sched: Add #ifdef around irq time accounting functions
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
5091faa4 82#include "sched_autogroup.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
e05606d3
IM
126static inline int rt_policy(int policy)
127{
3f33a7ce 128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
129 return 1;
130 return 0;
131}
132
133static inline int task_has_rt_policy(struct task_struct *p)
134{
135 return rt_policy(p->policy);
136}
137
1da177e4 138/*
6aa645ea 139 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 140 */
6aa645ea
IM
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
d0b27fa7 146struct rt_bandwidth {
ea736ed5 147 /* nests inside the rq lock: */
0986b11b 148 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
d0b27fa7
PZ
152};
153
154static struct rt_bandwidth def_rt_bandwidth;
155
156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159{
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177}
178
179static
180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181{
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
0986b11b 185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 186
d0b27fa7
PZ
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
190}
191
c8bfff6d
KH
192static inline int rt_bandwidth_enabled(void)
193{
194 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
195}
196
197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198{
199 ktime_t now;
200
cac64d00 201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
0986b11b 207 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 208 for (;;) {
7f1e2ca9
PZ
209 unsigned long delta;
210 ktime_t soft, hard;
211
d0b27fa7
PZ
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 222 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 223 }
0986b11b 224 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
225}
226
227#ifdef CONFIG_RT_GROUP_SCHED
228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229{
230 hrtimer_cancel(&rt_b->rt_period_timer);
231}
232#endif
233
712555ee
HC
234/*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238static DEFINE_MUTEX(sched_domains_mutex);
239
7c941438 240#ifdef CONFIG_CGROUP_SCHED
29f59db3 241
68318b8e
SV
242#include <linux/cgroup.h>
243
29f59db3
SV
244struct cfs_rq;
245
6f505b16
PZ
246static LIST_HEAD(task_groups);
247
29f59db3 248/* task group related information */
4cf86d77 249struct task_group {
68318b8e 250 struct cgroup_subsys_state css;
6c415b92 251
052f1dc7 252#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
2069dd75
PZ
258
259 atomic_t load_weight;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
5091faa4
MG
275
276#ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278#endif
29f59db3
SV
279};
280
3d4b47b4 281/* task_group_lock serializes the addition/removal of task groups */
8ed36996 282static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 283
e9036b36
CG
284#ifdef CONFIG_FAIR_GROUP_SCHED
285
07e06b01 286# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 287
cb4ad1ff 288/*
2e084786
LJ
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
cb4ad1ff
MX
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
18d95a28 296#define MIN_SHARES 2
2e084786 297#define MAX_SHARES (1UL << 18)
18d95a28 298
07e06b01 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
300#endif
301
29f59db3 302/* Default task group.
3a252015 303 * Every task in system belong to this group at bootup.
29f59db3 304 */
07e06b01 305struct task_group root_task_group;
29f59db3 306
7c941438 307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 308
6aa645ea
IM
309/* CFS-related fields in a runqueue */
310struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
6aa645ea 314 u64 exec_clock;
e9acbff6 315 u64 min_vruntime;
6aa645ea
IM
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
4a55bd5e
PZ
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
ac53db59 327 struct sched_entity *curr, *next, *last, *skip;
ddc97297 328
5ac5c4d6 329 unsigned int nr_spread_over;
ddc97297 330
62160e3f 331#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
41a2d6cf
IM
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
3d4b47b4 342 int on_list;
41a2d6cf
IM
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
345
346#ifdef CONFIG_SMP
c09595f6 347 /*
c8cba857 348 * the part of load.weight contributed by tasks
c09595f6 349 */
c8cba857 350 unsigned long task_weight;
c09595f6 351
c8cba857
PZ
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
c09595f6 359
c8cba857 360 /*
3b3d190e
PT
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 366 */
2069dd75
PZ
367 u64 load_avg;
368 u64 load_period;
3b3d190e 369 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 370
2069dd75 371 unsigned long load_contribution;
c09595f6 372#endif
6aa645ea
IM
373#endif
374};
1da177e4 375
6aa645ea
IM
376/* Real-Time classes' related field in a runqueue: */
377struct rt_rq {
378 struct rt_prio_array active;
63489e45 379 unsigned long rt_nr_running;
052f1dc7 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
381 struct {
382 int curr; /* highest queued rt task prio */
398a153b 383#ifdef CONFIG_SMP
e864c499 384 int next; /* next highest */
398a153b 385#endif
e864c499 386 } highest_prio;
6f505b16 387#endif
fa85ae24 388#ifdef CONFIG_SMP
73fe6aae 389 unsigned long rt_nr_migratory;
a1ba4d8b 390 unsigned long rt_nr_total;
a22d7fc1 391 int overloaded;
917b627d 392 struct plist_head pushable_tasks;
fa85ae24 393#endif
6f505b16 394 int rt_throttled;
fa85ae24 395 u64 rt_time;
ac086bc2 396 u64 rt_runtime;
ea736ed5 397 /* Nests inside the rq lock: */
0986b11b 398 raw_spinlock_t rt_runtime_lock;
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
401 unsigned long rt_nr_boosted;
402
6f505b16
PZ
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
6f505b16 406#endif
6aa645ea
IM
407};
408
57d885fe
GH
409#ifdef CONFIG_SMP
410
411/*
412 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
57d885fe
GH
418 */
419struct root_domain {
420 atomic_t refcount;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
068c5cc5
PZ
609 if (p->flags & PF_EXITING)
610 return &root_task_group;
611
dc61b1d6
PZ
612 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
614 tg = container_of(css, struct task_group, css);
615
616 return autogroup_task_group(p, tg);
dc61b1d6
PZ
617}
618
619/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621{
622#ifdef CONFIG_FAIR_GROUP_SCHED
623 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624 p->se.parent = task_group(p)->se[cpu];
625#endif
626
627#ifdef CONFIG_RT_GROUP_SCHED
628 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
629 p->rt.parent = task_group(p)->rt_se[cpu];
630#endif
631}
632
633#else /* CONFIG_CGROUP_SCHED */
634
635static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636static inline struct task_group *task_group(struct task_struct *p)
637{
638 return NULL;
639}
640
641#endif /* CONFIG_CGROUP_SCHED */
642
fe44d621 643static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 644
fe44d621 645static void update_rq_clock(struct rq *rq)
3e51f33f 646{
fe44d621 647 s64 delta;
305e6835 648
f26f9aff
MG
649 if (rq->skip_clock_update)
650 return;
aa483808 651
fe44d621
PZ
652 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 rq->clock += delta;
654 update_rq_clock_task(rq, delta);
3e51f33f
PZ
655}
656
bf5c91ba
IM
657/*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660#ifdef CONFIG_SCHED_DEBUG
661# define const_debug __read_mostly
662#else
663# define const_debug static const
664#endif
665
017730c1
IM
666/**
667 * runqueue_is_locked
e17b38bf 668 * @cpu: the processor in question.
017730c1
IM
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
89f19f04 674int runqueue_is_locked(int cpu)
017730c1 675{
05fa785c 676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
7740191c 731 char *cmp;
f00b45c1
PZ
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
7740191c 742 cmp = strstrip(buf);
f00b45c1 743
524429c3 744 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
7740191c 750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
42994724 762 *ppos += cnt;
f00b45c1
PZ
763
764 return cnt;
765}
766
34f3a814
LZ
767static int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 return single_open(filp, sched_feat_show, NULL);
770}
771
828c0950 772static const struct file_operations sched_feat_fops = {
34f3a814
LZ
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
f00b45c1
PZ
778};
779
780static __init int sched_init_debug(void)
781{
f00b45c1
PZ
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786}
787late_initcall(sched_init_debug);
788
789#endif
790
791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 792
b82d9fdd
PZ
793/*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299 916/*
65cc8e48
PZ
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
0970d299
PZ
919 */
920static inline int task_is_waking(struct task_struct *p)
921{
0017d735 922 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
923}
924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
3a5c359a 934 for (;;) {
0970d299 935 rq = task_rq(p);
05fa785c 936 raw_spin_lock(&rq->lock);
65cc8e48 937 if (likely(rq == task_rq(p)))
3a5c359a 938 return rq;
05fa785c 939 raw_spin_unlock(&rq->lock);
b29739f9 940 }
b29739f9
IM
941}
942
1da177e4
LT
943/*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 945 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
946 * explicitly disabling preemption.
947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
949 __acquires(rq->lock)
950{
70b97a7f 951 struct rq *rq;
1da177e4 952
3a5c359a
AK
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
05fa785c 956 raw_spin_lock(&rq->lock);
65cc8e48 957 if (likely(rq == task_rq(p)))
3a5c359a 958 return rq;
05fa785c 959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 960 }
1da177e4
LT
961}
962
a9957449 963static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
964 __releases(rq->lock)
965{
05fa785c 966 raw_spin_unlock(&rq->lock);
b29739f9
IM
967}
968
70b97a7f 969static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
970 __releases(rq->lock)
971{
05fa785c 972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
973}
974
1da177e4 975/*
cc2a73b5 976 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 977 */
a9957449 978static struct rq *this_rq_lock(void)
1da177e4
LT
979 __acquires(rq->lock)
980{
70b97a7f 981 struct rq *rq;
1da177e4
LT
982
983 local_irq_disable();
984 rq = this_rq();
05fa785c 985 raw_spin_lock(&rq->lock);
1da177e4
LT
986
987 return rq;
988}
989
8f4d37ec
PZ
990#ifdef CONFIG_SCHED_HRTICK
991/*
992 * Use HR-timers to deliver accurate preemption points.
993 *
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * reschedule event.
997 *
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * rq->lock.
1000 */
8f4d37ec
PZ
1001
1002/*
1003 * Use hrtick when:
1004 * - enabled by features
1005 * - hrtimer is actually high res
1006 */
1007static inline int hrtick_enabled(struct rq *rq)
1008{
1009 if (!sched_feat(HRTICK))
1010 return 0;
ba42059f 1011 if (!cpu_active(cpu_of(rq)))
b328ca18 1012 return 0;
8f4d37ec
PZ
1013 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014}
1015
8f4d37ec
PZ
1016static void hrtick_clear(struct rq *rq)
1017{
1018 if (hrtimer_active(&rq->hrtick_timer))
1019 hrtimer_cancel(&rq->hrtick_timer);
1020}
1021
8f4d37ec
PZ
1022/*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027{
1028 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
05fa785c 1032 raw_spin_lock(&rq->lock);
3e51f33f 1033 update_rq_clock(rq);
8f4d37ec 1034 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1035 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1036
1037 return HRTIMER_NORESTART;
1038}
1039
95e904c7 1040#ifdef CONFIG_SMP
31656519
PZ
1041/*
1042 * called from hardirq (IPI) context
1043 */
1044static void __hrtick_start(void *arg)
b328ca18 1045{
31656519 1046 struct rq *rq = arg;
b328ca18 1047
05fa785c 1048 raw_spin_lock(&rq->lock);
31656519
PZ
1049 hrtimer_restart(&rq->hrtick_timer);
1050 rq->hrtick_csd_pending = 0;
05fa785c 1051 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1052}
1053
31656519
PZ
1054/*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1060{
31656519
PZ
1061 struct hrtimer *timer = &rq->hrtick_timer;
1062 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1063
cc584b21 1064 hrtimer_set_expires(timer, time);
31656519
PZ
1065
1066 if (rq == this_rq()) {
1067 hrtimer_restart(timer);
1068 } else if (!rq->hrtick_csd_pending) {
6e275637 1069 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1070 rq->hrtick_csd_pending = 1;
1071 }
b328ca18
PZ
1072}
1073
1074static int
1075hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076{
1077 int cpu = (int)(long)hcpu;
1078
1079 switch (action) {
1080 case CPU_UP_CANCELED:
1081 case CPU_UP_CANCELED_FROZEN:
1082 case CPU_DOWN_PREPARE:
1083 case CPU_DOWN_PREPARE_FROZEN:
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
31656519 1086 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1087 return NOTIFY_OK;
1088 }
1089
1090 return NOTIFY_DONE;
1091}
1092
fa748203 1093static __init void init_hrtick(void)
b328ca18
PZ
1094{
1095 hotcpu_notifier(hotplug_hrtick, 0);
1096}
31656519
PZ
1097#else
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
1104{
7f1e2ca9 1105 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1106 HRTIMER_MODE_REL_PINNED, 0);
31656519 1107}
b328ca18 1108
006c75f1 1109static inline void init_hrtick(void)
8f4d37ec 1110{
8f4d37ec 1111}
31656519 1112#endif /* CONFIG_SMP */
8f4d37ec 1113
31656519 1114static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1115{
31656519
PZ
1116#ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
8f4d37ec 1118
31656519
PZ
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122#endif
8f4d37ec 1123
31656519
PZ
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
8f4d37ec 1126}
006c75f1 1127#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1128static inline void hrtick_clear(struct rq *rq)
1129{
1130}
1131
8f4d37ec
PZ
1132static inline void init_rq_hrtick(struct rq *rq)
1133{
1134}
1135
b328ca18
PZ
1136static inline void init_hrtick(void)
1137{
1138}
006c75f1 1139#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1140
c24d20db
IM
1141/*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148#ifdef CONFIG_SMP
1149
1150#ifndef tsk_is_polling
1151#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152#endif
1153
31656519 1154static void resched_task(struct task_struct *p)
c24d20db
IM
1155{
1156 int cpu;
1157
05fa785c 1158 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1159
5ed0cec0 1160 if (test_tsk_need_resched(p))
c24d20db
IM
1161 return;
1162
5ed0cec0 1163 set_tsk_need_resched(p);
c24d20db
IM
1164
1165 cpu = task_cpu(p);
1166 if (cpu == smp_processor_id())
1167 return;
1168
1169 /* NEED_RESCHED must be visible before we test polling */
1170 smp_mb();
1171 if (!tsk_is_polling(p))
1172 smp_send_reschedule(cpu);
1173}
1174
1175static void resched_cpu(int cpu)
1176{
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long flags;
1179
05fa785c 1180 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1181 return;
1182 resched_task(cpu_curr(cpu));
05fa785c 1183 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1184}
06d8308c
TG
1185
1186#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1187/*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195int get_nohz_timer_target(void)
1196{
1197 int cpu = smp_processor_id();
1198 int i;
1199 struct sched_domain *sd;
1200
1201 for_each_domain(cpu, sd) {
1202 for_each_cpu(i, sched_domain_span(sd))
1203 if (!idle_cpu(i))
1204 return i;
1205 }
1206 return cpu;
1207}
06d8308c
TG
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
39c0cbe2 1247
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1260 /*
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1264 */
1265 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269}
1270
1271static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272{
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275}
1276
6d6bc0ad 1277#else /* !CONFIG_SMP */
31656519 1278static void resched_task(struct task_struct *p)
c24d20db 1279{
05fa785c 1280 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1281 set_tsk_need_resched(p);
c24d20db 1282}
e9e9250b
PZ
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286}
da2b71ed
SS
1287
1288static void sched_avg_update(struct rq *rq)
1289{
1290}
6d6bc0ad 1291#endif /* CONFIG_SMP */
c24d20db 1292
45bf76df
IM
1293#if BITS_PER_LONG == 32
1294# define WMULT_CONST (~0UL)
1295#else
1296# define WMULT_CONST (1UL << 32)
1297#endif
1298
1299#define WMULT_SHIFT 32
1300
194081eb
IM
1301/*
1302 * Shift right and round:
1303 */
cf2ab469 1304#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1305
a7be37ac
PZ
1306/*
1307 * delta *= weight / lw
1308 */
cb1c4fc9 1309static unsigned long
45bf76df
IM
1310calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1312{
1313 u64 tmp;
1314
7a232e03
LJ
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1321 }
45bf76df
IM
1322
1323 tmp = (u64)delta_exec * weight;
1324 /*
1325 * Check whether we'd overflow the 64-bit multiplication:
1326 */
194081eb 1327 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1329 WMULT_SHIFT/2);
1330 else
cf2ab469 1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1332
ecf691da 1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1337{
1338 lw->weight += inc;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
1091985b 1342static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1343{
1344 lw->weight -= dec;
e89996ae 1345 lw->inv_weight = 0;
45bf76df
IM
1346}
1347
2069dd75
PZ
1348static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349{
1350 lw->weight = w;
1351 lw->inv_weight = 0;
1352}
1353
2dd73a4f
PW
1354/*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
cce7ade8
PZ
1363#define WEIGHT_IDLEPRIO 3
1364#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1365
1366/*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
dd41f596
IM
1377 */
1378static const int prio_to_weight[40] = {
254753dc
IM
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1387};
1388
5714d2de
IM
1389/*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
dd41f596 1396static const u32 prio_to_wmult[40] = {
254753dc
IM
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1405};
2dd73a4f 1406
ef12fefa
BR
1407/* Time spent by the tasks of the cpu accounting group executing in ... */
1408enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413};
1414
d842de87
SV
1415#ifdef CONFIG_CGROUP_CPUACCT
1416static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1417static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1419#else
1420static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1421static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1423#endif
1424
18d95a28
PZ
1425static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426{
1427 update_load_add(&rq->load, load);
1428}
1429
1430static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_sub(&rq->load, load);
1433}
1434
7940ca36 1435#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1436typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1437
1438/*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
eb755805 1442static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
eb755805 1445 int ret;
c09595f6
PZ
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449down:
eb755805
PZ
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
c09595f6
PZ
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457up:
1458 continue;
1459 }
eb755805
PZ
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
eb755805 1468out_unlock:
c09595f6 1469 rcu_read_unlock();
eb755805
PZ
1470
1471 return ret;
c09595f6
PZ
1472}
1473
eb755805
PZ
1474static int tg_nop(struct task_group *tg, void *data)
1475{
1476 return 0;
c09595f6 1477}
eb755805
PZ
1478#endif
1479
1480#ifdef CONFIG_SMP
f5f08f39
PZ
1481/* Used instead of source_load when we know the type == 0 */
1482static unsigned long weighted_cpuload(const int cpu)
1483{
1484 return cpu_rq(cpu)->load.weight;
1485}
1486
1487/*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494static unsigned long source_load(int cpu, int type)
1495{
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503}
1504
1505/*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509static unsigned long target_load(int cpu, int type)
1510{
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518}
1519
ae154be1
PZ
1520static unsigned long power_of(int cpu)
1521{
e51fd5e2 1522 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1523}
1524
eb755805
PZ
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529 struct rq *rq = cpu_rq(cpu);
af6d596f 1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1531
4cd42620
SR
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1534 else
1535 rq->avg_load_per_task = 0;
eb755805
PZ
1536
1537 return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1541
c09595f6 1542/*
c8cba857
PZ
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
c09595f6 1546 */
eb755805 1547static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1548{
c8cba857 1549 unsigned long load;
eb755805 1550 long cpu = (long)data;
c09595f6 1551
c8cba857
PZ
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1556 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
c09595f6 1559
c8cba857 1560 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1561
eb755805 1562 return 0;
c09595f6
PZ
1563}
1564
eb755805 1565static void update_h_load(long cpu)
c09595f6 1566{
eb755805 1567 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1568}
1569
18d95a28
PZ
1570#endif
1571
8f45e2b5
GH
1572#ifdef CONFIG_PREEMPT
1573
b78bb868
PZ
1574static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
70574a99 1576/*
8f45e2b5
GH
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
70574a99 1583 */
8f45e2b5
GH
1584static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585 __releases(this_rq->lock)
1586 __acquires(busiest->lock)
1587 __acquires(this_rq->lock)
1588{
05fa785c 1589 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1590 double_rq_lock(this_rq, busiest);
1591
1592 return 1;
1593}
1594
1595#else
1596/*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607{
1608 int ret = 0;
1609
05fa785c 1610 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1611 if (busiest < this_rq) {
05fa785c
TG
1612 raw_spin_unlock(&this_rq->lock);
1613 raw_spin_lock(&busiest->lock);
1614 raw_spin_lock_nested(&this_rq->lock,
1615 SINGLE_DEPTH_NESTING);
70574a99
AD
1616 ret = 1;
1617 } else
05fa785c
TG
1618 raw_spin_lock_nested(&busiest->lock,
1619 SINGLE_DEPTH_NESTING);
70574a99
AD
1620 }
1621 return ret;
1622}
1623
8f45e2b5
GH
1624#endif /* CONFIG_PREEMPT */
1625
1626/*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630{
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
05fa785c 1633 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1634 BUG_ON(1);
1635 }
1636
1637 return _double_lock_balance(this_rq, busiest);
1638}
1639
70574a99
AD
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
05fa785c 1643 raw_spin_unlock(&busiest->lock);
70574a99
AD
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
1e3c88bd
PZ
1646
1647/*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656{
1657 BUG_ON(!irqs_disabled());
1658 if (rq1 == rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 } else {
1662 if (rq1 < rq2) {
1663 raw_spin_lock(&rq1->lock);
1664 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665 } else {
1666 raw_spin_lock(&rq2->lock);
1667 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668 }
1669 }
1e3c88bd
PZ
1670}
1671
1672/*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679 __releases(rq1->lock)
1680 __releases(rq2->lock)
1681{
1682 raw_spin_unlock(&rq1->lock);
1683 if (rq1 != rq2)
1684 raw_spin_unlock(&rq2->lock);
1685 else
1686 __release(rq2->lock);
1687}
1688
d95f4122
MG
1689#else /* CONFIG_SMP */
1690
1691/*
1692 * double_rq_lock - safely lock two runqueues
1693 *
1694 * Note this does not disable interrupts like task_rq_lock,
1695 * you need to do so manually before calling.
1696 */
1697static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1698 __acquires(rq1->lock)
1699 __acquires(rq2->lock)
1700{
1701 BUG_ON(!irqs_disabled());
1702 BUG_ON(rq1 != rq2);
1703 raw_spin_lock(&rq1->lock);
1704 __acquire(rq2->lock); /* Fake it out ;) */
1705}
1706
1707/*
1708 * double_rq_unlock - safely unlock two runqueues
1709 *
1710 * Note this does not restore interrupts like task_rq_unlock,
1711 * you need to do so manually after calling.
1712 */
1713static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1714 __releases(rq1->lock)
1715 __releases(rq2->lock)
1716{
1717 BUG_ON(rq1 != rq2);
1718 raw_spin_unlock(&rq1->lock);
1719 __release(rq2->lock);
1720}
1721
18d95a28
PZ
1722#endif
1723
74f5187a 1724static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1725static void update_sysctl(void);
acb4a848 1726static int get_update_sysctl_factor(void);
fdf3e95d 1727static void update_cpu_load(struct rq *this_rq);
dce48a84 1728
cd29fe6f
PZ
1729static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1730{
1731 set_task_rq(p, cpu);
1732#ifdef CONFIG_SMP
1733 /*
1734 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1735 * successfuly executed on another CPU. We must ensure that updates of
1736 * per-task data have been completed by this moment.
1737 */
1738 smp_wmb();
1739 task_thread_info(p)->cpu = cpu;
1740#endif
1741}
dce48a84 1742
1e3c88bd 1743static const struct sched_class rt_sched_class;
dd41f596 1744
34f971f6 1745#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1746#define for_each_class(class) \
1747 for (class = sched_class_highest; class; class = class->next)
dd41f596 1748
1e3c88bd
PZ
1749#include "sched_stats.h"
1750
c09595f6 1751static void inc_nr_running(struct rq *rq)
9c217245
IM
1752{
1753 rq->nr_running++;
9c217245
IM
1754}
1755
c09595f6 1756static void dec_nr_running(struct rq *rq)
9c217245
IM
1757{
1758 rq->nr_running--;
9c217245
IM
1759}
1760
45bf76df
IM
1761static void set_load_weight(struct task_struct *p)
1762{
dd41f596
IM
1763 /*
1764 * SCHED_IDLE tasks get minimal weight:
1765 */
1766 if (p->policy == SCHED_IDLE) {
1767 p->se.load.weight = WEIGHT_IDLEPRIO;
1768 p->se.load.inv_weight = WMULT_IDLEPRIO;
1769 return;
1770 }
71f8bd46 1771
dd41f596
IM
1772 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1773 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1774}
1775
371fd7e7 1776static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1777{
a64692a3 1778 update_rq_clock(rq);
dd41f596 1779 sched_info_queued(p);
371fd7e7 1780 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1781 p->se.on_rq = 1;
71f8bd46
IM
1782}
1783
371fd7e7 1784static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1785{
a64692a3 1786 update_rq_clock(rq);
46ac22ba 1787 sched_info_dequeued(p);
371fd7e7 1788 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1789 p->se.on_rq = 0;
71f8bd46
IM
1790}
1791
1e3c88bd
PZ
1792/*
1793 * activate_task - move a task to the runqueue.
1794 */
371fd7e7 1795static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1796{
1797 if (task_contributes_to_load(p))
1798 rq->nr_uninterruptible--;
1799
371fd7e7 1800 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1801 inc_nr_running(rq);
1802}
1803
1804/*
1805 * deactivate_task - remove a task from the runqueue.
1806 */
371fd7e7 1807static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1808{
1809 if (task_contributes_to_load(p))
1810 rq->nr_uninterruptible++;
1811
371fd7e7 1812 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1813 dec_nr_running(rq);
1814}
1815
b52bfee4
VP
1816#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1817
305e6835
VP
1818/*
1819 * There are no locks covering percpu hardirq/softirq time.
1820 * They are only modified in account_system_vtime, on corresponding CPU
1821 * with interrupts disabled. So, writes are safe.
1822 * They are read and saved off onto struct rq in update_rq_clock().
1823 * This may result in other CPU reading this CPU's irq time and can
1824 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1825 * or new value with a side effect of accounting a slice of irq time to wrong
1826 * task when irq is in progress while we read rq->clock. That is a worthy
1827 * compromise in place of having locks on each irq in account_system_time.
305e6835 1828 */
b52bfee4
VP
1829static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1830static DEFINE_PER_CPU(u64, cpu_softirq_time);
1831
1832static DEFINE_PER_CPU(u64, irq_start_time);
1833static int sched_clock_irqtime;
1834
1835void enable_sched_clock_irqtime(void)
1836{
1837 sched_clock_irqtime = 1;
1838}
1839
1840void disable_sched_clock_irqtime(void)
1841{
1842 sched_clock_irqtime = 0;
1843}
1844
8e92c201
PZ
1845#ifndef CONFIG_64BIT
1846static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1847
1848static inline void irq_time_write_begin(void)
1849{
1850 __this_cpu_inc(irq_time_seq.sequence);
1851 smp_wmb();
1852}
1853
1854static inline void irq_time_write_end(void)
1855{
1856 smp_wmb();
1857 __this_cpu_inc(irq_time_seq.sequence);
1858}
1859
1860static inline u64 irq_time_read(int cpu)
1861{
1862 u64 irq_time;
1863 unsigned seq;
1864
1865 do {
1866 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1867 irq_time = per_cpu(cpu_softirq_time, cpu) +
1868 per_cpu(cpu_hardirq_time, cpu);
1869 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1870
1871 return irq_time;
1872}
1873#else /* CONFIG_64BIT */
1874static inline void irq_time_write_begin(void)
1875{
1876}
1877
1878static inline void irq_time_write_end(void)
1879{
1880}
1881
1882static inline u64 irq_time_read(int cpu)
305e6835 1883{
305e6835
VP
1884 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1885}
8e92c201 1886#endif /* CONFIG_64BIT */
305e6835 1887
fe44d621
PZ
1888/*
1889 * Called before incrementing preempt_count on {soft,}irq_enter
1890 * and before decrementing preempt_count on {soft,}irq_exit.
1891 */
b52bfee4
VP
1892void account_system_vtime(struct task_struct *curr)
1893{
1894 unsigned long flags;
fe44d621 1895 s64 delta;
b52bfee4 1896 int cpu;
b52bfee4
VP
1897
1898 if (!sched_clock_irqtime)
1899 return;
1900
1901 local_irq_save(flags);
1902
b52bfee4 1903 cpu = smp_processor_id();
fe44d621
PZ
1904 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1905 __this_cpu_add(irq_start_time, delta);
1906
8e92c201 1907 irq_time_write_begin();
b52bfee4
VP
1908 /*
1909 * We do not account for softirq time from ksoftirqd here.
1910 * We want to continue accounting softirq time to ksoftirqd thread
1911 * in that case, so as not to confuse scheduler with a special task
1912 * that do not consume any time, but still wants to run.
1913 */
1914 if (hardirq_count())
fe44d621 1915 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1916 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1917 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1918
8e92c201 1919 irq_time_write_end();
b52bfee4
VP
1920 local_irq_restore(flags);
1921}
b7dadc38 1922EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1923
fe44d621 1924static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1925{
fe44d621
PZ
1926 s64 irq_delta;
1927
8e92c201 1928 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1929
1930 /*
1931 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1932 * this case when a previous update_rq_clock() happened inside a
1933 * {soft,}irq region.
1934 *
1935 * When this happens, we stop ->clock_task and only update the
1936 * prev_irq_time stamp to account for the part that fit, so that a next
1937 * update will consume the rest. This ensures ->clock_task is
1938 * monotonic.
1939 *
1940 * It does however cause some slight miss-attribution of {soft,}irq
1941 * time, a more accurate solution would be to update the irq_time using
1942 * the current rq->clock timestamp, except that would require using
1943 * atomic ops.
1944 */
1945 if (irq_delta > delta)
1946 irq_delta = delta;
1947
1948 rq->prev_irq_time += irq_delta;
1949 delta -= irq_delta;
1950 rq->clock_task += delta;
1951
1952 if (irq_delta && sched_feat(NONIRQ_POWER))
1953 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1954}
1955
abb74cef
VP
1956static int irqtime_account_hi_update(void)
1957{
1958 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1959 unsigned long flags;
1960 u64 latest_ns;
1961 int ret = 0;
1962
1963 local_irq_save(flags);
1964 latest_ns = this_cpu_read(cpu_hardirq_time);
1965 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1966 ret = 1;
1967 local_irq_restore(flags);
1968 return ret;
1969}
1970
1971static int irqtime_account_si_update(void)
1972{
1973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1974 unsigned long flags;
1975 u64 latest_ns;
1976 int ret = 0;
1977
1978 local_irq_save(flags);
1979 latest_ns = this_cpu_read(cpu_softirq_time);
1980 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1981 ret = 1;
1982 local_irq_restore(flags);
1983 return ret;
1984}
1985
fe44d621 1986#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1987
abb74cef
VP
1988#define sched_clock_irqtime (0)
1989
fe44d621 1990static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1991{
fe44d621 1992 rq->clock_task += delta;
305e6835
VP
1993}
1994
fe44d621 1995#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1996
1e3c88bd
PZ
1997#include "sched_idletask.c"
1998#include "sched_fair.c"
1999#include "sched_rt.c"
5091faa4 2000#include "sched_autogroup.c"
34f971f6 2001#include "sched_stoptask.c"
1e3c88bd
PZ
2002#ifdef CONFIG_SCHED_DEBUG
2003# include "sched_debug.c"
2004#endif
2005
34f971f6
PZ
2006void sched_set_stop_task(int cpu, struct task_struct *stop)
2007{
2008 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2009 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2010
2011 if (stop) {
2012 /*
2013 * Make it appear like a SCHED_FIFO task, its something
2014 * userspace knows about and won't get confused about.
2015 *
2016 * Also, it will make PI more or less work without too
2017 * much confusion -- but then, stop work should not
2018 * rely on PI working anyway.
2019 */
2020 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2021
2022 stop->sched_class = &stop_sched_class;
2023 }
2024
2025 cpu_rq(cpu)->stop = stop;
2026
2027 if (old_stop) {
2028 /*
2029 * Reset it back to a normal scheduling class so that
2030 * it can die in pieces.
2031 */
2032 old_stop->sched_class = &rt_sched_class;
2033 }
2034}
2035
14531189 2036/*
dd41f596 2037 * __normal_prio - return the priority that is based on the static prio
14531189 2038 */
14531189
IM
2039static inline int __normal_prio(struct task_struct *p)
2040{
dd41f596 2041 return p->static_prio;
14531189
IM
2042}
2043
b29739f9
IM
2044/*
2045 * Calculate the expected normal priority: i.e. priority
2046 * without taking RT-inheritance into account. Might be
2047 * boosted by interactivity modifiers. Changes upon fork,
2048 * setprio syscalls, and whenever the interactivity
2049 * estimator recalculates.
2050 */
36c8b586 2051static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2052{
2053 int prio;
2054
e05606d3 2055 if (task_has_rt_policy(p))
b29739f9
IM
2056 prio = MAX_RT_PRIO-1 - p->rt_priority;
2057 else
2058 prio = __normal_prio(p);
2059 return prio;
2060}
2061
2062/*
2063 * Calculate the current priority, i.e. the priority
2064 * taken into account by the scheduler. This value might
2065 * be boosted by RT tasks, or might be boosted by
2066 * interactivity modifiers. Will be RT if the task got
2067 * RT-boosted. If not then it returns p->normal_prio.
