a CPU?
1741 * @p: the task in question.
1742 */
36c8b586 1743inline int task_curr(const struct task_struct *p)
1da177e4
LT
1744{
1745 return cpu_curr(task_cpu(p)) == p;
1746}
1747
dd41f596
IM
1748static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1749{
6f505b16 1750 set_task_rq(p, cpu);
dd41f596 1751#ifdef CONFIG_SMP
ce96b5ac
DA
1752 /*
1753 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1754 * successfuly executed on another CPU. We must ensure that updates of
1755 * per-task data have been completed by this moment.
1756 */
1757 smp_wmb();
dd41f596 1758 task_thread_info(p)->cpu = cpu;
dd41f596 1759#endif
2dd73a4f
PW
1760}
1761
cb469845
SR
1762static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1763 const struct sched_class *prev_class,
1764 int oldprio, int running)
1765{
1766 if (prev_class != p->sched_class) {
1767 if (prev_class->switched_from)
1768 prev_class->switched_from(rq, p, running);
1769 p->sched_class->switched_to(rq, p, running);
1770 } else
1771 p->sched_class->prio_changed(rq, p, oldprio, running);
1772}
1773
1da177e4 1774#ifdef CONFIG_SMP
c65cc870 1775
e958b360
TG
1776/* Used instead of source_load when we know the type == 0 */
1777static unsigned long weighted_cpuload(const int cpu)
1778{
1779 return cpu_rq(cpu)->load.weight;
1780}
1781
cc367732
IM
1782/*
1783 * Is this task likely cache-hot:
1784 */
e7693a36 1785static int
cc367732
IM
1786task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1787{
1788 s64 delta;
1789
f540a608
IM
1790 /*
1791 * Buddy candidates are cache hot:
1792 */
4793241b
PZ
1793 if (sched_feat(CACHE_HOT_BUDDY) &&
1794 (&p->se == cfs_rq_of(&p->se)->next ||
1795 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1796 return 1;
1797
cc367732
IM
1798 if (p->sched_class != &fair_sched_class)
1799 return 0;
1800
6bc1665b
IM
1801 if (sysctl_sched_migration_cost == -1)
1802 return 1;
1803 if (sysctl_sched_migration_cost == 0)
1804 return 0;
1805
cc367732
IM
1806 delta = now - p->se.exec_start;
1807
1808 return delta < (s64)sysctl_sched_migration_cost;
1809}
1810
1811
dd41f596 1812void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1813{
dd41f596
IM
1814 int old_cpu = task_cpu(p);
1815 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1816 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1817 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1818 u64 clock_offset;
dd41f596
IM
1819
1820 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1821
1822#ifdef CONFIG_SCHEDSTATS
1823 if (p->se.wait_start)
1824 p->se.wait_start -= clock_offset;
dd41f596
IM
1825 if (p->se.sleep_start)
1826 p->se.sleep_start -= clock_offset;
1827 if (p->se.block_start)
1828 p->se.block_start -= clock_offset;
cc367732
IM
1829 if (old_cpu != new_cpu) {
1830 schedstat_inc(p, se.nr_migrations);
1831 if (task_hot(p, old_rq->clock, NULL))
1832 schedstat_inc(p, se.nr_forced2_migrations);
1833 }
6cfb0d5d 1834#endif
2830cf8c
SV
1835 p->se.vruntime -= old_cfsrq->min_vruntime -
1836 new_cfsrq->min_vruntime;
dd41f596
IM
1837
1838 __set_task_cpu(p, new_cpu);
c65cc870
IM
1839}
1840
70b97a7f 1841struct migration_req {
1da177e4 1842 struct list_head list;
1da177e4 1843
36c8b586 1844 struct task_struct *task;
1da177e4
LT
1845 int dest_cpu;
1846
1da177e4 1847 struct completion done;
70b97a7f 1848};
1da177e4
LT
1849
1850/*
1851 * The task's runqueue lock must be held.
1852 * Returns true if you have to wait for migration thread.
1853 */
36c8b586 1854static int
70b97a7f 1855migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1856{
70b97a7f 1857 struct rq *rq = task_rq(p);
1da177e4
LT
1858
1859 /*
1860 * If the task is not on a runqueue (and not running), then
1861 * it is sufficient to simply update the task's cpu field.
1862 */
dd41f596 1863 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1864 set_task_cpu(p, dest_cpu);
1865 return 0;
1866 }
1867
1868 init_completion(&req->done);
1da177e4
LT
1869 req->task = p;
1870 req->dest_cpu = dest_cpu;
1871 list_add(&req->list, &rq->migration_queue);
48f24c4d 1872
1da177e4
LT
1873 return 1;
1874}
1875
1876/*
1877 * wait_task_inactive - wait for a thread to unschedule.
1878 *
85ba2d86
RM
1879 * If @match_state is nonzero, it's the @p->state value just checked and
1880 * not expected to change. If it changes, i.e. @p might have woken up,
1881 * then return zero. When we succeed in waiting for @p to be off its CPU,
1882 * we return a positive number (its total switch count). If a second call
1883 * a short while later returns the same number, the caller can be sure that
1884 * @p has remained unscheduled the whole time.
1885 *
1da177e4
LT
1886 * The caller must ensure that the task *will* unschedule sometime soon,
1887 * else this function might spin for a *long* time. This function can't
1888 * be called with interrupts off, or it may introduce deadlock with
1889 * smp_call_function() if an IPI is sent by the same process we are
1890 * waiting to become inactive.
1891 */
85ba2d86 1892unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1893{
1894 unsigned long flags;
dd41f596 1895 int running, on_rq;
85ba2d86 1896 unsigned long ncsw;
70b97a7f 1897 struct rq *rq;
1da177e4 1898
3a5c359a
AK
1899 for (;;) {
1900 /*
1901 * We do the initial early heuristics without holding
1902 * any task-queue locks at all. We'll only try to get
1903 * the runqueue lock when things look like they will
1904 * work out!
1905 */
1906 rq = task_rq(p);
fa490cfd 1907
3a5c359a
AK
1908 /*
1909 * If the task is actively running on another CPU
1910 * still, just relax and busy-wait without holding
1911 * any locks.
1912 *
1913 * NOTE! Since we don't hold any locks, it's not
1914 * even sure that "rq" stays as the right runqueue!
1915 * But we don't care, since "task_running()" will
1916 * return false if the runqueue has changed and p
1917 * is actually now running somewhere else!
1918 */
85ba2d86
RM
1919 while (task_running(rq, p)) {
1920 if (match_state && unlikely(p->state != match_state))
1921 return 0;
3a5c359a 1922 cpu_relax();
85ba2d86 1923 }
fa490cfd 1924
3a5c359a
AK
1925 /*
1926 * Ok, time to look more closely! We need the rq
1927 * lock now, to be *sure*. If we're wrong, we'll
1928 * just go back and repeat.
1929 */
1930 rq = task_rq_lock(p, &flags);
0a16b607 1931 trace_sched_wait_task(rq, p);
3a5c359a
AK
1932 running = task_running(rq, p);
1933 on_rq = p->se.on_rq;
85ba2d86 1934 ncsw = 0;
f31e11d8 1935 if (!match_state || p->state == match_state)
93dcf55f 1936 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1937 task_rq_unlock(rq, &flags);
fa490cfd 1938
85ba2d86
RM
1939 /*
1940 * If it changed from the expected state, bail out now.
1941 */
1942 if (unlikely(!ncsw))
1943 break;
1944
3a5c359a
AK
1945 /*
1946 * Was it really running after all now that we
1947 * checked with the proper locks actually held?
1948 *
1949 * Oops. Go back and try again..
1950 */
1951 if (unlikely(running)) {
1952 cpu_relax();
1953 continue;
1954 }
fa490cfd 1955
3a5c359a
AK
1956 /*
1957 * It's not enough that it's not actively running,
1958 * it must be off the runqueue _entirely_, and not
1959 * preempted!
1960 *
1961 * So if it wa still runnable (but just not actively
1962 * running right now), it's preempted, and we should
1963 * yield - it could be a while.
1964 */
1965 if (unlikely(on_rq)) {
1966 schedule_timeout_uninterruptible(1);
1967 continue;
1968 }
fa490cfd 1969
3a5c359a
AK
1970 /*
1971 * Ahh, all good. It wasn't running, and it wasn't
1972 * runnable, which means that it will never become
1973 * running in the future either. We're all done!
1974 */
1975 break;
1976 }
85ba2d86
RM
1977
1978 return ncsw;
1da177e4
LT
1979}
1980
1981/***
1982 * kick_process - kick a running thread to enter/exit the kernel
1983 * @p: the to-be-kicked thread
1984 *
1985 * Cause a process which is running on another CPU to enter
1986 * kernel-mode, without any delay. (to get signals handled.)
1987 *
1988 * NOTE: this function doesnt have to take the runqueue lock,
1989 * because all it wants to ensure is that the remote task enters
1990 * the kernel. If the IPI races and the task has been migrated
1991 * to another CPU then no harm is done and the purpose has been
1992 * achieved as well.
1993 */
36c8b586 1994void kick_process(struct task_struct *p)
1da177e4
LT
1995{
1996 int cpu;
1997
1998 preempt_disable();
1999 cpu = task_cpu(p);
2000 if ((cpu != smp_processor_id()) && task_curr(p))
2001 smp_send_reschedule(cpu);
2002 preempt_enable();
2003}
2004
2005/*
2dd73a4f
PW
2006 * Return a low guess at the load of a migration-source cpu weighted
2007 * according to the scheduling class and "nice" value.
1da177e4
LT
2008 *
2009 * We want to under-estimate the load of migration sources, to
2010 * balance conservatively.
2011 */
a9957449 2012static unsigned long source_load(int cpu, int type)
1da177e4 2013{
70b97a7f 2014 struct rq *rq = cpu_rq(cpu);
dd41f596 2015 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2016
93b75217 2017 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2018 return total;
b910472d 2019
dd41f596 2020 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2021}
2022
2023/*
2dd73a4f
PW
2024 * Return a high guess at the load of a migration-target cpu weighted
2025 * according to the scheduling class and "nice" value.
1da177e4 2026 */
a9957449 2027static unsigned long target_load(int cpu, int type)
1da177e4 2028{
70b97a7f 2029 struct rq *rq = cpu_rq(cpu);
dd41f596 2030 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2031
93b75217 2032 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2033 return total;
3b0bd9bc 2034
dd41f596 2035 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2036}
2037
147cbb4b
NP
2038/*
2039 * find_idlest_group finds and returns the least busy CPU group within the
2040 * domain.
2041 */
2042static struct sched_group *
2043find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2044{
2045 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2046 unsigned long min_load = ULONG_MAX, this_load = 0;
2047 int load_idx = sd->forkexec_idx;
2048 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2049
2050 do {
2051 unsigned long load, avg_load;
2052 int local_group;
2053 int i;
2054
da5a5522 2055 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2056 if (!cpumask_intersects(sched_group_cpus(group),
2057 &p->cpus_allowed))
3a5c359a 2058 continue;
da5a5522 2059
758b2cdc
RR
2060 local_group = cpumask_test_cpu(this_cpu,
2061 sched_group_cpus(group));
147cbb4b
NP
2062
2063 /* Tally up the load of all CPUs in the group */
2064 avg_load = 0;
2065
758b2cdc 2066 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2067 /* Bias balancing toward cpus of our domain */
2068 if (local_group)
2069 load = source_load(i, load_idx);
2070 else
2071 load = target_load(i, load_idx);
2072
2073 avg_load += load;
2074 }
2075
2076 /* Adjust by relative CPU power of the group */
5517d86b
ED
2077 avg_load = sg_div_cpu_power(group,
2078 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2079
2080 if (local_group) {
2081 this_load = avg_load;
2082 this = group;
2083 } else if (avg_load < min_load) {
2084 min_load = avg_load;
2085 idlest = group;
2086 }
3a5c359a 2087 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2088
2089 if (!idlest || 100*this_load < imbalance*min_load)
2090 return NULL;
2091 return idlest;
2092}
2093
2094/*
0feaece9 2095 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2096 */
95cdf3b7 2097static int
758b2cdc 2098find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2099{
2100 unsigned long load, min_load = ULONG_MAX;
2101 int idlest = -1;
2102 int i;
2103
da5a5522 2104 /* Traverse only the allowed CPUs */
758b2cdc 2105 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2106 load = weighted_cpuload(i);
147cbb4b
NP
2107
2108 if (load < min_load || (load == min_load && i == this_cpu)) {
2109 min_load = load;
2110 idlest = i;
2111 }
2112 }
2113
2114 return idlest;
2115}
2116
476d139c
NP
2117/*
2118 * sched_balance_self: balance the current task (running on cpu) in domains
2119 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2120 * SD_BALANCE_EXEC.
2121 *
2122 * Balance, ie. select the least loaded group.
2123 *
2124 * Returns the target CPU number, or the same CPU if no balancing is needed.
2125 *
2126 * preempt must be disabled.
2127 */
2128static int sched_balance_self(int cpu, int flag)
2129{
2130 struct task_struct *t = current;
2131 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2132
c96d145e 2133 for_each_domain(cpu, tmp) {
9761eea8
IM
2134 /*
2135 * If power savings logic is enabled for a domain, stop there.
2136 */
5c45bf27
SS
2137 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2138 break;
476d139c
NP
2139 if (tmp->flags & flag)
2140 sd = tmp;
c96d145e 2141 }
476d139c 2142
039a1c41
PZ
2143 if (sd)
2144 update_shares(sd);
2145
476d139c 2146 while (sd) {
476d139c 2147 struct sched_group *group;
1a848870
SS
2148 int new_cpu, weight;
2149
2150 if (!(sd->flags & flag)) {
2151 sd = sd->child;
2152 continue;
2153 }
476d139c 2154
476d139c 2155 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2156 if (!group) {
2157 sd = sd->child;
2158 continue;
2159 }
476d139c 2160
758b2cdc 2161 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2162 if (new_cpu == -1 || new_cpu == cpu) {
2163 /* Now try balancing at a lower domain level of cpu */
2164 sd = sd->child;
2165 continue;
2166 }
476d139c 2167
1a848870 2168 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2169 cpu = new_cpu;
758b2cdc 2170 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2171 sd = NULL;
476d139c 2172 for_each_domain(cpu, tmp) {
758b2cdc 2173 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2174 break;
2175 if (tmp->flags & flag)
2176 sd = tmp;
2177 }
2178 /* while loop will break here if sd == NULL */
2179 }
2180
2181 return cpu;
2182}
2183
2184#endif /* CONFIG_SMP */
1da177e4 2185
1da177e4
LT
2186/***
2187 * try_to_wake_up - wake up a thread
2188 * @p: the to-be-woken-up thread
2189 * @state: the mask of task states that can be woken
2190 * @sync: do a synchronous wakeup?
2191 *
2192 * Put it on the run-queue if it's not already there. The "current"
2193 * thread is always on the run-queue (except when the actual
2194 * re-schedule is in progress), and as such you're allowed to do
2195 * the simpler "current->state = TASK_RUNNING" to mark yourself
2196 * runnable without the overhead of this.
2197 *
2198 * returns failure only if the task is already active.
2199 */
36c8b586 2200static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2201{
cc367732 2202 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2203 unsigned long flags;
2204 long old_state;
70b97a7f 2205 struct rq *rq;
1da177e4 2206
b85d0667
IM
2207 if (!sched_feat(SYNC_WAKEUPS))
2208 sync = 0;
2209
2398f2c6
PZ
2210#ifdef CONFIG_SMP
2211 if (sched_feat(LB_WAKEUP_UPDATE)) {
2212 struct sched_domain *sd;
2213
2214 this_cpu = raw_smp_processor_id();
2215 cpu = task_cpu(p);
2216
2217 for_each_domain(this_cpu, sd) {
758b2cdc 2218 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2219 update_shares(sd);
2220 break;
2221 }
2222 }
2223 }
2224#endif
2225
04e2f174 2226 smp_wmb();
1da177e4
LT
2227 rq = task_rq_lock(p, &flags);
2228 old_state = p->state;
2229 if (!(old_state & state))
2230 goto out;
2231
dd41f596 2232 if (p->se.on_rq)
1da177e4
LT
2233 goto out_running;
2234
2235 cpu = task_cpu(p);
cc367732 2236 orig_cpu = cpu;
1da177e4
LT
2237 this_cpu = smp_processor_id();
2238
2239#ifdef CONFIG_SMP
2240 if (unlikely(task_running(rq, p)))
2241 goto out_activate;
2242
5d2f5a61
DA
2243 cpu = p->sched_class->select_task_rq(p, sync);
2244 if (cpu != orig_cpu) {
2245 set_task_cpu(p, cpu);
1da177e4
LT
2246 task_rq_unlock(rq, &flags);
2247 /* might preempt at this point */
2248 rq = task_rq_lock(p, &flags);
2249 old_state = p->state;
2250 if (!(old_state & state))
2251 goto out;
dd41f596 2252 if (p->se.on_rq)
1da177e4
LT
2253 goto out_running;
2254
2255 this_cpu = smp_processor_id();
2256 cpu = task_cpu(p);
2257 }
2258
e7693a36
GH
2259#ifdef CONFIG_SCHEDSTATS
2260 schedstat_inc(rq, ttwu_count);
2261 if (cpu == this_cpu)
2262 schedstat_inc(rq, ttwu_local);
2263 else {
2264 struct sched_domain *sd;
2265 for_each_domain(this_cpu, sd) {
758b2cdc 2266 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2267 schedstat_inc(sd, ttwu_wake_remote);
2268 break;
2269 }
2270 }
2271 }
6d6bc0ad 2272#endif /* CONFIG_SCHEDSTATS */
e7693a36 2273
1da177e4
LT
2274out_activate:
2275#endif /* CONFIG_SMP */
cc367732
IM
2276 schedstat_inc(p, se.nr_wakeups);
2277 if (sync)
2278 schedstat_inc(p, se.nr_wakeups_sync);
2279 if (orig_cpu != cpu)
2280 schedstat_inc(p, se.nr_wakeups_migrate);
2281 if (cpu == this_cpu)
2282 schedstat_inc(p, se.nr_wakeups_local);
2283 else
2284 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2285 update_rq_clock(rq);
dd41f596 2286 activate_task(rq, p, 1);
1da177e4
LT
2287 success = 1;
2288
2289out_running:
0a16b607 2290 trace_sched_wakeup(rq, p);
15afe09b 2291 check_preempt_curr(rq, p, sync);
4ae7d5ce 2292
1da177e4 2293 p->state = TASK_RUNNING;
9a897c5a
SR
2294#ifdef CONFIG_SMP
2295 if (p->sched_class->task_wake_up)
2296 p->sched_class->task_wake_up(rq, p);
2297#endif
1da177e4 2298out:
2087a1ad
GH
2299 current->se.last_wakeup = current->se.sum_exec_runtime;
2300
1da177e4
LT
2301 task_rq_unlock(rq, &flags);
2302
2303 return success;
2304}
2305
7ad5b3a5 2306int wake_up_process(struct task_struct *p)
1da177e4 2307{
d9514f6c 2308 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2309}
1da177e4
LT
2310EXPORT_SYMBOL(wake_up_process);
2311
7ad5b3a5 2312int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2313{
2314 return try_to_wake_up(p, state, 0);
2315}
2316
1da177e4
LT
2317/*
2318 * Perform scheduler related setup for a newly forked process p.
2319 * p is forked by current.
dd41f596
IM
2320 *
2321 * __sched_fork() is basic setup used by init_idle() too:
2322 */
2323static void __sched_fork(struct task_struct *p)
2324{
dd41f596
IM
2325 p->se.exec_start = 0;
2326 p->se.sum_exec_runtime = 0;
f6cf891c 2327 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2328 p->se.last_wakeup = 0;
2329 p->se.avg_overlap = 0;
6cfb0d5d
IM
2330
2331#ifdef CONFIG_SCHEDSTATS
2332 p->se.wait_start = 0;
dd41f596
IM
2333 p->se.sum_sleep_runtime = 0;
2334 p->se.sleep_start = 0;
dd41f596
IM
2335 p->se.block_start = 0;
2336 p->se.sleep_max = 0;
2337 p->se.block_max = 0;
2338 p->se.exec_max = 0;
eba1ed4b 2339 p->se.slice_max = 0;
dd41f596 2340 p->se.wait_max = 0;
6cfb0d5d 2341#endif
476d139c 2342
fa717060 2343 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2344 p->se.on_rq = 0;
4a55bd5e 2345 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2346
e107be36
AK
2347#ifdef CONFIG_PREEMPT_NOTIFIERS
2348 INIT_HLIST_HEAD(&p->preempt_notifiers);
2349#endif
2350
1da177e4
LT
2351 /*
2352 * We mark the process as running here, but have not actually
2353 * inserted it onto the runqueue yet. This guarantees that
2354 * nobody will actually run it, and a signal or other external
2355 * event cannot wake it up and insert it on the runqueue either.
2356 */
2357 p->state = TASK_RUNNING;
dd41f596
IM
2358}
2359
2360/*
2361 * fork()/clone()-time setup:
2362 */
2363void sched_fork(struct task_struct *p, int clone_flags)
2364{
2365 int cpu = get_cpu();
2366
2367 __sched_fork(p);
2368
2369#ifdef CONFIG_SMP
2370 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2371#endif
02e4bac2 2372 set_task_cpu(p, cpu);
b29739f9
IM
2373
2374 /*
2375 * Make sure we do not leak PI boosting priority to the child:
2376 */
2377 p->prio = current->normal_prio;
2ddbf952
HS
2378 if (!rt_prio(p->prio))
2379 p->sched_class = &fair_sched_class;
b29739f9 2380
52f17b6c 2381#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2382 if (likely(sched_info_on()))
52f17b6c 2383 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2384#endif
d6077cb8 2385#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2386 p->oncpu = 0;
2387#endif
1da177e4 2388#ifdef CONFIG_PREEMPT
4866cde0 2389 /* Want to start with kernel preemption disabled. */
a1261f54 2390 task_thread_info(p)->preempt_count = 1;
1da177e4 2391#endif
476d139c 2392 put_cpu();
1da177e4
LT
2393}
2394
2395/*
2396 * wake_up_new_task - wake up a newly created task for the first time.
2397 *
2398 * This function will do some initial scheduler statistics housekeeping
2399 * that must be done for every newly created context, then puts the task
2400 * on the runqueue and wakes it.
2401 */
7ad5b3a5 2402void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2403{
2404 unsigned long flags;
dd41f596 2405 struct rq *rq;
1da177e4
LT
2406
2407 rq = task_rq_lock(p, &flags);
147cbb4b 2408 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2409 update_rq_clock(rq);
1da177e4
LT
2410
2411 p->prio = effective_prio(p);
2412
b9dca1e0 2413 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2414 activate_task(rq, p, 0);
1da177e4 2415 } else {
1da177e4 2416 /*
dd41f596
IM
2417 * Let the scheduling class do new task startup
2418 * management (if any):
1da177e4 2419 */
ee0827d8 2420 p->sched_class->task_new(rq, p);
c09595f6 2421 inc_nr_running(rq);
1da177e4 2422 }
0a16b607 2423 trace_sched_wakeup_new(rq, p);
15afe09b 2424 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2425#ifdef CONFIG_SMP
2426 if (p->sched_class->task_wake_up)
2427 p->sched_class->task_wake_up(rq, p);
2428#endif
dd41f596 2429 task_rq_unlock(rq, &flags);
1da177e4
LT
2430}
2431
e107be36
AK
2432#ifdef CONFIG_PREEMPT_NOTIFIERS
2433
2434/**
421cee29
RD
2435 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2436 * @notifier: notifier struct to register
e107be36
AK
2437 */
2438void preempt_notifier_register(struct preempt_notifier *notifier)
2439{
2440 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2441}
2442EXPORT_SYMBOL_GPL(preempt_notifier_register);
2443
2444/**
2445 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2446 * @notifier: notifier struct to unregister
e107be36
AK
2447 *
2448 * This is safe to call from within a preemption notifier.
2449 */
2450void preempt_notifier_unregister(struct preempt_notifier *notifier)
2451{
2452 hlist_del(&notifier->link);
2453}
2454EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2455
2456static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2457{
2458 struct preempt_notifier *notifier;
2459 struct hlist_node *node;
2460
2461 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2462 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2463}
2464
2465static void
2466fire_sched_out_preempt_notifiers(struct task_struct *curr,
2467 struct task_struct *next)
2468{
2469 struct preempt_notifier *notifier;
2470 struct hlist_node *node;
2471
2472 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2473 notifier->ops->sched_out(notifier, next);
2474}
2475
6d6bc0ad 2476#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2477
2478static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2479{
2480}
2481
2482static void
2483fire_sched_out_preempt_notifiers(struct task_struct *curr,
2484 struct task_struct *next)
2485{
2486}
2487
6d6bc0ad 2488#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2489
4866cde0
NP
2490/**
2491 * prepare_task_switch - prepare to switch tasks
2492 * @rq: the runqueue preparing to switch
421cee29 2493 * @prev: the current task that is being switched out
4866cde0
NP
2494 * @next: the task we are going to switch to.
2495 *
2496 * This is called with the rq lock held and interrupts off. It must
2497 * be paired with a subsequent finish_task_switch after the context
2498 * switch.
2499 *
2500 * prepare_task_switch sets up locking and calls architecture specific
2501 * hooks.
2502 */
e107be36
AK
2503static inline void
2504prepare_task_switch(struct rq *rq, struct task_struct *prev,
2505 struct task_struct *next)
4866cde0 2506{
e107be36 2507 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2508 prepare_lock_switch(rq, next);
2509 prepare_arch_switch(next);
2510}
2511
1da177e4
LT
2512/**
2513 * finish_task_switch - clean up after a task-switch
344babaa 2514 * @rq: runqueue associated with task-switch
1da177e4
LT
2515 * @prev: the thread we just switched away from.
2516 *
4866cde0
NP
2517 * finish_task_switch must be called after the context switch, paired
2518 * with a prepare_task_switch call before the context switch.
2519 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2520 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2521 *
2522 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2523 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2524 * with the lock held can cause deadlocks; see schedule() for
2525 * details.)
2526 */
a9957449 2527static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2528 __releases(rq->lock)
2529{
1da177e4 2530 struct mm_struct *mm = rq->prev_mm;
55a101f8 2531 long prev_state;
1da177e4
LT
2532
2533 rq->prev_mm = NULL;
2534
2535 /*
2536 * A task struct has one reference for the use as "current".
c394cc9f 2537 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2538 * schedule one last time. The schedule call will never return, and
2539 * the scheduled task must drop that reference.
c394cc9f 2540 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2541 * still held, otherwise prev could be scheduled on another cpu, die
2542 * there before we look at prev->state, and then the reference would
2543 * be dropped twice.
2544 * Manfred Spraul <manfred@colorfullife.com>
2545 */
55a101f8 2546 prev_state = prev->state;
4866cde0
NP
2547 finish_arch_switch(prev);
2548 finish_lock_switch(rq, prev);
9a897c5a
SR
2549#ifdef CONFIG_SMP
2550 if (current->sched_class->post_schedule)
2551 current->sched_class->post_schedule(rq);
2552#endif
e8fa1362 2553
e107be36 2554 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2555 if (mm)
2556 mmdrop(mm);
c394cc9f 2557 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2558 /*
2559 * Remove function-return probe instances associated with this
2560 * task and put them back on the free list.
9761eea8 2561 */
c6fd91f0 2562 kprobe_flush_task(prev);
1da177e4 2563 put_task_struct(prev);
c6fd91f0 2564 }
1da177e4
LT
2565}
2566
2567/**
2568 * schedule_tail - first thing a freshly forked thread must call.
2569 * @prev: the thread we just switched away from.
2570 */
36c8b586 2571asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2572 __releases(rq->lock)
2573{
70b97a7f
IM
2574 struct rq *rq = this_rq();
2575
4866cde0
NP
2576 finish_task_switch(rq, prev);
2577#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2578 /* In this case, finish_task_switch does not reenable preemption */
2579 preempt_enable();
2580#endif
1da177e4 2581 if (current->set_child_tid)
b488893a 2582 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2583}
2584
2585/*
2586 * context_switch - switch to the new MM and the new
2587 * thread's register state.
2588 */
dd41f596 2589static inline void
70b97a7f 2590context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2591 struct task_struct *next)
1da177e4 2592{
dd41f596 2593 struct mm_struct *mm, *oldmm;
1da177e4 2594
e107be36 2595 prepare_task_switch(rq, prev, next);
0a16b607 2596 trace_sched_switch(rq, prev, next);
dd41f596
IM
2597 mm = next->mm;
2598 oldmm = prev->active_mm;
9226d125
ZA
2599 /*
2600 * For paravirt, this is coupled with an exit in switch_to to
2601 * combine the page table reload and the switch backend into
2602 * one hypercall.
2603 */
2604 arch_enter_lazy_cpu_mode();
2605
dd41f596 2606 if (unlikely(!mm)) {
1da177e4
LT
2607 next->active_mm = oldmm;
2608 atomic_inc(&oldmm->mm_count);
2609 enter_lazy_tlb(oldmm, next);
2610 } else
2611 switch_mm(oldmm, mm, next);
2612
dd41f596 2613 if (unlikely(!prev->mm)) {
1da177e4 2614 prev->active_mm = NULL;
1da177e4
LT
2615 rq->prev_mm = oldmm;
2616 }
3a5f5e48
IM
2617 /*
2618 * Since the runqueue lock will be released by the next
2619 * task (which is an invalid locking op but in the case
2620 * of the scheduler it's an obvious special-case), so we
2621 * do an early lockdep release here:
2622 */
2623#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2624 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2625#endif
1da177e4
LT
2626
2627 /* Here we just switch the register state and the stack. */
2628 switch_to(prev, next, prev);
2629
dd41f596
IM
2630 barrier();
2631 /*
2632 * this_rq must be evaluated again because prev may have moved
2633 * CPUs since it called schedule(), thus the 'rq' on its stack
2634 * frame will be invalid.
2635 */
2636 finish_task_switch(this_rq(), prev);
1da177e4
LT
2637}
2638
2639/*
2640 * nr_running, nr_uninterruptible and nr_context_switches:
2641 *
2642 * externally visible scheduler statistics: current number of runnable
2643 * threads, current number of uninterruptible-sleeping threads, total
2644 * number of context switches performed since bootup.
