sched: mix tasks and groups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
1da177e4 71
5517d86b 72#include <asm/tlb.h>
838225b4 73#include <asm/irq_regs.h>
1da177e4 74
b035b6de
AD
75/*
76 * Scheduler clock - returns current time in nanosec units.
77 * This is default implementation.
78 * Architectures and sub-architectures can override this.
79 */
80unsigned long long __attribute__((weak)) sched_clock(void)
81{
d6322faf 82 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
83}
84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
5517d86b
ED
124#ifdef CONFIG_SMP
125/*
126 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
127 * Since cpu_power is a 'constant', we can use a reciprocal divide.
128 */
129static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
130{
131 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132}
133
134/*
135 * Each time a sched group cpu_power is changed,
136 * we must compute its reciprocal value
137 */
138static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
139{
140 sg->__cpu_power += val;
141 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
142}
143#endif
144
e05606d3
IM
145static inline int rt_policy(int policy)
146{
147 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
148 return 1;
149 return 0;
150}
151
152static inline int task_has_rt_policy(struct task_struct *p)
153{
154 return rt_policy(p->policy);
155}
156
1da177e4 157/*
6aa645ea 158 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 159 */
6aa645ea
IM
160struct rt_prio_array {
161 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
162 struct list_head queue[MAX_RT_PRIO];
163};
164
d0b27fa7 165struct rt_bandwidth {
ea736ed5
IM
166 /* nests inside the rq lock: */
167 spinlock_t rt_runtime_lock;
168 ktime_t rt_period;
169 u64 rt_runtime;
170 struct hrtimer rt_period_timer;
d0b27fa7
PZ
171};
172
173static struct rt_bandwidth def_rt_bandwidth;
174
175static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
176
177static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
178{
179 struct rt_bandwidth *rt_b =
180 container_of(timer, struct rt_bandwidth, rt_period_timer);
181 ktime_t now;
182 int overrun;
183 int idle = 0;
184
185 for (;;) {
186 now = hrtimer_cb_get_time(timer);
187 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
188
189 if (!overrun)
190 break;
191
192 idle = do_sched_rt_period_timer(rt_b, overrun);
193 }
194
195 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
196}
197
198static
199void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
200{
201 rt_b->rt_period = ns_to_ktime(period);
202 rt_b->rt_runtime = runtime;
203
ac086bc2
PZ
204 spin_lock_init(&rt_b->rt_runtime_lock);
205
d0b27fa7
PZ
206 hrtimer_init(&rt_b->rt_period_timer,
207 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
208 rt_b->rt_period_timer.function = sched_rt_period_timer;
209 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
210}
211
212static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
213{
214 ktime_t now;
215
216 if (rt_b->rt_runtime == RUNTIME_INF)
217 return;
218
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 return;
221
222 spin_lock(&rt_b->rt_runtime_lock);
223 for (;;) {
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 break;
226
227 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
228 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
229 hrtimer_start(&rt_b->rt_period_timer,
230 rt_b->rt_period_timer.expires,
231 HRTIMER_MODE_ABS);
232 }
233 spin_unlock(&rt_b->rt_runtime_lock);
234}
235
236#ifdef CONFIG_RT_GROUP_SCHED
237static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
238{
239 hrtimer_cancel(&rt_b->rt_period_timer);
240}
241#endif
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
29f59db3
SV
274};
275
354d60c2 276#ifdef CONFIG_USER_SCHED
052f1dc7 277#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
278/* Default task group's sched entity on each cpu */
279static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
280/* Default task group's cfs_rq on each cpu */
281static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
286static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 287#endif
354d60c2 288#endif
6f505b16 289
8ed36996 290/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
291 * a task group's cpu shares.
292 */
8ed36996 293static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 294
a1835615
SV
295/* doms_cur_mutex serializes access to doms_cur[] array */
296static DEFINE_MUTEX(doms_cur_mutex);
297
052f1dc7 298#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
299#ifdef CONFIG_USER_SCHED
300# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
301#else
302# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
303#endif
304
052f1dc7
PZ
305static int init_task_group_load = INIT_TASK_GROUP_LOAD;
306#endif
307
29f59db3 308/* Default task group.
3a252015 309 * Every task in system belong to this group at bootup.
29f59db3 310 */
434d53b0 311struct task_group init_task_group;
29f59db3
SV
312
313/* return group to which a task belongs */
4cf86d77 314static inline struct task_group *task_group(struct task_struct *p)
29f59db3 315{
4cf86d77 316 struct task_group *tg;
9b5b7751 317
052f1dc7 318#ifdef CONFIG_USER_SCHED
24e377a8 319 tg = p->user->tg;
052f1dc7 320#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
321 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
322 struct task_group, css);
24e377a8 323#else
41a2d6cf 324 tg = &init_task_group;
24e377a8 325#endif
9b5b7751 326 return tg;
29f59db3
SV
327}
328
329/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 330static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 331{
052f1dc7 332#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
333 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
334 p->se.parent = task_group(p)->se[cpu];
052f1dc7 335#endif
6f505b16 336
052f1dc7 337#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
338 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
339 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 340#endif
29f59db3
SV
341}
342
a1835615
SV
343static inline void lock_doms_cur(void)
344{
345 mutex_lock(&doms_cur_mutex);
346}
347
348static inline void unlock_doms_cur(void)
349{
350 mutex_unlock(&doms_cur_mutex);
351}
352
29f59db3
SV
353#else
354
6f505b16 355static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
356static inline void lock_doms_cur(void) { }
357static inline void unlock_doms_cur(void) { }
29f59db3 358
052f1dc7 359#endif /* CONFIG_GROUP_SCHED */
29f59db3 360
6aa645ea
IM
361/* CFS-related fields in a runqueue */
362struct cfs_rq {
363 struct load_weight load;
364 unsigned long nr_running;
365
6aa645ea 366 u64 exec_clock;
e9acbff6 367 u64 min_vruntime;
6aa645ea
IM
368
369 struct rb_root tasks_timeline;
370 struct rb_node *rb_leftmost;
371 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
372 /* 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
aa2ac252 375 struct sched_entity *curr, *next;
ddc97297
PZ
376
377 unsigned long nr_spread_over;
378
62160e3f 379#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
41a2d6cf
IM
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
41a2d6cf
IM
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
392#endif
393};
1da177e4 394
6aa645ea
IM
395/* Real-Time classes' related field in a runqueue: */
396struct rt_rq {
397 struct rt_prio_array active;
63489e45 398 unsigned long rt_nr_running;
052f1dc7 399#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
400 int highest_prio; /* highest queued rt task prio */
401#endif
fa85ae24 402#ifdef CONFIG_SMP
73fe6aae 403 unsigned long rt_nr_migratory;
a22d7fc1 404 int overloaded;
fa85ae24 405#endif
6f505b16 406 int rt_throttled;
fa85ae24 407 u64 rt_time;
ac086bc2 408 u64 rt_runtime;
ea736ed5 409 /* Nests inside the rq lock: */
ac086bc2 410 spinlock_t rt_runtime_lock;
6f505b16 411
052f1dc7 412#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
413 unsigned long rt_nr_boosted;
414
6f505b16
PZ
415 struct rq *rq;
416 struct list_head leaf_rt_rq_list;
417 struct task_group *tg;
418 struct sched_rt_entity *rt_se;
419#endif
6aa645ea
IM
420};
421
57d885fe
GH
422#ifdef CONFIG_SMP
423
424/*
425 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
426 * variables. Each exclusive cpuset essentially defines an island domain by
427 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
428 * exclusive cpuset is created, we also create and attach a new root-domain
429 * object.
430 *
57d885fe
GH
431 */
432struct root_domain {
433 atomic_t refcount;
434 cpumask_t span;
435 cpumask_t online;
637f5085 436
0eab9146 437 /*
637f5085
GH
438 * The "RT overload" flag: it gets set if a CPU has more than
439 * one runnable RT task.
440 */
441 cpumask_t rto_mask;
0eab9146 442 atomic_t rto_count;
57d885fe
GH
443};
444
dc938520
GH
445/*
446 * By default the system creates a single root-domain with all cpus as
447 * members (mimicking the global state we have today).
448 */
57d885fe
GH
449static struct root_domain def_root_domain;
450
451#endif
452
1da177e4
LT
453/*
454 * This is the main, per-CPU runqueue data structure.
455 *
456 * Locking rule: those places that want to lock multiple runqueues
457 * (such as the load balancing or the thread migration code), lock
458 * acquire operations must be ordered by ascending &runqueue.
459 */
70b97a7f 460struct rq {
d8016491
IM
461 /* runqueue lock: */
462 spinlock_t lock;
1da177e4
LT
463
464 /*
465 * nr_running and cpu_load should be in the same cacheline because
466 * remote CPUs use both these fields when doing load calculation.
467 */
468 unsigned long nr_running;
6aa645ea
IM
469 #define CPU_LOAD_IDX_MAX 5
470 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 471 unsigned char idle_at_tick;
46cb4b7c 472#ifdef CONFIG_NO_HZ
15934a37 473 unsigned long last_tick_seen;
46cb4b7c
SS
474 unsigned char in_nohz_recently;
475#endif
d8016491
IM
476 /* capture load from *all* tasks on this cpu: */
477 struct load_weight load;
6aa645ea
IM
478 unsigned long nr_load_updates;
479 u64 nr_switches;
480
481 struct cfs_rq cfs;
6f505b16 482 struct rt_rq rt;
6f505b16 483
6aa645ea 484#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
485 /* list of leaf cfs_rq on this cpu: */
486 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
487#endif
488#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 489 struct list_head leaf_rt_rq_list;
1da177e4 490#endif
1da177e4
LT
491
492 /*
493 * This is part of a global counter where only the total sum
494 * over all CPUs matters. A task can increase this counter on
495 * one CPU and if it got migrated afterwards it may decrease
496 * it on another CPU. Always updated under the runqueue lock:
497 */
498 unsigned long nr_uninterruptible;
499
36c8b586 500 struct task_struct *curr, *idle;
c9819f45 501 unsigned long next_balance;
1da177e4 502 struct mm_struct *prev_mm;
6aa645ea 503
6aa645ea
IM
504 u64 clock, prev_clock_raw;
505 s64 clock_max_delta;
506
cc203d24 507 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
508 u64 idle_clock;
509 unsigned int clock_deep_idle_events;
529c7726 510 u64 tick_timestamp;
6aa645ea 511
1da177e4
LT
512 atomic_t nr_iowait;
513
514#ifdef CONFIG_SMP
0eab9146 515 struct root_domain *rd;
1da177e4
LT
516 struct sched_domain *sd;
517
518 /* For active balancing */
519 int active_balance;
520 int push_cpu;
d8016491
IM
521 /* cpu of this runqueue: */
522 int cpu;
1da177e4 523
36c8b586 524 struct task_struct *migration_thread;
1da177e4
LT
525 struct list_head migration_queue;
526#endif
527
8f4d37ec
PZ
528#ifdef CONFIG_SCHED_HRTICK
529 unsigned long hrtick_flags;
530 ktime_t hrtick_expire;
531 struct hrtimer hrtick_timer;
532#endif
533
1da177e4
LT
534#ifdef CONFIG_SCHEDSTATS
535 /* latency stats */
536 struct sched_info rq_sched_info;
537
538 /* sys_sched_yield() stats */
480b9434
KC
539 unsigned int yld_exp_empty;
540 unsigned int yld_act_empty;
541 unsigned int yld_both_empty;
542 unsigned int yld_count;
1da177e4
LT
543
544 /* schedule() stats */
480b9434
KC
545 unsigned int sched_switch;
546 unsigned int sched_count;
547 unsigned int sched_goidle;
1da177e4
LT
548
549 /* try_to_wake_up() stats */
480b9434
KC
550 unsigned int ttwu_count;
551 unsigned int ttwu_local;
b8efb561
IM
552
553 /* BKL stats */
480b9434 554 unsigned int bkl_count;
1da177e4 555#endif
fcb99371 556 struct lock_class_key rq_lock_key;
1da177e4
LT
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
dd41f596
IM
561static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
562{
563 rq->curr->sched_class->check_preempt_curr(rq, p);
564}
565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
15934a37
GC
575#ifdef CONFIG_NO_HZ
576static inline bool nohz_on(int cpu)
577{
578 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
579}
580
581static inline u64 max_skipped_ticks(struct rq *rq)
582{
583 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
584}
585
586static inline void update_last_tick_seen(struct rq *rq)
587{
588 rq->last_tick_seen = jiffies;
589}
590#else
591static inline u64 max_skipped_ticks(struct rq *rq)
592{
593 return 1;
594}
595
596static inline void update_last_tick_seen(struct rq *rq)
597{
598}
599#endif
600
20d315d4 601/*
b04a0f4c
IM
602 * Update the per-runqueue clock, as finegrained as the platform can give
603 * us, but without assuming monotonicity, etc.:
20d315d4 604 */
b04a0f4c 605static void __update_rq_clock(struct rq *rq)
20d315d4
IM
606{
607 u64 prev_raw = rq->prev_clock_raw;
608 u64 now = sched_clock();
609 s64 delta = now - prev_raw;
610 u64 clock = rq->clock;
611
b04a0f4c
IM
612#ifdef CONFIG_SCHED_DEBUG
613 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
614#endif
20d315d4
IM
615 /*
616 * Protect against sched_clock() occasionally going backwards:
617 */
618 if (unlikely(delta < 0)) {
619 clock++;
620 rq->clock_warps++;
621 } else {
622 /*
623 * Catch too large forward jumps too:
624 */
15934a37
GC
625 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
626 u64 max_time = rq->tick_timestamp + max_jump;
627
628 if (unlikely(clock + delta > max_time)) {
629 if (clock < max_time)
630 clock = max_time;
529c7726
IM
631 else
632 clock++;
20d315d4
IM
633 rq->clock_overflows++;
634 } else {
635 if (unlikely(delta > rq->clock_max_delta))
636 rq->clock_max_delta = delta;
637 clock += delta;
638 }
639 }
640
641 rq->prev_clock_raw = now;
642 rq->clock = clock;
b04a0f4c 643}
20d315d4 644
b04a0f4c
IM
645static void update_rq_clock(struct rq *rq)
646{
647 if (likely(smp_processor_id() == cpu_of(rq)))
648 __update_rq_clock(rq);
20d315d4
IM
649}
650
674311d5
NP
651/*
652 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 653 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
654 *
655 * The domain tree of any CPU may only be accessed from within
656 * preempt-disabled sections.
657 */
48f24c4d
IM
658#define for_each_domain(cpu, __sd) \
659 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
660
661#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
662#define this_rq() (&__get_cpu_var(runqueues))
663#define task_rq(p) cpu_rq(task_cpu(p))
664#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
665
bf5c91ba
IM
666/*
667 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
668 */
669#ifdef CONFIG_SCHED_DEBUG
670# define const_debug __read_mostly
671#else
672# define const_debug static const
673#endif
674
675/*
676 * Debugging: various feature bits
677 */
678enum {
bbdba7c0 679 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
680 SCHED_FEAT_WAKEUP_PREEMPT = 2,
681 SCHED_FEAT_START_DEBIT = 4,
d25ce4cd
IM
682 SCHED_FEAT_AFFINE_WAKEUPS = 8,
683 SCHED_FEAT_CACHE_HOT_BUDDY = 16,
02e2b83b
IM
684 SCHED_FEAT_SYNC_WAKEUPS = 32,
685 SCHED_FEAT_HRTICK = 64,
686 SCHED_FEAT_DOUBLE_TICK = 128,
112f53f5 687 SCHED_FEAT_NORMALIZED_SLEEPER = 256,
bf5c91ba
IM
688};
689
690const_debug unsigned int sysctl_sched_features =
8401f775 691 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 692 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775 693 SCHED_FEAT_START_DEBIT * 1 |
d25ce4cd
IM
694 SCHED_FEAT_AFFINE_WAKEUPS * 1 |
695 SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
02e2b83b 696 SCHED_FEAT_SYNC_WAKEUPS * 1 |
8f4d37ec 697 SCHED_FEAT_HRTICK * 1 |
112f53f5
PZ
698 SCHED_FEAT_DOUBLE_TICK * 0 |
699 SCHED_FEAT_NORMALIZED_SLEEPER * 1;
bf5c91ba
IM
700
701#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
702
b82d9fdd
PZ
703/*
704 * Number of tasks to iterate in a single balance run.
705 * Limited because this is done with IRQs disabled.
706 */
707const_debug unsigned int sysctl_sched_nr_migrate = 32;
708
fa85ae24 709/*
9f0c1e56 710 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
711 * default: 1s
712 */
9f0c1e56 713unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 714
6892b75e
IM
715static __read_mostly int scheduler_running;
716
9f0c1e56
PZ
717/*
718 * part of the period that we allow rt tasks to run in us.
719 * default: 0.95s
720 */
721int sysctl_sched_rt_runtime = 950000;
fa85ae24 722
d0b27fa7
PZ
723static inline u64 global_rt_period(void)
724{
725 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
726}
727
728static inline u64 global_rt_runtime(void)
729{
730 if (sysctl_sched_rt_period < 0)
731 return RUNTIME_INF;
732
733 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
734}
fa85ae24 735
27ec4407
IM
736static const unsigned long long time_sync_thresh = 100000;
737
738static DEFINE_PER_CPU(unsigned long long, time_offset);
739static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
740
e436d800 741/*
27ec4407
IM
742 * Global lock which we take every now and then to synchronize
743 * the CPUs time. This method is not warp-safe, but it's good
744 * enough to synchronize slowly diverging time sources and thus
745 * it's good enough for tracing:
e436d800 746 */
27ec4407
IM
747static DEFINE_SPINLOCK(time_sync_lock);
748static unsigned long long prev_global_time;
749
750static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
751{
752 unsigned long flags;
753
754 spin_lock_irqsave(&time_sync_lock, flags);
755
756 if (time < prev_global_time) {
757 per_cpu(time_offset, cpu) += prev_global_time - time;
758 time = prev_global_time;
759 } else {
760 prev_global_time = time;
761 }
762
763 spin_unlock_irqrestore(&time_sync_lock, flags);
764
765 return time;
766}
767
768static unsigned long long __cpu_clock(int cpu)
e436d800 769{
e436d800
IM
770 unsigned long long now;
771 unsigned long flags;
b04a0f4c 772 struct rq *rq;
e436d800 773
8ced5f69
IM
774 /*
775 * Only call sched_clock() if the scheduler has already been
776 * initialized (some code might call cpu_clock() very early):
777 */
6892b75e
IM
778 if (unlikely(!scheduler_running))
779 return 0;
780
781 local_irq_save(flags);
782 rq = cpu_rq(cpu);
783 update_rq_clock(rq);
b04a0f4c 784 now = rq->clock;
2cd4d0ea 785 local_irq_restore(flags);
e436d800
IM
786
787 return now;
788}
27ec4407
IM
789
790/*
791 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
792 * clock constructed from sched_clock():
793 */
794unsigned long long cpu_clock(int cpu)
795{
796 unsigned long long prev_cpu_time, time, delta_time;
797
798 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
799 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
800 delta_time = time-prev_cpu_time;
801
802 if (unlikely(delta_time > time_sync_thresh))
803 time = __sync_cpu_clock(time, cpu);
804
805 return time;
806}
a58f6f25 807EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 808
1da177e4 809#ifndef prepare_arch_switch
4866cde0
NP
810# define prepare_arch_switch(next) do { } while (0)
811#endif
812#ifndef finish_arch_switch
813# define finish_arch_switch(prev) do { } while (0)
814#endif
815
051a1d1a
DA
816static inline int task_current(struct rq *rq, struct task_struct *p)
817{
818 return rq->curr == p;
819}
820
4866cde0 821#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 822static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 823{
051a1d1a 824 return task_current(rq, p);
4866cde0
NP
825}
826
70b97a7f 827static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
828{
829}
830
70b97a7f 831static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 832{
da04c035
IM
833#ifdef CONFIG_DEBUG_SPINLOCK
834 /* this is a valid case when another task releases the spinlock */
835 rq->lock.owner = current;
836#endif
8a25d5de
IM
837 /*
838 * If we are tracking spinlock dependencies then we have to
839 * fix up the runqueue lock - which gets 'carried over' from
840 * prev into current:
841 */
842 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
843
4866cde0
NP
844 spin_unlock_irq(&rq->lock);
845}
846
847#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 848static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
849{
850#ifdef CONFIG_SMP
851 return p->oncpu;
852#else
051a1d1a 853 return task_current(rq, p);
4866cde0
NP
854#endif
855}
856
70b97a7f 857static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
858{
859#ifdef CONFIG_SMP
860 /*
861 * We can optimise this out completely for !SMP, because the
862 * SMP rebalancing from interrupt is the only thing that cares
863 * here.
864 */
865 next->oncpu = 1;
866#endif
867#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
868 spin_unlock_irq(&rq->lock);
869#else
870 spin_unlock(&rq->lock);
871#endif
872}
873
70b97a7f 874static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
875{
876#ifdef CONFIG_SMP
877 /*
878 * After ->oncpu is cleared, the task can be moved to a different CPU.
879 * We must ensure this doesn't happen until the switch is completely
880 * finished.
881 */
882 smp_wmb();
883 prev->oncpu = 0;
884#endif
885#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
886 local_irq_enable();
1da177e4 887#endif
4866cde0
NP
888}
889#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 890
b29739f9
IM
891/*
892 * __task_rq_lock - lock the runqueue a given task resides on.
893 * Must be called interrupts disabled.
894 */
70b97a7f 895static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
896 __acquires(rq->lock)
897{
3a5c359a
AK
898 for (;;) {
899 struct rq *rq = task_rq(p);
900 spin_lock(&rq->lock);
901 if (likely(rq == task_rq(p)))
902 return rq;
b29739f9 903 spin_unlock(&rq->lock);
b29739f9 904 }
b29739f9
IM
905}
906
1da177e4
LT
907/*
908 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 909 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
910 * explicitly disabling preemption.
911 */
70b97a7f 912static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
913 __acquires(rq->lock)
914{
70b97a7f 915 struct rq *rq;
1da177e4 916
3a5c359a
AK
917 for (;;) {
918 local_irq_save(*flags);
919 rq = task_rq(p);
920 spin_lock(&rq->lock);
921 if (likely(rq == task_rq(p)))
922 return rq;
1da177e4 923 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 924 }
1da177e4
LT
925}
926
a9957449 927static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
928 __releases(rq->lock)
929{
930 spin_unlock(&rq->lock);
931}
932
70b97a7f 933static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
934 __releases(rq->lock)
935{
936 spin_unlock_irqrestore(&rq->lock, *flags);
937}
938
1da177e4 939/*
cc2a73b5 940 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 941 */
a9957449 942static struct rq *this_rq_lock(void)
1da177e4
LT
943 __acquires(rq->lock)
944{
70b97a7f 945 struct rq *rq;
1da177e4
LT
946
947 local_irq_disable();
948 rq = this_rq();
949 spin_lock(&rq->lock);
950
951 return rq;
952}
953
1b9f19c2 954/*
2aa44d05 955 * We are going deep-idle (irqs are disabled):
1b9f19c2 956 */
2aa44d05 957void sched_clock_idle_sleep_event(void)
1b9f19c2 958{
2aa44d05
IM
959 struct rq *rq = cpu_rq(smp_processor_id());
960
961 spin_lock(&rq->lock);
962 __update_rq_clock(rq);
963 spin_unlock(&rq->lock);
964 rq->clock_deep_idle_events++;
965}
966EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
967
968/*
969 * We just idled delta nanoseconds (called with irqs disabled):
970 */
971void sched_clock_idle_wakeup_event(u64 delta_ns)
972{
973 struct rq *rq = cpu_rq(smp_processor_id());
974 u64 now = sched_clock();
1b9f19c2 975
2aa44d05
IM
976 rq->idle_clock += delta_ns;
977 /*
978 * Override the previous timestamp and ignore all
979 * sched_clock() deltas that occured while we idled,
980 * and use the PM-provided delta_ns to advance the
981 * rq clock:
982 */
983 spin_lock(&rq->lock);
984 rq->prev_clock_raw = now;
985 rq->clock += delta_ns;
986 spin_unlock(&rq->lock);
782daeee 987 touch_softlockup_watchdog();
1b9f19c2 988}
2aa44d05 989EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 990
8f4d37ec
PZ
991static void __resched_task(struct task_struct *p, int tif_bit);
992
993static inline void resched_task(struct task_struct *p)
994{
995 __resched_task(p, TIF_NEED_RESCHED);
996}
997
998#ifdef CONFIG_SCHED_HRTICK
999/*
1000 * Use HR-timers to deliver accurate preemption points.