2068 */
36c8b586 2069static int effective_prio(struct task_struct *p)
b29739f9
IM
2070{
2071 p->normal_prio = normal_prio(p);
2072 /*
2073 * If we are RT tasks or we were boosted to RT priority,
2074 * keep the priority unchanged. Otherwise, update priority
2075 * to the normal priority:
2076 */
2077 if (!rt_prio(p->prio))
2078 return p->normal_prio;
2079 return p->prio;
2080}
2081
1da177e4
LT
2082/**
2083 * task_curr - is this task currently executing on a CPU?
2084 * @p: the task in question.
2085 */
36c8b586 2086inline int task_curr(const struct task_struct *p)
1da177e4
LT
2087{
2088 return cpu_curr(task_cpu(p)) == p;
2089}
2090
cb469845
SR
2091static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2092 const struct sched_class *prev_class,
da7a735e 2093 int oldprio)
cb469845
SR
2094{
2095 if (prev_class != p->sched_class) {
2096 if (prev_class->switched_from)
da7a735e
PZ
2097 prev_class->switched_from(rq, p);
2098 p->sched_class->switched_to(rq, p);
2099 } else if (oldprio != p->prio)
2100 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2101}
2102
1e5a7405
PZ
2103static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2104{
2105 const struct sched_class *class;
2106
2107 if (p->sched_class == rq->curr->sched_class) {
2108 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2109 } else {
2110 for_each_class(class) {
2111 if (class == rq->curr->sched_class)
2112 break;
2113 if (class == p->sched_class) {
2114 resched_task(rq->curr);
2115 break;
2116 }
2117 }
2118 }
2119
2120 /*
2121 * A queue event has occurred, and we're going to schedule. In
2122 * this case, we can save a useless back to back clock update.
2123 */
f26f9aff 2124 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2125 rq->skip_clock_update = 1;
2126}
2127
1da177e4 2128#ifdef CONFIG_SMP
cc367732
IM
2129/*
2130 * Is this task likely cache-hot:
2131 */
e7693a36 2132static int
cc367732
IM
2133task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2134{
2135 s64 delta;
2136
e6c8fba7
PZ
2137 if (p->sched_class != &fair_sched_class)
2138 return 0;
2139
ef8002f6
NR
2140 if (unlikely(p->policy == SCHED_IDLE))
2141 return 0;
2142
f540a608
IM
2143 /*
2144 * Buddy candidates are cache hot:
2145 */
f685ceac 2146 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2147 (&p->se == cfs_rq_of(&p->se)->next ||
2148 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2149 return 1;
2150
6bc1665b
IM
2151 if (sysctl_sched_migration_cost == -1)
2152 return 1;
2153 if (sysctl_sched_migration_cost == 0)
2154 return 0;
2155
cc367732
IM
2156 delta = now - p->se.exec_start;
2157
2158 return delta < (s64)sysctl_sched_migration_cost;
2159}
2160
dd41f596 2161void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2162{
e2912009
PZ
2163#ifdef CONFIG_SCHED_DEBUG
2164 /*
2165 * We should never call set_task_cpu() on a blocked task,
2166 * ttwu() will sort out the placement.
2167 */
077614ee
PZ
2168 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2169 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2170#endif
2171
de1d7286 2172 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2173
0c69774e
PZ
2174 if (task_cpu(p) != new_cpu) {
2175 p->se.nr_migrations++;
2176 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2177 }
dd41f596
IM
2178
2179 __set_task_cpu(p, new_cpu);
c65cc870
IM
2180}
2181
969c7921 2182struct migration_arg {
36c8b586 2183 struct task_struct *task;
1da177e4 2184 int dest_cpu;
70b97a7f 2185};
1da177e4 2186
969c7921
TH
2187static int migration_cpu_stop(void *data);
2188
1da177e4
LT
2189/*
2190 * The task's runqueue lock must be held.
2191 * Returns true if you have to wait for migration thread.
2192 */
b7a2b39d 2193static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2194{
1da177e4
LT
2195 /*
2196 * If the task is not on a runqueue (and not running), then
e2912009 2197 * the next wake-up will properly place the task.
1da177e4 2198 */
969c7921 2199 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2200}
2201
2202/*
2203 * wait_task_inactive - wait for a thread to unschedule.
2204 *
85ba2d86
RM
2205 * If @match_state is nonzero, it's the @p->state value just checked and
2206 * not expected to change. If it changes, i.e. @p might have woken up,
2207 * then return zero. When we succeed in waiting for @p to be off its CPU,
2208 * we return a positive number (its total switch count). If a second call
2209 * a short while later returns the same number, the caller can be sure that
2210 * @p has remained unscheduled the whole time.
2211 *
1da177e4
LT
2212 * The caller must ensure that the task *will* unschedule sometime soon,
2213 * else this function might spin for a *long* time. This function can't
2214 * be called with interrupts off, or it may introduce deadlock with
2215 * smp_call_function() if an IPI is sent by the same process we are
2216 * waiting to become inactive.
2217 */
85ba2d86 2218unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2219{
2220 unsigned long flags;
dd41f596 2221 int running, on_rq;
85ba2d86 2222 unsigned long ncsw;
70b97a7f 2223 struct rq *rq;
1da177e4 2224
3a5c359a
AK
2225 for (;;) {
2226 /*
2227 * We do the initial early heuristics without holding
2228 * any task-queue locks at all. We'll only try to get
2229 * the runqueue lock when things look like they will
2230 * work out!
2231 */
2232 rq = task_rq(p);
fa490cfd 2233
3a5c359a
AK
2234 /*
2235 * If the task is actively running on another CPU
2236 * still, just relax and busy-wait without holding
2237 * any locks.
2238 *
2239 * NOTE! Since we don't hold any locks, it's not
2240 * even sure that "rq" stays as the right runqueue!
2241 * But we don't care, since "task_running()" will
2242 * return false if the runqueue has changed and p
2243 * is actually now running somewhere else!
2244 */
85ba2d86
RM
2245 while (task_running(rq, p)) {
2246 if (match_state && unlikely(p->state != match_state))
2247 return 0;
3a5c359a 2248 cpu_relax();
85ba2d86 2249 }
fa490cfd 2250
3a5c359a
AK
2251 /*
2252 * Ok, time to look more closely! We need the rq
2253 * lock now, to be *sure*. If we're wrong, we'll
2254 * just go back and repeat.
2255 */
2256 rq = task_rq_lock(p, &flags);
27a9da65 2257 trace_sched_wait_task(p);
3a5c359a
AK
2258 running = task_running(rq, p);
2259 on_rq = p->se.on_rq;
85ba2d86 2260 ncsw = 0;
f31e11d8 2261 if (!match_state || p->state == match_state)
93dcf55f 2262 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2263 task_rq_unlock(rq, &flags);
fa490cfd 2264
85ba2d86
RM
2265 /*
2266 * If it changed from the expected state, bail out now.
2267 */
2268 if (unlikely(!ncsw))
2269 break;
2270
3a5c359a
AK
2271 /*
2272 * Was it really running after all now that we
2273 * checked with the proper locks actually held?
2274 *
2275 * Oops. Go back and try again..
2276 */
2277 if (unlikely(running)) {
2278 cpu_relax();
2279 continue;
2280 }
fa490cfd 2281
3a5c359a
AK
2282 /*
2283 * It's not enough that it's not actively running,
2284 * it must be off the runqueue _entirely_, and not
2285 * preempted!
2286 *
80dd99b3 2287 * So if it was still runnable (but just not actively
3a5c359a
AK
2288 * running right now), it's preempted, and we should
2289 * yield - it could be a while.
2290 */
2291 if (unlikely(on_rq)) {
2292 schedule_timeout_uninterruptible(1);
2293 continue;
2294 }
fa490cfd 2295
3a5c359a
AK
2296 /*
2297 * Ahh, all good. It wasn't running, and it wasn't
2298 * runnable, which means that it will never become
2299 * running in the future either. We're all done!
2300 */
2301 break;
2302 }
85ba2d86
RM
2303
2304 return ncsw;
1da177e4
LT
2305}
2306
2307/***
2308 * kick_process - kick a running thread to enter/exit the kernel
2309 * @p: the to-be-kicked thread
2310 *
2311 * Cause a process which is running on another CPU to enter
2312 * kernel-mode, without any delay. (to get signals handled.)
2313 *
2314 * NOTE: this function doesnt have to take the runqueue lock,
2315 * because all it wants to ensure is that the remote task enters
2316 * the kernel. If the IPI races and the task has been migrated
2317 * to another CPU then no harm is done and the purpose has been
2318 * achieved as well.
2319 */
36c8b586 2320void kick_process(struct task_struct *p)
1da177e4
LT
2321{
2322 int cpu;
2323
2324 preempt_disable();
2325 cpu = task_cpu(p);
2326 if ((cpu != smp_processor_id()) && task_curr(p))
2327 smp_send_reschedule(cpu);
2328 preempt_enable();
2329}
b43e3521 2330EXPORT_SYMBOL_GPL(kick_process);
476d139c 2331#endif /* CONFIG_SMP */
1da177e4 2332
0793a61d
TG
2333/**
2334 * task_oncpu_function_call - call a function on the cpu on which a task runs
2335 * @p: the task to evaluate
2336 * @func: the function to be called
2337 * @info: the function call argument
2338 *
2339 * Calls the function @func when the task is currently running. This might
2340 * be on the current CPU, which just calls the function directly
2341 */
2342void task_oncpu_function_call(struct task_struct *p,
2343 void (*func) (void *info), void *info)
2344{
2345 int cpu;
2346
2347 preempt_disable();
2348 cpu = task_cpu(p);
2349 if (task_curr(p))
2350 smp_call_function_single(cpu, func, info, 1);
2351 preempt_enable();
2352}
2353
970b13ba 2354#ifdef CONFIG_SMP
30da688e
ON
2355/*
2356 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2357 */
5da9a0fb
PZ
2358static int select_fallback_rq(int cpu, struct task_struct *p)
2359{
2360 int dest_cpu;
2361 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2362
2363 /* Look for allowed, online CPU in same node. */
2364 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2365 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2366 return dest_cpu;
2367
2368 /* Any allowed, online CPU? */
2369 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2370 if (dest_cpu < nr_cpu_ids)
2371 return dest_cpu;
2372
2373 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2374 dest_cpu = cpuset_cpus_allowed_fallback(p);
2375 /*
2376 * Don't tell them about moving exiting tasks or
2377 * kernel threads (both mm NULL), since they never
2378 * leave kernel.
2379 */
2380 if (p->mm && printk_ratelimit()) {
2381 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2382 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2383 }
2384
2385 return dest_cpu;
2386}
2387
e2912009 2388/*
30da688e 2389 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2390 */
970b13ba 2391static inline
0017d735 2392int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2393{
0017d735 2394 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2395
2396 /*
2397 * In order not to call set_task_cpu() on a blocking task we need
2398 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2399 * cpu.
2400 *
2401 * Since this is common to all placement strategies, this lives here.
2402 *
2403 * [ this allows ->select_task() to simply return task_cpu(p) and
2404 * not worry about this generic constraint ]
2405 */
2406 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2407 !cpu_online(cpu)))
5da9a0fb 2408 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2409
2410 return cpu;
970b13ba 2411}
09a40af5
MG
2412
2413static void update_avg(u64 *avg, u64 sample)
2414{
2415 s64 diff = sample - *avg;
2416 *avg += diff >> 3;
2417}
970b13ba
PZ
2418#endif
2419
9ed3811a
TH
2420static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2421 bool is_sync, bool is_migrate, bool is_local,
2422 unsigned long en_flags)
2423{
2424 schedstat_inc(p, se.statistics.nr_wakeups);
2425 if (is_sync)
2426 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2427 if (is_migrate)
2428 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2429 if (is_local)
2430 schedstat_inc(p, se.statistics.nr_wakeups_local);
2431 else
2432 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2433
2434 activate_task(rq, p, en_flags);
2435}
2436
2437static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2438 int wake_flags, bool success)
2439{
2440 trace_sched_wakeup(p, success);
2441 check_preempt_curr(rq, p, wake_flags);
2442
2443 p->state = TASK_RUNNING;
2444#ifdef CONFIG_SMP
2445 if (p->sched_class->task_woken)
2446 p->sched_class->task_woken(rq, p);
2447
2448 if (unlikely(rq->idle_stamp)) {
2449 u64 delta = rq->clock - rq->idle_stamp;
2450 u64 max = 2*sysctl_sched_migration_cost;
2451
2452 if (delta > max)
2453 rq->avg_idle = max;
2454 else
2455 update_avg(&rq->avg_idle, delta);
2456 rq->idle_stamp = 0;
2457 }
2458#endif
21aa9af0
TH
2459 /* if a worker is waking up, notify workqueue */
2460 if ((p->flags & PF_WQ_WORKER) && success)
2461 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2462}
2463
2464/**
1da177e4 2465 * try_to_wake_up - wake up a thread
9ed3811a 2466 * @p: the thread to be awakened
1da177e4 2467 * @state: the mask of task states that can be woken
9ed3811a 2468 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2469 *
2470 * Put it on the run-queue if it's not already there. The "current"
2471 * thread is always on the run-queue (except when the actual
2472 * re-schedule is in progress), and as such you're allowed to do
2473 * the simpler "current->state = TASK_RUNNING" to mark yourself
2474 * runnable without the overhead of this.
2475 *
9ed3811a
TH
2476 * Returns %true if @p was woken up, %false if it was already running
2477 * or @state didn't match @p's state.
1da177e4 2478 */
7d478721
PZ
2479static int try_to_wake_up(struct task_struct *p, unsigned int state,
2480 int wake_flags)
1da177e4 2481{
cc367732 2482 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2483 unsigned long flags;
371fd7e7 2484 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2485 struct rq *rq;
1da177e4 2486
e9c84311 2487 this_cpu = get_cpu();
2398f2c6 2488
04e2f174 2489 smp_wmb();
ab3b3aa5 2490 rq = task_rq_lock(p, &flags);
e9c84311 2491 if (!(p->state & state))
1da177e4
LT
2492 goto out;
2493
dd41f596 2494 if (p->se.on_rq)
1da177e4
LT
2495 goto out_running;
2496
2497 cpu = task_cpu(p);
cc367732 2498 orig_cpu = cpu;
1da177e4
LT
2499
2500#ifdef CONFIG_SMP
2501 if (unlikely(task_running(rq, p)))
2502 goto out_activate;
2503
e9c84311
PZ
2504 /*
2505 * In order to handle concurrent wakeups and release the rq->lock
2506 * we put the task in TASK_WAKING state.
eb24073b
IM
2507 *
2508 * First fix up the nr_uninterruptible count:
e9c84311 2509 */
cc87f76a
PZ
2510 if (task_contributes_to_load(p)) {
2511 if (likely(cpu_online(orig_cpu)))
2512 rq->nr_uninterruptible--;
2513 else
2514 this_rq()->nr_uninterruptible--;
2515 }
e9c84311 2516 p->state = TASK_WAKING;
efbbd05a 2517
371fd7e7 2518 if (p->sched_class->task_waking) {
efbbd05a 2519 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2520 en_flags |= ENQUEUE_WAKING;
2521 }
efbbd05a 2522
0017d735
PZ
2523 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2524 if (cpu != orig_cpu)
5d2f5a61 2525 set_task_cpu(p, cpu);
0017d735 2526 __task_rq_unlock(rq);
ab19cb23 2527
0970d299
PZ
2528 rq = cpu_rq(cpu);
2529 raw_spin_lock(&rq->lock);
f5dc3753 2530
0970d299
PZ
2531 /*
2532 * We migrated the task without holding either rq->lock, however
2533 * since the task is not on the task list itself, nobody else
2534 * will try and migrate the task, hence the rq should match the
2535 * cpu we just moved it to.
2536 */
2537 WARN_ON(task_cpu(p) != cpu);
e9c84311 2538 WARN_ON(p->state != TASK_WAKING);
1da177e4 2539
e7693a36
GH
2540#ifdef CONFIG_SCHEDSTATS
2541 schedstat_inc(rq, ttwu_count);
2542 if (cpu == this_cpu)
2543 schedstat_inc(rq, ttwu_local);
2544 else {
2545 struct sched_domain *sd;
2546 for_each_domain(this_cpu, sd) {
758b2cdc 2547 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2548 schedstat_inc(sd, ttwu_wake_remote);
2549 break;
2550 }
2551 }
2552 }
6d6bc0ad 2553#endif /* CONFIG_SCHEDSTATS */
e7693a36 2554
1da177e4
LT
2555out_activate:
2556#endif /* CONFIG_SMP */
9ed3811a
TH
2557 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2558 cpu == this_cpu, en_flags);
1da177e4 2559 success = 1;
1da177e4 2560out_running:
9ed3811a 2561 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2562out:
2563 task_rq_unlock(rq, &flags);
e9c84311 2564 put_cpu();
1da177e4
LT
2565
2566 return success;
2567}
2568
21aa9af0
TH
2569/**
2570 * try_to_wake_up_local - try to wake up a local task with rq lock held
2571 * @p: the thread to be awakened
2572 *
b595076a 2573 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2574 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2575 * the current task. this_rq() stays locked over invocation.
2576 */
2577static void try_to_wake_up_local(struct task_struct *p)
2578{
2579 struct rq *rq = task_rq(p);
2580 bool success = false;
2581
2582 BUG_ON(rq != this_rq());
2583 BUG_ON(p == current);
2584 lockdep_assert_held(&rq->lock);
2585
2586 if (!(p->state & TASK_NORMAL))
2587 return;
2588
2589 if (!p->se.on_rq) {
2590 if (likely(!task_running(rq, p))) {
2591 schedstat_inc(rq, ttwu_count);
2592 schedstat_inc(rq, ttwu_local);
2593 }
2594 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2595 success = true;
2596 }
2597 ttwu_post_activation(p, rq, 0, success);
2598}
2599
50fa610a
DH
2600/**
2601 * wake_up_process - Wake up a specific process
2602 * @p: The process to be woken up.
2603 *
2604 * Attempt to wake up the nominated process and move it to the set of runnable
2605 * processes. Returns 1 if the process was woken up, 0 if it was already
2606 * running.
2607 *
2608 * It may be assumed that this function implies a write memory barrier before
2609 * changing the task state if and only if any tasks are woken up.
2610 */
7ad5b3a5 2611int wake_up_process(struct task_struct *p)
1da177e4 2612{
d9514f6c 2613 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2614}
1da177e4
LT
2615EXPORT_SYMBOL(wake_up_process);
2616
7ad5b3a5 2617int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2618{
2619 return try_to_wake_up(p, state, 0);
2620}
2621
1da177e4
LT
2622/*
2623 * Perform scheduler related setup for a newly forked process p.
2624 * p is forked by current.
dd41f596
IM
2625 *
2626 * __sched_fork() is basic setup used by init_idle() too:
2627 */
2628static void __sched_fork(struct task_struct *p)
2629{
dd41f596
IM
2630 p->se.exec_start = 0;
2631 p->se.sum_exec_runtime = 0;
f6cf891c 2632 p->se.prev_sum_exec_runtime = 0;
6c594c21 2633 p->se.nr_migrations = 0;
da7a735e 2634 p->se.vruntime = 0;
6cfb0d5d
IM
2635
2636#ifdef CONFIG_SCHEDSTATS
41acab88 2637 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2638#endif
476d139c 2639
fa717060 2640 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2641 p->se.on_rq = 0;
4a55bd5e 2642 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2643
e107be36
AK
2644#ifdef CONFIG_PREEMPT_NOTIFIERS
2645 INIT_HLIST_HEAD(&p->preempt_notifiers);
2646#endif
dd41f596
IM
2647}
2648
2649/*
2650 * fork()/clone()-time setup:
2651 */
2652void sched_fork(struct task_struct *p, int clone_flags)
2653{
2654 int cpu = get_cpu();
2655
2656 __sched_fork(p);
06b83b5f 2657 /*
0017d735 2658 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2659 * nobody will actually run it, and a signal or other external
2660 * event cannot wake it up and insert it on the runqueue either.
2661 */
0017d735 2662 p->state = TASK_RUNNING;
dd41f596 2663
b9dc29e7
MG
2664 /*
2665 * Revert to default priority/policy on fork if requested.
2666 */
2667 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2668 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2669 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2670 p->normal_prio = p->static_prio;
2671 }
b9dc29e7 2672
6c697bdf
MG
2673 if (PRIO_TO_NICE(p->static_prio) < 0) {
2674 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2675 p->normal_prio = p->static_prio;
6c697bdf
MG
2676 set_load_weight(p);
2677 }
2678
b9dc29e7
MG
2679 /*
2680 * We don't need the reset flag anymore after the fork. It has
2681 * fulfilled its duty:
2682 */
2683 p->sched_reset_on_fork = 0;
2684 }
ca94c442 2685
f83f9ac2
PW
2686 /*
2687 * Make sure we do not leak PI boosting priority to the child.
2688 */
2689 p->prio = current->normal_prio;
2690
2ddbf952
HS
2691 if (!rt_prio(p->prio))
2692 p->sched_class = &fair_sched_class;
b29739f9 2693
cd29fe6f
PZ
2694 if (p->sched_class->task_fork)
2695 p->sched_class->task_fork(p);
2696
86951599
PZ
2697 /*
2698 * The child is not yet in the pid-hash so no cgroup attach races,
2699 * and the cgroup is pinned to this child due to cgroup_fork()
2700 * is ran before sched_fork().
2701 *
2702 * Silence PROVE_RCU.
2703 */
2704 rcu_read_lock();
5f3edc1b 2705 set_task_cpu(p, cpu);
86951599 2706 rcu_read_unlock();
5f3edc1b 2707
52f17b6c 2708#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2709 if (likely(sched_info_on()))
52f17b6c 2710 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2711#endif
d6077cb8 2712#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2713 p->oncpu = 0;
2714#endif
1da177e4 2715#ifdef CONFIG_PREEMPT
4866cde0 2716 /* Want to start with kernel preemption disabled. */
a1261f54 2717 task_thread_info(p)->preempt_count = 1;
1da177e4 2718#endif
806c09a7 2719#ifdef CONFIG_SMP
917b627d 2720 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2721#endif
917b627d 2722
476d139c 2723 put_cpu();
1da177e4
LT
2724}
2725
2726/*
2727 * wake_up_new_task - wake up a newly created task for the first time.
2728 *
2729 * This function will do some initial scheduler statistics housekeeping
2730 * that must be done for every newly created context, then puts the task
2731 * on the runqueue and wakes it.
2732 */
7ad5b3a5 2733void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2734{
2735 unsigned long flags;
dd41f596 2736 struct rq *rq;
c890692b 2737 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2738
2739#ifdef CONFIG_SMP
0017d735
PZ
2740 rq = task_rq_lock(p, &flags);
2741 p->state = TASK_WAKING;
2742
fabf318e
PZ
2743 /*
2744 * Fork balancing, do it here and not earlier because:
2745 * - cpus_allowed can change in the fork path
2746 * - any previously selected cpu might disappear through hotplug
2747 *
0017d735
PZ
2748 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2749 * without people poking at ->cpus_allowed.
fabf318e 2750 */
0017d735 2751 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2752 set_task_cpu(p, cpu);
1da177e4 2753
06b83b5f 2754 p->state = TASK_RUNNING;
0017d735
PZ
2755 task_rq_unlock(rq, &flags);
2756#endif
2757
2758 rq = task_rq_lock(p, &flags);
cd29fe6f 2759 activate_task(rq, p, 0);
27a9da65 2760 trace_sched_wakeup_new(p, 1);
a7558e01 2761 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2762#ifdef CONFIG_SMP
efbbd05a
PZ
2763 if (p->sched_class->task_woken)
2764 p->sched_class->task_woken(rq, p);
9a897c5a 2765#endif
dd41f596 2766 task_rq_unlock(rq, &flags);
fabf318e 2767 put_cpu();
1da177e4
LT
2768}
2769
e107be36
AK
2770#ifdef CONFIG_PREEMPT_NOTIFIERS
2771
2772/**
80dd99b3 2773 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2774 * @notifier: notifier struct to register
e107be36
AK
2775 */
2776void preempt_notifier_register(struct preempt_notifier *notifier)
2777{
2778 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2779}
2780EXPORT_SYMBOL_GPL(preempt_notifier_register);
2781
2782/**
2783 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2784 * @notifier: notifier struct to unregister
e107be36
AK
2785 *
2786 * This is safe to call from within a preemption notifier.
2787 */
2788void preempt_notifier_unregister(struct preempt_notifier *notifier)
2789{
2790 hlist_del(&notifier->link);
2791}
2792EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2793
2794static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2795{
2796 struct preempt_notifier *notifier;
2797 struct hlist_node *node;
2798
2799 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2800 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2801}
2802
2803static void
2804fire_sched_out_preempt_notifiers(struct task_struct *curr,
2805 struct task_struct *next)
2806{
2807 struct preempt_notifier *notifier;
2808 struct hlist_node *node;
2809
2810 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2811 notifier->ops->sched_out(notifier, next);
2812}
2813
6d6bc0ad 2814#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2815
2816static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2817{
2818}
2819
2820static void
2821fire_sched_out_preempt_notifiers(struct task_struct *curr,
2822 struct task_struct *next)
2823{
2824}
2825
6d6bc0ad 2826#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2827
4866cde0
NP
2828/**
2829 * prepare_task_switch - prepare to switch tasks
2830 * @rq: the runqueue preparing to switch
421cee29 2831 * @prev: the current task that is being switched out
4866cde0
NP
2832 * @next: the task we are going to switch to.
2833 *
2834 * This is called with the rq lock held and interrupts off. It must
2835 * be paired with a subsequent finish_task_switch after the context
2836 * switch.
2837 *
2838 * prepare_task_switch sets up locking and calls architecture specific
2839 * hooks.
2840 */
e107be36
AK
2841static inline void
2842prepare_task_switch(struct rq *rq, struct task_struct *prev,
2843 struct task_struct *next)
4866cde0 2844{
e107be36 2845 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2846 prepare_lock_switch(rq, next);
2847 prepare_arch_switch(next);
2848}
2849
1da177e4
LT
2850/**
2851 * finish_task_switch - clean up after a task-switch
344babaa 2852 * @rq: runqueue associated with task-switch
1da177e4
LT
2853 * @prev: the thread we just switched away from.
2854 *
4866cde0
NP
2855 * finish_task_switch must be called after the context switch, paired
2856 * with a prepare_task_switch call before the context switch.
2857 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2858 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2859 *
2860 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2861 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2862 * with the lock held can cause deadlocks; see schedule() for
2863 * details.)
2864 */
a9957449 2865static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2866 __releases(rq->lock)
2867{
1da177e4 2868 struct mm_struct *mm = rq->prev_mm;
55a101f8 2869 long prev_state;
1da177e4
LT
2870
2871 rq->prev_mm = NULL;
2872
2873 /*
2874 * A task struct has one reference for the use as "current".
c394cc9f 2875 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2876 * schedule one last time. The schedule call will never return, and
2877 * the scheduled task must drop that reference.
c394cc9f 2878 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2879 * still held, otherwise prev could be scheduled on another cpu, die
2880 * there before we look at prev->state, and then the reference would
2881 * be dropped twice.
2882 * Manfred Spraul <manfred@colorfullife.com>
2883 */
55a101f8 2884 prev_state = prev->state;
4866cde0 2885 finish_arch_switch(prev);
8381f65d
JI
2886#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2887 local_irq_disable();
2888#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2889 perf_event_task_sched_in(current);
8381f65d
JI
2890#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2891 local_irq_enable();
2892#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2893 finish_lock_switch(rq, prev);
e8fa1362 2894
e107be36 2895 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2896 if (mm)
2897 mmdrop(mm);
c394cc9f 2898 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2899 /*
2900 * Remove function-return probe instances associated with this
2901 * task and put them back on the free list.
9761eea8 2902 */
c6fd91f0 2903 kprobe_flush_task(prev);
1da177e4 2904 put_task_struct(prev);
c6fd91f0 2905 }
1da177e4
LT
2906}
2907
3f029d3c
GH
2908#ifdef CONFIG_SMP
2909
2910/* assumes rq->lock is held */
2911static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2912{
2913 if (prev->sched_class->pre_schedule)
2914 prev->sched_class->pre_schedule(rq, prev);
2915}
2916
2917/* rq->lock is NOT held, but preemption is disabled */
2918static inline void post_schedule(struct rq *rq)
2919{
2920 if (rq->post_schedule) {
2921 unsigned long flags;
2922
05fa785c 2923 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2924 if (rq->curr->sched_class->post_schedule)
2925 rq->curr->sched_class->post_schedule(rq);
05fa785c 2926 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2927
2928 rq->post_schedule = 0;
2929 }
2930}
2931
2932#else
da19ab51 2933
3f029d3c
GH
2934static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2935{
2936}
2937
2938static inline void post_schedule(struct rq *rq)
2939{
1da177e4
LT
2940}
2941
3f029d3c
GH
2942#endif
2943
1da177e4
LT
2944/**
2945 * schedule_tail - first thing a freshly forked thread must call.
2946 * @prev: the thread we just switched away from.
2947 */
36c8b586 2948asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2949 __releases(rq->lock)
2950{
70b97a7f
IM
2951 struct rq *rq = this_rq();
2952
4866cde0 2953 finish_task_switch(rq, prev);
da19ab51 2954
3f029d3c
GH
2955 /*
2956 * FIXME: do we need to worry about rq being invalidated by the
2957 * task_switch?
2958 */
2959 post_schedule(rq);
70b97a7f 2960
4866cde0
NP
2961#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2962 /* In this case, finish_task_switch does not reenable preemption */
2963 preempt_enable();
2964#endif
1da177e4 2965 if (current->set_child_tid)
b488893a 2966 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2967}
2968
2969/*
2970 * context_switch - switch to the new MM and the new
2971 * thread's register state.
2972 */
dd41f596 2973static inline void
70b97a7f 2974context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2975 struct task_struct *next)
1da177e4 2976{
dd41f596 2977 struct mm_struct *mm, *oldmm;
1da177e4 2978
e107be36 2979 prepare_task_switch(rq, prev, next);
27a9da65 2980 trace_sched_switch(prev, next);
dd41f596
IM
2981 mm = next->mm;
2982 oldmm = prev->active_mm;
9226d125
ZA
2983 /*
2984 * For paravirt, this is coupled with an exit in switch_to to
2985 * combine the page table reload and the switch backend into
2986 * one hypercall.
2987 */
224101ed 2988 arch_start_context_switch(prev);
9226d125 2989
31915ab4 2990 if (!mm) {
1da177e4
LT
2991 next->active_mm = oldmm;
2992 atomic_inc(&oldmm->mm_count);
2993 enter_lazy_tlb(oldmm, next);
2994 } else
2995 switch_mm(oldmm, mm, next);
2996
31915ab4 2997 if (!prev->mm) {
1da177e4 2998 prev->active_mm = NULL;
1da177e4
LT
2999 rq->prev_mm = oldmm;
3000 }
3a5f5e48
IM
3001 /*
3002 * Since the runqueue lock will be released by the next
3003 * task (which is an invalid locking op but in the case
3004 * of the scheduler it's an obvious special-case), so we
3005 * do an early lockdep release here:
3006 */
3007#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3008 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3009#endif
1da177e4
LT
3010
3011 /* Here we just switch the register state and the stack. */
3012 switch_to(prev, next, prev);
3013
dd41f596
IM
3014 barrier();
3015 /*
3016 * this_rq must be evaluated again because prev may have moved
3017 * CPUs since it called schedule(), thus the 'rq' on its stack
3018 * frame will be invalid.
3019 */
3020 finish_task_switch(this_rq(), prev);
1da177e4
LT
3021}
3022
3023/*
3024 * nr_running, nr_uninterruptible and nr_context_switches:
3025 *
3026 * externally visible scheduler statistics: current number of runnable
3027 * threads, current number of uninterruptible-sleeping threads, total
3028 * number of context switches performed since bootup.