2645 */
2646unsigned long nr_running(void)
2647{
2648 unsigned long i, sum = 0;
2649
2650 for_each_online_cpu(i)
2651 sum += cpu_rq(i)->nr_running;
2652
2653 return sum;
2654}
2655
2656unsigned long nr_uninterruptible(void)
2657{
2658 unsigned long i, sum = 0;
2659
0a945022 2660 for_each_possible_cpu(i)
1da177e4
LT
2661 sum += cpu_rq(i)->nr_uninterruptible;
2662
2663 /*
2664 * Since we read the counters lockless, it might be slightly
2665 * inaccurate. Do not allow it to go below zero though:
2666 */
2667 if (unlikely((long)sum < 0))
2668 sum = 0;
2669
2670 return sum;
2671}
2672
2673unsigned long long nr_context_switches(void)
2674{
cc94abfc
SR
2675 int i;
2676 unsigned long long sum = 0;
1da177e4 2677
0a945022 2678 for_each_possible_cpu(i)
1da177e4
LT
2679 sum += cpu_rq(i)->nr_switches;
2680
2681 return sum;
2682}
2683
2684unsigned long nr_iowait(void)
2685{
2686 unsigned long i, sum = 0;
2687
0a945022 2688 for_each_possible_cpu(i)
1da177e4
LT
2689 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2690
2691 return sum;
2692}
2693
db1b1fef
JS
2694unsigned long nr_active(void)
2695{
2696 unsigned long i, running = 0, uninterruptible = 0;
2697
2698 for_each_online_cpu(i) {
2699 running += cpu_rq(i)->nr_running;
2700 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2701 }
2702
2703 if (unlikely((long)uninterruptible < 0))
2704 uninterruptible = 0;
2705
2706 return running + uninterruptible;
2707}
2708
48f24c4d 2709/*
dd41f596
IM
2710 * Update rq->cpu_load[] statistics. This function is usually called every
2711 * scheduler tick (TICK_NSEC).
48f24c4d 2712 */
dd41f596 2713static void update_cpu_load(struct rq *this_rq)
48f24c4d 2714{
495eca49 2715 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2716 int i, scale;
2717
2718 this_rq->nr_load_updates++;
dd41f596
IM
2719
2720 /* Update our load: */
2721 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2722 unsigned long old_load, new_load;
2723
2724 /* scale is effectively 1 << i now, and >> i divides by scale */
2725
2726 old_load = this_rq->cpu_load[i];
2727 new_load = this_load;
a25707f3
IM
2728 /*
2729 * Round up the averaging division if load is increasing. This
2730 * prevents us from getting stuck on 9 if the load is 10, for
2731 * example.
2732 */
2733 if (new_load > old_load)
2734 new_load += scale-1;
dd41f596
IM
2735 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2736 }
48f24c4d
IM
2737}
2738
dd41f596
IM
2739#ifdef CONFIG_SMP
2740
1da177e4
LT
2741/*
2742 * double_rq_lock - safely lock two runqueues
2743 *
2744 * Note this does not disable interrupts like task_rq_lock,
2745 * you need to do so manually before calling.
2746 */
70b97a7f 2747static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2748 __acquires(rq1->lock)
2749 __acquires(rq2->lock)
2750{
054b9108 2751 BUG_ON(!irqs_disabled());
1da177e4
LT
2752 if (rq1 == rq2) {
2753 spin_lock(&rq1->lock);
2754 __acquire(rq2->lock); /* Fake it out ;) */
2755 } else {
c96d145e 2756 if (rq1 < rq2) {
1da177e4 2757 spin_lock(&rq1->lock);
5e710e37 2758 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2759 } else {
2760 spin_lock(&rq2->lock);
5e710e37 2761 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2762 }
2763 }
6e82a3be
IM
2764 update_rq_clock(rq1);
2765 update_rq_clock(rq2);
1da177e4
LT
2766}
2767
2768/*
2769 * double_rq_unlock - safely unlock two runqueues
2770 *
2771 * Note this does not restore interrupts like task_rq_unlock,
2772 * you need to do so manually after calling.
2773 */
70b97a7f 2774static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2775 __releases(rq1->lock)
2776 __releases(rq2->lock)
2777{
2778 spin_unlock(&rq1->lock);
2779 if (rq1 != rq2)
2780 spin_unlock(&rq2->lock);
2781 else
2782 __release(rq2->lock);
2783}
2784
2785/*
2786 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2787 */
e8fa1362 2788static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2789 __releases(this_rq->lock)
2790 __acquires(busiest->lock)
2791 __acquires(this_rq->lock)
2792{
e8fa1362
SR
2793 int ret = 0;
2794
054b9108
KK
2795 if (unlikely(!irqs_disabled())) {
2796 /* printk() doesn't work good under rq->lock */
2797 spin_unlock(&this_rq->lock);
2798 BUG_ON(1);
2799 }
1da177e4 2800 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2801 if (busiest < this_rq) {
1da177e4
LT
2802 spin_unlock(&this_rq->lock);
2803 spin_lock(&busiest->lock);
5e710e37 2804 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2805 ret = 1;
1da177e4 2806 } else
5e710e37 2807 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2808 }
e8fa1362 2809 return ret;
1da177e4
LT
2810}
2811
cf7f8690 2812static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1b12bbc7
PZ
2813 __releases(busiest->lock)
2814{
2815 spin_unlock(&busiest->lock);
2816 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2817}
2818
1da177e4
LT
2819/*
2820 * If dest_cpu is allowed for this process, migrate the task to it.
2821 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2822 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2823 * the cpu_allowed mask is restored.
2824 */
36c8b586 2825static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2826{
70b97a7f 2827 struct migration_req req;
1da177e4 2828 unsigned long flags;
70b97a7f 2829 struct rq *rq;
1da177e4
LT
2830
2831 rq = task_rq_lock(p, &flags);
2832 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2833 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2834 goto out;
2835
0a16b607 2836 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2837 /* force the process onto the specified CPU */
2838 if (migrate_task(p, dest_cpu, &req)) {
2839 /* Need to wait for migration thread (might exit: take ref). */
2840 struct task_struct *mt = rq->migration_thread;
36c8b586 2841
1da177e4
LT
2842 get_task_struct(mt);
2843 task_rq_unlock(rq, &flags);
2844 wake_up_process(mt);
2845 put_task_struct(mt);
2846 wait_for_completion(&req.done);
36c8b586 2847
1da177e4
LT
2848 return;
2849 }
2850out:
2851 task_rq_unlock(rq, &flags);
2852}
2853
2854/*
476d139c
NP
2855 * sched_exec - execve() is a valuable balancing opportunity, because at
2856 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2857 */
2858void sched_exec(void)
2859{
1da177e4 2860 int new_cpu, this_cpu = get_cpu();
476d139c 2861 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2862 put_cpu();
476d139c
NP
2863 if (new_cpu != this_cpu)
2864 sched_migrate_task(current, new_cpu);
1da177e4
LT
2865}
2866
2867/*
2868 * pull_task - move a task from a remote runqueue to the local runqueue.
2869 * Both runqueues must be locked.
2870 */
dd41f596
IM
2871static void pull_task(struct rq *src_rq, struct task_struct *p,
2872 struct rq *this_rq, int this_cpu)
1da177e4 2873{
2e1cb74a 2874 deactivate_task(src_rq, p, 0);
1da177e4 2875 set_task_cpu(p, this_cpu);
dd41f596 2876 activate_task(this_rq, p, 0);
1da177e4
LT
2877 /*
2878 * Note that idle threads have a prio of MAX_PRIO, for this test
2879 * to be always true for them.
2880 */
15afe09b 2881 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2882}
2883
2884/*
2885 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2886 */
858119e1 2887static
70b97a7f 2888int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2889 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2890 int *all_pinned)
1da177e4
LT
2891{
2892 /*
2893 * We do not migrate tasks that are:
2894 * 1) running (obviously), or
2895 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2896 * 3) are cache-hot on their current CPU.
2897 */
cc367732
IM
2898 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2899 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2900 return 0;
cc367732 2901 }
81026794
NP
2902 *all_pinned = 0;
2903
cc367732
IM
2904 if (task_running(rq, p)) {
2905 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2906 return 0;
cc367732 2907 }
1da177e4 2908
da84d961
IM
2909 /*
2910 * Aggressive migration if:
2911 * 1) task is cache cold, or
2912 * 2) too many balance attempts have failed.
2913 */
2914
6bc1665b
IM
2915 if (!task_hot(p, rq->clock, sd) ||
2916 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2917#ifdef CONFIG_SCHEDSTATS
cc367732 2918 if (task_hot(p, rq->clock, sd)) {
da84d961 2919 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2920 schedstat_inc(p, se.nr_forced_migrations);
2921 }
da84d961
IM
2922#endif
2923 return 1;
2924 }
2925
cc367732
IM
2926 if (task_hot(p, rq->clock, sd)) {
2927 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2928 return 0;
cc367732 2929 }
1da177e4
LT
2930 return 1;
2931}
2932
e1d1484f
PW
2933static unsigned long
2934balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2935 unsigned long max_load_move, struct sched_domain *sd,
2936 enum cpu_idle_type idle, int *all_pinned,
2937 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2938{
051c6764 2939 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2940 struct task_struct *p;
2941 long rem_load_move = max_load_move;
1da177e4 2942
e1d1484f 2943 if (max_load_move == 0)
1da177e4
LT
2944 goto out;
2945
81026794
NP
2946 pinned = 1;
2947
1da177e4 2948 /*
dd41f596 2949 * Start the load-balancing iterator:
1da177e4 2950 */
dd41f596
IM
2951 p = iterator->start(iterator->arg);
2952next:
b82d9fdd 2953 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2954 goto out;
051c6764
PZ
2955
2956 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2957 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2958 p = iterator->next(iterator->arg);
2959 goto next;
1da177e4
LT
2960 }
2961
dd41f596 2962 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2963 pulled++;
dd41f596 2964 rem_load_move -= p->se.load.weight;
1da177e4 2965
2dd73a4f 2966 /*
b82d9fdd 2967 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2968 */
e1d1484f 2969 if (rem_load_move > 0) {
a4ac01c3
PW
2970 if (p->prio < *this_best_prio)
2971 *this_best_prio = p->prio;
dd41f596
IM
2972 p = iterator->next(iterator->arg);
2973 goto next;
1da177e4
LT
2974 }
2975out:
2976 /*
e1d1484f 2977 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2978 * so we can safely collect pull_task() stats here rather than
2979 * inside pull_task().
2980 */
2981 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2982
2983 if (all_pinned)
2984 *all_pinned = pinned;
e1d1484f
PW
2985
2986 return max_load_move - rem_load_move;
1da177e4
LT
2987}
2988
dd41f596 2989/*
43010659
PW
2990 * move_tasks tries to move up to max_load_move weighted load from busiest to
2991 * this_rq, as part of a balancing operation within domain "sd".
2992 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2993 *
2994 * Called with both runqueues locked.
2995 */
2996static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2997 unsigned long max_load_move,
dd41f596
IM
2998 struct sched_domain *sd, enum cpu_idle_type idle,
2999 int *all_pinned)
3000{
5522d5d5 3001 const struct sched_class *class = sched_class_highest;
43010659 3002 unsigned long total_load_moved = 0;
a4ac01c3 3003 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3004
3005 do {
43010659
PW
3006 total_load_moved +=
3007 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3008 max_load_move - total_load_moved,
a4ac01c3 3009 sd, idle, all_pinned, &this_best_prio);
dd41f596 3010 class = class->next;
c4acb2c0
GH
3011
3012 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3013 break;
3014
43010659 3015 } while (class && max_load_move > total_load_moved);
dd41f596 3016
43010659
PW
3017 return total_load_moved > 0;
3018}
3019
e1d1484f
PW
3020static int
3021iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3022 struct sched_domain *sd, enum cpu_idle_type idle,
3023 struct rq_iterator *iterator)
3024{
3025 struct task_struct *p = iterator->start(iterator->arg);
3026 int pinned = 0;
3027
3028 while (p) {
3029 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3030 pull_task(busiest, p, this_rq, this_cpu);
3031 /*
3032 * Right now, this is only the second place pull_task()
3033 * is called, so we can safely collect pull_task()
3034 * stats here rather than inside pull_task().
3035 */
3036 schedstat_inc(sd, lb_gained[idle]);
3037
3038 return 1;
3039 }
3040 p = iterator->next(iterator->arg);
3041 }
3042
3043 return 0;
3044}
3045
43010659
PW
3046/*
3047 * move_one_task tries to move exactly one task from busiest to this_rq, as
3048 * part of active balancing operations within "domain".
3049 * Returns 1 if successful and 0 otherwise.
3050 *
3051 * Called with both runqueues locked.
3052 */
3053static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3054 struct sched_domain *sd, enum cpu_idle_type idle)
3055{
5522d5d5 3056 const struct sched_class *class;
43010659
PW
3057
3058 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3059 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3060 return 1;
3061
3062 return 0;
dd41f596
IM
3063}
3064
1da177e4
LT
3065/*
3066 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3067 * domain. It calculates and returns the amount of weighted load which
3068 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3069 */
3070static struct sched_group *
3071find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3072 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3073 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3074{
3075 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3076 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3077 unsigned long max_pull;
2dd73a4f
PW
3078 unsigned long busiest_load_per_task, busiest_nr_running;
3079 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3080 int load_idx, group_imb = 0;
5c45bf27
SS
3081#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3082 int power_savings_balance = 1;
3083 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3084 unsigned long min_nr_running = ULONG_MAX;
3085 struct sched_group *group_min = NULL, *group_leader = NULL;
3086#endif
1da177e4
LT
3087
3088 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3089 busiest_load_per_task = busiest_nr_running = 0;
3090 this_load_per_task = this_nr_running = 0;
408ed066 3091
d15bcfdb 3092 if (idle == CPU_NOT_IDLE)
7897986b 3093 load_idx = sd->busy_idx;
d15bcfdb 3094 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3095 load_idx = sd->newidle_idx;
3096 else
3097 load_idx = sd->idle_idx;
1da177e4
LT
3098
3099 do {
908a7c1b 3100 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3101 int local_group;
3102 int i;
908a7c1b 3103 int __group_imb = 0;
783609c6 3104 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3105 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3106 unsigned long sum_avg_load_per_task;
3107 unsigned long avg_load_per_task;
1da177e4 3108
758b2cdc
RR
3109 local_group = cpumask_test_cpu(this_cpu,
3110 sched_group_cpus(group));
1da177e4 3111
783609c6 3112 if (local_group)
758b2cdc 3113 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3114
1da177e4 3115 /* Tally up the load of all CPUs in the group */
2dd73a4f 3116 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3117 sum_avg_load_per_task = avg_load_per_task = 0;
3118
908a7c1b
KC
3119 max_cpu_load = 0;
3120 min_cpu_load = ~0UL;
1da177e4 3121
758b2cdc
RR
3122 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3123 struct rq *rq = cpu_rq(i);
2dd73a4f 3124
9439aab8 3125 if (*sd_idle && rq->nr_running)
5969fe06
NP
3126 *sd_idle = 0;
3127
1da177e4 3128 /* Bias balancing toward cpus of our domain */
783609c6
SS
3129 if (local_group) {
3130 if (idle_cpu(i) && !first_idle_cpu) {
3131 first_idle_cpu = 1;
3132 balance_cpu = i;
3133 }
3134
a2000572 3135 load = target_load(i, load_idx);
908a7c1b 3136 } else {
a2000572 3137 load = source_load(i, load_idx);
908a7c1b
KC
3138 if (load > max_cpu_load)
3139 max_cpu_load = load;
3140 if (min_cpu_load > load)
3141 min_cpu_load = load;
3142 }
1da177e4
LT
3143
3144 avg_load += load;
2dd73a4f 3145 sum_nr_running += rq->nr_running;
dd41f596 3146 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3147
3148 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3149 }
3150
783609c6
SS
3151 /*
3152 * First idle cpu or the first cpu(busiest) in this sched group
3153 * is eligible for doing load balancing at this and above
9439aab8
SS
3154 * domains. In the newly idle case, we will allow all the cpu's
3155 * to do the newly idle load balance.
783609c6 3156 */
9439aab8
SS
3157 if (idle != CPU_NEWLY_IDLE && local_group &&
3158 balance_cpu != this_cpu && balance) {
783609c6
SS
3159 *balance = 0;
3160 goto ret;
3161 }
3162
1da177e4 3163 total_load += avg_load;
5517d86b 3164 total_pwr += group->__cpu_power;
1da177e4
LT
3165
3166 /* Adjust by relative CPU power of the group */
5517d86b
ED
3167 avg_load = sg_div_cpu_power(group,
3168 avg_load * SCHED_LOAD_SCALE);
1da177e4 3169
408ed066
PZ
3170
3171 /*
3172 * Consider the group unbalanced when the imbalance is larger
3173 * than the average weight of two tasks.
3174 *
3175 * APZ: with cgroup the avg task weight can vary wildly and
3176 * might not be a suitable number - should we keep a
3177 * normalized nr_running number somewhere that negates
3178 * the hierarchy?
3179 */
3180 avg_load_per_task = sg_div_cpu_power(group,
3181 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3182
3183 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3184 __group_imb = 1;
3185
5517d86b 3186 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3187
1da177e4
LT
3188 if (local_group) {
3189 this_load = avg_load;
3190 this = group;
2dd73a4f
PW
3191 this_nr_running = sum_nr_running;
3192 this_load_per_task = sum_weighted_load;
3193 } else if (avg_load > max_load &&
908a7c1b 3194 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3195 max_load = avg_load;
3196 busiest = group;
2dd73a4f
PW
3197 busiest_nr_running = sum_nr_running;
3198 busiest_load_per_task = sum_weighted_load;
908a7c1b 3199 group_imb = __group_imb;
1da177e4 3200 }
5c45bf27
SS
3201
3202#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3203 /*
3204 * Busy processors will not participate in power savings
3205 * balance.
3206 */
dd41f596
IM
3207 if (idle == CPU_NOT_IDLE ||
3208 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3209 goto group_next;
5c45bf27
SS
3210
3211 /*
3212 * If the local group is idle or completely loaded
3213 * no need to do power savings balance at this domain
3214 */
3215 if (local_group && (this_nr_running >= group_capacity ||
3216 !this_nr_running))
3217 power_savings_balance = 0;
3218
dd41f596 3219 /*
5c45bf27
SS
3220 * If a group is already running at full capacity or idle,
3221 * don't include that group in power savings calculations
dd41f596
IM
3222 */
3223 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3224 || !sum_nr_running)
dd41f596 3225 goto group_next;
5c45bf27 3226
dd41f596 3227 /*
5c45bf27 3228 * Calculate the group which has the least non-idle load.
dd41f596
IM
3229 * This is the group from where we need to pick up the load
3230 * for saving power
3231 */
3232 if ((sum_nr_running < min_nr_running) ||
3233 (sum_nr_running == min_nr_running &&
758b2cdc
RR
3234 cpumask_first(sched_group_cpus(group)) <
3235 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3236 group_min = group;
3237 min_nr_running = sum_nr_running;
5c45bf27
SS
3238 min_load_per_task = sum_weighted_load /
3239 sum_nr_running;
dd41f596 3240 }
5c45bf27 3241
dd41f596 3242 /*
5c45bf27 3243 * Calculate the group which is almost near its
dd41f596
IM
3244 * capacity but still has some space to pick up some load
3245 * from other group and save more power
3246 */
3247 if (sum_nr_running <= group_capacity - 1) {
3248 if (sum_nr_running > leader_nr_running ||
3249 (sum_nr_running == leader_nr_running &&
758b2cdc
RR
3250 cpumask_first(sched_group_cpus(group)) >
3251 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3252 group_leader = group;
3253 leader_nr_running = sum_nr_running;
3254 }
48f24c4d 3255 }
5c45bf27
SS
3256group_next:
3257#endif
1da177e4
LT
3258 group = group->next;
3259 } while (group != sd->groups);
3260
2dd73a4f 3261 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3262 goto out_balanced;
3263
3264 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3265
3266 if (this_load >= avg_load ||
3267 100*max_load <= sd->imbalance_pct*this_load)
3268 goto out_balanced;
3269
2dd73a4f 3270 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3271 if (group_imb)
3272 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3273
1da177e4
LT
3274 /*
3275 * We're trying to get all the cpus to the average_load, so we don't
3276 * want to push ourselves above the average load, nor do we wish to
3277 * reduce the max loaded cpu below the average load, as either of these
3278 * actions would just result in more rebalancing later, and ping-pong
3279 * tasks around. Thus we look for the minimum possible imbalance.
3280 * Negative imbalances (*we* are more loaded than anyone else) will
3281 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3282 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3283 * appear as very large values with unsigned longs.
3284 */
2dd73a4f
PW
3285 if (max_load <= busiest_load_per_task)
3286 goto out_balanced;
3287
3288 /*
3289 * In the presence of smp nice balancing, certain scenarios can have
3290 * max load less than avg load(as we skip the groups at or below
3291 * its cpu_power, while calculating max_load..)
3292 */
3293 if (max_load < avg_load) {
3294 *imbalance = 0;
3295 goto small_imbalance;
3296 }
0c117f1b
SS
3297
3298 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3299 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3300
1da177e4 3301 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3302 *imbalance = min(max_pull * busiest->__cpu_power,
3303 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3304 / SCHED_LOAD_SCALE;
3305
2dd73a4f
PW
3306 /*
3307 * if *imbalance is less than the average load per runnable task
3308 * there is no gaurantee that any tasks will be moved so we'll have
3309 * a think about bumping its value to force at least one task to be
3310 * moved
3311 */
7fd0d2dd 3312 if (*imbalance < busiest_load_per_task) {
48f24c4d 3313 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3314 unsigned int imbn;
3315
3316small_imbalance:
3317 pwr_move = pwr_now = 0;
3318 imbn = 2;
3319 if (this_nr_running) {
3320 this_load_per_task /= this_nr_running;
3321 if (busiest_load_per_task > this_load_per_task)
3322 imbn = 1;
3323 } else
408ed066 3324 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3325
01c8c57d 3326 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3327 busiest_load_per_task * imbn) {
2dd73a4f 3328 *imbalance = busiest_load_per_task;
1da177e4
LT
3329 return busiest;
3330 }
3331
3332 /*
3333 * OK, we don't have enough imbalance to justify moving tasks,
3334 * however we may be able to increase total CPU power used by
3335 * moving them.
3336 */
3337
5517d86b
ED
3338 pwr_now += busiest->__cpu_power *
3339 min(busiest_load_per_task, max_load);
3340 pwr_now += this->__cpu_power *
3341 min(this_load_per_task, this_load);
1da177e4
LT
3342 pwr_now /= SCHED_LOAD_SCALE;
3343
3344 /* Amount of load we'd subtract */
5517d86b
ED
3345 tmp = sg_div_cpu_power(busiest,
3346 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3347 if (max_load > tmp)
5517d86b 3348 pwr_move += busiest->__cpu_power *
2dd73a4f 3349 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3350
3351 /* Amount of load we'd add */
5517d86b 3352 if (max_load * busiest->__cpu_power <
33859f7f 3353 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3354 tmp = sg_div_cpu_power(this,
3355 max_load * busiest->__cpu_power);
1da177e4 3356 else
5517d86b
ED
3357 tmp = sg_div_cpu_power(this,
3358 busiest_load_per_task * SCHED_LOAD_SCALE);
3359 pwr_move += this->__cpu_power *
3360 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3361 pwr_move /= SCHED_LOAD_SCALE;
3362
3363 /* Move if we gain throughput */
7fd0d2dd
SS
3364 if (pwr_move > pwr_now)
3365 *imbalance = busiest_load_per_task;
1da177e4
LT
3366 }
3367
1da177e4
LT
3368 return busiest;
3369
3370out_balanced:
5c45bf27 3371#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3372 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3373 goto ret;
1da177e4 3374
5c45bf27
SS
3375 if (this == group_leader && group_leader != group_min) {
3376 *imbalance = min_load_per_task;
3377 return group_min;
3378 }
5c45bf27 3379#endif
783609c6 3380ret:
1da177e4
LT
3381 *imbalance = 0;
3382 return NULL;
3383}
3384
3385/*
3386 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3387 */
70b97a7f 3388static struct rq *
d15bcfdb 3389find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3390 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3391{
70b97a7f 3392 struct rq *busiest = NULL, *rq;
2dd73a4f 3393 unsigned long max_load = 0;
1da177e4
LT
3394 int i;
3395
758b2cdc 3396 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3397 unsigned long wl;
0a2966b4
CL
3398
3399 if (!cpu_isset(i, *cpus))
3400 continue;
3401
48f24c4d 3402 rq = cpu_rq(i);
dd41f596 3403 wl = weighted_cpuload(i);
2dd73a4f 3404
dd41f596 3405 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3406 continue;
1da177e4 3407
dd41f596
IM
3408 if (wl > max_load) {
3409 max_load = wl;
48f24c4d 3410 busiest = rq;
1da177e4
LT
3411 }
3412 }
3413
3414 return busiest;
3415}
3416
77391d71
NP
3417/*
3418 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3419 * so long as it is large enough.
3420 */
3421#define MAX_PINNED_INTERVAL 512
3422
1da177e4
LT
3423/*
3424 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3425 * tasks if there is an imbalance.
1da177e4 3426 */
70b97a7f 3427static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3428 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3429 int *balance, cpumask_t *cpus)
1da177e4 3430{
43010659 3431 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3432 struct sched_group *group;
1da177e4 3433 unsigned long imbalance;
70b97a7f 3434 struct rq *busiest;
fe2eea3f 3435 unsigned long flags;
5969fe06 3436
7c16ec58
MT
3437 cpus_setall(*cpus);
3438
89c4710e
SS
3439 /*
3440 * When power savings policy is enabled for the parent domain, idle
3441 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3442 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3443 * portraying it as CPU_NOT_IDLE.
89c4710e 3444 */
d15bcfdb 3445 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3446 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3447 sd_idle = 1;
1da177e4 3448
2d72376b 3449 schedstat_inc(sd, lb_count[idle]);
1da177e4 3450
0a2966b4 3451redo:
c8cba857 3452 update_shares(sd);
0a2966b4 3453 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3454 cpus, balance);
783609c6 3455
06066714 3456 if (*balance == 0)
783609c6 3457 goto out_balanced;
783609c6 3458
1da177e4
LT
3459 if (!group) {
3460 schedstat_inc(sd, lb_nobusyg[idle]);
3461 goto out_balanced;
3462 }
3463
7c16ec58 3464 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3465 if (!busiest) {
3466 schedstat_inc(sd, lb_nobusyq[idle]);
3467 goto out_balanced;
3468 }
3469
db935dbd 3470 BUG_ON(busiest == this_rq);
1da177e4
LT
3471
3472 schedstat_add(sd, lb_imbalance[idle], imbalance);
3473
43010659 3474 ld_moved = 0;
1da177e4
LT
3475 if (busiest->nr_running > 1) {
3476 /*
3477 * Attempt to move tasks. If find_busiest_group has found
3478 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3479 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3480 * correctly treated as an imbalance.
3481 */
fe2eea3f 3482 local_irq_save(flags);
e17224bf 3483 double_rq_lock(this_rq, busiest);
43010659 3484 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3485 imbalance, sd, idle, &all_pinned);
e17224bf 3486 double_rq_unlock(this_rq, busiest);
fe2eea3f 3487 local_irq_restore(flags);
81026794 3488
46cb4b7c
SS
3489 /*
3490 * some other cpu did the load balance for us.
3491 */
43010659 3492 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3493 resched_cpu(this_cpu);
3494
81026794 3495 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3496 if (unlikely(all_pinned)) {
7c16ec58
MT
3497 cpu_clear(cpu_of(busiest), *cpus);
3498 if (!cpus_empty(*cpus))
0a2966b4 3499 goto redo;
81026794 3500 goto out_balanced;
0a2966b4 3501 }
1da177e4 3502 }
81026794 3503
43010659 3504 if (!ld_moved) {
1da177e4
LT
3505 schedstat_inc(sd, lb_failed[idle]);
3506 sd->nr_balance_failed++;
3507
3508 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3509
fe2eea3f 3510 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3511
3512 /* don't kick the migration_thread, if the curr
3513 * task on busiest cpu can't be moved to this_cpu
3514 */
3515 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3516 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3517 all_pinned = 1;
3518 goto out_one_pinned;
3519 }
3520
1da177e4
LT
3521 if (!busiest->active_balance) {
3522 busiest->active_balance = 1;
3523 busiest->push_cpu = this_cpu;
81026794 3524 active_balance = 1;
1da177e4 3525 }
fe2eea3f 3526 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3527 if (active_balance)
1da177e4
LT
3528 wake_up_process(busiest->migration_thread);
3529
3530 /*
3531 * We've kicked active balancing, reset the failure
3532 * counter.
3533 */
39507451 3534 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3535 }
81026794 3536 } else
1da177e4
LT
3537 sd->nr_balance_failed = 0;
3538
81026794 3539 if (likely(!active_balance)) {
1da177e4
LT
3540 /* We were unbalanced, so reset the balancing interval */
3541 sd->balance_interval = sd->min_interval;
81026794
NP
3542 } else {
3543 /*
3544 * If we've begun active balancing, start to back off. This
3545 * case may not be covered by the all_pinned logic if there
3546 * is only 1 task on the busy runqueue (because we don't call
3547 * move_tasks).
3548 */
3549 if (sd->balance_interval < sd->max_interval)
3550 sd->balance_interval *= 2;
1da177e4
LT
3551 }
3552
43010659 3553 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3554 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3555 ld_moved = -1;
3556
3557 goto out;
1da177e4
LT
3558
3559out_balanced:
1da177e4
LT
3560 schedstat_inc(sd, lb_balanced[idle]);
3561
16cfb1c0 3562 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3563
3564out_one_pinned:
1da177e4 3565 /* tune up the balancing interval */
77391d71
NP
3566 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3567 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3568 sd->balance_interval *= 2;
3569
48f24c4d 3570 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3571 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3572 ld_moved = -1;
3573 else
3574 ld_moved = 0;
3575out:
c8cba857
PZ
3576 if (ld_moved)
3577 update_shares(sd);
c09595f6 3578 return ld_moved;
1da177e4
LT
3579}
3580
3581/*
3582 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3583 * tasks if there is an imbalance.
3584 *
d15bcfdb 3585 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3586 * this_rq is locked.