1001 *
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1005 *
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1008 */
1009static inline void resched_hrt(struct task_struct *p)
1010{
1011 __resched_task(p, TIF_HRTICK_RESCHED);
1012}
1013
1014static inline void resched_rq(struct rq *rq)
1015{
1016 unsigned long flags;
1017
1018 spin_lock_irqsave(&rq->lock, flags);
1019 resched_task(rq->curr);
1020 spin_unlock_irqrestore(&rq->lock, flags);
1021}
1022
1023enum {
1024 HRTICK_SET, /* re-programm hrtick_timer */
1025 HRTICK_RESET, /* not a new slice */
1026};
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
1040/*
1041 * Called to set the hrtick timer state.
1042 *
1043 * called with rq->lock held and irqs disabled
1044 */
1045static void hrtick_start(struct rq *rq, u64 delay, int reset)
1046{
1047 assert_spin_locked(&rq->lock);
1048
1049 /*
1050 * preempt at: now + delay
1051 */
1052 rq->hrtick_expire =
1053 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1054 /*
1055 * indicate we need to program the timer
1056 */
1057 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1058 if (reset)
1059 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1060
1061 /*
1062 * New slices are called from the schedule path and don't need a
1063 * forced reschedule.
1064 */
1065 if (reset)
1066 resched_hrt(rq->curr);
1067}
1068
1069static void hrtick_clear(struct rq *rq)
1070{
1071 if (hrtimer_active(&rq->hrtick_timer))
1072 hrtimer_cancel(&rq->hrtick_timer);
1073}
1074
1075/*
1076 * Update the timer from the possible pending state.
1077 */
1078static void hrtick_set(struct rq *rq)
1079{
1080 ktime_t time;
1081 int set, reset;
1082 unsigned long flags;
1083
1084 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1085
1086 spin_lock_irqsave(&rq->lock, flags);
1087 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1088 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1089 time = rq->hrtick_expire;
1090 clear_thread_flag(TIF_HRTICK_RESCHED);
1091 spin_unlock_irqrestore(&rq->lock, flags);
1092
1093 if (set) {
1094 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1095 if (reset && !hrtimer_active(&rq->hrtick_timer))
1096 resched_rq(rq);
1097 } else
1098 hrtick_clear(rq);
1099}
1100
1101/*
1102 * High-resolution timer tick.
1103 * Runs from hardirq context with interrupts disabled.
1104 */
1105static enum hrtimer_restart hrtick(struct hrtimer *timer)
1106{
1107 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1108
1109 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1110
1111 spin_lock(&rq->lock);
1112 __update_rq_clock(rq);
1113 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1114 spin_unlock(&rq->lock);
1115
1116 return HRTIMER_NORESTART;
1117}
1118
1119static inline void init_rq_hrtick(struct rq *rq)
1120{
1121 rq->hrtick_flags = 0;
1122 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1123 rq->hrtick_timer.function = hrtick;
1124 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1125}
1126
1127void hrtick_resched(void)
1128{
1129 struct rq *rq;
1130 unsigned long flags;
1131
1132 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1133 return;
1134
1135 local_irq_save(flags);
1136 rq = cpu_rq(smp_processor_id());
1137 hrtick_set(rq);
1138 local_irq_restore(flags);
1139}
1140#else
1141static inline void hrtick_clear(struct rq *rq)
1142{
1143}
1144
1145static inline void hrtick_set(struct rq *rq)
1146{
1147}
1148
1149static inline void init_rq_hrtick(struct rq *rq)
1150{
1151}
1152
1153void hrtick_resched(void)
1154{
1155}
1156#endif
1157
c24d20db
IM
1158/*
1159 * resched_task - mark a task 'to be rescheduled now'.
1160 *
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1164 */
1165#ifdef CONFIG_SMP
1166
1167#ifndef tsk_is_polling
1168#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169#endif
1170
8f4d37ec 1171static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1172{
1173 int cpu;
1174
1175 assert_spin_locked(&task_rq(p)->lock);
1176
8f4d37ec 1177 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1178 return;
1179
8f4d37ec 1180 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1181
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1185
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1190}
1191
1192static void resched_cpu(int cpu)
1193{
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1196
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1201}
06d8308c
TG
1202
1203#ifdef CONFIG_NO_HZ
1204/*
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1213 */
1214void wake_up_idle_cpu(int cpu)
1215{
1216 struct rq *rq = cpu_rq(cpu);
1217
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /*
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1227 */
1228 if (rq->curr != rq->idle)
1229 return;
1230
1231 /*
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1235 */
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1242}
1243#endif
1244
c24d20db 1245#else
8f4d37ec 1246static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1247{
1248 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1249 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1250}
1251#endif
1252
45bf76df
IM
1253#if BITS_PER_LONG == 32
1254# define WMULT_CONST (~0UL)
1255#else
1256# define WMULT_CONST (1UL << 32)
1257#endif
1258
1259#define WMULT_SHIFT 32
1260
194081eb
IM
1261/*
1262 * Shift right and round:
1263 */
cf2ab469 1264#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1265
cb1c4fc9 1266static unsigned long
45bf76df
IM
1267calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1268 struct load_weight *lw)
1269{
1270 u64 tmp;
1271
1272 if (unlikely(!lw->inv_weight))
27d11726 1273 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
45bf76df
IM
1274
1275 tmp = (u64)delta_exec * weight;
1276 /*
1277 * Check whether we'd overflow the 64-bit multiplication:
1278 */
194081eb 1279 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1280 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1281 WMULT_SHIFT/2);
1282 else
cf2ab469 1283 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1284
ecf691da 1285 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1286}
1287
1288static inline unsigned long
1289calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1290{
1291 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1292}
1293
1091985b 1294static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1295{
1296 lw->weight += inc;
e89996ae 1297 lw->inv_weight = 0;
45bf76df
IM
1298}
1299
1091985b 1300static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1301{
1302 lw->weight -= dec;
e89996ae 1303 lw->inv_weight = 0;
45bf76df
IM
1304}
1305
2dd73a4f
PW
1306/*
1307 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1308 * of tasks with abnormal "nice" values across CPUs the contribution that
1309 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1310 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1311 * scaled version of the new time slice allocation that they receive on time
1312 * slice expiry etc.
1313 */
1314
dd41f596
IM
1315#define WEIGHT_IDLEPRIO 2
1316#define WMULT_IDLEPRIO (1 << 31)
1317
1318/*
1319 * Nice levels are multiplicative, with a gentle 10% change for every
1320 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1321 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1322 * that remained on nice 0.
1323 *
1324 * The "10% effect" is relative and cumulative: from _any_ nice level,
1325 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1326 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1327 * If a task goes up by ~10% and another task goes down by ~10% then
1328 * the relative distance between them is ~25%.)
dd41f596
IM
1329 */
1330static const int prio_to_weight[40] = {
254753dc
IM
1331 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1332 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1333 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1334 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1335 /* 0 */ 1024, 820, 655, 526, 423,
1336 /* 5 */ 335, 272, 215, 172, 137,
1337 /* 10 */ 110, 87, 70, 56, 45,
1338 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1339};
1340
5714d2de
IM
1341/*
1342 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1343 *
1344 * In cases where the weight does not change often, we can use the
1345 * precalculated inverse to speed up arithmetics by turning divisions
1346 * into multiplications:
1347 */
dd41f596 1348static const u32 prio_to_wmult[40] = {
254753dc
IM
1349 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1350 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1351 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1352 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1353 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1354 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1355 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1356 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1357};
2dd73a4f 1358
dd41f596
IM
1359static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1360
1361/*
1362 * runqueue iterator, to support SMP load-balancing between different
1363 * scheduling classes, without having to expose their internal data
1364 * structures to the load-balancing proper:
1365 */
1366struct rq_iterator {
1367 void *arg;
1368 struct task_struct *(*start)(void *);
1369 struct task_struct *(*next)(void *);
1370};
1371
e1d1484f
PW
1372#ifdef CONFIG_SMP
1373static unsigned long
1374balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1375 unsigned long max_load_move, struct sched_domain *sd,
1376 enum cpu_idle_type idle, int *all_pinned,
1377 int *this_best_prio, struct rq_iterator *iterator);
1378
1379static int
1380iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1381 struct sched_domain *sd, enum cpu_idle_type idle,
1382 struct rq_iterator *iterator);
e1d1484f 1383#endif
dd41f596 1384
d842de87
SV
1385#ifdef CONFIG_CGROUP_CPUACCT
1386static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1387#else
1388static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1389#endif
1390
e7693a36
GH
1391#ifdef CONFIG_SMP
1392static unsigned long source_load(int cpu, int type);
1393static unsigned long target_load(int cpu, int type);
1394static unsigned long cpu_avg_load_per_task(int cpu);
1395static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1396#endif /* CONFIG_SMP */
1397
dd41f596 1398#include "sched_stats.h"
dd41f596 1399#include "sched_idletask.c"
5522d5d5
IM
1400#include "sched_fair.c"
1401#include "sched_rt.c"
dd41f596
IM
1402#ifdef CONFIG_SCHED_DEBUG
1403# include "sched_debug.c"
1404#endif
1405
1406#define sched_class_highest (&rt_sched_class)
1407
62fb1851
PZ
1408static inline void inc_load(struct rq *rq, const struct task_struct *p)
1409{
1410 update_load_add(&rq->load, p->se.load.weight);
1411}
1412
1413static inline void dec_load(struct rq *rq, const struct task_struct *p)
1414{
1415 update_load_sub(&rq->load, p->se.load.weight);
1416}
1417
1418static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1419{
1420 rq->nr_running++;
62fb1851 1421 inc_load(rq, p);
9c217245
IM
1422}
1423
62fb1851 1424static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1425{
1426 rq->nr_running--;
62fb1851 1427 dec_load(rq, p);
9c217245
IM
1428}
1429
45bf76df
IM
1430static void set_load_weight(struct task_struct *p)
1431{
1432 if (task_has_rt_policy(p)) {
dd41f596
IM
1433 p->se.load.weight = prio_to_weight[0] * 2;
1434 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1435 return;
1436 }
45bf76df 1437
dd41f596
IM
1438 /*
1439 * SCHED_IDLE tasks get minimal weight:
1440 */
1441 if (p->policy == SCHED_IDLE) {
1442 p->se.load.weight = WEIGHT_IDLEPRIO;
1443 p->se.load.inv_weight = WMULT_IDLEPRIO;
1444 return;
1445 }
71f8bd46 1446
dd41f596
IM
1447 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1448 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1449}
1450
8159f87e 1451static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1452{
dd41f596 1453 sched_info_queued(p);
fd390f6a 1454 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1455 p->se.on_rq = 1;
71f8bd46
IM
1456}
1457
69be72c1 1458static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1459{
f02231e5 1460 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1461 p->se.on_rq = 0;
71f8bd46
IM
1462}
1463
14531189 1464/*
dd41f596 1465 * __normal_prio - return the priority that is based on the static prio
14531189 1466 */
14531189
IM
1467static inline int __normal_prio(struct task_struct *p)
1468{
dd41f596 1469 return p->static_prio;
14531189
IM
1470}
1471
b29739f9
IM
1472/*
1473 * Calculate the expected normal priority: i.e. priority
1474 * without taking RT-inheritance into account. Might be
1475 * boosted by interactivity modifiers. Changes upon fork,
1476 * setprio syscalls, and whenever the interactivity
1477 * estimator recalculates.
1478 */
36c8b586 1479static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1480{
1481 int prio;
1482
e05606d3 1483 if (task_has_rt_policy(p))
b29739f9
IM
1484 prio = MAX_RT_PRIO-1 - p->rt_priority;
1485 else
1486 prio = __normal_prio(p);
1487 return prio;
1488}
1489
1490/*
1491 * Calculate the current priority, i.e. the priority
1492 * taken into account by the scheduler. This value might
1493 * be boosted by RT tasks, or might be boosted by
1494 * interactivity modifiers. Will be RT if the task got
1495 * RT-boosted. If not then it returns p->normal_prio.
1496 */
36c8b586 1497static int effective_prio(struct task_struct *p)
b29739f9
IM
1498{
1499 p->normal_prio = normal_prio(p);
1500 /*
1501 * If we are RT tasks or we were boosted to RT priority,
1502 * keep the priority unchanged. Otherwise, update priority
1503 * to the normal priority:
1504 */
1505 if (!rt_prio(p->prio))
1506 return p->normal_prio;
1507 return p->prio;
1508}
1509
1da177e4 1510/*
dd41f596 1511 * activate_task - move a task to the runqueue.
1da177e4 1512 */
dd41f596 1513static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1514{
d9514f6c 1515 if (task_contributes_to_load(p))
dd41f596 1516 rq->nr_uninterruptible--;
1da177e4 1517
8159f87e 1518 enqueue_task(rq, p, wakeup);
62fb1851 1519 inc_nr_running(p, rq);
1da177e4
LT
1520}
1521
1da177e4
LT
1522/*
1523 * deactivate_task - remove a task from the runqueue.
1524 */
2e1cb74a 1525static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1526{
d9514f6c 1527 if (task_contributes_to_load(p))
dd41f596
IM
1528 rq->nr_uninterruptible++;
1529
69be72c1 1530 dequeue_task(rq, p, sleep);
62fb1851 1531 dec_nr_running(p, rq);
1da177e4
LT
1532}
1533
1da177e4
LT
1534/**
1535 * task_curr - is this task currently executing on a CPU?
1536 * @p: the task in question.
1537 */
36c8b586 1538inline int task_curr(const struct task_struct *p)
1da177e4
LT
1539{
1540 return cpu_curr(task_cpu(p)) == p;
1541}
1542
2dd73a4f
PW
1543/* Used instead of source_load when we know the type == 0 */
1544unsigned long weighted_cpuload(const int cpu)
1545{
495eca49 1546 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1547}
1548
1549static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1550{
6f505b16 1551 set_task_rq(p, cpu);
dd41f596 1552#ifdef CONFIG_SMP
ce96b5ac
DA
1553 /*
1554 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1555 * successfuly executed on another CPU. We must ensure that updates of
1556 * per-task data have been completed by this moment.
1557 */
1558 smp_wmb();
dd41f596 1559 task_thread_info(p)->cpu = cpu;
dd41f596 1560#endif
2dd73a4f
PW
1561}
1562
cb469845
SR
1563static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1564 const struct sched_class *prev_class,
1565 int oldprio, int running)
1566{
1567 if (prev_class != p->sched_class) {
1568 if (prev_class->switched_from)
1569 prev_class->switched_from(rq, p, running);
1570 p->sched_class->switched_to(rq, p, running);
1571 } else
1572 p->sched_class->prio_changed(rq, p, oldprio, running);
1573}
1574
1da177e4 1575#ifdef CONFIG_SMP
c65cc870 1576
cc367732
IM
1577/*
1578 * Is this task likely cache-hot:
1579 */
e7693a36 1580static int
cc367732
IM
1581task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1582{
1583 s64 delta;
1584
f540a608
IM
1585 /*
1586 * Buddy candidates are cache hot:
1587 */
d25ce4cd 1588 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1589 return 1;
1590
cc367732
IM
1591 if (p->sched_class != &fair_sched_class)
1592 return 0;
1593
6bc1665b
IM
1594 if (sysctl_sched_migration_cost == -1)
1595 return 1;
1596 if (sysctl_sched_migration_cost == 0)
1597 return 0;
1598
cc367732
IM
1599 delta = now - p->se.exec_start;
1600
1601 return delta < (s64)sysctl_sched_migration_cost;
1602}
1603
1604
dd41f596 1605void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1606{
dd41f596
IM
1607 int old_cpu = task_cpu(p);
1608 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1609 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1610 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1611 u64 clock_offset;
dd41f596
IM
1612
1613 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1614
1615#ifdef CONFIG_SCHEDSTATS
1616 if (p->se.wait_start)
1617 p->se.wait_start -= clock_offset;
dd41f596
IM
1618 if (p->se.sleep_start)
1619 p->se.sleep_start -= clock_offset;
1620 if (p->se.block_start)
1621 p->se.block_start -= clock_offset;
cc367732
IM
1622 if (old_cpu != new_cpu) {
1623 schedstat_inc(p, se.nr_migrations);
1624 if (task_hot(p, old_rq->clock, NULL))
1625 schedstat_inc(p, se.nr_forced2_migrations);
1626 }
6cfb0d5d 1627#endif
2830cf8c
SV
1628 p->se.vruntime -= old_cfsrq->min_vruntime -
1629 new_cfsrq->min_vruntime;
dd41f596
IM
1630
1631 __set_task_cpu(p, new_cpu);
c65cc870
IM
1632}
1633
70b97a7f 1634struct migration_req {
1da177e4 1635 struct list_head list;
1da177e4 1636
36c8b586 1637 struct task_struct *task;
1da177e4
LT
1638 int dest_cpu;
1639
1da177e4 1640 struct completion done;
70b97a7f 1641};
1da177e4
LT
1642
1643/*
1644 * The task's runqueue lock must be held.
1645 * Returns true if you have to wait for migration thread.
1646 */
36c8b586 1647static int
70b97a7f 1648migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1649{
70b97a7f 1650 struct rq *rq = task_rq(p);
1da177e4
LT
1651
1652 /*
1653 * If the task is not on a runqueue (and not running), then
1654 * it is sufficient to simply update the task's cpu field.
1655 */
dd41f596 1656 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1657 set_task_cpu(p, dest_cpu);
1658 return 0;
1659 }
1660
1661 init_completion(&req->done);
1da177e4
LT
1662 req->task = p;
1663 req->dest_cpu = dest_cpu;
1664 list_add(&req->list, &rq->migration_queue);
48f24c4d 1665
1da177e4
LT
1666 return 1;
1667}
1668
1669/*
1670 * wait_task_inactive - wait for a thread to unschedule.
1671 *
1672 * The caller must ensure that the task *will* unschedule sometime soon,
1673 * else this function might spin for a *long* time. This function can't
1674 * be called with interrupts off, or it may introduce deadlock with
1675 * smp_call_function() if an IPI is sent by the same process we are
1676 * waiting to become inactive.
1677 */
36c8b586 1678void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1679{
1680 unsigned long flags;
dd41f596 1681 int running, on_rq;
70b97a7f 1682 struct rq *rq;
1da177e4 1683
3a5c359a
AK
1684 for (;;) {
1685 /*
1686 * We do the initial early heuristics without holding
1687 * any task-queue locks at all. We'll only try to get
1688 * the runqueue lock when things look like they will
1689 * work out!
1690 */
1691 rq = task_rq(p);
fa490cfd 1692
3a5c359a
AK
1693 /*
1694 * If the task is actively running on another CPU
1695 * still, just relax and busy-wait without holding
1696 * any locks.
1697 *
1698 * NOTE! Since we don't hold any locks, it's not
1699 * even sure that "rq" stays as the right runqueue!
1700 * But we don't care, since "task_running()" will
1701 * return false if the runqueue has changed and p
1702 * is actually now running somewhere else!
1703 */
1704 while (task_running(rq, p))
1705 cpu_relax();
fa490cfd 1706
3a5c359a
AK
1707 /*
1708 * Ok, time to look more closely! We need the rq
1709 * lock now, to be *sure*. If we're wrong, we'll
1710 * just go back and repeat.
1711 */
1712 rq = task_rq_lock(p, &flags);
1713 running = task_running(rq, p);
1714 on_rq = p->se.on_rq;
1715 task_rq_unlock(rq, &flags);
fa490cfd 1716
3a5c359a
AK
1717 /*
1718 * Was it really running after all now that we
1719 * checked with the proper locks actually held?
1720 *
1721 * Oops. Go back and try again..
1722 */
1723 if (unlikely(running)) {
1724 cpu_relax();
1725 continue;
1726 }
fa490cfd 1727
3a5c359a
AK
1728 /*
1729 * It's not enough that it's not actively running,
1730 * it must be off the runqueue _entirely_, and not
1731 * preempted!
1732 *
1733 * So if it wa still runnable (but just not actively
1734 * running right now), it's preempted, and we should
1735 * yield - it could be a while.
1736 */
1737 if (unlikely(on_rq)) {
1738 schedule_timeout_uninterruptible(1);
1739 continue;
1740 }
fa490cfd 1741
3a5c359a
AK
1742 /*
1743 * Ahh, all good. It wasn't running, and it wasn't
1744 * runnable, which means that it will never become
1745 * running in the future either. We're all done!
1746 */
1747 break;
1748 }
1da177e4
LT
1749}
1750
1751/***
1752 * kick_process - kick a running thread to enter/exit the kernel
1753 * @p: the to-be-kicked thread
1754 *
1755 * Cause a process which is running on another CPU to enter
1756 * kernel-mode, without any delay. (to get signals handled.)
1757 *
1758 * NOTE: this function doesnt have to take the runqueue lock,
1759 * because all it wants to ensure is that the remote task enters
1760 * the kernel. If the IPI races and the task has been migrated
1761 * to another CPU then no harm is done and the purpose has been
1762 * achieved as well.
1763 */
36c8b586 1764void kick_process(struct task_struct *p)
1da177e4
LT
1765{
1766 int cpu;
1767
1768 preempt_disable();
1769 cpu = task_cpu(p);
1770 if ((cpu != smp_processor_id()) && task_curr(p))
1771 smp_send_reschedule(cpu);
1772 preempt_enable();
1773}
1774
1775/*
2dd73a4f
PW
1776 * Return a low guess at the load of a migration-source cpu weighted
1777 * according to the scheduling class and "nice" value.
1da177e4
LT
1778 *
1779 * We want to under-estimate the load of migration sources, to
1780 * balance conservatively.
1781 */
a9957449 1782static unsigned long source_load(int cpu, int type)
1da177e4 1783{
70b97a7f 1784 struct rq *rq = cpu_rq(cpu);
dd41f596 1785 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1786
3b0bd9bc 1787 if (type == 0)
dd41f596 1788 return total;
b910472d 1789
dd41f596 1790 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1791}
1792
1793/*
2dd73a4f
PW
1794 * Return a high guess at the load of a migration-target cpu weighted
1795 * according to the scheduling class and "nice" value.