3029 */
3030unsigned long nr_running(void)
3031{
3032 unsigned long i, sum = 0;
3033
3034 for_each_online_cpu(i)
3035 sum += cpu_rq(i)->nr_running;
3036
3037 return sum;
f711f609 3038}
1da177e4
LT
3039
3040unsigned long nr_uninterruptible(void)
f711f609 3041{
1da177e4 3042 unsigned long i, sum = 0;
f711f609 3043
0a945022 3044 for_each_possible_cpu(i)
1da177e4 3045 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3046
3047 /*
1da177e4
LT
3048 * Since we read the counters lockless, it might be slightly
3049 * inaccurate. Do not allow it to go below zero though:
f711f609 3050 */
1da177e4
LT
3051 if (unlikely((long)sum < 0))
3052 sum = 0;
f711f609 3053
1da177e4 3054 return sum;
f711f609 3055}
f711f609 3056
1da177e4 3057unsigned long long nr_context_switches(void)
46cb4b7c 3058{
cc94abfc
SR
3059 int i;
3060 unsigned long long sum = 0;
46cb4b7c 3061
0a945022 3062 for_each_possible_cpu(i)
1da177e4 3063 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3064
1da177e4
LT
3065 return sum;
3066}
483b4ee6 3067
1da177e4
LT
3068unsigned long nr_iowait(void)
3069{
3070 unsigned long i, sum = 0;
483b4ee6 3071
0a945022 3072 for_each_possible_cpu(i)
1da177e4 3073 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3074
1da177e4
LT
3075 return sum;
3076}
483b4ee6 3077
8c215bd3 3078unsigned long nr_iowait_cpu(int cpu)
69d25870 3079{
8c215bd3 3080 struct rq *this = cpu_rq(cpu);
69d25870
AV
3081 return atomic_read(&this->nr_iowait);
3082}
46cb4b7c 3083
69d25870
AV
3084unsigned long this_cpu_load(void)
3085{
3086 struct rq *this = this_rq();
3087 return this->cpu_load[0];
3088}
e790fb0b 3089
46cb4b7c 3090
dce48a84
TG
3091/* Variables and functions for calc_load */
3092static atomic_long_t calc_load_tasks;
3093static unsigned long calc_load_update;
3094unsigned long avenrun[3];
3095EXPORT_SYMBOL(avenrun);
46cb4b7c 3096
74f5187a
PZ
3097static long calc_load_fold_active(struct rq *this_rq)
3098{
3099 long nr_active, delta = 0;
3100
3101 nr_active = this_rq->nr_running;
3102 nr_active += (long) this_rq->nr_uninterruptible;
3103
3104 if (nr_active != this_rq->calc_load_active) {
3105 delta = nr_active - this_rq->calc_load_active;
3106 this_rq->calc_load_active = nr_active;
3107 }
3108
3109 return delta;
3110}
3111
0f004f5a
PZ
3112static unsigned long
3113calc_load(unsigned long load, unsigned long exp, unsigned long active)
3114{
3115 load *= exp;
3116 load += active * (FIXED_1 - exp);
3117 load += 1UL << (FSHIFT - 1);
3118 return load >> FSHIFT;
3119}
3120
74f5187a
PZ
3121#ifdef CONFIG_NO_HZ
3122/*
3123 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3124 *
3125 * When making the ILB scale, we should try to pull this in as well.
3126 */
3127static atomic_long_t calc_load_tasks_idle;
3128
3129static void calc_load_account_idle(struct rq *this_rq)
3130{
3131 long delta;
3132
3133 delta = calc_load_fold_active(this_rq);
3134 if (delta)
3135 atomic_long_add(delta, &calc_load_tasks_idle);
3136}
3137
3138static long calc_load_fold_idle(void)
3139{
3140 long delta = 0;
3141
3142 /*
3143 * Its got a race, we don't care...
3144 */
3145 if (atomic_long_read(&calc_load_tasks_idle))
3146 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3147
3148 return delta;
3149}
0f004f5a
PZ
3150
3151/**
3152 * fixed_power_int - compute: x^n, in O(log n) time
3153 *
3154 * @x: base of the power
3155 * @frac_bits: fractional bits of @x
3156 * @n: power to raise @x to.
3157 *
3158 * By exploiting the relation between the definition of the natural power
3159 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3160 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3161 * (where: n_i \elem {0, 1}, the binary vector representing n),
3162 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3163 * of course trivially computable in O(log_2 n), the length of our binary
3164 * vector.
3165 */
3166static unsigned long
3167fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3168{
3169 unsigned long result = 1UL << frac_bits;
3170
3171 if (n) for (;;) {
3172 if (n & 1) {
3173 result *= x;
3174 result += 1UL << (frac_bits - 1);
3175 result >>= frac_bits;
3176 }
3177 n >>= 1;
3178 if (!n)
3179 break;
3180 x *= x;
3181 x += 1UL << (frac_bits - 1);
3182 x >>= frac_bits;
3183 }
3184
3185 return result;
3186}
3187
3188/*
3189 * a1 = a0 * e + a * (1 - e)
3190 *
3191 * a2 = a1 * e + a * (1 - e)
3192 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3193 * = a0 * e^2 + a * (1 - e) * (1 + e)
3194 *
3195 * a3 = a2 * e + a * (1 - e)
3196 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3197 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3198 *
3199 * ...
3200 *
3201 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3202 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3203 * = a0 * e^n + a * (1 - e^n)
3204 *
3205 * [1] application of the geometric series:
3206 *
3207 * n 1 - x^(n+1)
3208 * S_n := \Sum x^i = -------------
3209 * i=0 1 - x
3210 */
3211static unsigned long
3212calc_load_n(unsigned long load, unsigned long exp,
3213 unsigned long active, unsigned int n)
3214{
3215
3216 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3217}
3218
3219/*
3220 * NO_HZ can leave us missing all per-cpu ticks calling
3221 * calc_load_account_active(), but since an idle CPU folds its delta into
3222 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3223 * in the pending idle delta if our idle period crossed a load cycle boundary.
3224 *
3225 * Once we've updated the global active value, we need to apply the exponential
3226 * weights adjusted to the number of cycles missed.
3227 */
3228static void calc_global_nohz(unsigned long ticks)
3229{
3230 long delta, active, n;
3231
3232 if (time_before(jiffies, calc_load_update))
3233 return;
3234
3235 /*
3236 * If we crossed a calc_load_update boundary, make sure to fold
3237 * any pending idle changes, the respective CPUs might have
3238 * missed the tick driven calc_load_account_active() update
3239 * due to NO_HZ.
3240 */
3241 delta = calc_load_fold_idle();
3242 if (delta)
3243 atomic_long_add(delta, &calc_load_tasks);
3244
3245 /*
3246 * If we were idle for multiple load cycles, apply them.
3247 */
3248 if (ticks >= LOAD_FREQ) {
3249 n = ticks / LOAD_FREQ;
3250
3251 active = atomic_long_read(&calc_load_tasks);
3252 active = active > 0 ? active * FIXED_1 : 0;
3253
3254 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3255 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3256 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3257
3258 calc_load_update += n * LOAD_FREQ;
3259 }
3260
3261 /*
3262 * Its possible the remainder of the above division also crosses
3263 * a LOAD_FREQ period, the regular check in calc_global_load()
3264 * which comes after this will take care of that.
3265 *
3266 * Consider us being 11 ticks before a cycle completion, and us
3267 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3268 * age us 4 cycles, and the test in calc_global_load() will
3269 * pick up the final one.
3270 */
3271}
74f5187a
PZ
3272#else
3273static void calc_load_account_idle(struct rq *this_rq)
3274{
3275}
3276
3277static inline long calc_load_fold_idle(void)
3278{
3279 return 0;
3280}
0f004f5a
PZ
3281
3282static void calc_global_nohz(unsigned long ticks)
3283{
3284}
74f5187a
PZ
3285#endif
3286
2d02494f
TG
3287/**
3288 * get_avenrun - get the load average array
3289 * @loads: pointer to dest load array
3290 * @offset: offset to add
3291 * @shift: shift count to shift the result left
3292 *
3293 * These values are estimates at best, so no need for locking.
3294 */
3295void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3296{
3297 loads[0] = (avenrun[0] + offset) << shift;
3298 loads[1] = (avenrun[1] + offset) << shift;
3299 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3300}
46cb4b7c 3301
46cb4b7c 3302/*
dce48a84
TG
3303 * calc_load - update the avenrun load estimates 10 ticks after the
3304 * CPUs have updated calc_load_tasks.
7835b98b 3305 */
0f004f5a 3306void calc_global_load(unsigned long ticks)
7835b98b 3307{
dce48a84 3308 long active;
1da177e4 3309
0f004f5a
PZ
3310 calc_global_nohz(ticks);
3311
3312 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3313 return;
1da177e4 3314
dce48a84
TG
3315 active = atomic_long_read(&calc_load_tasks);
3316 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3317
dce48a84
TG
3318 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3319 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3320 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3321
dce48a84
TG
3322 calc_load_update += LOAD_FREQ;
3323}
1da177e4 3324
dce48a84 3325/*
74f5187a
PZ
3326 * Called from update_cpu_load() to periodically update this CPU's
3327 * active count.
dce48a84
TG
3328 */
3329static void calc_load_account_active(struct rq *this_rq)
3330{
74f5187a 3331 long delta;
08c183f3 3332
74f5187a
PZ
3333 if (time_before(jiffies, this_rq->calc_load_update))
3334 return;
783609c6 3335
74f5187a
PZ
3336 delta = calc_load_fold_active(this_rq);
3337 delta += calc_load_fold_idle();
3338 if (delta)
dce48a84 3339 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3340
3341 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3342}
3343
fdf3e95d
VP
3344/*
3345 * The exact cpuload at various idx values, calculated at every tick would be
3346 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3347 *
3348 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3349 * on nth tick when cpu may be busy, then we have:
3350 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3351 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3352 *
3353 * decay_load_missed() below does efficient calculation of
3354 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3355 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3356 *
3357 * The calculation is approximated on a 128 point scale.
3358 * degrade_zero_ticks is the number of ticks after which load at any
3359 * particular idx is approximated to be zero.
3360 * degrade_factor is a precomputed table, a row for each load idx.
3361 * Each column corresponds to degradation factor for a power of two ticks,
3362 * based on 128 point scale.
3363 * Example:
3364 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3365 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3366 *
3367 * With this power of 2 load factors, we can degrade the load n times
3368 * by looking at 1 bits in n and doing as many mult/shift instead of
3369 * n mult/shifts needed by the exact degradation.
3370 */
3371#define DEGRADE_SHIFT 7
3372static const unsigned char
3373 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3374static const unsigned char
3375 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3376 {0, 0, 0, 0, 0, 0, 0, 0},
3377 {64, 32, 8, 0, 0, 0, 0, 0},
3378 {96, 72, 40, 12, 1, 0, 0},
3379 {112, 98, 75, 43, 15, 1, 0},
3380 {120, 112, 98, 76, 45, 16, 2} };
3381
3382/*
3383 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3384 * would be when CPU is idle and so we just decay the old load without
3385 * adding any new load.
3386 */
3387static unsigned long
3388decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3389{
3390 int j = 0;
3391
3392 if (!missed_updates)
3393 return load;
3394
3395 if (missed_updates >= degrade_zero_ticks[idx])
3396 return 0;
3397
3398 if (idx == 1)
3399 return load >> missed_updates;
3400
3401 while (missed_updates) {
3402 if (missed_updates % 2)
3403 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3404
3405 missed_updates >>= 1;
3406 j++;
3407 }
3408 return load;
3409}
3410
46cb4b7c 3411/*
dd41f596 3412 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3413 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3414 * every tick. We fix it up based on jiffies.
46cb4b7c 3415 */
dd41f596 3416static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3417{
495eca49 3418 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3419 unsigned long curr_jiffies = jiffies;
3420 unsigned long pending_updates;
dd41f596 3421 int i, scale;
46cb4b7c 3422
dd41f596 3423 this_rq->nr_load_updates++;
46cb4b7c 3424
fdf3e95d
VP
3425 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3426 if (curr_jiffies == this_rq->last_load_update_tick)
3427 return;
3428
3429 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3430 this_rq->last_load_update_tick = curr_jiffies;
3431
dd41f596 3432 /* Update our load: */
fdf3e95d
VP
3433 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3434 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3435 unsigned long old_load, new_load;
7d1e6a9b 3436
dd41f596 3437 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3438
dd41f596 3439 old_load = this_rq->cpu_load[i];
fdf3e95d 3440 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3441 new_load = this_load;
a25707f3
IM
3442 /*
3443 * Round up the averaging division if load is increasing. This
3444 * prevents us from getting stuck on 9 if the load is 10, for
3445 * example.
3446 */
3447 if (new_load > old_load)
fdf3e95d
VP
3448 new_load += scale - 1;
3449
3450 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3451 }
da2b71ed
SS
3452
3453 sched_avg_update(this_rq);
fdf3e95d
VP
3454}
3455
3456static void update_cpu_load_active(struct rq *this_rq)
3457{
3458 update_cpu_load(this_rq);
46cb4b7c 3459
74f5187a 3460 calc_load_account_active(this_rq);
46cb4b7c
SS
3461}
3462
dd41f596 3463#ifdef CONFIG_SMP
8a0be9ef 3464
46cb4b7c 3465/*
38022906
PZ
3466 * sched_exec - execve() is a valuable balancing opportunity, because at
3467 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3468 */
38022906 3469void sched_exec(void)
46cb4b7c 3470{
38022906 3471 struct task_struct *p = current;
1da177e4 3472 unsigned long flags;
70b97a7f 3473 struct rq *rq;
0017d735 3474 int dest_cpu;
46cb4b7c 3475
1da177e4 3476 rq = task_rq_lock(p, &flags);
0017d735
PZ
3477 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3478 if (dest_cpu == smp_processor_id())
3479 goto unlock;
38022906 3480
46cb4b7c 3481 /*
38022906 3482 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3483 */
30da688e 3484 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3485 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3486 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3487
1da177e4 3488 task_rq_unlock(rq, &flags);
969c7921 3489 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3490 return;
3491 }
0017d735 3492unlock:
1da177e4 3493 task_rq_unlock(rq, &flags);
1da177e4 3494}
dd41f596 3495
1da177e4
LT
3496#endif
3497
1da177e4
LT
3498DEFINE_PER_CPU(struct kernel_stat, kstat);
3499
3500EXPORT_PER_CPU_SYMBOL(kstat);
3501
3502/*
c5f8d995 3503 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3504 * @p in case that task is currently running.
c5f8d995
HS
3505 *
3506 * Called with task_rq_lock() held on @rq.
1da177e4 3507 */
c5f8d995
HS
3508static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3509{
3510 u64 ns = 0;
3511
3512 if (task_current(rq, p)) {
3513 update_rq_clock(rq);
305e6835 3514 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3515 if ((s64)ns < 0)
3516 ns = 0;
3517 }
3518
3519 return ns;
3520}
3521
bb34d92f 3522unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3523{
1da177e4 3524 unsigned long flags;
41b86e9c 3525 struct rq *rq;
bb34d92f 3526 u64 ns = 0;
48f24c4d 3527
41b86e9c 3528 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3529 ns = do_task_delta_exec(p, rq);
3530 task_rq_unlock(rq, &flags);
1508487e 3531
c5f8d995
HS
3532 return ns;
3533}
f06febc9 3534
c5f8d995
HS
3535/*
3536 * Return accounted runtime for the task.
3537 * In case the task is currently running, return the runtime plus current's
3538 * pending runtime that have not been accounted yet.
3539 */
3540unsigned long long task_sched_runtime(struct task_struct *p)
3541{
3542 unsigned long flags;
3543 struct rq *rq;
3544 u64 ns = 0;
3545
3546 rq = task_rq_lock(p, &flags);
3547 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3548 task_rq_unlock(rq, &flags);
3549
3550 return ns;
3551}
48f24c4d 3552
c5f8d995
HS
3553/*
3554 * Return sum_exec_runtime for the thread group.
3555 * In case the task is currently running, return the sum plus current's
3556 * pending runtime that have not been accounted yet.
3557 *
3558 * Note that the thread group might have other running tasks as well,
3559 * so the return value not includes other pending runtime that other
3560 * running tasks might have.
3561 */
3562unsigned long long thread_group_sched_runtime(struct task_struct *p)
3563{
3564 struct task_cputime totals;
3565 unsigned long flags;
3566 struct rq *rq;
3567 u64 ns;
3568
3569 rq = task_rq_lock(p, &flags);
3570 thread_group_cputime(p, &totals);
3571 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3572 task_rq_unlock(rq, &flags);
48f24c4d 3573
1da177e4
LT
3574 return ns;
3575}
3576
1da177e4
LT
3577/*
3578 * Account user cpu time to a process.
3579 * @p: the process that the cpu time gets accounted to
1da177e4 3580 * @cputime: the cpu time spent in user space since the last update
457533a7 3581 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3582 */
457533a7
MS
3583void account_user_time(struct task_struct *p, cputime_t cputime,
3584 cputime_t cputime_scaled)
1da177e4
LT
3585{
3586 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3587 cputime64_t tmp;
3588
457533a7 3589 /* Add user time to process. */
1da177e4 3590 p->utime = cputime_add(p->utime, cputime);
457533a7 3591 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3592 account_group_user_time(p, cputime);
1da177e4
LT
3593
3594 /* Add user time to cpustat. */
3595 tmp = cputime_to_cputime64(cputime);
3596 if (TASK_NICE(p) > 0)
3597 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3598 else
3599 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3600
3601 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3602 /* Account for user time used */
3603 acct_update_integrals(p);
1da177e4
LT
3604}
3605
94886b84
LV
3606/*
3607 * Account guest cpu time to a process.
3608 * @p: the process that the cpu time gets accounted to
3609 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3610 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3611 */
457533a7
MS
3612static void account_guest_time(struct task_struct *p, cputime_t cputime,
3613 cputime_t cputime_scaled)
94886b84
LV
3614{
3615 cputime64_t tmp;
3616 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3617
3618 tmp = cputime_to_cputime64(cputime);
3619
457533a7 3620 /* Add guest time to process. */
94886b84 3621 p->utime = cputime_add(p->utime, cputime);
457533a7 3622 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3623 account_group_user_time(p, cputime);
94886b84
LV
3624 p->gtime = cputime_add(p->gtime, cputime);
3625
457533a7 3626 /* Add guest time to cpustat. */
ce0e7b28
RO
3627 if (TASK_NICE(p) > 0) {
3628 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3629 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3630 } else {
3631 cpustat->user = cputime64_add(cpustat->user, tmp);
3632 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3633 }
94886b84
LV
3634}
3635
70a89a66
VP
3636/*
3637 * Account system cpu time to a process and desired cpustat field
3638 * @p: the process that the cpu time gets accounted to
3639 * @cputime: the cpu time spent in kernel space since the last update
3640 * @cputime_scaled: cputime scaled by cpu frequency
3641 * @target_cputime64: pointer to cpustat field that has to be updated
3642 */
3643static inline
3644void __account_system_time(struct task_struct *p, cputime_t cputime,
3645 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3646{
3647 cputime64_t tmp = cputime_to_cputime64(cputime);
3648
3649 /* Add system time to process. */
3650 p->stime = cputime_add(p->stime, cputime);
3651 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3652 account_group_system_time(p, cputime);
3653
3654 /* Add system time to cpustat. */
3655 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3656 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3657
3658 /* Account for system time used */
3659 acct_update_integrals(p);
3660}
3661
1da177e4
LT
3662/*
3663 * Account system cpu time to a process.
3664 * @p: the process that the cpu time gets accounted to
3665 * @hardirq_offset: the offset to subtract from hardirq_count()
3666 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3667 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3668 */
3669void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3670 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3671{
3672 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3673 cputime64_t *target_cputime64;
1da177e4 3674
983ed7a6 3675 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3676 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3677 return;
3678 }
94886b84 3679
1da177e4 3680 if (hardirq_count() - hardirq_offset)
70a89a66 3681 target_cputime64 = &cpustat->irq;
75e1056f 3682 else if (in_serving_softirq())
70a89a66 3683 target_cputime64 = &cpustat->softirq;
1da177e4 3684 else
70a89a66 3685 target_cputime64 = &cpustat->system;
79741dd3 3686
70a89a66 3687 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3688}
3689
7e949870 3690#ifndef CONFIG_VIRT_CPU_ACCOUNTING
abb74cef
VP
3691#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3692/*
3693 * Account a tick to a process and cpustat
3694 * @p: the process that the cpu time gets accounted to
3695 * @user_tick: is the tick from userspace
3696 * @rq: the pointer to rq
3697 *
3698 * Tick demultiplexing follows the order
3699 * - pending hardirq update
3700 * - pending softirq update
3701 * - user_time
3702 * - idle_time
3703 * - system time
3704 * - check for guest_time
3705 * - else account as system_time
3706 *
3707 * Check for hardirq is done both for system and user time as there is
3708 * no timer going off while we are on hardirq and hence we may never get an
3709 * opportunity to update it solely in system time.
3710 * p->stime and friends are only updated on system time and not on irq
3711 * softirq as those do not count in task exec_runtime any more.
3712 */
3713static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3714 struct rq *rq)
3715{
3716 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3717 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3718 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3719
3720 if (irqtime_account_hi_update()) {
3721 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3722 } else if (irqtime_account_si_update()) {
3723 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3724 } else if (this_cpu_ksoftirqd() == p) {
3725 /*
3726 * ksoftirqd time do not get accounted in cpu_softirq_time.
3727 * So, we have to handle it separately here.
3728 * Also, p->stime needs to be updated for ksoftirqd.
3729 */
3730 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3731 &cpustat->softirq);
abb74cef
VP
3732 } else if (user_tick) {
3733 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3734 } else if (p == rq->idle) {
3735 account_idle_time(cputime_one_jiffy);
3736 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3737 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3738 } else {
3739 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3740 &cpustat->system);
3741 }
3742}
3743
3744static void irqtime_account_idle_ticks(int ticks)
3745{
3746 int i;
3747 struct rq *rq = this_rq();
3748
3749 for (i = 0; i < ticks; i++)
3750 irqtime_account_process_tick(current, 0, rq);
3751}
3752#else
3753static void irqtime_account_idle_ticks(int ticks) {}
3754static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3755 struct rq *rq) {}
3756#endif
7e949870 3757#endif /* !CONFIG_VIRT_CPU_ACCOUNTING */
abb74cef 3758
c66f08be 3759/*
1da177e4 3760 * Account for involuntary wait time.
1da177e4 3761 * @steal: the cpu time spent in involuntary wait
c66f08be 3762 */
79741dd3 3763void account_steal_time(cputime_t cputime)
c66f08be 3764{
79741dd3
MS
3765 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3766 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3767
3768 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3769}
3770
1da177e4 3771/*
79741dd3
MS
3772 * Account for idle time.
3773 * @cputime: the cpu time spent in idle wait
1da177e4 3774 */
79741dd3 3775void account_idle_time(cputime_t cputime)
1da177e4
LT
3776{
3777 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3778 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3779 struct rq *rq = this_rq();
1da177e4 3780
79741dd3
MS
3781 if (atomic_read(&rq->nr_iowait) > 0)
3782 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3783 else
3784 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3785}
3786
79741dd3
MS
3787#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3788
3789/*
3790 * Account a single tick of cpu time.
3791 * @p: the process that the cpu time gets accounted to
3792 * @user_tick: indicates if the tick is a user or a system tick
3793 */
3794void account_process_tick(struct task_struct *p, int user_tick)
3795{
a42548a1 3796 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3797 struct rq *rq = this_rq();
3798
abb74cef
VP
3799 if (sched_clock_irqtime) {
3800 irqtime_account_process_tick(p, user_tick, rq);
3801 return;
3802 }
3803
79741dd3 3804 if (user_tick)
a42548a1 3805 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3806 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3807 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3808 one_jiffy_scaled);
3809 else
a42548a1 3810 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3811}
3812
3813/*
3814 * Account multiple ticks of steal time.
3815 * @p: the process from which the cpu time has been stolen
3816 * @ticks: number of stolen ticks
3817 */
3818void account_steal_ticks(unsigned long ticks)
3819{
3820 account_steal_time(jiffies_to_cputime(ticks));
3821}
3822
3823/*
3824 * Account multiple ticks of idle time.
3825 * @ticks: number of stolen ticks
3826 */
3827void account_idle_ticks(unsigned long ticks)
3828{
abb74cef
VP
3829
3830 if (sched_clock_irqtime) {
3831 irqtime_account_idle_ticks(ticks);
3832 return;
3833 }
3834
79741dd3 3835 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3836}
3837
79741dd3
MS
3838#endif
3839
49048622
BS
3840/*
3841 * Use precise platform statistics if available:
3842 */
3843#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3844void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3845{
d99ca3b9
HS
3846 *ut = p->utime;
3847 *st = p->stime;
49048622
BS
3848}
3849
0cf55e1e 3850void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3851{
0cf55e1e
HS
3852 struct task_cputime cputime;
3853
3854 thread_group_cputime(p, &cputime);
3855
3856 *ut = cputime.utime;
3857 *st = cputime.stime;
49048622
BS
3858}
3859#else
761b1d26
HS
3860
3861#ifndef nsecs_to_cputime
b7b20df9 3862# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3863#endif
3864
d180c5bc 3865void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3866{
d99ca3b9 3867 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3868
3869 /*
3870 * Use CFS's precise accounting:
3871 */
d180c5bc 3872 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3873
3874 if (total) {
e75e863d 3875 u64 temp = rtime;
d180c5bc 3876
e75e863d 3877 temp *= utime;
49048622 3878 do_div(temp, total);
d180c5bc
HS
3879 utime = (cputime_t)temp;
3880 } else
3881 utime = rtime;
49048622 3882
d180c5bc
HS
3883 /*
3884 * Compare with previous values, to keep monotonicity:
3885 */
761b1d26 3886 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3887 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3888
d99ca3b9
HS
3889 *ut = p->prev_utime;
3890 *st = p->prev_stime;
49048622
BS
3891}
3892
0cf55e1e
HS
3893/*
3894 * Must be called with siglock held.
3895 */
3896void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3897{
0cf55e1e
HS
3898 struct signal_struct *sig = p->signal;
3899 struct task_cputime cputime;
3900 cputime_t rtime, utime, total;
49048622 3901
0cf55e1e 3902 thread_group_cputime(p, &cputime);
49048622 3903
0cf55e1e
HS
3904 total = cputime_add(cputime.utime, cputime.stime);
3905 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3906
0cf55e1e 3907 if (total) {
e75e863d 3908 u64 temp = rtime;
49048622 3909
e75e863d 3910 temp *= cputime.utime;
0cf55e1e
HS
3911 do_div(temp, total);
3912 utime = (cputime_t)temp;
3913 } else
3914 utime = rtime;
3915
3916 sig->prev_utime = max(sig->prev_utime, utime);
3917 sig->prev_stime = max(sig->prev_stime,
3918 cputime_sub(rtime, sig->prev_utime));
3919
3920 *ut = sig->prev_utime;
3921 *st = sig->prev_stime;
49048622 3922}
49048622 3923#endif
49048622 3924
7835b98b
CL
3925/*
3926 * This function gets called by the timer code, with HZ frequency.
3927 * We call it with interrupts disabled.
3928 *
3929 * It also gets called by the fork code, when changing the parent's
3930 * timeslices.
3931 */
3932void scheduler_tick(void)
3933{
7835b98b
CL
3934 int cpu = smp_processor_id();
3935 struct rq *rq = cpu_rq(cpu);
dd41f596 3936 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3937
3938 sched_clock_tick();
dd41f596 3939
05fa785c 3940 raw_spin_lock(&rq->lock);
3e51f33f 3941 update_rq_clock(rq);
fdf3e95d 3942 update_cpu_load_active(rq);
fa85ae24 3943 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3944 raw_spin_unlock(&rq->lock);
7835b98b 3945
e9d2b064 3946 perf_event_task_tick();
e220d2dc 3947
e418e1c2 3948#ifdef CONFIG_SMP
dd41f596
IM
3949 rq->idle_at_tick = idle_cpu(cpu);
3950 trigger_load_balance(rq, cpu);
e418e1c2 3951#endif
1da177e4
LT
3952}
3953
132380a0 3954notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3955{
3956 if (in_lock_functions(addr)) {
3957 addr = CALLER_ADDR2;
3958 if (in_lock_functions(addr))
3959 addr = CALLER_ADDR3;
3960 }
3961 return addr;
3962}
1da177e4 3963
7e49fcce
SR
3964#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3965 defined(CONFIG_PREEMPT_TRACER))
3966
43627582 3967void __kprobes add_preempt_count(int val)
1da177e4 3968{
6cd8a4bb 3969#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3970 /*
3971 * Underflow?
3972 */
9a11b49a
IM
3973 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3974 return;
6cd8a4bb 3975#endif
1da177e4 3976 preempt_count() += val;
6cd8a4bb 3977#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3978 /*
3979 * Spinlock count overflowing soon?
3980 */
33859f7f
MOS
3981 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3982 PREEMPT_MASK - 10);
6cd8a4bb
SR
3983#endif
3984 if (preempt_count() == val)
3985 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3986}
3987EXPORT_SYMBOL(add_preempt_count);
3988
43627582 3989void __kprobes sub_preempt_count(int val)
1da177e4 3990{
6cd8a4bb 3991#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3992 /*
3993 * Underflow?
3994 */
01e3eb82 3995 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3996 return;
1da177e4
LT
3997 /*
3998 * Is the spinlock portion underflowing?
3999 */
9a11b49a
IM
4000 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4001 !(preempt_count() & PREEMPT_MASK)))
4002 return;
6cd8a4bb 4003#endif
9a11b49a 4004
6cd8a4bb
SR
4005 if (preempt_count() == val)
4006 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4007 preempt_count() -= val;
4008}
4009EXPORT_SYMBOL(sub_preempt_count);
4010
4011#endif
4012
4013/*
dd41f596 4014 * Print scheduling while atomic bug:
1da177e4 4015 */
dd41f596 4016static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4017{
838225b4
SS
4018 struct pt_regs *regs = get_irq_regs();
4019
3df0fc5b
PZ
4020 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4021 prev->comm, prev->pid, preempt_count());
838225b4 4022
dd41f596 4023 debug_show_held_locks(prev);
e21f5b15 4024 print_modules();
dd41f596
IM
4025 if (irqs_disabled())
4026 print_irqtrace_events(prev);
838225b4
SS
4027
4028 if (regs)
4029 show_regs(regs);
4030 else
4031 dump_stack();
dd41f596 4032}
1da177e4 4033
dd41f596
IM
4034/*
4035 * Various schedule()-time debugging checks and statistics:
4036 */
4037static inline void schedule_debug(struct task_struct *prev)
4038{
1da177e4 4039 /*
41a2d6cf 4040 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4041 * schedule() atomically, we ignore that path for now.
4042 * Otherwise, whine if we are scheduling when we should not be.
4043 */
3f33a7ce 4044 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4045 __schedule_bug(prev);
4046
1da177e4
LT
4047 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4048
2d72376b 4049 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4050#ifdef CONFIG_SCHEDSTATS
4051 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4052 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4053 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4054 }
4055#endif
dd41f596
IM
4056}
4057
6cecd084 4058static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4059{
a64692a3
MG
4060 if (prev->se.on_rq)
4061 update_rq_clock(rq);
6cecd084 4062 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4063}
4064
dd41f596
IM
4065/*
4066 * Pick up the highest-prio task:
4067 */
4068static inline struct task_struct *
b67802ea 4069pick_next_task(struct rq *rq)
dd41f596 4070{
5522d5d5 4071 const struct sched_class *class;
dd41f596 4072 struct task_struct *p;
1da177e4
LT
4073
4074 /*
dd41f596
IM
4075 * Optimization: we know that if all tasks are in
4076 * the fair class we can call that function directly:
1da177e4 4077 */
dd41f596 4078 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4079 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4080 if (likely(p))
4081 return p;
1da177e4
LT
4082 }
4083
34f971f6 4084 for_each_class(class) {
fb8d4724 4085 p = class->pick_next_task(rq);
dd41f596
IM
4086 if (p)
4087 return p;
dd41f596 4088 }
34f971f6
PZ
4089
4090 BUG(); /* the idle class will always have a runnable task */
dd41f596 4091}
1da177e4 4092
dd41f596
IM
4093/*
4094 * schedule() is the main scheduler function.
4095 */
ff743345 4096asmlinkage void __sched schedule(void)
dd41f596
IM
4097{
4098 struct task_struct *prev, *next;
67ca7bde 4099 unsigned long *switch_count;
dd41f596 4100 struct rq *rq;
31656519 4101 int cpu;
dd41f596 4102
ff743345
PZ
4103need_resched:
4104 preempt_disable();
dd41f596
IM
4105 cpu = smp_processor_id();
4106 rq = cpu_rq(cpu);
25502a6c 4107 rcu_note_context_switch(cpu);
dd41f596 4108 prev = rq->curr;
dd41f596
IM
4109
4110 release_kernel_lock(prev);
4111need_resched_nonpreemptible:
4112
4113 schedule_debug(prev);
1da177e4 4114
31656519 4115 if (sched_feat(HRTICK))
f333fdc9 4116 hrtick_clear(rq);
8f4d37ec 4117
05fa785c 4118 raw_spin_lock_irq(&rq->lock);
1da177e4 4119
246d86b5 4120 switch_count = &prev->nivcsw;
1da177e4 4121 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4122 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4123 prev->state = TASK_RUNNING;
21aa9af0
TH
4124 } else {
4125 /*
4126 * If a worker is going to sleep, notify and
4127 * ask workqueue whether it wants to wake up a
4128 * task to maintain concurrency. If so, wake
4129 * up the task.