3587 */
48f24c4d 3588static int
7c16ec58
MT
3589load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3590 cpumask_t *cpus)
1da177e4
LT
3591{
3592 struct sched_group *group;
70b97a7f 3593 struct rq *busiest = NULL;
1da177e4 3594 unsigned long imbalance;
43010659 3595 int ld_moved = 0;
5969fe06 3596 int sd_idle = 0;
969bb4e4 3597 int all_pinned = 0;
7c16ec58
MT
3598
3599 cpus_setall(*cpus);
5969fe06 3600
89c4710e
SS
3601 /*
3602 * When power savings policy is enabled for the parent domain, idle
3603 * sibling can pick up load irrespective of busy siblings. In this case,
3604 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3605 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3606 */
3607 if (sd->flags & SD_SHARE_CPUPOWER &&
3608 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3609 sd_idle = 1;
1da177e4 3610
2d72376b 3611 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3612redo:
3e5459b4 3613 update_shares_locked(this_rq, sd);
d15bcfdb 3614 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3615 &sd_idle, cpus, NULL);
1da177e4 3616 if (!group) {
d15bcfdb 3617 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3618 goto out_balanced;
1da177e4
LT
3619 }
3620
7c16ec58 3621 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3622 if (!busiest) {
d15bcfdb 3623 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3624 goto out_balanced;
1da177e4
LT
3625 }
3626
db935dbd
NP
3627 BUG_ON(busiest == this_rq);
3628
d15bcfdb 3629 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3630
43010659 3631 ld_moved = 0;
d6d5cfaf
NP
3632 if (busiest->nr_running > 1) {
3633 /* Attempt to move tasks */
3634 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3635 /* this_rq->clock is already updated */
3636 update_rq_clock(busiest);
43010659 3637 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3638 imbalance, sd, CPU_NEWLY_IDLE,
3639 &all_pinned);
1b12bbc7 3640 double_unlock_balance(this_rq, busiest);
0a2966b4 3641
969bb4e4 3642 if (unlikely(all_pinned)) {
7c16ec58
MT
3643 cpu_clear(cpu_of(busiest), *cpus);
3644 if (!cpus_empty(*cpus))
0a2966b4
CL
3645 goto redo;
3646 }
d6d5cfaf
NP
3647 }
3648
43010659 3649 if (!ld_moved) {
d15bcfdb 3650 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3651 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3652 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3653 return -1;
3654 } else
16cfb1c0 3655 sd->nr_balance_failed = 0;
1da177e4 3656
3e5459b4 3657 update_shares_locked(this_rq, sd);
43010659 3658 return ld_moved;
16cfb1c0
NP
3659
3660out_balanced:
d15bcfdb 3661 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3662 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3663 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3664 return -1;
16cfb1c0 3665 sd->nr_balance_failed = 0;
48f24c4d 3666
16cfb1c0 3667 return 0;
1da177e4
LT
3668}
3669
3670/*
3671 * idle_balance is called by schedule() if this_cpu is about to become
3672 * idle. Attempts to pull tasks from other CPUs.
3673 */
70b97a7f 3674static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3675{
3676 struct sched_domain *sd;
dd41f596
IM
3677 int pulled_task = -1;
3678 unsigned long next_balance = jiffies + HZ;
7c16ec58 3679 cpumask_t tmpmask;
1da177e4
LT
3680
3681 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3682 unsigned long interval;
3683
3684 if (!(sd->flags & SD_LOAD_BALANCE))
3685 continue;
3686
3687 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3688 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3689 pulled_task = load_balance_newidle(this_cpu, this_rq,
3690 sd, &tmpmask);
92c4ca5c
CL
3691
3692 interval = msecs_to_jiffies(sd->balance_interval);
3693 if (time_after(next_balance, sd->last_balance + interval))
3694 next_balance = sd->last_balance + interval;
3695 if (pulled_task)
3696 break;
1da177e4 3697 }
dd41f596 3698 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3699 /*
3700 * We are going idle. next_balance may be set based on
3701 * a busy processor. So reset next_balance.
3702 */
3703 this_rq->next_balance = next_balance;
dd41f596 3704 }
1da177e4
LT
3705}
3706
3707/*
3708 * active_load_balance is run by migration threads. It pushes running tasks
3709 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3710 * running on each physical CPU where possible, and avoids physical /
3711 * logical imbalances.
3712 *
3713 * Called with busiest_rq locked.
3714 */
70b97a7f 3715static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3716{
39507451 3717 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3718 struct sched_domain *sd;
3719 struct rq *target_rq;
39507451 3720
48f24c4d 3721 /* Is there any task to move? */
39507451 3722 if (busiest_rq->nr_running <= 1)
39507451
NP
3723 return;
3724
3725 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3726
3727 /*
39507451 3728 * This condition is "impossible", if it occurs
41a2d6cf 3729 * we need to fix it. Originally reported by
39507451 3730 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3731 */
39507451 3732 BUG_ON(busiest_rq == target_rq);
1da177e4 3733
39507451
NP
3734 /* move a task from busiest_rq to target_rq */
3735 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3736 update_rq_clock(busiest_rq);
3737 update_rq_clock(target_rq);
39507451
NP
3738
3739 /* Search for an sd spanning us and the target CPU. */
c96d145e 3740 for_each_domain(target_cpu, sd) {
39507451 3741 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3742 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3743 break;
c96d145e 3744 }
39507451 3745
48f24c4d 3746 if (likely(sd)) {
2d72376b 3747 schedstat_inc(sd, alb_count);
39507451 3748
43010659
PW
3749 if (move_one_task(target_rq, target_cpu, busiest_rq,
3750 sd, CPU_IDLE))
48f24c4d
IM
3751 schedstat_inc(sd, alb_pushed);
3752 else
3753 schedstat_inc(sd, alb_failed);
3754 }
1b12bbc7 3755 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3756}
3757
46cb4b7c
SS
3758#ifdef CONFIG_NO_HZ
3759static struct {
3760 atomic_t load_balancer;
41a2d6cf 3761 cpumask_t cpu_mask;
46cb4b7c
SS
3762} nohz ____cacheline_aligned = {
3763 .load_balancer = ATOMIC_INIT(-1),
3764 .cpu_mask = CPU_MASK_NONE,
3765};
3766
7835b98b 3767/*
46cb4b7c
SS
3768 * This routine will try to nominate the ilb (idle load balancing)
3769 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3770 * load balancing on behalf of all those cpus. If all the cpus in the system
3771 * go into this tickless mode, then there will be no ilb owner (as there is
3772 * no need for one) and all the cpus will sleep till the next wakeup event
3773 * arrives...
3774 *
3775 * For the ilb owner, tick is not stopped. And this tick will be used
3776 * for idle load balancing. ilb owner will still be part of
3777 * nohz.cpu_mask..
7835b98b 3778 *
46cb4b7c
SS
3779 * While stopping the tick, this cpu will become the ilb owner if there
3780 * is no other owner. And will be the owner till that cpu becomes busy
3781 * or if all cpus in the system stop their ticks at which point
3782 * there is no need for ilb owner.
3783 *
3784 * When the ilb owner becomes busy, it nominates another owner, during the
3785 * next busy scheduler_tick()
3786 */
3787int select_nohz_load_balancer(int stop_tick)
3788{
3789 int cpu = smp_processor_id();
3790
3791 if (stop_tick) {
3792 cpu_set(cpu, nohz.cpu_mask);
3793 cpu_rq(cpu)->in_nohz_recently = 1;
3794
3795 /*
3796 * If we are going offline and still the leader, give up!
3797 */
e761b772 3798 if (!cpu_active(cpu) &&
46cb4b7c
SS
3799 atomic_read(&nohz.load_balancer) == cpu) {
3800 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3801 BUG();
3802 return 0;
3803 }
3804
3805 /* time for ilb owner also to sleep */
3806 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3807 if (atomic_read(&nohz.load_balancer) == cpu)
3808 atomic_set(&nohz.load_balancer, -1);
3809 return 0;
3810 }
3811
3812 if (atomic_read(&nohz.load_balancer) == -1) {
3813 /* make me the ilb owner */
3814 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3815 return 1;
3816 } else if (atomic_read(&nohz.load_balancer) == cpu)
3817 return 1;
3818 } else {
3819 if (!cpu_isset(cpu, nohz.cpu_mask))
3820 return 0;
3821
3822 cpu_clear(cpu, nohz.cpu_mask);
3823
3824 if (atomic_read(&nohz.load_balancer) == cpu)
3825 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3826 BUG();
3827 }
3828 return 0;
3829}
3830#endif
3831
3832static DEFINE_SPINLOCK(balancing);
3833
3834/*
7835b98b
CL
3835 * It checks each scheduling domain to see if it is due to be balanced,
3836 * and initiates a balancing operation if so.
3837 *
3838 * Balancing parameters are set up in arch_init_sched_domains.
3839 */
a9957449 3840static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3841{
46cb4b7c
SS
3842 int balance = 1;
3843 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3844 unsigned long interval;
3845 struct sched_domain *sd;
46cb4b7c 3846 /* Earliest time when we have to do rebalance again */
c9819f45 3847 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3848 int update_next_balance = 0;
d07355f5 3849 int need_serialize;
7c16ec58 3850 cpumask_t tmp;
1da177e4 3851
46cb4b7c 3852 for_each_domain(cpu, sd) {
1da177e4
LT
3853 if (!(sd->flags & SD_LOAD_BALANCE))
3854 continue;
3855
3856 interval = sd->balance_interval;
d15bcfdb 3857 if (idle != CPU_IDLE)
1da177e4
LT
3858 interval *= sd->busy_factor;
3859
3860 /* scale ms to jiffies */
3861 interval = msecs_to_jiffies(interval);
3862 if (unlikely(!interval))
3863 interval = 1;
dd41f596
IM
3864 if (interval > HZ*NR_CPUS/10)
3865 interval = HZ*NR_CPUS/10;
3866
d07355f5 3867 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3868
d07355f5 3869 if (need_serialize) {
08c183f3
CL
3870 if (!spin_trylock(&balancing))
3871 goto out;
3872 }
3873
c9819f45 3874 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3875 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3876 /*
3877 * We've pulled tasks over so either we're no
5969fe06
NP
3878 * longer idle, or one of our SMT siblings is
3879 * not idle.
3880 */
d15bcfdb 3881 idle = CPU_NOT_IDLE;
1da177e4 3882 }
1bd77f2d 3883 sd->last_balance = jiffies;
1da177e4 3884 }
d07355f5 3885 if (need_serialize)
08c183f3
CL
3886 spin_unlock(&balancing);
3887out:
f549da84 3888 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3889 next_balance = sd->last_balance + interval;
f549da84
SS
3890 update_next_balance = 1;
3891 }
783609c6
SS
3892
3893 /*
3894 * Stop the load balance at this level. There is another
3895 * CPU in our sched group which is doing load balancing more
3896 * actively.
3897 */
3898 if (!balance)
3899 break;
1da177e4 3900 }
f549da84
SS
3901
3902 /*
3903 * next_balance will be updated only when there is a need.
3904 * When the cpu is attached to null domain for ex, it will not be
3905 * updated.
3906 */
3907 if (likely(update_next_balance))
3908 rq->next_balance = next_balance;
46cb4b7c
SS
3909}
3910
3911/*
3912 * run_rebalance_domains is triggered when needed from the scheduler tick.
3913 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3914 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3915 */
3916static void run_rebalance_domains(struct softirq_action *h)
3917{
dd41f596
IM
3918 int this_cpu = smp_processor_id();
3919 struct rq *this_rq = cpu_rq(this_cpu);
3920 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3921 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3922
dd41f596 3923 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3924
3925#ifdef CONFIG_NO_HZ
3926 /*
3927 * If this cpu is the owner for idle load balancing, then do the
3928 * balancing on behalf of the other idle cpus whose ticks are
3929 * stopped.
3930 */
dd41f596
IM
3931 if (this_rq->idle_at_tick &&
3932 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3933 cpumask_t cpus = nohz.cpu_mask;
3934 struct rq *rq;
3935 int balance_cpu;
3936
dd41f596 3937 cpu_clear(this_cpu, cpus);
abcd083a 3938 for_each_cpu(balance_cpu, &cpus) {
46cb4b7c
SS
3939 /*
3940 * If this cpu gets work to do, stop the load balancing
3941 * work being done for other cpus. Next load
3942 * balancing owner will pick it up.
3943 */
3944 if (need_resched())
3945 break;
3946
de0cf899 3947 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3948
3949 rq = cpu_rq(balance_cpu);
dd41f596
IM
3950 if (time_after(this_rq->next_balance, rq->next_balance))
3951 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3952 }
3953 }
3954#endif
3955}
3956
3957/*
3958 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3959 *
3960 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3961 * idle load balancing owner or decide to stop the periodic load balancing,
3962 * if the whole system is idle.
3963 */
dd41f596 3964static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3965{
46cb4b7c
SS
3966#ifdef CONFIG_NO_HZ
3967 /*
3968 * If we were in the nohz mode recently and busy at the current
3969 * scheduler tick, then check if we need to nominate new idle
3970 * load balancer.
3971 */
3972 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3973 rq->in_nohz_recently = 0;
3974
3975 if (atomic_read(&nohz.load_balancer) == cpu) {
3976 cpu_clear(cpu, nohz.cpu_mask);
3977 atomic_set(&nohz.load_balancer, -1);
3978 }
3979
3980 if (atomic_read(&nohz.load_balancer) == -1) {
3981 /*
3982 * simple selection for now: Nominate the
3983 * first cpu in the nohz list to be the next
3984 * ilb owner.
3985 *
3986 * TBD: Traverse the sched domains and nominate
3987 * the nearest cpu in the nohz.cpu_mask.
3988 */
3989 int ilb = first_cpu(nohz.cpu_mask);
3990
434d53b0 3991 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3992 resched_cpu(ilb);
3993 }
3994 }
3995
3996 /*
3997 * If this cpu is idle and doing idle load balancing for all the
3998 * cpus with ticks stopped, is it time for that to stop?
3999 */
4000 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4001 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4002 resched_cpu(cpu);
4003 return;
4004 }
4005
4006 /*
4007 * If this cpu is idle and the idle load balancing is done by
4008 * someone else, then no need raise the SCHED_SOFTIRQ
4009 */
4010 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4011 cpu_isset(cpu, nohz.cpu_mask))
4012 return;
4013#endif
4014 if (time_after_eq(jiffies, rq->next_balance))
4015 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4016}
dd41f596
IM
4017
4018#else /* CONFIG_SMP */
4019
1da177e4
LT
4020/*
4021 * on UP we do not need to balance between CPUs:
4022 */
70b97a7f 4023static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4024{
4025}
dd41f596 4026
1da177e4
LT
4027#endif
4028
1da177e4
LT
4029DEFINE_PER_CPU(struct kernel_stat, kstat);
4030
4031EXPORT_PER_CPU_SYMBOL(kstat);
4032
4033/*
f06febc9
FM
4034 * Return any ns on the sched_clock that have not yet been banked in
4035 * @p in case that task is currently running.
1da177e4 4036 */
bb34d92f 4037unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4038{
1da177e4 4039 unsigned long flags;
41b86e9c 4040 struct rq *rq;
bb34d92f 4041 u64 ns = 0;
48f24c4d 4042
41b86e9c 4043 rq = task_rq_lock(p, &flags);
1508487e 4044
051a1d1a 4045 if (task_current(rq, p)) {
f06febc9
FM
4046 u64 delta_exec;
4047
a8e504d2
IM
4048 update_rq_clock(rq);
4049 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4050 if ((s64)delta_exec > 0)
bb34d92f 4051 ns = delta_exec;
41b86e9c 4052 }
48f24c4d 4053
41b86e9c 4054 task_rq_unlock(rq, &flags);
48f24c4d 4055
1da177e4
LT
4056 return ns;
4057}
4058
1da177e4
LT
4059/*
4060 * Account user cpu time to a process.
4061 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4062 * @cputime: the cpu time spent in user space since the last update
4063 */
4064void account_user_time(struct task_struct *p, cputime_t cputime)
4065{
4066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4067 cputime64_t tmp;
4068
4069 p->utime = cputime_add(p->utime, cputime);
f06febc9 4070 account_group_user_time(p, cputime);
1da177e4
LT
4071
4072 /* Add user time to cpustat. */
4073 tmp = cputime_to_cputime64(cputime);
4074 if (TASK_NICE(p) > 0)
4075 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4076 else
4077 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4078 /* Account for user time used */
4079 acct_update_integrals(p);
1da177e4
LT
4080}
4081
94886b84
LV
4082/*
4083 * Account guest cpu time to a process.
4084 * @p: the process that the cpu time gets accounted to
4085 * @cputime: the cpu time spent in virtual machine since the last update
4086 */
f7402e03 4087static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4088{
4089 cputime64_t tmp;
4090 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4091
4092 tmp = cputime_to_cputime64(cputime);
4093
4094 p->utime = cputime_add(p->utime, cputime);
f06febc9 4095 account_group_user_time(p, cputime);
94886b84
LV
4096 p->gtime = cputime_add(p->gtime, cputime);
4097
4098 cpustat->user = cputime64_add(cpustat->user, tmp);
4099 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4100}
4101
c66f08be
MN
4102/*
4103 * Account scaled user cpu time to a process.
4104 * @p: the process that the cpu time gets accounted to
4105 * @cputime: the cpu time spent in user space since the last update
4106 */
4107void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4108{
4109 p->utimescaled = cputime_add(p->utimescaled, cputime);
4110}
4111
1da177e4
LT
4112/*
4113 * Account system cpu time to a process.
4114 * @p: the process that the cpu time gets accounted to
4115 * @hardirq_offset: the offset to subtract from hardirq_count()
4116 * @cputime: the cpu time spent in kernel space since the last update
4117 */
4118void account_system_time(struct task_struct *p, int hardirq_offset,
4119 cputime_t cputime)
4120{
4121 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4122 struct rq *rq = this_rq();
1da177e4
LT
4123 cputime64_t tmp;
4124
983ed7a6
HH
4125 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4126 account_guest_time(p, cputime);
4127 return;
4128 }
94886b84 4129
1da177e4 4130 p->stime = cputime_add(p->stime, cputime);
f06febc9 4131 account_group_system_time(p, cputime);
1da177e4
LT
4132
4133 /* Add system time to cpustat. */
4134 tmp = cputime_to_cputime64(cputime);
4135 if (hardirq_count() - hardirq_offset)
4136 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4137 else if (softirq_count())
4138 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4139 else if (p != rq->idle)
1da177e4 4140 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4141 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4142 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4143 else
4144 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4145 /* Account for system time used */
4146 acct_update_integrals(p);
1da177e4
LT
4147}
4148
c66f08be
MN
4149/*
4150 * Account scaled system cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @hardirq_offset: the offset to subtract from hardirq_count()
4153 * @cputime: the cpu time spent in kernel space since the last update
4154 */
4155void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4156{
4157 p->stimescaled = cputime_add(p->stimescaled, cputime);
4158}
4159
1da177e4
LT
4160/*
4161 * Account for involuntary wait time.
4162 * @p: the process from which the cpu time has been stolen
4163 * @steal: the cpu time spent in involuntary wait
4164 */
4165void account_steal_time(struct task_struct *p, cputime_t steal)
4166{
4167 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4168 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4169 struct rq *rq = this_rq();
1da177e4
LT
4170
4171 if (p == rq->idle) {
4172 p->stime = cputime_add(p->stime, steal);
4173 if (atomic_read(&rq->nr_iowait) > 0)
4174 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4175 else
4176 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4177 } else
1da177e4
LT
4178 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4179}
4180
49048622
BS
4181/*
4182 * Use precise platform statistics if available:
4183 */
4184#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4185cputime_t task_utime(struct task_struct *p)
4186{
4187 return p->utime;
4188}
4189
4190cputime_t task_stime(struct task_struct *p)
4191{
4192 return p->stime;
4193}
4194#else
4195cputime_t task_utime(struct task_struct *p)
4196{
4197 clock_t utime = cputime_to_clock_t(p->utime),
4198 total = utime + cputime_to_clock_t(p->stime);
4199 u64 temp;
4200
4201 /*
4202 * Use CFS's precise accounting:
4203 */
4204 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4205
4206 if (total) {
4207 temp *= utime;
4208 do_div(temp, total);
4209 }
4210 utime = (clock_t)temp;
4211
4212 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4213 return p->prev_utime;
4214}
4215
4216cputime_t task_stime(struct task_struct *p)
4217{
4218 clock_t stime;
4219
4220 /*
4221 * Use CFS's precise accounting. (we subtract utime from
4222 * the total, to make sure the total observed by userspace
4223 * grows monotonically - apps rely on that):
4224 */
4225 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4226 cputime_to_clock_t(task_utime(p));
4227
4228 if (stime >= 0)
4229 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4230
4231 return p->prev_stime;
4232}
4233#endif
4234
4235inline cputime_t task_gtime(struct task_struct *p)
4236{
4237 return p->gtime;
4238}
4239
7835b98b
CL
4240/*
4241 * This function gets called by the timer code, with HZ frequency.
4242 * We call it with interrupts disabled.
4243 *
4244 * It also gets called by the fork code, when changing the parent's
4245 * timeslices.
4246 */
4247void scheduler_tick(void)
4248{
7835b98b
CL
4249 int cpu = smp_processor_id();
4250 struct rq *rq = cpu_rq(cpu);
dd41f596 4251 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4252
4253 sched_clock_tick();
dd41f596
IM
4254
4255 spin_lock(&rq->lock);
3e51f33f 4256 update_rq_clock(rq);
f1a438d8 4257 update_cpu_load(rq);
fa85ae24 4258 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4259 spin_unlock(&rq->lock);
7835b98b 4260
e418e1c2 4261#ifdef CONFIG_SMP
dd41f596
IM
4262 rq->idle_at_tick = idle_cpu(cpu);
4263 trigger_load_balance(rq, cpu);
e418e1c2 4264#endif
1da177e4
LT
4265}
4266
6cd8a4bb
SR
4267#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4269
4270static inline unsigned long get_parent_ip(unsigned long addr)
4271{
4272 if (in_lock_functions(addr)) {
4273 addr = CALLER_ADDR2;
4274 if (in_lock_functions(addr))
4275 addr = CALLER_ADDR3;
4276 }
4277 return addr;
4278}
1da177e4 4279
43627582 4280void __kprobes add_preempt_count(int val)
1da177e4 4281{
6cd8a4bb 4282#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4283 /*
4284 * Underflow?
4285 */
9a11b49a
IM
4286 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4287 return;
6cd8a4bb 4288#endif
1da177e4 4289 preempt_count() += val;
6cd8a4bb 4290#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4291 /*
4292 * Spinlock count overflowing soon?
4293 */
33859f7f
MOS
4294 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4295 PREEMPT_MASK - 10);
6cd8a4bb
SR
4296#endif
4297 if (preempt_count() == val)
4298 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4299}
4300EXPORT_SYMBOL(add_preempt_count);
4301
43627582 4302void __kprobes sub_preempt_count(int val)
1da177e4 4303{
6cd8a4bb 4304#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4305 /*
4306 * Underflow?
4307 */
7317d7b8 4308 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
9a11b49a 4309 return;
1da177e4
LT
4310 /*
4311 * Is the spinlock portion underflowing?
4312 */
9a11b49a
IM
4313 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4314 !(preempt_count() & PREEMPT_MASK)))
4315 return;
6cd8a4bb 4316#endif
9a11b49a 4317
6cd8a4bb
SR
4318 if (preempt_count() == val)
4319 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4320 preempt_count() -= val;
4321}
4322EXPORT_SYMBOL(sub_preempt_count);
4323
4324#endif
4325
4326/*
dd41f596 4327 * Print scheduling while atomic bug:
1da177e4 4328 */
dd41f596 4329static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4330{
838225b4
SS
4331 struct pt_regs *regs = get_irq_regs();
4332
4333 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4334 prev->comm, prev->pid, preempt_count());
4335
dd41f596 4336 debug_show_held_locks(prev);
e21f5b15 4337 print_modules();
dd41f596
IM
4338 if (irqs_disabled())
4339 print_irqtrace_events(prev);
838225b4
SS
4340
4341 if (regs)
4342 show_regs(regs);
4343 else
4344 dump_stack();
dd41f596 4345}
1da177e4 4346
dd41f596
IM
4347/*
4348 * Various schedule()-time debugging checks and statistics:
4349 */
4350static inline void schedule_debug(struct task_struct *prev)
4351{
1da177e4 4352 /*
41a2d6cf 4353 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4354 * schedule() atomically, we ignore that path for now.
4355 * Otherwise, whine if we are scheduling when we should not be.
4356 */
3f33a7ce 4357 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4358 __schedule_bug(prev);
4359
1da177e4
LT
4360 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4361
2d72376b 4362 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4363#ifdef CONFIG_SCHEDSTATS
4364 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4365 schedstat_inc(this_rq(), bkl_count);
4366 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4367 }
4368#endif
dd41f596
IM
4369}
4370
4371/*
4372 * Pick up the highest-prio task:
4373 */
4374static inline struct task_struct *
ff95f3df 4375pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4376{
5522d5d5 4377 const struct sched_class *class;
dd41f596 4378 struct task_struct *p;
1da177e4
LT
4379
4380 /*
dd41f596
IM
4381 * Optimization: we know that if all tasks are in
4382 * the fair class we can call that function directly:
1da177e4 4383 */
dd41f596 4384 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4385 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4386 if (likely(p))
4387 return p;
1da177e4
LT
4388 }
4389
dd41f596
IM
4390 class = sched_class_highest;
4391 for ( ; ; ) {
fb8d4724 4392 p = class->pick_next_task(rq);
dd41f596
IM
4393 if (p)
4394 return p;
4395 /*
4396 * Will never be NULL as the idle class always
4397 * returns a non-NULL p:
4398 */
4399 class = class->next;
4400 }
4401}
1da177e4 4402
dd41f596
IM
4403/*
4404 * schedule() is the main scheduler function.
4405 */
4406asmlinkage void __sched schedule(void)
4407{
4408 struct task_struct *prev, *next;
67ca7bde 4409 unsigned long *switch_count;
dd41f596 4410 struct rq *rq;
31656519 4411 int cpu;
dd41f596
IM
4412
4413need_resched:
4414 preempt_disable();
4415 cpu = smp_processor_id();
4416 rq = cpu_rq(cpu);
4417 rcu_qsctr_inc(cpu);
4418 prev = rq->curr;
4419 switch_count = &prev->nivcsw;
4420
4421 release_kernel_lock(prev);
4422need_resched_nonpreemptible:
4423
4424 schedule_debug(prev);
1da177e4 4425
31656519 4426 if (sched_feat(HRTICK))
f333fdc9 4427 hrtick_clear(rq);
8f4d37ec 4428
8cd162ce 4429 spin_lock_irq(&rq->lock);
3e51f33f 4430 update_rq_clock(rq);
1e819950 4431 clear_tsk_need_resched(prev);
1da177e4 4432
1da177e4 4433 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4434 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4435 prev->state = TASK_RUNNING;
16882c1e 4436 else
2e1cb74a 4437 deactivate_task(rq, prev, 1);
dd41f596 4438 switch_count = &prev->nvcsw;
1da177e4
LT
4439 }
4440
9a897c5a
SR
4441#ifdef CONFIG_SMP
4442 if (prev->sched_class->pre_schedule)
4443 prev->sched_class->pre_schedule(rq, prev);
4444#endif
f65eda4f 4445
dd41f596 4446 if (unlikely(!rq->nr_running))
1da177e4 4447 idle_balance(cpu, rq);
1da177e4 4448
31ee529c 4449 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4450 next = pick_next_task(rq, prev);
1da177e4 4451
1da177e4 4452 if (likely(prev != next)) {
673a90a1
DS
4453 sched_info_switch(prev, next);
4454
1da177e4
LT
4455 rq->nr_switches++;
4456 rq->curr = next;
4457 ++*switch_count;
4458
dd41f596 4459 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4460 /*
4461 * the context switch might have flipped the stack from under
4462 * us, hence refresh the local variables.
4463 */
4464 cpu = smp_processor_id();
4465 rq = cpu_rq(cpu);
1da177e4
LT
4466 } else
4467 spin_unlock_irq(&rq->lock);
4468
8f4d37ec 4469 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4470 goto need_resched_nonpreemptible;
8f4d37ec 4471
1da177e4
LT
4472 preempt_enable_no_resched();
4473 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4474 goto need_resched;
4475}
1da177e4
LT
4476EXPORT_SYMBOL(schedule);
4477
4478#ifdef CONFIG_PREEMPT
4479/*
2ed6e34f 4480 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4481 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4482 * occur there and call schedule directly.
4483 */
4484asmlinkage void __sched preempt_schedule(void)
4485{
4486 struct thread_info *ti = current_thread_info();
6478d880 4487
1da177e4
LT
4488 /*
4489 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4490 * we do not want to preempt the current task. Just return..
1da177e4 4491 */
beed33a8 4492 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4493 return;
4494
3a5c359a
AK
4495 do {
4496 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4497 schedule();
3a5c359a 4498 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4499
3a5c359a
AK
4500 /*
4501 * Check again in case we missed a preemption opportunity
4502 * between schedule and now.
4503 */
4504 barrier();
4505 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4506}
1da177e4
LT
4507EXPORT_SYMBOL(preempt_schedule);
4508
4509/*
2ed6e34f 4510 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4511 * off of irq context.
4512 * Note, that this is called and return with irqs disabled. This will
4513 * protect us against recursive calling from irq.
4514 */
4515asmlinkage void __sched preempt_schedule_irq(void)
4516{
4517 struct thread_info *ti = current_thread_info();
6478d880 4518
2ed6e34f 4519 /* Catch callers which need to be fixed */
1da177e4
LT
4520 BUG_ON(ti->preempt_count || !irqs_disabled());
4521
3a5c359a
AK
4522 do {
4523 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4524 local_irq_enable();
4525 schedule();
4526 local_irq_disable();
3a5c359a 4527 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4528
3a5c359a
AK
4529 /*
4530 * Check again in case we missed a preemption opportunity
4531 * between schedule and now.
4532 */
4533 barrier();
4534 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4535}
4536
4537#endif /* CONFIG_PREEMPT */
4538
95cdf3b7
IM
4539int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4540 void *key)
1da177e4 4541{
48f24c4d 4542 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4543}
1da177e4
LT
4544EXPORT_SYMBOL(default_wake_function);
4545
4546/*
41a2d6cf
IM
4547 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4548 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4549 * number) then we wake all the non-exclusive tasks and one exclusive task.