1da177e4 1796 */
a9957449 1797static unsigned long target_load(int cpu, int type)
1da177e4 1798{
70b97a7f 1799 struct rq *rq = cpu_rq(cpu);
dd41f596 1800 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1801
7897986b 1802 if (type == 0)
dd41f596 1803 return total;
3b0bd9bc 1804
dd41f596 1805 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1806}
1807
1808/*
1809 * Return the average load per task on the cpu's run queue
1810 */
e7693a36 1811static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1812{
70b97a7f 1813 struct rq *rq = cpu_rq(cpu);
dd41f596 1814 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1815 unsigned long n = rq->nr_running;
1816
dd41f596 1817 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1818}
1819
147cbb4b
NP
1820/*
1821 * find_idlest_group finds and returns the least busy CPU group within the
1822 * domain.
1823 */
1824static struct sched_group *
1825find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1826{
1827 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1828 unsigned long min_load = ULONG_MAX, this_load = 0;
1829 int load_idx = sd->forkexec_idx;
1830 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1831
1832 do {
1833 unsigned long load, avg_load;
1834 int local_group;
1835 int i;
1836
da5a5522
BD
1837 /* Skip over this group if it has no CPUs allowed */
1838 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1839 continue;
da5a5522 1840
147cbb4b 1841 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1842
1843 /* Tally up the load of all CPUs in the group */
1844 avg_load = 0;
1845
1846 for_each_cpu_mask(i, group->cpumask) {
1847 /* Bias balancing toward cpus of our domain */
1848 if (local_group)
1849 load = source_load(i, load_idx);
1850 else
1851 load = target_load(i, load_idx);
1852
1853 avg_load += load;
1854 }
1855
1856 /* Adjust by relative CPU power of the group */
5517d86b
ED
1857 avg_load = sg_div_cpu_power(group,
1858 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1859
1860 if (local_group) {
1861 this_load = avg_load;
1862 this = group;
1863 } else if (avg_load < min_load) {
1864 min_load = avg_load;
1865 idlest = group;
1866 }
3a5c359a 1867 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1868
1869 if (!idlest || 100*this_load < imbalance*min_load)
1870 return NULL;
1871 return idlest;
1872}
1873
1874/*
0feaece9 1875 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1876 */
95cdf3b7 1877static int
7c16ec58
MT
1878find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1879 cpumask_t *tmp)
147cbb4b
NP
1880{
1881 unsigned long load, min_load = ULONG_MAX;
1882 int idlest = -1;
1883 int i;
1884
da5a5522 1885 /* Traverse only the allowed CPUs */
7c16ec58 1886 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1887
7c16ec58 1888 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1889 load = weighted_cpuload(i);
147cbb4b
NP
1890
1891 if (load < min_load || (load == min_load && i == this_cpu)) {
1892 min_load = load;
1893 idlest = i;
1894 }
1895 }
1896
1897 return idlest;
1898}
1899
476d139c
NP
1900/*
1901 * sched_balance_self: balance the current task (running on cpu) in domains
1902 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1903 * SD_BALANCE_EXEC.
1904 *
1905 * Balance, ie. select the least loaded group.
1906 *
1907 * Returns the target CPU number, or the same CPU if no balancing is needed.
1908 *
1909 * preempt must be disabled.
1910 */
1911static int sched_balance_self(int cpu, int flag)
1912{
1913 struct task_struct *t = current;
1914 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1915
c96d145e 1916 for_each_domain(cpu, tmp) {
9761eea8
IM
1917 /*
1918 * If power savings logic is enabled for a domain, stop there.
1919 */
5c45bf27
SS
1920 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1921 break;
476d139c
NP
1922 if (tmp->flags & flag)
1923 sd = tmp;
c96d145e 1924 }
476d139c
NP
1925
1926 while (sd) {
7c16ec58 1927 cpumask_t span, tmpmask;
476d139c 1928 struct sched_group *group;
1a848870
SS
1929 int new_cpu, weight;
1930
1931 if (!(sd->flags & flag)) {
1932 sd = sd->child;
1933 continue;
1934 }
476d139c
NP
1935
1936 span = sd->span;
1937 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1938 if (!group) {
1939 sd = sd->child;
1940 continue;
1941 }
476d139c 1942
7c16ec58 1943 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
1944 if (new_cpu == -1 || new_cpu == cpu) {
1945 /* Now try balancing at a lower domain level of cpu */
1946 sd = sd->child;
1947 continue;
1948 }
476d139c 1949
1a848870 1950 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1951 cpu = new_cpu;
476d139c
NP
1952 sd = NULL;
1953 weight = cpus_weight(span);
1954 for_each_domain(cpu, tmp) {
1955 if (weight <= cpus_weight(tmp->span))
1956 break;
1957 if (tmp->flags & flag)
1958 sd = tmp;
1959 }
1960 /* while loop will break here if sd == NULL */
1961 }
1962
1963 return cpu;
1964}
1965
1966#endif /* CONFIG_SMP */
1da177e4 1967
1da177e4
LT
1968/***
1969 * try_to_wake_up - wake up a thread
1970 * @p: the to-be-woken-up thread
1971 * @state: the mask of task states that can be woken
1972 * @sync: do a synchronous wakeup?
1973 *
1974 * Put it on the run-queue if it's not already there. The "current"
1975 * thread is always on the run-queue (except when the actual
1976 * re-schedule is in progress), and as such you're allowed to do
1977 * the simpler "current->state = TASK_RUNNING" to mark yourself
1978 * runnable without the overhead of this.
1979 *
1980 * returns failure only if the task is already active.
1981 */
36c8b586 1982static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1983{
cc367732 1984 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1985 unsigned long flags;
1986 long old_state;
70b97a7f 1987 struct rq *rq;
1da177e4 1988
b85d0667
IM
1989 if (!sched_feat(SYNC_WAKEUPS))
1990 sync = 0;
1991
04e2f174 1992 smp_wmb();
1da177e4
LT
1993 rq = task_rq_lock(p, &flags);
1994 old_state = p->state;
1995 if (!(old_state & state))
1996 goto out;
1997
dd41f596 1998 if (p->se.on_rq)
1da177e4
LT
1999 goto out_running;
2000
2001 cpu = task_cpu(p);
cc367732 2002 orig_cpu = cpu;
1da177e4
LT
2003 this_cpu = smp_processor_id();
2004
2005#ifdef CONFIG_SMP
2006 if (unlikely(task_running(rq, p)))
2007 goto out_activate;
2008
5d2f5a61
DA
2009 cpu = p->sched_class->select_task_rq(p, sync);
2010 if (cpu != orig_cpu) {
2011 set_task_cpu(p, cpu);
1da177e4
LT
2012 task_rq_unlock(rq, &flags);
2013 /* might preempt at this point */
2014 rq = task_rq_lock(p, &flags);
2015 old_state = p->state;
2016 if (!(old_state & state))
2017 goto out;
dd41f596 2018 if (p->se.on_rq)
1da177e4
LT
2019 goto out_running;
2020
2021 this_cpu = smp_processor_id();
2022 cpu = task_cpu(p);
2023 }
2024
e7693a36
GH
2025#ifdef CONFIG_SCHEDSTATS
2026 schedstat_inc(rq, ttwu_count);
2027 if (cpu == this_cpu)
2028 schedstat_inc(rq, ttwu_local);
2029 else {
2030 struct sched_domain *sd;
2031 for_each_domain(this_cpu, sd) {
2032 if (cpu_isset(cpu, sd->span)) {
2033 schedstat_inc(sd, ttwu_wake_remote);
2034 break;
2035 }
2036 }
2037 }
e7693a36
GH
2038#endif
2039
1da177e4
LT
2040out_activate:
2041#endif /* CONFIG_SMP */
cc367732
IM
2042 schedstat_inc(p, se.nr_wakeups);
2043 if (sync)
2044 schedstat_inc(p, se.nr_wakeups_sync);
2045 if (orig_cpu != cpu)
2046 schedstat_inc(p, se.nr_wakeups_migrate);
2047 if (cpu == this_cpu)
2048 schedstat_inc(p, se.nr_wakeups_local);
2049 else
2050 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2051 update_rq_clock(rq);
dd41f596 2052 activate_task(rq, p, 1);
1da177e4
LT
2053 success = 1;
2054
2055out_running:
4ae7d5ce
IM
2056 check_preempt_curr(rq, p);
2057
1da177e4 2058 p->state = TASK_RUNNING;
9a897c5a
SR
2059#ifdef CONFIG_SMP
2060 if (p->sched_class->task_wake_up)
2061 p->sched_class->task_wake_up(rq, p);
2062#endif
1da177e4
LT
2063out:
2064 task_rq_unlock(rq, &flags);
2065
2066 return success;
2067}
2068
7ad5b3a5 2069int wake_up_process(struct task_struct *p)
1da177e4 2070{
d9514f6c 2071 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2072}
1da177e4
LT
2073EXPORT_SYMBOL(wake_up_process);
2074
7ad5b3a5 2075int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2076{
2077 return try_to_wake_up(p, state, 0);
2078}
2079
1da177e4
LT
2080/*
2081 * Perform scheduler related setup for a newly forked process p.
2082 * p is forked by current.
dd41f596
IM
2083 *
2084 * __sched_fork() is basic setup used by init_idle() too:
2085 */
2086static void __sched_fork(struct task_struct *p)
2087{
dd41f596
IM
2088 p->se.exec_start = 0;
2089 p->se.sum_exec_runtime = 0;
f6cf891c 2090 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2091 p->se.last_wakeup = 0;
2092 p->se.avg_overlap = 0;
6cfb0d5d
IM
2093
2094#ifdef CONFIG_SCHEDSTATS
2095 p->se.wait_start = 0;
dd41f596
IM
2096 p->se.sum_sleep_runtime = 0;
2097 p->se.sleep_start = 0;
dd41f596
IM
2098 p->se.block_start = 0;
2099 p->se.sleep_max = 0;
2100 p->se.block_max = 0;
2101 p->se.exec_max = 0;
eba1ed4b 2102 p->se.slice_max = 0;
dd41f596 2103 p->se.wait_max = 0;
6cfb0d5d 2104#endif
476d139c 2105
fa717060 2106 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2107 p->se.on_rq = 0;
476d139c 2108
e107be36
AK
2109#ifdef CONFIG_PREEMPT_NOTIFIERS
2110 INIT_HLIST_HEAD(&p->preempt_notifiers);
2111#endif
2112
1da177e4
LT
2113 /*
2114 * We mark the process as running here, but have not actually
2115 * inserted it onto the runqueue yet. This guarantees that
2116 * nobody will actually run it, and a signal or other external
2117 * event cannot wake it up and insert it on the runqueue either.
2118 */
2119 p->state = TASK_RUNNING;
dd41f596
IM
2120}
2121
2122/*
2123 * fork()/clone()-time setup:
2124 */
2125void sched_fork(struct task_struct *p, int clone_flags)
2126{
2127 int cpu = get_cpu();
2128
2129 __sched_fork(p);
2130
2131#ifdef CONFIG_SMP
2132 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2133#endif
02e4bac2 2134 set_task_cpu(p, cpu);
b29739f9
IM
2135
2136 /*
2137 * Make sure we do not leak PI boosting priority to the child:
2138 */
2139 p->prio = current->normal_prio;
2ddbf952
HS
2140 if (!rt_prio(p->prio))
2141 p->sched_class = &fair_sched_class;
b29739f9 2142
52f17b6c 2143#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2144 if (likely(sched_info_on()))
52f17b6c 2145 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2146#endif
d6077cb8 2147#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2148 p->oncpu = 0;
2149#endif
1da177e4 2150#ifdef CONFIG_PREEMPT
4866cde0 2151 /* Want to start with kernel preemption disabled. */
a1261f54 2152 task_thread_info(p)->preempt_count = 1;
1da177e4 2153#endif
476d139c 2154 put_cpu();
1da177e4
LT
2155}
2156
2157/*
2158 * wake_up_new_task - wake up a newly created task for the first time.
2159 *
2160 * This function will do some initial scheduler statistics housekeeping
2161 * that must be done for every newly created context, then puts the task
2162 * on the runqueue and wakes it.
2163 */
7ad5b3a5 2164void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2165{
2166 unsigned long flags;
dd41f596 2167 struct rq *rq;
1da177e4
LT
2168
2169 rq = task_rq_lock(p, &flags);
147cbb4b 2170 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2171 update_rq_clock(rq);
1da177e4
LT
2172
2173 p->prio = effective_prio(p);
2174
b9dca1e0 2175 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2176 activate_task(rq, p, 0);
1da177e4 2177 } else {
1da177e4 2178 /*
dd41f596
IM
2179 * Let the scheduling class do new task startup
2180 * management (if any):
1da177e4 2181 */
ee0827d8 2182 p->sched_class->task_new(rq, p);
62fb1851 2183 inc_nr_running(p, rq);
1da177e4 2184 }
dd41f596 2185 check_preempt_curr(rq, p);
9a897c5a
SR
2186#ifdef CONFIG_SMP
2187 if (p->sched_class->task_wake_up)
2188 p->sched_class->task_wake_up(rq, p);
2189#endif
dd41f596 2190 task_rq_unlock(rq, &flags);
1da177e4
LT
2191}
2192
e107be36
AK
2193#ifdef CONFIG_PREEMPT_NOTIFIERS
2194
2195/**
421cee29
RD
2196 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2197 * @notifier: notifier struct to register
e107be36
AK
2198 */
2199void preempt_notifier_register(struct preempt_notifier *notifier)
2200{
2201 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2202}
2203EXPORT_SYMBOL_GPL(preempt_notifier_register);
2204
2205/**
2206 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2207 * @notifier: notifier struct to unregister
e107be36
AK
2208 *
2209 * This is safe to call from within a preemption notifier.
2210 */
2211void preempt_notifier_unregister(struct preempt_notifier *notifier)
2212{
2213 hlist_del(&notifier->link);
2214}
2215EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2216
2217static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2218{
2219 struct preempt_notifier *notifier;
2220 struct hlist_node *node;
2221
2222 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2223 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2224}
2225
2226static void
2227fire_sched_out_preempt_notifiers(struct task_struct *curr,
2228 struct task_struct *next)
2229{
2230 struct preempt_notifier *notifier;
2231 struct hlist_node *node;
2232
2233 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2234 notifier->ops->sched_out(notifier, next);
2235}
2236
2237#else
2238
2239static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2240{
2241}
2242
2243static void
2244fire_sched_out_preempt_notifiers(struct task_struct *curr,
2245 struct task_struct *next)
2246{
2247}
2248
2249#endif
2250
4866cde0
NP
2251/**
2252 * prepare_task_switch - prepare to switch tasks
2253 * @rq: the runqueue preparing to switch
421cee29 2254 * @prev: the current task that is being switched out
4866cde0
NP
2255 * @next: the task we are going to switch to.
2256 *
2257 * This is called with the rq lock held and interrupts off. It must
2258 * be paired with a subsequent finish_task_switch after the context
2259 * switch.
2260 *
2261 * prepare_task_switch sets up locking and calls architecture specific
2262 * hooks.
2263 */
e107be36
AK
2264static inline void
2265prepare_task_switch(struct rq *rq, struct task_struct *prev,
2266 struct task_struct *next)
4866cde0 2267{
e107be36 2268 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2269 prepare_lock_switch(rq, next);
2270 prepare_arch_switch(next);
2271}
2272
1da177e4
LT
2273/**
2274 * finish_task_switch - clean up after a task-switch
344babaa 2275 * @rq: runqueue associated with task-switch
1da177e4
LT
2276 * @prev: the thread we just switched away from.
2277 *
4866cde0
NP
2278 * finish_task_switch must be called after the context switch, paired
2279 * with a prepare_task_switch call before the context switch.
2280 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2281 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2282 *
2283 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2284 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2285 * with the lock held can cause deadlocks; see schedule() for
2286 * details.)
2287 */
a9957449 2288static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2289 __releases(rq->lock)
2290{
1da177e4 2291 struct mm_struct *mm = rq->prev_mm;
55a101f8 2292 long prev_state;
1da177e4
LT
2293
2294 rq->prev_mm = NULL;
2295
2296 /*
2297 * A task struct has one reference for the use as "current".
c394cc9f 2298 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2299 * schedule one last time. The schedule call will never return, and
2300 * the scheduled task must drop that reference.
c394cc9f 2301 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2302 * still held, otherwise prev could be scheduled on another cpu, die
2303 * there before we look at prev->state, and then the reference would
2304 * be dropped twice.
2305 * Manfred Spraul <manfred@colorfullife.com>
2306 */
55a101f8 2307 prev_state = prev->state;
4866cde0
NP
2308 finish_arch_switch(prev);
2309 finish_lock_switch(rq, prev);
9a897c5a
SR
2310#ifdef CONFIG_SMP
2311 if (current->sched_class->post_schedule)
2312 current->sched_class->post_schedule(rq);
2313#endif
e8fa1362 2314
e107be36 2315 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2316 if (mm)
2317 mmdrop(mm);
c394cc9f 2318 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2319 /*
2320 * Remove function-return probe instances associated with this
2321 * task and put them back on the free list.
9761eea8 2322 */
c6fd91f0 2323 kprobe_flush_task(prev);
1da177e4 2324 put_task_struct(prev);
c6fd91f0 2325 }
1da177e4
LT
2326}
2327
2328/**
2329 * schedule_tail - first thing a freshly forked thread must call.
2330 * @prev: the thread we just switched away from.
2331 */
36c8b586 2332asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2333 __releases(rq->lock)
2334{
70b97a7f
IM
2335 struct rq *rq = this_rq();
2336
4866cde0
NP
2337 finish_task_switch(rq, prev);
2338#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2339 /* In this case, finish_task_switch does not reenable preemption */
2340 preempt_enable();
2341#endif
1da177e4 2342 if (current->set_child_tid)
b488893a 2343 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2344}
2345
2346/*
2347 * context_switch - switch to the new MM and the new
2348 * thread's register state.
2349 */
dd41f596 2350static inline void
70b97a7f 2351context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2352 struct task_struct *next)
1da177e4 2353{
dd41f596 2354 struct mm_struct *mm, *oldmm;
1da177e4 2355
e107be36 2356 prepare_task_switch(rq, prev, next);
dd41f596
IM
2357 mm = next->mm;
2358 oldmm = prev->active_mm;
9226d125
ZA
2359 /*
2360 * For paravirt, this is coupled with an exit in switch_to to
2361 * combine the page table reload and the switch backend into
2362 * one hypercall.
2363 */
2364 arch_enter_lazy_cpu_mode();
2365
dd41f596 2366 if (unlikely(!mm)) {
1da177e4
LT
2367 next->active_mm = oldmm;
2368 atomic_inc(&oldmm->mm_count);
2369 enter_lazy_tlb(oldmm, next);
2370 } else
2371 switch_mm(oldmm, mm, next);
2372
dd41f596 2373 if (unlikely(!prev->mm)) {
1da177e4 2374 prev->active_mm = NULL;
1da177e4
LT
2375 rq->prev_mm = oldmm;
2376 }
3a5f5e48
IM
2377 /*
2378 * Since the runqueue lock will be released by the next
2379 * task (which is an invalid locking op but in the case
2380 * of the scheduler it's an obvious special-case), so we
2381 * do an early lockdep release here:
2382 */
2383#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2384 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2385#endif
1da177e4
LT
2386
2387 /* Here we just switch the register state and the stack. */
2388 switch_to(prev, next, prev);
2389
dd41f596
IM
2390 barrier();
2391 /*
2392 * this_rq must be evaluated again because prev may have moved
2393 * CPUs since it called schedule(), thus the 'rq' on its stack
2394 * frame will be invalid.
2395 */
2396 finish_task_switch(this_rq(), prev);
1da177e4
LT
2397}
2398
2399/*
2400 * nr_running, nr_uninterruptible and nr_context_switches:
2401 *
2402 * externally visible scheduler statistics: current number of runnable
2403 * threads, current number of uninterruptible-sleeping threads, total
2404 * number of context switches performed since bootup.
2405 */
2406unsigned long nr_running(void)
2407{
2408 unsigned long i, sum = 0;
2409
2410 for_each_online_cpu(i)
2411 sum += cpu_rq(i)->nr_running;
2412
2413 return sum;
2414}
2415
2416unsigned long nr_uninterruptible(void)
2417{
2418 unsigned long i, sum = 0;
2419
0a945022 2420 for_each_possible_cpu(i)
1da177e4
LT
2421 sum += cpu_rq(i)->nr_uninterruptible;
2422
2423 /*
2424 * Since we read the counters lockless, it might be slightly
2425 * inaccurate. Do not allow it to go below zero though:
2426 */
2427 if (unlikely((long)sum < 0))
2428 sum = 0;
2429
2430 return sum;
2431}
2432
2433unsigned long long nr_context_switches(void)
2434{
cc94abfc
SR
2435 int i;
2436 unsigned long long sum = 0;
1da177e4 2437
0a945022 2438 for_each_possible_cpu(i)
1da177e4
LT
2439 sum += cpu_rq(i)->nr_switches;
2440
2441 return sum;
2442}
2443
2444unsigned long nr_iowait(void)
2445{
2446 unsigned long i, sum = 0;
2447
0a945022 2448 for_each_possible_cpu(i)
1da177e4
LT
2449 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2450
2451 return sum;
2452}
2453
db1b1fef
JS
2454unsigned long nr_active(void)
2455{
2456 unsigned long i, running = 0, uninterruptible = 0;
2457
2458 for_each_online_cpu(i) {
2459 running += cpu_rq(i)->nr_running;
2460 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2461 }
2462
2463 if (unlikely((long)uninterruptible < 0))
2464 uninterruptible = 0;
2465
2466 return running + uninterruptible;
2467}
2468
48f24c4d 2469/*
dd41f596
IM
2470 * Update rq->cpu_load[] statistics. This function is usually called every
2471 * scheduler tick (TICK_NSEC).
48f24c4d 2472 */
dd41f596 2473static void update_cpu_load(struct rq *this_rq)
48f24c4d 2474{
495eca49 2475 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2476 int i, scale;
2477
2478 this_rq->nr_load_updates++;
dd41f596
IM
2479
2480 /* Update our load: */
2481 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2482 unsigned long old_load, new_load;
2483
2484 /* scale is effectively 1 << i now, and >> i divides by scale */
2485
2486 old_load = this_rq->cpu_load[i];
2487 new_load = this_load;
a25707f3
IM
2488 /*
2489 * Round up the averaging division if load is increasing. This
2490 * prevents us from getting stuck on 9 if the load is 10, for
2491 * example.
2492 */
2493 if (new_load > old_load)
2494 new_load += scale-1;
dd41f596
IM
2495 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2496 }
48f24c4d
IM
2497}
2498
dd41f596
IM
2499#ifdef CONFIG_SMP
2500
1da177e4
LT
2501/*
2502 * double_rq_lock - safely lock two runqueues
2503 *
2504 * Note this does not disable interrupts like task_rq_lock,
2505 * you need to do so manually before calling.
2506 */
70b97a7f 2507static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2508 __acquires(rq1->lock)
2509 __acquires(rq2->lock)
2510{
054b9108 2511 BUG_ON(!irqs_disabled());
1da177e4
LT
2512 if (rq1 == rq2) {
2513 spin_lock(&rq1->lock);
2514 __acquire(rq2->lock); /* Fake it out ;) */
2515 } else {
c96d145e 2516 if (rq1 < rq2) {
1da177e4
LT
2517 spin_lock(&rq1->lock);
2518 spin_lock(&rq2->lock);
2519 } else {
2520 spin_lock(&rq2->lock);
2521 spin_lock(&rq1->lock);
2522 }
2523 }
6e82a3be
IM
2524 update_rq_clock(rq1);
2525 update_rq_clock(rq2);
1da177e4
LT
2526}
2527
2528/*
2529 * double_rq_unlock - safely unlock two runqueues
2530 *
2531 * Note this does not restore interrupts like task_rq_unlock,
2532 * you need to do so manually after calling.