4130 */
4131 if (prev->flags & PF_WQ_WORKER) {
4132 struct task_struct *to_wakeup;
4133
4134 to_wakeup = wq_worker_sleeping(prev, cpu);
4135 if (to_wakeup)
4136 try_to_wake_up_local(to_wakeup);
4137 }
371fd7e7 4138 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4139 }
dd41f596 4140 switch_count = &prev->nvcsw;
1da177e4
LT
4141 }
4142
3f029d3c 4143 pre_schedule(rq, prev);
f65eda4f 4144
dd41f596 4145 if (unlikely(!rq->nr_running))
1da177e4 4146 idle_balance(cpu, rq);
1da177e4 4147
df1c99d4 4148 put_prev_task(rq, prev);
b67802ea 4149 next = pick_next_task(rq);
f26f9aff
MG
4150 clear_tsk_need_resched(prev);
4151 rq->skip_clock_update = 0;
1da177e4 4152
1da177e4 4153 if (likely(prev != next)) {
673a90a1 4154 sched_info_switch(prev, next);
49f47433 4155 perf_event_task_sched_out(prev, next);
673a90a1 4156
1da177e4
LT
4157 rq->nr_switches++;
4158 rq->curr = next;
4159 ++*switch_count;
4160
dd41f596 4161 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4162 /*
246d86b5
ON
4163 * The context switch have flipped the stack from under us
4164 * and restored the local variables which were saved when
4165 * this task called schedule() in the past. prev == current
4166 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4167 */
4168 cpu = smp_processor_id();
4169 rq = cpu_rq(cpu);
1da177e4 4170 } else
05fa785c 4171 raw_spin_unlock_irq(&rq->lock);
1da177e4 4172
3f029d3c 4173 post_schedule(rq);
1da177e4 4174
246d86b5 4175 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4176 goto need_resched_nonpreemptible;
8f4d37ec 4177
1da177e4 4178 preempt_enable_no_resched();
ff743345 4179 if (need_resched())
1da177e4
LT
4180 goto need_resched;
4181}
1da177e4
LT
4182EXPORT_SYMBOL(schedule);
4183
c08f7829 4184#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4185/*
4186 * Look out! "owner" is an entirely speculative pointer
4187 * access and not reliable.
4188 */
4189int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4190{
4191 unsigned int cpu;
4192 struct rq *rq;
4193
4194 if (!sched_feat(OWNER_SPIN))
4195 return 0;
4196
4197#ifdef CONFIG_DEBUG_PAGEALLOC
4198 /*
4199 * Need to access the cpu field knowing that
4200 * DEBUG_PAGEALLOC could have unmapped it if
4201 * the mutex owner just released it and exited.
4202 */
4203 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4204 return 0;
0d66bf6d
PZ
4205#else
4206 cpu = owner->cpu;
4207#endif
4208
4209 /*
4210 * Even if the access succeeded (likely case),
4211 * the cpu field may no longer be valid.
4212 */
4213 if (cpu >= nr_cpumask_bits)
4b402210 4214 return 0;
0d66bf6d
PZ
4215
4216 /*
4217 * We need to validate that we can do a
4218 * get_cpu() and that we have the percpu area.
4219 */
4220 if (!cpu_online(cpu))
4b402210 4221 return 0;
0d66bf6d
PZ
4222
4223 rq = cpu_rq(cpu);
4224
4225 for (;;) {
4226 /*
4227 * Owner changed, break to re-assess state.
4228 */
9d0f4dcc
TC
4229 if (lock->owner != owner) {
4230 /*
4231 * If the lock has switched to a different owner,
4232 * we likely have heavy contention. Return 0 to quit
4233 * optimistic spinning and not contend further:
4234 */
4235 if (lock->owner)
4236 return 0;
0d66bf6d 4237 break;
9d0f4dcc 4238 }
0d66bf6d
PZ
4239
4240 /*
4241 * Is that owner really running on that cpu?
4242 */
4243 if (task_thread_info(rq->curr) != owner || need_resched())
4244 return 0;
4245
335d7afb 4246 arch_mutex_cpu_relax();
0d66bf6d 4247 }
4b402210 4248
0d66bf6d
PZ
4249 return 1;
4250}
4251#endif
4252
1da177e4
LT
4253#ifdef CONFIG_PREEMPT
4254/*
2ed6e34f 4255 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4256 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4257 * occur there and call schedule directly.
4258 */
d1f74e20 4259asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4260{
4261 struct thread_info *ti = current_thread_info();
6478d880 4262
1da177e4
LT
4263 /*
4264 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4265 * we do not want to preempt the current task. Just return..
1da177e4 4266 */
beed33a8 4267 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4268 return;
4269
3a5c359a 4270 do {
d1f74e20 4271 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4272 schedule();
d1f74e20 4273 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4274
3a5c359a
AK
4275 /*
4276 * Check again in case we missed a preemption opportunity
4277 * between schedule and now.
4278 */
4279 barrier();
5ed0cec0 4280 } while (need_resched());
1da177e4 4281}
1da177e4
LT
4282EXPORT_SYMBOL(preempt_schedule);
4283
4284/*
2ed6e34f 4285 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4286 * off of irq context.
4287 * Note, that this is called and return with irqs disabled. This will
4288 * protect us against recursive calling from irq.
4289 */
4290asmlinkage void __sched preempt_schedule_irq(void)
4291{
4292 struct thread_info *ti = current_thread_info();
6478d880 4293
2ed6e34f 4294 /* Catch callers which need to be fixed */
1da177e4
LT
4295 BUG_ON(ti->preempt_count || !irqs_disabled());
4296
3a5c359a
AK
4297 do {
4298 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4299 local_irq_enable();
4300 schedule();
4301 local_irq_disable();
3a5c359a 4302 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4303
3a5c359a
AK
4304 /*
4305 * Check again in case we missed a preemption opportunity
4306 * between schedule and now.
4307 */
4308 barrier();
5ed0cec0 4309 } while (need_resched());
1da177e4
LT
4310}
4311
4312#endif /* CONFIG_PREEMPT */
4313
63859d4f 4314int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4315 void *key)
1da177e4 4316{
63859d4f 4317 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4318}
1da177e4
LT
4319EXPORT_SYMBOL(default_wake_function);
4320
4321/*
41a2d6cf
IM
4322 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4323 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4324 * number) then we wake all the non-exclusive tasks and one exclusive task.
4325 *
4326 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4327 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4328 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4329 */
78ddb08f 4330static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4331 int nr_exclusive, int wake_flags, void *key)
1da177e4 4332{
2e45874c 4333 wait_queue_t *curr, *next;
1da177e4 4334
2e45874c 4335 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4336 unsigned flags = curr->flags;
4337
63859d4f 4338 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4339 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4340 break;
4341 }
4342}
4343
4344/**
4345 * __wake_up - wake up threads blocked on a waitqueue.
4346 * @q: the waitqueue
4347 * @mode: which threads
4348 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4349 * @key: is directly passed to the wakeup function
50fa610a
DH
4350 *
4351 * It may be assumed that this function implies a write memory barrier before
4352 * changing the task state if and only if any tasks are woken up.
1da177e4 4353 */
7ad5b3a5 4354void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4355 int nr_exclusive, void *key)
1da177e4
LT
4356{
4357 unsigned long flags;
4358
4359 spin_lock_irqsave(&q->lock, flags);
4360 __wake_up_common(q, mode, nr_exclusive, 0, key);
4361 spin_unlock_irqrestore(&q->lock, flags);
4362}
1da177e4
LT
4363EXPORT_SYMBOL(__wake_up);
4364
4365/*
4366 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4367 */
7ad5b3a5 4368void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4369{
4370 __wake_up_common(q, mode, 1, 0, NULL);
4371}
22c43c81 4372EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4373
4ede816a
DL
4374void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4375{
4376 __wake_up_common(q, mode, 1, 0, key);
4377}
4378
1da177e4 4379/**
4ede816a 4380 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4381 * @q: the waitqueue
4382 * @mode: which threads
4383 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4384 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4385 *
4386 * The sync wakeup differs that the waker knows that it will schedule
4387 * away soon, so while the target thread will be woken up, it will not
4388 * be migrated to another CPU - ie. the two threads are 'synchronized'
4389 * with each other. This can prevent needless bouncing between CPUs.
4390 *
4391 * On UP it can prevent extra preemption.
50fa610a
DH
4392 *
4393 * It may be assumed that this function implies a write memory barrier before
4394 * changing the task state if and only if any tasks are woken up.
1da177e4 4395 */
4ede816a
DL
4396void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4397 int nr_exclusive, void *key)
1da177e4
LT
4398{
4399 unsigned long flags;
7d478721 4400 int wake_flags = WF_SYNC;
1da177e4
LT
4401
4402 if (unlikely(!q))
4403 return;
4404
4405 if (unlikely(!nr_exclusive))
7d478721 4406 wake_flags = 0;
1da177e4
LT
4407
4408 spin_lock_irqsave(&q->lock, flags);
7d478721 4409 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4410 spin_unlock_irqrestore(&q->lock, flags);
4411}
4ede816a
DL
4412EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4413
4414/*
4415 * __wake_up_sync - see __wake_up_sync_key()
4416 */
4417void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4418{
4419 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4420}
1da177e4
LT
4421EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4422
65eb3dc6
KD
4423/**
4424 * complete: - signals a single thread waiting on this completion
4425 * @x: holds the state of this particular completion
4426 *
4427 * This will wake up a single thread waiting on this completion. Threads will be
4428 * awakened in the same order in which they were queued.
4429 *
4430 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4431 *
4432 * It may be assumed that this function implies a write memory barrier before
4433 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4434 */
b15136e9 4435void complete(struct completion *x)
1da177e4
LT
4436{
4437 unsigned long flags;
4438
4439 spin_lock_irqsave(&x->wait.lock, flags);
4440 x->done++;
d9514f6c 4441 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4442 spin_unlock_irqrestore(&x->wait.lock, flags);
4443}
4444EXPORT_SYMBOL(complete);
4445
65eb3dc6
KD
4446/**
4447 * complete_all: - signals all threads waiting on this completion
4448 * @x: holds the state of this particular completion
4449 *
4450 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4451 *
4452 * It may be assumed that this function implies a write memory barrier before
4453 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4454 */
b15136e9 4455void complete_all(struct completion *x)
1da177e4
LT
4456{
4457 unsigned long flags;
4458
4459 spin_lock_irqsave(&x->wait.lock, flags);
4460 x->done += UINT_MAX/2;
d9514f6c 4461 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4462 spin_unlock_irqrestore(&x->wait.lock, flags);
4463}
4464EXPORT_SYMBOL(complete_all);
4465
8cbbe86d
AK
4466static inline long __sched
4467do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4468{
1da177e4
LT
4469 if (!x->done) {
4470 DECLARE_WAITQUEUE(wait, current);
4471
a93d2f17 4472 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4473 do {
94d3d824 4474 if (signal_pending_state(state, current)) {
ea71a546
ON
4475 timeout = -ERESTARTSYS;
4476 break;
8cbbe86d
AK
4477 }
4478 __set_current_state(state);
1da177e4
LT
4479 spin_unlock_irq(&x->wait.lock);
4480 timeout = schedule_timeout(timeout);
4481 spin_lock_irq(&x->wait.lock);
ea71a546 4482 } while (!x->done && timeout);
1da177e4 4483 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4484 if (!x->done)
4485 return timeout;
1da177e4
LT
4486 }
4487 x->done--;
ea71a546 4488 return timeout ?: 1;
1da177e4 4489}
1da177e4 4490
8cbbe86d
AK
4491static long __sched
4492wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4493{
1da177e4
LT
4494 might_sleep();
4495
4496 spin_lock_irq(&x->wait.lock);
8cbbe86d 4497 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4498 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4499 return timeout;
4500}
1da177e4 4501
65eb3dc6
KD
4502/**
4503 * wait_for_completion: - waits for completion of a task
4504 * @x: holds the state of this particular completion
4505 *
4506 * This waits to be signaled for completion of a specific task. It is NOT
4507 * interruptible and there is no timeout.
4508 *
4509 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4510 * and interrupt capability. Also see complete().
4511 */
b15136e9 4512void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4513{
4514 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4515}
8cbbe86d 4516EXPORT_SYMBOL(wait_for_completion);
1da177e4 4517
65eb3dc6
KD
4518/**
4519 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4520 * @x: holds the state of this particular completion
4521 * @timeout: timeout value in jiffies
4522 *
4523 * This waits for either a completion of a specific task to be signaled or for a
4524 * specified timeout to expire. The timeout is in jiffies. It is not
4525 * interruptible.
4526 */
b15136e9 4527unsigned long __sched
8cbbe86d 4528wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4529{
8cbbe86d 4530 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4531}
8cbbe86d 4532EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4533
65eb3dc6
KD
4534/**
4535 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4536 * @x: holds the state of this particular completion
4537 *
4538 * This waits for completion of a specific task to be signaled. It is
4539 * interruptible.
4540 */
8cbbe86d 4541int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4542{
51e97990
AK
4543 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4544 if (t == -ERESTARTSYS)
4545 return t;
4546 return 0;
0fec171c 4547}
8cbbe86d 4548EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4549
65eb3dc6
KD
4550/**
4551 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4552 * @x: holds the state of this particular completion
4553 * @timeout: timeout value in jiffies
4554 *
4555 * This waits for either a completion of a specific task to be signaled or for a
4556 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4557 */
6bf41237 4558long __sched
8cbbe86d
AK
4559wait_for_completion_interruptible_timeout(struct completion *x,
4560 unsigned long timeout)
0fec171c 4561{
8cbbe86d 4562 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4563}
8cbbe86d 4564EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4565
65eb3dc6
KD
4566/**
4567 * wait_for_completion_killable: - waits for completion of a task (killable)
4568 * @x: holds the state of this particular completion
4569 *
4570 * This waits to be signaled for completion of a specific task. It can be
4571 * interrupted by a kill signal.
4572 */
009e577e
MW
4573int __sched wait_for_completion_killable(struct completion *x)
4574{
4575 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4576 if (t == -ERESTARTSYS)
4577 return t;
4578 return 0;
4579}
4580EXPORT_SYMBOL(wait_for_completion_killable);
4581
0aa12fb4
SW
4582/**
4583 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4584 * @x: holds the state of this particular completion
4585 * @timeout: timeout value in jiffies
4586 *
4587 * This waits for either a completion of a specific task to be
4588 * signaled or for a specified timeout to expire. It can be
4589 * interrupted by a kill signal. The timeout is in jiffies.
4590 */
6bf41237 4591long __sched
0aa12fb4
SW
4592wait_for_completion_killable_timeout(struct completion *x,
4593 unsigned long timeout)
4594{
4595 return wait_for_common(x, timeout, TASK_KILLABLE);
4596}
4597EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4598
be4de352
DC
4599/**
4600 * try_wait_for_completion - try to decrement a completion without blocking
4601 * @x: completion structure
4602 *
4603 * Returns: 0 if a decrement cannot be done without blocking
4604 * 1 if a decrement succeeded.
4605 *
4606 * If a completion is being used as a counting completion,
4607 * attempt to decrement the counter without blocking. This
4608 * enables us to avoid waiting if the resource the completion
4609 * is protecting is not available.
4610 */
4611bool try_wait_for_completion(struct completion *x)
4612{
7539a3b3 4613 unsigned long flags;
be4de352
DC
4614 int ret = 1;
4615
7539a3b3 4616 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4617 if (!x->done)
4618 ret = 0;
4619 else
4620 x->done--;
7539a3b3 4621 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4622 return ret;
4623}
4624EXPORT_SYMBOL(try_wait_for_completion);
4625
4626/**
4627 * completion_done - Test to see if a completion has any waiters
4628 * @x: completion structure
4629 *
4630 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4631 * 1 if there are no waiters.
4632 *
4633 */
4634bool completion_done(struct completion *x)
4635{
7539a3b3 4636 unsigned long flags;
be4de352
DC
4637 int ret = 1;
4638
7539a3b3 4639 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4640 if (!x->done)
4641 ret = 0;
7539a3b3 4642 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4643 return ret;
4644}
4645EXPORT_SYMBOL(completion_done);
4646
8cbbe86d
AK
4647static long __sched
4648sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4649{
0fec171c
IM
4650 unsigned long flags;
4651 wait_queue_t wait;
4652
4653 init_waitqueue_entry(&wait, current);
1da177e4 4654
8cbbe86d 4655 __set_current_state(state);
1da177e4 4656
8cbbe86d
AK
4657 spin_lock_irqsave(&q->lock, flags);
4658 __add_wait_queue(q, &wait);
4659 spin_unlock(&q->lock);
4660 timeout = schedule_timeout(timeout);
4661 spin_lock_irq(&q->lock);
4662 __remove_wait_queue(q, &wait);
4663 spin_unlock_irqrestore(&q->lock, flags);
4664
4665 return timeout;
4666}
4667
4668void __sched interruptible_sleep_on(wait_queue_head_t *q)
4669{
4670 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4671}
1da177e4
LT
4672EXPORT_SYMBOL(interruptible_sleep_on);
4673
0fec171c 4674long __sched
95cdf3b7 4675interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4676{
8cbbe86d 4677 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4678}
1da177e4
LT
4679EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4680
0fec171c 4681void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4682{
8cbbe86d 4683 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4684}
1da177e4
LT
4685EXPORT_SYMBOL(sleep_on);
4686
0fec171c 4687long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4688{
8cbbe86d 4689 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4690}
1da177e4
LT
4691EXPORT_SYMBOL(sleep_on_timeout);
4692
b29739f9
IM
4693#ifdef CONFIG_RT_MUTEXES
4694
4695/*
4696 * rt_mutex_setprio - set the current priority of a task
4697 * @p: task
4698 * @prio: prio value (kernel-internal form)
4699 *
4700 * This function changes the 'effective' priority of a task. It does
4701 * not touch ->normal_prio like __setscheduler().
4702 *
4703 * Used by the rt_mutex code to implement priority inheritance logic.
4704 */
36c8b586 4705void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4706{
4707 unsigned long flags;
83b699ed 4708 int oldprio, on_rq, running;
70b97a7f 4709 struct rq *rq;
83ab0aa0 4710 const struct sched_class *prev_class;
b29739f9
IM
4711
4712 BUG_ON(prio < 0 || prio > MAX_PRIO);
4713
4714 rq = task_rq_lock(p, &flags);
4715
a8027073 4716 trace_sched_pi_setprio(p, prio);
d5f9f942 4717 oldprio = p->prio;
83ab0aa0 4718 prev_class = p->sched_class;
dd41f596 4719 on_rq = p->se.on_rq;
051a1d1a 4720 running = task_current(rq, p);
0e1f3483 4721 if (on_rq)
69be72c1 4722 dequeue_task(rq, p, 0);
0e1f3483
HS
4723 if (running)
4724 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4725
4726 if (rt_prio(prio))
4727 p->sched_class = &rt_sched_class;
4728 else
4729 p->sched_class = &fair_sched_class;
4730
b29739f9
IM
4731 p->prio = prio;
4732
0e1f3483
HS
4733 if (running)
4734 p->sched_class->set_curr_task(rq);
da7a735e 4735 if (on_rq)
371fd7e7 4736 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4737
da7a735e 4738 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4739 task_rq_unlock(rq, &flags);
4740}
4741
4742#endif
4743
36c8b586 4744void set_user_nice(struct task_struct *p, long nice)
1da177e4 4745{
dd41f596 4746 int old_prio, delta, on_rq;
1da177e4 4747 unsigned long flags;
70b97a7f 4748 struct rq *rq;
1da177e4
LT
4749
4750 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4751 return;
4752 /*
4753 * We have to be careful, if called from sys_setpriority(),
4754 * the task might be in the middle of scheduling on another CPU.
4755 */
4756 rq = task_rq_lock(p, &flags);
4757 /*
4758 * The RT priorities are set via sched_setscheduler(), but we still
4759 * allow the 'normal' nice value to be set - but as expected
4760 * it wont have any effect on scheduling until the task is
dd41f596 4761 * SCHED_FIFO/SCHED_RR:
1da177e4 4762 */
e05606d3 4763 if (task_has_rt_policy(p)) {
1da177e4
LT
4764 p->static_prio = NICE_TO_PRIO(nice);
4765 goto out_unlock;
4766 }
dd41f596 4767 on_rq = p->se.on_rq;
c09595f6 4768 if (on_rq)
69be72c1 4769 dequeue_task(rq, p, 0);
1da177e4 4770
1da177e4 4771 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4772 set_load_weight(p);
b29739f9
IM
4773 old_prio = p->prio;
4774 p->prio = effective_prio(p);
4775 delta = p->prio - old_prio;
1da177e4 4776
dd41f596 4777 if (on_rq) {
371fd7e7 4778 enqueue_task(rq, p, 0);
1da177e4 4779 /*
d5f9f942
AM
4780 * If the task increased its priority or is running and
4781 * lowered its priority, then reschedule its CPU:
1da177e4 4782 */
d5f9f942 4783 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4784 resched_task(rq->curr);
4785 }
4786out_unlock:
4787 task_rq_unlock(rq, &flags);
4788}
1da177e4
LT
4789EXPORT_SYMBOL(set_user_nice);
4790
e43379f1
MM
4791/*
4792 * can_nice - check if a task can reduce its nice value
4793 * @p: task
4794 * @nice: nice value
4795 */
36c8b586 4796int can_nice(const struct task_struct *p, const int nice)
e43379f1 4797{
024f4747
MM
4798 /* convert nice value [19,-20] to rlimit style value [1,40] */
4799 int nice_rlim = 20 - nice;
48f24c4d 4800
78d7d407 4801 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4802 capable(CAP_SYS_NICE));
4803}
4804
1da177e4
LT
4805#ifdef __ARCH_WANT_SYS_NICE
4806
4807/*
4808 * sys_nice - change the priority of the current process.
4809 * @increment: priority increment
4810 *
4811 * sys_setpriority is a more generic, but much slower function that
4812 * does similar things.
4813 */
5add95d4 4814SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4815{
48f24c4d 4816 long nice, retval;
1da177e4
LT
4817
4818 /*
4819 * Setpriority might change our priority at the same moment.
4820 * We don't have to worry. Conceptually one call occurs first
4821 * and we have a single winner.
4822 */
e43379f1
MM
4823 if (increment < -40)
4824 increment = -40;
1da177e4
LT
4825 if (increment > 40)
4826 increment = 40;
4827
2b8f836f 4828 nice = TASK_NICE(current) + increment;
1da177e4
LT
4829 if (nice < -20)
4830 nice = -20;
4831 if (nice > 19)
4832 nice = 19;
4833
e43379f1
MM
4834 if (increment < 0 && !can_nice(current, nice))
4835 return -EPERM;
4836
1da177e4
LT
4837 retval = security_task_setnice(current, nice);
4838 if (retval)
4839 return retval;
4840
4841 set_user_nice(current, nice);
4842 return 0;
4843}
4844
4845#endif
4846
4847/**
4848 * task_prio - return the priority value of a given task.
4849 * @p: the task in question.
4850 *
4851 * This is the priority value as seen by users in /proc.
4852 * RT tasks are offset by -200. Normal tasks are centered
4853 * around 0, value goes from -16 to +15.
4854 */
36c8b586 4855int task_prio(const struct task_struct *p)
1da177e4
LT
4856{
4857 return p->prio - MAX_RT_PRIO;
4858}
4859
4860/**
4861 * task_nice - return the nice value of a given task.
4862 * @p: the task in question.
4863 */
36c8b586 4864int task_nice(const struct task_struct *p)
1da177e4
LT
4865{
4866 return TASK_NICE(p);
4867}
150d8bed 4868EXPORT_SYMBOL(task_nice);
1da177e4
LT
4869
4870/**
4871 * idle_cpu - is a given cpu idle currently?
4872 * @cpu: the processor in question.
4873 */
4874int idle_cpu(int cpu)
4875{
4876 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4877}
4878
1da177e4
LT
4879/**
4880 * idle_task - return the idle task for a given cpu.
4881 * @cpu: the processor in question.
4882 */
36c8b586 4883struct task_struct *idle_task(int cpu)
1da177e4
LT
4884{
4885 return cpu_rq(cpu)->idle;
4886}
4887
4888/**
4889 * find_process_by_pid - find a process with a matching PID value.
4890 * @pid: the pid in question.
4891 */
a9957449 4892static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4893{
228ebcbe 4894 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4895}
4896
4897/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4898static void
4899__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4900{
dd41f596 4901 BUG_ON(p->se.on_rq);
48f24c4d 4902
1da177e4
LT
4903 p->policy = policy;
4904 p->rt_priority = prio;
b29739f9
IM
4905 p->normal_prio = normal_prio(p);
4906 /* we are holding p->pi_lock already */
4907 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4908 if (rt_prio(p->prio))
4909 p->sched_class = &rt_sched_class;
4910 else
4911 p->sched_class = &fair_sched_class;
2dd73a4f 4912 set_load_weight(p);
1da177e4
LT
4913}
4914
c69e8d9c
DH
4915/*
4916 * check the target process has a UID that matches the current process's
4917 */
4918static bool check_same_owner(struct task_struct *p)
4919{
4920 const struct cred *cred = current_cred(), *pcred;
4921 bool match;
4922
4923 rcu_read_lock();
4924 pcred = __task_cred(p);
4925 match = (cred->euid == pcred->euid ||
4926 cred->euid == pcred->uid);
4927 rcu_read_unlock();
4928 return match;
4929}
4930
961ccddd 4931static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4932 const struct sched_param *param, bool user)
1da177e4 4933{
83b699ed 4934 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4935 unsigned long flags;
83ab0aa0 4936 const struct sched_class *prev_class;
70b97a7f 4937 struct rq *rq;
ca94c442 4938 int reset_on_fork;
1da177e4 4939
66e5393a
SR
4940 /* may grab non-irq protected spin_locks */
4941 BUG_ON(in_interrupt());
1da177e4
LT
4942recheck:
4943 /* double check policy once rq lock held */
ca94c442
LP
4944 if (policy < 0) {
4945 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4946 policy = oldpolicy = p->policy;
ca94c442
LP
4947 } else {
4948 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4949 policy &= ~SCHED_RESET_ON_FORK;
4950
4951 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4952 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4953 policy != SCHED_IDLE)
4954 return -EINVAL;
4955 }
4956
1da177e4
LT
4957 /*
4958 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4959 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4960 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4961 */
4962 if (param->sched_priority < 0 ||
95cdf3b7 4963 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4964 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4965 return -EINVAL;
e05606d3 4966 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4967 return -EINVAL;
4968
37e4ab3f
OC
4969 /*
4970 * Allow unprivileged RT tasks to decrease priority:
4971 */
961ccddd 4972 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4973 if (rt_policy(policy)) {
a44702e8
ON
4974 unsigned long rlim_rtprio =
4975 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4976
4977 /* can't set/change the rt policy */
4978 if (policy != p->policy && !rlim_rtprio)
4979 return -EPERM;
4980
4981 /* can't increase priority */
4982 if (param->sched_priority > p->rt_priority &&
4983 param->sched_priority > rlim_rtprio)
4984 return -EPERM;
4985 }
dd41f596
IM
4986 /*
4987 * Like positive nice levels, dont allow tasks to
4988 * move out of SCHED_IDLE either:
4989 */
4990 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4991 return -EPERM;
5fe1d75f 4992
37e4ab3f 4993 /* can't change other user's priorities */
c69e8d9c 4994 if (!check_same_owner(p))
37e4ab3f 4995 return -EPERM;
ca94c442
LP
4996
4997 /* Normal users shall not reset the sched_reset_on_fork flag */
4998 if (p->sched_reset_on_fork && !reset_on_fork)
4999 return -EPERM;
37e4ab3f 5000 }
1da177e4 5001
725aad24 5002 if (user) {
b0ae1981 5003 retval = security_task_setscheduler(p);
725aad24
JF
5004 if (retval)
5005 return retval;
5006 }
5007
b29739f9
IM
5008 /*
5009 * make sure no PI-waiters arrive (or leave) while we are
5010 * changing the priority of the task:
5011 */
1d615482 5012 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5013 /*
5014 * To be able to change p->policy safely, the apropriate
5015 * runqueue lock must be held.
5016 */
b29739f9 5017 rq = __task_rq_lock(p);
dc61b1d6 5018
34f971f6
PZ
5019 /*
5020 * Changing the policy of the stop threads its a very bad idea
5021 */
5022 if (p == rq->stop) {
5023 __task_rq_unlock(rq);
5024 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5025 return -EINVAL;
5026 }
5027
dc61b1d6
PZ
5028#ifdef CONFIG_RT_GROUP_SCHED
5029 if (user) {
5030 /*
5031 * Do not allow realtime tasks into groups that have no runtime
5032 * assigned.
5033 */
5034 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5035 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5036 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5037 __task_rq_unlock(rq);
5038 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5039 return -EPERM;
5040 }
5041 }
5042#endif
5043
1da177e4
LT
5044 /* recheck policy now with rq lock held */
5045 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5046 policy = oldpolicy = -1;
b29739f9 5047 __task_rq_unlock(rq);
1d615482 5048 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5049 goto recheck;
5050 }
dd41f596 5051 on_rq = p->se.on_rq;
051a1d1a 5052 running = task_current(rq, p);
0e1f3483 5053 if (on_rq)
2e1cb74a 5054 deactivate_task(rq, p, 0);
0e1f3483
HS
5055 if (running)
5056 p->sched_class->put_prev_task(rq, p);
f6b53205 5057
ca94c442
LP
5058 p->sched_reset_on_fork = reset_on_fork;
5059
1da177e4 5060 oldprio = p->prio;
83ab0aa0 5061 prev_class = p->sched_class;
dd41f596 5062 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5063
0e1f3483
HS
5064 if (running)
5065 p->sched_class->set_curr_task(rq);
da7a735e 5066 if (on_rq)
dd41f596 5067 activate_task(rq, p, 0);
cb469845 5068
da7a735e 5069 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5070 __task_rq_unlock(rq);
1d615482 5071 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5072
95e02ca9
TG
5073 rt_mutex_adjust_pi(p);
5074
1da177e4
LT
5075 return 0;
5076}
961ccddd
RR
5077
5078/**
5079 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5080 * @p: the task in question.
5081 * @policy: new policy.
5082 * @param: structure containing the new RT priority.
5083 *
5084 * NOTE that the task may be already dead.
5085 */
5086int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5087 const struct sched_param *param)
961ccddd
RR
5088{
5089 return __sched_setscheduler(p, policy, param, true);
5090}
1da177e4
LT
5091EXPORT_SYMBOL_GPL(sched_setscheduler);
5092
961ccddd
RR
5093/**
5094 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5095 * @p: the task in question.
5096 * @policy: new policy.
5097 * @param: structure containing the new RT priority.
5098 *
5099 * Just like sched_setscheduler, only don't bother checking if the
5100 * current context has permission. For example, this is needed in
5101 * stop_machine(): we create temporary high priority worker threads,
5102 * but our caller might not have that capability.
5103 */
5104int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5105 const struct sched_param *param)
961ccddd
RR
5106{
5107 return __sched_setscheduler(p, policy, param, false);
5108}
5109
95cdf3b7
IM
5110static int
5111do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5112{
1da177e4
LT
5113 struct sched_param lparam;
5114 struct task_struct *p;
36c8b586 5115 int retval;
1da177e4
LT
5116
5117 if (!param || pid < 0)
5118 return -EINVAL;
5119 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5120 return -EFAULT;
5fe1d75f
ON
5121
5122 rcu_read_lock();
5123 retval = -ESRCH;
1da177e4 5124 p = find_process_by_pid(pid);
5fe1d75f
ON
5125 if (p != NULL)
5126 retval = sched_setscheduler(p, policy, &lparam);
5127 rcu_read_unlock();
36c8b586 5128
1da177e4
LT
5129 return retval;
5130}
5131
5132/**
5133 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5134 * @pid: the pid in question.
5135 * @policy: new policy.
5136 * @param: structure containing the new RT priority.
5137 */
5add95d4
HC
5138SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5139 struct sched_param __user *, param)
1da177e4 5140{
c21761f1
JB
5141 /* negative values for policy are not valid */
5142 if (policy < 0)
5143 return -EINVAL;
5144
1da177e4
LT
5145 return do_sched_setscheduler(pid, policy, param);
5146}
5147
5148/**
5149 * sys_sched_setparam - set/change the RT priority of a thread
5150 * @pid: the pid in question.
5151 * @param: structure containing the new RT priority.
5152 */
5add95d4 5153SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5154{
5155 return do_sched_setscheduler(pid, -1, param);
5156}
5157
5158/**
5159 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5160 * @pid: the pid in question.
5161 */
5add95d4 5162SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5163{
36c8b586 5164 struct task_struct *p;
3a5c359a 5165 int retval;
1da177e4
LT
5166
5167 if (pid < 0)
3a5c359a 5168 return -EINVAL;
1da177e4
LT
5169
5170 retval = -ESRCH;
5fe85be0 5171 rcu_read_lock();
1da177e4
LT
5172 p = find_process_by_pid(pid);
5173 if (p) {
5174 retval = security_task_getscheduler(p);
5175 if (!retval)
ca94c442
LP
5176 retval = p->policy
5177 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5178 }
5fe85be0 5179 rcu_read_unlock();
1da177e4
LT
5180 return retval;
5181}
5182
5183/**
ca94c442 5184 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5185 * @pid: the pid in question.
5186 * @param: structure containing the RT priority.