4550 *
4551 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4552 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4553 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4554 */
4555static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4556 int nr_exclusive, int sync, void *key)
4557{
2e45874c 4558 wait_queue_t *curr, *next;
1da177e4 4559
2e45874c 4560 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4561 unsigned flags = curr->flags;
4562
1da177e4 4563 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4564 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4565 break;
4566 }
4567}
4568
4569/**
4570 * __wake_up - wake up threads blocked on a waitqueue.
4571 * @q: the waitqueue
4572 * @mode: which threads
4573 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4574 * @key: is directly passed to the wakeup function
1da177e4 4575 */
7ad5b3a5 4576void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4577 int nr_exclusive, void *key)
1da177e4
LT
4578{
4579 unsigned long flags;
4580
4581 spin_lock_irqsave(&q->lock, flags);
4582 __wake_up_common(q, mode, nr_exclusive, 0, key);
4583 spin_unlock_irqrestore(&q->lock, flags);
4584}
1da177e4
LT
4585EXPORT_SYMBOL(__wake_up);
4586
4587/*
4588 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4589 */
7ad5b3a5 4590void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4591{
4592 __wake_up_common(q, mode, 1, 0, NULL);
4593}
4594
4595/**
67be2dd1 4596 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4597 * @q: the waitqueue
4598 * @mode: which threads
4599 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4600 *
4601 * The sync wakeup differs that the waker knows that it will schedule
4602 * away soon, so while the target thread will be woken up, it will not
4603 * be migrated to another CPU - ie. the two threads are 'synchronized'
4604 * with each other. This can prevent needless bouncing between CPUs.
4605 *
4606 * On UP it can prevent extra preemption.
4607 */
7ad5b3a5 4608void
95cdf3b7 4609__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4610{
4611 unsigned long flags;
4612 int sync = 1;
4613
4614 if (unlikely(!q))
4615 return;
4616
4617 if (unlikely(!nr_exclusive))
4618 sync = 0;
4619
4620 spin_lock_irqsave(&q->lock, flags);
4621 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4622 spin_unlock_irqrestore(&q->lock, flags);
4623}
4624EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4625
65eb3dc6
KD
4626/**
4627 * complete: - signals a single thread waiting on this completion
4628 * @x: holds the state of this particular completion
4629 *
4630 * This will wake up a single thread waiting on this completion. Threads will be
4631 * awakened in the same order in which they were queued.
4632 *
4633 * See also complete_all(), wait_for_completion() and related routines.
4634 */
b15136e9 4635void complete(struct completion *x)
1da177e4
LT
4636{
4637 unsigned long flags;
4638
4639 spin_lock_irqsave(&x->wait.lock, flags);
4640 x->done++;
d9514f6c 4641 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4642 spin_unlock_irqrestore(&x->wait.lock, flags);
4643}
4644EXPORT_SYMBOL(complete);
4645
65eb3dc6
KD
4646/**
4647 * complete_all: - signals all threads waiting on this completion
4648 * @x: holds the state of this particular completion
4649 *
4650 * This will wake up all threads waiting on this particular completion event.
4651 */
b15136e9 4652void complete_all(struct completion *x)
1da177e4
LT
4653{
4654 unsigned long flags;
4655
4656 spin_lock_irqsave(&x->wait.lock, flags);
4657 x->done += UINT_MAX/2;
d9514f6c 4658 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4659 spin_unlock_irqrestore(&x->wait.lock, flags);
4660}
4661EXPORT_SYMBOL(complete_all);
4662
8cbbe86d
AK
4663static inline long __sched
4664do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4665{
1da177e4
LT
4666 if (!x->done) {
4667 DECLARE_WAITQUEUE(wait, current);
4668
4669 wait.flags |= WQ_FLAG_EXCLUSIVE;
4670 __add_wait_queue_tail(&x->wait, &wait);
4671 do {
94d3d824 4672 if (signal_pending_state(state, current)) {
ea71a546
ON
4673 timeout = -ERESTARTSYS;
4674 break;
8cbbe86d
AK
4675 }
4676 __set_current_state(state);
1da177e4
LT
4677 spin_unlock_irq(&x->wait.lock);
4678 timeout = schedule_timeout(timeout);
4679 spin_lock_irq(&x->wait.lock);
ea71a546 4680 } while (!x->done && timeout);
1da177e4 4681 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4682 if (!x->done)
4683 return timeout;
1da177e4
LT
4684 }
4685 x->done--;
ea71a546 4686 return timeout ?: 1;
1da177e4 4687}
1da177e4 4688
8cbbe86d
AK
4689static long __sched
4690wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4691{
1da177e4
LT
4692 might_sleep();
4693
4694 spin_lock_irq(&x->wait.lock);
8cbbe86d 4695 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4696 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4697 return timeout;
4698}
1da177e4 4699
65eb3dc6
KD
4700/**
4701 * wait_for_completion: - waits for completion of a task
4702 * @x: holds the state of this particular completion
4703 *
4704 * This waits to be signaled for completion of a specific task. It is NOT
4705 * interruptible and there is no timeout.
4706 *
4707 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4708 * and interrupt capability. Also see complete().
4709 */
b15136e9 4710void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4711{
4712 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4713}
8cbbe86d 4714EXPORT_SYMBOL(wait_for_completion);
1da177e4 4715
65eb3dc6
KD
4716/**
4717 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4718 * @x: holds the state of this particular completion
4719 * @timeout: timeout value in jiffies
4720 *
4721 * This waits for either a completion of a specific task to be signaled or for a
4722 * specified timeout to expire. The timeout is in jiffies. It is not
4723 * interruptible.
4724 */
b15136e9 4725unsigned long __sched
8cbbe86d 4726wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4727{
8cbbe86d 4728 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4729}
8cbbe86d 4730EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4731
65eb3dc6
KD
4732/**
4733 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4734 * @x: holds the state of this particular completion
4735 *
4736 * This waits for completion of a specific task to be signaled. It is
4737 * interruptible.
4738 */
8cbbe86d 4739int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4740{
51e97990
AK
4741 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4742 if (t == -ERESTARTSYS)
4743 return t;
4744 return 0;
0fec171c 4745}
8cbbe86d 4746EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4747
65eb3dc6
KD
4748/**
4749 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4750 * @x: holds the state of this particular completion
4751 * @timeout: timeout value in jiffies
4752 *
4753 * This waits for either a completion of a specific task to be signaled or for a
4754 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4755 */
b15136e9 4756unsigned long __sched
8cbbe86d
AK
4757wait_for_completion_interruptible_timeout(struct completion *x,
4758 unsigned long timeout)
0fec171c 4759{
8cbbe86d 4760 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4761}
8cbbe86d 4762EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4763
65eb3dc6
KD
4764/**
4765 * wait_for_completion_killable: - waits for completion of a task (killable)
4766 * @x: holds the state of this particular completion
4767 *
4768 * This waits to be signaled for completion of a specific task. It can be
4769 * interrupted by a kill signal.
4770 */
009e577e
MW
4771int __sched wait_for_completion_killable(struct completion *x)
4772{
4773 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4774 if (t == -ERESTARTSYS)
4775 return t;
4776 return 0;
4777}
4778EXPORT_SYMBOL(wait_for_completion_killable);
4779
be4de352
DC
4780/**
4781 * try_wait_for_completion - try to decrement a completion without blocking
4782 * @x: completion structure
4783 *
4784 * Returns: 0 if a decrement cannot be done without blocking
4785 * 1 if a decrement succeeded.
4786 *
4787 * If a completion is being used as a counting completion,
4788 * attempt to decrement the counter without blocking. This
4789 * enables us to avoid waiting if the resource the completion
4790 * is protecting is not available.
4791 */
4792bool try_wait_for_completion(struct completion *x)
4793{
4794 int ret = 1;
4795
4796 spin_lock_irq(&x->wait.lock);
4797 if (!x->done)
4798 ret = 0;
4799 else
4800 x->done--;
4801 spin_unlock_irq(&x->wait.lock);
4802 return ret;
4803}
4804EXPORT_SYMBOL(try_wait_for_completion);
4805
4806/**
4807 * completion_done - Test to see if a completion has any waiters
4808 * @x: completion structure
4809 *
4810 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4811 * 1 if there are no waiters.
4812 *
4813 */
4814bool completion_done(struct completion *x)
4815{
4816 int ret = 1;
4817
4818 spin_lock_irq(&x->wait.lock);
4819 if (!x->done)
4820 ret = 0;
4821 spin_unlock_irq(&x->wait.lock);
4822 return ret;
4823}
4824EXPORT_SYMBOL(completion_done);
4825
8cbbe86d
AK
4826static long __sched
4827sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4828{
0fec171c
IM
4829 unsigned long flags;
4830 wait_queue_t wait;
4831
4832 init_waitqueue_entry(&wait, current);
1da177e4 4833
8cbbe86d 4834 __set_current_state(state);
1da177e4 4835
8cbbe86d
AK
4836 spin_lock_irqsave(&q->lock, flags);
4837 __add_wait_queue(q, &wait);
4838 spin_unlock(&q->lock);
4839 timeout = schedule_timeout(timeout);
4840 spin_lock_irq(&q->lock);
4841 __remove_wait_queue(q, &wait);
4842 spin_unlock_irqrestore(&q->lock, flags);
4843
4844 return timeout;
4845}
4846
4847void __sched interruptible_sleep_on(wait_queue_head_t *q)
4848{
4849 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4850}
1da177e4
LT
4851EXPORT_SYMBOL(interruptible_sleep_on);
4852
0fec171c 4853long __sched
95cdf3b7 4854interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4855{
8cbbe86d 4856 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4857}
1da177e4
LT
4858EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4859
0fec171c 4860void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4861{
8cbbe86d 4862 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4863}
1da177e4
LT
4864EXPORT_SYMBOL(sleep_on);
4865
0fec171c 4866long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4867{
8cbbe86d 4868 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4869}
1da177e4
LT
4870EXPORT_SYMBOL(sleep_on_timeout);
4871
b29739f9
IM
4872#ifdef CONFIG_RT_MUTEXES
4873
4874/*
4875 * rt_mutex_setprio - set the current priority of a task
4876 * @p: task
4877 * @prio: prio value (kernel-internal form)
4878 *
4879 * This function changes the 'effective' priority of a task. It does
4880 * not touch ->normal_prio like __setscheduler().
4881 *
4882 * Used by the rt_mutex code to implement priority inheritance logic.
4883 */
36c8b586 4884void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4885{
4886 unsigned long flags;
83b699ed 4887 int oldprio, on_rq, running;
70b97a7f 4888 struct rq *rq;
cb469845 4889 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4890
4891 BUG_ON(prio < 0 || prio > MAX_PRIO);
4892
4893 rq = task_rq_lock(p, &flags);
a8e504d2 4894 update_rq_clock(rq);
b29739f9 4895
d5f9f942 4896 oldprio = p->prio;
dd41f596 4897 on_rq = p->se.on_rq;
051a1d1a 4898 running = task_current(rq, p);
0e1f3483 4899 if (on_rq)
69be72c1 4900 dequeue_task(rq, p, 0);
0e1f3483
HS
4901 if (running)
4902 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4903
4904 if (rt_prio(prio))
4905 p->sched_class = &rt_sched_class;
4906 else
4907 p->sched_class = &fair_sched_class;
4908
b29739f9
IM
4909 p->prio = prio;
4910
0e1f3483
HS
4911 if (running)
4912 p->sched_class->set_curr_task(rq);
dd41f596 4913 if (on_rq) {
8159f87e 4914 enqueue_task(rq, p, 0);
cb469845
SR
4915
4916 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4917 }
4918 task_rq_unlock(rq, &flags);
4919}
4920
4921#endif
4922
36c8b586 4923void set_user_nice(struct task_struct *p, long nice)
1da177e4 4924{
dd41f596 4925 int old_prio, delta, on_rq;
1da177e4 4926 unsigned long flags;
70b97a7f 4927 struct rq *rq;
1da177e4
LT
4928
4929 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4930 return;
4931 /*
4932 * We have to be careful, if called from sys_setpriority(),
4933 * the task might be in the middle of scheduling on another CPU.
4934 */
4935 rq = task_rq_lock(p, &flags);
a8e504d2 4936 update_rq_clock(rq);
1da177e4
LT
4937 /*
4938 * The RT priorities are set via sched_setscheduler(), but we still
4939 * allow the 'normal' nice value to be set - but as expected
4940 * it wont have any effect on scheduling until the task is
dd41f596 4941 * SCHED_FIFO/SCHED_RR:
1da177e4 4942 */
e05606d3 4943 if (task_has_rt_policy(p)) {
1da177e4
LT
4944 p->static_prio = NICE_TO_PRIO(nice);
4945 goto out_unlock;
4946 }
dd41f596 4947 on_rq = p->se.on_rq;
c09595f6 4948 if (on_rq)
69be72c1 4949 dequeue_task(rq, p, 0);
1da177e4 4950
1da177e4 4951 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4952 set_load_weight(p);
b29739f9
IM
4953 old_prio = p->prio;
4954 p->prio = effective_prio(p);
4955 delta = p->prio - old_prio;
1da177e4 4956
dd41f596 4957 if (on_rq) {
8159f87e 4958 enqueue_task(rq, p, 0);
1da177e4 4959 /*
d5f9f942
AM
4960 * If the task increased its priority or is running and
4961 * lowered its priority, then reschedule its CPU:
1da177e4 4962 */
d5f9f942 4963 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4964 resched_task(rq->curr);
4965 }
4966out_unlock:
4967 task_rq_unlock(rq, &flags);
4968}
1da177e4
LT
4969EXPORT_SYMBOL(set_user_nice);
4970
e43379f1
MM
4971/*
4972 * can_nice - check if a task can reduce its nice value
4973 * @p: task
4974 * @nice: nice value
4975 */
36c8b586 4976int can_nice(const struct task_struct *p, const int nice)
e43379f1 4977{
024f4747
MM
4978 /* convert nice value [19,-20] to rlimit style value [1,40] */
4979 int nice_rlim = 20 - nice;
48f24c4d 4980
e43379f1
MM
4981 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4982 capable(CAP_SYS_NICE));
4983}
4984
1da177e4
LT
4985#ifdef __ARCH_WANT_SYS_NICE
4986
4987/*
4988 * sys_nice - change the priority of the current process.
4989 * @increment: priority increment
4990 *
4991 * sys_setpriority is a more generic, but much slower function that
4992 * does similar things.
4993 */
4994asmlinkage long sys_nice(int increment)
4995{
48f24c4d 4996 long nice, retval;
1da177e4
LT
4997
4998 /*
4999 * Setpriority might change our priority at the same moment.
5000 * We don't have to worry. Conceptually one call occurs first
5001 * and we have a single winner.
5002 */
e43379f1
MM
5003 if (increment < -40)
5004 increment = -40;
1da177e4
LT
5005 if (increment > 40)
5006 increment = 40;
5007
5008 nice = PRIO_TO_NICE(current->static_prio) + increment;
5009 if (nice < -20)
5010 nice = -20;
5011 if (nice > 19)
5012 nice = 19;
5013
e43379f1
MM
5014 if (increment < 0 && !can_nice(current, nice))
5015 return -EPERM;
5016
1da177e4
LT
5017 retval = security_task_setnice(current, nice);
5018 if (retval)
5019 return retval;
5020
5021 set_user_nice(current, nice);
5022 return 0;
5023}
5024
5025#endif
5026
5027/**
5028 * task_prio - return the priority value of a given task.
5029 * @p: the task in question.
5030 *
5031 * This is the priority value as seen by users in /proc.
5032 * RT tasks are offset by -200. Normal tasks are centered
5033 * around 0, value goes from -16 to +15.
5034 */
36c8b586 5035int task_prio(const struct task_struct *p)
1da177e4
LT
5036{
5037 return p->prio - MAX_RT_PRIO;
5038}
5039
5040/**
5041 * task_nice - return the nice value of a given task.
5042 * @p: the task in question.
5043 */
36c8b586 5044int task_nice(const struct task_struct *p)
1da177e4
LT
5045{
5046 return TASK_NICE(p);
5047}
150d8bed 5048EXPORT_SYMBOL(task_nice);
1da177e4
LT
5049
5050/**
5051 * idle_cpu - is a given cpu idle currently?
5052 * @cpu: the processor in question.
5053 */
5054int idle_cpu(int cpu)
5055{
5056 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5057}
5058
1da177e4
LT
5059/**
5060 * idle_task - return the idle task for a given cpu.
5061 * @cpu: the processor in question.
5062 */
36c8b586 5063struct task_struct *idle_task(int cpu)
1da177e4
LT
5064{
5065 return cpu_rq(cpu)->idle;
5066}
5067
5068/**
5069 * find_process_by_pid - find a process with a matching PID value.
5070 * @pid: the pid in question.
5071 */
a9957449 5072static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5073{
228ebcbe 5074 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5075}
5076
5077/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5078static void
5079__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5080{
dd41f596 5081 BUG_ON(p->se.on_rq);
48f24c4d 5082
1da177e4 5083 p->policy = policy;
dd41f596
IM
5084 switch (p->policy) {
5085 case SCHED_NORMAL:
5086 case SCHED_BATCH:
5087 case SCHED_IDLE:
5088 p->sched_class = &fair_sched_class;
5089 break;
5090 case SCHED_FIFO:
5091 case SCHED_RR:
5092 p->sched_class = &rt_sched_class;
5093 break;
5094 }
5095
1da177e4 5096 p->rt_priority = prio;
b29739f9
IM
5097 p->normal_prio = normal_prio(p);
5098 /* we are holding p->pi_lock already */
5099 p->prio = rt_mutex_getprio(p);
2dd73a4f 5100 set_load_weight(p);
1da177e4
LT
5101}
5102
961ccddd
RR
5103static int __sched_setscheduler(struct task_struct *p, int policy,
5104 struct sched_param *param, bool user)
1da177e4 5105{
83b699ed 5106 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5107 unsigned long flags;
cb469845 5108 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5109 struct rq *rq;
1da177e4 5110
66e5393a
SR
5111 /* may grab non-irq protected spin_locks */
5112 BUG_ON(in_interrupt());
1da177e4
LT
5113recheck:
5114 /* double check policy once rq lock held */
5115 if (policy < 0)
5116 policy = oldpolicy = p->policy;
5117 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5118 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5119 policy != SCHED_IDLE)
b0a9499c 5120 return -EINVAL;
1da177e4
LT
5121 /*
5122 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5123 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5124 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5125 */
5126 if (param->sched_priority < 0 ||
95cdf3b7 5127 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5128 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5129 return -EINVAL;
e05606d3 5130 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5131 return -EINVAL;
5132
37e4ab3f
OC
5133 /*
5134 * Allow unprivileged RT tasks to decrease priority:
5135 */
961ccddd 5136 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5137 if (rt_policy(policy)) {
8dc3e909 5138 unsigned long rlim_rtprio;
8dc3e909
ON
5139
5140 if (!lock_task_sighand(p, &flags))
5141 return -ESRCH;
5142 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5143 unlock_task_sighand(p, &flags);
5144
5145 /* can't set/change the rt policy */
5146 if (policy != p->policy && !rlim_rtprio)
5147 return -EPERM;
5148
5149 /* can't increase priority */
5150 if (param->sched_priority > p->rt_priority &&
5151 param->sched_priority > rlim_rtprio)
5152 return -EPERM;
5153 }
dd41f596
IM
5154 /*
5155 * Like positive nice levels, dont allow tasks to
5156 * move out of SCHED_IDLE either:
5157 */
5158 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5159 return -EPERM;
5fe1d75f 5160
37e4ab3f
OC
5161 /* can't change other user's priorities */
5162 if ((current->euid != p->euid) &&
5163 (current->euid != p->uid))
5164 return -EPERM;
5165 }
1da177e4 5166
725aad24 5167 if (user) {
b68aa230 5168#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5169 /*
5170 * Do not allow realtime tasks into groups that have no runtime
5171 * assigned.
5172 */
9a7e0b18
PZ
5173 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5174 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5175 return -EPERM;
b68aa230
PZ
5176#endif
5177
725aad24
JF
5178 retval = security_task_setscheduler(p, policy, param);
5179 if (retval)
5180 return retval;
5181 }
5182
b29739f9
IM
5183 /*
5184 * make sure no PI-waiters arrive (or leave) while we are
5185 * changing the priority of the task:
5186 */
5187 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5188 /*
5189 * To be able to change p->policy safely, the apropriate
5190 * runqueue lock must be held.
5191 */
b29739f9 5192 rq = __task_rq_lock(p);
1da177e4
LT
5193 /* recheck policy now with rq lock held */
5194 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5195 policy = oldpolicy = -1;
b29739f9
IM
5196 __task_rq_unlock(rq);
5197 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5198 goto recheck;
5199 }
2daa3577 5200 update_rq_clock(rq);
dd41f596 5201 on_rq = p->se.on_rq;
051a1d1a 5202 running = task_current(rq, p);
0e1f3483 5203 if (on_rq)
2e1cb74a 5204 deactivate_task(rq, p, 0);
0e1f3483
HS
5205 if (running)
5206 p->sched_class->put_prev_task(rq, p);
f6b53205 5207
1da177e4 5208 oldprio = p->prio;
dd41f596 5209 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5210
0e1f3483
HS
5211 if (running)
5212 p->sched_class->set_curr_task(rq);
dd41f596
IM
5213 if (on_rq) {
5214 activate_task(rq, p, 0);
cb469845
SR
5215
5216 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5217 }
b29739f9
IM
5218 __task_rq_unlock(rq);
5219 spin_unlock_irqrestore(&p->pi_lock, flags);
5220
95e02ca9
TG
5221 rt_mutex_adjust_pi(p);
5222
1da177e4
LT
5223 return 0;
5224}
961ccddd
RR
5225
5226/**
5227 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5228 * @p: the task in question.
5229 * @policy: new policy.
5230 * @param: structure containing the new RT priority.
5231 *
5232 * NOTE that the task may be already dead.
5233 */
5234int sched_setscheduler(struct task_struct *p, int policy,
5235 struct sched_param *param)
5236{
5237 return __sched_setscheduler(p, policy, param, true);
5238}
1da177e4
LT
5239EXPORT_SYMBOL_GPL(sched_setscheduler);
5240
961ccddd
RR
5241/**
5242 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5243 * @p: the task in question.
5244 * @policy: new policy.
5245 * @param: structure containing the new RT priority.
5246 *
5247 * Just like sched_setscheduler, only don't bother checking if the
5248 * current context has permission. For example, this is needed in
5249 * stop_machine(): we create temporary high priority worker threads,
5250 * but our caller might not have that capability.
5251 */
5252int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5253 struct sched_param *param)
5254{
5255 return __sched_setscheduler(p, policy, param, false);
5256}
5257
95cdf3b7
IM
5258static int
5259do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5260{
1da177e4
LT
5261 struct sched_param lparam;
5262 struct task_struct *p;
36c8b586 5263 int retval;
1da177e4
LT
5264
5265 if (!param || pid < 0)
5266 return -EINVAL;
5267 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5268 return -EFAULT;
5fe1d75f
ON
5269
5270 rcu_read_lock();
5271 retval = -ESRCH;
1da177e4 5272 p = find_process_by_pid(pid);
5fe1d75f
ON
5273 if (p != NULL)
5274 retval = sched_setscheduler(p, policy, &lparam);
5275 rcu_read_unlock();
36c8b586 5276
1da177e4
LT
5277 return retval;
5278}
5279
5280/**
5281 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5282 * @pid: the pid in question.
5283 * @policy: new policy.
5284 * @param: structure containing the new RT priority.
5285 */
41a2d6cf
IM
5286asmlinkage long
5287sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5288{
c21761f1
JB
5289 /* negative values for policy are not valid */
5290 if (policy < 0)
5291 return -EINVAL;
5292
1da177e4
LT
5293 return do_sched_setscheduler(pid, policy, param);
5294}
5295
5296/**
5297 * sys_sched_setparam - set/change the RT priority of a thread
5298 * @pid: the pid in question.
5299 * @param: structure containing the new RT priority.
5300 */
5301asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5302{
5303 return do_sched_setscheduler(pid, -1, param);
5304}
5305
5306/**
5307 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5308 * @pid: the pid in question.
5309 */
5310asmlinkage long sys_sched_getscheduler(pid_t pid)
5311{
36c8b586 5312 struct task_struct *p;
3a5c359a 5313 int retval;
1da177e4
LT
5314
5315 if (pid < 0)
3a5c359a 5316 return -EINVAL;
1da177e4
LT
5317
5318 retval = -ESRCH;
5319 read_lock(&tasklist_lock);
5320 p = find_process_by_pid(pid);
5321 if (p) {
5322 retval = security_task_getscheduler(p);
5323 if (!retval)
5324 retval = p->policy;
5325 }
5326 read_unlock(&tasklist_lock);
1da177e4
LT
5327 return retval;
5328}
5329
5330/**
5331 * sys_sched_getscheduler - get the RT priority of a thread
5332 * @pid: the pid in question.
5333 * @param: structure containing the RT priority.
5334 */
5335asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5336{
5337 struct sched_param lp;
36c8b586 5338 struct task_struct *p;
3a5c359a 5339 int retval;
1da177e4
LT
5340
5341 if (!param || pid < 0)
3a5c359a 5342 return -EINVAL;
1da177e4
LT
5343
5344 read_lock(&tasklist_lock);
5345 p = find_process_by_pid(pid);
5346 retval = -ESRCH;
5347 if (!p)
5348 goto out_unlock;
5349
5350 retval = security_task_getscheduler(p);
5351 if (retval)
5352 goto out_unlock;
5353
5354 lp.sched_priority = p->rt_priority;
5355 read_unlock(&tasklist_lock);
5356
5357 /*
5358 * This one might sleep, we cannot do it with a spinlock held ...
5359 */
5360 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5361
1da177e4
LT
5362 return retval;
5363
5364out_unlock:
5365 read_unlock(&tasklist_lock);
5366 return retval;
5367}
5368
b53e921b 5369long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5370{
1da177e4 5371 cpumask_t cpus_allowed;
b53e921b 5372 cpumask_t new_mask = *in_mask;
36c8b586
IM
5373 struct task_struct *p;
5374 int retval;
1da177e4 5375
95402b38 5376 get_online_cpus();
1da177e4
LT
5377 read_lock(&tasklist_lock);
5378
5379 p = find_process_by_pid(pid);
5380 if (!p) {
5381 read_unlock(&tasklist_lock);
95402b38 5382 put_online_cpus();
1da177e4
LT
5383 return -ESRCH;
5384 }
5385
5386 /*
5387 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5388 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5389 * usage count and then drop tasklist_lock.
5390 */
5391 get_task_struct(p);
5392 read_unlock(&tasklist_lock);
5393
5394 retval = -EPERM;
5395 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5396 !capable(CAP_SYS_NICE))
5397 goto out_unlock;
5398
e7834f8f
DQ
5399 retval = security_task_setscheduler(p, 0, NULL);
5400 if (retval)
5401 goto out_unlock;
5402
f9a86fcb 5403 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5404 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5405 again:
7c16ec58 5406 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5407
8707d8b8 5408 if (!retval) {
f9a86fcb 5409 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5410 if (!cpus_subset(new_mask, cpus_allowed)) {
5411 /*
5412 * We must have raced with a concurrent cpuset
5413 * update. Just reset the cpus_allowed to the
5414 * cpuset's cpus_allowed
5415 */
5416 new_mask = cpus_allowed;
5417 goto again;
5418 }
5419 }
1da177e4
LT
5420out_unlock:
5421 put_task_struct(p);
95402b38 5422 put_online_cpus();
1da177e4
LT
5423 return retval;
5424}
5425
5426static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5427 cpumask_t *new_mask)
5428{
5429 if (len < sizeof(cpumask_t)) {
5430 memset(new_mask, 0, sizeof(cpumask_t));
5431 } else if (len > sizeof(cpumask_t)) {
5432 len = sizeof(cpumask_t);
5433 }
5434 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5435}
5436
5437/**
5438 * sys_sched_setaffinity - set the cpu affinity of a process
5439 * @pid: pid of the process
5440 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5441 * @user_mask_ptr: user-space pointer to the new cpu mask
5442 */
5443asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5444 unsigned long __user *user_mask_ptr)
5445{
5446 cpumask_t new_mask;
5447 int retval;
5448
5449 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5450 if (retval)
5451 return retval;
5452
b53e921b 5453 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5454}
5455
1da177e4
LT
5456long sched_getaffinity(pid_t pid, cpumask_t *mask)
5457{
36c8b586 5458 struct task_struct *p;
1da177e4 5459 int retval;
1da177e4 5460
95402b38 5461 get_online_cpus();
1da177e4
LT
5462 read_lock(&tasklist_lock);
5463
5464 retval = -ESRCH;
5465 p = find_process_by_pid(pid);
5466 if (!p)
5467 goto out_unlock;
5468
e7834f8f
DQ
5469 retval = security_task_getscheduler(p);
5470 if (retval)
5471 goto out_unlock;
5472
2f7016d9 5473 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5474
5475out_unlock:
5476 read_unlock(&tasklist_lock);
95402b38 5477 put_online_cpus();
1da177e4 5478
9531b62f 5479 return retval;
1da177e4
LT
5480}
5481
5482/**
5483 * sys_sched_getaffinity - get the cpu affinity of a process
5484 * @pid: pid of the process
5485 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5486 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5487 */
5488asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5489 unsigned long __user *user_mask_ptr)
5490{
5491 int ret;
5492 cpumask_t mask;
5493
5494 if (len < sizeof(cpumask_t))
5495 return -EINVAL;
5496
5497 ret = sched_getaffinity(pid, &mask);
5498 if (ret < 0)
5499 return ret;
5500
5501 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5502 return -EFAULT;
5503
5504 return sizeof(cpumask_t);
5505}
5506
5507/**
5508 * sys_sched_yield - yield the current processor to other threads.
5509 *
dd41f596
IM
5510 * This function yields the current CPU to other tasks. If there are no
5511 * other threads running on this CPU then this function will return.