2533 */
70b97a7f 2534static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2535 __releases(rq1->lock)
2536 __releases(rq2->lock)
2537{
2538 spin_unlock(&rq1->lock);
2539 if (rq1 != rq2)
2540 spin_unlock(&rq2->lock);
2541 else
2542 __release(rq2->lock);
2543}
2544
2545/*
2546 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2547 */
e8fa1362 2548static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2549 __releases(this_rq->lock)
2550 __acquires(busiest->lock)
2551 __acquires(this_rq->lock)
2552{
e8fa1362
SR
2553 int ret = 0;
2554
054b9108
KK
2555 if (unlikely(!irqs_disabled())) {
2556 /* printk() doesn't work good under rq->lock */
2557 spin_unlock(&this_rq->lock);
2558 BUG_ON(1);
2559 }
1da177e4 2560 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2561 if (busiest < this_rq) {
1da177e4
LT
2562 spin_unlock(&this_rq->lock);
2563 spin_lock(&busiest->lock);
2564 spin_lock(&this_rq->lock);
e8fa1362 2565 ret = 1;
1da177e4
LT
2566 } else
2567 spin_lock(&busiest->lock);
2568 }
e8fa1362 2569 return ret;
1da177e4
LT
2570}
2571
1da177e4
LT
2572/*
2573 * If dest_cpu is allowed for this process, migrate the task to it.
2574 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2575 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2576 * the cpu_allowed mask is restored.
2577 */
36c8b586 2578static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2579{
70b97a7f 2580 struct migration_req req;
1da177e4 2581 unsigned long flags;
70b97a7f 2582 struct rq *rq;
1da177e4
LT
2583
2584 rq = task_rq_lock(p, &flags);
2585 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2586 || unlikely(cpu_is_offline(dest_cpu)))
2587 goto out;
2588
2589 /* force the process onto the specified CPU */
2590 if (migrate_task(p, dest_cpu, &req)) {
2591 /* Need to wait for migration thread (might exit: take ref). */
2592 struct task_struct *mt = rq->migration_thread;
36c8b586 2593
1da177e4
LT
2594 get_task_struct(mt);
2595 task_rq_unlock(rq, &flags);
2596 wake_up_process(mt);
2597 put_task_struct(mt);
2598 wait_for_completion(&req.done);
36c8b586 2599
1da177e4
LT
2600 return;
2601 }
2602out:
2603 task_rq_unlock(rq, &flags);
2604}
2605
2606/*
476d139c
NP
2607 * sched_exec - execve() is a valuable balancing opportunity, because at
2608 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2609 */
2610void sched_exec(void)
2611{
1da177e4 2612 int new_cpu, this_cpu = get_cpu();
476d139c 2613 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2614 put_cpu();
476d139c
NP
2615 if (new_cpu != this_cpu)
2616 sched_migrate_task(current, new_cpu);
1da177e4
LT
2617}
2618
2619/*
2620 * pull_task - move a task from a remote runqueue to the local runqueue.
2621 * Both runqueues must be locked.
2622 */
dd41f596
IM
2623static void pull_task(struct rq *src_rq, struct task_struct *p,
2624 struct rq *this_rq, int this_cpu)
1da177e4 2625{
2e1cb74a 2626 deactivate_task(src_rq, p, 0);
1da177e4 2627 set_task_cpu(p, this_cpu);
dd41f596 2628 activate_task(this_rq, p, 0);
1da177e4
LT
2629 /*
2630 * Note that idle threads have a prio of MAX_PRIO, for this test
2631 * to be always true for them.
2632 */
dd41f596 2633 check_preempt_curr(this_rq, p);
1da177e4
LT
2634}
2635
2636/*
2637 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2638 */
858119e1 2639static
70b97a7f 2640int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2641 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2642 int *all_pinned)
1da177e4
LT
2643{
2644 /*
2645 * We do not migrate tasks that are:
2646 * 1) running (obviously), or
2647 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2648 * 3) are cache-hot on their current CPU.
2649 */
cc367732
IM
2650 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2651 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2652 return 0;
cc367732 2653 }
81026794
NP
2654 *all_pinned = 0;
2655
cc367732
IM
2656 if (task_running(rq, p)) {
2657 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2658 return 0;
cc367732 2659 }
1da177e4 2660
da84d961
IM
2661 /*
2662 * Aggressive migration if:
2663 * 1) task is cache cold, or
2664 * 2) too many balance attempts have failed.
2665 */
2666
6bc1665b
IM
2667 if (!task_hot(p, rq->clock, sd) ||
2668 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2669#ifdef CONFIG_SCHEDSTATS
cc367732 2670 if (task_hot(p, rq->clock, sd)) {
da84d961 2671 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2672 schedstat_inc(p, se.nr_forced_migrations);
2673 }
da84d961
IM
2674#endif
2675 return 1;
2676 }
2677
cc367732
IM
2678 if (task_hot(p, rq->clock, sd)) {
2679 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2680 return 0;
cc367732 2681 }
1da177e4
LT
2682 return 1;
2683}
2684
e1d1484f
PW
2685static unsigned long
2686balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2687 unsigned long max_load_move, struct sched_domain *sd,
2688 enum cpu_idle_type idle, int *all_pinned,
2689 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2690{
b82d9fdd 2691 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2692 struct task_struct *p;
2693 long rem_load_move = max_load_move;
1da177e4 2694
e1d1484f 2695 if (max_load_move == 0)
1da177e4
LT
2696 goto out;
2697
81026794
NP
2698 pinned = 1;
2699
1da177e4 2700 /*
dd41f596 2701 * Start the load-balancing iterator:
1da177e4 2702 */
dd41f596
IM
2703 p = iterator->start(iterator->arg);
2704next:
b82d9fdd 2705 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2706 goto out;
50ddd969 2707 /*
b82d9fdd 2708 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2709 * skip a task if it will be the highest priority task (i.e. smallest
2710 * prio value) on its new queue regardless of its load weight
2711 */
dd41f596
IM
2712 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2713 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2714 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2715 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2716 p = iterator->next(iterator->arg);
2717 goto next;
1da177e4
LT
2718 }
2719
dd41f596 2720 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2721 pulled++;
dd41f596 2722 rem_load_move -= p->se.load.weight;
1da177e4 2723
2dd73a4f 2724 /*
b82d9fdd 2725 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2726 */
e1d1484f 2727 if (rem_load_move > 0) {
a4ac01c3
PW
2728 if (p->prio < *this_best_prio)
2729 *this_best_prio = p->prio;
dd41f596
IM
2730 p = iterator->next(iterator->arg);
2731 goto next;
1da177e4
LT
2732 }
2733out:
2734 /*
e1d1484f 2735 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2736 * so we can safely collect pull_task() stats here rather than
2737 * inside pull_task().
2738 */
2739 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2740
2741 if (all_pinned)
2742 *all_pinned = pinned;
e1d1484f
PW
2743
2744 return max_load_move - rem_load_move;
1da177e4
LT
2745}
2746
dd41f596 2747/*
43010659
PW
2748 * move_tasks tries to move up to max_load_move weighted load from busiest to
2749 * this_rq, as part of a balancing operation within domain "sd".
2750 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2751 *
2752 * Called with both runqueues locked.
2753 */
2754static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2755 unsigned long max_load_move,
dd41f596
IM
2756 struct sched_domain *sd, enum cpu_idle_type idle,
2757 int *all_pinned)
2758{
5522d5d5 2759 const struct sched_class *class = sched_class_highest;
43010659 2760 unsigned long total_load_moved = 0;
a4ac01c3 2761 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2762
2763 do {
43010659
PW
2764 total_load_moved +=
2765 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2766 max_load_move - total_load_moved,
a4ac01c3 2767 sd, idle, all_pinned, &this_best_prio);
dd41f596 2768 class = class->next;
43010659 2769 } while (class && max_load_move > total_load_moved);
dd41f596 2770
43010659
PW
2771 return total_load_moved > 0;
2772}
2773
e1d1484f
PW
2774static int
2775iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2776 struct sched_domain *sd, enum cpu_idle_type idle,
2777 struct rq_iterator *iterator)
2778{
2779 struct task_struct *p = iterator->start(iterator->arg);
2780 int pinned = 0;
2781
2782 while (p) {
2783 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2784 pull_task(busiest, p, this_rq, this_cpu);
2785 /*
2786 * Right now, this is only the second place pull_task()
2787 * is called, so we can safely collect pull_task()
2788 * stats here rather than inside pull_task().
2789 */
2790 schedstat_inc(sd, lb_gained[idle]);
2791
2792 return 1;
2793 }
2794 p = iterator->next(iterator->arg);
2795 }
2796
2797 return 0;
2798}
2799
43010659
PW
2800/*
2801 * move_one_task tries to move exactly one task from busiest to this_rq, as
2802 * part of active balancing operations within "domain".
2803 * Returns 1 if successful and 0 otherwise.
2804 *
2805 * Called with both runqueues locked.
2806 */
2807static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2808 struct sched_domain *sd, enum cpu_idle_type idle)
2809{
5522d5d5 2810 const struct sched_class *class;
43010659
PW
2811
2812 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2813 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2814 return 1;
2815
2816 return 0;
dd41f596
IM
2817}
2818
1da177e4
LT
2819/*
2820 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2821 * domain. It calculates and returns the amount of weighted load which
2822 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2823 */
2824static struct sched_group *
2825find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2826 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2827 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2828{
2829 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2830 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2831 unsigned long max_pull;
2dd73a4f
PW
2832 unsigned long busiest_load_per_task, busiest_nr_running;
2833 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2834 int load_idx, group_imb = 0;
5c45bf27
SS
2835#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2836 int power_savings_balance = 1;
2837 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2838 unsigned long min_nr_running = ULONG_MAX;
2839 struct sched_group *group_min = NULL, *group_leader = NULL;
2840#endif
1da177e4
LT
2841
2842 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2843 busiest_load_per_task = busiest_nr_running = 0;
2844 this_load_per_task = this_nr_running = 0;
d15bcfdb 2845 if (idle == CPU_NOT_IDLE)
7897986b 2846 load_idx = sd->busy_idx;
d15bcfdb 2847 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2848 load_idx = sd->newidle_idx;
2849 else
2850 load_idx = sd->idle_idx;
1da177e4
LT
2851
2852 do {
908a7c1b 2853 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2854 int local_group;
2855 int i;
908a7c1b 2856 int __group_imb = 0;
783609c6 2857 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2858 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2859
2860 local_group = cpu_isset(this_cpu, group->cpumask);
2861
783609c6
SS
2862 if (local_group)
2863 balance_cpu = first_cpu(group->cpumask);
2864
1da177e4 2865 /* Tally up the load of all CPUs in the group */
2dd73a4f 2866 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2867 max_cpu_load = 0;
2868 min_cpu_load = ~0UL;
1da177e4
LT
2869
2870 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2871 struct rq *rq;
2872
2873 if (!cpu_isset(i, *cpus))
2874 continue;
2875
2876 rq = cpu_rq(i);
2dd73a4f 2877
9439aab8 2878 if (*sd_idle && rq->nr_running)
5969fe06
NP
2879 *sd_idle = 0;
2880
1da177e4 2881 /* Bias balancing toward cpus of our domain */
783609c6
SS
2882 if (local_group) {
2883 if (idle_cpu(i) && !first_idle_cpu) {
2884 first_idle_cpu = 1;
2885 balance_cpu = i;
2886 }
2887
a2000572 2888 load = target_load(i, load_idx);
908a7c1b 2889 } else {
a2000572 2890 load = source_load(i, load_idx);
908a7c1b
KC
2891 if (load > max_cpu_load)
2892 max_cpu_load = load;
2893 if (min_cpu_load > load)
2894 min_cpu_load = load;
2895 }
1da177e4
LT
2896
2897 avg_load += load;
2dd73a4f 2898 sum_nr_running += rq->nr_running;
dd41f596 2899 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2900 }
2901
783609c6
SS
2902 /*
2903 * First idle cpu or the first cpu(busiest) in this sched group
2904 * is eligible for doing load balancing at this and above
9439aab8
SS
2905 * domains. In the newly idle case, we will allow all the cpu's
2906 * to do the newly idle load balance.
783609c6 2907 */
9439aab8
SS
2908 if (idle != CPU_NEWLY_IDLE && local_group &&
2909 balance_cpu != this_cpu && balance) {
783609c6
SS
2910 *balance = 0;
2911 goto ret;
2912 }
2913
1da177e4 2914 total_load += avg_load;
5517d86b 2915 total_pwr += group->__cpu_power;
1da177e4
LT
2916
2917 /* Adjust by relative CPU power of the group */
5517d86b
ED
2918 avg_load = sg_div_cpu_power(group,
2919 avg_load * SCHED_LOAD_SCALE);
1da177e4 2920
908a7c1b
KC
2921 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2922 __group_imb = 1;
2923
5517d86b 2924 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2925
1da177e4
LT
2926 if (local_group) {
2927 this_load = avg_load;
2928 this = group;
2dd73a4f
PW
2929 this_nr_running = sum_nr_running;
2930 this_load_per_task = sum_weighted_load;
2931 } else if (avg_load > max_load &&
908a7c1b 2932 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2933 max_load = avg_load;
2934 busiest = group;
2dd73a4f
PW
2935 busiest_nr_running = sum_nr_running;
2936 busiest_load_per_task = sum_weighted_load;
908a7c1b 2937 group_imb = __group_imb;
1da177e4 2938 }
5c45bf27
SS
2939
2940#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2941 /*
2942 * Busy processors will not participate in power savings
2943 * balance.
2944 */
dd41f596
IM
2945 if (idle == CPU_NOT_IDLE ||
2946 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2947 goto group_next;
5c45bf27
SS
2948
2949 /*
2950 * If the local group is idle or completely loaded
2951 * no need to do power savings balance at this domain
2952 */
2953 if (local_group && (this_nr_running >= group_capacity ||
2954 !this_nr_running))
2955 power_savings_balance = 0;
2956
dd41f596 2957 /*
5c45bf27
SS
2958 * If a group is already running at full capacity or idle,
2959 * don't include that group in power savings calculations
dd41f596
IM
2960 */
2961 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2962 || !sum_nr_running)
dd41f596 2963 goto group_next;
5c45bf27 2964
dd41f596 2965 /*
5c45bf27 2966 * Calculate the group which has the least non-idle load.
dd41f596
IM
2967 * This is the group from where we need to pick up the load
2968 * for saving power
2969 */
2970 if ((sum_nr_running < min_nr_running) ||
2971 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2972 first_cpu(group->cpumask) <
2973 first_cpu(group_min->cpumask))) {
dd41f596
IM
2974 group_min = group;
2975 min_nr_running = sum_nr_running;
5c45bf27
SS
2976 min_load_per_task = sum_weighted_load /
2977 sum_nr_running;
dd41f596 2978 }
5c45bf27 2979
dd41f596 2980 /*
5c45bf27 2981 * Calculate the group which is almost near its
dd41f596
IM
2982 * capacity but still has some space to pick up some load
2983 * from other group and save more power
2984 */
2985 if (sum_nr_running <= group_capacity - 1) {
2986 if (sum_nr_running > leader_nr_running ||
2987 (sum_nr_running == leader_nr_running &&
2988 first_cpu(group->cpumask) >
2989 first_cpu(group_leader->cpumask))) {
2990 group_leader = group;
2991 leader_nr_running = sum_nr_running;
2992 }
48f24c4d 2993 }
5c45bf27
SS
2994group_next:
2995#endif
1da177e4
LT
2996 group = group->next;
2997 } while (group != sd->groups);
2998
2dd73a4f 2999 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3000 goto out_balanced;
3001
3002 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3003
3004 if (this_load >= avg_load ||
3005 100*max_load <= sd->imbalance_pct*this_load)
3006 goto out_balanced;
3007
2dd73a4f 3008 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3009 if (group_imb)
3010 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3011
1da177e4
LT
3012 /*
3013 * We're trying to get all the cpus to the average_load, so we don't
3014 * want to push ourselves above the average load, nor do we wish to
3015 * reduce the max loaded cpu below the average load, as either of these
3016 * actions would just result in more rebalancing later, and ping-pong
3017 * tasks around. Thus we look for the minimum possible imbalance.
3018 * Negative imbalances (*we* are more loaded than anyone else) will
3019 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3020 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3021 * appear as very large values with unsigned longs.
3022 */
2dd73a4f
PW
3023 if (max_load <= busiest_load_per_task)
3024 goto out_balanced;
3025
3026 /*
3027 * In the presence of smp nice balancing, certain scenarios can have
3028 * max load less than avg load(as we skip the groups at or below
3029 * its cpu_power, while calculating max_load..)
3030 */
3031 if (max_load < avg_load) {
3032 *imbalance = 0;
3033 goto small_imbalance;
3034 }
0c117f1b
SS
3035
3036 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3037 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3038
1da177e4 3039 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3040 *imbalance = min(max_pull * busiest->__cpu_power,
3041 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3042 / SCHED_LOAD_SCALE;
3043
2dd73a4f
PW
3044 /*
3045 * if *imbalance is less than the average load per runnable task
3046 * there is no gaurantee that any tasks will be moved so we'll have
3047 * a think about bumping its value to force at least one task to be
3048 * moved
3049 */
7fd0d2dd 3050 if (*imbalance < busiest_load_per_task) {
48f24c4d 3051 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3052 unsigned int imbn;
3053
3054small_imbalance:
3055 pwr_move = pwr_now = 0;
3056 imbn = 2;
3057 if (this_nr_running) {
3058 this_load_per_task /= this_nr_running;
3059 if (busiest_load_per_task > this_load_per_task)
3060 imbn = 1;
3061 } else
3062 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3063
dd41f596
IM
3064 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3065 busiest_load_per_task * imbn) {
2dd73a4f 3066 *imbalance = busiest_load_per_task;
1da177e4
LT
3067 return busiest;
3068 }
3069
3070 /*
3071 * OK, we don't have enough imbalance to justify moving tasks,
3072 * however we may be able to increase total CPU power used by
3073 * moving them.
3074 */
3075
5517d86b
ED
3076 pwr_now += busiest->__cpu_power *
3077 min(busiest_load_per_task, max_load);
3078 pwr_now += this->__cpu_power *
3079 min(this_load_per_task, this_load);
1da177e4
LT
3080 pwr_now /= SCHED_LOAD_SCALE;
3081
3082 /* Amount of load we'd subtract */
5517d86b
ED
3083 tmp = sg_div_cpu_power(busiest,
3084 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3085 if (max_load > tmp)
5517d86b 3086 pwr_move += busiest->__cpu_power *
2dd73a4f 3087 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3088
3089 /* Amount of load we'd add */
5517d86b 3090 if (max_load * busiest->__cpu_power <
33859f7f 3091 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3092 tmp = sg_div_cpu_power(this,
3093 max_load * busiest->__cpu_power);
1da177e4 3094 else
5517d86b
ED
3095 tmp = sg_div_cpu_power(this,
3096 busiest_load_per_task * SCHED_LOAD_SCALE);
3097 pwr_move += this->__cpu_power *
3098 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3099 pwr_move /= SCHED_LOAD_SCALE;
3100
3101 /* Move if we gain throughput */
7fd0d2dd
SS
3102 if (pwr_move > pwr_now)
3103 *imbalance = busiest_load_per_task;
1da177e4
LT
3104 }
3105
1da177e4
LT
3106 return busiest;
3107
3108out_balanced:
5c45bf27 3109#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3110 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3111 goto ret;
1da177e4 3112
5c45bf27
SS
3113 if (this == group_leader && group_leader != group_min) {
3114 *imbalance = min_load_per_task;
3115 return group_min;
3116 }
5c45bf27 3117#endif
783609c6 3118ret:
1da177e4
LT
3119 *imbalance = 0;
3120 return NULL;
3121}
3122
3123/*
3124 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3125 */
70b97a7f 3126static struct rq *
d15bcfdb 3127find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3128 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3129{
70b97a7f 3130 struct rq *busiest = NULL, *rq;
2dd73a4f 3131 unsigned long max_load = 0;
1da177e4
LT
3132 int i;
3133
3134 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3135 unsigned long wl;
0a2966b4
CL
3136
3137 if (!cpu_isset(i, *cpus))
3138 continue;
3139
48f24c4d 3140 rq = cpu_rq(i);
dd41f596 3141 wl = weighted_cpuload(i);
2dd73a4f 3142
dd41f596 3143 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3144 continue;
1da177e4 3145
dd41f596
IM
3146 if (wl > max_load) {
3147 max_load = wl;
48f24c4d 3148 busiest = rq;
1da177e4
LT
3149 }
3150 }
3151
3152 return busiest;
3153}
3154
77391d71
NP
3155/*
3156 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3157 * so long as it is large enough.
3158 */
3159#define MAX_PINNED_INTERVAL 512
3160
1da177e4
LT
3161/*
3162 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3163 * tasks if there is an imbalance.
1da177e4 3164 */
70b97a7f 3165static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3166 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3167 int *balance, cpumask_t *cpus)
1da177e4 3168{
43010659 3169 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3170 struct sched_group *group;
1da177e4 3171 unsigned long imbalance;
70b97a7f 3172 struct rq *busiest;
fe2eea3f 3173 unsigned long flags;
5969fe06 3174
7c16ec58
MT
3175 cpus_setall(*cpus);
3176
89c4710e
SS
3177 /*
3178 * When power savings policy is enabled for the parent domain, idle
3179 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3180 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3181 * portraying it as CPU_NOT_IDLE.
89c4710e 3182 */
d15bcfdb 3183 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3184 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3185 sd_idle = 1;
1da177e4 3186
2d72376b 3187 schedstat_inc(sd, lb_count[idle]);
1da177e4 3188
0a2966b4
CL
3189redo:
3190 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3191 cpus, balance);
783609c6 3192
06066714 3193 if (*balance == 0)
783609c6 3194 goto out_balanced;
783609c6 3195
1da177e4
LT
3196 if (!group) {
3197 schedstat_inc(sd, lb_nobusyg[idle]);
3198 goto out_balanced;
3199 }
3200
7c16ec58 3201 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3202 if (!busiest) {
3203 schedstat_inc(sd, lb_nobusyq[idle]);
3204 goto out_balanced;
3205 }
3206
db935dbd 3207 BUG_ON(busiest == this_rq);
1da177e4
LT
3208
3209 schedstat_add(sd, lb_imbalance[idle], imbalance);
3210
43010659 3211 ld_moved = 0;
1da177e4
LT
3212 if (busiest->nr_running > 1) {
3213 /*
3214 * Attempt to move tasks. If find_busiest_group has found
3215 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3216 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3217 * correctly treated as an imbalance.
3218 */
fe2eea3f 3219 local_irq_save(flags);
e17224bf 3220 double_rq_lock(this_rq, busiest);
43010659 3221 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3222 imbalance, sd, idle, &all_pinned);
e17224bf 3223 double_rq_unlock(this_rq, busiest);
fe2eea3f 3224 local_irq_restore(flags);
81026794 3225
46cb4b7c
SS
3226 /*
3227 * some other cpu did the load balance for us.