5187 */
5add95d4 5188SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5189{
5190 struct sched_param lp;
36c8b586 5191 struct task_struct *p;
3a5c359a 5192 int retval;
1da177e4
LT
5193
5194 if (!param || pid < 0)
3a5c359a 5195 return -EINVAL;
1da177e4 5196
5fe85be0 5197 rcu_read_lock();
1da177e4
LT
5198 p = find_process_by_pid(pid);
5199 retval = -ESRCH;
5200 if (!p)
5201 goto out_unlock;
5202
5203 retval = security_task_getscheduler(p);
5204 if (retval)
5205 goto out_unlock;
5206
5207 lp.sched_priority = p->rt_priority;
5fe85be0 5208 rcu_read_unlock();
1da177e4
LT
5209
5210 /*
5211 * This one might sleep, we cannot do it with a spinlock held ...
5212 */
5213 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5214
1da177e4
LT
5215 return retval;
5216
5217out_unlock:
5fe85be0 5218 rcu_read_unlock();
1da177e4
LT
5219 return retval;
5220}
5221
96f874e2 5222long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5223{
5a16f3d3 5224 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5225 struct task_struct *p;
5226 int retval;
1da177e4 5227
95402b38 5228 get_online_cpus();
23f5d142 5229 rcu_read_lock();
1da177e4
LT
5230
5231 p = find_process_by_pid(pid);
5232 if (!p) {
23f5d142 5233 rcu_read_unlock();
95402b38 5234 put_online_cpus();
1da177e4
LT
5235 return -ESRCH;
5236 }
5237
23f5d142 5238 /* Prevent p going away */
1da177e4 5239 get_task_struct(p);
23f5d142 5240 rcu_read_unlock();
1da177e4 5241
5a16f3d3
RR
5242 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5243 retval = -ENOMEM;
5244 goto out_put_task;
5245 }
5246 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5247 retval = -ENOMEM;
5248 goto out_free_cpus_allowed;
5249 }
1da177e4 5250 retval = -EPERM;
c69e8d9c 5251 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5252 goto out_unlock;
5253
b0ae1981 5254 retval = security_task_setscheduler(p);
e7834f8f
DQ
5255 if (retval)
5256 goto out_unlock;
5257
5a16f3d3
RR
5258 cpuset_cpus_allowed(p, cpus_allowed);
5259 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5260again:
5a16f3d3 5261 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5262
8707d8b8 5263 if (!retval) {
5a16f3d3
RR
5264 cpuset_cpus_allowed(p, cpus_allowed);
5265 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5266 /*
5267 * We must have raced with a concurrent cpuset
5268 * update. Just reset the cpus_allowed to the
5269 * cpuset's cpus_allowed
5270 */
5a16f3d3 5271 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5272 goto again;
5273 }
5274 }
1da177e4 5275out_unlock:
5a16f3d3
RR
5276 free_cpumask_var(new_mask);
5277out_free_cpus_allowed:
5278 free_cpumask_var(cpus_allowed);
5279out_put_task:
1da177e4 5280 put_task_struct(p);
95402b38 5281 put_online_cpus();
1da177e4
LT
5282 return retval;
5283}
5284
5285static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5286 struct cpumask *new_mask)
1da177e4 5287{
96f874e2
RR
5288 if (len < cpumask_size())
5289 cpumask_clear(new_mask);
5290 else if (len > cpumask_size())
5291 len = cpumask_size();
5292
1da177e4
LT
5293 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5294}
5295
5296/**
5297 * sys_sched_setaffinity - set the cpu affinity of a process
5298 * @pid: pid of the process
5299 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5300 * @user_mask_ptr: user-space pointer to the new cpu mask
5301 */
5add95d4
HC
5302SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5303 unsigned long __user *, user_mask_ptr)
1da177e4 5304{
5a16f3d3 5305 cpumask_var_t new_mask;
1da177e4
LT
5306 int retval;
5307
5a16f3d3
RR
5308 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5309 return -ENOMEM;
1da177e4 5310
5a16f3d3
RR
5311 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5312 if (retval == 0)
5313 retval = sched_setaffinity(pid, new_mask);
5314 free_cpumask_var(new_mask);
5315 return retval;
1da177e4
LT
5316}
5317
96f874e2 5318long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5319{
36c8b586 5320 struct task_struct *p;
31605683
TG
5321 unsigned long flags;
5322 struct rq *rq;
1da177e4 5323 int retval;
1da177e4 5324
95402b38 5325 get_online_cpus();
23f5d142 5326 rcu_read_lock();
1da177e4
LT
5327
5328 retval = -ESRCH;
5329 p = find_process_by_pid(pid);
5330 if (!p)
5331 goto out_unlock;
5332
e7834f8f
DQ
5333 retval = security_task_getscheduler(p);
5334 if (retval)
5335 goto out_unlock;
5336
31605683 5337 rq = task_rq_lock(p, &flags);
96f874e2 5338 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5339 task_rq_unlock(rq, &flags);
1da177e4
LT
5340
5341out_unlock:
23f5d142 5342 rcu_read_unlock();
95402b38 5343 put_online_cpus();
1da177e4 5344
9531b62f 5345 return retval;
1da177e4
LT
5346}
5347
5348/**
5349 * sys_sched_getaffinity - get the cpu affinity of a process
5350 * @pid: pid of the process
5351 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5352 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5353 */
5add95d4
HC
5354SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5355 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5356{
5357 int ret;
f17c8607 5358 cpumask_var_t mask;
1da177e4 5359
84fba5ec 5360 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5361 return -EINVAL;
5362 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5363 return -EINVAL;
5364
f17c8607
RR
5365 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5366 return -ENOMEM;
1da177e4 5367
f17c8607
RR
5368 ret = sched_getaffinity(pid, mask);
5369 if (ret == 0) {
8bc037fb 5370 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5371
5372 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5373 ret = -EFAULT;
5374 else
cd3d8031 5375 ret = retlen;
f17c8607
RR
5376 }
5377 free_cpumask_var(mask);
1da177e4 5378
f17c8607 5379 return ret;
1da177e4
LT
5380}
5381
5382/**
5383 * sys_sched_yield - yield the current processor to other threads.
5384 *
dd41f596
IM
5385 * This function yields the current CPU to other tasks. If there are no
5386 * other threads running on this CPU then this function will return.
1da177e4 5387 */
5add95d4 5388SYSCALL_DEFINE0(sched_yield)
1da177e4 5389{
70b97a7f 5390 struct rq *rq = this_rq_lock();
1da177e4 5391
2d72376b 5392 schedstat_inc(rq, yld_count);
4530d7ab 5393 current->sched_class->yield_task(rq);
1da177e4
LT
5394
5395 /*
5396 * Since we are going to call schedule() anyway, there's
5397 * no need to preempt or enable interrupts:
5398 */
5399 __release(rq->lock);
8a25d5de 5400 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5401 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5402 preempt_enable_no_resched();
5403
5404 schedule();
5405
5406 return 0;
5407}
5408
d86ee480
PZ
5409static inline int should_resched(void)
5410{
5411 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5412}
5413
e7b38404 5414static void __cond_resched(void)
1da177e4 5415{
e7aaaa69
FW
5416 add_preempt_count(PREEMPT_ACTIVE);
5417 schedule();
5418 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5419}
5420
02b67cc3 5421int __sched _cond_resched(void)
1da177e4 5422{
d86ee480 5423 if (should_resched()) {
1da177e4
LT
5424 __cond_resched();
5425 return 1;
5426 }
5427 return 0;
5428}
02b67cc3 5429EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5430
5431/*
613afbf8 5432 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5433 * call schedule, and on return reacquire the lock.
5434 *
41a2d6cf 5435 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5436 * operations here to prevent schedule() from being called twice (once via
5437 * spin_unlock(), once by hand).
5438 */
613afbf8 5439int __cond_resched_lock(spinlock_t *lock)
1da177e4 5440{
d86ee480 5441 int resched = should_resched();
6df3cecb
JK
5442 int ret = 0;
5443
f607c668
PZ
5444 lockdep_assert_held(lock);
5445
95c354fe 5446 if (spin_needbreak(lock) || resched) {
1da177e4 5447 spin_unlock(lock);
d86ee480 5448 if (resched)
95c354fe
NP
5449 __cond_resched();
5450 else
5451 cpu_relax();
6df3cecb 5452 ret = 1;
1da177e4 5453 spin_lock(lock);
1da177e4 5454 }
6df3cecb 5455 return ret;
1da177e4 5456}
613afbf8 5457EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5458
613afbf8 5459int __sched __cond_resched_softirq(void)
1da177e4
LT
5460{
5461 BUG_ON(!in_softirq());
5462
d86ee480 5463 if (should_resched()) {
98d82567 5464 local_bh_enable();
1da177e4
LT
5465 __cond_resched();
5466 local_bh_disable();
5467 return 1;
5468 }
5469 return 0;
5470}
613afbf8 5471EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5472
1da177e4
LT
5473/**
5474 * yield - yield the current processor to other threads.
5475 *
72fd4a35 5476 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5477 * thread runnable and calls sys_sched_yield().
5478 */
5479void __sched yield(void)
5480{
5481 set_current_state(TASK_RUNNING);
5482 sys_sched_yield();
5483}
1da177e4
LT
5484EXPORT_SYMBOL(yield);
5485
d95f4122
MG
5486/**
5487 * yield_to - yield the current processor to another thread in
5488 * your thread group, or accelerate that thread toward the
5489 * processor it's on.
5490 *
5491 * It's the caller's job to ensure that the target task struct
5492 * can't go away on us before we can do any checks.
5493 *
5494 * Returns true if we indeed boosted the target task.
5495 */
5496bool __sched yield_to(struct task_struct *p, bool preempt)
5497{
5498 struct task_struct *curr = current;
5499 struct rq *rq, *p_rq;
5500 unsigned long flags;
5501 bool yielded = 0;
5502
5503 local_irq_save(flags);
5504 rq = this_rq();
5505
5506again:
5507 p_rq = task_rq(p);
5508 double_rq_lock(rq, p_rq);
5509 while (task_rq(p) != p_rq) {
5510 double_rq_unlock(rq, p_rq);
5511 goto again;
5512 }
5513
5514 if (!curr->sched_class->yield_to_task)
5515 goto out;
5516
5517 if (curr->sched_class != p->sched_class)
5518 goto out;
5519
5520 if (task_running(p_rq, p) || p->state)
5521 goto out;
5522
5523 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5524 if (yielded)
5525 schedstat_inc(rq, yld_count);
5526
5527out:
5528 double_rq_unlock(rq, p_rq);
5529 local_irq_restore(flags);
5530
5531 if (yielded)
5532 schedule();
5533
5534 return yielded;
5535}
5536EXPORT_SYMBOL_GPL(yield_to);
5537
1da177e4 5538/*
41a2d6cf 5539 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5540 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5541 */
5542void __sched io_schedule(void)
5543{
54d35f29 5544 struct rq *rq = raw_rq();
1da177e4 5545
0ff92245 5546 delayacct_blkio_start();
1da177e4 5547 atomic_inc(&rq->nr_iowait);
8f0dfc34 5548 current->in_iowait = 1;
1da177e4 5549 schedule();
8f0dfc34 5550 current->in_iowait = 0;
1da177e4 5551 atomic_dec(&rq->nr_iowait);
0ff92245 5552 delayacct_blkio_end();
1da177e4 5553}
1da177e4
LT
5554EXPORT_SYMBOL(io_schedule);
5555
5556long __sched io_schedule_timeout(long timeout)
5557{
54d35f29 5558 struct rq *rq = raw_rq();
1da177e4
LT
5559 long ret;
5560
0ff92245 5561 delayacct_blkio_start();
1da177e4 5562 atomic_inc(&rq->nr_iowait);
8f0dfc34 5563 current->in_iowait = 1;
1da177e4 5564 ret = schedule_timeout(timeout);
8f0dfc34 5565 current->in_iowait = 0;
1da177e4 5566 atomic_dec(&rq->nr_iowait);
0ff92245 5567 delayacct_blkio_end();
1da177e4
LT
5568 return ret;
5569}
5570
5571/**
5572 * sys_sched_get_priority_max - return maximum RT priority.
5573 * @policy: scheduling class.
5574 *
5575 * this syscall returns the maximum rt_priority that can be used
5576 * by a given scheduling class.
5577 */
5add95d4 5578SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5579{
5580 int ret = -EINVAL;
5581
5582 switch (policy) {
5583 case SCHED_FIFO:
5584 case SCHED_RR:
5585 ret = MAX_USER_RT_PRIO-1;
5586 break;
5587 case SCHED_NORMAL:
b0a9499c 5588 case SCHED_BATCH:
dd41f596 5589 case SCHED_IDLE:
1da177e4
LT
5590 ret = 0;
5591 break;
5592 }
5593 return ret;
5594}
5595
5596/**
5597 * sys_sched_get_priority_min - return minimum RT priority.
5598 * @policy: scheduling class.
5599 *
5600 * this syscall returns the minimum rt_priority that can be used
5601 * by a given scheduling class.
5602 */
5add95d4 5603SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5604{
5605 int ret = -EINVAL;
5606
5607 switch (policy) {
5608 case SCHED_FIFO:
5609 case SCHED_RR:
5610 ret = 1;
5611 break;
5612 case SCHED_NORMAL:
b0a9499c 5613 case SCHED_BATCH:
dd41f596 5614 case SCHED_IDLE:
1da177e4
LT
5615 ret = 0;
5616 }
5617 return ret;
5618}
5619
5620/**
5621 * sys_sched_rr_get_interval - return the default timeslice of a process.
5622 * @pid: pid of the process.
5623 * @interval: userspace pointer to the timeslice value.
5624 *
5625 * this syscall writes the default timeslice value of a given process
5626 * into the user-space timespec buffer. A value of '0' means infinity.
5627 */
17da2bd9 5628SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5629 struct timespec __user *, interval)
1da177e4 5630{
36c8b586 5631 struct task_struct *p;
a4ec24b4 5632 unsigned int time_slice;
dba091b9
TG
5633 unsigned long flags;
5634 struct rq *rq;
3a5c359a 5635 int retval;
1da177e4 5636 struct timespec t;
1da177e4
LT
5637
5638 if (pid < 0)
3a5c359a 5639 return -EINVAL;
1da177e4
LT
5640
5641 retval = -ESRCH;
1a551ae7 5642 rcu_read_lock();
1da177e4
LT
5643 p = find_process_by_pid(pid);
5644 if (!p)
5645 goto out_unlock;
5646
5647 retval = security_task_getscheduler(p);
5648 if (retval)
5649 goto out_unlock;
5650
dba091b9
TG
5651 rq = task_rq_lock(p, &flags);
5652 time_slice = p->sched_class->get_rr_interval(rq, p);
5653 task_rq_unlock(rq, &flags);
a4ec24b4 5654
1a551ae7 5655 rcu_read_unlock();
a4ec24b4 5656 jiffies_to_timespec(time_slice, &t);
1da177e4 5657 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5658 return retval;
3a5c359a 5659
1da177e4 5660out_unlock:
1a551ae7 5661 rcu_read_unlock();
1da177e4
LT
5662 return retval;
5663}
5664
7c731e0a 5665static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5666
82a1fcb9 5667void sched_show_task(struct task_struct *p)
1da177e4 5668{
1da177e4 5669 unsigned long free = 0;
36c8b586 5670 unsigned state;
1da177e4 5671
1da177e4 5672 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5673 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5674 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5675#if BITS_PER_LONG == 32
1da177e4 5676 if (state == TASK_RUNNING)
3df0fc5b 5677 printk(KERN_CONT " running ");
1da177e4 5678 else
3df0fc5b 5679 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5680#else
5681 if (state == TASK_RUNNING)
3df0fc5b 5682 printk(KERN_CONT " running task ");
1da177e4 5683 else
3df0fc5b 5684 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5685#endif
5686#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5687 free = stack_not_used(p);
1da177e4 5688#endif
3df0fc5b 5689 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5690 task_pid_nr(p), task_pid_nr(p->real_parent),
5691 (unsigned long)task_thread_info(p)->flags);
1da177e4 5692
5fb5e6de 5693 show_stack(p, NULL);
1da177e4
LT
5694}
5695
e59e2ae2 5696void show_state_filter(unsigned long state_filter)
1da177e4 5697{
36c8b586 5698 struct task_struct *g, *p;
1da177e4 5699
4bd77321 5700#if BITS_PER_LONG == 32
3df0fc5b
PZ
5701 printk(KERN_INFO
5702 " task PC stack pid father\n");
1da177e4 5703#else
3df0fc5b
PZ
5704 printk(KERN_INFO
5705 " task PC stack pid father\n");
1da177e4
LT
5706#endif
5707 read_lock(&tasklist_lock);
5708 do_each_thread(g, p) {
5709 /*
5710 * reset the NMI-timeout, listing all files on a slow
5711 * console might take alot of time:
5712 */
5713 touch_nmi_watchdog();
39bc89fd 5714 if (!state_filter || (p->state & state_filter))
82a1fcb9 5715 sched_show_task(p);
1da177e4
LT
5716 } while_each_thread(g, p);
5717
04c9167f
JF
5718 touch_all_softlockup_watchdogs();
5719
dd41f596
IM
5720#ifdef CONFIG_SCHED_DEBUG
5721 sysrq_sched_debug_show();
5722#endif
1da177e4 5723 read_unlock(&tasklist_lock);
e59e2ae2
IM
5724 /*
5725 * Only show locks if all tasks are dumped:
5726 */
93335a21 5727 if (!state_filter)
e59e2ae2 5728 debug_show_all_locks();
1da177e4
LT
5729}
5730
1df21055
IM
5731void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5732{
dd41f596 5733 idle->sched_class = &idle_sched_class;
1df21055
IM
5734}
5735
f340c0d1
IM
5736/**
5737 * init_idle - set up an idle thread for a given CPU
5738 * @idle: task in question
5739 * @cpu: cpu the idle task belongs to
5740 *
5741 * NOTE: this function does not set the idle thread's NEED_RESCHED
5742 * flag, to make booting more robust.
5743 */
5c1e1767 5744void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5745{
70b97a7f 5746 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5747 unsigned long flags;
5748
05fa785c 5749 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5750
dd41f596 5751 __sched_fork(idle);
06b83b5f 5752 idle->state = TASK_RUNNING;
dd41f596
IM
5753 idle->se.exec_start = sched_clock();
5754
96f874e2 5755 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5756 /*
5757 * We're having a chicken and egg problem, even though we are
5758 * holding rq->lock, the cpu isn't yet set to this cpu so the
5759 * lockdep check in task_group() will fail.
5760 *
5761 * Similar case to sched_fork(). / Alternatively we could
5762 * use task_rq_lock() here and obtain the other rq->lock.
5763 *
5764 * Silence PROVE_RCU
5765 */
5766 rcu_read_lock();
dd41f596 5767 __set_task_cpu(idle, cpu);
6506cf6c 5768 rcu_read_unlock();
1da177e4 5769
1da177e4 5770 rq->curr = rq->idle = idle;
4866cde0
NP
5771#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5772 idle->oncpu = 1;
5773#endif
05fa785c 5774 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5775
5776 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5777#if defined(CONFIG_PREEMPT)
5778 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5779#else
a1261f54 5780 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5781#endif
dd41f596
IM
5782 /*
5783 * The idle tasks have their own, simple scheduling class:
5784 */
5785 idle->sched_class = &idle_sched_class;
fb52607a 5786 ftrace_graph_init_task(idle);
1da177e4
LT
5787}
5788
5789/*
5790 * In a system that switches off the HZ timer nohz_cpu_mask
5791 * indicates which cpus entered this state. This is used
5792 * in the rcu update to wait only for active cpus. For system
5793 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5794 * always be CPU_BITS_NONE.
1da177e4 5795 */
6a7b3dc3 5796cpumask_var_t nohz_cpu_mask;
1da177e4 5797
19978ca6
IM
5798/*
5799 * Increase the granularity value when there are more CPUs,
5800 * because with more CPUs the 'effective latency' as visible
5801 * to users decreases. But the relationship is not linear,
5802 * so pick a second-best guess by going with the log2 of the
5803 * number of CPUs.
5804 *
5805 * This idea comes from the SD scheduler of Con Kolivas:
5806 */
acb4a848 5807static int get_update_sysctl_factor(void)
19978ca6 5808{
4ca3ef71 5809 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5810 unsigned int factor;
5811
5812 switch (sysctl_sched_tunable_scaling) {
5813 case SCHED_TUNABLESCALING_NONE:
5814 factor = 1;
5815 break;
5816 case SCHED_TUNABLESCALING_LINEAR:
5817 factor = cpus;
5818 break;
5819 case SCHED_TUNABLESCALING_LOG:
5820 default:
5821 factor = 1 + ilog2(cpus);
5822 break;
5823 }
19978ca6 5824
acb4a848
CE
5825 return factor;
5826}
19978ca6 5827
acb4a848
CE
5828static void update_sysctl(void)
5829{
5830 unsigned int factor = get_update_sysctl_factor();
19978ca6 5831
0bcdcf28
CE
5832#define SET_SYSCTL(name) \
5833 (sysctl_##name = (factor) * normalized_sysctl_##name)
5834 SET_SYSCTL(sched_min_granularity);
5835 SET_SYSCTL(sched_latency);
5836 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5837#undef SET_SYSCTL
5838}
55cd5340 5839
0bcdcf28
CE
5840static inline void sched_init_granularity(void)
5841{
5842 update_sysctl();
19978ca6
IM
5843}
5844
1da177e4
LT
5845#ifdef CONFIG_SMP
5846/*
5847 * This is how migration works:
5848 *
969c7921
TH
5849 * 1) we invoke migration_cpu_stop() on the target CPU using
5850 * stop_one_cpu().
5851 * 2) stopper starts to run (implicitly forcing the migrated thread
5852 * off the CPU)
5853 * 3) it checks whether the migrated task is still in the wrong runqueue.
5854 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5855 * it and puts it into the right queue.
969c7921
TH
5856 * 5) stopper completes and stop_one_cpu() returns and the migration
5857 * is done.
1da177e4
LT
5858 */
5859
5860/*
5861 * Change a given task's CPU affinity. Migrate the thread to a
5862 * proper CPU and schedule it away if the CPU it's executing on
5863 * is removed from the allowed bitmask.
5864 *
5865 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5866 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5867 * call is not atomic; no spinlocks may be held.
5868 */
96f874e2 5869int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5870{
5871 unsigned long flags;
70b97a7f 5872 struct rq *rq;
969c7921 5873 unsigned int dest_cpu;
48f24c4d 5874 int ret = 0;
1da177e4 5875
65cc8e48
PZ
5876 /*
5877 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5878 * drop the rq->lock and still rely on ->cpus_allowed.
5879 */
5880again:
5881 while (task_is_waking(p))
5882 cpu_relax();
1da177e4 5883 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5884 if (task_is_waking(p)) {
5885 task_rq_unlock(rq, &flags);
5886 goto again;
5887 }
e2912009 5888
6ad4c188 5889 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5890 ret = -EINVAL;
5891 goto out;
5892 }
5893
9985b0ba 5894 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5895 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5896 ret = -EINVAL;
5897 goto out;
5898 }
5899
73fe6aae 5900 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5901 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5902 else {
96f874e2
RR
5903 cpumask_copy(&p->cpus_allowed, new_mask);
5904 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5905 }
5906
1da177e4 5907 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5908 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5909 goto out;
5910
969c7921 5911 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5912 if (migrate_task(p, rq)) {
969c7921 5913 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5914 /* Need help from migration thread: drop lock and wait. */
5915 task_rq_unlock(rq, &flags);
969c7921 5916 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5917 tlb_migrate_finish(p->mm);
5918 return 0;
5919 }
5920out:
5921 task_rq_unlock(rq, &flags);
48f24c4d 5922
1da177e4
LT
5923 return ret;
5924}
cd8ba7cd 5925EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5926
5927/*
41a2d6cf 5928 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5929 * this because either it can't run here any more (set_cpus_allowed()
5930 * away from this CPU, or CPU going down), or because we're
5931 * attempting to rebalance this task on exec (sched_exec).
5932 *
5933 * So we race with normal scheduler movements, but that's OK, as long
5934 * as the task is no longer on this CPU.
efc30814
KK
5935 *
5936 * Returns non-zero if task was successfully migrated.
1da177e4 5937 */
efc30814 5938static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5939{
70b97a7f 5940 struct rq *rq_dest, *rq_src;
e2912009 5941 int ret = 0;
1da177e4 5942
e761b772 5943 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5944 return ret;
1da177e4
LT
5945
5946 rq_src = cpu_rq(src_cpu);
5947 rq_dest = cpu_rq(dest_cpu);
5948
5949 double_rq_lock(rq_src, rq_dest);
5950 /* Already moved. */
5951 if (task_cpu(p) != src_cpu)
b1e38734 5952 goto done;
1da177e4 5953 /* Affinity changed (again). */
96f874e2 5954 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5955 goto fail;
1da177e4 5956
e2912009
PZ
5957 /*
5958 * If we're not on a rq, the next wake-up will ensure we're
5959 * placed properly.
5960 */
5961 if (p->se.on_rq) {
2e1cb74a 5962 deactivate_task(rq_src, p, 0);
e2912009 5963 set_task_cpu(p, dest_cpu);
dd41f596 5964 activate_task(rq_dest, p, 0);
15afe09b 5965 check_preempt_curr(rq_dest, p, 0);
1da177e4 5966 }
b1e38734 5967done:
efc30814 5968 ret = 1;
b1e38734 5969fail:
1da177e4 5970 double_rq_unlock(rq_src, rq_dest);
efc30814 5971 return ret;
1da177e4
LT
5972}
5973
5974/*
969c7921
TH
5975 * migration_cpu_stop - this will be executed by a highprio stopper thread
5976 * and performs thread migration by bumping thread off CPU then
5977 * 'pushing' onto another runqueue.
1da177e4 5978 */
969c7921 5979static int migration_cpu_stop(void *data)
1da177e4 5980{
969c7921 5981 struct migration_arg *arg = data;
f7b4cddc 5982
969c7921
TH
5983 /*
5984 * The original target cpu might have gone down and we might
5985 * be on another cpu but it doesn't matter.
5986 */
f7b4cddc 5987 local_irq_disable();
969c7921 5988 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5989 local_irq_enable();
1da177e4 5990 return 0;
f7b4cddc
ON
5991}
5992
1da177e4 5993#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5994
054b9108 5995/*
48c5ccae
PZ
5996 * Ensures that the idle task is using init_mm right before its cpu goes
5997 * offline.
054b9108 5998 */
48c5ccae 5999void idle_task_exit(void)
1da177e4 6000{
48c5ccae 6001 struct mm_struct *mm = current->active_mm;
e76bd8d9 6002
48c5ccae 6003 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6004
48c5ccae
PZ
6005 if (mm != &init_mm)
6006 switch_mm(mm, &init_mm, current);
6007 mmdrop(mm);
1da177e4
LT
6008}
6009
6010/*
6011 * While a dead CPU has no uninterruptible tasks queued at this point,
6012 * it might still have a nonzero ->nr_uninterruptible counter, because
6013 * for performance reasons the counter is not stricly tracking tasks to
6014 * their home CPUs. So we just add the counter to another CPU's counter,
6015 * to keep the global sum constant after CPU-down:
6016 */
70b97a7f 6017static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6018{
6ad4c188 6019 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6020
1da177e4
LT
6021 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6022 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6023}
6024
dd41f596 6025/*
48c5ccae 6026 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6027 */
48c5ccae 6028static void calc_global_load_remove(struct rq *rq)
1da177e4 6029{
48c5ccae
PZ
6030 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6031 rq->calc_load_active = 0;
1da177e4
LT
6032}
6033
48f24c4d 6034/*
48c5ccae
PZ
6035 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6036 * try_to_wake_up()->select_task_rq().
6037 *
6038 * Called with rq->lock held even though we'er in stop_machine() and
6039 * there's no concurrency possible, we hold the required locks anyway
6040 * because of lock validation efforts.
1da177e4 6041 */
48c5ccae 6042static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6043{
70b97a7f 6044 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6045 struct task_struct *next, *stop = rq->stop;
6046 int dest_cpu;
1da177e4
LT
6047
6048 /*
48c5ccae
PZ
6049 * Fudge the rq selection such that the below task selection loop
6050 * doesn't get stuck on the currently eligible stop task.
6051 *
6052 * We're currently inside stop_machine() and the rq is either stuck
6053 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6054 * either way we should never end up calling schedule() until we're
6055 * done here.
1da177e4 6056 */
48c5ccae 6057 rq->stop = NULL;
48f24c4d 6058
dd41f596 6059 for ( ; ; ) {
48c5ccae
PZ
6060 /*
6061 * There's this thread running, bail when that's the only
6062 * remaining thread.
6063 */
6064 if (rq->nr_running == 1)
dd41f596 6065 break;
48c5ccae 6066
b67802ea 6067 next = pick_next_task(rq);
48c5ccae 6068 BUG_ON(!next);
79c53799 6069 next->sched_class->put_prev_task(rq, next);
e692ab53 6070
48c5ccae
PZ
6071 /* Find suitable destination for @next, with force if needed. */
6072 dest_cpu = select_fallback_rq(dead_cpu, next);
6073 raw_spin_unlock(&rq->lock);
6074
6075 __migrate_task(next, dead_cpu, dest_cpu);
6076
6077 raw_spin_lock(&rq->lock);
1da177e4 6078 }
dce48a84 6079
48c5ccae 6080 rq->stop = stop;
dce48a84 6081}
48c5ccae 6082
1da177e4
LT
6083#endif /* CONFIG_HOTPLUG_CPU */
6084
e692ab53
NP
6085#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6086
6087static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6088 {
6089 .procname = "sched_domain",
c57baf1e 6090 .mode = 0555,
e0361851 6091 },
56992309 6092 {}
e692ab53
NP
6093};
6094
6095static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6096 {
6097 .procname = "kernel",
c57baf1e 6098 .mode = 0555,
e0361851
AD
6099 .child = sd_ctl_dir,
6100 },
56992309 6101 {}
e692ab53
NP
6102};
6103
6104static struct ctl_table *sd_alloc_ctl_entry(int n)
6105{
6106 struct ctl_table *entry =
5cf9f062 6107 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6108
e692ab53
NP
6109 return entry;
6110}
6111
6382bc90
MM
6112static void sd_free_ctl_entry(struct ctl_table **tablep)
6113{
cd790076 6114 struct ctl_table *entry;
6382bc90 6115
cd790076
MM
6116 /*
6117 * In the intermediate directories, both the child directory and
6118 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6119 * will always be set. In the lowest directory the names are
cd790076
MM
6120 * static strings and all have proc handlers.
6121 */
6122 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6123 if (entry->child)
6124 sd_free_ctl_entry(&entry->child);
cd790076
MM
6125 if (entry->proc_handler == NULL)
6126 kfree(entry->procname);
6127 }
6382bc90
MM
6128
6129 kfree(*tablep);
6130 *tablep = NULL;
6131}
6132
e692ab53 6133static void
e0361851 6134set_table_entry(struct ctl_table *entry,
e692ab53
NP
6135 const char *procname, void *data, int maxlen,
6136 mode_t mode, proc_handler *proc_handler)
6137{
e692ab53
NP
6138 entry->procname = procname;
6139 entry->data = data;
6140 entry->maxlen = maxlen;
6141 entry->mode = mode;
6142 entry->proc_handler = proc_handler;
6143}
6144
6145static struct ctl_table *
6146sd_alloc_ctl_domain_table(struct sched_domain *sd)
6147{
a5d8c348 6148 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6149
ad1cdc1d
MM
6150 if (table == NULL)
6151 return NULL;
6152
e0361851 6153 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6154 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6155 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6156 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6157 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6158 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6159 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6160 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6161 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6162 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6163 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6164 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6165 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6166 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6167 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6168 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6169 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6170 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6171 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6172 &sd->cache_nice_tries,
6173 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6174 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6175 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6176 set_table_entry(&table[11], "name", sd->name,
6177 CORENAME_MAX_SIZE, 0444, proc_dostring);
6178 /* &table[12] is terminator */
e692ab53
NP
6179
6180 return table;
6181}
6182
9a4e7159 6183static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6184{
6185 struct ctl_table *entry, *table;
6186 struct sched_domain *sd;
6187 int domain_num = 0, i;
6188 char buf[32];
6189
6190 for_each_domain(cpu, sd)
6191 domain_num++;
6192 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6193 if (table == NULL)
6194 return NULL;
e692ab53
NP
6195
6196 i = 0;
6197 for_each_domain(cpu, sd) {
6198 snprintf(buf, 32, "domain%d", i);
e692ab53 6199 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6200 entry->mode = 0555;
e692ab53
NP
6201 entry->child = sd_alloc_ctl_domain_table(sd);
6202 entry++;
6203 i++;
6204 }
6205 return table;
6206}
6207
6208static struct ctl_table_header *sd_sysctl_header;
6382bc90 6209static void register_sched_domain_sysctl(void)
e692ab53 6210{
6ad4c188 6211 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6212 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6213 char buf[32];
6214
7378547f
MM
6215 WARN_ON(sd_ctl_dir[0].child);
6216 sd_ctl_dir[0].child = entry;
6217
ad1cdc1d
MM
6218 if (entry == NULL)
6219 return;
6220
6ad4c188 6221 for_each_possible_cpu(i) {
e692ab53 6222 snprintf(buf, 32, "cpu%d", i);
e692ab53 6223 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6224 entry->mode = 0555;
e692ab53 6225 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6226 entry++;
e692ab53 6227 }
7378547f
MM
6228
6229 WARN_ON(sd_sysctl_header);
e692ab53
NP
6230 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6231}
6382bc90 6232
7378547f 6233/* may be called multiple times per register */
6382bc90
MM
6234static void unregister_sched_domain_sysctl(void)
6235{
7378547f
MM
6236 if (sd_sysctl_header)
6237 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6238 sd_sysctl_header = NULL;
7378547f
MM
6239 if (sd_ctl_dir[0].child)
6240 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6241}
e692ab53 6242#else
6382bc90
MM
6243static void register_sched_domain_sysctl(void)
6244{
6245}
6246static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6247{
6248}
6249#endif
6250
1f11eb6a
GH
6251static void set_rq_online(struct rq *rq)
6252{
6253 if (!rq->online) {
6254 const struct sched_class *class;
6255
c6c4927b 6256 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6257 rq->online = 1;
6258
6259 for_each_class(class) {
6260 if (class->rq_online)
6261 class->rq_online(rq);
6262 }
6263 }
6264}
6265
6266static void set_rq_offline(struct rq *rq)
6267{
6268 if (rq->online) {
6269 const struct sched_class *class;
6270
6271 for_each_class(class) {
6272 if (class->rq_offline)
6273 class->rq_offline(rq);
6274 }
6275
c6c4927b 6276 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6277 rq->online = 0;
6278 }
6279}
6280
1da177e4
LT
6281/*
6282 * migration_call - callback that gets triggered when a CPU is added.