1da177e4
LT
5512 */
5513asmlinkage long sys_sched_yield(void)
5514{
70b97a7f 5515 struct rq *rq = this_rq_lock();
1da177e4 5516
2d72376b 5517 schedstat_inc(rq, yld_count);
4530d7ab 5518 current->sched_class->yield_task(rq);
1da177e4
LT
5519
5520 /*
5521 * Since we are going to call schedule() anyway, there's
5522 * no need to preempt or enable interrupts:
5523 */
5524 __release(rq->lock);
8a25d5de 5525 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5526 _raw_spin_unlock(&rq->lock);
5527 preempt_enable_no_resched();
5528
5529 schedule();
5530
5531 return 0;
5532}
5533
e7b38404 5534static void __cond_resched(void)
1da177e4 5535{
8e0a43d8
IM
5536#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5537 __might_sleep(__FILE__, __LINE__);
5538#endif
5bbcfd90
IM
5539 /*
5540 * The BKS might be reacquired before we have dropped
5541 * PREEMPT_ACTIVE, which could trigger a second
5542 * cond_resched() call.
5543 */
1da177e4
LT
5544 do {
5545 add_preempt_count(PREEMPT_ACTIVE);
5546 schedule();
5547 sub_preempt_count(PREEMPT_ACTIVE);
5548 } while (need_resched());
5549}
5550
02b67cc3 5551int __sched _cond_resched(void)
1da177e4 5552{
9414232f
IM
5553 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5554 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5555 __cond_resched();
5556 return 1;
5557 }
5558 return 0;
5559}
02b67cc3 5560EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5561
5562/*
5563 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5564 * call schedule, and on return reacquire the lock.
5565 *
41a2d6cf 5566 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5567 * operations here to prevent schedule() from being called twice (once via
5568 * spin_unlock(), once by hand).
5569 */
95cdf3b7 5570int cond_resched_lock(spinlock_t *lock)
1da177e4 5571{
95c354fe 5572 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5573 int ret = 0;
5574
95c354fe 5575 if (spin_needbreak(lock) || resched) {
1da177e4 5576 spin_unlock(lock);
95c354fe
NP
5577 if (resched && need_resched())
5578 __cond_resched();
5579 else
5580 cpu_relax();
6df3cecb 5581 ret = 1;
1da177e4 5582 spin_lock(lock);
1da177e4 5583 }
6df3cecb 5584 return ret;
1da177e4 5585}
1da177e4
LT
5586EXPORT_SYMBOL(cond_resched_lock);
5587
5588int __sched cond_resched_softirq(void)
5589{
5590 BUG_ON(!in_softirq());
5591
9414232f 5592 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5593 local_bh_enable();
1da177e4
LT
5594 __cond_resched();
5595 local_bh_disable();
5596 return 1;
5597 }
5598 return 0;
5599}
1da177e4
LT
5600EXPORT_SYMBOL(cond_resched_softirq);
5601
1da177e4
LT
5602/**
5603 * yield - yield the current processor to other threads.
5604 *
72fd4a35 5605 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5606 * thread runnable and calls sys_sched_yield().
5607 */
5608void __sched yield(void)
5609{
5610 set_current_state(TASK_RUNNING);
5611 sys_sched_yield();
5612}
1da177e4
LT
5613EXPORT_SYMBOL(yield);
5614
5615/*
41a2d6cf 5616 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5617 * that process accounting knows that this is a task in IO wait state.
5618 *
5619 * But don't do that if it is a deliberate, throttling IO wait (this task
5620 * has set its backing_dev_info: the queue against which it should throttle)
5621 */
5622void __sched io_schedule(void)
5623{
70b97a7f 5624 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5625
0ff92245 5626 delayacct_blkio_start();
1da177e4
LT
5627 atomic_inc(&rq->nr_iowait);
5628 schedule();
5629 atomic_dec(&rq->nr_iowait);
0ff92245 5630 delayacct_blkio_end();
1da177e4 5631}
1da177e4
LT
5632EXPORT_SYMBOL(io_schedule);
5633
5634long __sched io_schedule_timeout(long timeout)
5635{
70b97a7f 5636 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5637 long ret;
5638
0ff92245 5639 delayacct_blkio_start();
1da177e4
LT
5640 atomic_inc(&rq->nr_iowait);
5641 ret = schedule_timeout(timeout);
5642 atomic_dec(&rq->nr_iowait);
0ff92245 5643 delayacct_blkio_end();
1da177e4
LT
5644 return ret;
5645}
5646
5647/**
5648 * sys_sched_get_priority_max - return maximum RT priority.
5649 * @policy: scheduling class.
5650 *
5651 * this syscall returns the maximum rt_priority that can be used
5652 * by a given scheduling class.
5653 */
5654asmlinkage long sys_sched_get_priority_max(int policy)
5655{
5656 int ret = -EINVAL;
5657
5658 switch (policy) {
5659 case SCHED_FIFO:
5660 case SCHED_RR:
5661 ret = MAX_USER_RT_PRIO-1;
5662 break;
5663 case SCHED_NORMAL:
b0a9499c 5664 case SCHED_BATCH:
dd41f596 5665 case SCHED_IDLE:
1da177e4
LT
5666 ret = 0;
5667 break;
5668 }
5669 return ret;
5670}
5671
5672/**
5673 * sys_sched_get_priority_min - return minimum RT priority.
5674 * @policy: scheduling class.
5675 *
5676 * this syscall returns the minimum rt_priority that can be used
5677 * by a given scheduling class.
5678 */
5679asmlinkage long sys_sched_get_priority_min(int policy)
5680{
5681 int ret = -EINVAL;
5682
5683 switch (policy) {
5684 case SCHED_FIFO:
5685 case SCHED_RR:
5686 ret = 1;
5687 break;
5688 case SCHED_NORMAL:
b0a9499c 5689 case SCHED_BATCH:
dd41f596 5690 case SCHED_IDLE:
1da177e4
LT
5691 ret = 0;
5692 }
5693 return ret;
5694}
5695
5696/**
5697 * sys_sched_rr_get_interval - return the default timeslice of a process.
5698 * @pid: pid of the process.
5699 * @interval: userspace pointer to the timeslice value.
5700 *
5701 * this syscall writes the default timeslice value of a given process
5702 * into the user-space timespec buffer. A value of '0' means infinity.
5703 */
5704asmlinkage
5705long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5706{
36c8b586 5707 struct task_struct *p;
a4ec24b4 5708 unsigned int time_slice;
3a5c359a 5709 int retval;
1da177e4 5710 struct timespec t;
1da177e4
LT
5711
5712 if (pid < 0)
3a5c359a 5713 return -EINVAL;
1da177e4
LT
5714
5715 retval = -ESRCH;
5716 read_lock(&tasklist_lock);
5717 p = find_process_by_pid(pid);
5718 if (!p)
5719 goto out_unlock;
5720
5721 retval = security_task_getscheduler(p);
5722 if (retval)
5723 goto out_unlock;
5724
77034937
IM
5725 /*
5726 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5727 * tasks that are on an otherwise idle runqueue:
5728 */
5729 time_slice = 0;
5730 if (p->policy == SCHED_RR) {
a4ec24b4 5731 time_slice = DEF_TIMESLICE;
1868f958 5732 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5733 struct sched_entity *se = &p->se;
5734 unsigned long flags;
5735 struct rq *rq;
5736
5737 rq = task_rq_lock(p, &flags);
77034937
IM
5738 if (rq->cfs.load.weight)
5739 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5740 task_rq_unlock(rq, &flags);
5741 }
1da177e4 5742 read_unlock(&tasklist_lock);
a4ec24b4 5743 jiffies_to_timespec(time_slice, &t);
1da177e4 5744 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5745 return retval;
3a5c359a 5746
1da177e4
LT
5747out_unlock:
5748 read_unlock(&tasklist_lock);
5749 return retval;
5750}
5751
7c731e0a 5752static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5753
82a1fcb9 5754void sched_show_task(struct task_struct *p)
1da177e4 5755{
1da177e4 5756 unsigned long free = 0;
36c8b586 5757 unsigned state;
1da177e4 5758
1da177e4 5759 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5760 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5761 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5762#if BITS_PER_LONG == 32
1da177e4 5763 if (state == TASK_RUNNING)
cc4ea795 5764 printk(KERN_CONT " running ");
1da177e4 5765 else
cc4ea795 5766 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5767#else
5768 if (state == TASK_RUNNING)
cc4ea795 5769 printk(KERN_CONT " running task ");
1da177e4 5770 else
cc4ea795 5771 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5772#endif
5773#ifdef CONFIG_DEBUG_STACK_USAGE
5774 {
10ebffde 5775 unsigned long *n = end_of_stack(p);
1da177e4
LT
5776 while (!*n)
5777 n++;
10ebffde 5778 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5779 }
5780#endif
ba25f9dc 5781 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5782 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5783
5fb5e6de 5784 show_stack(p, NULL);
1da177e4
LT
5785}
5786
e59e2ae2 5787void show_state_filter(unsigned long state_filter)
1da177e4 5788{
36c8b586 5789 struct task_struct *g, *p;
1da177e4 5790
4bd77321
IM
5791#if BITS_PER_LONG == 32
5792 printk(KERN_INFO
5793 " task PC stack pid father\n");
1da177e4 5794#else
4bd77321
IM
5795 printk(KERN_INFO
5796 " task PC stack pid father\n");
1da177e4
LT
5797#endif
5798 read_lock(&tasklist_lock);
5799 do_each_thread(g, p) {
5800 /*
5801 * reset the NMI-timeout, listing all files on a slow
5802 * console might take alot of time:
5803 */
5804 touch_nmi_watchdog();
39bc89fd 5805 if (!state_filter || (p->state & state_filter))
82a1fcb9 5806 sched_show_task(p);
1da177e4
LT
5807 } while_each_thread(g, p);
5808
04c9167f
JF
5809 touch_all_softlockup_watchdogs();
5810
dd41f596
IM
5811#ifdef CONFIG_SCHED_DEBUG
5812 sysrq_sched_debug_show();
5813#endif
1da177e4 5814 read_unlock(&tasklist_lock);
e59e2ae2
IM
5815 /*
5816 * Only show locks if all tasks are dumped:
5817 */
5818 if (state_filter == -1)
5819 debug_show_all_locks();
1da177e4
LT
5820}
5821
1df21055
IM
5822void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5823{
dd41f596 5824 idle->sched_class = &idle_sched_class;
1df21055
IM
5825}
5826
f340c0d1
IM
5827/**
5828 * init_idle - set up an idle thread for a given CPU
5829 * @idle: task in question
5830 * @cpu: cpu the idle task belongs to
5831 *
5832 * NOTE: this function does not set the idle thread's NEED_RESCHED
5833 * flag, to make booting more robust.
5834 */
5c1e1767 5835void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5836{
70b97a7f 5837 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5838 unsigned long flags;
5839
5cbd54ef
IM
5840 spin_lock_irqsave(&rq->lock, flags);
5841
dd41f596
IM
5842 __sched_fork(idle);
5843 idle->se.exec_start = sched_clock();
5844
b29739f9 5845 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5846 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5847 __set_task_cpu(idle, cpu);
1da177e4 5848
1da177e4 5849 rq->curr = rq->idle = idle;
4866cde0
NP
5850#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5851 idle->oncpu = 1;
5852#endif
1da177e4
LT
5853 spin_unlock_irqrestore(&rq->lock, flags);
5854
5855 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5856#if defined(CONFIG_PREEMPT)
5857 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5858#else
a1261f54 5859 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5860#endif
dd41f596
IM
5861 /*
5862 * The idle tasks have their own, simple scheduling class:
5863 */
5864 idle->sched_class = &idle_sched_class;
f201ae23 5865 ftrace_retfunc_init_task(idle);
1da177e4
LT
5866}
5867
5868/*
5869 * In a system that switches off the HZ timer nohz_cpu_mask
5870 * indicates which cpus entered this state. This is used
5871 * in the rcu update to wait only for active cpus. For system
5872 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5873 * always be CPU_BITS_NONE.
1da177e4 5874 */
6a7b3dc3 5875cpumask_var_t nohz_cpu_mask;
1da177e4 5876
19978ca6
IM
5877/*
5878 * Increase the granularity value when there are more CPUs,
5879 * because with more CPUs the 'effective latency' as visible
5880 * to users decreases. But the relationship is not linear,
5881 * so pick a second-best guess by going with the log2 of the
5882 * number of CPUs.
5883 *
5884 * This idea comes from the SD scheduler of Con Kolivas:
5885 */
5886static inline void sched_init_granularity(void)
5887{
5888 unsigned int factor = 1 + ilog2(num_online_cpus());
5889 const unsigned long limit = 200000000;
5890
5891 sysctl_sched_min_granularity *= factor;
5892 if (sysctl_sched_min_granularity > limit)
5893 sysctl_sched_min_granularity = limit;
5894
5895 sysctl_sched_latency *= factor;
5896 if (sysctl_sched_latency > limit)
5897 sysctl_sched_latency = limit;
5898
5899 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5900
5901 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5902}
5903
1da177e4
LT
5904#ifdef CONFIG_SMP
5905/*
5906 * This is how migration works:
5907 *
70b97a7f 5908 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5909 * runqueue and wake up that CPU's migration thread.
5910 * 2) we down() the locked semaphore => thread blocks.
5911 * 3) migration thread wakes up (implicitly it forces the migrated
5912 * thread off the CPU)
5913 * 4) it gets the migration request and checks whether the migrated
5914 * task is still in the wrong runqueue.
5915 * 5) if it's in the wrong runqueue then the migration thread removes
5916 * it and puts it into the right queue.
5917 * 6) migration thread up()s the semaphore.
5918 * 7) we wake up and the migration is done.
5919 */
5920
5921/*
5922 * Change a given task's CPU affinity. Migrate the thread to a
5923 * proper CPU and schedule it away if the CPU it's executing on
5924 * is removed from the allowed bitmask.
5925 *
5926 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5927 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5928 * call is not atomic; no spinlocks may be held.
5929 */
cd8ba7cd 5930int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5931{
70b97a7f 5932 struct migration_req req;
1da177e4 5933 unsigned long flags;
70b97a7f 5934 struct rq *rq;
48f24c4d 5935 int ret = 0;
1da177e4
LT
5936
5937 rq = task_rq_lock(p, &flags);
cd8ba7cd 5938 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5939 ret = -EINVAL;
5940 goto out;
5941 }
5942
9985b0ba
DR
5943 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5944 !cpus_equal(p->cpus_allowed, *new_mask))) {
5945 ret = -EINVAL;
5946 goto out;
5947 }
5948
73fe6aae 5949 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5950 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5951 else {
cd8ba7cd
MT
5952 p->cpus_allowed = *new_mask;
5953 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5954 }
5955
1da177e4 5956 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5957 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5958 goto out;
5959
1e5ce4f4 5960 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
5961 /* Need help from migration thread: drop lock and wait. */
5962 task_rq_unlock(rq, &flags);
5963 wake_up_process(rq->migration_thread);
5964 wait_for_completion(&req.done);
5965 tlb_migrate_finish(p->mm);
5966 return 0;
5967 }
5968out:
5969 task_rq_unlock(rq, &flags);
48f24c4d 5970
1da177e4
LT
5971 return ret;
5972}
cd8ba7cd 5973EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5974
5975/*
41a2d6cf 5976 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5977 * this because either it can't run here any more (set_cpus_allowed()
5978 * away from this CPU, or CPU going down), or because we're
5979 * attempting to rebalance this task on exec (sched_exec).
5980 *
5981 * So we race with normal scheduler movements, but that's OK, as long
5982 * as the task is no longer on this CPU.
efc30814
KK
5983 *
5984 * Returns non-zero if task was successfully migrated.
1da177e4 5985 */
efc30814 5986static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5987{
70b97a7f 5988 struct rq *rq_dest, *rq_src;
dd41f596 5989 int ret = 0, on_rq;
1da177e4 5990
e761b772 5991 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5992 return ret;
1da177e4
LT
5993
5994 rq_src = cpu_rq(src_cpu);
5995 rq_dest = cpu_rq(dest_cpu);
5996
5997 double_rq_lock(rq_src, rq_dest);
5998 /* Already moved. */
5999 if (task_cpu(p) != src_cpu)
b1e38734 6000 goto done;
1da177e4
LT
6001 /* Affinity changed (again). */
6002 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6003 goto fail;
1da177e4 6004
dd41f596 6005 on_rq = p->se.on_rq;
6e82a3be 6006 if (on_rq)
2e1cb74a 6007 deactivate_task(rq_src, p, 0);
6e82a3be 6008
1da177e4 6009 set_task_cpu(p, dest_cpu);
dd41f596
IM
6010 if (on_rq) {
6011 activate_task(rq_dest, p, 0);
15afe09b 6012 check_preempt_curr(rq_dest, p, 0);
1da177e4 6013 }
b1e38734 6014done:
efc30814 6015 ret = 1;
b1e38734 6016fail:
1da177e4 6017 double_rq_unlock(rq_src, rq_dest);
efc30814 6018 return ret;
1da177e4
LT
6019}
6020
6021/*
6022 * migration_thread - this is a highprio system thread that performs
6023 * thread migration by bumping thread off CPU then 'pushing' onto
6024 * another runqueue.
6025 */
95cdf3b7 6026static int migration_thread(void *data)
1da177e4 6027{
1da177e4 6028 int cpu = (long)data;
70b97a7f 6029 struct rq *rq;
1da177e4
LT
6030
6031 rq = cpu_rq(cpu);
6032 BUG_ON(rq->migration_thread != current);
6033
6034 set_current_state(TASK_INTERRUPTIBLE);
6035 while (!kthread_should_stop()) {
70b97a7f 6036 struct migration_req *req;
1da177e4 6037 struct list_head *head;
1da177e4 6038
1da177e4
LT
6039 spin_lock_irq(&rq->lock);
6040
6041 if (cpu_is_offline(cpu)) {
6042 spin_unlock_irq(&rq->lock);
6043 goto wait_to_die;
6044 }
6045
6046 if (rq->active_balance) {
6047 active_load_balance(rq, cpu);
6048 rq->active_balance = 0;
6049 }
6050
6051 head = &rq->migration_queue;
6052
6053 if (list_empty(head)) {
6054 spin_unlock_irq(&rq->lock);
6055 schedule();
6056 set_current_state(TASK_INTERRUPTIBLE);
6057 continue;
6058 }
70b97a7f 6059 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6060 list_del_init(head->next);
6061
674311d5
NP
6062 spin_unlock(&rq->lock);
6063 __migrate_task(req->task, cpu, req->dest_cpu);
6064 local_irq_enable();
1da177e4
LT
6065
6066 complete(&req->done);
6067 }
6068 __set_current_state(TASK_RUNNING);
6069 return 0;
6070
6071wait_to_die:
6072 /* Wait for kthread_stop */
6073 set_current_state(TASK_INTERRUPTIBLE);
6074 while (!kthread_should_stop()) {
6075 schedule();
6076 set_current_state(TASK_INTERRUPTIBLE);
6077 }
6078 __set_current_state(TASK_RUNNING);
6079 return 0;
6080}
6081
6082#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6083
6084static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6085{
6086 int ret;
6087
6088 local_irq_disable();
6089 ret = __migrate_task(p, src_cpu, dest_cpu);
6090 local_irq_enable();
6091 return ret;
6092}
6093
054b9108 6094/*
3a4fa0a2 6095 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6096 */
48f24c4d 6097static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6098{
efc30814 6099 unsigned long flags;
1da177e4 6100 cpumask_t mask;
70b97a7f
IM
6101 struct rq *rq;
6102 int dest_cpu;
1da177e4 6103
3a5c359a
AK
6104 do {
6105 /* On same node? */
ea6f18ed
MT
6106 node_to_cpumask_ptr(pnodemask, cpu_to_node(dead_cpu));
6107
6108 cpus_and(mask, *pnodemask, p->cpus_allowed);
1e5ce4f4 6109 dest_cpu = cpumask_any_and(cpu_online_mask, &mask);
3a5c359a
AK
6110
6111 /* On any allowed CPU? */
434d53b0 6112 if (dest_cpu >= nr_cpu_ids)
1e5ce4f4
RR
6113 dest_cpu = cpumask_any_and(cpu_online_mask,
6114 &p->cpus_allowed);
3a5c359a
AK
6115
6116 /* No more Mr. Nice Guy. */
434d53b0 6117 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6118 cpumask_t cpus_allowed;
6119
6120 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6121 /*
6122 * Try to stay on the same cpuset, where the
6123 * current cpuset may be a subset of all cpus.
6124 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6125 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6126 * called within calls to cpuset_lock/cpuset_unlock.
6127 */
3a5c359a 6128 rq = task_rq_lock(p, &flags);
470fd646 6129 p->cpus_allowed = cpus_allowed;
1e5ce4f4
RR
6130 dest_cpu = cpumask_any_and(cpu_online_mask,
6131 &p->cpus_allowed);
3a5c359a 6132 task_rq_unlock(rq, &flags);
1da177e4 6133
3a5c359a
AK
6134 /*
6135 * Don't tell them about moving exiting tasks or
6136 * kernel threads (both mm NULL), since they never
6137 * leave kernel.
6138 */
41a2d6cf 6139 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6140 printk(KERN_INFO "process %d (%s) no "
6141 "longer affine to cpu%d\n",
41a2d6cf
IM
6142 task_pid_nr(p), p->comm, dead_cpu);
6143 }
3a5c359a 6144 }
f7b4cddc 6145 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6146}
6147
6148/*
6149 * While a dead CPU has no uninterruptible tasks queued at this point,
6150 * it might still have a nonzero ->nr_uninterruptible counter, because
6151 * for performance reasons the counter is not stricly tracking tasks to
6152 * their home CPUs. So we just add the counter to another CPU's counter,
6153 * to keep the global sum constant after CPU-down:
6154 */
70b97a7f 6155static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6156{
1e5ce4f4 6157 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6158 unsigned long flags;
6159
6160 local_irq_save(flags);
6161 double_rq_lock(rq_src, rq_dest);
6162 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6163 rq_src->nr_uninterruptible = 0;
6164 double_rq_unlock(rq_src, rq_dest);
6165 local_irq_restore(flags);
6166}
6167
6168/* Run through task list and migrate tasks from the dead cpu. */
6169static void migrate_live_tasks(int src_cpu)
6170{
48f24c4d 6171 struct task_struct *p, *t;
1da177e4 6172
f7b4cddc 6173 read_lock(&tasklist_lock);
1da177e4 6174
48f24c4d
IM
6175 do_each_thread(t, p) {
6176 if (p == current)
1da177e4
LT
6177 continue;
6178
48f24c4d
IM
6179 if (task_cpu(p) == src_cpu)
6180 move_task_off_dead_cpu(src_cpu, p);
6181 } while_each_thread(t, p);
1da177e4 6182
f7b4cddc 6183 read_unlock(&tasklist_lock);
1da177e4
LT
6184}
6185
dd41f596
IM
6186/*
6187 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6188 * It does so by boosting its priority to highest possible.
6189 * Used by CPU offline code.
1da177e4
LT
6190 */
6191void sched_idle_next(void)
6192{
48f24c4d 6193 int this_cpu = smp_processor_id();
70b97a7f 6194 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6195 struct task_struct *p = rq->idle;
6196 unsigned long flags;
6197
6198 /* cpu has to be offline */
48f24c4d 6199 BUG_ON(cpu_online(this_cpu));
1da177e4 6200
48f24c4d
IM
6201 /*
6202 * Strictly not necessary since rest of the CPUs are stopped by now
6203 * and interrupts disabled on the current cpu.
1da177e4
LT
6204 */
6205 spin_lock_irqsave(&rq->lock, flags);
6206
dd41f596 6207 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6208
94bc9a7b
DA
6209 update_rq_clock(rq);
6210 activate_task(rq, p, 0);
1da177e4
LT
6211
6212 spin_unlock_irqrestore(&rq->lock, flags);
6213}
6214
48f24c4d
IM
6215/*
6216 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6217 * offline.
6218 */
6219void idle_task_exit(void)
6220{
6221 struct mm_struct *mm = current->active_mm;
6222
6223 BUG_ON(cpu_online(smp_processor_id()));
6224
6225 if (mm != &init_mm)
6226 switch_mm(mm, &init_mm, current);
6227 mmdrop(mm);
6228}
6229
054b9108 6230/* called under rq->lock with disabled interrupts */
36c8b586 6231static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6232{
70b97a7f 6233 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6234
6235 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6236 BUG_ON(!p->exit_state);
1da177e4
LT
6237
6238 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6239 BUG_ON(p->state == TASK_DEAD);
1da177e4 6240
48f24c4d 6241 get_task_struct(p);
1da177e4
LT
6242
6243 /*
6244 * Drop lock around migration; if someone else moves it,
41a2d6cf 6245 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6246 * fine.
6247 */
f7b4cddc 6248 spin_unlock_irq(&rq->lock);
48f24c4d 6249 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6250 spin_lock_irq(&rq->lock);
1da177e4 6251
48f24c4d 6252 put_task_struct(p);
1da177e4
LT
6253}
6254
6255/* release_task() removes task from tasklist, so we won't find dead tasks. */
6256static void migrate_dead_tasks(unsigned int dead_cpu)
6257{
70b97a7f 6258 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6259 struct task_struct *next;
48f24c4d 6260
dd41f596
IM
6261 for ( ; ; ) {
6262 if (!rq->nr_running)
6263 break;
a8e504d2 6264 update_rq_clock(rq);
ff95f3df 6265 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6266 if (!next)
6267 break;
79c53799 6268 next->sched_class->put_prev_task(rq, next);
dd41f596 6269 migrate_dead(dead_cpu, next);
e692ab53 6270
1da177e4
LT
6271 }
6272}
6273#endif /* CONFIG_HOTPLUG_CPU */
6274
e692ab53
NP
6275#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6276
6277static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6278 {
6279 .procname = "sched_domain",
c57baf1e 6280 .mode = 0555,
e0361851 6281 },
38605cae 6282 {0, },
e692ab53
NP
6283};
6284
6285static struct ctl_table sd_ctl_root[] = {
e0361851 6286 {
c57baf1e 6287 .ctl_name = CTL_KERN,
e0361851 6288 .procname = "kernel",
c57baf1e 6289 .mode = 0555,
e0361851
AD
6290 .child = sd_ctl_dir,
6291 },
38605cae 6292 {0, },
e692ab53
NP
6293};
6294
6295static struct ctl_table *sd_alloc_ctl_entry(int n)
6296{
6297 struct ctl_table *entry =
5cf9f062 6298 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6299
e692ab53
NP
6300 return entry;
6301}
6302
6382bc90
MM
6303static void sd_free_ctl_entry(struct ctl_table **tablep)
6304{
cd790076 6305 struct ctl_table *entry;
6382bc90 6306
cd790076
MM
6307 /*
6308 * In the intermediate directories, both the child directory and
6309 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6310 * will always be set. In the lowest directory the names are
cd790076
MM
6311 * static strings and all have proc handlers.
6312 */
6313 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6314 if (entry->child)
6315 sd_free_ctl_entry(&entry->child);
cd790076
MM
6316 if (entry->proc_handler == NULL)
6317 kfree(entry->procname);
6318 }
6382bc90
MM
6319
6320 kfree(*tablep);
6321 *tablep = NULL;
6322}
6323
e692ab53 6324static void
e0361851 6325set_table_entry(struct ctl_table *entry,
e692ab53
NP
6326 const char *procname, void *data, int maxlen,
6327 mode_t mode, proc_handler *proc_handler)
6328{
e692ab53
NP
6329 entry->procname = procname;
6330 entry->data = data;
6331 entry->maxlen = maxlen;
6332 entry->mode = mode;
6333 entry->proc_handler = proc_handler;
6334}
6335
6336static struct ctl_table *
6337sd_alloc_ctl_domain_table(struct sched_domain *sd)
6338{
a5d8c348 6339 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6340
ad1cdc1d
MM
6341 if (table == NULL)
6342 return NULL;
6343
e0361851 6344 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6345 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6346 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6347 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6348 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6349 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6350 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6351 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6352 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6353 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6354 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6355 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6356 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6357 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6358 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6359 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6360 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6361 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6362 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6363 &sd->cache_nice_tries,
6364 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6365 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6366 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6367 set_table_entry(&table[11], "name", sd->name,
6368 CORENAME_MAX_SIZE, 0444, proc_dostring);
6369 /* &table[12] is terminator */
e692ab53
NP
6370
6371 return table;
6372}
6373
9a4e7159 6374static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6375{
6376 struct ctl_table *entry, *table;
6377 struct sched_domain *sd;
6378 int domain_num = 0, i;
6379 char buf[32];
6380
6381 for_each_domain(cpu, sd)
6382 domain_num++;
6383 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6384 if (table == NULL)
6385 return NULL;
e692ab53
NP
6386
6387 i = 0;
6388 for_each_domain(cpu, sd) {
6389 snprintf(buf, 32, "domain%d", i);
e692ab53 6390 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6391 entry->mode = 0555;
e692ab53
NP
6392 entry->child = sd_alloc_ctl_domain_table(sd);
6393 entry++;
6394 i++;
6395 }
6396 return table;
6397}
6398
6399static struct ctl_table_header *sd_sysctl_header;
6382bc90 6400static void register_sched_domain_sysctl(void)
e692ab53
NP
6401{
6402 int i, cpu_num = num_online_cpus();
6403 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6404 char buf[32];
6405
7378547f
MM
6406 WARN_ON(sd_ctl_dir[0].child);
6407 sd_ctl_dir[0].child = entry;
6408
ad1cdc1d
MM
6409 if (entry == NULL)
6410 return;
6411
97b6ea7b 6412 for_each_online_cpu(i) {
e692ab53 6413 snprintf(buf, 32, "cpu%d", i);
e692ab53 6414 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6415 entry->mode = 0555;
e692ab53 6416 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6417 entry++;
e692ab53 6418 }
7378547f
MM
6419
6420 WARN_ON(sd_sysctl_header);
e692ab53
NP
6421 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6422}
6382bc90 6423
7378547f 6424/* may be called multiple times per register */
6382bc90
MM
6425static void unregister_sched_domain_sysctl(void)
6426{
7378547f
MM
6427 if (sd_sysctl_header)
6428 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6429 sd_sysctl_header = NULL;
7378547f
MM
6430 if (sd_ctl_dir[0].child)
6431 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6432}
e692ab53 6433#else
6382bc90
MM
6434static void register_sched_domain_sysctl(void)
6435{
6436}
6437static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6438{
6439}
6440#endif
6441
1f11eb6a
GH
6442static void set_rq_online(struct rq *rq)
6443{
6444 if (!rq->online) {
6445 const struct sched_class *class;
6446
c6c4927b 6447 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6448 rq->online = 1;
6449
6450 for_each_class(class) {
6451 if (class->rq_online)
6452 class->rq_online(rq);
6453 }
6454 }
6455}
6456
6457static void set_rq_offline(struct rq *rq)
6458{
6459 if (rq->online) {
6460 const struct sched_class *class;
6461
6462 for_each_class(class) {
6463 if (class->rq_offline)
6464 class->rq_offline(rq);
6465 }
6466
c6c4927b 6467 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6468 rq->online = 0;
6469 }
6470}
6471
1da177e4
LT
6472/*
6473 * migration_call - callback that gets triggered when a CPU is added.