3228 */
43010659 3229 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3230 resched_cpu(this_cpu);
3231
81026794 3232 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3233 if (unlikely(all_pinned)) {
7c16ec58
MT
3234 cpu_clear(cpu_of(busiest), *cpus);
3235 if (!cpus_empty(*cpus))
0a2966b4 3236 goto redo;
81026794 3237 goto out_balanced;
0a2966b4 3238 }
1da177e4 3239 }
81026794 3240
43010659 3241 if (!ld_moved) {
1da177e4
LT
3242 schedstat_inc(sd, lb_failed[idle]);
3243 sd->nr_balance_failed++;
3244
3245 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3246
fe2eea3f 3247 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3248
3249 /* don't kick the migration_thread, if the curr
3250 * task on busiest cpu can't be moved to this_cpu
3251 */
3252 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3253 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3254 all_pinned = 1;
3255 goto out_one_pinned;
3256 }
3257
1da177e4
LT
3258 if (!busiest->active_balance) {
3259 busiest->active_balance = 1;
3260 busiest->push_cpu = this_cpu;
81026794 3261 active_balance = 1;
1da177e4 3262 }
fe2eea3f 3263 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3264 if (active_balance)
1da177e4
LT
3265 wake_up_process(busiest->migration_thread);
3266
3267 /*
3268 * We've kicked active balancing, reset the failure
3269 * counter.
3270 */
39507451 3271 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3272 }
81026794 3273 } else
1da177e4
LT
3274 sd->nr_balance_failed = 0;
3275
81026794 3276 if (likely(!active_balance)) {
1da177e4
LT
3277 /* We were unbalanced, so reset the balancing interval */
3278 sd->balance_interval = sd->min_interval;
81026794
NP
3279 } else {
3280 /*
3281 * If we've begun active balancing, start to back off. This
3282 * case may not be covered by the all_pinned logic if there
3283 * is only 1 task on the busy runqueue (because we don't call
3284 * move_tasks).
3285 */
3286 if (sd->balance_interval < sd->max_interval)
3287 sd->balance_interval *= 2;
1da177e4
LT
3288 }
3289
43010659 3290 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3291 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3292 return -1;
43010659 3293 return ld_moved;
1da177e4
LT
3294
3295out_balanced:
1da177e4
LT
3296 schedstat_inc(sd, lb_balanced[idle]);
3297
16cfb1c0 3298 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3299
3300out_one_pinned:
1da177e4 3301 /* tune up the balancing interval */
77391d71
NP
3302 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3303 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3304 sd->balance_interval *= 2;
3305
48f24c4d 3306 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3307 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3308 return -1;
1da177e4
LT
3309 return 0;
3310}
3311
3312/*
3313 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3314 * tasks if there is an imbalance.
3315 *
d15bcfdb 3316 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3317 * this_rq is locked.
3318 */
48f24c4d 3319static int
7c16ec58
MT
3320load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3321 cpumask_t *cpus)
1da177e4
LT
3322{
3323 struct sched_group *group;
70b97a7f 3324 struct rq *busiest = NULL;
1da177e4 3325 unsigned long imbalance;
43010659 3326 int ld_moved = 0;
5969fe06 3327 int sd_idle = 0;
969bb4e4 3328 int all_pinned = 0;
7c16ec58
MT
3329
3330 cpus_setall(*cpus);
5969fe06 3331
89c4710e
SS
3332 /*
3333 * When power savings policy is enabled for the parent domain, idle
3334 * sibling can pick up load irrespective of busy siblings. In this case,
3335 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3336 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3337 */
3338 if (sd->flags & SD_SHARE_CPUPOWER &&
3339 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3340 sd_idle = 1;
1da177e4 3341
2d72376b 3342 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3343redo:
d15bcfdb 3344 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3345 &sd_idle, cpus, NULL);
1da177e4 3346 if (!group) {
d15bcfdb 3347 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3348 goto out_balanced;
1da177e4
LT
3349 }
3350
7c16ec58 3351 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3352 if (!busiest) {
d15bcfdb 3353 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3354 goto out_balanced;
1da177e4
LT
3355 }
3356
db935dbd
NP
3357 BUG_ON(busiest == this_rq);
3358
d15bcfdb 3359 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3360
43010659 3361 ld_moved = 0;
d6d5cfaf
NP
3362 if (busiest->nr_running > 1) {
3363 /* Attempt to move tasks */
3364 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3365 /* this_rq->clock is already updated */
3366 update_rq_clock(busiest);
43010659 3367 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3368 imbalance, sd, CPU_NEWLY_IDLE,
3369 &all_pinned);
d6d5cfaf 3370 spin_unlock(&busiest->lock);
0a2966b4 3371
969bb4e4 3372 if (unlikely(all_pinned)) {
7c16ec58
MT
3373 cpu_clear(cpu_of(busiest), *cpus);
3374 if (!cpus_empty(*cpus))
0a2966b4
CL
3375 goto redo;
3376 }
d6d5cfaf
NP
3377 }
3378
43010659 3379 if (!ld_moved) {
d15bcfdb 3380 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3381 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3382 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3383 return -1;
3384 } else
16cfb1c0 3385 sd->nr_balance_failed = 0;
1da177e4 3386
43010659 3387 return ld_moved;
16cfb1c0
NP
3388
3389out_balanced:
d15bcfdb 3390 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3391 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3392 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3393 return -1;
16cfb1c0 3394 sd->nr_balance_failed = 0;
48f24c4d 3395
16cfb1c0 3396 return 0;
1da177e4
LT
3397}
3398
3399/*
3400 * idle_balance is called by schedule() if this_cpu is about to become
3401 * idle. Attempts to pull tasks from other CPUs.
3402 */
70b97a7f 3403static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3404{
3405 struct sched_domain *sd;
dd41f596
IM
3406 int pulled_task = -1;
3407 unsigned long next_balance = jiffies + HZ;
7c16ec58 3408 cpumask_t tmpmask;
1da177e4
LT
3409
3410 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3411 unsigned long interval;
3412
3413 if (!(sd->flags & SD_LOAD_BALANCE))
3414 continue;
3415
3416 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3417 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3418 pulled_task = load_balance_newidle(this_cpu, this_rq,
3419 sd, &tmpmask);
92c4ca5c
CL
3420
3421 interval = msecs_to_jiffies(sd->balance_interval);
3422 if (time_after(next_balance, sd->last_balance + interval))
3423 next_balance = sd->last_balance + interval;
3424 if (pulled_task)
3425 break;
1da177e4 3426 }
dd41f596 3427 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3428 /*
3429 * We are going idle. next_balance may be set based on
3430 * a busy processor. So reset next_balance.
3431 */
3432 this_rq->next_balance = next_balance;
dd41f596 3433 }
1da177e4
LT
3434}
3435
3436/*
3437 * active_load_balance is run by migration threads. It pushes running tasks
3438 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3439 * running on each physical CPU where possible, and avoids physical /
3440 * logical imbalances.
3441 *
3442 * Called with busiest_rq locked.
3443 */
70b97a7f 3444static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3445{
39507451 3446 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3447 struct sched_domain *sd;
3448 struct rq *target_rq;
39507451 3449
48f24c4d 3450 /* Is there any task to move? */
39507451 3451 if (busiest_rq->nr_running <= 1)
39507451
NP
3452 return;
3453
3454 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3455
3456 /*
39507451 3457 * This condition is "impossible", if it occurs
41a2d6cf 3458 * we need to fix it. Originally reported by
39507451 3459 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3460 */
39507451 3461 BUG_ON(busiest_rq == target_rq);
1da177e4 3462
39507451
NP
3463 /* move a task from busiest_rq to target_rq */
3464 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3465 update_rq_clock(busiest_rq);
3466 update_rq_clock(target_rq);
39507451
NP
3467
3468 /* Search for an sd spanning us and the target CPU. */
c96d145e 3469 for_each_domain(target_cpu, sd) {
39507451 3470 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3471 cpu_isset(busiest_cpu, sd->span))
39507451 3472 break;
c96d145e 3473 }
39507451 3474
48f24c4d 3475 if (likely(sd)) {
2d72376b 3476 schedstat_inc(sd, alb_count);
39507451 3477
43010659
PW
3478 if (move_one_task(target_rq, target_cpu, busiest_rq,
3479 sd, CPU_IDLE))
48f24c4d
IM
3480 schedstat_inc(sd, alb_pushed);
3481 else
3482 schedstat_inc(sd, alb_failed);
3483 }
39507451 3484 spin_unlock(&target_rq->lock);
1da177e4
LT
3485}
3486
46cb4b7c
SS
3487#ifdef CONFIG_NO_HZ
3488static struct {
3489 atomic_t load_balancer;
41a2d6cf 3490 cpumask_t cpu_mask;
46cb4b7c
SS
3491} nohz ____cacheline_aligned = {
3492 .load_balancer = ATOMIC_INIT(-1),
3493 .cpu_mask = CPU_MASK_NONE,
3494};
3495
7835b98b 3496/*
46cb4b7c
SS
3497 * This routine will try to nominate the ilb (idle load balancing)
3498 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3499 * load balancing on behalf of all those cpus. If all the cpus in the system
3500 * go into this tickless mode, then there will be no ilb owner (as there is
3501 * no need for one) and all the cpus will sleep till the next wakeup event
3502 * arrives...
3503 *
3504 * For the ilb owner, tick is not stopped. And this tick will be used
3505 * for idle load balancing. ilb owner will still be part of
3506 * nohz.cpu_mask..
7835b98b 3507 *
46cb4b7c
SS
3508 * While stopping the tick, this cpu will become the ilb owner if there
3509 * is no other owner. And will be the owner till that cpu becomes busy
3510 * or if all cpus in the system stop their ticks at which point
3511 * there is no need for ilb owner.
3512 *
3513 * When the ilb owner becomes busy, it nominates another owner, during the
3514 * next busy scheduler_tick()
3515 */
3516int select_nohz_load_balancer(int stop_tick)
3517{
3518 int cpu = smp_processor_id();
3519
3520 if (stop_tick) {
3521 cpu_set(cpu, nohz.cpu_mask);
3522 cpu_rq(cpu)->in_nohz_recently = 1;
3523
3524 /*
3525 * If we are going offline and still the leader, give up!
3526 */
3527 if (cpu_is_offline(cpu) &&
3528 atomic_read(&nohz.load_balancer) == cpu) {
3529 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3530 BUG();
3531 return 0;
3532 }
3533
3534 /* time for ilb owner also to sleep */
3535 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3536 if (atomic_read(&nohz.load_balancer) == cpu)
3537 atomic_set(&nohz.load_balancer, -1);
3538 return 0;
3539 }
3540
3541 if (atomic_read(&nohz.load_balancer) == -1) {
3542 /* make me the ilb owner */
3543 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3544 return 1;
3545 } else if (atomic_read(&nohz.load_balancer) == cpu)
3546 return 1;
3547 } else {
3548 if (!cpu_isset(cpu, nohz.cpu_mask))
3549 return 0;
3550
3551 cpu_clear(cpu, nohz.cpu_mask);
3552
3553 if (atomic_read(&nohz.load_balancer) == cpu)
3554 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3555 BUG();
3556 }
3557 return 0;
3558}
3559#endif
3560
3561static DEFINE_SPINLOCK(balancing);
3562
3563/*
7835b98b
CL
3564 * It checks each scheduling domain to see if it is due to be balanced,
3565 * and initiates a balancing operation if so.
3566 *
3567 * Balancing parameters are set up in arch_init_sched_domains.
3568 */
a9957449 3569static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3570{
46cb4b7c
SS
3571 int balance = 1;
3572 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3573 unsigned long interval;
3574 struct sched_domain *sd;
46cb4b7c 3575 /* Earliest time when we have to do rebalance again */
c9819f45 3576 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3577 int update_next_balance = 0;
7c16ec58 3578 cpumask_t tmp;
1da177e4 3579
46cb4b7c 3580 for_each_domain(cpu, sd) {
1da177e4
LT
3581 if (!(sd->flags & SD_LOAD_BALANCE))
3582 continue;
3583
3584 interval = sd->balance_interval;
d15bcfdb 3585 if (idle != CPU_IDLE)
1da177e4
LT
3586 interval *= sd->busy_factor;
3587
3588 /* scale ms to jiffies */
3589 interval = msecs_to_jiffies(interval);
3590 if (unlikely(!interval))
3591 interval = 1;
dd41f596
IM
3592 if (interval > HZ*NR_CPUS/10)
3593 interval = HZ*NR_CPUS/10;
3594
1da177e4 3595
08c183f3
CL
3596 if (sd->flags & SD_SERIALIZE) {
3597 if (!spin_trylock(&balancing))
3598 goto out;
3599 }
3600
c9819f45 3601 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3602 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3603 /*
3604 * We've pulled tasks over so either we're no
5969fe06
NP
3605 * longer idle, or one of our SMT siblings is
3606 * not idle.
3607 */
d15bcfdb 3608 idle = CPU_NOT_IDLE;
1da177e4 3609 }
1bd77f2d 3610 sd->last_balance = jiffies;
1da177e4 3611 }
08c183f3
CL
3612 if (sd->flags & SD_SERIALIZE)
3613 spin_unlock(&balancing);
3614out:
f549da84 3615 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3616 next_balance = sd->last_balance + interval;
f549da84
SS
3617 update_next_balance = 1;
3618 }
783609c6
SS
3619
3620 /*
3621 * Stop the load balance at this level. There is another
3622 * CPU in our sched group which is doing load balancing more
3623 * actively.
3624 */
3625 if (!balance)
3626 break;
1da177e4 3627 }
f549da84
SS
3628
3629 /*
3630 * next_balance will be updated only when there is a need.
3631 * When the cpu is attached to null domain for ex, it will not be
3632 * updated.
3633 */
3634 if (likely(update_next_balance))
3635 rq->next_balance = next_balance;
46cb4b7c
SS
3636}
3637
3638/*
3639 * run_rebalance_domains is triggered when needed from the scheduler tick.
3640 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3641 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3642 */
3643static void run_rebalance_domains(struct softirq_action *h)
3644{
dd41f596
IM
3645 int this_cpu = smp_processor_id();
3646 struct rq *this_rq = cpu_rq(this_cpu);
3647 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3648 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3649
dd41f596 3650 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3651
3652#ifdef CONFIG_NO_HZ
3653 /*
3654 * If this cpu is the owner for idle load balancing, then do the
3655 * balancing on behalf of the other idle cpus whose ticks are
3656 * stopped.
3657 */
dd41f596
IM
3658 if (this_rq->idle_at_tick &&
3659 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3660 cpumask_t cpus = nohz.cpu_mask;
3661 struct rq *rq;
3662 int balance_cpu;
3663
dd41f596 3664 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3665 for_each_cpu_mask(balance_cpu, cpus) {
3666 /*
3667 * If this cpu gets work to do, stop the load balancing
3668 * work being done for other cpus. Next load
3669 * balancing owner will pick it up.
3670 */
3671 if (need_resched())
3672 break;
3673
de0cf899 3674 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3675
3676 rq = cpu_rq(balance_cpu);
dd41f596
IM
3677 if (time_after(this_rq->next_balance, rq->next_balance))
3678 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3679 }
3680 }
3681#endif
3682}
3683
3684/*
3685 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3686 *
3687 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3688 * idle load balancing owner or decide to stop the periodic load balancing,
3689 * if the whole system is idle.
3690 */
dd41f596 3691static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3692{
46cb4b7c
SS
3693#ifdef CONFIG_NO_HZ
3694 /*
3695 * If we were in the nohz mode recently and busy at the current
3696 * scheduler tick, then check if we need to nominate new idle
3697 * load balancer.
3698 */
3699 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3700 rq->in_nohz_recently = 0;
3701
3702 if (atomic_read(&nohz.load_balancer) == cpu) {
3703 cpu_clear(cpu, nohz.cpu_mask);
3704 atomic_set(&nohz.load_balancer, -1);
3705 }
3706
3707 if (atomic_read(&nohz.load_balancer) == -1) {
3708 /*
3709 * simple selection for now: Nominate the
3710 * first cpu in the nohz list to be the next
3711 * ilb owner.
3712 *
3713 * TBD: Traverse the sched domains and nominate
3714 * the nearest cpu in the nohz.cpu_mask.
3715 */
3716 int ilb = first_cpu(nohz.cpu_mask);
3717
434d53b0 3718 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3719 resched_cpu(ilb);
3720 }
3721 }
3722
3723 /*
3724 * If this cpu is idle and doing idle load balancing for all the
3725 * cpus with ticks stopped, is it time for that to stop?
3726 */
3727 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3728 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3729 resched_cpu(cpu);
3730 return;
3731 }
3732
3733 /*
3734 * If this cpu is idle and the idle load balancing is done by
3735 * someone else, then no need raise the SCHED_SOFTIRQ
3736 */
3737 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3738 cpu_isset(cpu, nohz.cpu_mask))
3739 return;
3740#endif
3741 if (time_after_eq(jiffies, rq->next_balance))
3742 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3743}
dd41f596
IM
3744
3745#else /* CONFIG_SMP */
3746
1da177e4
LT
3747/*
3748 * on UP we do not need to balance between CPUs:
3749 */
70b97a7f 3750static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3751{
3752}
dd41f596 3753
1da177e4
LT
3754#endif
3755
1da177e4
LT
3756DEFINE_PER_CPU(struct kernel_stat, kstat);
3757
3758EXPORT_PER_CPU_SYMBOL(kstat);
3759
3760/*
41b86e9c
IM
3761 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3762 * that have not yet been banked in case the task is currently running.
1da177e4 3763 */
41b86e9c 3764unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3765{
1da177e4 3766 unsigned long flags;
41b86e9c
IM
3767 u64 ns, delta_exec;
3768 struct rq *rq;
48f24c4d 3769
41b86e9c
IM
3770 rq = task_rq_lock(p, &flags);
3771 ns = p->se.sum_exec_runtime;
051a1d1a 3772 if (task_current(rq, p)) {
a8e504d2
IM
3773 update_rq_clock(rq);
3774 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3775 if ((s64)delta_exec > 0)
3776 ns += delta_exec;
3777 }
3778 task_rq_unlock(rq, &flags);
48f24c4d 3779
1da177e4
LT
3780 return ns;
3781}
3782
1da177e4
LT
3783/*
3784 * Account user cpu time to a process.
3785 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3786 * @cputime: the cpu time spent in user space since the last update
3787 */
3788void account_user_time(struct task_struct *p, cputime_t cputime)
3789{
3790 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3791 cputime64_t tmp;
3792
3793 p->utime = cputime_add(p->utime, cputime);
3794
3795 /* Add user time to cpustat. */
3796 tmp = cputime_to_cputime64(cputime);
3797 if (TASK_NICE(p) > 0)
3798 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3799 else
3800 cpustat->user = cputime64_add(cpustat->user, tmp);
3801}
3802
94886b84
LV
3803/*
3804 * Account guest cpu time to a process.
3805 * @p: the process that the cpu time gets accounted to
3806 * @cputime: the cpu time spent in virtual machine since the last update
3807 */
f7402e03 3808static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3809{
3810 cputime64_t tmp;
3811 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3812
3813 tmp = cputime_to_cputime64(cputime);
3814
3815 p->utime = cputime_add(p->utime, cputime);
3816 p->gtime = cputime_add(p->gtime, cputime);
3817
3818 cpustat->user = cputime64_add(cpustat->user, tmp);
3819 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3820}
3821
c66f08be
MN
3822/*
3823 * Account scaled user cpu time to a process.
3824 * @p: the process that the cpu time gets accounted to
3825 * @cputime: the cpu time spent in user space since the last update
3826 */
3827void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3828{
3829 p->utimescaled = cputime_add(p->utimescaled, cputime);
3830}
3831
1da177e4
LT
3832/*
3833 * Account system cpu time to a process.
3834 * @p: the process that the cpu time gets accounted to
3835 * @hardirq_offset: the offset to subtract from hardirq_count()
3836 * @cputime: the cpu time spent in kernel space since the last update
3837 */
3838void account_system_time(struct task_struct *p, int hardirq_offset,
3839 cputime_t cputime)
3840{
3841 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3842 struct rq *rq = this_rq();
1da177e4
LT
3843 cputime64_t tmp;
3844
9778385d
CB
3845 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3846 return account_guest_time(p, cputime);
94886b84 3847
1da177e4
LT
3848 p->stime = cputime_add(p->stime, cputime);
3849
3850 /* Add system time to cpustat. */
3851 tmp = cputime_to_cputime64(cputime);
3852 if (hardirq_count() - hardirq_offset)
3853 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3854 else if (softirq_count())
3855 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3856 else if (p != rq->idle)
1da177e4 3857 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3858 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3859 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3860 else
3861 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3862 /* Account for system time used */
3863 acct_update_integrals(p);
1da177e4
LT
3864}
3865
c66f08be
MN
3866/*
3867 * Account scaled system cpu time to a process.
3868 * @p: the process that the cpu time gets accounted to
3869 * @hardirq_offset: the offset to subtract from hardirq_count()
3870 * @cputime: the cpu time spent in kernel space since the last update
3871 */
3872void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3873{
3874 p->stimescaled = cputime_add(p->stimescaled, cputime);
3875}
3876
1da177e4
LT
3877/*
3878 * Account for involuntary wait time.
3879 * @p: the process from which the cpu time has been stolen
3880 * @steal: the cpu time spent in involuntary wait
3881 */
3882void account_steal_time(struct task_struct *p, cputime_t steal)
3883{
3884 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3885 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3886 struct rq *rq = this_rq();
1da177e4
LT
3887
3888 if (p == rq->idle) {
3889 p->stime = cputime_add(p->stime, steal);
3890 if (atomic_read(&rq->nr_iowait) > 0)
3891 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3892 else
3893 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3894 } else
1da177e4
LT
3895 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3896}
3897
7835b98b
CL
3898/*
3899 * This function gets called by the timer code, with HZ frequency.
3900 * We call it with interrupts disabled.
3901 *
3902 * It also gets called by the fork code, when changing the parent's
3903 * timeslices.
3904 */
3905void scheduler_tick(void)
3906{
7835b98b
CL
3907 int cpu = smp_processor_id();
3908 struct rq *rq = cpu_rq(cpu);
dd41f596 3909 struct task_struct *curr = rq->curr;
529c7726 3910 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3911
3912 spin_lock(&rq->lock);
546fe3c9 3913 __update_rq_clock(rq);
529c7726
IM
3914 /*
3915 * Let rq->clock advance by at least TICK_NSEC:
3916 */
cc203d24 3917 if (unlikely(rq->clock < next_tick)) {
529c7726 3918 rq->clock = next_tick;
cc203d24
GC
3919 rq->clock_underflows++;
3920 }
529c7726 3921 rq->tick_timestamp = rq->clock;
15934a37 3922 update_last_tick_seen(rq);
f1a438d8 3923 update_cpu_load(rq);
fa85ae24 3924 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 3925 spin_unlock(&rq->lock);
7835b98b 3926
e418e1c2 3927#ifdef CONFIG_SMP
dd41f596
IM
3928 rq->idle_at_tick = idle_cpu(cpu);
3929 trigger_load_balance(rq, cpu);
e418e1c2 3930#endif
1da177e4
LT
3931}
3932
1da177e4
LT
3933#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3934
43627582 3935void __kprobes add_preempt_count(int val)
1da177e4
LT
3936{
3937 /*
3938 * Underflow?
3939 */
9a11b49a
IM
3940 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3941 return;
1da177e4
LT
3942 preempt_count() += val;
3943 /*
3944 * Spinlock count overflowing soon?