6283 * Here we can start up the necessary migration thread for the new CPU.
6284 */
48f24c4d
IM
6285static int __cpuinit
6286migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6287{
48f24c4d 6288 int cpu = (long)hcpu;
1da177e4 6289 unsigned long flags;
969c7921 6290 struct rq *rq = cpu_rq(cpu);
1da177e4 6291
48c5ccae 6292 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6293
1da177e4 6294 case CPU_UP_PREPARE:
a468d389 6295 rq->calc_load_update = calc_load_update;
1da177e4 6296 break;
48f24c4d 6297
1da177e4 6298 case CPU_ONLINE:
1f94ef59 6299 /* Update our root-domain */
05fa785c 6300 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6301 if (rq->rd) {
c6c4927b 6302 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6303
6304 set_rq_online(rq);
1f94ef59 6305 }
05fa785c 6306 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6307 break;
48f24c4d 6308
1da177e4 6309#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6310 case CPU_DYING:
57d885fe 6311 /* Update our root-domain */
05fa785c 6312 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6313 if (rq->rd) {
c6c4927b 6314 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6315 set_rq_offline(rq);
57d885fe 6316 }
48c5ccae
PZ
6317 migrate_tasks(cpu);
6318 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6319 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6320
6321 migrate_nr_uninterruptible(rq);
6322 calc_global_load_remove(rq);
57d885fe 6323 break;
1da177e4
LT
6324#endif
6325 }
6326 return NOTIFY_OK;
6327}
6328
f38b0820
PM
6329/*
6330 * Register at high priority so that task migration (migrate_all_tasks)
6331 * happens before everything else. This has to be lower priority than
cdd6c482 6332 * the notifier in the perf_event subsystem, though.
1da177e4 6333 */
26c2143b 6334static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6335 .notifier_call = migration_call,
50a323b7 6336 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6337};
6338
3a101d05
TH
6339static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6340 unsigned long action, void *hcpu)
6341{
6342 switch (action & ~CPU_TASKS_FROZEN) {
6343 case CPU_ONLINE:
6344 case CPU_DOWN_FAILED:
6345 set_cpu_active((long)hcpu, true);
6346 return NOTIFY_OK;
6347 default:
6348 return NOTIFY_DONE;
6349 }
6350}
6351
6352static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6353 unsigned long action, void *hcpu)
6354{
6355 switch (action & ~CPU_TASKS_FROZEN) {
6356 case CPU_DOWN_PREPARE:
6357 set_cpu_active((long)hcpu, false);
6358 return NOTIFY_OK;
6359 default:
6360 return NOTIFY_DONE;
6361 }
6362}
6363
7babe8db 6364static int __init migration_init(void)
1da177e4
LT
6365{
6366 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6367 int err;
48f24c4d 6368
3a101d05 6369 /* Initialize migration for the boot CPU */
07dccf33
AM
6370 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6371 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6372 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6373 register_cpu_notifier(&migration_notifier);
7babe8db 6374
3a101d05
TH
6375 /* Register cpu active notifiers */
6376 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6377 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6378
a004cd42 6379 return 0;
1da177e4 6380}
7babe8db 6381early_initcall(migration_init);
1da177e4
LT
6382#endif
6383
6384#ifdef CONFIG_SMP
476f3534 6385
3e9830dc 6386#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6387
f6630114
MT
6388static __read_mostly int sched_domain_debug_enabled;
6389
6390static int __init sched_domain_debug_setup(char *str)
6391{
6392 sched_domain_debug_enabled = 1;
6393
6394 return 0;
6395}
6396early_param("sched_debug", sched_domain_debug_setup);
6397
7c16ec58 6398static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6399 struct cpumask *groupmask)
1da177e4 6400{
4dcf6aff 6401 struct sched_group *group = sd->groups;
434d53b0 6402 char str[256];
1da177e4 6403
968ea6d8 6404 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6405 cpumask_clear(groupmask);
4dcf6aff
IM
6406
6407 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6408
6409 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6410 printk("does not load-balance\n");
4dcf6aff 6411 if (sd->parent)
3df0fc5b
PZ
6412 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6413 " has parent");
4dcf6aff 6414 return -1;
41c7ce9a
NP
6415 }
6416
3df0fc5b 6417 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6418
758b2cdc 6419 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6420 printk(KERN_ERR "ERROR: domain->span does not contain "
6421 "CPU%d\n", cpu);
4dcf6aff 6422 }
758b2cdc 6423 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6424 printk(KERN_ERR "ERROR: domain->groups does not contain"
6425 " CPU%d\n", cpu);
4dcf6aff 6426 }
1da177e4 6427
4dcf6aff 6428 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6429 do {
4dcf6aff 6430 if (!group) {
3df0fc5b
PZ
6431 printk("\n");
6432 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6433 break;
6434 }
6435
18a3885f 6436 if (!group->cpu_power) {
3df0fc5b
PZ
6437 printk(KERN_CONT "\n");
6438 printk(KERN_ERR "ERROR: domain->cpu_power not "
6439 "set\n");
4dcf6aff
IM
6440 break;
6441 }
1da177e4 6442
758b2cdc 6443 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6444 printk(KERN_CONT "\n");
6445 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6446 break;
6447 }
1da177e4 6448
758b2cdc 6449 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6450 printk(KERN_CONT "\n");
6451 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6452 break;
6453 }
1da177e4 6454
758b2cdc 6455 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6456
968ea6d8 6457 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6458
3df0fc5b 6459 printk(KERN_CONT " %s", str);
18a3885f 6460 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6461 printk(KERN_CONT " (cpu_power = %d)",
6462 group->cpu_power);
381512cf 6463 }
1da177e4 6464
4dcf6aff
IM
6465 group = group->next;
6466 } while (group != sd->groups);
3df0fc5b 6467 printk(KERN_CONT "\n");
1da177e4 6468
758b2cdc 6469 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6470 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6471
758b2cdc
RR
6472 if (sd->parent &&
6473 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6474 printk(KERN_ERR "ERROR: parent span is not a superset "
6475 "of domain->span\n");
4dcf6aff
IM
6476 return 0;
6477}
1da177e4 6478
4dcf6aff
IM
6479static void sched_domain_debug(struct sched_domain *sd, int cpu)
6480{
d5dd3db1 6481 cpumask_var_t groupmask;
4dcf6aff 6482 int level = 0;
1da177e4 6483
f6630114
MT
6484 if (!sched_domain_debug_enabled)
6485 return;
6486
4dcf6aff
IM
6487 if (!sd) {
6488 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6489 return;
6490 }
1da177e4 6491
4dcf6aff
IM
6492 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6493
d5dd3db1 6494 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6495 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6496 return;
6497 }
6498
4dcf6aff 6499 for (;;) {
7c16ec58 6500 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6501 break;
1da177e4
LT
6502 level++;
6503 sd = sd->parent;
33859f7f 6504 if (!sd)
4dcf6aff
IM
6505 break;
6506 }
d5dd3db1 6507 free_cpumask_var(groupmask);
1da177e4 6508}
6d6bc0ad 6509#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6510# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6511#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6512
1a20ff27 6513static int sd_degenerate(struct sched_domain *sd)
245af2c7 6514{
758b2cdc 6515 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6516 return 1;
6517
6518 /* Following flags need at least 2 groups */
6519 if (sd->flags & (SD_LOAD_BALANCE |
6520 SD_BALANCE_NEWIDLE |
6521 SD_BALANCE_FORK |
89c4710e
SS
6522 SD_BALANCE_EXEC |
6523 SD_SHARE_CPUPOWER |
6524 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6525 if (sd->groups != sd->groups->next)
6526 return 0;
6527 }
6528
6529 /* Following flags don't use groups */
c88d5910 6530 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6531 return 0;
6532
6533 return 1;
6534}
6535
48f24c4d
IM
6536static int
6537sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6538{
6539 unsigned long cflags = sd->flags, pflags = parent->flags;
6540
6541 if (sd_degenerate(parent))
6542 return 1;
6543
758b2cdc 6544 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6545 return 0;
6546
245af2c7
SS
6547 /* Flags needing groups don't count if only 1 group in parent */
6548 if (parent->groups == parent->groups->next) {
6549 pflags &= ~(SD_LOAD_BALANCE |
6550 SD_BALANCE_NEWIDLE |
6551 SD_BALANCE_FORK |
89c4710e
SS
6552 SD_BALANCE_EXEC |
6553 SD_SHARE_CPUPOWER |
6554 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6555 if (nr_node_ids == 1)
6556 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6557 }
6558 if (~cflags & pflags)
6559 return 0;
6560
6561 return 1;
6562}
6563
c6c4927b
RR
6564static void free_rootdomain(struct root_domain *rd)
6565{
047106ad
PZ
6566 synchronize_sched();
6567
68e74568
RR
6568 cpupri_cleanup(&rd->cpupri);
6569
c6c4927b
RR
6570 free_cpumask_var(rd->rto_mask);
6571 free_cpumask_var(rd->online);
6572 free_cpumask_var(rd->span);
6573 kfree(rd);
6574}
6575
57d885fe
GH
6576static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6577{
a0490fa3 6578 struct root_domain *old_rd = NULL;
57d885fe 6579 unsigned long flags;
57d885fe 6580
05fa785c 6581 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6582
6583 if (rq->rd) {
a0490fa3 6584 old_rd = rq->rd;
57d885fe 6585
c6c4927b 6586 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6587 set_rq_offline(rq);
57d885fe 6588
c6c4927b 6589 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6590
a0490fa3
IM
6591 /*
6592 * If we dont want to free the old_rt yet then
6593 * set old_rd to NULL to skip the freeing later
6594 * in this function:
6595 */
6596 if (!atomic_dec_and_test(&old_rd->refcount))
6597 old_rd = NULL;
57d885fe
GH
6598 }
6599
6600 atomic_inc(&rd->refcount);
6601 rq->rd = rd;
6602
c6c4927b 6603 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6604 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6605 set_rq_online(rq);
57d885fe 6606
05fa785c 6607 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6608
6609 if (old_rd)
6610 free_rootdomain(old_rd);
57d885fe
GH
6611}
6612
68c38fc3 6613static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6614{
6615 memset(rd, 0, sizeof(*rd));
6616
68c38fc3 6617 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6618 goto out;
68c38fc3 6619 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6620 goto free_span;
68c38fc3 6621 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6622 goto free_online;
6e0534f2 6623
68c38fc3 6624 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6625 goto free_rto_mask;
c6c4927b 6626 return 0;
6e0534f2 6627
68e74568
RR
6628free_rto_mask:
6629 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6630free_online:
6631 free_cpumask_var(rd->online);
6632free_span:
6633 free_cpumask_var(rd->span);
0c910d28 6634out:
c6c4927b 6635 return -ENOMEM;
57d885fe
GH
6636}
6637
6638static void init_defrootdomain(void)
6639{
68c38fc3 6640 init_rootdomain(&def_root_domain);
c6c4927b 6641
57d885fe
GH
6642 atomic_set(&def_root_domain.refcount, 1);
6643}
6644
dc938520 6645static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6646{
6647 struct root_domain *rd;
6648
6649 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6650 if (!rd)
6651 return NULL;
6652
68c38fc3 6653 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6654 kfree(rd);
6655 return NULL;
6656 }
57d885fe
GH
6657
6658 return rd;
6659}
6660
1da177e4 6661/*
0eab9146 6662 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6663 * hold the hotplug lock.
6664 */
0eab9146
IM
6665static void
6666cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6667{
70b97a7f 6668 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6669 struct sched_domain *tmp;
6670
669c55e9
PZ
6671 for (tmp = sd; tmp; tmp = tmp->parent)
6672 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6673
245af2c7 6674 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6675 for (tmp = sd; tmp; ) {
245af2c7
SS
6676 struct sched_domain *parent = tmp->parent;
6677 if (!parent)
6678 break;
f29c9b1c 6679
1a848870 6680 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6681 tmp->parent = parent->parent;
1a848870
SS
6682 if (parent->parent)
6683 parent->parent->child = tmp;
f29c9b1c
LZ
6684 } else
6685 tmp = tmp->parent;
245af2c7
SS
6686 }
6687
1a848870 6688 if (sd && sd_degenerate(sd)) {
245af2c7 6689 sd = sd->parent;
1a848870
SS
6690 if (sd)
6691 sd->child = NULL;
6692 }
1da177e4
LT
6693
6694 sched_domain_debug(sd, cpu);
6695
57d885fe 6696 rq_attach_root(rq, rd);
674311d5 6697 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6698}
6699
6700/* cpus with isolated domains */
dcc30a35 6701static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6702
6703/* Setup the mask of cpus configured for isolated domains */
6704static int __init isolated_cpu_setup(char *str)
6705{
bdddd296 6706 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6707 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6708 return 1;
6709}
6710
8927f494 6711__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6712
6713/*
6711cab4
SS
6714 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6715 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6716 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6717 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6718 *
6719 * init_sched_build_groups will build a circular linked list of the groups
6720 * covered by the given span, and will set each group's ->cpumask correctly,
6721 * and ->cpu_power to 0.
6722 */
a616058b 6723static void
96f874e2
RR
6724init_sched_build_groups(const struct cpumask *span,
6725 const struct cpumask *cpu_map,
6726 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6727 struct sched_group **sg,
96f874e2
RR
6728 struct cpumask *tmpmask),
6729 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6730{
6731 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6732 int i;
6733
96f874e2 6734 cpumask_clear(covered);
7c16ec58 6735
abcd083a 6736 for_each_cpu(i, span) {
6711cab4 6737 struct sched_group *sg;
7c16ec58 6738 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6739 int j;
6740
758b2cdc 6741 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6742 continue;
6743
758b2cdc 6744 cpumask_clear(sched_group_cpus(sg));
18a3885f 6745 sg->cpu_power = 0;
1da177e4 6746
abcd083a 6747 for_each_cpu(j, span) {
7c16ec58 6748 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6749 continue;
6750
96f874e2 6751 cpumask_set_cpu(j, covered);
758b2cdc 6752 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6753 }
6754 if (!first)
6755 first = sg;
6756 if (last)
6757 last->next = sg;
6758 last = sg;
6759 }
6760 last->next = first;
6761}
6762
9c1cfda2 6763#define SD_NODES_PER_DOMAIN 16
1da177e4 6764
9c1cfda2 6765#ifdef CONFIG_NUMA
198e2f18 6766
9c1cfda2
JH
6767/**
6768 * find_next_best_node - find the next node to include in a sched_domain
6769 * @node: node whose sched_domain we're building
6770 * @used_nodes: nodes already in the sched_domain
6771 *
41a2d6cf 6772 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6773 * finds the closest node not already in the @used_nodes map.
6774 *
6775 * Should use nodemask_t.
6776 */
c5f59f08 6777static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6778{
6779 int i, n, val, min_val, best_node = 0;
6780
6781 min_val = INT_MAX;
6782
076ac2af 6783 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6784 /* Start at @node */
076ac2af 6785 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6786
6787 if (!nr_cpus_node(n))
6788 continue;
6789
6790 /* Skip already used nodes */
c5f59f08 6791 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6792 continue;
6793
6794 /* Simple min distance search */
6795 val = node_distance(node, n);
6796
6797 if (val < min_val) {
6798 min_val = val;
6799 best_node = n;
6800 }
6801 }
6802
c5f59f08 6803 node_set(best_node, *used_nodes);
9c1cfda2
JH
6804 return best_node;
6805}
6806
6807/**
6808 * sched_domain_node_span - get a cpumask for a node's sched_domain
6809 * @node: node whose cpumask we're constructing
73486722 6810 * @span: resulting cpumask
9c1cfda2 6811 *
41a2d6cf 6812 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6813 * should be one that prevents unnecessary balancing, but also spreads tasks
6814 * out optimally.
6815 */
96f874e2 6816static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6817{
c5f59f08 6818 nodemask_t used_nodes;
48f24c4d 6819 int i;
9c1cfda2 6820
6ca09dfc 6821 cpumask_clear(span);
c5f59f08 6822 nodes_clear(used_nodes);
9c1cfda2 6823
6ca09dfc 6824 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6825 node_set(node, used_nodes);
9c1cfda2
JH
6826
6827 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6828 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6829
6ca09dfc 6830 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6831 }
9c1cfda2 6832}
6d6bc0ad 6833#endif /* CONFIG_NUMA */
9c1cfda2 6834
5c45bf27 6835int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6836
6c99e9ad
RR
6837/*
6838 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6839 *
6840 * ( See the the comments in include/linux/sched.h:struct sched_group
6841 * and struct sched_domain. )
6c99e9ad
RR
6842 */
6843struct static_sched_group {
6844 struct sched_group sg;
6845 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6846};
6847
6848struct static_sched_domain {
6849 struct sched_domain sd;
6850 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6851};
6852
49a02c51
AH
6853struct s_data {
6854#ifdef CONFIG_NUMA
6855 int sd_allnodes;
6856 cpumask_var_t domainspan;
6857 cpumask_var_t covered;
6858 cpumask_var_t notcovered;
6859#endif
6860 cpumask_var_t nodemask;
6861 cpumask_var_t this_sibling_map;
6862 cpumask_var_t this_core_map;
01a08546 6863 cpumask_var_t this_book_map;
49a02c51
AH
6864 cpumask_var_t send_covered;
6865 cpumask_var_t tmpmask;
6866 struct sched_group **sched_group_nodes;
6867 struct root_domain *rd;
6868};
6869
2109b99e
AH
6870enum s_alloc {
6871 sa_sched_groups = 0,
6872 sa_rootdomain,
6873 sa_tmpmask,
6874 sa_send_covered,
01a08546 6875 sa_this_book_map,
2109b99e
AH
6876 sa_this_core_map,
6877 sa_this_sibling_map,
6878 sa_nodemask,
6879 sa_sched_group_nodes,
6880#ifdef CONFIG_NUMA
6881 sa_notcovered,
6882 sa_covered,
6883 sa_domainspan,
6884#endif
6885 sa_none,
6886};
6887
9c1cfda2 6888/*
48f24c4d 6889 * SMT sched-domains:
9c1cfda2 6890 */
1da177e4 6891#ifdef CONFIG_SCHED_SMT
6c99e9ad 6892static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6893static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6894
41a2d6cf 6895static int
96f874e2
RR
6896cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6897 struct sched_group **sg, struct cpumask *unused)
1da177e4 6898{
6711cab4 6899 if (sg)
1871e52c 6900 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6901 return cpu;
6902}
6d6bc0ad 6903#endif /* CONFIG_SCHED_SMT */
1da177e4 6904
48f24c4d
IM
6905/*
6906 * multi-core sched-domains:
6907 */
1e9f28fa 6908#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6909static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6910static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6911
41a2d6cf 6912static int
96f874e2
RR
6913cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6914 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6915{
6711cab4 6916 int group;
f269893c 6917#ifdef CONFIG_SCHED_SMT
c69fc56d 6918 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6919 group = cpumask_first(mask);
f269893c
HC
6920#else
6921 group = cpu;
6922#endif
6711cab4 6923 if (sg)
6c99e9ad 6924 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6925 return group;
1e9f28fa 6926}
f269893c 6927#endif /* CONFIG_SCHED_MC */
1e9f28fa 6928
01a08546
HC
6929/*
6930 * book sched-domains:
6931 */
6932#ifdef CONFIG_SCHED_BOOK
6933static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6934static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6935
41a2d6cf 6936static int
01a08546
HC
6937cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6938 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6939{
01a08546
HC
6940 int group = cpu;
6941#ifdef CONFIG_SCHED_MC
6942 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6943 group = cpumask_first(mask);
6944#elif defined(CONFIG_SCHED_SMT)
6945 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6946 group = cpumask_first(mask);
6947#endif
6711cab4 6948 if (sg)
01a08546
HC
6949 *sg = &per_cpu(sched_group_book, group).sg;
6950 return group;
1e9f28fa 6951}
01a08546 6952#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6953
6c99e9ad
RR
6954static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6955static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6956
41a2d6cf 6957static int
96f874e2
RR
6958cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6959 struct sched_group **sg, struct cpumask *mask)
1da177e4 6960{
6711cab4 6961 int group;
01a08546
HC
6962#ifdef CONFIG_SCHED_BOOK
6963 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6964 group = cpumask_first(mask);
6965#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6966 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6967 group = cpumask_first(mask);
1e9f28fa 6968#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6969 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6970 group = cpumask_first(mask);
1da177e4 6971#else
6711cab4 6972 group = cpu;
1da177e4 6973#endif
6711cab4 6974 if (sg)
6c99e9ad 6975 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6976 return group;
1da177e4
LT
6977}
6978
6979#ifdef CONFIG_NUMA
1da177e4 6980/*
9c1cfda2
JH
6981 * The init_sched_build_groups can't handle what we want to do with node
6982 * groups, so roll our own. Now each node has its own list of groups which
6983 * gets dynamically allocated.
1da177e4 6984 */
62ea9ceb 6985static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6986static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6987
62ea9ceb 6988static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6989static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6990
96f874e2
RR
6991static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6992 struct sched_group **sg,
6993 struct cpumask *nodemask)
9c1cfda2 6994{
6711cab4
SS
6995 int group;
6996
6ca09dfc 6997 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6998 group = cpumask_first(nodemask);
6711cab4
SS
6999
7000 if (sg)
6c99e9ad 7001 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7002 return group;
1da177e4 7003}
6711cab4 7004
08069033
SS
7005static void init_numa_sched_groups_power(struct sched_group *group_head)
7006{
7007 struct sched_group *sg = group_head;
7008 int j;
7009
7010 if (!sg)
7011 return;
3a5c359a 7012 do {
758b2cdc 7013 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7014 struct sched_domain *sd;
08069033 7015
6c99e9ad 7016 sd = &per_cpu(phys_domains, j).sd;
13318a71 7017 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7018 /*
7019 * Only add "power" once for each
7020 * physical package.
7021 */
7022 continue;
7023 }
08069033 7024
18a3885f 7025 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7026 }
7027 sg = sg->next;
7028 } while (sg != group_head);
08069033 7029}
0601a88d
AH
7030
7031static int build_numa_sched_groups(struct s_data *d,
7032 const struct cpumask *cpu_map, int num)
7033{
7034 struct sched_domain *sd;
7035 struct sched_group *sg, *prev;
7036 int n, j;
7037
7038 cpumask_clear(d->covered);
7039 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7040 if (cpumask_empty(d->nodemask)) {
7041 d->sched_group_nodes[num] = NULL;
7042 goto out;
7043 }
7044
7045 sched_domain_node_span(num, d->domainspan);
7046 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7047
7048 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7049 GFP_KERNEL, num);
7050 if (!sg) {
3df0fc5b
PZ
7051 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7052 num);
0601a88d
AH
7053 return -ENOMEM;
7054 }
7055 d->sched_group_nodes[num] = sg;
7056
7057 for_each_cpu(j, d->nodemask) {
7058 sd = &per_cpu(node_domains, j).sd;
7059 sd->groups = sg;
7060 }
7061
18a3885f 7062 sg->cpu_power = 0;
0601a88d
AH
7063 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7064 sg->next = sg;
7065 cpumask_or(d->covered, d->covered, d->nodemask);
7066
7067 prev = sg;
7068 for (j = 0; j < nr_node_ids; j++) {
7069 n = (num + j) % nr_node_ids;
7070 cpumask_complement(d->notcovered, d->covered);
7071 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7072 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7073 if (cpumask_empty(d->tmpmask))
7074 break;
7075 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7076 if (cpumask_empty(d->tmpmask))
7077 continue;
7078 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7079 GFP_KERNEL, num);
7080 if (!sg) {
3df0fc5b
PZ
7081 printk(KERN_WARNING
7082 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7083 return -ENOMEM;
7084 }
18a3885f 7085 sg->cpu_power = 0;
0601a88d
AH
7086 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7087 sg->next = prev->next;
7088 cpumask_or(d->covered, d->covered, d->tmpmask);
7089 prev->next = sg;
7090 prev = sg;
7091 }
7092out:
7093 return 0;
7094}
6d6bc0ad 7095#endif /* CONFIG_NUMA */
1da177e4 7096
a616058b 7097#ifdef CONFIG_NUMA
51888ca2 7098/* Free memory allocated for various sched_group structures */
96f874e2
RR
7099static void free_sched_groups(const struct cpumask *cpu_map,
7100 struct cpumask *nodemask)
51888ca2 7101{
a616058b 7102 int cpu, i;
51888ca2 7103
abcd083a 7104 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7105 struct sched_group **sched_group_nodes
7106 = sched_group_nodes_bycpu[cpu];
7107
51888ca2
SV
7108 if (!sched_group_nodes)
7109 continue;
7110
076ac2af 7111 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7112 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7113
6ca09dfc 7114 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7115 if (cpumask_empty(nodemask))
51888ca2
SV
7116 continue;
7117
7118 if (sg == NULL)
7119 continue;
7120 sg = sg->next;
7121next_sg:
7122 oldsg = sg;
7123 sg = sg->next;
7124 kfree(oldsg);
7125 if (oldsg != sched_group_nodes[i])
7126 goto next_sg;
7127 }
7128 kfree(sched_group_nodes);
7129 sched_group_nodes_bycpu[cpu] = NULL;
7130 }
51888ca2 7131}
6d6bc0ad 7132#else /* !CONFIG_NUMA */
96f874e2
RR
7133static void free_sched_groups(const struct cpumask *cpu_map,
7134 struct cpumask *nodemask)
a616058b
SS
7135{
7136}
6d6bc0ad 7137#endif /* CONFIG_NUMA */
51888ca2 7138
89c4710e
SS
7139/*
7140 * Initialize sched groups cpu_power.
7141 *
7142 * cpu_power indicates the capacity of sched group, which is used while
7143 * distributing the load between different sched groups in a sched domain.
7144 * Typically cpu_power for all the groups in a sched domain will be same unless
7145 * there are asymmetries in the topology. If there are asymmetries, group
7146 * having more cpu_power will pickup more load compared to the group having
7147 * less cpu_power.
89c4710e
SS
7148 */
7149static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7150{
7151 struct sched_domain *child;
7152 struct sched_group *group;
f93e65c1
PZ
7153 long power;
7154 int weight;
89c4710e
SS
7155
7156 WARN_ON(!sd || !sd->groups);
7157
13318a71 7158 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7159 return;
7160
aae6d3dd
SS
7161 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7162
89c4710e
SS
7163 child = sd->child;
7164
18a3885f 7165 sd->groups->cpu_power = 0;
5517d86b 7166
f93e65c1
PZ
7167 if (!child) {
7168 power = SCHED_LOAD_SCALE;
7169 weight = cpumask_weight(sched_domain_span(sd));
7170 /*
7171 * SMT siblings share the power of a single core.
a52bfd73
PZ
7172 * Usually multiple threads get a better yield out of
7173 * that one core than a single thread would have,
7174 * reflect that in sd->smt_gain.