6474 * Here we can start up the necessary migration thread for the new CPU.
6475 */
48f24c4d
IM
6476static int __cpuinit
6477migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6478{
1da177e4 6479 struct task_struct *p;
48f24c4d 6480 int cpu = (long)hcpu;
1da177e4 6481 unsigned long flags;
70b97a7f 6482 struct rq *rq;
1da177e4
LT
6483
6484 switch (action) {
5be9361c 6485
1da177e4 6486 case CPU_UP_PREPARE:
8bb78442 6487 case CPU_UP_PREPARE_FROZEN:
dd41f596 6488 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6489 if (IS_ERR(p))
6490 return NOTIFY_BAD;
1da177e4
LT
6491 kthread_bind(p, cpu);
6492 /* Must be high prio: stop_machine expects to yield to it. */
6493 rq = task_rq_lock(p, &flags);
dd41f596 6494 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6495 task_rq_unlock(rq, &flags);
6496 cpu_rq(cpu)->migration_thread = p;
6497 break;
48f24c4d 6498
1da177e4 6499 case CPU_ONLINE:
8bb78442 6500 case CPU_ONLINE_FROZEN:
3a4fa0a2 6501 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6502 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6503
6504 /* Update our root-domain */
6505 rq = cpu_rq(cpu);
6506 spin_lock_irqsave(&rq->lock, flags);
6507 if (rq->rd) {
c6c4927b 6508 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6509
6510 set_rq_online(rq);
1f94ef59
GH
6511 }
6512 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6513 break;
48f24c4d 6514
1da177e4
LT
6515#ifdef CONFIG_HOTPLUG_CPU
6516 case CPU_UP_CANCELED:
8bb78442 6517 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6518 if (!cpu_rq(cpu)->migration_thread)
6519 break;
41a2d6cf 6520 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6521 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6522 cpumask_any(cpu_online_mask));
1da177e4
LT
6523 kthread_stop(cpu_rq(cpu)->migration_thread);
6524 cpu_rq(cpu)->migration_thread = NULL;
6525 break;
48f24c4d 6526
1da177e4 6527 case CPU_DEAD:
8bb78442 6528 case CPU_DEAD_FROZEN:
470fd646 6529 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6530 migrate_live_tasks(cpu);
6531 rq = cpu_rq(cpu);
6532 kthread_stop(rq->migration_thread);
6533 rq->migration_thread = NULL;
6534 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6535 spin_lock_irq(&rq->lock);
a8e504d2 6536 update_rq_clock(rq);
2e1cb74a 6537 deactivate_task(rq, rq->idle, 0);
1da177e4 6538 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6539 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6540 rq->idle->sched_class = &idle_sched_class;
1da177e4 6541 migrate_dead_tasks(cpu);
d2da272a 6542 spin_unlock_irq(&rq->lock);
470fd646 6543 cpuset_unlock();
1da177e4
LT
6544 migrate_nr_uninterruptible(rq);
6545 BUG_ON(rq->nr_running != 0);
6546
41a2d6cf
IM
6547 /*
6548 * No need to migrate the tasks: it was best-effort if
6549 * they didn't take sched_hotcpu_mutex. Just wake up
6550 * the requestors.
6551 */
1da177e4
LT
6552 spin_lock_irq(&rq->lock);
6553 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6554 struct migration_req *req;
6555
1da177e4 6556 req = list_entry(rq->migration_queue.next,
70b97a7f 6557 struct migration_req, list);
1da177e4
LT
6558 list_del_init(&req->list);
6559 complete(&req->done);
6560 }
6561 spin_unlock_irq(&rq->lock);
6562 break;
57d885fe 6563
08f503b0
GH
6564 case CPU_DYING:
6565 case CPU_DYING_FROZEN:
57d885fe
GH
6566 /* Update our root-domain */
6567 rq = cpu_rq(cpu);
6568 spin_lock_irqsave(&rq->lock, flags);
6569 if (rq->rd) {
c6c4927b 6570 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6571 set_rq_offline(rq);
57d885fe
GH
6572 }
6573 spin_unlock_irqrestore(&rq->lock, flags);
6574 break;
1da177e4
LT
6575#endif
6576 }
6577 return NOTIFY_OK;
6578}
6579
6580/* Register at highest priority so that task migration (migrate_all_tasks)
6581 * happens before everything else.
6582 */
26c2143b 6583static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6584 .notifier_call = migration_call,
6585 .priority = 10
6586};
6587
7babe8db 6588static int __init migration_init(void)
1da177e4
LT
6589{
6590 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6591 int err;
48f24c4d
IM
6592
6593 /* Start one for the boot CPU: */
07dccf33
AM
6594 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6595 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6596 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6597 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6598
6599 return err;
1da177e4 6600}
7babe8db 6601early_initcall(migration_init);
1da177e4
LT
6602#endif
6603
6604#ifdef CONFIG_SMP
476f3534 6605
3e9830dc 6606#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6607
7c16ec58
MT
6608static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6609 cpumask_t *groupmask)
1da177e4 6610{
4dcf6aff 6611 struct sched_group *group = sd->groups;
434d53b0 6612 char str[256];
1da177e4 6613
758b2cdc 6614 cpulist_scnprintf(str, sizeof(str), *sched_domain_span(sd));
7c16ec58 6615 cpus_clear(*groupmask);
4dcf6aff
IM
6616
6617 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6618
6619 if (!(sd->flags & SD_LOAD_BALANCE)) {
6620 printk("does not load-balance\n");
6621 if (sd->parent)
6622 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6623 " has parent");
6624 return -1;
41c7ce9a
NP
6625 }
6626
eefd796a 6627 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6628
758b2cdc 6629 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6630 printk(KERN_ERR "ERROR: domain->span does not contain "
6631 "CPU%d\n", cpu);
6632 }
758b2cdc 6633 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6634 printk(KERN_ERR "ERROR: domain->groups does not contain"
6635 " CPU%d\n", cpu);
6636 }
1da177e4 6637
4dcf6aff 6638 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6639 do {
4dcf6aff
IM
6640 if (!group) {
6641 printk("\n");
6642 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6643 break;
6644 }
6645
4dcf6aff
IM
6646 if (!group->__cpu_power) {
6647 printk(KERN_CONT "\n");
6648 printk(KERN_ERR "ERROR: domain->cpu_power not "
6649 "set\n");
6650 break;
6651 }
1da177e4 6652
758b2cdc 6653 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6654 printk(KERN_CONT "\n");
6655 printk(KERN_ERR "ERROR: empty group\n");
6656 break;
6657 }
1da177e4 6658
758b2cdc 6659 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6660 printk(KERN_CONT "\n");
6661 printk(KERN_ERR "ERROR: repeated CPUs\n");
6662 break;
6663 }
1da177e4 6664
758b2cdc 6665 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6666
758b2cdc 6667 cpulist_scnprintf(str, sizeof(str), *sched_group_cpus(group));
4dcf6aff 6668 printk(KERN_CONT " %s", str);
1da177e4 6669
4dcf6aff
IM
6670 group = group->next;
6671 } while (group != sd->groups);
6672 printk(KERN_CONT "\n");
1da177e4 6673
758b2cdc 6674 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6675 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6676
758b2cdc
RR
6677 if (sd->parent &&
6678 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6679 printk(KERN_ERR "ERROR: parent span is not a superset "
6680 "of domain->span\n");
6681 return 0;
6682}
1da177e4 6683
4dcf6aff
IM
6684static void sched_domain_debug(struct sched_domain *sd, int cpu)
6685{
7c16ec58 6686 cpumask_t *groupmask;
4dcf6aff 6687 int level = 0;
1da177e4 6688
4dcf6aff
IM
6689 if (!sd) {
6690 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6691 return;
6692 }
1da177e4 6693
4dcf6aff
IM
6694 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6695
7c16ec58
MT
6696 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6697 if (!groupmask) {
6698 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6699 return;
6700 }
6701
4dcf6aff 6702 for (;;) {
7c16ec58 6703 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6704 break;
1da177e4
LT
6705 level++;
6706 sd = sd->parent;
33859f7f 6707 if (!sd)
4dcf6aff
IM
6708 break;
6709 }
7c16ec58 6710 kfree(groupmask);
1da177e4 6711}
6d6bc0ad 6712#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6713# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6714#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6715
1a20ff27 6716static int sd_degenerate(struct sched_domain *sd)
245af2c7 6717{
758b2cdc 6718 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6719 return 1;
6720
6721 /* Following flags need at least 2 groups */
6722 if (sd->flags & (SD_LOAD_BALANCE |
6723 SD_BALANCE_NEWIDLE |
6724 SD_BALANCE_FORK |
89c4710e
SS
6725 SD_BALANCE_EXEC |
6726 SD_SHARE_CPUPOWER |
6727 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6728 if (sd->groups != sd->groups->next)
6729 return 0;
6730 }
6731
6732 /* Following flags don't use groups */
6733 if (sd->flags & (SD_WAKE_IDLE |
6734 SD_WAKE_AFFINE |
6735 SD_WAKE_BALANCE))
6736 return 0;
6737
6738 return 1;
6739}
6740
48f24c4d
IM
6741static int
6742sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6743{
6744 unsigned long cflags = sd->flags, pflags = parent->flags;
6745
6746 if (sd_degenerate(parent))
6747 return 1;
6748
758b2cdc 6749 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6750 return 0;
6751
6752 /* Does parent contain flags not in child? */
6753 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6754 if (cflags & SD_WAKE_AFFINE)
6755 pflags &= ~SD_WAKE_BALANCE;
6756 /* Flags needing groups don't count if only 1 group in parent */
6757 if (parent->groups == parent->groups->next) {
6758 pflags &= ~(SD_LOAD_BALANCE |
6759 SD_BALANCE_NEWIDLE |
6760 SD_BALANCE_FORK |
89c4710e
SS
6761 SD_BALANCE_EXEC |
6762 SD_SHARE_CPUPOWER |
6763 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6764 }
6765 if (~cflags & pflags)
6766 return 0;
6767
6768 return 1;
6769}
6770
c6c4927b
RR
6771static void free_rootdomain(struct root_domain *rd)
6772{
6773 free_cpumask_var(rd->rto_mask);
6774 free_cpumask_var(rd->online);
6775 free_cpumask_var(rd->span);
6776 kfree(rd);
6777}
6778
57d885fe
GH
6779static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6780{
6781 unsigned long flags;
57d885fe
GH
6782
6783 spin_lock_irqsave(&rq->lock, flags);
6784
6785 if (rq->rd) {
6786 struct root_domain *old_rd = rq->rd;
6787
c6c4927b 6788 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6789 set_rq_offline(rq);
57d885fe 6790
c6c4927b 6791 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6792
57d885fe 6793 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 6794 free_rootdomain(old_rd);
57d885fe
GH
6795 }
6796
6797 atomic_inc(&rd->refcount);
6798 rq->rd = rd;
6799
c6c4927b
RR
6800 cpumask_set_cpu(rq->cpu, rd->span);
6801 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6802 set_rq_online(rq);
57d885fe
GH
6803
6804 spin_unlock_irqrestore(&rq->lock, flags);
6805}
6806
c6c4927b 6807static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6808{
6809 memset(rd, 0, sizeof(*rd));
6810
c6c4927b
RR
6811 if (bootmem) {
6812 alloc_bootmem_cpumask_var(&def_root_domain.span);
6813 alloc_bootmem_cpumask_var(&def_root_domain.online);
6814 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6815 cpupri_init(&rd->cpupri);
6816 return 0;
6817 }
6818
6819 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6820 goto free_rd;
6821 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6822 goto free_span;
6823 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6824 goto free_online;
6e0534f2
GH
6825
6826 cpupri_init(&rd->cpupri);
c6c4927b
RR
6827 return 0;
6828
6829free_online:
6830 free_cpumask_var(rd->online);
6831free_span:
6832 free_cpumask_var(rd->span);
6833free_rd:
6834 kfree(rd);
6835 return -ENOMEM;
57d885fe
GH
6836}
6837
6838static void init_defrootdomain(void)
6839{
c6c4927b
RR
6840 init_rootdomain(&def_root_domain, true);
6841
57d885fe
GH
6842 atomic_set(&def_root_domain.refcount, 1);
6843}
6844
dc938520 6845static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6846{
6847 struct root_domain *rd;
6848
6849 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6850 if (!rd)
6851 return NULL;
6852
c6c4927b
RR
6853 if (init_rootdomain(rd, false) != 0) {
6854 kfree(rd);
6855 return NULL;
6856 }
57d885fe
GH
6857
6858 return rd;
6859}
6860
1da177e4 6861/*
0eab9146 6862 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6863 * hold the hotplug lock.
6864 */
0eab9146
IM
6865static void
6866cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6867{
70b97a7f 6868 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6869 struct sched_domain *tmp;
6870
6871 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6872 for (tmp = sd; tmp; ) {
245af2c7
SS
6873 struct sched_domain *parent = tmp->parent;
6874 if (!parent)
6875 break;
f29c9b1c 6876
1a848870 6877 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6878 tmp->parent = parent->parent;
1a848870
SS
6879 if (parent->parent)
6880 parent->parent->child = tmp;
f29c9b1c
LZ
6881 } else
6882 tmp = tmp->parent;
245af2c7
SS
6883 }
6884
1a848870 6885 if (sd && sd_degenerate(sd)) {
245af2c7 6886 sd = sd->parent;
1a848870
SS
6887 if (sd)
6888 sd->child = NULL;
6889 }
1da177e4
LT
6890
6891 sched_domain_debug(sd, cpu);
6892
57d885fe 6893 rq_attach_root(rq, rd);
674311d5 6894 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6895}
6896
6897/* cpus with isolated domains */
67af63a6 6898static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6899
6900/* Setup the mask of cpus configured for isolated domains */
6901static int __init isolated_cpu_setup(char *str)
6902{
13b40c1e
MT
6903 static int __initdata ints[NR_CPUS];
6904 int i;
1da177e4
LT
6905
6906 str = get_options(str, ARRAY_SIZE(ints), ints);
6907 cpus_clear(cpu_isolated_map);
6908 for (i = 1; i <= ints[0]; i++)
6909 if (ints[i] < NR_CPUS)
6910 cpu_set(ints[i], cpu_isolated_map);
6911 return 1;
6912}
6913
8927f494 6914__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6915
6916/*
6711cab4
SS
6917 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6918 * to a function which identifies what group(along with sched group) a CPU
6919 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6920 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6921 *
6922 * init_sched_build_groups will build a circular linked list of the groups
6923 * covered by the given span, and will set each group's ->cpumask correctly,
6924 * and ->cpu_power to 0.
6925 */
a616058b 6926static void
7c16ec58 6927init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6928 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6929 struct sched_group **sg,
6930 cpumask_t *tmpmask),
6931 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6932{
6933 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6934 int i;
6935
7c16ec58
MT
6936 cpus_clear(*covered);
6937
abcd083a 6938 for_each_cpu(i, span) {
6711cab4 6939 struct sched_group *sg;
7c16ec58 6940 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6941 int j;
6942
758b2cdc 6943 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6944 continue;
6945
758b2cdc 6946 cpumask_clear(sched_group_cpus(sg));
5517d86b 6947 sg->__cpu_power = 0;
1da177e4 6948
abcd083a 6949 for_each_cpu(j, span) {
7c16ec58 6950 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6951 continue;
6952
7c16ec58 6953 cpu_set(j, *covered);
758b2cdc 6954 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6955 }
6956 if (!first)
6957 first = sg;
6958 if (last)
6959 last->next = sg;
6960 last = sg;
6961 }
6962 last->next = first;
6963}
6964
9c1cfda2 6965#define SD_NODES_PER_DOMAIN 16
1da177e4 6966
9c1cfda2 6967#ifdef CONFIG_NUMA
198e2f18 6968
9c1cfda2
JH
6969/**
6970 * find_next_best_node - find the next node to include in a sched_domain
6971 * @node: node whose sched_domain we're building
6972 * @used_nodes: nodes already in the sched_domain
6973 *
41a2d6cf 6974 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6975 * finds the closest node not already in the @used_nodes map.
6976 *
6977 * Should use nodemask_t.
6978 */
c5f59f08 6979static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6980{
6981 int i, n, val, min_val, best_node = 0;
6982
6983 min_val = INT_MAX;
6984
076ac2af 6985 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6986 /* Start at @node */
076ac2af 6987 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6988
6989 if (!nr_cpus_node(n))
6990 continue;
6991
6992 /* Skip already used nodes */
c5f59f08 6993 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6994 continue;
6995
6996 /* Simple min distance search */
6997 val = node_distance(node, n);
6998
6999 if (val < min_val) {
7000 min_val = val;
7001 best_node = n;
7002 }
7003 }
7004
c5f59f08 7005 node_set(best_node, *used_nodes);
9c1cfda2
JH
7006 return best_node;
7007}
7008
7009/**
7010 * sched_domain_node_span - get a cpumask for a node's sched_domain
7011 * @node: node whose cpumask we're constructing
73486722 7012 * @span: resulting cpumask
9c1cfda2 7013 *
41a2d6cf 7014 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7015 * should be one that prevents unnecessary balancing, but also spreads tasks
7016 * out optimally.
7017 */
4bdbaad3 7018static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7019{
c5f59f08 7020 nodemask_t used_nodes;
c5f59f08 7021 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7022 int i;
9c1cfda2 7023
4bdbaad3 7024 cpus_clear(*span);
c5f59f08 7025 nodes_clear(used_nodes);
9c1cfda2 7026
4bdbaad3 7027 cpus_or(*span, *span, *nodemask);
c5f59f08 7028 node_set(node, used_nodes);
9c1cfda2
JH
7029
7030 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7031 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7032
c5f59f08 7033 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7034 cpus_or(*span, *span, *nodemask);
9c1cfda2 7035 }
9c1cfda2 7036}
6d6bc0ad 7037#endif /* CONFIG_NUMA */
9c1cfda2 7038
5c45bf27 7039int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7040
6c99e9ad
RR
7041/*
7042 * The cpus mask in sched_group and sched_domain hangs off the end.
7043 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7044 * for nr_cpu_ids < CONFIG_NR_CPUS.
7045 */
7046struct static_sched_group {
7047 struct sched_group sg;
7048 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7049};
7050
7051struct static_sched_domain {
7052 struct sched_domain sd;
7053 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7054};
7055
9c1cfda2 7056/*
48f24c4d 7057 * SMT sched-domains:
9c1cfda2 7058 */
1da177e4 7059#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7060static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7061static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7062
41a2d6cf 7063static int
7c16ec58
MT
7064cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7065 cpumask_t *unused)
1da177e4 7066{
6711cab4 7067 if (sg)
6c99e9ad 7068 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7069 return cpu;
7070}
6d6bc0ad 7071#endif /* CONFIG_SCHED_SMT */
1da177e4 7072
48f24c4d
IM
7073/*
7074 * multi-core sched-domains:
7075 */
1e9f28fa 7076#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7077static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7078static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7079#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7080
7081#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7082static int
7c16ec58
MT
7083cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7084 cpumask_t *mask)
1e9f28fa 7085{
6711cab4 7086 int group;
7c16ec58
MT
7087
7088 *mask = per_cpu(cpu_sibling_map, cpu);
7089 cpus_and(*mask, *mask, *cpu_map);
7090 group = first_cpu(*mask);
6711cab4 7091 if (sg)
6c99e9ad 7092 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7093 return group;
1e9f28fa
SS
7094}
7095#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7096static int
7c16ec58
MT
7097cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7098 cpumask_t *unused)
1e9f28fa 7099{
6711cab4 7100 if (sg)
6c99e9ad 7101 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7102 return cpu;
7103}
7104#endif
7105
6c99e9ad
RR
7106static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7107static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7108
41a2d6cf 7109static int
7c16ec58
MT
7110cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7111 cpumask_t *mask)
1da177e4 7112{
6711cab4 7113 int group;
48f24c4d 7114#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7115 *mask = cpu_coregroup_map(cpu);
7116 cpus_and(*mask, *mask, *cpu_map);
7117 group = first_cpu(*mask);
1e9f28fa 7118#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7119 *mask = per_cpu(cpu_sibling_map, cpu);
7120 cpus_and(*mask, *mask, *cpu_map);
7121 group = first_cpu(*mask);
1da177e4 7122#else
6711cab4 7123 group = cpu;
1da177e4 7124#endif
6711cab4 7125 if (sg)
6c99e9ad 7126 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7127 return group;
1da177e4
LT
7128}
7129
7130#ifdef CONFIG_NUMA
1da177e4 7131/*
9c1cfda2
JH
7132 * The init_sched_build_groups can't handle what we want to do with node
7133 * groups, so roll our own. Now each node has its own list of groups which
7134 * gets dynamically allocated.
1da177e4 7135 */
9c1cfda2 7136static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7137static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7138
9c1cfda2 7139static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6c99e9ad 7140static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7141
6711cab4 7142static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7143 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7144{
6711cab4 7145 int group;
ea6f18ed 7146 node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
6711cab4 7147
ea6f18ed 7148 cpus_and(*nodemask, *pnodemask, *cpu_map);
7c16ec58 7149 group = first_cpu(*nodemask);
6711cab4
SS
7150
7151 if (sg)
6c99e9ad 7152 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7153 return group;
1da177e4 7154}
6711cab4 7155
08069033
SS
7156static void init_numa_sched_groups_power(struct sched_group *group_head)
7157{
7158 struct sched_group *sg = group_head;
7159 int j;
7160
7161 if (!sg)
7162 return;
3a5c359a 7163 do {
758b2cdc 7164 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7165 struct sched_domain *sd;
08069033 7166
6c99e9ad 7167 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7168 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7169 /*
7170 * Only add "power" once for each
7171 * physical package.
7172 */
7173 continue;
7174 }
08069033 7175
3a5c359a
AK
7176 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7177 }
7178 sg = sg->next;
7179 } while (sg != group_head);
08069033 7180}
6d6bc0ad 7181#endif /* CONFIG_NUMA */
1da177e4 7182
a616058b 7183#ifdef CONFIG_NUMA
51888ca2 7184/* Free memory allocated for various sched_group structures */
7c16ec58 7185static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7186{
a616058b 7187 int cpu, i;
51888ca2 7188
abcd083a 7189 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7190 struct sched_group **sched_group_nodes
7191 = sched_group_nodes_bycpu[cpu];
7192
51888ca2
SV
7193 if (!sched_group_nodes)
7194 continue;
7195
076ac2af 7196 for (i = 0; i < nr_node_ids; i++) {
51888ca2 7197 struct sched_group *oldsg, *sg = sched_group_nodes[i];
ea6f18ed 7198 node_to_cpumask_ptr(pnodemask, i);
51888ca2 7199
ea6f18ed 7200 cpus_and(*nodemask, *pnodemask, *cpu_map);
7c16ec58 7201 if (cpus_empty(*nodemask))
51888ca2
SV
7202 continue;
7203
7204 if (sg == NULL)
7205 continue;
7206 sg = sg->next;
7207next_sg:
7208 oldsg = sg;
7209 sg = sg->next;
7210 kfree(oldsg);
7211 if (oldsg != sched_group_nodes[i])
7212 goto next_sg;
7213 }
7214 kfree(sched_group_nodes);
7215 sched_group_nodes_bycpu[cpu] = NULL;
7216 }
51888ca2 7217}
6d6bc0ad 7218#else /* !CONFIG_NUMA */
7c16ec58 7219static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7220{
7221}
6d6bc0ad 7222#endif /* CONFIG_NUMA */
51888ca2 7223
89c4710e
SS
7224/*
7225 * Initialize sched groups cpu_power.
7226 *
7227 * cpu_power indicates the capacity of sched group, which is used while
7228 * distributing the load between different sched groups in a sched domain.
7229 * Typically cpu_power for all the groups in a sched domain will be same unless
7230 * there are asymmetries in the topology. If there are asymmetries, group
7231 * having more cpu_power will pickup more load compared to the group having
7232 * less cpu_power.
7233 *
7234 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7235 * the maximum number of tasks a group can handle in the presence of other idle
7236 * or lightly loaded groups in the same sched domain.
7237 */
7238static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7239{
7240 struct sched_domain *child;
7241 struct sched_group *group;
7242
7243 WARN_ON(!sd || !sd->groups);
7244
758b2cdc 7245 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7246 return;
7247
7248 child = sd->child;
7249
5517d86b
ED
7250 sd->groups->__cpu_power = 0;
7251
89c4710e
SS
7252 /*
7253 * For perf policy, if the groups in child domain share resources
7254 * (for example cores sharing some portions of the cache hierarchy
7255 * or SMT), then set this domain groups cpu_power such that each group
7256 * can handle only one task, when there are other idle groups in the
7257 * same sched domain.
7258 */
7259 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7260 (child->flags &
7261 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7262 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7263 return;
7264 }
7265
89c4710e
SS
7266 /*
7267 * add cpu_power of each child group to this groups cpu_power
7268 */
7269 group = child->groups;
7270 do {
5517d86b 7271 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7272 group = group->next;
7273 } while (group != child->groups);
7274}
7275
7c16ec58
MT
7276/*
7277 * Initializers for schedule domains
7278 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7279 */
7280
a5d8c348
IM
7281#ifdef CONFIG_SCHED_DEBUG
7282# define SD_INIT_NAME(sd, type) sd->name = #type
7283#else
7284# define SD_INIT_NAME(sd, type) do { } while (0)
7285#endif
7286
7c16ec58 7287#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7288
7c16ec58
MT
7289#define SD_INIT_FUNC(type) \
7290static noinline void sd_init_##type(struct sched_domain *sd) \
7291{ \
7292 memset(sd, 0, sizeof(*sd)); \
7293 *sd = SD_##type##_INIT; \
1d3504fc 7294 sd->level = SD_LV_##type; \
a5d8c348 7295 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7296}
7297
7298SD_INIT_FUNC(CPU)
7299#ifdef CONFIG_NUMA
7300 SD_INIT_FUNC(ALLNODES)
7301 SD_INIT_FUNC(NODE)
7302#endif
7303#ifdef CONFIG_SCHED_SMT
7304 SD_INIT_FUNC(SIBLING)
7305#endif
7306#ifdef CONFIG_SCHED_MC
7307 SD_INIT_FUNC(MC)
7308#endif
7309
1d3504fc
HS
7310static int default_relax_domain_level = -1;
7311
7312static int __init setup_relax_domain_level(char *str)
7313{
30e0e178
LZ
7314 unsigned long val;
7315
7316 val = simple_strtoul(str, NULL, 0);
7317 if (val < SD_LV_MAX)
7318 default_relax_domain_level = val;
7319
1d3504fc
HS
7320 return 1;
7321}
7322__setup("relax_domain_level=", setup_relax_domain_level);
7323
7324static void set_domain_attribute(struct sched_domain *sd,
7325 struct sched_domain_attr *attr)
7326{
7327 int request;
7328
7329 if (!attr || attr->relax_domain_level < 0) {
7330 if (default_relax_domain_level < 0)
7331 return;
7332 else
7333 request = default_relax_domain_level;
7334 } else
7335 request = attr->relax_domain_level;
7336 if (request < sd->level) {
7337 /* turn off idle balance on this domain */
7338 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7339 } else {
7340 /* turn on idle balance on this domain */
7341 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7342 }
7343}
7344
1da177e4 7345/*
1a20ff27
DG
7346 * Build sched domains for a given set of cpus and attach the sched domains
7347 * to the individual cpus
1da177e4 7348 */
1d3504fc
HS
7349static int __build_sched_domains(const cpumask_t *cpu_map,
7350 struct sched_domain_attr *attr)
1da177e4 7351{
3404c8d9 7352 int i, err = -ENOMEM;
57d885fe 7353 struct root_domain *rd;
3404c8d9
RR
7354 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7355 tmpmask;
d1b55138 7356#ifdef CONFIG_NUMA
3404c8d9 7357 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7358 struct sched_group **sched_group_nodes = NULL;
6711cab4 7359 int sd_allnodes = 0;
d1b55138 7360
3404c8d9
RR
7361 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7362 goto out;
7363 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7364 goto free_domainspan;
7365 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7366 goto free_covered;
7367#endif
7368
7369 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7370 goto free_notcovered;
7371 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7372 goto free_nodemask;
7373 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7374 goto free_this_sibling_map;
7375 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7376 goto free_this_core_map;
7377 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7378 goto free_send_covered;
7379
7380#ifdef CONFIG_NUMA
d1b55138
JH
7381 /*
7382 * Allocate the per-node list of sched groups
7383 */
076ac2af 7384 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7385 GFP_KERNEL);
d1b55138
JH
7386 if (!sched_group_nodes) {
7387 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7388 goto free_tmpmask;
d1b55138 7389 }
d1b55138 7390#endif
1da177e4 7391
dc938520 7392 rd = alloc_rootdomain();
57d885fe
GH
7393 if (!rd) {
7394 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7395 goto free_sched_groups;
57d885fe
GH
7396 }
7397
7c16ec58
MT
7398#ifdef CONFIG_NUMA
7399 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7400#endif
7401
1da177e4 7402 /*
1a20ff27 7403 * Set up domains for cpus specified by the cpu_map.