3945 */
33859f7f
MOS
3946 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3947 PREEMPT_MASK - 10);
1da177e4
LT
3948}
3949EXPORT_SYMBOL(add_preempt_count);
3950
43627582 3951void __kprobes sub_preempt_count(int val)
1da177e4
LT
3952{
3953 /*
3954 * Underflow?
3955 */
9a11b49a
IM
3956 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3957 return;
1da177e4
LT
3958 /*
3959 * Is the spinlock portion underflowing?
3960 */
9a11b49a
IM
3961 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3962 !(preempt_count() & PREEMPT_MASK)))
3963 return;
3964
1da177e4
LT
3965 preempt_count() -= val;
3966}
3967EXPORT_SYMBOL(sub_preempt_count);
3968
3969#endif
3970
3971/*
dd41f596 3972 * Print scheduling while atomic bug:
1da177e4 3973 */
dd41f596 3974static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3975{
838225b4
SS
3976 struct pt_regs *regs = get_irq_regs();
3977
3978 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3979 prev->comm, prev->pid, preempt_count());
3980
dd41f596
IM
3981 debug_show_held_locks(prev);
3982 if (irqs_disabled())
3983 print_irqtrace_events(prev);
838225b4
SS
3984
3985 if (regs)
3986 show_regs(regs);
3987 else
3988 dump_stack();
dd41f596 3989}
1da177e4 3990
dd41f596
IM
3991/*
3992 * Various schedule()-time debugging checks and statistics:
3993 */
3994static inline void schedule_debug(struct task_struct *prev)
3995{
1da177e4 3996 /*
41a2d6cf 3997 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3998 * schedule() atomically, we ignore that path for now.
3999 * Otherwise, whine if we are scheduling when we should not be.
4000 */
dd41f596
IM
4001 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4002 __schedule_bug(prev);
4003
1da177e4
LT
4004 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4005
2d72376b 4006 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4007#ifdef CONFIG_SCHEDSTATS
4008 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4009 schedstat_inc(this_rq(), bkl_count);
4010 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4011 }
4012#endif
dd41f596
IM
4013}
4014
4015/*
4016 * Pick up the highest-prio task:
4017 */
4018static inline struct task_struct *
ff95f3df 4019pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4020{
5522d5d5 4021 const struct sched_class *class;
dd41f596 4022 struct task_struct *p;
1da177e4
LT
4023
4024 /*
dd41f596
IM
4025 * Optimization: we know that if all tasks are in
4026 * the fair class we can call that function directly:
1da177e4 4027 */
dd41f596 4028 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4029 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4030 if (likely(p))
4031 return p;
1da177e4
LT
4032 }
4033
dd41f596
IM
4034 class = sched_class_highest;
4035 for ( ; ; ) {
fb8d4724 4036 p = class->pick_next_task(rq);
dd41f596
IM
4037 if (p)
4038 return p;
4039 /*
4040 * Will never be NULL as the idle class always
4041 * returns a non-NULL p:
4042 */
4043 class = class->next;
4044 }
4045}
1da177e4 4046
dd41f596
IM
4047/*
4048 * schedule() is the main scheduler function.
4049 */
4050asmlinkage void __sched schedule(void)
4051{
4052 struct task_struct *prev, *next;
67ca7bde 4053 unsigned long *switch_count;
dd41f596 4054 struct rq *rq;
dd41f596
IM
4055 int cpu;
4056
4057need_resched:
4058 preempt_disable();
4059 cpu = smp_processor_id();
4060 rq = cpu_rq(cpu);
4061 rcu_qsctr_inc(cpu);
4062 prev = rq->curr;
4063 switch_count = &prev->nivcsw;
4064
4065 release_kernel_lock(prev);
4066need_resched_nonpreemptible:
4067
4068 schedule_debug(prev);
1da177e4 4069
8f4d37ec
PZ
4070 hrtick_clear(rq);
4071
1e819950
IM
4072 /*
4073 * Do the rq-clock update outside the rq lock:
4074 */
4075 local_irq_disable();
c1b3da3e 4076 __update_rq_clock(rq);
1e819950
IM
4077 spin_lock(&rq->lock);
4078 clear_tsk_need_resched(prev);
1da177e4 4079
1da177e4 4080 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4081 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4082 signal_pending(prev))) {
1da177e4 4083 prev->state = TASK_RUNNING;
dd41f596 4084 } else {
2e1cb74a 4085 deactivate_task(rq, prev, 1);
1da177e4 4086 }
dd41f596 4087 switch_count = &prev->nvcsw;
1da177e4
LT
4088 }
4089
9a897c5a
SR
4090#ifdef CONFIG_SMP
4091 if (prev->sched_class->pre_schedule)
4092 prev->sched_class->pre_schedule(rq, prev);
4093#endif
f65eda4f 4094
dd41f596 4095 if (unlikely(!rq->nr_running))
1da177e4 4096 idle_balance(cpu, rq);
1da177e4 4097
31ee529c 4098 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4099 next = pick_next_task(rq, prev);
1da177e4
LT
4100
4101 sched_info_switch(prev, next);
dd41f596 4102
1da177e4 4103 if (likely(prev != next)) {
1da177e4
LT
4104 rq->nr_switches++;
4105 rq->curr = next;
4106 ++*switch_count;
4107
dd41f596 4108 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4109 /*
4110 * the context switch might have flipped the stack from under
4111 * us, hence refresh the local variables.
4112 */
4113 cpu = smp_processor_id();
4114 rq = cpu_rq(cpu);
1da177e4
LT
4115 } else
4116 spin_unlock_irq(&rq->lock);
4117
8f4d37ec
PZ
4118 hrtick_set(rq);
4119
4120 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4121 goto need_resched_nonpreemptible;
8f4d37ec 4122
1da177e4
LT
4123 preempt_enable_no_resched();
4124 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4125 goto need_resched;
4126}
1da177e4
LT
4127EXPORT_SYMBOL(schedule);
4128
4129#ifdef CONFIG_PREEMPT
4130/*
2ed6e34f 4131 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4132 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4133 * occur there and call schedule directly.
4134 */
4135asmlinkage void __sched preempt_schedule(void)
4136{
4137 struct thread_info *ti = current_thread_info();
1da177e4
LT
4138 struct task_struct *task = current;
4139 int saved_lock_depth;
6478d880 4140
1da177e4
LT
4141 /*
4142 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4143 * we do not want to preempt the current task. Just return..
1da177e4 4144 */
beed33a8 4145 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4146 return;
4147
3a5c359a
AK
4148 do {
4149 add_preempt_count(PREEMPT_ACTIVE);
4150
4151 /*
4152 * We keep the big kernel semaphore locked, but we
4153 * clear ->lock_depth so that schedule() doesnt
4154 * auto-release the semaphore:
4155 */
3a5c359a
AK
4156 saved_lock_depth = task->lock_depth;
4157 task->lock_depth = -1;
3a5c359a 4158 schedule();
3a5c359a 4159 task->lock_depth = saved_lock_depth;
3a5c359a 4160 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4161
3a5c359a
AK
4162 /*
4163 * Check again in case we missed a preemption opportunity
4164 * between schedule and now.
4165 */
4166 barrier();
4167 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4168}
1da177e4
LT
4169EXPORT_SYMBOL(preempt_schedule);
4170
4171/*
2ed6e34f 4172 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4173 * off of irq context.
4174 * Note, that this is called and return with irqs disabled. This will
4175 * protect us against recursive calling from irq.
4176 */
4177asmlinkage void __sched preempt_schedule_irq(void)
4178{
4179 struct thread_info *ti = current_thread_info();
1da177e4
LT
4180 struct task_struct *task = current;
4181 int saved_lock_depth;
6478d880 4182
2ed6e34f 4183 /* Catch callers which need to be fixed */
1da177e4
LT
4184 BUG_ON(ti->preempt_count || !irqs_disabled());
4185
3a5c359a
AK
4186 do {
4187 add_preempt_count(PREEMPT_ACTIVE);
4188
4189 /*
4190 * We keep the big kernel semaphore locked, but we
4191 * clear ->lock_depth so that schedule() doesnt
4192 * auto-release the semaphore:
4193 */
3a5c359a
AK
4194 saved_lock_depth = task->lock_depth;
4195 task->lock_depth = -1;
3a5c359a
AK
4196 local_irq_enable();
4197 schedule();
4198 local_irq_disable();
3a5c359a 4199 task->lock_depth = saved_lock_depth;
3a5c359a 4200 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4201
3a5c359a
AK
4202 /*
4203 * Check again in case we missed a preemption opportunity
4204 * between schedule and now.
4205 */
4206 barrier();
4207 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4208}
4209
4210#endif /* CONFIG_PREEMPT */
4211
95cdf3b7
IM
4212int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4213 void *key)
1da177e4 4214{
48f24c4d 4215 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4216}
1da177e4
LT
4217EXPORT_SYMBOL(default_wake_function);
4218
4219/*
41a2d6cf
IM
4220 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4221 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4222 * number) then we wake all the non-exclusive tasks and one exclusive task.
4223 *
4224 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4225 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4226 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4227 */
4228static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4229 int nr_exclusive, int sync, void *key)
4230{
2e45874c 4231 wait_queue_t *curr, *next;
1da177e4 4232
2e45874c 4233 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4234 unsigned flags = curr->flags;
4235
1da177e4 4236 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4237 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4238 break;
4239 }
4240}
4241
4242/**
4243 * __wake_up - wake up threads blocked on a waitqueue.
4244 * @q: the waitqueue
4245 * @mode: which threads
4246 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4247 * @key: is directly passed to the wakeup function
1da177e4 4248 */
7ad5b3a5 4249void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4250 int nr_exclusive, void *key)
1da177e4
LT
4251{
4252 unsigned long flags;
4253
4254 spin_lock_irqsave(&q->lock, flags);
4255 __wake_up_common(q, mode, nr_exclusive, 0, key);
4256 spin_unlock_irqrestore(&q->lock, flags);
4257}
1da177e4
LT
4258EXPORT_SYMBOL(__wake_up);
4259
4260/*
4261 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4262 */
7ad5b3a5 4263void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4264{
4265 __wake_up_common(q, mode, 1, 0, NULL);
4266}
4267
4268/**
67be2dd1 4269 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4270 * @q: the waitqueue
4271 * @mode: which threads
4272 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4273 *
4274 * The sync wakeup differs that the waker knows that it will schedule
4275 * away soon, so while the target thread will be woken up, it will not
4276 * be migrated to another CPU - ie. the two threads are 'synchronized'
4277 * with each other. This can prevent needless bouncing between CPUs.
4278 *
4279 * On UP it can prevent extra preemption.
4280 */
7ad5b3a5 4281void
95cdf3b7 4282__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4283{
4284 unsigned long flags;
4285 int sync = 1;
4286
4287 if (unlikely(!q))
4288 return;
4289
4290 if (unlikely(!nr_exclusive))
4291 sync = 0;
4292
4293 spin_lock_irqsave(&q->lock, flags);
4294 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4295 spin_unlock_irqrestore(&q->lock, flags);
4296}
4297EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4298
b15136e9 4299void complete(struct completion *x)
1da177e4
LT
4300{
4301 unsigned long flags;
4302
4303 spin_lock_irqsave(&x->wait.lock, flags);
4304 x->done++;
d9514f6c 4305 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4306 spin_unlock_irqrestore(&x->wait.lock, flags);
4307}
4308EXPORT_SYMBOL(complete);
4309
b15136e9 4310void complete_all(struct completion *x)
1da177e4
LT
4311{
4312 unsigned long flags;
4313
4314 spin_lock_irqsave(&x->wait.lock, flags);
4315 x->done += UINT_MAX/2;
d9514f6c 4316 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4317 spin_unlock_irqrestore(&x->wait.lock, flags);
4318}
4319EXPORT_SYMBOL(complete_all);
4320
8cbbe86d
AK
4321static inline long __sched
4322do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4323{
1da177e4
LT
4324 if (!x->done) {
4325 DECLARE_WAITQUEUE(wait, current);
4326
4327 wait.flags |= WQ_FLAG_EXCLUSIVE;
4328 __add_wait_queue_tail(&x->wait, &wait);
4329 do {
009e577e
MW
4330 if ((state == TASK_INTERRUPTIBLE &&
4331 signal_pending(current)) ||
4332 (state == TASK_KILLABLE &&
4333 fatal_signal_pending(current))) {
8cbbe86d
AK
4334 __remove_wait_queue(&x->wait, &wait);
4335 return -ERESTARTSYS;
4336 }
4337 __set_current_state(state);
1da177e4
LT
4338 spin_unlock_irq(&x->wait.lock);
4339 timeout = schedule_timeout(timeout);
4340 spin_lock_irq(&x->wait.lock);
4341 if (!timeout) {
4342 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4343 return timeout;
1da177e4
LT
4344 }
4345 } while (!x->done);
4346 __remove_wait_queue(&x->wait, &wait);
4347 }
4348 x->done--;
1da177e4
LT
4349 return timeout;
4350}
1da177e4 4351
8cbbe86d
AK
4352static long __sched
4353wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4354{
1da177e4
LT
4355 might_sleep();
4356
4357 spin_lock_irq(&x->wait.lock);
8cbbe86d 4358 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4359 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4360 return timeout;
4361}
1da177e4 4362
b15136e9 4363void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4364{
4365 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4366}
8cbbe86d 4367EXPORT_SYMBOL(wait_for_completion);
1da177e4 4368
b15136e9 4369unsigned long __sched
8cbbe86d 4370wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4371{
8cbbe86d 4372 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4373}
8cbbe86d 4374EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4375
8cbbe86d 4376int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4377{
51e97990
AK
4378 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4379 if (t == -ERESTARTSYS)
4380 return t;
4381 return 0;
0fec171c 4382}
8cbbe86d 4383EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4384
b15136e9 4385unsigned long __sched
8cbbe86d
AK
4386wait_for_completion_interruptible_timeout(struct completion *x,
4387 unsigned long timeout)
0fec171c 4388{
8cbbe86d 4389 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4390}
8cbbe86d 4391EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4392
009e577e
MW
4393int __sched wait_for_completion_killable(struct completion *x)
4394{
4395 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4396 if (t == -ERESTARTSYS)
4397 return t;
4398 return 0;
4399}
4400EXPORT_SYMBOL(wait_for_completion_killable);
4401
8cbbe86d
AK
4402static long __sched
4403sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4404{
0fec171c
IM
4405 unsigned long flags;
4406 wait_queue_t wait;
4407
4408 init_waitqueue_entry(&wait, current);
1da177e4 4409
8cbbe86d 4410 __set_current_state(state);
1da177e4 4411
8cbbe86d
AK
4412 spin_lock_irqsave(&q->lock, flags);
4413 __add_wait_queue(q, &wait);
4414 spin_unlock(&q->lock);
4415 timeout = schedule_timeout(timeout);
4416 spin_lock_irq(&q->lock);
4417 __remove_wait_queue(q, &wait);
4418 spin_unlock_irqrestore(&q->lock, flags);
4419
4420 return timeout;
4421}
4422
4423void __sched interruptible_sleep_on(wait_queue_head_t *q)
4424{
4425 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4426}
1da177e4
LT
4427EXPORT_SYMBOL(interruptible_sleep_on);
4428
0fec171c 4429long __sched
95cdf3b7 4430interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4431{
8cbbe86d 4432 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4433}
1da177e4
LT
4434EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4435
0fec171c 4436void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4437{
8cbbe86d 4438 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4439}
1da177e4
LT
4440EXPORT_SYMBOL(sleep_on);
4441
0fec171c 4442long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4443{
8cbbe86d 4444 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4445}
1da177e4
LT
4446EXPORT_SYMBOL(sleep_on_timeout);
4447
b29739f9
IM
4448#ifdef CONFIG_RT_MUTEXES
4449
4450/*
4451 * rt_mutex_setprio - set the current priority of a task
4452 * @p: task
4453 * @prio: prio value (kernel-internal form)
4454 *
4455 * This function changes the 'effective' priority of a task. It does
4456 * not touch ->normal_prio like __setscheduler().
4457 *
4458 * Used by the rt_mutex code to implement priority inheritance logic.
4459 */
36c8b586 4460void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4461{
4462 unsigned long flags;
83b699ed 4463 int oldprio, on_rq, running;
70b97a7f 4464 struct rq *rq;
cb469845 4465 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4466
4467 BUG_ON(prio < 0 || prio > MAX_PRIO);
4468
4469 rq = task_rq_lock(p, &flags);
a8e504d2 4470 update_rq_clock(rq);
b29739f9 4471
d5f9f942 4472 oldprio = p->prio;
dd41f596 4473 on_rq = p->se.on_rq;
051a1d1a 4474 running = task_current(rq, p);
0e1f3483 4475 if (on_rq)
69be72c1 4476 dequeue_task(rq, p, 0);
0e1f3483
HS
4477 if (running)
4478 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4479
4480 if (rt_prio(prio))
4481 p->sched_class = &rt_sched_class;
4482 else
4483 p->sched_class = &fair_sched_class;
4484
b29739f9
IM
4485 p->prio = prio;
4486
0e1f3483
HS
4487 if (running)
4488 p->sched_class->set_curr_task(rq);
dd41f596 4489 if (on_rq) {
8159f87e 4490 enqueue_task(rq, p, 0);
cb469845
SR
4491
4492 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4493 }
4494 task_rq_unlock(rq, &flags);
4495}
4496
4497#endif
4498
36c8b586 4499void set_user_nice(struct task_struct *p, long nice)
1da177e4 4500{
dd41f596 4501 int old_prio, delta, on_rq;
1da177e4 4502 unsigned long flags;
70b97a7f 4503 struct rq *rq;
1da177e4
LT
4504
4505 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4506 return;
4507 /*
4508 * We have to be careful, if called from sys_setpriority(),
4509 * the task might be in the middle of scheduling on another CPU.
4510 */
4511 rq = task_rq_lock(p, &flags);
a8e504d2 4512 update_rq_clock(rq);
1da177e4
LT
4513 /*
4514 * The RT priorities are set via sched_setscheduler(), but we still
4515 * allow the 'normal' nice value to be set - but as expected
4516 * it wont have any effect on scheduling until the task is
dd41f596 4517 * SCHED_FIFO/SCHED_RR:
1da177e4 4518 */
e05606d3 4519 if (task_has_rt_policy(p)) {
1da177e4
LT
4520 p->static_prio = NICE_TO_PRIO(nice);
4521 goto out_unlock;
4522 }
dd41f596 4523 on_rq = p->se.on_rq;
62fb1851 4524 if (on_rq) {
69be72c1 4525 dequeue_task(rq, p, 0);
62fb1851
PZ
4526 dec_load(rq, p);
4527 }
1da177e4 4528
1da177e4 4529 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4530 set_load_weight(p);
b29739f9
IM
4531 old_prio = p->prio;
4532 p->prio = effective_prio(p);
4533 delta = p->prio - old_prio;
1da177e4 4534
dd41f596 4535 if (on_rq) {
8159f87e 4536 enqueue_task(rq, p, 0);
62fb1851 4537 inc_load(rq, p);
1da177e4 4538 /*
d5f9f942
AM
4539 * If the task increased its priority or is running and
4540 * lowered its priority, then reschedule its CPU:
1da177e4 4541 */
d5f9f942 4542 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4543 resched_task(rq->curr);
4544 }
4545out_unlock:
4546 task_rq_unlock(rq, &flags);
4547}
1da177e4
LT
4548EXPORT_SYMBOL(set_user_nice);
4549
e43379f1
MM
4550/*
4551 * can_nice - check if a task can reduce its nice value
4552 * @p: task
4553 * @nice: nice value
4554 */
36c8b586 4555int can_nice(const struct task_struct *p, const int nice)
e43379f1 4556{
024f4747
MM
4557 /* convert nice value [19,-20] to rlimit style value [1,40] */
4558 int nice_rlim = 20 - nice;
48f24c4d 4559
e43379f1
MM
4560 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4561 capable(CAP_SYS_NICE));
4562}
4563
1da177e4
LT
4564#ifdef __ARCH_WANT_SYS_NICE
4565
4566/*
4567 * sys_nice - change the priority of the current process.
4568 * @increment: priority increment
4569 *
4570 * sys_setpriority is a more generic, but much slower function that
4571 * does similar things.
4572 */
4573asmlinkage long sys_nice(int increment)
4574{
48f24c4d 4575 long nice, retval;
1da177e4
LT
4576
4577 /*
4578 * Setpriority might change our priority at the same moment.
4579 * We don't have to worry. Conceptually one call occurs first
4580 * and we have a single winner.
4581 */
e43379f1
MM
4582 if (increment < -40)
4583 increment = -40;
1da177e4
LT
4584 if (increment > 40)
4585 increment = 40;
4586
4587 nice = PRIO_TO_NICE(current->static_prio) + increment;
4588 if (nice < -20)
4589 nice = -20;
4590 if (nice > 19)
4591 nice = 19;
4592
e43379f1
MM
4593 if (increment < 0 && !can_nice(current, nice))
4594 return -EPERM;
4595
1da177e4
LT
4596 retval = security_task_setnice(current, nice);
4597 if (retval)
4598 return retval;
4599
4600 set_user_nice(current, nice);
4601 return 0;
4602}
4603
4604#endif
4605
4606/**
4607 * task_prio - return the priority value of a given task.
4608 * @p: the task in question.
4609 *
4610 * This is the priority value as seen by users in /proc.
4611 * RT tasks are offset by -200. Normal tasks are centered
4612 * around 0, value goes from -16 to +15.
4613 */
36c8b586 4614int task_prio(const struct task_struct *p)
1da177e4
LT
4615{
4616 return p->prio - MAX_RT_PRIO;
4617}
4618
4619/**
4620 * task_nice - return the nice value of a given task.
4621 * @p: the task in question.
4622 */
36c8b586 4623int task_nice(const struct task_struct *p)
1da177e4
LT
4624{
4625 return TASK_NICE(p);
4626}
150d8bed 4627EXPORT_SYMBOL(task_nice);
1da177e4
LT
4628
4629/**
4630 * idle_cpu - is a given cpu idle currently?
4631 * @cpu: the processor in question.
4632 */
4633int idle_cpu(int cpu)
4634{
4635 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4636}
4637
1da177e4
LT
4638/**
4639 * idle_task - return the idle task for a given cpu.
4640 * @cpu: the processor in question.
4641 */
36c8b586 4642struct task_struct *idle_task(int cpu)
1da177e4
LT
4643{
4644 return cpu_rq(cpu)->idle;
4645}
4646
4647/**
4648 * find_process_by_pid - find a process with a matching PID value.
4649 * @pid: the pid in question.
4650 */
a9957449 4651static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4652{
228ebcbe 4653 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4654}
4655
4656/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4657static void
4658__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4659{
dd41f596 4660 BUG_ON(p->se.on_rq);
48f24c4d 4661
1da177e4 4662 p->policy = policy;
dd41f596
IM
4663 switch (p->policy) {
4664 case SCHED_NORMAL:
4665 case SCHED_BATCH:
4666 case SCHED_IDLE:
4667 p->sched_class = &fair_sched_class;
4668 break;
4669 case SCHED_FIFO:
4670 case SCHED_RR:
4671 p->sched_class = &rt_sched_class;
4672 break;
4673 }
4674
1da177e4 4675 p->rt_priority = prio;
b29739f9
IM
4676 p->normal_prio = normal_prio(p);
4677 /* we are holding p->pi_lock already */
4678 p->prio = rt_mutex_getprio(p);
2dd73a4f 4679 set_load_weight(p);
1da177e4
LT
4680}
4681
4682/**
72fd4a35 4683 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4684 * @p: the task in question.