f93e65c1 7175 */
a52bfd73
PZ
7176 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7177 power *= sd->smt_gain;
f93e65c1 7178 power /= weight;
a52bfd73
PZ
7179 power >>= SCHED_LOAD_SHIFT;
7180 }
18a3885f 7181 sd->groups->cpu_power += power;
89c4710e
SS
7182 return;
7183 }
7184
89c4710e 7185 /*
f93e65c1 7186 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7187 */
7188 group = child->groups;
7189 do {
18a3885f 7190 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7191 group = group->next;
7192 } while (group != child->groups);
7193}
7194
7c16ec58
MT
7195/*
7196 * Initializers for schedule domains
7197 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7198 */
7199
a5d8c348
IM
7200#ifdef CONFIG_SCHED_DEBUG
7201# define SD_INIT_NAME(sd, type) sd->name = #type
7202#else
7203# define SD_INIT_NAME(sd, type) do { } while (0)
7204#endif
7205
7c16ec58 7206#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7207
7c16ec58
MT
7208#define SD_INIT_FUNC(type) \
7209static noinline void sd_init_##type(struct sched_domain *sd) \
7210{ \
7211 memset(sd, 0, sizeof(*sd)); \
7212 *sd = SD_##type##_INIT; \
1d3504fc 7213 sd->level = SD_LV_##type; \
a5d8c348 7214 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7215}
7216
7217SD_INIT_FUNC(CPU)
7218#ifdef CONFIG_NUMA
7219 SD_INIT_FUNC(ALLNODES)
7220 SD_INIT_FUNC(NODE)
7221#endif
7222#ifdef CONFIG_SCHED_SMT
7223 SD_INIT_FUNC(SIBLING)
7224#endif
7225#ifdef CONFIG_SCHED_MC
7226 SD_INIT_FUNC(MC)
7227#endif
01a08546
HC
7228#ifdef CONFIG_SCHED_BOOK
7229 SD_INIT_FUNC(BOOK)
7230#endif
7c16ec58 7231
1d3504fc
HS
7232static int default_relax_domain_level = -1;
7233
7234static int __init setup_relax_domain_level(char *str)
7235{
30e0e178
LZ
7236 unsigned long val;
7237
7238 val = simple_strtoul(str, NULL, 0);
7239 if (val < SD_LV_MAX)
7240 default_relax_domain_level = val;
7241
1d3504fc
HS
7242 return 1;
7243}
7244__setup("relax_domain_level=", setup_relax_domain_level);
7245
7246static void set_domain_attribute(struct sched_domain *sd,
7247 struct sched_domain_attr *attr)
7248{
7249 int request;
7250
7251 if (!attr || attr->relax_domain_level < 0) {
7252 if (default_relax_domain_level < 0)
7253 return;
7254 else
7255 request = default_relax_domain_level;
7256 } else
7257 request = attr->relax_domain_level;
7258 if (request < sd->level) {
7259 /* turn off idle balance on this domain */
c88d5910 7260 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7261 } else {
7262 /* turn on idle balance on this domain */
c88d5910 7263 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7264 }
7265}
7266
2109b99e
AH
7267static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7268 const struct cpumask *cpu_map)
7269{
7270 switch (what) {
7271 case sa_sched_groups:
7272 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7273 d->sched_group_nodes = NULL;
7274 case sa_rootdomain:
7275 free_rootdomain(d->rd); /* fall through */
7276 case sa_tmpmask:
7277 free_cpumask_var(d->tmpmask); /* fall through */
7278 case sa_send_covered:
7279 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7280 case sa_this_book_map:
7281 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7282 case sa_this_core_map:
7283 free_cpumask_var(d->this_core_map); /* fall through */
7284 case sa_this_sibling_map:
7285 free_cpumask_var(d->this_sibling_map); /* fall through */
7286 case sa_nodemask:
7287 free_cpumask_var(d->nodemask); /* fall through */
7288 case sa_sched_group_nodes:
d1b55138 7289#ifdef CONFIG_NUMA
2109b99e
AH
7290 kfree(d->sched_group_nodes); /* fall through */
7291 case sa_notcovered:
7292 free_cpumask_var(d->notcovered); /* fall through */
7293 case sa_covered:
7294 free_cpumask_var(d->covered); /* fall through */
7295 case sa_domainspan:
7296 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7297#endif
2109b99e
AH
7298 case sa_none:
7299 break;
7300 }
7301}
3404c8d9 7302
2109b99e
AH
7303static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7304 const struct cpumask *cpu_map)
7305{
3404c8d9 7306#ifdef CONFIG_NUMA
2109b99e
AH
7307 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7308 return sa_none;
7309 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7310 return sa_domainspan;
7311 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7312 return sa_covered;
7313 /* Allocate the per-node list of sched groups */
7314 d->sched_group_nodes = kcalloc(nr_node_ids,
7315 sizeof(struct sched_group *), GFP_KERNEL);
7316 if (!d->sched_group_nodes) {
3df0fc5b 7317 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7318 return sa_notcovered;
d1b55138 7319 }
2109b99e 7320 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7321#endif
2109b99e
AH
7322 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7323 return sa_sched_group_nodes;
7324 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7325 return sa_nodemask;
7326 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7327 return sa_this_sibling_map;
01a08546 7328 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7329 return sa_this_core_map;
01a08546
HC
7330 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7331 return sa_this_book_map;
2109b99e
AH
7332 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7333 return sa_send_covered;
7334 d->rd = alloc_rootdomain();
7335 if (!d->rd) {
3df0fc5b 7336 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7337 return sa_tmpmask;
57d885fe 7338 }
2109b99e
AH
7339 return sa_rootdomain;
7340}
57d885fe 7341
7f4588f3
AH
7342static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7343 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7344{
7345 struct sched_domain *sd = NULL;
7c16ec58 7346#ifdef CONFIG_NUMA
7f4588f3 7347 struct sched_domain *parent;
1da177e4 7348
7f4588f3
AH
7349 d->sd_allnodes = 0;
7350 if (cpumask_weight(cpu_map) >
7351 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7352 sd = &per_cpu(allnodes_domains, i).sd;
7353 SD_INIT(sd, ALLNODES);
1d3504fc 7354 set_domain_attribute(sd, attr);
7f4588f3
AH
7355 cpumask_copy(sched_domain_span(sd), cpu_map);
7356 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7357 d->sd_allnodes = 1;
7358 }
7359 parent = sd;
7360
7361 sd = &per_cpu(node_domains, i).sd;
7362 SD_INIT(sd, NODE);
7363 set_domain_attribute(sd, attr);
7364 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7365 sd->parent = parent;
7366 if (parent)
7367 parent->child = sd;
7368 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7369#endif
7f4588f3
AH
7370 return sd;
7371}
1da177e4 7372
87cce662
AH
7373static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7374 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7375 struct sched_domain *parent, int i)
7376{
7377 struct sched_domain *sd;
7378 sd = &per_cpu(phys_domains, i).sd;
7379 SD_INIT(sd, CPU);
7380 set_domain_attribute(sd, attr);
7381 cpumask_copy(sched_domain_span(sd), d->nodemask);
7382 sd->parent = parent;
7383 if (parent)
7384 parent->child = sd;
7385 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7386 return sd;
7387}
1da177e4 7388
01a08546
HC
7389static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7390 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7391 struct sched_domain *parent, int i)
7392{
7393 struct sched_domain *sd = parent;
7394#ifdef CONFIG_SCHED_BOOK
7395 sd = &per_cpu(book_domains, i).sd;
7396 SD_INIT(sd, BOOK);
7397 set_domain_attribute(sd, attr);
7398 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7399 sd->parent = parent;
7400 parent->child = sd;
7401 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7402#endif
7403 return sd;
7404}
7405
410c4081
AH
7406static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7407 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7408 struct sched_domain *parent, int i)
7409{
7410 struct sched_domain *sd = parent;
1e9f28fa 7411#ifdef CONFIG_SCHED_MC
410c4081
AH
7412 sd = &per_cpu(core_domains, i).sd;
7413 SD_INIT(sd, MC);
7414 set_domain_attribute(sd, attr);
7415 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7416 sd->parent = parent;
7417 parent->child = sd;
7418 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7419#endif
410c4081
AH
7420 return sd;
7421}
1e9f28fa 7422
d8173535
AH
7423static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7424 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7425 struct sched_domain *parent, int i)
7426{
7427 struct sched_domain *sd = parent;
1da177e4 7428#ifdef CONFIG_SCHED_SMT
d8173535
AH
7429 sd = &per_cpu(cpu_domains, i).sd;
7430 SD_INIT(sd, SIBLING);
7431 set_domain_attribute(sd, attr);
7432 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7433 sd->parent = parent;
7434 parent->child = sd;
7435 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7436#endif
d8173535
AH
7437 return sd;
7438}
1da177e4 7439
0e8e85c9
AH
7440static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7441 const struct cpumask *cpu_map, int cpu)
7442{
7443 switch (l) {
1da177e4 7444#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7445 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7446 cpumask_and(d->this_sibling_map, cpu_map,
7447 topology_thread_cpumask(cpu));
7448 if (cpu == cpumask_first(d->this_sibling_map))
7449 init_sched_build_groups(d->this_sibling_map, cpu_map,
7450 &cpu_to_cpu_group,
7451 d->send_covered, d->tmpmask);
7452 break;
1da177e4 7453#endif
1e9f28fa 7454#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7455 case SD_LV_MC: /* set up multi-core groups */
7456 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7457 if (cpu == cpumask_first(d->this_core_map))
7458 init_sched_build_groups(d->this_core_map, cpu_map,
7459 &cpu_to_core_group,
7460 d->send_covered, d->tmpmask);
7461 break;
01a08546
HC
7462#endif
7463#ifdef CONFIG_SCHED_BOOK
7464 case SD_LV_BOOK: /* set up book groups */
7465 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7466 if (cpu == cpumask_first(d->this_book_map))
7467 init_sched_build_groups(d->this_book_map, cpu_map,
7468 &cpu_to_book_group,
7469 d->send_covered, d->tmpmask);
7470 break;
1e9f28fa 7471#endif
86548096
AH
7472 case SD_LV_CPU: /* set up physical groups */
7473 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7474 if (!cpumask_empty(d->nodemask))
7475 init_sched_build_groups(d->nodemask, cpu_map,
7476 &cpu_to_phys_group,
7477 d->send_covered, d->tmpmask);
7478 break;
1da177e4 7479#ifdef CONFIG_NUMA
de616e36
AH
7480 case SD_LV_ALLNODES:
7481 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7482 d->send_covered, d->tmpmask);
7483 break;
7484#endif
0e8e85c9
AH
7485 default:
7486 break;
7c16ec58 7487 }
0e8e85c9 7488}
9c1cfda2 7489
2109b99e
AH
7490/*
7491 * Build sched domains for a given set of cpus and attach the sched domains
7492 * to the individual cpus
7493 */
7494static int __build_sched_domains(const struct cpumask *cpu_map,
7495 struct sched_domain_attr *attr)
7496{
7497 enum s_alloc alloc_state = sa_none;
7498 struct s_data d;
294b0c96 7499 struct sched_domain *sd;
2109b99e 7500 int i;
7c16ec58 7501#ifdef CONFIG_NUMA
2109b99e 7502 d.sd_allnodes = 0;
7c16ec58 7503#endif
9c1cfda2 7504
2109b99e
AH
7505 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7506 if (alloc_state != sa_rootdomain)
7507 goto error;
7508 alloc_state = sa_sched_groups;
9c1cfda2 7509
1da177e4 7510 /*
1a20ff27 7511 * Set up domains for cpus specified by the cpu_map.
1da177e4 7512 */
abcd083a 7513 for_each_cpu(i, cpu_map) {
49a02c51
AH
7514 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7515 cpu_map);
9761eea8 7516
7f4588f3 7517 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7518 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7519 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7520 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7521 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7522 }
9c1cfda2 7523
abcd083a 7524 for_each_cpu(i, cpu_map) {
0e8e85c9 7525 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7526 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7527 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7528 }
9c1cfda2 7529
1da177e4 7530 /* Set up physical groups */
86548096
AH
7531 for (i = 0; i < nr_node_ids; i++)
7532 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7533
1da177e4
LT
7534#ifdef CONFIG_NUMA
7535 /* Set up node groups */
de616e36
AH
7536 if (d.sd_allnodes)
7537 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7538
0601a88d
AH
7539 for (i = 0; i < nr_node_ids; i++)
7540 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7541 goto error;
1da177e4
LT
7542#endif
7543
7544 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7545#ifdef CONFIG_SCHED_SMT
abcd083a 7546 for_each_cpu(i, cpu_map) {
294b0c96 7547 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7548 init_sched_groups_power(i, sd);
5c45bf27 7549 }
1da177e4 7550#endif
1e9f28fa 7551#ifdef CONFIG_SCHED_MC
abcd083a 7552 for_each_cpu(i, cpu_map) {
294b0c96 7553 sd = &per_cpu(core_domains, i).sd;
89c4710e 7554 init_sched_groups_power(i, sd);
5c45bf27
SS
7555 }
7556#endif
01a08546
HC
7557#ifdef CONFIG_SCHED_BOOK
7558 for_each_cpu(i, cpu_map) {
7559 sd = &per_cpu(book_domains, i).sd;
7560 init_sched_groups_power(i, sd);
7561 }
7562#endif
1e9f28fa 7563
abcd083a 7564 for_each_cpu(i, cpu_map) {
294b0c96 7565 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7566 init_sched_groups_power(i, sd);
1da177e4
LT
7567 }
7568
9c1cfda2 7569#ifdef CONFIG_NUMA
076ac2af 7570 for (i = 0; i < nr_node_ids; i++)
49a02c51 7571 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7572
49a02c51 7573 if (d.sd_allnodes) {
6711cab4 7574 struct sched_group *sg;
f712c0c7 7575
96f874e2 7576 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7577 d.tmpmask);
f712c0c7
SS
7578 init_numa_sched_groups_power(sg);
7579 }
9c1cfda2
JH
7580#endif
7581
1da177e4 7582 /* Attach the domains */
abcd083a 7583 for_each_cpu(i, cpu_map) {
1da177e4 7584#ifdef CONFIG_SCHED_SMT
6c99e9ad 7585 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7586#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7587 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7588#elif defined(CONFIG_SCHED_BOOK)
7589 sd = &per_cpu(book_domains, i).sd;
1da177e4 7590#else
6c99e9ad 7591 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7592#endif
49a02c51 7593 cpu_attach_domain(sd, d.rd, i);
1da177e4 7594 }
51888ca2 7595
2109b99e
AH
7596 d.sched_group_nodes = NULL; /* don't free this we still need it */
7597 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7598 return 0;
51888ca2 7599
51888ca2 7600error:
2109b99e
AH
7601 __free_domain_allocs(&d, alloc_state, cpu_map);
7602 return -ENOMEM;
1da177e4 7603}
029190c5 7604
96f874e2 7605static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7606{
7607 return __build_sched_domains(cpu_map, NULL);
7608}
7609
acc3f5d7 7610static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7611static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7612static struct sched_domain_attr *dattr_cur;
7613 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7614
7615/*
7616 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7617 * cpumask) fails, then fallback to a single sched domain,
7618 * as determined by the single cpumask fallback_doms.
029190c5 7619 */
4212823f 7620static cpumask_var_t fallback_doms;
029190c5 7621
ee79d1bd
HC
7622/*
7623 * arch_update_cpu_topology lets virtualized architectures update the
7624 * cpu core maps. It is supposed to return 1 if the topology changed
7625 * or 0 if it stayed the same.
7626 */
7627int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7628{
ee79d1bd 7629 return 0;
22e52b07
HC
7630}
7631
acc3f5d7
RR
7632cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7633{
7634 int i;
7635 cpumask_var_t *doms;
7636
7637 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7638 if (!doms)
7639 return NULL;
7640 for (i = 0; i < ndoms; i++) {
7641 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7642 free_sched_domains(doms, i);
7643 return NULL;
7644 }
7645 }
7646 return doms;
7647}
7648
7649void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7650{
7651 unsigned int i;
7652 for (i = 0; i < ndoms; i++)
7653 free_cpumask_var(doms[i]);
7654 kfree(doms);
7655}
7656
1a20ff27 7657/*
41a2d6cf 7658 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7659 * For now this just excludes isolated cpus, but could be used to
7660 * exclude other special cases in the future.
1a20ff27 7661 */
96f874e2 7662static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7663{
7378547f
MM
7664 int err;
7665
22e52b07 7666 arch_update_cpu_topology();
029190c5 7667 ndoms_cur = 1;
acc3f5d7 7668 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7669 if (!doms_cur)
acc3f5d7
RR
7670 doms_cur = &fallback_doms;
7671 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7672 dattr_cur = NULL;
acc3f5d7 7673 err = build_sched_domains(doms_cur[0]);
6382bc90 7674 register_sched_domain_sysctl();
7378547f
MM
7675
7676 return err;
1a20ff27
DG
7677}
7678
96f874e2
RR
7679static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7680 struct cpumask *tmpmask)
1da177e4 7681{
7c16ec58 7682 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7683}
1da177e4 7684
1a20ff27
DG
7685/*
7686 * Detach sched domains from a group of cpus specified in cpu_map
7687 * These cpus will now be attached to the NULL domain
7688 */
96f874e2 7689static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7690{
96f874e2
RR
7691 /* Save because hotplug lock held. */
7692 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7693 int i;
7694
abcd083a 7695 for_each_cpu(i, cpu_map)
57d885fe 7696 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7697 synchronize_sched();
96f874e2 7698 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7699}
7700
1d3504fc
HS
7701/* handle null as "default" */
7702static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7703 struct sched_domain_attr *new, int idx_new)
7704{
7705 struct sched_domain_attr tmp;
7706
7707 /* fast path */
7708 if (!new && !cur)
7709 return 1;
7710
7711 tmp = SD_ATTR_INIT;
7712 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7713 new ? (new + idx_new) : &tmp,
7714 sizeof(struct sched_domain_attr));
7715}
7716
029190c5
PJ
7717/*
7718 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7719 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7720 * doms_new[] to the current sched domain partitioning, doms_cur[].
7721 * It destroys each deleted domain and builds each new domain.
7722 *
acc3f5d7 7723 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7724 * The masks don't intersect (don't overlap.) We should setup one
7725 * sched domain for each mask. CPUs not in any of the cpumasks will
7726 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7727 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7728 * it as it is.
7729 *
acc3f5d7
RR
7730 * The passed in 'doms_new' should be allocated using
7731 * alloc_sched_domains. This routine takes ownership of it and will
7732 * free_sched_domains it when done with it. If the caller failed the
7733 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7734 * and partition_sched_domains() will fallback to the single partition
7735 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7736 *
96f874e2 7737 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7738 * ndoms_new == 0 is a special case for destroying existing domains,
7739 * and it will not create the default domain.
dfb512ec 7740 *
029190c5
PJ
7741 * Call with hotplug lock held
7742 */
acc3f5d7 7743void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7744 struct sched_domain_attr *dattr_new)
029190c5 7745{
dfb512ec 7746 int i, j, n;
d65bd5ec 7747 int new_topology;
029190c5 7748
712555ee 7749 mutex_lock(&sched_domains_mutex);
a1835615 7750
7378547f
MM
7751 /* always unregister in case we don't destroy any domains */
7752 unregister_sched_domain_sysctl();
7753
d65bd5ec
HC
7754 /* Let architecture update cpu core mappings. */
7755 new_topology = arch_update_cpu_topology();
7756
dfb512ec 7757 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7758
7759 /* Destroy deleted domains */
7760 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7761 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7762 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7763 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7764 goto match1;
7765 }
7766 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7767 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7768match1:
7769 ;
7770 }
7771
e761b772
MK
7772 if (doms_new == NULL) {
7773 ndoms_cur = 0;
acc3f5d7 7774 doms_new = &fallback_doms;
6ad4c188 7775 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7776 WARN_ON_ONCE(dattr_new);
e761b772
MK
7777 }
7778
029190c5
PJ
7779 /* Build new domains */
7780 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7781 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7782 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7783 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7784 goto match2;
7785 }
7786 /* no match - add a new doms_new */
acc3f5d7 7787 __build_sched_domains(doms_new[i],
1d3504fc 7788 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7789match2:
7790 ;
7791 }
7792
7793 /* Remember the new sched domains */
acc3f5d7
RR
7794 if (doms_cur != &fallback_doms)
7795 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7796 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7797 doms_cur = doms_new;
1d3504fc 7798 dattr_cur = dattr_new;
029190c5 7799 ndoms_cur = ndoms_new;
7378547f
MM
7800
7801 register_sched_domain_sysctl();
a1835615 7802
712555ee 7803 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7804}
7805
5c45bf27 7806#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7807static void arch_reinit_sched_domains(void)
5c45bf27 7808{
95402b38 7809 get_online_cpus();
dfb512ec
MK
7810
7811 /* Destroy domains first to force the rebuild */
7812 partition_sched_domains(0, NULL, NULL);
7813
e761b772 7814 rebuild_sched_domains();
95402b38 7815 put_online_cpus();
5c45bf27
SS
7816}
7817
7818static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7819{
afb8a9b7 7820 unsigned int level = 0;
5c45bf27 7821
afb8a9b7
GS
7822 if (sscanf(buf, "%u", &level) != 1)
7823 return -EINVAL;
7824
7825 /*
7826 * level is always be positive so don't check for
7827 * level < POWERSAVINGS_BALANCE_NONE which is 0
7828 * What happens on 0 or 1 byte write,
7829 * need to check for count as well?
7830 */
7831
7832 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7833 return -EINVAL;
7834
7835 if (smt)
afb8a9b7 7836 sched_smt_power_savings = level;
5c45bf27 7837 else
afb8a9b7 7838 sched_mc_power_savings = level;
5c45bf27 7839
c70f22d2 7840 arch_reinit_sched_domains();
5c45bf27 7841
c70f22d2 7842 return count;
5c45bf27
SS
7843}
7844
5c45bf27 7845#ifdef CONFIG_SCHED_MC
f718cd4a 7846static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7847 struct sysdev_class_attribute *attr,
f718cd4a 7848 char *page)
5c45bf27
SS
7849{
7850 return sprintf(page, "%u\n", sched_mc_power_savings);
7851}
f718cd4a 7852static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7853 struct sysdev_class_attribute *attr,
48f24c4d 7854 const char *buf, size_t count)
5c45bf27
SS
7855{
7856 return sched_power_savings_store(buf, count, 0);
7857}
f718cd4a
AK
7858static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7859 sched_mc_power_savings_show,
7860 sched_mc_power_savings_store);
5c45bf27
SS
7861#endif
7862
7863#ifdef CONFIG_SCHED_SMT
f718cd4a 7864static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7865 struct sysdev_class_attribute *attr,
f718cd4a 7866 char *page)
5c45bf27
SS
7867{
7868 return sprintf(page, "%u\n", sched_smt_power_savings);
7869}
f718cd4a 7870static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7871 struct sysdev_class_attribute *attr,
48f24c4d 7872 const char *buf, size_t count)
5c45bf27
SS
7873{
7874 return sched_power_savings_store(buf, count, 1);
7875}
f718cd4a
AK
7876static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7877 sched_smt_power_savings_show,
6707de00
AB
7878 sched_smt_power_savings_store);
7879#endif
7880
39aac648 7881int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7882{
7883 int err = 0;
7884
7885#ifdef CONFIG_SCHED_SMT
7886 if (smt_capable())
7887 err = sysfs_create_file(&cls->kset.kobj,
7888 &attr_sched_smt_power_savings.attr);
7889#endif
7890#ifdef CONFIG_SCHED_MC
7891 if (!err && mc_capable())
7892 err = sysfs_create_file(&cls->kset.kobj,
7893 &attr_sched_mc_power_savings.attr);
7894#endif
7895 return err;
7896}
6d6bc0ad 7897#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7898
1da177e4 7899/*
3a101d05
TH
7900 * Update cpusets according to cpu_active mask. If cpusets are
7901 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7902 * around partition_sched_domains().
1da177e4 7903 */
0b2e918a
TH
7904static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7905 void *hcpu)
e761b772 7906{
3a101d05 7907 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7908 case CPU_ONLINE:
6ad4c188 7909 case CPU_DOWN_FAILED:
3a101d05 7910 cpuset_update_active_cpus();
e761b772 7911 return NOTIFY_OK;
3a101d05
TH
7912 default:
7913 return NOTIFY_DONE;
7914 }
7915}
e761b772 7916
0b2e918a
TH
7917static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7918 void *hcpu)
3a101d05
TH
7919{
7920 switch (action & ~CPU_TASKS_FROZEN) {
7921 case CPU_DOWN_PREPARE:
7922 cpuset_update_active_cpus();
7923 return NOTIFY_OK;
e761b772
MK
7924 default:
7925 return NOTIFY_DONE;
7926 }
7927}
e761b772
MK
7928
7929static int update_runtime(struct notifier_block *nfb,
7930 unsigned long action, void *hcpu)
1da177e4 7931{
7def2be1
PZ
7932 int cpu = (int)(long)hcpu;
7933
1da177e4 7934 switch (action) {
1da177e4 7935 case CPU_DOWN_PREPARE:
8bb78442 7936 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7937 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7938 return NOTIFY_OK;
7939
1da177e4 7940 case CPU_DOWN_FAILED:
8bb78442 7941 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7942 case CPU_ONLINE:
8bb78442 7943 case CPU_ONLINE_FROZEN:
7def2be1 7944 enable_runtime(cpu_rq(cpu));
e761b772
MK
7945 return NOTIFY_OK;
7946
1da177e4
LT
7947 default:
7948 return NOTIFY_DONE;
7949 }
1da177e4 7950}
1da177e4
LT
7951
7952void __init sched_init_smp(void)
7953{
dcc30a35
RR
7954 cpumask_var_t non_isolated_cpus;
7955
7956 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7957 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7958
434d53b0
MT
7959#if defined(CONFIG_NUMA)
7960 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7961 GFP_KERNEL);
7962 BUG_ON(sched_group_nodes_bycpu == NULL);
7963#endif
95402b38 7964 get_online_cpus();
712555ee 7965 mutex_lock(&sched_domains_mutex);
6ad4c188 7966 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7967 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7968 if (cpumask_empty(non_isolated_cpus))
7969 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7970 mutex_unlock(&sched_domains_mutex);
95402b38 7971 put_online_cpus();
e761b772 7972
3a101d05
TH
7973 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7974 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7975
7976 /* RT runtime code needs to handle some hotplug events */
7977 hotcpu_notifier(update_runtime, 0);
7978
b328ca18 7979 init_hrtick();
5c1e1767
NP
7980
7981 /* Move init over to a non-isolated CPU */
dcc30a35 7982 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7983 BUG();
19978ca6 7984 sched_init_granularity();
dcc30a35 7985 free_cpumask_var(non_isolated_cpus);
4212823f 7986
0e3900e6 7987 init_sched_rt_class();
1da177e4
LT
7988}
7989#else
7990void __init sched_init_smp(void)
7991{
19978ca6 7992 sched_init_granularity();
1da177e4
LT
7993}
7994#endif /* CONFIG_SMP */
7995
cd1bb94b
AB
7996const_debug unsigned int sysctl_timer_migration = 1;
7997
1da177e4
LT
7998int in_sched_functions(unsigned long addr)
7999{
1da177e4
LT
8000 return in_lock_functions(addr) ||
8001 (addr >= (unsigned long)__sched_text_start
8002 && addr < (unsigned long)__sched_text_end);
8003}
8004
a9957449 8005static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8006{
8007 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8008 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8009#ifdef CONFIG_FAIR_GROUP_SCHED
8010 cfs_rq->rq = rq;
f07333bf 8011 /* allow initial update_cfs_load() to truncate */
6ea72f12 8012#ifdef CONFIG_SMP
f07333bf 8013 cfs_rq->load_stamp = 1;
6ea72f12 8014#endif
dd41f596 8015#endif
67e9fb2a 8016 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8017}
8018
fa85ae24
PZ
8019static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8020{
8021 struct rt_prio_array *array;
8022 int i;
8023
8024 array = &rt_rq->active;
8025 for (i = 0; i < MAX_RT_PRIO; i++) {
8026 INIT_LIST_HEAD(array->queue + i);
8027 __clear_bit(i, array->bitmap);
8028 }
8029 /* delimiter for bitsearch: */
8030 __set_bit(MAX_RT_PRIO, array->bitmap);
8031
052f1dc7 8032#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8033 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8034#ifdef CONFIG_SMP
e864c499 8035 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8036#endif
48d5e258 8037#endif
fa85ae24
PZ
8038#ifdef CONFIG_SMP
8039 rt_rq->rt_nr_migratory = 0;
fa85ae24 8040 rt_rq->overloaded = 0;
05fa785c 8041 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8042#endif
8043
8044 rt_rq->rt_time = 0;
8045 rt_rq->rt_throttled = 0;
ac086bc2 8046 rt_rq->rt_runtime = 0;
0986b11b 8047 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8048
052f1dc7 8049#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8050 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8051 rt_rq->rq = rq;
8052#endif
fa85ae24
PZ
8053}
8054
6f505b16 8055#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8056static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8057 struct sched_entity *se, int cpu,
ec7dc8ac 8058 struct sched_entity *parent)
6f505b16 8059{
ec7dc8ac 8060 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8061 tg->cfs_rq[cpu] = cfs_rq;
8062 init_cfs_rq(cfs_rq, rq);
8063 cfs_rq->tg = tg;
6f505b16
PZ
8064
8065 tg->se[cpu] = se;
07e06b01 8066 /* se could be NULL for root_task_group */
354d60c2
DG
8067 if (!se)
8068 return;
8069
ec7dc8ac
DG
8070 if (!parent)
8071 se->cfs_rq = &rq->cfs;
8072 else
8073 se->cfs_rq = parent->my_q;
8074
6f505b16 8075 se->my_q = cfs_rq;
9437178f 8076 update_load_set(&se->load, 0);
ec7dc8ac 8077 se->parent = parent;
6f505b16 8078}
052f1dc7 8079#endif
6f505b16 8080
052f1dc7 8081#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8082static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8083 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8084 struct sched_rt_entity *parent)
6f505b16 8085{
ec7dc8ac
DG
8086 struct rq *rq = cpu_rq(cpu);
8087
6f505b16
PZ
8088 tg->rt_rq[cpu] = rt_rq;
8089 init_rt_rq(rt_rq, rq);
8090 rt_rq->tg = tg;
ac086bc2 8091 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8092
8093 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8094 if (!rt_se)
8095 return;
8096
ec7dc8ac
DG
8097 if (!parent)
8098 rt_se->rt_rq = &rq->rt;
8099 else
8100 rt_se->rt_rq = parent->my_q;
8101
6f505b16 8102 rt_se->my_q = rt_rq;
ec7dc8ac 8103 rt_se->parent = parent;
6f505b16
PZ
8104 INIT_LIST_HEAD(&rt_se->run_list);
8105}
8106#endif
8107
1da177e4
LT
8108void __init sched_init(void)
8109{
dd41f596 8110 int i, j;
434d53b0
MT
8111 unsigned long alloc_size = 0, ptr;
8112
8113#ifdef CONFIG_FAIR_GROUP_SCHED
8114 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8115#endif
8116#ifdef CONFIG_RT_GROUP_SCHED
8117 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8118#endif
df7c8e84 8119#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8120 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8121#endif
434d53b0 8122 if (alloc_size) {
36b7b6d4 8123 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8124
8125#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8126 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8127 ptr += nr_cpu_ids * sizeof(void **);
8128
07e06b01 8129 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8130 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8131
6d6bc0ad 8132#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8133#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8134 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8135 ptr += nr_cpu_ids * sizeof(void **);
8136
07e06b01 8137 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8138 ptr += nr_cpu_ids * sizeof(void **);
8139
6d6bc0ad 8140#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8141#ifdef CONFIG_CPUMASK_OFFSTACK
8142 for_each_possible_cpu(i) {
8143 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8144 ptr += cpumask_size();
8145 }
8146#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8147 }
dd41f596 8148
57d885fe
GH
8149#ifdef CONFIG_SMP
8150 init_defrootdomain();
8151#endif
8152
d0b27fa7
PZ
8153 init_rt_bandwidth(&def_rt_bandwidth,
8154 global_rt_period(), global_rt_runtime());
8155
8156#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8157 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8158 global_rt_period(), global_rt_runtime());
6d6bc0ad 8159#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8160
7c941438 8161#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8162 list_add(&root_task_group.list, &task_groups);
8163 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8164 autogroup_init(&init_task);
7c941438 8165#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8166
0a945022 8167 for_each_possible_cpu(i) {
70b97a7f 8168 struct rq *rq;
1da177e4
LT
8169
8170 rq = cpu_rq(i);
05fa785c 8171 raw_spin_lock_init(&rq->lock);
7897986b 8172 rq->nr_running = 0;
dce48a84
TG
8173 rq->calc_load_active = 0;
8174 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8175 init_cfs_rq(&rq->cfs, rq);
6f505b16 8176 init_rt_rq(&rq->rt, rq);
dd41f596 8177#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8178 root_task_group.shares = root_task_group_load;
6f505b16 8179 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8180 /*
07e06b01 8181 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8182 *
8183 * In case of task-groups formed thr' the cgroup filesystem, it
8184 * gets 100% of the cpu resources in the system. This overall
8185 * system cpu resource is divided among the tasks of
07e06b01 8186 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8187 * based on each entity's (task or task-group's) weight
8188 * (se->load.weight).
8189 *
07e06b01 8190 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8191 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8192 * then A0's share of the cpu resource is:
8193 *
0d905bca 8194 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8195 *
07e06b01
YZ
8196 * We achieve this by letting root_task_group's tasks sit
8197 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8198 */
07e06b01 8199 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8200#endif /* CONFIG_FAIR_GROUP_SCHED */
8201
8202 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8203#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8204 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8205 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8206#endif
1da177e4 8207
dd41f596
IM
8208 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8209 rq->cpu_load[j] = 0;
fdf3e95d
VP
8210
8211 rq->last_load_update_tick = jiffies;
8212
1da177e4 8213#ifdef CONFIG_SMP
41c7ce9a 8214 rq->sd = NULL;
57d885fe 8215 rq->rd = NULL;
e51fd5e2 8216 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8217 rq->post_schedule = 0;
1da177e4 8218 rq->active_balance = 0;
dd41f596 8219 rq->next_balance = jiffies;
1da177e4 8220 rq->push_cpu = 0;
0a2966b4 8221 rq->cpu = i;
1f11eb6a 8222 rq->online = 0;
eae0c9df
MG
8223 rq->idle_stamp = 0;
8224 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8225 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8226#ifdef CONFIG_NO_HZ
8227 rq->nohz_balance_kick = 0;
8228 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8229#endif
1da177e4 8230#endif
8f4d37ec 8231 init_rq_hrtick(rq);
1da177e4 8232 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8233 }
8234
2dd73a4f 8235 set_load_weight(&init_task);
b50f60ce 8236
e107be36
AK
8237#ifdef CONFIG_PREEMPT_NOTIFIERS
8238 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8239#endif
8240
c9819f45 8241#ifdef CONFIG_SMP
962cf36c 8242 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8243#endif
8244
b50f60ce 8245#ifdef CONFIG_RT_MUTEXES
1d615482 8246 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8247#endif
8248
1da177e4
LT
8249 /*
8250 * The boot idle thread does lazy MMU switching as well:
8251 */
8252 atomic_inc(&init_mm.mm_count);
8253 enter_lazy_tlb(&init_mm, current);
8254
8255 /*
8256 * Make us the idle thread. Technically, schedule() should not be
8257 * called from this thread, however somewhere below it might be,
8258 * but because we are the idle thread, we just pick up running again
8259 * when this runqueue becomes "idle".