1da177e4 7404 */
abcd083a 7405 for_each_cpu(i, cpu_map) {
1da177e4 7406 struct sched_domain *sd = NULL, *p;
1da177e4 7407
7c16ec58
MT
7408 *nodemask = node_to_cpumask(cpu_to_node(i));
7409 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7410
7411#ifdef CONFIG_NUMA
dd41f596 7412 if (cpus_weight(*cpu_map) >
7c16ec58 7413 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7414 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7415 SD_INIT(sd, ALLNODES);
1d3504fc 7416 set_domain_attribute(sd, attr);
758b2cdc 7417 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7418 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7419 p = sd;
6711cab4 7420 sd_allnodes = 1;
9c1cfda2
JH
7421 } else
7422 p = NULL;
7423
1da177e4 7424 sd = &per_cpu(node_domains, i);
7c16ec58 7425 SD_INIT(sd, NODE);
1d3504fc 7426 set_domain_attribute(sd, attr);
758b2cdc 7427 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7428 sd->parent = p;
1a848870
SS
7429 if (p)
7430 p->child = sd;
758b2cdc
RR
7431 cpumask_and(sched_domain_span(sd),
7432 sched_domain_span(sd), cpu_map);
1da177e4
LT
7433#endif
7434
7435 p = sd;
6c99e9ad 7436 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7437 SD_INIT(sd, CPU);
1d3504fc 7438 set_domain_attribute(sd, attr);
758b2cdc 7439 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7440 sd->parent = p;
1a848870
SS
7441 if (p)
7442 p->child = sd;
7c16ec58 7443 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7444
1e9f28fa
SS
7445#ifdef CONFIG_SCHED_MC
7446 p = sd;
6c99e9ad 7447 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7448 SD_INIT(sd, MC);
1d3504fc 7449 set_domain_attribute(sd, attr);
758b2cdc
RR
7450 *sched_domain_span(sd) = cpu_coregroup_map(i);
7451 cpumask_and(sched_domain_span(sd),
7452 sched_domain_span(sd), cpu_map);
1e9f28fa 7453 sd->parent = p;
1a848870 7454 p->child = sd;
7c16ec58 7455 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7456#endif
7457
1da177e4
LT
7458#ifdef CONFIG_SCHED_SMT
7459 p = sd;
6c99e9ad 7460 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7461 SD_INIT(sd, SIBLING);
1d3504fc 7462 set_domain_attribute(sd, attr);
758b2cdc
RR
7463 cpumask_and(sched_domain_span(sd),
7464 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7465 sd->parent = p;
1a848870 7466 p->child = sd;
7c16ec58 7467 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7468#endif
7469 }
7470
7471#ifdef CONFIG_SCHED_SMT
7472 /* Set up CPU (sibling) groups */
abcd083a 7473 for_each_cpu(i, cpu_map) {
7c16ec58
MT
7474 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7475 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7476 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7477 continue;
7478
dd41f596 7479 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7480 &cpu_to_cpu_group,
7481 send_covered, tmpmask);
1da177e4
LT
7482 }
7483#endif
7484
1e9f28fa
SS
7485#ifdef CONFIG_SCHED_MC
7486 /* Set up multi-core groups */
abcd083a 7487 for_each_cpu(i, cpu_map) {
7c16ec58
MT
7488 *this_core_map = cpu_coregroup_map(i);
7489 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7490 if (i != first_cpu(*this_core_map))
1e9f28fa 7491 continue;
7c16ec58 7492
dd41f596 7493 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7494 &cpu_to_core_group,
7495 send_covered, tmpmask);
1e9f28fa
SS
7496 }
7497#endif
7498
1da177e4 7499 /* Set up physical groups */
076ac2af 7500 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7501 *nodemask = node_to_cpumask(i);
7502 cpus_and(*nodemask, *nodemask, *cpu_map);
7503 if (cpus_empty(*nodemask))
1da177e4
LT
7504 continue;
7505
7c16ec58
MT
7506 init_sched_build_groups(nodemask, cpu_map,
7507 &cpu_to_phys_group,
7508 send_covered, tmpmask);
1da177e4
LT
7509 }
7510
7511#ifdef CONFIG_NUMA
7512 /* Set up node groups */
7c16ec58 7513 if (sd_allnodes) {
7c16ec58
MT
7514 init_sched_build_groups(cpu_map, cpu_map,
7515 &cpu_to_allnodes_group,
7516 send_covered, tmpmask);
7517 }
9c1cfda2 7518
076ac2af 7519 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7520 /* Set up node groups */
7521 struct sched_group *sg, *prev;
9c1cfda2
JH
7522 int j;
7523
7c16ec58
MT
7524 *nodemask = node_to_cpumask(i);
7525 cpus_clear(*covered);
7526
7527 cpus_and(*nodemask, *nodemask, *cpu_map);
7528 if (cpus_empty(*nodemask)) {
d1b55138 7529 sched_group_nodes[i] = NULL;
9c1cfda2 7530 continue;
d1b55138 7531 }
9c1cfda2 7532
4bdbaad3 7533 sched_domain_node_span(i, domainspan);
7c16ec58 7534 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7535
6c99e9ad
RR
7536 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7537 GFP_KERNEL, i);
51888ca2
SV
7538 if (!sg) {
7539 printk(KERN_WARNING "Can not alloc domain group for "
7540 "node %d\n", i);
7541 goto error;
7542 }
9c1cfda2 7543 sched_group_nodes[i] = sg;
abcd083a 7544 for_each_cpu(j, nodemask) {
9c1cfda2 7545 struct sched_domain *sd;
9761eea8 7546
9c1cfda2
JH
7547 sd = &per_cpu(node_domains, j);
7548 sd->groups = sg;
9c1cfda2 7549 }
5517d86b 7550 sg->__cpu_power = 0;
758b2cdc 7551 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7552 sg->next = sg;
7c16ec58 7553 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7554 prev = sg;
7555
076ac2af 7556 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7557 int n = (i + j) % nr_node_ids;
c5f59f08 7558 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7559
7c16ec58
MT
7560 cpus_complement(*notcovered, *covered);
7561 cpus_and(*tmpmask, *notcovered, *cpu_map);
7562 cpus_and(*tmpmask, *tmpmask, *domainspan);
7563 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7564 break;
7565
7c16ec58
MT
7566 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7567 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7568 continue;
7569
6c99e9ad
RR
7570 sg = kmalloc_node(sizeof(struct sched_group) +
7571 cpumask_size(),
15f0b676 7572 GFP_KERNEL, i);
9c1cfda2
JH
7573 if (!sg) {
7574 printk(KERN_WARNING
7575 "Can not alloc domain group for node %d\n", j);
51888ca2 7576 goto error;
9c1cfda2 7577 }
5517d86b 7578 sg->__cpu_power = 0;
758b2cdc 7579 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7580 sg->next = prev->next;
7c16ec58 7581 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7582 prev->next = sg;
7583 prev = sg;
7584 }
9c1cfda2 7585 }
1da177e4
LT
7586#endif
7587
7588 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7589#ifdef CONFIG_SCHED_SMT
abcd083a 7590 for_each_cpu(i, cpu_map) {
6c99e9ad 7591 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7592
89c4710e 7593 init_sched_groups_power(i, sd);
5c45bf27 7594 }
1da177e4 7595#endif
1e9f28fa 7596#ifdef CONFIG_SCHED_MC
abcd083a 7597 for_each_cpu(i, cpu_map) {
6c99e9ad 7598 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7599
89c4710e 7600 init_sched_groups_power(i, sd);
5c45bf27
SS
7601 }
7602#endif
1e9f28fa 7603
abcd083a 7604 for_each_cpu(i, cpu_map) {
6c99e9ad 7605 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7606
89c4710e 7607 init_sched_groups_power(i, sd);
1da177e4
LT
7608 }
7609
9c1cfda2 7610#ifdef CONFIG_NUMA
076ac2af 7611 for (i = 0; i < nr_node_ids; i++)
08069033 7612 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7613
6711cab4
SS
7614 if (sd_allnodes) {
7615 struct sched_group *sg;
f712c0c7 7616
7c16ec58
MT
7617 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7618 tmpmask);
f712c0c7
SS
7619 init_numa_sched_groups_power(sg);
7620 }
9c1cfda2
JH
7621#endif
7622
1da177e4 7623 /* Attach the domains */
abcd083a 7624 for_each_cpu(i, cpu_map) {
1da177e4
LT
7625 struct sched_domain *sd;
7626#ifdef CONFIG_SCHED_SMT
6c99e9ad 7627 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7628#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7629 sd = &per_cpu(core_domains, i).sd;
1da177e4 7630#else
6c99e9ad 7631 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7632#endif
57d885fe 7633 cpu_attach_domain(sd, rd, i);
1da177e4 7634 }
51888ca2 7635
3404c8d9
RR
7636 err = 0;
7637
7638free_tmpmask:
7639 free_cpumask_var(tmpmask);
7640free_send_covered:
7641 free_cpumask_var(send_covered);
7642free_this_core_map:
7643 free_cpumask_var(this_core_map);
7644free_this_sibling_map:
7645 free_cpumask_var(this_sibling_map);
7646free_nodemask:
7647 free_cpumask_var(nodemask);
7648free_notcovered:
7649#ifdef CONFIG_NUMA
7650 free_cpumask_var(notcovered);
7651free_covered:
7652 free_cpumask_var(covered);
7653free_domainspan:
7654 free_cpumask_var(domainspan);
7655out:
7656#endif
7657 return err;
7658
7659free_sched_groups:
7660#ifdef CONFIG_NUMA
7661 kfree(sched_group_nodes);
7662#endif
7663 goto free_tmpmask;
51888ca2 7664
a616058b 7665#ifdef CONFIG_NUMA
51888ca2 7666error:
7c16ec58 7667 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7668 free_rootdomain(rd);
3404c8d9 7669 goto free_tmpmask;
a616058b 7670#endif
1da177e4 7671}
029190c5 7672
1d3504fc
HS
7673static int build_sched_domains(const cpumask_t *cpu_map)
7674{
7675 return __build_sched_domains(cpu_map, NULL);
7676}
7677
029190c5
PJ
7678static cpumask_t *doms_cur; /* current sched domains */
7679static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7680static struct sched_domain_attr *dattr_cur;
7681 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7682
7683/*
7684 * Special case: If a kmalloc of a doms_cur partition (array of
7685 * cpumask_t) fails, then fallback to a single sched domain,
7686 * as determined by the single cpumask_t fallback_doms.
7687 */
7688static cpumask_t fallback_doms;
7689
22e52b07
HC
7690void __attribute__((weak)) arch_update_cpu_topology(void)
7691{
7692}
7693
1a20ff27 7694/*
41a2d6cf 7695 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7696 * For now this just excludes isolated cpus, but could be used to
7697 * exclude other special cases in the future.
1a20ff27 7698 */
51888ca2 7699static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7700{
7378547f
MM
7701 int err;
7702
22e52b07 7703 arch_update_cpu_topology();
029190c5
PJ
7704 ndoms_cur = 1;
7705 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7706 if (!doms_cur)
7707 doms_cur = &fallback_doms;
7708 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7709 dattr_cur = NULL;
7378547f 7710 err = build_sched_domains(doms_cur);
6382bc90 7711 register_sched_domain_sysctl();
7378547f
MM
7712
7713 return err;
1a20ff27
DG
7714}
7715
7c16ec58
MT
7716static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7717 cpumask_t *tmpmask)
1da177e4 7718{
7c16ec58 7719 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7720}
1da177e4 7721
1a20ff27
DG
7722/*
7723 * Detach sched domains from a group of cpus specified in cpu_map
7724 * These cpus will now be attached to the NULL domain
7725 */
858119e1 7726static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7727{
7c16ec58 7728 cpumask_t tmpmask;
1a20ff27
DG
7729 int i;
7730
abcd083a 7731 for_each_cpu(i, cpu_map)
57d885fe 7732 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7733 synchronize_sched();
7c16ec58 7734 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7735}
7736
1d3504fc
HS
7737/* handle null as "default" */
7738static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7739 struct sched_domain_attr *new, int idx_new)
7740{
7741 struct sched_domain_attr tmp;
7742
7743 /* fast path */
7744 if (!new && !cur)
7745 return 1;
7746
7747 tmp = SD_ATTR_INIT;
7748 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7749 new ? (new + idx_new) : &tmp,
7750 sizeof(struct sched_domain_attr));
7751}
7752
029190c5
PJ
7753/*
7754 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7755 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7756 * doms_new[] to the current sched domain partitioning, doms_cur[].
7757 * It destroys each deleted domain and builds each new domain.
7758 *
7759 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7760 * The masks don't intersect (don't overlap.) We should setup one
7761 * sched domain for each mask. CPUs not in any of the cpumasks will
7762 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7763 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7764 * it as it is.
7765 *
41a2d6cf
IM
7766 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7767 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7768 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7769 * ndoms_new == 1, and partition_sched_domains() will fallback to
7770 * the single partition 'fallback_doms', it also forces the domains
7771 * to be rebuilt.
029190c5 7772 *
700018e0
LZ
7773 * If doms_new == NULL it will be replaced with cpu_online_map.
7774 * ndoms_new == 0 is a special case for destroying existing domains,
7775 * and it will not create the default domain.
dfb512ec 7776 *
029190c5
PJ
7777 * Call with hotplug lock held
7778 */
1d3504fc
HS
7779void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7780 struct sched_domain_attr *dattr_new)
029190c5 7781{
dfb512ec 7782 int i, j, n;
029190c5 7783
712555ee 7784 mutex_lock(&sched_domains_mutex);
a1835615 7785
7378547f
MM
7786 /* always unregister in case we don't destroy any domains */
7787 unregister_sched_domain_sysctl();
7788
dfb512ec 7789 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7790
7791 /* Destroy deleted domains */
7792 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7793 for (j = 0; j < n; j++) {
1d3504fc
HS
7794 if (cpus_equal(doms_cur[i], doms_new[j])
7795 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7796 goto match1;
7797 }
7798 /* no match - a current sched domain not in new doms_new[] */
7799 detach_destroy_domains(doms_cur + i);
7800match1:
7801 ;
7802 }
7803
e761b772
MK
7804 if (doms_new == NULL) {
7805 ndoms_cur = 0;
e761b772
MK
7806 doms_new = &fallback_doms;
7807 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
faa2f98f 7808 WARN_ON_ONCE(dattr_new);
e761b772
MK
7809 }
7810
029190c5
PJ
7811 /* Build new domains */
7812 for (i = 0; i < ndoms_new; i++) {
7813 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7814 if (cpus_equal(doms_new[i], doms_cur[j])
7815 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7816 goto match2;
7817 }
7818 /* no match - add a new doms_new */
1d3504fc
HS
7819 __build_sched_domains(doms_new + i,
7820 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7821match2:
7822 ;
7823 }
7824
7825 /* Remember the new sched domains */
7826 if (doms_cur != &fallback_doms)
7827 kfree(doms_cur);
1d3504fc 7828 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7829 doms_cur = doms_new;
1d3504fc 7830 dattr_cur = dattr_new;
029190c5 7831 ndoms_cur = ndoms_new;
7378547f
MM
7832
7833 register_sched_domain_sysctl();
a1835615 7834
712555ee 7835 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7836}
7837
5c45bf27 7838#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7839int arch_reinit_sched_domains(void)
5c45bf27 7840{
95402b38 7841 get_online_cpus();
dfb512ec
MK
7842
7843 /* Destroy domains first to force the rebuild */
7844 partition_sched_domains(0, NULL, NULL);
7845
e761b772 7846 rebuild_sched_domains();
95402b38 7847 put_online_cpus();
dfb512ec 7848
e761b772 7849 return 0;
5c45bf27
SS
7850}
7851
7852static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7853{
7854 int ret;
7855
7856 if (buf[0] != '0' && buf[0] != '1')
7857 return -EINVAL;
7858
7859 if (smt)
7860 sched_smt_power_savings = (buf[0] == '1');
7861 else
7862 sched_mc_power_savings = (buf[0] == '1');
7863
7864 ret = arch_reinit_sched_domains();
7865
7866 return ret ? ret : count;
7867}
7868
5c45bf27 7869#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7870static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7871 char *page)
5c45bf27
SS
7872{
7873 return sprintf(page, "%u\n", sched_mc_power_savings);
7874}
f718cd4a 7875static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7876 const char *buf, size_t count)
5c45bf27
SS
7877{
7878 return sched_power_savings_store(buf, count, 0);
7879}
f718cd4a
AK
7880static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7881 sched_mc_power_savings_show,
7882 sched_mc_power_savings_store);
5c45bf27
SS
7883#endif
7884
7885#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7886static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7887 char *page)
5c45bf27
SS
7888{
7889 return sprintf(page, "%u\n", sched_smt_power_savings);
7890}
f718cd4a 7891static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7892 const char *buf, size_t count)
5c45bf27
SS
7893{
7894 return sched_power_savings_store(buf, count, 1);
7895}
f718cd4a
AK
7896static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7897 sched_smt_power_savings_show,
6707de00
AB
7898 sched_smt_power_savings_store);
7899#endif
7900
7901int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7902{
7903 int err = 0;
7904
7905#ifdef CONFIG_SCHED_SMT
7906 if (smt_capable())
7907 err = sysfs_create_file(&cls->kset.kobj,
7908 &attr_sched_smt_power_savings.attr);
7909#endif
7910#ifdef CONFIG_SCHED_MC
7911 if (!err && mc_capable())
7912 err = sysfs_create_file(&cls->kset.kobj,
7913 &attr_sched_mc_power_savings.attr);
7914#endif
7915 return err;
7916}
6d6bc0ad 7917#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7918
e761b772 7919#ifndef CONFIG_CPUSETS
1da177e4 7920/*
e761b772
MK
7921 * Add online and remove offline CPUs from the scheduler domains.
7922 * When cpusets are enabled they take over this function.
1da177e4
LT
7923 */
7924static int update_sched_domains(struct notifier_block *nfb,
7925 unsigned long action, void *hcpu)
e761b772
MK
7926{
7927 switch (action) {
7928 case CPU_ONLINE:
7929 case CPU_ONLINE_FROZEN:
7930 case CPU_DEAD:
7931 case CPU_DEAD_FROZEN:
dfb512ec 7932 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7933 return NOTIFY_OK;
7934
7935 default:
7936 return NOTIFY_DONE;
7937 }
7938}
7939#endif
7940
7941static int update_runtime(struct notifier_block *nfb,
7942 unsigned long action, void *hcpu)
1da177e4 7943{
7def2be1
PZ
7944 int cpu = (int)(long)hcpu;
7945
1da177e4 7946 switch (action) {
1da177e4 7947 case CPU_DOWN_PREPARE:
8bb78442 7948 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7949 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7950 return NOTIFY_OK;
7951
1da177e4 7952 case CPU_DOWN_FAILED:
8bb78442 7953 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7954 case CPU_ONLINE:
8bb78442 7955 case CPU_ONLINE_FROZEN:
7def2be1 7956 enable_runtime(cpu_rq(cpu));
e761b772
MK
7957 return NOTIFY_OK;
7958
1da177e4
LT
7959 default:
7960 return NOTIFY_DONE;
7961 }
1da177e4 7962}
1da177e4
LT
7963
7964void __init sched_init_smp(void)
7965{
5c1e1767
NP
7966 cpumask_t non_isolated_cpus;
7967
434d53b0
MT
7968#if defined(CONFIG_NUMA)
7969 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7970 GFP_KERNEL);
7971 BUG_ON(sched_group_nodes_bycpu == NULL);
7972#endif
95402b38 7973 get_online_cpus();
712555ee 7974 mutex_lock(&sched_domains_mutex);
1a20ff27 7975 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7976 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7977 if (cpus_empty(non_isolated_cpus))
7978 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7979 mutex_unlock(&sched_domains_mutex);
95402b38 7980 put_online_cpus();
e761b772
MK
7981
7982#ifndef CONFIG_CPUSETS
1da177e4
LT
7983 /* XXX: Theoretical race here - CPU may be hotplugged now */
7984 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7985#endif
7986
7987 /* RT runtime code needs to handle some hotplug events */
7988 hotcpu_notifier(update_runtime, 0);
7989
b328ca18 7990 init_hrtick();
5c1e1767
NP
7991
7992 /* Move init over to a non-isolated CPU */
7c16ec58 7993 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7994 BUG();
19978ca6 7995 sched_init_granularity();
1da177e4
LT
7996}
7997#else
7998void __init sched_init_smp(void)
7999{
19978ca6 8000 sched_init_granularity();
1da177e4
LT
8001}
8002#endif /* CONFIG_SMP */
8003
8004int in_sched_functions(unsigned long addr)
8005{
1da177e4
LT
8006 return in_lock_functions(addr) ||
8007 (addr >= (unsigned long)__sched_text_start
8008 && addr < (unsigned long)__sched_text_end);
8009}
8010
a9957449 8011static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8012{
8013 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8014 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8015#ifdef CONFIG_FAIR_GROUP_SCHED
8016 cfs_rq->rq = rq;
8017#endif
67e9fb2a 8018 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8019}
8020
fa85ae24
PZ
8021static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8022{
8023 struct rt_prio_array *array;
8024 int i;
8025
8026 array = &rt_rq->active;
8027 for (i = 0; i < MAX_RT_PRIO; i++) {
8028 INIT_LIST_HEAD(array->queue + i);
8029 __clear_bit(i, array->bitmap);
8030 }
8031 /* delimiter for bitsearch: */
8032 __set_bit(MAX_RT_PRIO, array->bitmap);
8033
052f1dc7 8034#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8035 rt_rq->highest_prio = MAX_RT_PRIO;
8036#endif
fa85ae24
PZ
8037#ifdef CONFIG_SMP
8038 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8039 rt_rq->overloaded = 0;
8040#endif
8041
8042 rt_rq->rt_time = 0;
8043 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8044 rt_rq->rt_runtime = 0;
8045 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8046
052f1dc7 8047#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8048 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8049 rt_rq->rq = rq;
8050#endif
fa85ae24
PZ
8051}
8052
6f505b16 8053#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8054static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8055 struct sched_entity *se, int cpu, int add,
8056 struct sched_entity *parent)
6f505b16 8057{
ec7dc8ac 8058 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8059 tg->cfs_rq[cpu] = cfs_rq;
8060 init_cfs_rq(cfs_rq, rq);
8061 cfs_rq->tg = tg;
8062 if (add)
8063 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8064
8065 tg->se[cpu] = se;
354d60c2
DG
8066 /* se could be NULL for init_task_group */
8067 if (!se)
8068 return;
8069
ec7dc8ac
DG
8070 if (!parent)
8071 se->cfs_rq = &rq->cfs;
8072 else
8073 se->cfs_rq = parent->my_q;
8074
6f505b16
PZ
8075 se->my_q = cfs_rq;
8076 se->load.weight = tg->shares;
e05510d0 8077 se->load.inv_weight = 0;
ec7dc8ac 8078 se->parent = parent;
6f505b16 8079}
052f1dc7 8080#endif
6f505b16 8081
052f1dc7 8082#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8083static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8084 struct sched_rt_entity *rt_se, int cpu, int add,
8085 struct sched_rt_entity *parent)
6f505b16 8086{
ec7dc8ac
DG
8087 struct rq *rq = cpu_rq(cpu);
8088
6f505b16
PZ
8089 tg->rt_rq[cpu] = rt_rq;
8090 init_rt_rq(rt_rq, rq);
8091 rt_rq->tg = tg;
8092 rt_rq->rt_se = rt_se;
ac086bc2 8093 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8094 if (add)
8095 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8096
8097 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8098 if (!rt_se)
8099 return;
8100
ec7dc8ac
DG
8101 if (!parent)
8102 rt_se->rt_rq = &rq->rt;
8103 else
8104 rt_se->rt_rq = parent->my_q;
8105
6f505b16 8106 rt_se->my_q = rt_rq;
ec7dc8ac 8107 rt_se->parent = parent;
6f505b16
PZ
8108 INIT_LIST_HEAD(&rt_se->run_list);
8109}
8110#endif
8111
1da177e4
LT
8112void __init sched_init(void)
8113{
dd41f596 8114 int i, j;
434d53b0
MT
8115 unsigned long alloc_size = 0, ptr;
8116
8117#ifdef CONFIG_FAIR_GROUP_SCHED
8118 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8119#endif
8120#ifdef CONFIG_RT_GROUP_SCHED
8121 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8122#endif
8123#ifdef CONFIG_USER_SCHED
8124 alloc_size *= 2;
434d53b0
MT
8125#endif
8126 /*
8127 * As sched_init() is called before page_alloc is setup,
8128 * we use alloc_bootmem().
8129 */
8130 if (alloc_size) {
5a9d3225 8131 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8132
8133#ifdef CONFIG_FAIR_GROUP_SCHED
8134 init_task_group.se = (struct sched_entity **)ptr;
8135 ptr += nr_cpu_ids * sizeof(void **);
8136
8137 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8138 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8139
8140#ifdef CONFIG_USER_SCHED
8141 root_task_group.se = (struct sched_entity **)ptr;
8142 ptr += nr_cpu_ids * sizeof(void **);
8143
8144 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8145 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8146#endif /* CONFIG_USER_SCHED */
8147#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8148#ifdef CONFIG_RT_GROUP_SCHED
8149 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8150 ptr += nr_cpu_ids * sizeof(void **);
8151
8152 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8153 ptr += nr_cpu_ids * sizeof(void **);
8154
8155#ifdef CONFIG_USER_SCHED
8156 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8157 ptr += nr_cpu_ids * sizeof(void **);
8158
8159 root_task_group.rt_rq = (struct rt_rq **)ptr;
8160 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8161#endif /* CONFIG_USER_SCHED */
8162#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8163 }
dd41f596 8164
57d885fe
GH
8165#ifdef CONFIG_SMP
8166 init_defrootdomain();
8167#endif
8168
d0b27fa7
PZ
8169 init_rt_bandwidth(&def_rt_bandwidth,
8170 global_rt_period(), global_rt_runtime());
8171
8172#ifdef CONFIG_RT_GROUP_SCHED
8173 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8174 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8175#ifdef CONFIG_USER_SCHED
8176 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8177 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8178#endif /* CONFIG_USER_SCHED */
8179#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8180
052f1dc7 8181#ifdef CONFIG_GROUP_SCHED
6f505b16 8182 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8183 INIT_LIST_HEAD(&init_task_group.children);
8184
8185#ifdef CONFIG_USER_SCHED
8186 INIT_LIST_HEAD(&root_task_group.children);
8187 init_task_group.parent = &root_task_group;
8188 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8189#endif /* CONFIG_USER_SCHED */
8190#endif /* CONFIG_GROUP_SCHED */
6f505b16 8191
0a945022 8192 for_each_possible_cpu(i) {
70b97a7f 8193 struct rq *rq;
1da177e4
LT
8194
8195 rq = cpu_rq(i);
8196 spin_lock_init(&rq->lock);
7897986b 8197 rq->nr_running = 0;
dd41f596 8198 init_cfs_rq(&rq->cfs, rq);
6f505b16 8199 init_rt_rq(&rq->rt, rq);
dd41f596 8200#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8201 init_task_group.shares = init_task_group_load;
6f505b16 8202 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8203#ifdef CONFIG_CGROUP_SCHED
8204 /*
8205 * How much cpu bandwidth does init_task_group get?
8206 *
8207 * In case of task-groups formed thr' the cgroup filesystem, it
8208 * gets 100% of the cpu resources in the system. This overall
8209 * system cpu resource is divided among the tasks of
8210 * init_task_group and its child task-groups in a fair manner,
8211 * based on each entity's (task or task-group's) weight
8212 * (se->load.weight).
8213 *
8214 * In other words, if init_task_group has 10 tasks of weight
8215 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8216 * then A0's share of the cpu resource is:
8217 *
8218 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8219 *
8220 * We achieve this by letting init_task_group's tasks sit
8221 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8222 */
ec7dc8ac 8223 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8224#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8225 root_task_group.shares = NICE_0_LOAD;
8226 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8227 /*
8228 * In case of task-groups formed thr' the user id of tasks,
8229 * init_task_group represents tasks belonging to root user.
8230 * Hence it forms a sibling of all subsequent groups formed.
8231 * In this case, init_task_group gets only a fraction of overall
8232 * system cpu resource, based on the weight assigned to root
8233 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8234 * by letting tasks of init_task_group sit in a separate cfs_rq
8235 * (init_cfs_rq) and having one entity represent this group of
8236 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8237 */
ec7dc8ac 8238 init_tg_cfs_entry(&init_task_group,
6f505b16 8239 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8240 &per_cpu(init_sched_entity, i), i, 1,
8241 root_task_group.se[i]);
6f505b16 8242
052f1dc7 8243#endif
354d60c2
DG
8244#endif /* CONFIG_FAIR_GROUP_SCHED */
8245
8246 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8247#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8248 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8249#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8250 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8251#elif defined CONFIG_USER_SCHED
eff766a6 8252 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8253 init_tg_rt_entry(&init_task_group,
6f505b16 8254 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8255 &per_cpu(init_sched_rt_entity, i), i, 1,
8256 root_task_group.rt_se[i]);
354d60c2 8257#endif
dd41f596 8258#endif
1da177e4 8259
dd41f596
IM
8260 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8261 rq->cpu_load[j] = 0;
1da177e4 8262#ifdef CONFIG_SMP
41c7ce9a 8263 rq->sd = NULL;
57d885fe 8264 rq->rd = NULL;
1da177e4 8265 rq->active_balance = 0;
dd41f596 8266 rq->next_balance = jiffies;
1da177e4 8267 rq->push_cpu = 0;
0a2966b4 8268 rq->cpu = i;
1f11eb6a 8269 rq->online = 0;
1da177e4
LT
8270 rq->migration_thread = NULL;
8271 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8272 rq_attach_root(rq, &def_root_domain);
1da177e4 8273#endif
8f4d37ec 8274 init_rq_hrtick(rq);
1da177e4 8275 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8276 }
8277
2dd73a4f 8278 set_load_weight(&init_task);
b50f60ce 8279
e107be36
AK
8280#ifdef CONFIG_PREEMPT_NOTIFIERS
8281 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8282#endif
8283
c9819f45 8284#ifdef CONFIG_SMP
962cf36c 8285 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8286#endif
8287
b50f60ce
HC
8288#ifdef CONFIG_RT_MUTEXES
8289 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8290#endif
8291
1da177e4
LT
8292 /*
8293 * The boot idle thread does lazy MMU switching as well:
8294 */
8295 atomic_inc(&init_mm.mm_count);
8296 enter_lazy_tlb(&init_mm, current);
8297
8298 /*
8299 * Make us the idle thread. Technically, schedule() should not be
8300 * called from this thread, however somewhere below it might be,
8301 * but because we are the idle thread, we just pick up running again
8302 * when this runqueue becomes "idle".