4685 * @policy: new policy.
4686 * @param: structure containing the new RT priority.
5fe1d75f 4687 *
72fd4a35 4688 * NOTE that the task may be already dead.
1da177e4 4689 */
95cdf3b7
IM
4690int sched_setscheduler(struct task_struct *p, int policy,
4691 struct sched_param *param)
1da177e4 4692{
83b699ed 4693 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4694 unsigned long flags;
cb469845 4695 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4696 struct rq *rq;
1da177e4 4697
66e5393a
SR
4698 /* may grab non-irq protected spin_locks */
4699 BUG_ON(in_interrupt());
1da177e4
LT
4700recheck:
4701 /* double check policy once rq lock held */
4702 if (policy < 0)
4703 policy = oldpolicy = p->policy;
4704 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4705 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4706 policy != SCHED_IDLE)
b0a9499c 4707 return -EINVAL;
1da177e4
LT
4708 /*
4709 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4710 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4711 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4712 */
4713 if (param->sched_priority < 0 ||
95cdf3b7 4714 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4715 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4716 return -EINVAL;
e05606d3 4717 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4718 return -EINVAL;
4719
37e4ab3f
OC
4720 /*
4721 * Allow unprivileged RT tasks to decrease priority:
4722 */
4723 if (!capable(CAP_SYS_NICE)) {
e05606d3 4724 if (rt_policy(policy)) {
8dc3e909 4725 unsigned long rlim_rtprio;
8dc3e909
ON
4726
4727 if (!lock_task_sighand(p, &flags))
4728 return -ESRCH;
4729 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4730 unlock_task_sighand(p, &flags);
4731
4732 /* can't set/change the rt policy */
4733 if (policy != p->policy && !rlim_rtprio)
4734 return -EPERM;
4735
4736 /* can't increase priority */
4737 if (param->sched_priority > p->rt_priority &&
4738 param->sched_priority > rlim_rtprio)
4739 return -EPERM;
4740 }
dd41f596
IM
4741 /*
4742 * Like positive nice levels, dont allow tasks to
4743 * move out of SCHED_IDLE either:
4744 */
4745 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4746 return -EPERM;
5fe1d75f 4747
37e4ab3f
OC
4748 /* can't change other user's priorities */
4749 if ((current->euid != p->euid) &&
4750 (current->euid != p->uid))
4751 return -EPERM;
4752 }
1da177e4 4753
b68aa230
PZ
4754#ifdef CONFIG_RT_GROUP_SCHED
4755 /*
4756 * Do not allow realtime tasks into groups that have no runtime
4757 * assigned.
4758 */
d0b27fa7 4759 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4760 return -EPERM;
4761#endif
4762
1da177e4
LT
4763 retval = security_task_setscheduler(p, policy, param);
4764 if (retval)
4765 return retval;
b29739f9
IM
4766 /*
4767 * make sure no PI-waiters arrive (or leave) while we are
4768 * changing the priority of the task:
4769 */
4770 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4771 /*
4772 * To be able to change p->policy safely, the apropriate
4773 * runqueue lock must be held.
4774 */
b29739f9 4775 rq = __task_rq_lock(p);
1da177e4
LT
4776 /* recheck policy now with rq lock held */
4777 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4778 policy = oldpolicy = -1;
b29739f9
IM
4779 __task_rq_unlock(rq);
4780 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4781 goto recheck;
4782 }
2daa3577 4783 update_rq_clock(rq);
dd41f596 4784 on_rq = p->se.on_rq;
051a1d1a 4785 running = task_current(rq, p);
0e1f3483 4786 if (on_rq)
2e1cb74a 4787 deactivate_task(rq, p, 0);
0e1f3483
HS
4788 if (running)
4789 p->sched_class->put_prev_task(rq, p);
f6b53205 4790
1da177e4 4791 oldprio = p->prio;
dd41f596 4792 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4793
0e1f3483
HS
4794 if (running)
4795 p->sched_class->set_curr_task(rq);
dd41f596
IM
4796 if (on_rq) {
4797 activate_task(rq, p, 0);
cb469845
SR
4798
4799 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4800 }
b29739f9
IM
4801 __task_rq_unlock(rq);
4802 spin_unlock_irqrestore(&p->pi_lock, flags);
4803
95e02ca9
TG
4804 rt_mutex_adjust_pi(p);
4805
1da177e4
LT
4806 return 0;
4807}
4808EXPORT_SYMBOL_GPL(sched_setscheduler);
4809
95cdf3b7
IM
4810static int
4811do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4812{
1da177e4
LT
4813 struct sched_param lparam;
4814 struct task_struct *p;
36c8b586 4815 int retval;
1da177e4
LT
4816
4817 if (!param || pid < 0)
4818 return -EINVAL;
4819 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4820 return -EFAULT;
5fe1d75f
ON
4821
4822 rcu_read_lock();
4823 retval = -ESRCH;
1da177e4 4824 p = find_process_by_pid(pid);
5fe1d75f
ON
4825 if (p != NULL)
4826 retval = sched_setscheduler(p, policy, &lparam);
4827 rcu_read_unlock();
36c8b586 4828
1da177e4
LT
4829 return retval;
4830}
4831
4832/**
4833 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4834 * @pid: the pid in question.
4835 * @policy: new policy.
4836 * @param: structure containing the new RT priority.
4837 */
41a2d6cf
IM
4838asmlinkage long
4839sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4840{
c21761f1
JB
4841 /* negative values for policy are not valid */
4842 if (policy < 0)
4843 return -EINVAL;
4844
1da177e4
LT
4845 return do_sched_setscheduler(pid, policy, param);
4846}
4847
4848/**
4849 * sys_sched_setparam - set/change the RT priority of a thread
4850 * @pid: the pid in question.
4851 * @param: structure containing the new RT priority.
4852 */
4853asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4854{
4855 return do_sched_setscheduler(pid, -1, param);
4856}
4857
4858/**
4859 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4860 * @pid: the pid in question.
4861 */
4862asmlinkage long sys_sched_getscheduler(pid_t pid)
4863{
36c8b586 4864 struct task_struct *p;
3a5c359a 4865 int retval;
1da177e4
LT
4866
4867 if (pid < 0)
3a5c359a 4868 return -EINVAL;
1da177e4
LT
4869
4870 retval = -ESRCH;
4871 read_lock(&tasklist_lock);
4872 p = find_process_by_pid(pid);
4873 if (p) {
4874 retval = security_task_getscheduler(p);
4875 if (!retval)
4876 retval = p->policy;
4877 }
4878 read_unlock(&tasklist_lock);
1da177e4
LT
4879 return retval;
4880}
4881
4882/**
4883 * sys_sched_getscheduler - get the RT priority of a thread
4884 * @pid: the pid in question.
4885 * @param: structure containing the RT priority.
4886 */
4887asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4888{
4889 struct sched_param lp;
36c8b586 4890 struct task_struct *p;
3a5c359a 4891 int retval;
1da177e4
LT
4892
4893 if (!param || pid < 0)
3a5c359a 4894 return -EINVAL;
1da177e4
LT
4895
4896 read_lock(&tasklist_lock);
4897 p = find_process_by_pid(pid);
4898 retval = -ESRCH;
4899 if (!p)
4900 goto out_unlock;
4901
4902 retval = security_task_getscheduler(p);
4903 if (retval)
4904 goto out_unlock;
4905
4906 lp.sched_priority = p->rt_priority;
4907 read_unlock(&tasklist_lock);
4908
4909 /*
4910 * This one might sleep, we cannot do it with a spinlock held ...
4911 */
4912 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4913
1da177e4
LT
4914 return retval;
4915
4916out_unlock:
4917 read_unlock(&tasklist_lock);
4918 return retval;
4919}
4920
b53e921b 4921long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4922{
1da177e4 4923 cpumask_t cpus_allowed;
b53e921b 4924 cpumask_t new_mask = *in_mask;
36c8b586
IM
4925 struct task_struct *p;
4926 int retval;
1da177e4 4927
95402b38 4928 get_online_cpus();
1da177e4
LT
4929 read_lock(&tasklist_lock);
4930
4931 p = find_process_by_pid(pid);
4932 if (!p) {
4933 read_unlock(&tasklist_lock);
95402b38 4934 put_online_cpus();
1da177e4
LT
4935 return -ESRCH;
4936 }
4937
4938 /*
4939 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4940 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4941 * usage count and then drop tasklist_lock.
4942 */
4943 get_task_struct(p);
4944 read_unlock(&tasklist_lock);
4945
4946 retval = -EPERM;
4947 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4948 !capable(CAP_SYS_NICE))
4949 goto out_unlock;
4950
e7834f8f
DQ
4951 retval = security_task_setscheduler(p, 0, NULL);
4952 if (retval)
4953 goto out_unlock;
4954
f9a86fcb 4955 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 4956 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4957 again:
7c16ec58 4958 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 4959
8707d8b8 4960 if (!retval) {
f9a86fcb 4961 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
4962 if (!cpus_subset(new_mask, cpus_allowed)) {
4963 /*
4964 * We must have raced with a concurrent cpuset
4965 * update. Just reset the cpus_allowed to the
4966 * cpuset's cpus_allowed
4967 */
4968 new_mask = cpus_allowed;
4969 goto again;
4970 }
4971 }
1da177e4
LT
4972out_unlock:
4973 put_task_struct(p);
95402b38 4974 put_online_cpus();
1da177e4
LT
4975 return retval;
4976}
4977
4978static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4979 cpumask_t *new_mask)
4980{
4981 if (len < sizeof(cpumask_t)) {
4982 memset(new_mask, 0, sizeof(cpumask_t));
4983 } else if (len > sizeof(cpumask_t)) {
4984 len = sizeof(cpumask_t);
4985 }
4986 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4987}
4988
4989/**
4990 * sys_sched_setaffinity - set the cpu affinity of a process
4991 * @pid: pid of the process
4992 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4993 * @user_mask_ptr: user-space pointer to the new cpu mask
4994 */
4995asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4996 unsigned long __user *user_mask_ptr)
4997{
4998 cpumask_t new_mask;
4999 int retval;
5000
5001 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5002 if (retval)
5003 return retval;
5004
b53e921b 5005 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5006}
5007
5008/*
5009 * Represents all cpu's present in the system
5010 * In systems capable of hotplug, this map could dynamically grow
5011 * as new cpu's are detected in the system via any platform specific
5012 * method, such as ACPI for e.g.
5013 */
5014
4cef0c61 5015cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5016EXPORT_SYMBOL(cpu_present_map);
5017
5018#ifndef CONFIG_SMP
4cef0c61 5019cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5020EXPORT_SYMBOL(cpu_online_map);
5021
4cef0c61 5022cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5023EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5024#endif
5025
5026long sched_getaffinity(pid_t pid, cpumask_t *mask)
5027{
36c8b586 5028 struct task_struct *p;
1da177e4 5029 int retval;
1da177e4 5030
95402b38 5031 get_online_cpus();
1da177e4
LT
5032 read_lock(&tasklist_lock);
5033
5034 retval = -ESRCH;
5035 p = find_process_by_pid(pid);
5036 if (!p)
5037 goto out_unlock;
5038
e7834f8f
DQ
5039 retval = security_task_getscheduler(p);
5040 if (retval)
5041 goto out_unlock;
5042
2f7016d9 5043 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5044
5045out_unlock:
5046 read_unlock(&tasklist_lock);
95402b38 5047 put_online_cpus();
1da177e4 5048
9531b62f 5049 return retval;
1da177e4
LT
5050}
5051
5052/**
5053 * sys_sched_getaffinity - get the cpu affinity of a process
5054 * @pid: pid of the process
5055 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5056 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5057 */
5058asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5059 unsigned long __user *user_mask_ptr)
5060{
5061 int ret;
5062 cpumask_t mask;
5063
5064 if (len < sizeof(cpumask_t))
5065 return -EINVAL;
5066
5067 ret = sched_getaffinity(pid, &mask);
5068 if (ret < 0)
5069 return ret;
5070
5071 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5072 return -EFAULT;
5073
5074 return sizeof(cpumask_t);
5075}
5076
5077/**
5078 * sys_sched_yield - yield the current processor to other threads.
5079 *
dd41f596
IM
5080 * This function yields the current CPU to other tasks. If there are no
5081 * other threads running on this CPU then this function will return.
1da177e4
LT
5082 */
5083asmlinkage long sys_sched_yield(void)
5084{
70b97a7f 5085 struct rq *rq = this_rq_lock();
1da177e4 5086
2d72376b 5087 schedstat_inc(rq, yld_count);
4530d7ab 5088 current->sched_class->yield_task(rq);
1da177e4
LT
5089
5090 /*
5091 * Since we are going to call schedule() anyway, there's
5092 * no need to preempt or enable interrupts:
5093 */
5094 __release(rq->lock);
8a25d5de 5095 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5096 _raw_spin_unlock(&rq->lock);
5097 preempt_enable_no_resched();
5098
5099 schedule();
5100
5101 return 0;
5102}
5103
e7b38404 5104static void __cond_resched(void)
1da177e4 5105{
8e0a43d8
IM
5106#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5107 __might_sleep(__FILE__, __LINE__);
5108#endif
5bbcfd90
IM
5109 /*
5110 * The BKS might be reacquired before we have dropped
5111 * PREEMPT_ACTIVE, which could trigger a second
5112 * cond_resched() call.
5113 */
1da177e4
LT
5114 do {
5115 add_preempt_count(PREEMPT_ACTIVE);
5116 schedule();
5117 sub_preempt_count(PREEMPT_ACTIVE);
5118 } while (need_resched());
5119}
5120
02b67cc3
HX
5121#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5122int __sched _cond_resched(void)
1da177e4 5123{
9414232f
IM
5124 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5125 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5126 __cond_resched();
5127 return 1;
5128 }
5129 return 0;
5130}
02b67cc3
HX
5131EXPORT_SYMBOL(_cond_resched);
5132#endif
1da177e4
LT
5133
5134/*
5135 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5136 * call schedule, and on return reacquire the lock.
5137 *
41a2d6cf 5138 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5139 * operations here to prevent schedule() from being called twice (once via
5140 * spin_unlock(), once by hand).
5141 */
95cdf3b7 5142int cond_resched_lock(spinlock_t *lock)
1da177e4 5143{
95c354fe 5144 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5145 int ret = 0;
5146
95c354fe 5147 if (spin_needbreak(lock) || resched) {
1da177e4 5148 spin_unlock(lock);
95c354fe
NP
5149 if (resched && need_resched())
5150 __cond_resched();
5151 else
5152 cpu_relax();
6df3cecb 5153 ret = 1;
1da177e4 5154 spin_lock(lock);
1da177e4 5155 }
6df3cecb 5156 return ret;
1da177e4 5157}
1da177e4
LT
5158EXPORT_SYMBOL(cond_resched_lock);
5159
5160int __sched cond_resched_softirq(void)
5161{
5162 BUG_ON(!in_softirq());
5163
9414232f 5164 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5165 local_bh_enable();
1da177e4
LT
5166 __cond_resched();
5167 local_bh_disable();
5168 return 1;
5169 }
5170 return 0;
5171}
1da177e4
LT
5172EXPORT_SYMBOL(cond_resched_softirq);
5173
1da177e4
LT
5174/**
5175 * yield - yield the current processor to other threads.
5176 *
72fd4a35 5177 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5178 * thread runnable and calls sys_sched_yield().
5179 */
5180void __sched yield(void)
5181{
5182 set_current_state(TASK_RUNNING);
5183 sys_sched_yield();
5184}
1da177e4
LT
5185EXPORT_SYMBOL(yield);
5186
5187/*
41a2d6cf 5188 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5189 * that process accounting knows that this is a task in IO wait state.
5190 *
5191 * But don't do that if it is a deliberate, throttling IO wait (this task
5192 * has set its backing_dev_info: the queue against which it should throttle)
5193 */
5194void __sched io_schedule(void)
5195{
70b97a7f 5196 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5197
0ff92245 5198 delayacct_blkio_start();
1da177e4
LT
5199 atomic_inc(&rq->nr_iowait);
5200 schedule();
5201 atomic_dec(&rq->nr_iowait);
0ff92245 5202 delayacct_blkio_end();
1da177e4 5203}
1da177e4
LT
5204EXPORT_SYMBOL(io_schedule);
5205
5206long __sched io_schedule_timeout(long timeout)
5207{
70b97a7f 5208 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5209 long ret;
5210
0ff92245 5211 delayacct_blkio_start();
1da177e4
LT
5212 atomic_inc(&rq->nr_iowait);
5213 ret = schedule_timeout(timeout);
5214 atomic_dec(&rq->nr_iowait);
0ff92245 5215 delayacct_blkio_end();
1da177e4
LT
5216 return ret;
5217}
5218
5219/**
5220 * sys_sched_get_priority_max - return maximum RT priority.
5221 * @policy: scheduling class.
5222 *
5223 * this syscall returns the maximum rt_priority that can be used
5224 * by a given scheduling class.
5225 */
5226asmlinkage long sys_sched_get_priority_max(int policy)
5227{
5228 int ret = -EINVAL;
5229
5230 switch (policy) {
5231 case SCHED_FIFO:
5232 case SCHED_RR:
5233 ret = MAX_USER_RT_PRIO-1;
5234 break;
5235 case SCHED_NORMAL:
b0a9499c 5236 case SCHED_BATCH:
dd41f596 5237 case SCHED_IDLE:
1da177e4
LT
5238 ret = 0;
5239 break;
5240 }
5241 return ret;
5242}
5243
5244/**
5245 * sys_sched_get_priority_min - return minimum RT priority.
5246 * @policy: scheduling class.
5247 *
5248 * this syscall returns the minimum rt_priority that can be used
5249 * by a given scheduling class.
5250 */
5251asmlinkage long sys_sched_get_priority_min(int policy)
5252{
5253 int ret = -EINVAL;
5254
5255 switch (policy) {
5256 case SCHED_FIFO:
5257 case SCHED_RR:
5258 ret = 1;
5259 break;
5260 case SCHED_NORMAL:
b0a9499c 5261 case SCHED_BATCH:
dd41f596 5262 case SCHED_IDLE:
1da177e4
LT
5263 ret = 0;
5264 }
5265 return ret;
5266}
5267
5268/**
5269 * sys_sched_rr_get_interval - return the default timeslice of a process.
5270 * @pid: pid of the process.
5271 * @interval: userspace pointer to the timeslice value.
5272 *
5273 * this syscall writes the default timeslice value of a given process
5274 * into the user-space timespec buffer. A value of '0' means infinity.
5275 */
5276asmlinkage
5277long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5278{
36c8b586 5279 struct task_struct *p;
a4ec24b4 5280 unsigned int time_slice;
3a5c359a 5281 int retval;
1da177e4 5282 struct timespec t;
1da177e4
LT
5283
5284 if (pid < 0)
3a5c359a 5285 return -EINVAL;
1da177e4
LT
5286
5287 retval = -ESRCH;
5288 read_lock(&tasklist_lock);
5289 p = find_process_by_pid(pid);
5290 if (!p)
5291 goto out_unlock;
5292
5293 retval = security_task_getscheduler(p);
5294 if (retval)
5295 goto out_unlock;
5296
77034937
IM
5297 /*
5298 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5299 * tasks that are on an otherwise idle runqueue:
5300 */
5301 time_slice = 0;
5302 if (p->policy == SCHED_RR) {
a4ec24b4 5303 time_slice = DEF_TIMESLICE;
1868f958 5304 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5305 struct sched_entity *se = &p->se;
5306 unsigned long flags;
5307 struct rq *rq;
5308
5309 rq = task_rq_lock(p, &flags);
77034937
IM
5310 if (rq->cfs.load.weight)
5311 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5312 task_rq_unlock(rq, &flags);
5313 }
1da177e4 5314 read_unlock(&tasklist_lock);
a4ec24b4 5315 jiffies_to_timespec(time_slice, &t);
1da177e4 5316 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5317 return retval;
3a5c359a 5318
1da177e4
LT
5319out_unlock:
5320 read_unlock(&tasklist_lock);
5321 return retval;
5322}
5323
2ed6e34f 5324static const char stat_nam[] = "RSDTtZX";
36c8b586 5325
82a1fcb9 5326void sched_show_task(struct task_struct *p)
1da177e4 5327{
1da177e4 5328 unsigned long free = 0;
36c8b586 5329 unsigned state;
1da177e4 5330
1da177e4 5331 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5332 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5333 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5334#if BITS_PER_LONG == 32
1da177e4 5335 if (state == TASK_RUNNING)
cc4ea795 5336 printk(KERN_CONT " running ");
1da177e4 5337 else
cc4ea795 5338 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5339#else
5340 if (state == TASK_RUNNING)
cc4ea795 5341 printk(KERN_CONT " running task ");
1da177e4 5342 else
cc4ea795 5343 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5344#endif
5345#ifdef CONFIG_DEBUG_STACK_USAGE
5346 {
10ebffde 5347 unsigned long *n = end_of_stack(p);
1da177e4
LT
5348 while (!*n)
5349 n++;
10ebffde 5350 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5351 }
5352#endif
ba25f9dc 5353 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5354 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5355
5fb5e6de 5356 show_stack(p, NULL);
1da177e4
LT
5357}
5358
e59e2ae2 5359void show_state_filter(unsigned long state_filter)
1da177e4 5360{
36c8b586 5361 struct task_struct *g, *p;
1da177e4 5362
4bd77321
IM
5363#if BITS_PER_LONG == 32
5364 printk(KERN_INFO
5365 " task PC stack pid father\n");
1da177e4 5366#else
4bd77321
IM
5367 printk(KERN_INFO
5368 " task PC stack pid father\n");
1da177e4
LT
5369#endif
5370 read_lock(&tasklist_lock);
5371 do_each_thread(g, p) {
5372 /*
5373 * reset the NMI-timeout, listing all files on a slow
5374 * console might take alot of time:
5375 */
5376 touch_nmi_watchdog();
39bc89fd 5377 if (!state_filter || (p->state & state_filter))
82a1fcb9 5378 sched_show_task(p);
1da177e4
LT
5379 } while_each_thread(g, p);
5380
04c9167f
JF
5381 touch_all_softlockup_watchdogs();
5382
dd41f596
IM
5383#ifdef CONFIG_SCHED_DEBUG
5384 sysrq_sched_debug_show();
5385#endif
1da177e4 5386 read_unlock(&tasklist_lock);
e59e2ae2
IM
5387 /*
5388 * Only show locks if all tasks are dumped:
5389 */
5390 if (state_filter == -1)
5391 debug_show_all_locks();
1da177e4
LT
5392}
5393
1df21055
IM
5394void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5395{
dd41f596 5396 idle->sched_class = &idle_sched_class;
1df21055
IM
5397}
5398
f340c0d1
IM
5399/**
5400 * init_idle - set up an idle thread for a given CPU
5401 * @idle: task in question
5402 * @cpu: cpu the idle task belongs to
5403 *
5404 * NOTE: this function does not set the idle thread's NEED_RESCHED
5405 * flag, to make booting more robust.