8260 */
8261 init_idle(current, smp_processor_id());
dce48a84
TG
8262
8263 calc_load_update = jiffies + LOAD_FREQ;
8264
dd41f596
IM
8265 /*
8266 * During early bootup we pretend to be a normal task:
8267 */
8268 current->sched_class = &fair_sched_class;
6892b75e 8269
6a7b3dc3 8270 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8271 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8272#ifdef CONFIG_SMP
7d1e6a9b 8273#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8274 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8275 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8276 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8277 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8278 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8279#endif
bdddd296
RR
8280 /* May be allocated at isolcpus cmdline parse time */
8281 if (cpu_isolated_map == NULL)
8282 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8283#endif /* SMP */
6a7b3dc3 8284
6892b75e 8285 scheduler_running = 1;
1da177e4
LT
8286}
8287
8288#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8289static inline int preempt_count_equals(int preempt_offset)
8290{
234da7bc 8291 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8292
8293 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8294}
8295
d894837f 8296void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8297{
48f24c4d 8298#ifdef in_atomic
1da177e4
LT
8299 static unsigned long prev_jiffy; /* ratelimiting */
8300
e4aafea2
FW
8301 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8302 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8303 return;
8304 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8305 return;
8306 prev_jiffy = jiffies;
8307
3df0fc5b
PZ
8308 printk(KERN_ERR
8309 "BUG: sleeping function called from invalid context at %s:%d\n",
8310 file, line);
8311 printk(KERN_ERR
8312 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8313 in_atomic(), irqs_disabled(),
8314 current->pid, current->comm);
aef745fc
IM
8315
8316 debug_show_held_locks(current);
8317 if (irqs_disabled())
8318 print_irqtrace_events(current);
8319 dump_stack();
1da177e4
LT
8320#endif
8321}
8322EXPORT_SYMBOL(__might_sleep);
8323#endif
8324
8325#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8326static void normalize_task(struct rq *rq, struct task_struct *p)
8327{
da7a735e
PZ
8328 const struct sched_class *prev_class = p->sched_class;
8329 int old_prio = p->prio;
3a5e4dc1 8330 int on_rq;
3e51f33f 8331
3a5e4dc1
AK
8332 on_rq = p->se.on_rq;
8333 if (on_rq)
8334 deactivate_task(rq, p, 0);
8335 __setscheduler(rq, p, SCHED_NORMAL, 0);
8336 if (on_rq) {
8337 activate_task(rq, p, 0);
8338 resched_task(rq->curr);
8339 }
da7a735e
PZ
8340
8341 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8342}
8343
1da177e4
LT
8344void normalize_rt_tasks(void)
8345{
a0f98a1c 8346 struct task_struct *g, *p;
1da177e4 8347 unsigned long flags;
70b97a7f 8348 struct rq *rq;
1da177e4 8349
4cf5d77a 8350 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8351 do_each_thread(g, p) {
178be793
IM
8352 /*
8353 * Only normalize user tasks:
8354 */
8355 if (!p->mm)
8356 continue;
8357
6cfb0d5d 8358 p->se.exec_start = 0;
6cfb0d5d 8359#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8360 p->se.statistics.wait_start = 0;
8361 p->se.statistics.sleep_start = 0;
8362 p->se.statistics.block_start = 0;
6cfb0d5d 8363#endif
dd41f596
IM
8364
8365 if (!rt_task(p)) {
8366 /*
8367 * Renice negative nice level userspace
8368 * tasks back to 0:
8369 */
8370 if (TASK_NICE(p) < 0 && p->mm)
8371 set_user_nice(p, 0);
1da177e4 8372 continue;
dd41f596 8373 }
1da177e4 8374
1d615482 8375 raw_spin_lock(&p->pi_lock);
b29739f9 8376 rq = __task_rq_lock(p);
1da177e4 8377
178be793 8378 normalize_task(rq, p);
3a5e4dc1 8379
b29739f9 8380 __task_rq_unlock(rq);
1d615482 8381 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8382 } while_each_thread(g, p);
8383
4cf5d77a 8384 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8385}
8386
8387#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8388
67fc4e0c 8389#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8390/*
67fc4e0c 8391 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8392 *
8393 * They can only be called when the whole system has been
8394 * stopped - every CPU needs to be quiescent, and no scheduling
8395 * activity can take place. Using them for anything else would
8396 * be a serious bug, and as a result, they aren't even visible
8397 * under any other configuration.
8398 */
8399
8400/**
8401 * curr_task - return the current task for a given cpu.
8402 * @cpu: the processor in question.
8403 *
8404 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8405 */
36c8b586 8406struct task_struct *curr_task(int cpu)
1df5c10a
LT
8407{
8408 return cpu_curr(cpu);
8409}
8410
67fc4e0c
JW
8411#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8412
8413#ifdef CONFIG_IA64
1df5c10a
LT
8414/**
8415 * set_curr_task - set the current task for a given cpu.
8416 * @cpu: the processor in question.
8417 * @p: the task pointer to set.
8418 *
8419 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8420 * are serviced on a separate stack. It allows the architecture to switch the
8421 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8422 * must be called with all CPU's synchronized, and interrupts disabled, the
8423 * and caller must save the original value of the current task (see
8424 * curr_task() above) and restore that value before reenabling interrupts and
8425 * re-starting the system.
8426 *
8427 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8428 */
36c8b586 8429void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8430{
8431 cpu_curr(cpu) = p;
8432}
8433
8434#endif
29f59db3 8435
bccbe08a
PZ
8436#ifdef CONFIG_FAIR_GROUP_SCHED
8437static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8438{
8439 int i;
8440
8441 for_each_possible_cpu(i) {
8442 if (tg->cfs_rq)
8443 kfree(tg->cfs_rq[i]);
8444 if (tg->se)
8445 kfree(tg->se[i]);
6f505b16
PZ
8446 }
8447
8448 kfree(tg->cfs_rq);
8449 kfree(tg->se);
6f505b16
PZ
8450}
8451
ec7dc8ac
DG
8452static
8453int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8454{
29f59db3 8455 struct cfs_rq *cfs_rq;
eab17229 8456 struct sched_entity *se;
9b5b7751 8457 struct rq *rq;
29f59db3
SV
8458 int i;
8459
434d53b0 8460 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8461 if (!tg->cfs_rq)
8462 goto err;
434d53b0 8463 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8464 if (!tg->se)
8465 goto err;
052f1dc7
PZ
8466
8467 tg->shares = NICE_0_LOAD;
29f59db3
SV
8468
8469 for_each_possible_cpu(i) {
9b5b7751 8470 rq = cpu_rq(i);
29f59db3 8471
eab17229
LZ
8472 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8473 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8474 if (!cfs_rq)
8475 goto err;
8476
eab17229
LZ
8477 se = kzalloc_node(sizeof(struct sched_entity),
8478 GFP_KERNEL, cpu_to_node(i));
29f59db3 8479 if (!se)
dfc12eb2 8480 goto err_free_rq;
29f59db3 8481
3d4b47b4 8482 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8483 }
8484
8485 return 1;
8486
49246274 8487err_free_rq:
dfc12eb2 8488 kfree(cfs_rq);
49246274 8489err:
bccbe08a
PZ
8490 return 0;
8491}
8492
bccbe08a
PZ
8493static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8494{
3d4b47b4
PZ
8495 struct rq *rq = cpu_rq(cpu);
8496 unsigned long flags;
3d4b47b4
PZ
8497
8498 /*
8499 * Only empty task groups can be destroyed; so we can speculatively
8500 * check on_list without danger of it being re-added.
8501 */
8502 if (!tg->cfs_rq[cpu]->on_list)
8503 return;
8504
8505 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8506 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8507 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8508}
6d6bc0ad 8509#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8510static inline void free_fair_sched_group(struct task_group *tg)
8511{
8512}
8513
ec7dc8ac
DG
8514static inline
8515int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8516{
8517 return 1;
8518}
8519
bccbe08a
PZ
8520static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8521{
8522}
6d6bc0ad 8523#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8524
8525#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8526static void free_rt_sched_group(struct task_group *tg)
8527{
8528 int i;
8529
d0b27fa7
PZ
8530 destroy_rt_bandwidth(&tg->rt_bandwidth);
8531
bccbe08a
PZ
8532 for_each_possible_cpu(i) {
8533 if (tg->rt_rq)
8534 kfree(tg->rt_rq[i]);
8535 if (tg->rt_se)
8536 kfree(tg->rt_se[i]);
8537 }
8538
8539 kfree(tg->rt_rq);
8540 kfree(tg->rt_se);
8541}
8542
ec7dc8ac
DG
8543static
8544int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8545{
8546 struct rt_rq *rt_rq;
eab17229 8547 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8548 struct rq *rq;
8549 int i;
8550
434d53b0 8551 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8552 if (!tg->rt_rq)
8553 goto err;
434d53b0 8554 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8555 if (!tg->rt_se)
8556 goto err;
8557
d0b27fa7
PZ
8558 init_rt_bandwidth(&tg->rt_bandwidth,
8559 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8560
8561 for_each_possible_cpu(i) {
8562 rq = cpu_rq(i);
8563
eab17229
LZ
8564 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8565 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8566 if (!rt_rq)
8567 goto err;
29f59db3 8568
eab17229
LZ
8569 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8570 GFP_KERNEL, cpu_to_node(i));
6f505b16 8571 if (!rt_se)
dfc12eb2 8572 goto err_free_rq;
29f59db3 8573
3d4b47b4 8574 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8575 }
8576
bccbe08a
PZ
8577 return 1;
8578
49246274 8579err_free_rq:
dfc12eb2 8580 kfree(rt_rq);
49246274 8581err:
bccbe08a
PZ
8582 return 0;
8583}
6d6bc0ad 8584#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8585static inline void free_rt_sched_group(struct task_group *tg)
8586{
8587}
8588
ec7dc8ac
DG
8589static inline
8590int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8591{
8592 return 1;
8593}
6d6bc0ad 8594#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8595
7c941438 8596#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8597static void free_sched_group(struct task_group *tg)
8598{
8599 free_fair_sched_group(tg);
8600 free_rt_sched_group(tg);
e9aa1dd1 8601 autogroup_free(tg);
bccbe08a
PZ
8602 kfree(tg);
8603}
8604
8605/* allocate runqueue etc for a new task group */
ec7dc8ac 8606struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8607{
8608 struct task_group *tg;
8609 unsigned long flags;
bccbe08a
PZ
8610
8611 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8612 if (!tg)
8613 return ERR_PTR(-ENOMEM);
8614
ec7dc8ac 8615 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8616 goto err;
8617
ec7dc8ac 8618 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8619 goto err;
8620
8ed36996 8621 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8622 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8623
8624 WARN_ON(!parent); /* root should already exist */
8625
8626 tg->parent = parent;
f473aa5e 8627 INIT_LIST_HEAD(&tg->children);
09f2724a 8628 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8629 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8630
9b5b7751 8631 return tg;
29f59db3
SV
8632
8633err:
6f505b16 8634 free_sched_group(tg);
29f59db3
SV
8635 return ERR_PTR(-ENOMEM);
8636}
8637
9b5b7751 8638/* rcu callback to free various structures associated with a task group */
6f505b16 8639static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8640{
29f59db3 8641 /* now it should be safe to free those cfs_rqs */
6f505b16 8642 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8643}
8644
9b5b7751 8645/* Destroy runqueue etc associated with a task group */
4cf86d77 8646void sched_destroy_group(struct task_group *tg)
29f59db3 8647{
8ed36996 8648 unsigned long flags;
9b5b7751 8649 int i;
29f59db3 8650
3d4b47b4
PZ
8651 /* end participation in shares distribution */
8652 for_each_possible_cpu(i)
bccbe08a 8653 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8654
8655 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8656 list_del_rcu(&tg->list);
f473aa5e 8657 list_del_rcu(&tg->siblings);
8ed36996 8658 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8659
9b5b7751 8660 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8661 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8662}
8663
9b5b7751 8664/* change task's runqueue when it moves between groups.
3a252015
IM
8665 * The caller of this function should have put the task in its new group
8666 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8667 * reflect its new group.
9b5b7751
SV
8668 */
8669void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8670{
8671 int on_rq, running;
8672 unsigned long flags;
8673 struct rq *rq;
8674
8675 rq = task_rq_lock(tsk, &flags);
8676
051a1d1a 8677 running = task_current(rq, tsk);
29f59db3
SV
8678 on_rq = tsk->se.on_rq;
8679
0e1f3483 8680 if (on_rq)
29f59db3 8681 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8682 if (unlikely(running))
8683 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8684
810b3817 8685#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8686 if (tsk->sched_class->task_move_group)
8687 tsk->sched_class->task_move_group(tsk, on_rq);
8688 else
810b3817 8689#endif
b2b5ce02 8690 set_task_rq(tsk, task_cpu(tsk));
810b3817 8691
0e1f3483
HS
8692 if (unlikely(running))
8693 tsk->sched_class->set_curr_task(rq);
8694 if (on_rq)
371fd7e7 8695 enqueue_task(rq, tsk, 0);
29f59db3 8696
29f59db3
SV
8697 task_rq_unlock(rq, &flags);
8698}
7c941438 8699#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8700
052f1dc7 8701#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8702static DEFINE_MUTEX(shares_mutex);
8703
4cf86d77 8704int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8705{
8706 int i;
8ed36996 8707 unsigned long flags;
c61935fd 8708
ec7dc8ac
DG
8709 /*
8710 * We can't change the weight of the root cgroup.
8711 */
8712 if (!tg->se[0])
8713 return -EINVAL;
8714
18d95a28
PZ
8715 if (shares < MIN_SHARES)
8716 shares = MIN_SHARES;
cb4ad1ff
MX
8717 else if (shares > MAX_SHARES)
8718 shares = MAX_SHARES;
62fb1851 8719
8ed36996 8720 mutex_lock(&shares_mutex);
9b5b7751 8721 if (tg->shares == shares)
5cb350ba 8722 goto done;
29f59db3 8723
9b5b7751 8724 tg->shares = shares;
c09595f6 8725 for_each_possible_cpu(i) {
9437178f
PT
8726 struct rq *rq = cpu_rq(i);
8727 struct sched_entity *se;
8728
8729 se = tg->se[i];
8730 /* Propagate contribution to hierarchy */
8731 raw_spin_lock_irqsave(&rq->lock, flags);
8732 for_each_sched_entity(se)
6d5ab293 8733 update_cfs_shares(group_cfs_rq(se));
9437178f 8734 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8735 }
29f59db3 8736
5cb350ba 8737done:
8ed36996 8738 mutex_unlock(&shares_mutex);
9b5b7751 8739 return 0;
29f59db3
SV
8740}
8741
5cb350ba
DG
8742unsigned long sched_group_shares(struct task_group *tg)
8743{
8744 return tg->shares;
8745}
052f1dc7 8746#endif
5cb350ba 8747
052f1dc7 8748#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8749/*
9f0c1e56 8750 * Ensure that the real time constraints are schedulable.
6f505b16 8751 */
9f0c1e56
PZ
8752static DEFINE_MUTEX(rt_constraints_mutex);
8753
8754static unsigned long to_ratio(u64 period, u64 runtime)
8755{
8756 if (runtime == RUNTIME_INF)
9a7e0b18 8757 return 1ULL << 20;
9f0c1e56 8758
9a7e0b18 8759 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8760}
8761
9a7e0b18
PZ
8762/* Must be called with tasklist_lock held */
8763static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8764{
9a7e0b18 8765 struct task_struct *g, *p;
b40b2e8e 8766
9a7e0b18
PZ
8767 do_each_thread(g, p) {
8768 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8769 return 1;
8770 } while_each_thread(g, p);
b40b2e8e 8771
9a7e0b18
PZ
8772 return 0;
8773}
b40b2e8e 8774
9a7e0b18
PZ
8775struct rt_schedulable_data {
8776 struct task_group *tg;
8777 u64 rt_period;
8778 u64 rt_runtime;
8779};
b40b2e8e 8780
9a7e0b18
PZ
8781static int tg_schedulable(struct task_group *tg, void *data)
8782{
8783 struct rt_schedulable_data *d = data;
8784 struct task_group *child;
8785 unsigned long total, sum = 0;
8786 u64 period, runtime;
b40b2e8e 8787
9a7e0b18
PZ
8788 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8789 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8790
9a7e0b18
PZ
8791 if (tg == d->tg) {
8792 period = d->rt_period;
8793 runtime = d->rt_runtime;
b40b2e8e 8794 }
b40b2e8e 8795
4653f803
PZ
8796 /*
8797 * Cannot have more runtime than the period.
8798 */
8799 if (runtime > period && runtime != RUNTIME_INF)
8800 return -EINVAL;
6f505b16 8801
4653f803
PZ
8802 /*
8803 * Ensure we don't starve existing RT tasks.
8804 */
9a7e0b18
PZ
8805 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8806 return -EBUSY;
6f505b16 8807
9a7e0b18 8808 total = to_ratio(period, runtime);
6f505b16 8809
4653f803
PZ
8810 /*
8811 * Nobody can have more than the global setting allows.
8812 */
8813 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8814 return -EINVAL;
6f505b16 8815
4653f803
PZ
8816 /*
8817 * The sum of our children's runtime should not exceed our own.
8818 */
9a7e0b18
PZ
8819 list_for_each_entry_rcu(child, &tg->children, siblings) {
8820 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8821 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8822
9a7e0b18
PZ
8823 if (child == d->tg) {
8824 period = d->rt_period;
8825 runtime = d->rt_runtime;
8826 }
6f505b16 8827
9a7e0b18 8828 sum += to_ratio(period, runtime);
9f0c1e56 8829 }
6f505b16 8830
9a7e0b18
PZ
8831 if (sum > total)
8832 return -EINVAL;
8833
8834 return 0;
6f505b16
PZ
8835}
8836
9a7e0b18 8837static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8838{
9a7e0b18
PZ
8839 struct rt_schedulable_data data = {
8840 .tg = tg,
8841 .rt_period = period,
8842 .rt_runtime = runtime,
8843 };
8844
8845 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8846}
8847
d0b27fa7
PZ
8848static int tg_set_bandwidth(struct task_group *tg,
8849 u64 rt_period, u64 rt_runtime)
6f505b16 8850{
ac086bc2 8851 int i, err = 0;
9f0c1e56 8852
9f0c1e56 8853 mutex_lock(&rt_constraints_mutex);
521f1a24 8854 read_lock(&tasklist_lock);
9a7e0b18
PZ
8855 err = __rt_schedulable(tg, rt_period, rt_runtime);
8856 if (err)
9f0c1e56 8857 goto unlock;
ac086bc2 8858
0986b11b 8859 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8860 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8861 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8862
8863 for_each_possible_cpu(i) {
8864 struct rt_rq *rt_rq = tg->rt_rq[i];
8865
0986b11b 8866 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8867 rt_rq->rt_runtime = rt_runtime;
0986b11b 8868 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8869 }
0986b11b 8870 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8871unlock:
521f1a24 8872 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8873 mutex_unlock(&rt_constraints_mutex);
8874
8875 return err;
6f505b16
PZ
8876}
8877
d0b27fa7
PZ
8878int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8879{
8880 u64 rt_runtime, rt_period;
8881
8882 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8883 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8884 if (rt_runtime_us < 0)
8885 rt_runtime = RUNTIME_INF;
8886
8887 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8888}
8889
9f0c1e56
PZ
8890long sched_group_rt_runtime(struct task_group *tg)
8891{
8892 u64 rt_runtime_us;
8893
d0b27fa7 8894 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8895 return -1;
8896
d0b27fa7 8897 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8898 do_div(rt_runtime_us, NSEC_PER_USEC);
8899 return rt_runtime_us;
8900}
d0b27fa7
PZ
8901
8902int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8903{
8904 u64 rt_runtime, rt_period;
8905
8906 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8907 rt_runtime = tg->rt_bandwidth.rt_runtime;
8908
619b0488
R
8909 if (rt_period == 0)
8910 return -EINVAL;
8911
d0b27fa7
PZ
8912 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8913}
8914
8915long sched_group_rt_period(struct task_group *tg)
8916{
8917 u64 rt_period_us;
8918
8919 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8920 do_div(rt_period_us, NSEC_PER_USEC);
8921 return rt_period_us;
8922}
8923
8924static int sched_rt_global_constraints(void)
8925{
4653f803 8926 u64 runtime, period;
d0b27fa7
PZ
8927 int ret = 0;
8928
ec5d4989
HS
8929 if (sysctl_sched_rt_period <= 0)
8930 return -EINVAL;
8931
4653f803
PZ
8932 runtime = global_rt_runtime();
8933 period = global_rt_period();
8934
8935 /*
8936 * Sanity check on the sysctl variables.
8937 */
8938 if (runtime > period && runtime != RUNTIME_INF)
8939 return -EINVAL;
10b612f4 8940
d0b27fa7 8941 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8942 read_lock(&tasklist_lock);
4653f803 8943 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8944 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8945 mutex_unlock(&rt_constraints_mutex);
8946
8947 return ret;
8948}
54e99124
DG
8949
8950int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8951{
8952 /* Don't accept realtime tasks when there is no way for them to run */
8953 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8954 return 0;
8955
8956 return 1;
8957}
8958
6d6bc0ad 8959#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8960static int sched_rt_global_constraints(void)
8961{
ac086bc2
PZ
8962 unsigned long flags;
8963 int i;
8964
ec5d4989
HS
8965 if (sysctl_sched_rt_period <= 0)
8966 return -EINVAL;
8967
60aa605d
PZ
8968 /*
8969 * There's always some RT tasks in the root group
8970 * -- migration, kstopmachine etc..
8971 */
8972 if (sysctl_sched_rt_runtime == 0)
8973 return -EBUSY;
8974
0986b11b 8975 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8976 for_each_possible_cpu(i) {
8977 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8978
0986b11b 8979 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8980 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8981 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8982 }
0986b11b 8983 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8984
d0b27fa7
PZ
8985 return 0;
8986}
6d6bc0ad 8987#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8988
8989int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8990 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8991 loff_t *ppos)
8992{
8993 int ret;
8994 int old_period, old_runtime;
8995 static DEFINE_MUTEX(mutex);
8996
8997 mutex_lock(&mutex);
8998 old_period = sysctl_sched_rt_period;
8999 old_runtime = sysctl_sched_rt_runtime;
9000
8d65af78 9001 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9002
9003 if (!ret && write) {
9004 ret = sched_rt_global_constraints();
9005 if (ret) {
9006 sysctl_sched_rt_period = old_period;
9007 sysctl_sched_rt_runtime = old_runtime;
9008 } else {
9009 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9010 def_rt_bandwidth.rt_period =
9011 ns_to_ktime(global_rt_period());
9012 }
9013 }
9014 mutex_unlock(&mutex);
9015
9016 return ret;
9017}
68318b8e 9018
052f1dc7 9019#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9020
9021/* return corresponding task_group object of a cgroup */
2b01dfe3 9022static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9023{
2b01dfe3
PM
9024 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9025 struct task_group, css);
68318b8e
SV
9026}
9027
9028static struct cgroup_subsys_state *
2b01dfe3 9029cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9030{
ec7dc8ac 9031 struct task_group *tg, *parent;
68318b8e 9032
2b01dfe3 9033 if (!cgrp->parent) {
68318b8e 9034 /* This is early initialization for the top cgroup */
07e06b01 9035 return &root_task_group.css;
68318b8e
SV
9036 }
9037
ec7dc8ac
DG
9038 parent = cgroup_tg(cgrp->parent);
9039 tg = sched_create_group(parent);
68318b8e
SV
9040 if (IS_ERR(tg))
9041 return ERR_PTR(-ENOMEM);
9042
68318b8e
SV
9043 return &tg->css;
9044}
9045
41a2d6cf
IM
9046static void
9047cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9048{
2b01dfe3 9049 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9050
9051 sched_destroy_group(tg);
9052}
9053
41a2d6cf 9054static int
be367d09 9055cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9056{
b68aa230 9057#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9058 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9059 return -EINVAL;
9060#else
68318b8e
SV
9061 /* We don't support RT-tasks being in separate groups */
9062 if (tsk->sched_class != &fair_sched_class)
9063 return -EINVAL;
b68aa230 9064#endif
be367d09
BB
9065 return 0;
9066}
68318b8e 9067
be367d09
BB
9068static int
9069cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9070 struct task_struct *tsk, bool threadgroup)
9071{
9072 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9073 if (retval)
9074 return retval;
9075 if (threadgroup) {
9076 struct task_struct *c;
9077 rcu_read_lock();
9078 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9079 retval = cpu_cgroup_can_attach_task(cgrp, c);
9080 if (retval) {
9081 rcu_read_unlock();
9082 return retval;
9083 }
9084 }
9085 rcu_read_unlock();
9086 }
68318b8e
SV
9087 return 0;
9088}
9089
9090static void
2b01dfe3 9091cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9092 struct cgroup *old_cont, struct task_struct *tsk,
9093 bool threadgroup)
68318b8e
SV
9094{
9095 sched_move_task(tsk);
be367d09
BB
9096 if (threadgroup) {
9097 struct task_struct *c;
9098 rcu_read_lock();
9099 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9100 sched_move_task(c);
9101 }
9102 rcu_read_unlock();
9103 }
68318b8e
SV
9104}
9105
068c5cc5
PZ
9106static void
9107cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
9108{
9109 /*
9110 * cgroup_exit() is called in the copy_process() failure path.
9111 * Ignore this case since the task hasn't ran yet, this avoids
9112 * trying to poke a half freed task state from generic code.
9113 */
9114 if (!(task->flags & PF_EXITING))
9115 return;
9116
9117 sched_move_task(task);
9118}
9119
052f1dc7 9120#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9121static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9122 u64 shareval)
68318b8e 9123{
2b01dfe3 9124 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9125}
9126
f4c753b7 9127static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9128{
2b01dfe3 9129 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9130
9131 return (u64) tg->shares;
9132}
6d6bc0ad 9133#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9134
052f1dc7 9135#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9136static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9137 s64 val)
6f505b16 9138{
06ecb27c 9139 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9140}
9141
06ecb27c 9142static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9143{
06ecb27c 9144 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9145}
d0b27fa7
PZ
9146
9147static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9148 u64 rt_period_us)
9149{
9150 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9151}
9152
9153static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9154{
9155 return sched_group_rt_period(cgroup_tg(cgrp));
9156}
6d6bc0ad 9157#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9158
fe5c7cc2 9159static struct cftype cpu_files[] = {
052f1dc7 9160#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9161 {
9162 .name = "shares",
f4c753b7
PM
9163 .read_u64 = cpu_shares_read_u64,
9164 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9165 },
052f1dc7
PZ
9166#endif
9167#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9168 {
9f0c1e56 9169 .name = "rt_runtime_us",
06ecb27c
PM
9170 .read_s64 = cpu_rt_runtime_read,
9171 .write_s64 = cpu_rt_runtime_write,
6f505b16 9172 },
d0b27fa7
PZ
9173 {
9174 .name = "rt_period_us",
f4c753b7
PM
9175 .read_u64 = cpu_rt_period_read_uint,
9176 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9177 },
052f1dc7 9178#endif
68318b8e
SV
9179};
9180
9181static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9182{
fe5c7cc2 9183 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9184}
9185
9186struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9187 .name = "cpu",
9188 .create = cpu_cgroup_create,
9189 .destroy = cpu_cgroup_destroy,
9190 .can_attach = cpu_cgroup_can_attach,
9191 .attach = cpu_cgroup_attach,
068c5cc5 9192 .exit = cpu_cgroup_exit,
38605cae
IM
9193 .populate = cpu_cgroup_populate,
9194 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9195 .early_init = 1,
9196};
9197
052f1dc7 9198#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9199
9200#ifdef CONFIG_CGROUP_CPUACCT
9201
9202/*
9203 * CPU accounting code for task groups.
9204 *
9205 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9206 * (balbir@in.ibm.com).
9207 */
9208
934352f2 9209/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9210struct cpuacct {
9211 struct cgroup_subsys_state css;
9212 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9213 u64 __percpu *cpuusage;
ef12fefa 9214 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9215 struct cpuacct *parent;
d842de87
SV
9216};
9217
9218struct cgroup_subsys cpuacct_subsys;
9219
9220/* return cpu accounting group corresponding to this container */
32cd756a 9221static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9222{
32cd756a 9223 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9224 struct cpuacct, css);
9225}
9226
9227/* return cpu accounting group to which this task belongs */
9228static inline struct cpuacct *task_ca(struct task_struct *tsk)
9229{
9230 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9231 struct cpuacct, css);
9232}
9233
9234/* create a new cpu accounting group */
9235static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9236 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9237{
9238 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9239 int i;
d842de87
SV
9240
9241 if (!ca)
ef12fefa 9242 goto out;
d842de87
SV
9243
9244 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9245 if (!ca->cpuusage)
9246 goto out_free_ca;
9247
9248 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9249 if (percpu_counter_init(&ca->cpustat[i], 0))
9250 goto out_free_counters;
d842de87 9251
934352f2
BR
9252 if (cgrp->parent)
9253 ca->parent = cgroup_ca(cgrp->parent);
9254
d842de87 9255 return &ca->css;
ef12fefa
BR
9256
9257out_free_counters:
9258 while (--i >= 0)
9259 percpu_counter_destroy(&ca->cpustat[i]);
9260 free_percpu(ca->cpuusage);
9261out_free_ca:
9262 kfree(ca);
9263out:
9264 return ERR_PTR(-ENOMEM);
d842de87
SV
9265}
9266
9267/* destroy an existing cpu accounting group */
41a2d6cf 9268static void
32cd756a 9269cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9270{
32cd756a 9271 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9272 int i;
d842de87 9273
ef12fefa
BR
9274 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9275 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9276 free_percpu(ca->cpuusage);
9277 kfree(ca);
9278}
9279
720f5498
KC
9280static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9281{
b36128c8 9282 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9283 u64 data;
9284
9285#ifndef CONFIG_64BIT
9286 /*
9287 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9288 */
05fa785c 9289 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9290 data = *cpuusage;
05fa785c 9291 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9292#else
9293 data = *cpuusage;
9294#endif
9295
9296 return data;
9297}
9298
9299static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9300{
b36128c8 9301 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9302
9303#ifndef CONFIG_64BIT
9304 /*
9305 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9306 */
05fa785c 9307 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9308 *cpuusage = val;
05fa785c 9309 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9310#else
9311 *cpuusage = val;
9312#endif
9313}
9314
d842de87 9315/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9316static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9317{
32cd756a 9318 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9319 u64 totalcpuusage = 0;
9320 int i;
9321
720f5498
KC
9322 for_each_present_cpu(i)
9323 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9324
9325 return totalcpuusage;
9326}
9327
0297b803
DG
9328static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9329 u64 reset)
9330{
9331 struct cpuacct *ca = cgroup_ca(cgrp);
9332 int err = 0;
9333 int i;
9334
9335 if (reset) {
9336 err = -EINVAL;
9337 goto out;
9338 }
9339
720f5498
KC
9340 for_each_present_cpu(i)
9341 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9342
0297b803
DG
9343out:
9344 return err;
9345}
9346
e9515c3c
KC
9347static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9348 struct seq_file *m)
9349{
9350 struct cpuacct *ca = cgroup_ca(cgroup);
9351 u64 percpu;
9352 int i;
9353
9354 for_each_present_cpu(i) {
9355 percpu = cpuacct_cpuusage_read(ca, i);
9356 seq_printf(m, "%llu ", (unsigned long long) percpu);
9357 }
9358 seq_printf(m, "\n");
9359 return 0;
9360}
9361
ef12fefa
BR
9362static const char *cpuacct_stat_desc[] = {
9363 [CPUACCT_STAT_USER] = "user",
9364 [CPUACCT_STAT_SYSTEM] = "system",
9365};
9366
9367static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9368 struct cgroup_map_cb *cb)
9369{
9370 struct cpuacct *ca = cgroup_ca(cgrp);
9371 int i;
9372
9373 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9374 s64 val = percpu_counter_read(&ca->cpustat[i]);
9375 val = cputime64_to_clock_t(val);
9376 cb->fill(cb, cpuacct_stat_desc[i], val);
9377 }
9378 return 0;
9379}
9380
d842de87
SV
9381static struct cftype files[] = {
9382 {
9383 .name = "usage",
f4c753b7
PM
9384 .read_u64 = cpuusage_read,
9385 .write_u64 = cpuusage_write,
d842de87 9386 },
e9515c3c
KC
9387 {
9388 .name = "usage_percpu",
9389 .read_seq_string = cpuacct_percpu_seq_read,
9390 },
ef12fefa
BR
9391 {
9392 .name = "stat",
9393 .read_map = cpuacct_stats_show,
9394 },
d842de87
SV
9395};
9396
32cd756a 9397static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9398{
32cd756a 9399 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9400}
9401
9402/*
9403 * charge this task's execution time to its accounting group.
9404 *
9405 * called with rq->lock held.
9406 */
9407static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9408{
9409 struct cpuacct *ca;
934352f2 9410 int cpu;
d842de87 9411
c40c6f85 9412 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9413 return;
9414
934352f2 9415 cpu = task_cpu(tsk);
a18b83b7
BR
9416
9417 rcu_read_lock();
9418
d842de87 9419 ca = task_ca(tsk);
d842de87 9420
934352f2 9421 for (; ca; ca = ca->parent) {
b36128c8 9422 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9423 *cpuusage += cputime;
9424 }
a18b83b7
BR
9425
9426 rcu_read_unlock();
d842de87
SV
9427}
9428
fa535a77
AB
9429/*
9430 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9431 * in cputime_t units. As a result, cpuacct_update_stats calls
9432 * percpu_counter_add with values large enough to always overflow the
9433 * per cpu batch limit causing bad SMP scalability.
9434 *
9435 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9436 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9437 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9438 */
9439#ifdef CONFIG_SMP
9440#define CPUACCT_BATCH \
9441 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9442#else
9443#define CPUACCT_BATCH 0
9444#endif
9445
ef12fefa
BR
9446/*
9447 * Charge the system/user time to the task's accounting group.
9448 */
9449static void cpuacct_update_stats(struct task_struct *tsk,
9450 enum cpuacct_stat_index idx, cputime_t val)
9451{
9452 struct cpuacct *ca;
fa535a77 9453 int batch = CPUACCT_BATCH;
ef12fefa
BR
9454
9455 if (unlikely(!cpuacct_subsys.active))
9456 return;
9457
9458 rcu_read_lock();
9459 ca = task_ca(tsk);
9460
9461 do {
fa535a77 9462 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9463 ca = ca->parent;
9464 } while (ca);
9465 rcu_read_unlock();
9466}
9467
d842de87
SV
9468struct cgroup_subsys cpuacct_subsys = {
9469 .name = "cpuacct",
9470 .create = cpuacct_create,
9471 .destroy = cpuacct_destroy,
9472 .populate = cpuacct_populate,
9473 .subsys_id = cpuacct_subsys_id,
9474};
9475#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9476