8303 */
8304 init_idle(current, smp_processor_id());
dd41f596
IM
8305 /*
8306 * During early bootup we pretend to be a normal task:
8307 */
8308 current->sched_class = &fair_sched_class;
6892b75e 8309
6a7b3dc3
RR
8310 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8311 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8312
6892b75e 8313 scheduler_running = 1;
1da177e4
LT
8314}
8315
8316#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8317void __might_sleep(char *file, int line)
8318{
48f24c4d 8319#ifdef in_atomic
1da177e4
LT
8320 static unsigned long prev_jiffy; /* ratelimiting */
8321
aef745fc
IM
8322 if ((!in_atomic() && !irqs_disabled()) ||
8323 system_state != SYSTEM_RUNNING || oops_in_progress)
8324 return;
8325 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8326 return;
8327 prev_jiffy = jiffies;
8328
8329 printk(KERN_ERR
8330 "BUG: sleeping function called from invalid context at %s:%d\n",
8331 file, line);
8332 printk(KERN_ERR
8333 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8334 in_atomic(), irqs_disabled(),
8335 current->pid, current->comm);
8336
8337 debug_show_held_locks(current);
8338 if (irqs_disabled())
8339 print_irqtrace_events(current);
8340 dump_stack();
1da177e4
LT
8341#endif
8342}
8343EXPORT_SYMBOL(__might_sleep);
8344#endif
8345
8346#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8347static void normalize_task(struct rq *rq, struct task_struct *p)
8348{
8349 int on_rq;
3e51f33f 8350
3a5e4dc1
AK
8351 update_rq_clock(rq);
8352 on_rq = p->se.on_rq;
8353 if (on_rq)
8354 deactivate_task(rq, p, 0);
8355 __setscheduler(rq, p, SCHED_NORMAL, 0);
8356 if (on_rq) {
8357 activate_task(rq, p, 0);
8358 resched_task(rq->curr);
8359 }
8360}
8361
1da177e4
LT
8362void normalize_rt_tasks(void)
8363{
a0f98a1c 8364 struct task_struct *g, *p;
1da177e4 8365 unsigned long flags;
70b97a7f 8366 struct rq *rq;
1da177e4 8367
4cf5d77a 8368 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8369 do_each_thread(g, p) {
178be793
IM
8370 /*
8371 * Only normalize user tasks:
8372 */
8373 if (!p->mm)
8374 continue;
8375
6cfb0d5d 8376 p->se.exec_start = 0;
6cfb0d5d 8377#ifdef CONFIG_SCHEDSTATS
dd41f596 8378 p->se.wait_start = 0;
dd41f596 8379 p->se.sleep_start = 0;
dd41f596 8380 p->se.block_start = 0;
6cfb0d5d 8381#endif
dd41f596
IM
8382
8383 if (!rt_task(p)) {
8384 /*
8385 * Renice negative nice level userspace
8386 * tasks back to 0:
8387 */
8388 if (TASK_NICE(p) < 0 && p->mm)
8389 set_user_nice(p, 0);
1da177e4 8390 continue;
dd41f596 8391 }
1da177e4 8392
4cf5d77a 8393 spin_lock(&p->pi_lock);
b29739f9 8394 rq = __task_rq_lock(p);
1da177e4 8395
178be793 8396 normalize_task(rq, p);
3a5e4dc1 8397
b29739f9 8398 __task_rq_unlock(rq);
4cf5d77a 8399 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8400 } while_each_thread(g, p);
8401
4cf5d77a 8402 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8403}
8404
8405#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8406
8407#ifdef CONFIG_IA64
8408/*
8409 * These functions are only useful for the IA64 MCA handling.
8410 *
8411 * They can only be called when the whole system has been
8412 * stopped - every CPU needs to be quiescent, and no scheduling
8413 * activity can take place. Using them for anything else would
8414 * be a serious bug, and as a result, they aren't even visible
8415 * under any other configuration.
8416 */
8417
8418/**
8419 * curr_task - return the current task for a given cpu.
8420 * @cpu: the processor in question.
8421 *
8422 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8423 */
36c8b586 8424struct task_struct *curr_task(int cpu)
1df5c10a
LT
8425{
8426 return cpu_curr(cpu);
8427}
8428
8429/**
8430 * set_curr_task - set the current task for a given cpu.
8431 * @cpu: the processor in question.
8432 * @p: the task pointer to set.
8433 *
8434 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8435 * are serviced on a separate stack. It allows the architecture to switch the
8436 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8437 * must be called with all CPU's synchronized, and interrupts disabled, the
8438 * and caller must save the original value of the current task (see
8439 * curr_task() above) and restore that value before reenabling interrupts and
8440 * re-starting the system.
8441 *
8442 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8443 */
36c8b586 8444void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8445{
8446 cpu_curr(cpu) = p;
8447}
8448
8449#endif
29f59db3 8450
bccbe08a
PZ
8451#ifdef CONFIG_FAIR_GROUP_SCHED
8452static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8453{
8454 int i;
8455
8456 for_each_possible_cpu(i) {
8457 if (tg->cfs_rq)
8458 kfree(tg->cfs_rq[i]);
8459 if (tg->se)
8460 kfree(tg->se[i]);
6f505b16
PZ
8461 }
8462
8463 kfree(tg->cfs_rq);
8464 kfree(tg->se);
6f505b16
PZ
8465}
8466
ec7dc8ac
DG
8467static
8468int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8469{
29f59db3 8470 struct cfs_rq *cfs_rq;
eab17229 8471 struct sched_entity *se;
9b5b7751 8472 struct rq *rq;
29f59db3
SV
8473 int i;
8474
434d53b0 8475 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8476 if (!tg->cfs_rq)
8477 goto err;
434d53b0 8478 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8479 if (!tg->se)
8480 goto err;
052f1dc7
PZ
8481
8482 tg->shares = NICE_0_LOAD;
29f59db3
SV
8483
8484 for_each_possible_cpu(i) {
9b5b7751 8485 rq = cpu_rq(i);
29f59db3 8486
eab17229
LZ
8487 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8488 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8489 if (!cfs_rq)
8490 goto err;
8491
eab17229
LZ
8492 se = kzalloc_node(sizeof(struct sched_entity),
8493 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8494 if (!se)
8495 goto err;
8496
eab17229 8497 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8498 }
8499
8500 return 1;
8501
8502 err:
8503 return 0;
8504}
8505
8506static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8507{
8508 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8509 &cpu_rq(cpu)->leaf_cfs_rq_list);
8510}
8511
8512static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8513{
8514 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8515}
6d6bc0ad 8516#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8517static inline void free_fair_sched_group(struct task_group *tg)
8518{
8519}
8520
ec7dc8ac
DG
8521static inline
8522int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8523{
8524 return 1;
8525}
8526
8527static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8528{
8529}
8530
8531static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8532{
8533}
6d6bc0ad 8534#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8535
8536#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8537static void free_rt_sched_group(struct task_group *tg)
8538{
8539 int i;
8540
d0b27fa7
PZ
8541 destroy_rt_bandwidth(&tg->rt_bandwidth);
8542
bccbe08a
PZ
8543 for_each_possible_cpu(i) {
8544 if (tg->rt_rq)
8545 kfree(tg->rt_rq[i]);
8546 if (tg->rt_se)
8547 kfree(tg->rt_se[i]);
8548 }
8549
8550 kfree(tg->rt_rq);
8551 kfree(tg->rt_se);
8552}
8553
ec7dc8ac
DG
8554static
8555int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8556{
8557 struct rt_rq *rt_rq;
eab17229 8558 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8559 struct rq *rq;
8560 int i;
8561
434d53b0 8562 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8563 if (!tg->rt_rq)
8564 goto err;
434d53b0 8565 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8566 if (!tg->rt_se)
8567 goto err;
8568
d0b27fa7
PZ
8569 init_rt_bandwidth(&tg->rt_bandwidth,
8570 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8571
8572 for_each_possible_cpu(i) {
8573 rq = cpu_rq(i);
8574
eab17229
LZ
8575 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8576 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8577 if (!rt_rq)
8578 goto err;
29f59db3 8579
eab17229
LZ
8580 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8581 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8582 if (!rt_se)
8583 goto err;
29f59db3 8584
eab17229 8585 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8586 }
8587
bccbe08a
PZ
8588 return 1;
8589
8590 err:
8591 return 0;
8592}
8593
8594static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8595{
8596 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8597 &cpu_rq(cpu)->leaf_rt_rq_list);
8598}
8599
8600static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8601{
8602 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8603}
6d6bc0ad 8604#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8605static inline void free_rt_sched_group(struct task_group *tg)
8606{
8607}
8608
ec7dc8ac
DG
8609static inline
8610int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8611{
8612 return 1;
8613}
8614
8615static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8616{
8617}
8618
8619static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8620{
8621}
6d6bc0ad 8622#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8623
d0b27fa7 8624#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8625static void free_sched_group(struct task_group *tg)
8626{
8627 free_fair_sched_group(tg);
8628 free_rt_sched_group(tg);
8629 kfree(tg);
8630}
8631
8632/* allocate runqueue etc for a new task group */
ec7dc8ac 8633struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8634{
8635 struct task_group *tg;
8636 unsigned long flags;
8637 int i;
8638
8639 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8640 if (!tg)
8641 return ERR_PTR(-ENOMEM);
8642
ec7dc8ac 8643 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8644 goto err;
8645
ec7dc8ac 8646 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8647 goto err;
8648
8ed36996 8649 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8650 for_each_possible_cpu(i) {
bccbe08a
PZ
8651 register_fair_sched_group(tg, i);
8652 register_rt_sched_group(tg, i);
9b5b7751 8653 }
6f505b16 8654 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8655
8656 WARN_ON(!parent); /* root should already exist */
8657
8658 tg->parent = parent;
f473aa5e 8659 INIT_LIST_HEAD(&tg->children);
09f2724a 8660 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8661 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8662
9b5b7751 8663 return tg;
29f59db3
SV
8664
8665err:
6f505b16 8666 free_sched_group(tg);
29f59db3
SV
8667 return ERR_PTR(-ENOMEM);
8668}
8669
9b5b7751 8670/* rcu callback to free various structures associated with a task group */
6f505b16 8671static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8672{
29f59db3 8673 /* now it should be safe to free those cfs_rqs */
6f505b16 8674 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8675}
8676
9b5b7751 8677/* Destroy runqueue etc associated with a task group */
4cf86d77 8678void sched_destroy_group(struct task_group *tg)
29f59db3 8679{
8ed36996 8680 unsigned long flags;
9b5b7751 8681 int i;
29f59db3 8682
8ed36996 8683 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8684 for_each_possible_cpu(i) {
bccbe08a
PZ
8685 unregister_fair_sched_group(tg, i);
8686 unregister_rt_sched_group(tg, i);
9b5b7751 8687 }
6f505b16 8688 list_del_rcu(&tg->list);
f473aa5e 8689 list_del_rcu(&tg->siblings);
8ed36996 8690 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8691
9b5b7751 8692 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8693 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8694}
8695
9b5b7751 8696/* change task's runqueue when it moves between groups.
3a252015
IM
8697 * The caller of this function should have put the task in its new group
8698 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8699 * reflect its new group.
9b5b7751
SV
8700 */
8701void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8702{
8703 int on_rq, running;
8704 unsigned long flags;
8705 struct rq *rq;
8706
8707 rq = task_rq_lock(tsk, &flags);
8708
29f59db3
SV
8709 update_rq_clock(rq);
8710
051a1d1a 8711 running = task_current(rq, tsk);
29f59db3
SV
8712 on_rq = tsk->se.on_rq;
8713
0e1f3483 8714 if (on_rq)
29f59db3 8715 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8716 if (unlikely(running))
8717 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8718
6f505b16 8719 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8720
810b3817
PZ
8721#ifdef CONFIG_FAIR_GROUP_SCHED
8722 if (tsk->sched_class->moved_group)
8723 tsk->sched_class->moved_group(tsk);
8724#endif
8725
0e1f3483
HS
8726 if (unlikely(running))
8727 tsk->sched_class->set_curr_task(rq);
8728 if (on_rq)
7074badb 8729 enqueue_task(rq, tsk, 0);
29f59db3 8730
29f59db3
SV
8731 task_rq_unlock(rq, &flags);
8732}
6d6bc0ad 8733#endif /* CONFIG_GROUP_SCHED */
29f59db3 8734
052f1dc7 8735#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8736static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8737{
8738 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8739 int on_rq;
8740
29f59db3 8741 on_rq = se->on_rq;
62fb1851 8742 if (on_rq)
29f59db3
SV
8743 dequeue_entity(cfs_rq, se, 0);
8744
8745 se->load.weight = shares;
e05510d0 8746 se->load.inv_weight = 0;
29f59db3 8747
62fb1851 8748 if (on_rq)
29f59db3 8749 enqueue_entity(cfs_rq, se, 0);
c09595f6 8750}
62fb1851 8751
c09595f6
PZ
8752static void set_se_shares(struct sched_entity *se, unsigned long shares)
8753{
8754 struct cfs_rq *cfs_rq = se->cfs_rq;
8755 struct rq *rq = cfs_rq->rq;
8756 unsigned long flags;
8757
8758 spin_lock_irqsave(&rq->lock, flags);
8759 __set_se_shares(se, shares);
8760 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8761}
8762
8ed36996
PZ
8763static DEFINE_MUTEX(shares_mutex);
8764
4cf86d77 8765int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8766{
8767 int i;
8ed36996 8768 unsigned long flags;
c61935fd 8769
ec7dc8ac
DG
8770 /*
8771 * We can't change the weight of the root cgroup.
8772 */
8773 if (!tg->se[0])
8774 return -EINVAL;
8775
18d95a28
PZ
8776 if (shares < MIN_SHARES)
8777 shares = MIN_SHARES;
cb4ad1ff
MX
8778 else if (shares > MAX_SHARES)
8779 shares = MAX_SHARES;
62fb1851 8780
8ed36996 8781 mutex_lock(&shares_mutex);
9b5b7751 8782 if (tg->shares == shares)
5cb350ba 8783 goto done;
29f59db3 8784
8ed36996 8785 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8786 for_each_possible_cpu(i)
8787 unregister_fair_sched_group(tg, i);
f473aa5e 8788 list_del_rcu(&tg->siblings);
8ed36996 8789 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8790
8791 /* wait for any ongoing reference to this group to finish */
8792 synchronize_sched();
8793
8794 /*
8795 * Now we are free to modify the group's share on each cpu
8796 * w/o tripping rebalance_share or load_balance_fair.
8797 */
9b5b7751 8798 tg->shares = shares;
c09595f6
PZ
8799 for_each_possible_cpu(i) {
8800 /*
8801 * force a rebalance
8802 */
8803 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8804 set_se_shares(tg->se[i], shares);
c09595f6 8805 }
29f59db3 8806
6b2d7700
SV
8807 /*
8808 * Enable load balance activity on this group, by inserting it back on
8809 * each cpu's rq->leaf_cfs_rq_list.
8810 */
8ed36996 8811 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8812 for_each_possible_cpu(i)
8813 register_fair_sched_group(tg, i);
f473aa5e 8814 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8815 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8816done:
8ed36996 8817 mutex_unlock(&shares_mutex);
9b5b7751 8818 return 0;
29f59db3
SV
8819}
8820
5cb350ba
DG
8821unsigned long sched_group_shares(struct task_group *tg)
8822{
8823 return tg->shares;
8824}
052f1dc7 8825#endif
5cb350ba 8826
052f1dc7 8827#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8828/*
9f0c1e56 8829 * Ensure that the real time constraints are schedulable.
6f505b16 8830 */
9f0c1e56
PZ
8831static DEFINE_MUTEX(rt_constraints_mutex);
8832
8833static unsigned long to_ratio(u64 period, u64 runtime)
8834{
8835 if (runtime == RUNTIME_INF)
9a7e0b18 8836 return 1ULL << 20;
9f0c1e56 8837
9a7e0b18 8838 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8839}
8840
9a7e0b18
PZ
8841/* Must be called with tasklist_lock held */
8842static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8843{
9a7e0b18 8844 struct task_struct *g, *p;
b40b2e8e 8845
9a7e0b18
PZ
8846 do_each_thread(g, p) {
8847 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8848 return 1;
8849 } while_each_thread(g, p);
b40b2e8e 8850
9a7e0b18
PZ
8851 return 0;
8852}
b40b2e8e 8853
9a7e0b18
PZ
8854struct rt_schedulable_data {
8855 struct task_group *tg;
8856 u64 rt_period;
8857 u64 rt_runtime;
8858};
b40b2e8e 8859
9a7e0b18
PZ
8860static int tg_schedulable(struct task_group *tg, void *data)
8861{
8862 struct rt_schedulable_data *d = data;
8863 struct task_group *child;
8864 unsigned long total, sum = 0;
8865 u64 period, runtime;
b40b2e8e 8866
9a7e0b18
PZ
8867 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8868 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8869
9a7e0b18
PZ
8870 if (tg == d->tg) {
8871 period = d->rt_period;
8872 runtime = d->rt_runtime;
b40b2e8e 8873 }
b40b2e8e 8874
4653f803
PZ
8875 /*
8876 * Cannot have more runtime than the period.
8877 */
8878 if (runtime > period && runtime != RUNTIME_INF)
8879 return -EINVAL;
6f505b16 8880
4653f803
PZ
8881 /*
8882 * Ensure we don't starve existing RT tasks.
8883 */
9a7e0b18
PZ
8884 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8885 return -EBUSY;
6f505b16 8886
9a7e0b18 8887 total = to_ratio(period, runtime);
6f505b16 8888
4653f803
PZ
8889 /*
8890 * Nobody can have more than the global setting allows.
8891 */
8892 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8893 return -EINVAL;
6f505b16 8894
4653f803
PZ
8895 /*
8896 * The sum of our children's runtime should not exceed our own.
8897 */
9a7e0b18
PZ
8898 list_for_each_entry_rcu(child, &tg->children, siblings) {
8899 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8900 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8901
9a7e0b18
PZ
8902 if (child == d->tg) {
8903 period = d->rt_period;
8904 runtime = d->rt_runtime;
8905 }
6f505b16 8906
9a7e0b18 8907 sum += to_ratio(period, runtime);
9f0c1e56 8908 }
6f505b16 8909
9a7e0b18
PZ
8910 if (sum > total)
8911 return -EINVAL;
8912
8913 return 0;
6f505b16
PZ
8914}
8915
9a7e0b18 8916static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8917{
9a7e0b18
PZ
8918 struct rt_schedulable_data data = {
8919 .tg = tg,
8920 .rt_period = period,
8921 .rt_runtime = runtime,
8922 };
8923
8924 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8925}
8926
d0b27fa7
PZ
8927static int tg_set_bandwidth(struct task_group *tg,
8928 u64 rt_period, u64 rt_runtime)
6f505b16 8929{
ac086bc2 8930 int i, err = 0;
9f0c1e56 8931
9f0c1e56 8932 mutex_lock(&rt_constraints_mutex);
521f1a24 8933 read_lock(&tasklist_lock);
9a7e0b18
PZ
8934 err = __rt_schedulable(tg, rt_period, rt_runtime);
8935 if (err)
9f0c1e56 8936 goto unlock;
ac086bc2
PZ
8937
8938 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8939 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8940 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8941
8942 for_each_possible_cpu(i) {
8943 struct rt_rq *rt_rq = tg->rt_rq[i];
8944
8945 spin_lock(&rt_rq->rt_runtime_lock);
8946 rt_rq->rt_runtime = rt_runtime;
8947 spin_unlock(&rt_rq->rt_runtime_lock);
8948 }
8949 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8950 unlock:
521f1a24 8951 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8952 mutex_unlock(&rt_constraints_mutex);
8953
8954 return err;
6f505b16
PZ
8955}
8956
d0b27fa7
PZ
8957int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8958{
8959 u64 rt_runtime, rt_period;
8960
8961 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8962 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8963 if (rt_runtime_us < 0)
8964 rt_runtime = RUNTIME_INF;
8965
8966 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8967}
8968
9f0c1e56
PZ
8969long sched_group_rt_runtime(struct task_group *tg)
8970{
8971 u64 rt_runtime_us;
8972
d0b27fa7 8973 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8974 return -1;
8975
d0b27fa7 8976 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8977 do_div(rt_runtime_us, NSEC_PER_USEC);
8978 return rt_runtime_us;
8979}
d0b27fa7
PZ
8980
8981int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8982{
8983 u64 rt_runtime, rt_period;
8984
8985 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8986 rt_runtime = tg->rt_bandwidth.rt_runtime;
8987
619b0488
R
8988 if (rt_period == 0)
8989 return -EINVAL;
8990
d0b27fa7
PZ
8991 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8992}
8993
8994long sched_group_rt_period(struct task_group *tg)
8995{
8996 u64 rt_period_us;
8997
8998 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8999 do_div(rt_period_us, NSEC_PER_USEC);
9000 return rt_period_us;
9001}
9002
9003static int sched_rt_global_constraints(void)
9004{
4653f803 9005 u64 runtime, period;
d0b27fa7
PZ
9006 int ret = 0;
9007
ec5d4989
HS
9008 if (sysctl_sched_rt_period <= 0)
9009 return -EINVAL;
9010
4653f803
PZ
9011 runtime = global_rt_runtime();
9012 period = global_rt_period();
9013
9014 /*
9015 * Sanity check on the sysctl variables.
9016 */
9017 if (runtime > period && runtime != RUNTIME_INF)
9018 return -EINVAL;
10b612f4 9019
d0b27fa7 9020 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9021 read_lock(&tasklist_lock);
4653f803 9022 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9023 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9024 mutex_unlock(&rt_constraints_mutex);
9025
9026 return ret;
9027}
6d6bc0ad 9028#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9029static int sched_rt_global_constraints(void)
9030{
ac086bc2
PZ
9031 unsigned long flags;
9032 int i;
9033
ec5d4989
HS
9034 if (sysctl_sched_rt_period <= 0)
9035 return -EINVAL;
9036
ac086bc2
PZ
9037 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9038 for_each_possible_cpu(i) {
9039 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9040
9041 spin_lock(&rt_rq->rt_runtime_lock);
9042 rt_rq->rt_runtime = global_rt_runtime();
9043 spin_unlock(&rt_rq->rt_runtime_lock);
9044 }
9045 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9046
d0b27fa7
PZ
9047 return 0;
9048}
6d6bc0ad 9049#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9050
9051int sched_rt_handler(struct ctl_table *table, int write,
9052 struct file *filp, void __user *buffer, size_t *lenp,
9053 loff_t *ppos)
9054{
9055 int ret;
9056 int old_period, old_runtime;
9057 static DEFINE_MUTEX(mutex);
9058
9059 mutex_lock(&mutex);
9060 old_period = sysctl_sched_rt_period;
9061 old_runtime = sysctl_sched_rt_runtime;
9062
9063 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9064
9065 if (!ret && write) {
9066 ret = sched_rt_global_constraints();
9067 if (ret) {
9068 sysctl_sched_rt_period = old_period;
9069 sysctl_sched_rt_runtime = old_runtime;
9070 } else {
9071 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9072 def_rt_bandwidth.rt_period =
9073 ns_to_ktime(global_rt_period());
9074 }
9075 }
9076 mutex_unlock(&mutex);
9077
9078 return ret;
9079}
68318b8e 9080
052f1dc7 9081#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9082
9083/* return corresponding task_group object of a cgroup */
2b01dfe3 9084static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9085{
2b01dfe3
PM
9086 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9087 struct task_group, css);
68318b8e
SV
9088}
9089
9090static struct cgroup_subsys_state *
2b01dfe3 9091cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9092{
ec7dc8ac 9093 struct task_group *tg, *parent;
68318b8e 9094
2b01dfe3 9095 if (!cgrp->parent) {
68318b8e 9096 /* This is early initialization for the top cgroup */
68318b8e
SV
9097 return &init_task_group.css;
9098 }
9099
ec7dc8ac
DG
9100 parent = cgroup_tg(cgrp->parent);
9101 tg = sched_create_group(parent);
68318b8e
SV
9102 if (IS_ERR(tg))
9103 return ERR_PTR(-ENOMEM);
9104
68318b8e
SV
9105 return &tg->css;
9106}
9107
41a2d6cf
IM
9108static void
9109cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9110{
2b01dfe3 9111 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9112
9113 sched_destroy_group(tg);
9114}
9115
41a2d6cf
IM
9116static int
9117cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9118 struct task_struct *tsk)
68318b8e 9119{
b68aa230
PZ
9120#ifdef CONFIG_RT_GROUP_SCHED
9121 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9122 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9123 return -EINVAL;
9124#else
68318b8e
SV
9125 /* We don't support RT-tasks being in separate groups */
9126 if (tsk->sched_class != &fair_sched_class)
9127 return -EINVAL;
b68aa230 9128#endif
68318b8e
SV
9129
9130 return 0;
9131}
9132
9133static void
2b01dfe3 9134cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9135 struct cgroup *old_cont, struct task_struct *tsk)
9136{
9137 sched_move_task(tsk);
9138}
9139
052f1dc7 9140#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9141static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9142 u64 shareval)
68318b8e 9143{
2b01dfe3 9144 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9145}
9146
f4c753b7 9147static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9148{
2b01dfe3 9149 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9150
9151 return (u64) tg->shares;
9152}
6d6bc0ad 9153#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9154
052f1dc7 9155#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9156static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9157 s64 val)
6f505b16 9158{
06ecb27c 9159 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9160}
9161
06ecb27c 9162static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9163{
06ecb27c 9164 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9165}
d0b27fa7
PZ
9166
9167static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9168 u64 rt_period_us)
9169{
9170 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9171}
9172
9173static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9174{
9175 return sched_group_rt_period(cgroup_tg(cgrp));
9176}
6d6bc0ad 9177#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9178
fe5c7cc2 9179static struct cftype cpu_files[] = {
052f1dc7 9180#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9181 {
9182 .name = "shares",
f4c753b7
PM
9183 .read_u64 = cpu_shares_read_u64,
9184 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9185 },
052f1dc7
PZ
9186#endif
9187#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9188 {
9f0c1e56 9189 .name = "rt_runtime_us",
06ecb27c
PM
9190 .read_s64 = cpu_rt_runtime_read,
9191 .write_s64 = cpu_rt_runtime_write,
6f505b16 9192 },
d0b27fa7
PZ
9193 {
9194 .name = "rt_period_us",
f4c753b7
PM
9195 .read_u64 = cpu_rt_period_read_uint,
9196 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9197 },
052f1dc7 9198#endif
68318b8e
SV
9199};
9200
9201static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9202{
fe5c7cc2 9203 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9204}
9205
9206struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9207 .name = "cpu",
9208 .create = cpu_cgroup_create,
9209 .destroy = cpu_cgroup_destroy,
9210 .can_attach = cpu_cgroup_can_attach,
9211 .attach = cpu_cgroup_attach,
9212 .populate = cpu_cgroup_populate,
9213 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9214 .early_init = 1,
9215};
9216
052f1dc7 9217#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9218
9219#ifdef CONFIG_CGROUP_CPUACCT
9220
9221/*
9222 * CPU accounting code for task groups.
9223 *
9224 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9225 * (balbir@in.ibm.com).
9226 */
9227
934352f2 9228/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9229struct cpuacct {
9230 struct cgroup_subsys_state css;
9231 /* cpuusage holds pointer to a u64-type object on every cpu */
9232 u64 *cpuusage;
934352f2 9233 struct cpuacct *parent;
d842de87
SV
9234};
9235
9236struct cgroup_subsys cpuacct_subsys;
9237
9238/* return cpu accounting group corresponding to this container */
32cd756a 9239static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9240{
32cd756a 9241 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9242 struct cpuacct, css);
9243}
9244
9245/* return cpu accounting group to which this task belongs */
9246static inline struct cpuacct *task_ca(struct task_struct *tsk)
9247{
9248 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9249 struct cpuacct, css);
9250}
9251
9252/* create a new cpu accounting group */
9253static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9254 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9255{
9256 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9257
9258 if (!ca)
9259 return ERR_PTR(-ENOMEM);
9260
9261 ca->cpuusage = alloc_percpu(u64);
9262 if (!ca->cpuusage) {
9263 kfree(ca);
9264 return ERR_PTR(-ENOMEM);
9265 }
9266
934352f2
BR
9267 if (cgrp->parent)
9268 ca->parent = cgroup_ca(cgrp->parent);
9269
d842de87
SV
9270 return &ca->css;
9271}
9272
9273/* destroy an existing cpu accounting group */
41a2d6cf 9274static void
32cd756a 9275cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9276{
32cd756a 9277 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9278
9279 free_percpu(ca->cpuusage);
9280 kfree(ca);
9281}
9282
9283/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9284static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9285{
32cd756a 9286 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9287 u64 totalcpuusage = 0;
9288 int i;
9289
9290 for_each_possible_cpu(i) {
9291 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9292
9293 /*
9294 * Take rq->lock to make 64-bit addition safe on 32-bit
9295 * platforms.
9296 */
9297 spin_lock_irq(&cpu_rq(i)->lock);
9298 totalcpuusage += *cpuusage;
9299 spin_unlock_irq(&cpu_rq(i)->lock);
9300 }
9301
9302 return totalcpuusage;
9303}
9304
0297b803
DG
9305static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9306 u64 reset)
9307{
9308 struct cpuacct *ca = cgroup_ca(cgrp);
9309 int err = 0;
9310 int i;
9311
9312 if (reset) {
9313 err = -EINVAL;
9314 goto out;
9315 }
9316
9317 for_each_possible_cpu(i) {
9318 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9319
9320 spin_lock_irq(&cpu_rq(i)->lock);
9321 *cpuusage = 0;
9322 spin_unlock_irq(&cpu_rq(i)->lock);
9323 }
9324out:
9325 return err;
9326}
9327
d842de87
SV
9328static struct cftype files[] = {
9329 {
9330 .name = "usage",
f4c753b7
PM
9331 .read_u64 = cpuusage_read,
9332 .write_u64 = cpuusage_write,
d842de87
SV
9333 },
9334};
9335
32cd756a 9336static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9337{
32cd756a 9338 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9339}
9340
9341/*
9342 * charge this task's execution time to its accounting group.
9343 *
9344 * called with rq->lock held.
9345 */
9346static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9347{
9348 struct cpuacct *ca;
934352f2 9349 int cpu;
d842de87
SV
9350
9351 if (!cpuacct_subsys.active)
9352 return;
9353
934352f2 9354 cpu = task_cpu(tsk);
d842de87 9355 ca = task_ca(tsk);
d842de87 9356
934352f2
BR
9357 for (; ca; ca = ca->parent) {
9358 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9359 *cpuusage += cputime;
9360 }
9361}
9362
9363struct cgroup_subsys cpuacct_subsys = {
9364 .name = "cpuacct",
9365 .create = cpuacct_create,
9366 .destroy = cpuacct_destroy,
9367 .populate = cpuacct_populate,
9368 .subsys_id = cpuacct_subsys_id,
9369};
9370#endif /* CONFIG_CGROUP_CPUACCT */