5406 */
5c1e1767 5407void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5408{
70b97a7f 5409 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5410 unsigned long flags;
5411
dd41f596
IM
5412 __sched_fork(idle);
5413 idle->se.exec_start = sched_clock();
5414
b29739f9 5415 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5416 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5417 __set_task_cpu(idle, cpu);
1da177e4
LT
5418
5419 spin_lock_irqsave(&rq->lock, flags);
5420 rq->curr = rq->idle = idle;
4866cde0
NP
5421#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5422 idle->oncpu = 1;
5423#endif
1da177e4
LT
5424 spin_unlock_irqrestore(&rq->lock, flags);
5425
5426 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5427 task_thread_info(idle)->preempt_count = 0;
6478d880 5428
dd41f596
IM
5429 /*
5430 * The idle tasks have their own, simple scheduling class:
5431 */
5432 idle->sched_class = &idle_sched_class;
1da177e4
LT
5433}
5434
5435/*
5436 * In a system that switches off the HZ timer nohz_cpu_mask
5437 * indicates which cpus entered this state. This is used
5438 * in the rcu update to wait only for active cpus. For system
5439 * which do not switch off the HZ timer nohz_cpu_mask should
5440 * always be CPU_MASK_NONE.
5441 */
5442cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5443
19978ca6
IM
5444/*
5445 * Increase the granularity value when there are more CPUs,
5446 * because with more CPUs the 'effective latency' as visible
5447 * to users decreases. But the relationship is not linear,
5448 * so pick a second-best guess by going with the log2 of the
5449 * number of CPUs.
5450 *
5451 * This idea comes from the SD scheduler of Con Kolivas:
5452 */
5453static inline void sched_init_granularity(void)
5454{
5455 unsigned int factor = 1 + ilog2(num_online_cpus());
5456 const unsigned long limit = 200000000;
5457
5458 sysctl_sched_min_granularity *= factor;
5459 if (sysctl_sched_min_granularity > limit)
5460 sysctl_sched_min_granularity = limit;
5461
5462 sysctl_sched_latency *= factor;
5463 if (sysctl_sched_latency > limit)
5464 sysctl_sched_latency = limit;
5465
5466 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5467}
5468
1da177e4
LT
5469#ifdef CONFIG_SMP
5470/*
5471 * This is how migration works:
5472 *
70b97a7f 5473 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5474 * runqueue and wake up that CPU's migration thread.
5475 * 2) we down() the locked semaphore => thread blocks.
5476 * 3) migration thread wakes up (implicitly it forces the migrated
5477 * thread off the CPU)
5478 * 4) it gets the migration request and checks whether the migrated
5479 * task is still in the wrong runqueue.
5480 * 5) if it's in the wrong runqueue then the migration thread removes
5481 * it and puts it into the right queue.
5482 * 6) migration thread up()s the semaphore.
5483 * 7) we wake up and the migration is done.
5484 */
5485
5486/*
5487 * Change a given task's CPU affinity. Migrate the thread to a
5488 * proper CPU and schedule it away if the CPU it's executing on
5489 * is removed from the allowed bitmask.
5490 *
5491 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5492 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5493 * call is not atomic; no spinlocks may be held.
5494 */
cd8ba7cd 5495int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5496{
70b97a7f 5497 struct migration_req req;
1da177e4 5498 unsigned long flags;
70b97a7f 5499 struct rq *rq;
48f24c4d 5500 int ret = 0;
1da177e4
LT
5501
5502 rq = task_rq_lock(p, &flags);
cd8ba7cd 5503 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5504 ret = -EINVAL;
5505 goto out;
5506 }
5507
73fe6aae 5508 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5509 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5510 else {
cd8ba7cd
MT
5511 p->cpus_allowed = *new_mask;
5512 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5513 }
5514
1da177e4 5515 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5516 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5517 goto out;
5518
cd8ba7cd 5519 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5520 /* Need help from migration thread: drop lock and wait. */
5521 task_rq_unlock(rq, &flags);
5522 wake_up_process(rq->migration_thread);
5523 wait_for_completion(&req.done);
5524 tlb_migrate_finish(p->mm);
5525 return 0;
5526 }
5527out:
5528 task_rq_unlock(rq, &flags);
48f24c4d 5529
1da177e4
LT
5530 return ret;
5531}
cd8ba7cd 5532EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5533
5534/*
41a2d6cf 5535 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5536 * this because either it can't run here any more (set_cpus_allowed()
5537 * away from this CPU, or CPU going down), or because we're
5538 * attempting to rebalance this task on exec (sched_exec).
5539 *
5540 * So we race with normal scheduler movements, but that's OK, as long
5541 * as the task is no longer on this CPU.
efc30814
KK
5542 *
5543 * Returns non-zero if task was successfully migrated.
1da177e4 5544 */
efc30814 5545static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5546{
70b97a7f 5547 struct rq *rq_dest, *rq_src;
dd41f596 5548 int ret = 0, on_rq;
1da177e4
LT
5549
5550 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5551 return ret;
1da177e4
LT
5552
5553 rq_src = cpu_rq(src_cpu);
5554 rq_dest = cpu_rq(dest_cpu);
5555
5556 double_rq_lock(rq_src, rq_dest);
5557 /* Already moved. */
5558 if (task_cpu(p) != src_cpu)
5559 goto out;
5560 /* Affinity changed (again). */
5561 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5562 goto out;
5563
dd41f596 5564 on_rq = p->se.on_rq;
6e82a3be 5565 if (on_rq)
2e1cb74a 5566 deactivate_task(rq_src, p, 0);
6e82a3be 5567
1da177e4 5568 set_task_cpu(p, dest_cpu);
dd41f596
IM
5569 if (on_rq) {
5570 activate_task(rq_dest, p, 0);
5571 check_preempt_curr(rq_dest, p);
1da177e4 5572 }
efc30814 5573 ret = 1;
1da177e4
LT
5574out:
5575 double_rq_unlock(rq_src, rq_dest);
efc30814 5576 return ret;
1da177e4
LT
5577}
5578
5579/*
5580 * migration_thread - this is a highprio system thread that performs
5581 * thread migration by bumping thread off CPU then 'pushing' onto
5582 * another runqueue.
5583 */
95cdf3b7 5584static int migration_thread(void *data)
1da177e4 5585{
1da177e4 5586 int cpu = (long)data;
70b97a7f 5587 struct rq *rq;
1da177e4
LT
5588
5589 rq = cpu_rq(cpu);
5590 BUG_ON(rq->migration_thread != current);
5591
5592 set_current_state(TASK_INTERRUPTIBLE);
5593 while (!kthread_should_stop()) {
70b97a7f 5594 struct migration_req *req;
1da177e4 5595 struct list_head *head;
1da177e4 5596
1da177e4
LT
5597 spin_lock_irq(&rq->lock);
5598
5599 if (cpu_is_offline(cpu)) {
5600 spin_unlock_irq(&rq->lock);
5601 goto wait_to_die;
5602 }
5603
5604 if (rq->active_balance) {
5605 active_load_balance(rq, cpu);
5606 rq->active_balance = 0;
5607 }
5608
5609 head = &rq->migration_queue;
5610
5611 if (list_empty(head)) {
5612 spin_unlock_irq(&rq->lock);
5613 schedule();
5614 set_current_state(TASK_INTERRUPTIBLE);
5615 continue;
5616 }
70b97a7f 5617 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5618 list_del_init(head->next);
5619
674311d5
NP
5620 spin_unlock(&rq->lock);
5621 __migrate_task(req->task, cpu, req->dest_cpu);
5622 local_irq_enable();
1da177e4
LT
5623
5624 complete(&req->done);
5625 }
5626 __set_current_state(TASK_RUNNING);
5627 return 0;
5628
5629wait_to_die:
5630 /* Wait for kthread_stop */
5631 set_current_state(TASK_INTERRUPTIBLE);
5632 while (!kthread_should_stop()) {
5633 schedule();
5634 set_current_state(TASK_INTERRUPTIBLE);
5635 }
5636 __set_current_state(TASK_RUNNING);
5637 return 0;
5638}
5639
5640#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5641
5642static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5643{
5644 int ret;
5645
5646 local_irq_disable();
5647 ret = __migrate_task(p, src_cpu, dest_cpu);
5648 local_irq_enable();
5649 return ret;
5650}
5651
054b9108 5652/*
3a4fa0a2 5653 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5654 * NOTE: interrupts should be disabled by the caller
5655 */
48f24c4d 5656static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5657{
efc30814 5658 unsigned long flags;
1da177e4 5659 cpumask_t mask;
70b97a7f
IM
5660 struct rq *rq;
5661 int dest_cpu;
1da177e4 5662
3a5c359a
AK
5663 do {
5664 /* On same node? */
5665 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5666 cpus_and(mask, mask, p->cpus_allowed);
5667 dest_cpu = any_online_cpu(mask);
5668
5669 /* On any allowed CPU? */
434d53b0 5670 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5671 dest_cpu = any_online_cpu(p->cpus_allowed);
5672
5673 /* No more Mr. Nice Guy. */
434d53b0 5674 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5675 cpumask_t cpus_allowed;
5676
5677 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5678 /*
5679 * Try to stay on the same cpuset, where the
5680 * current cpuset may be a subset of all cpus.
5681 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5682 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5683 * called within calls to cpuset_lock/cpuset_unlock.
5684 */
3a5c359a 5685 rq = task_rq_lock(p, &flags);
470fd646 5686 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5687 dest_cpu = any_online_cpu(p->cpus_allowed);
5688 task_rq_unlock(rq, &flags);
1da177e4 5689
3a5c359a
AK
5690 /*
5691 * Don't tell them about moving exiting tasks or
5692 * kernel threads (both mm NULL), since they never
5693 * leave kernel.
5694 */
41a2d6cf 5695 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5696 printk(KERN_INFO "process %d (%s) no "
5697 "longer affine to cpu%d\n",
41a2d6cf
IM
5698 task_pid_nr(p), p->comm, dead_cpu);
5699 }
3a5c359a 5700 }
f7b4cddc 5701 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5702}
5703
5704/*
5705 * While a dead CPU has no uninterruptible tasks queued at this point,
5706 * it might still have a nonzero ->nr_uninterruptible counter, because
5707 * for performance reasons the counter is not stricly tracking tasks to
5708 * their home CPUs. So we just add the counter to another CPU's counter,
5709 * to keep the global sum constant after CPU-down:
5710 */
70b97a7f 5711static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5712{
7c16ec58 5713 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5714 unsigned long flags;
5715
5716 local_irq_save(flags);
5717 double_rq_lock(rq_src, rq_dest);
5718 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5719 rq_src->nr_uninterruptible = 0;
5720 double_rq_unlock(rq_src, rq_dest);
5721 local_irq_restore(flags);
5722}
5723
5724/* Run through task list and migrate tasks from the dead cpu. */
5725static void migrate_live_tasks(int src_cpu)
5726{
48f24c4d 5727 struct task_struct *p, *t;
1da177e4 5728
f7b4cddc 5729 read_lock(&tasklist_lock);
1da177e4 5730
48f24c4d
IM
5731 do_each_thread(t, p) {
5732 if (p == current)
1da177e4
LT
5733 continue;
5734
48f24c4d
IM
5735 if (task_cpu(p) == src_cpu)
5736 move_task_off_dead_cpu(src_cpu, p);
5737 } while_each_thread(t, p);
1da177e4 5738
f7b4cddc 5739 read_unlock(&tasklist_lock);
1da177e4
LT
5740}
5741
dd41f596
IM
5742/*
5743 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5744 * It does so by boosting its priority to highest possible.
5745 * Used by CPU offline code.
1da177e4
LT
5746 */
5747void sched_idle_next(void)
5748{
48f24c4d 5749 int this_cpu = smp_processor_id();
70b97a7f 5750 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5751 struct task_struct *p = rq->idle;
5752 unsigned long flags;
5753
5754 /* cpu has to be offline */
48f24c4d 5755 BUG_ON(cpu_online(this_cpu));
1da177e4 5756
48f24c4d
IM
5757 /*
5758 * Strictly not necessary since rest of the CPUs are stopped by now
5759 * and interrupts disabled on the current cpu.
1da177e4
LT
5760 */
5761 spin_lock_irqsave(&rq->lock, flags);
5762
dd41f596 5763 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5764
94bc9a7b
DA
5765 update_rq_clock(rq);
5766 activate_task(rq, p, 0);
1da177e4
LT
5767
5768 spin_unlock_irqrestore(&rq->lock, flags);
5769}
5770
48f24c4d
IM
5771/*
5772 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5773 * offline.
5774 */
5775void idle_task_exit(void)
5776{
5777 struct mm_struct *mm = current->active_mm;
5778
5779 BUG_ON(cpu_online(smp_processor_id()));
5780
5781 if (mm != &init_mm)
5782 switch_mm(mm, &init_mm, current);
5783 mmdrop(mm);
5784}
5785
054b9108 5786/* called under rq->lock with disabled interrupts */
36c8b586 5787static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5788{
70b97a7f 5789 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5790
5791 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5792 BUG_ON(!p->exit_state);
1da177e4
LT
5793
5794 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5795 BUG_ON(p->state == TASK_DEAD);
1da177e4 5796
48f24c4d 5797 get_task_struct(p);
1da177e4
LT
5798
5799 /*
5800 * Drop lock around migration; if someone else moves it,
41a2d6cf 5801 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5802 * fine.
5803 */
f7b4cddc 5804 spin_unlock_irq(&rq->lock);
48f24c4d 5805 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5806 spin_lock_irq(&rq->lock);
1da177e4 5807
48f24c4d 5808 put_task_struct(p);
1da177e4
LT
5809}
5810
5811/* release_task() removes task from tasklist, so we won't find dead tasks. */
5812static void migrate_dead_tasks(unsigned int dead_cpu)
5813{
70b97a7f 5814 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5815 struct task_struct *next;
48f24c4d 5816
dd41f596
IM
5817 for ( ; ; ) {
5818 if (!rq->nr_running)
5819 break;
a8e504d2 5820 update_rq_clock(rq);
ff95f3df 5821 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5822 if (!next)
5823 break;
5824 migrate_dead(dead_cpu, next);
e692ab53 5825
1da177e4
LT
5826 }
5827}
5828#endif /* CONFIG_HOTPLUG_CPU */
5829
e692ab53
NP
5830#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5831
5832static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5833 {
5834 .procname = "sched_domain",
c57baf1e 5835 .mode = 0555,
e0361851 5836 },
38605cae 5837 {0, },
e692ab53
NP
5838};
5839
5840static struct ctl_table sd_ctl_root[] = {
e0361851 5841 {
c57baf1e 5842 .ctl_name = CTL_KERN,
e0361851 5843 .procname = "kernel",
c57baf1e 5844 .mode = 0555,
e0361851
AD
5845 .child = sd_ctl_dir,
5846 },
38605cae 5847 {0, },
e692ab53
NP
5848};
5849
5850static struct ctl_table *sd_alloc_ctl_entry(int n)
5851{
5852 struct ctl_table *entry =
5cf9f062 5853 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5854
e692ab53
NP
5855 return entry;
5856}
5857
6382bc90
MM
5858static void sd_free_ctl_entry(struct ctl_table **tablep)
5859{
cd790076 5860 struct ctl_table *entry;
6382bc90 5861
cd790076
MM
5862 /*
5863 * In the intermediate directories, both the child directory and
5864 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5865 * will always be set. In the lowest directory the names are
cd790076
MM
5866 * static strings and all have proc handlers.
5867 */
5868 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5869 if (entry->child)
5870 sd_free_ctl_entry(&entry->child);
cd790076
MM
5871 if (entry->proc_handler == NULL)
5872 kfree(entry->procname);
5873 }
6382bc90
MM
5874
5875 kfree(*tablep);
5876 *tablep = NULL;
5877}
5878
e692ab53 5879static void
e0361851 5880set_table_entry(struct ctl_table *entry,
e692ab53
NP
5881 const char *procname, void *data, int maxlen,
5882 mode_t mode, proc_handler *proc_handler)
5883{
e692ab53
NP
5884 entry->procname = procname;
5885 entry->data = data;
5886 entry->maxlen = maxlen;
5887 entry->mode = mode;
5888 entry->proc_handler = proc_handler;
5889}
5890
5891static struct ctl_table *
5892sd_alloc_ctl_domain_table(struct sched_domain *sd)
5893{
ace8b3d6 5894 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5895
ad1cdc1d
MM
5896 if (table == NULL)
5897 return NULL;
5898
e0361851 5899 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5900 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5901 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5902 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5903 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5904 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5905 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5906 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5907 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5908 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5909 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5910 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5911 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5912 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5913 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5914 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5915 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5916 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5917 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5918 &sd->cache_nice_tries,
5919 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5920 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5921 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5922 /* &table[11] is terminator */
e692ab53
NP
5923
5924 return table;
5925}
5926
9a4e7159 5927static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5928{
5929 struct ctl_table *entry, *table;
5930 struct sched_domain *sd;
5931 int domain_num = 0, i;
5932 char buf[32];
5933
5934 for_each_domain(cpu, sd)
5935 domain_num++;
5936 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5937 if (table == NULL)
5938 return NULL;
e692ab53
NP
5939
5940 i = 0;
5941 for_each_domain(cpu, sd) {
5942 snprintf(buf, 32, "domain%d", i);
e692ab53 5943 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5944 entry->mode = 0555;
e692ab53
NP
5945 entry->child = sd_alloc_ctl_domain_table(sd);
5946 entry++;
5947 i++;
5948 }
5949 return table;
5950}
5951
5952static struct ctl_table_header *sd_sysctl_header;
6382bc90 5953static void register_sched_domain_sysctl(void)
e692ab53
NP
5954{
5955 int i, cpu_num = num_online_cpus();
5956 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5957 char buf[32];
5958
7378547f
MM
5959 WARN_ON(sd_ctl_dir[0].child);
5960 sd_ctl_dir[0].child = entry;
5961
ad1cdc1d
MM
5962 if (entry == NULL)
5963 return;
5964
97b6ea7b 5965 for_each_online_cpu(i) {
e692ab53 5966 snprintf(buf, 32, "cpu%d", i);
e692ab53 5967 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5968 entry->mode = 0555;
e692ab53 5969 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5970 entry++;
e692ab53 5971 }
7378547f
MM
5972
5973 WARN_ON(sd_sysctl_header);
e692ab53
NP
5974 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5975}
6382bc90 5976
7378547f 5977/* may be called multiple times per register */
6382bc90
MM
5978static void unregister_sched_domain_sysctl(void)
5979{
7378547f
MM
5980 if (sd_sysctl_header)
5981 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5982 sd_sysctl_header = NULL;
7378547f
MM
5983 if (sd_ctl_dir[0].child)
5984 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5985}
e692ab53 5986#else
6382bc90
MM
5987static void register_sched_domain_sysctl(void)
5988{
5989}
5990static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5991{
5992}
5993#endif
5994
1da177e4
LT
5995/*
5996 * migration_call - callback that gets triggered when a CPU is added.
5997 * Here we can start up the necessary migration thread for the new CPU.
5998 */
48f24c4d
IM
5999static int __cpuinit
6000migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6001{
1da177e4 6002 struct task_struct *p;
48f24c4d 6003 int cpu = (long)hcpu;
1da177e4 6004 unsigned long flags;
70b97a7f 6005 struct rq *rq;
1da177e4
LT
6006
6007 switch (action) {
5be9361c 6008
1da177e4 6009 case CPU_UP_PREPARE:
8bb78442 6010 case CPU_UP_PREPARE_FROZEN:
dd41f596 6011 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6012 if (IS_ERR(p))
6013 return NOTIFY_BAD;
1da177e4
LT
6014 kthread_bind(p, cpu);
6015 /* Must be high prio: stop_machine expects to yield to it. */
6016 rq = task_rq_lock(p, &flags);
dd41f596 6017 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6018 task_rq_unlock(rq, &flags);
6019 cpu_rq(cpu)->migration_thread = p;
6020 break;
48f24c4d 6021
1da177e4 6022 case CPU_ONLINE:
8bb78442 6023 case CPU_ONLINE_FROZEN:
3a4fa0a2 6024 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6025 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6026
6027 /* Update our root-domain */
6028 rq = cpu_rq(cpu);
6029 spin_lock_irqsave(&rq->lock, flags);
6030 if (rq->rd) {
6031 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6032 cpu_set(cpu, rq->rd->online);
6033 }
6034 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6035 break;
48f24c4d 6036
1da177e4
LT
6037#ifdef CONFIG_HOTPLUG_CPU
6038 case CPU_UP_CANCELED:
8bb78442 6039 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6040 if (!cpu_rq(cpu)->migration_thread)
6041 break;
41a2d6cf 6042 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6043 kthread_bind(cpu_rq(cpu)->migration_thread,
6044 any_online_cpu(cpu_online_map));
1da177e4
LT
6045 kthread_stop(cpu_rq(cpu)->migration_thread);
6046 cpu_rq(cpu)->migration_thread = NULL;
6047 break;
48f24c4d 6048
1da177e4 6049 case CPU_DEAD:
8bb78442 6050 case CPU_DEAD_FROZEN:
470fd646 6051 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6052 migrate_live_tasks(cpu);
6053 rq = cpu_rq(cpu);
6054 kthread_stop(rq->migration_thread);
6055 rq->migration_thread = NULL;
6056 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6057 spin_lock_irq(&rq->lock);
a8e504d2 6058 update_rq_clock(rq);
2e1cb74a 6059 deactivate_task(rq, rq->idle, 0);
1da177e4 6060 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6061 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6062 rq->idle->sched_class = &idle_sched_class;
1da177e4 6063 migrate_dead_tasks(cpu);
d2da272a 6064 spin_unlock_irq(&rq->lock);
470fd646 6065 cpuset_unlock();
1da177e4
LT
6066 migrate_nr_uninterruptible(rq);
6067 BUG_ON(rq->nr_running != 0);
6068
41a2d6cf
IM
6069 /*
6070 * No need to migrate the tasks: it was best-effort if
6071 * they didn't take sched_hotcpu_mutex. Just wake up
6072 * the requestors.
6073 */
1da177e4
LT
6074 spin_lock_irq(&rq->lock);
6075 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6076 struct migration_req *req;
6077
1da177e4 6078 req = list_entry(rq->migration_queue.next,
70b97a7f 6079 struct migration_req, list);
1da177e4
LT
6080 list_del_init(&req->list);
6081 complete(&req->done);
6082 }
6083 spin_unlock_irq(&rq->lock);
6084 break;
57d885fe 6085
08f503b0
GH
6086 case CPU_DYING:
6087 case CPU_DYING_FROZEN:
57d885fe
GH
6088 /* Update our root-domain */
6089 rq = cpu_rq(cpu);
6090 spin_lock_irqsave(&rq->lock, flags);
6091 if (rq->rd) {
6092 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6093 cpu_clear(cpu, rq->rd->online);
6094 }
6095 spin_unlock_irqrestore(&rq->lock, flags);
6096 break;
1da177e4
LT
6097#endif
6098 }
6099 return NOTIFY_OK;
6100}
6101
6102/* Register at highest priority so that task migration (migrate_all_tasks)
6103 * happens before everything else.
6104 */
26c2143b 6105static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6106 .notifier_call = migration_call,
6107 .priority = 10
6108};
6109
e6fe6649 6110void __init migration_init(void)
1da177e4
LT
6111{
6112 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6113 int err;
48f24c4d
IM
6114
6115 /* Start one for the boot CPU: */
07dccf33
AM
6116 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6117 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6118 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6119 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6120}
6121#endif
6122
6123#ifdef CONFIG_SMP
476f3534 6124
3e9830dc 6125#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6126
7c16ec58
MT
6127static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6128 cpumask_t *groupmask)
1da177e4 6129{
4dcf6aff 6130 struct sched_group *group = sd->groups;
434d53b0 6131 char str[256];
1da177e4 6132
434d53b0 6133 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6134 cpus_clear(*groupmask);
4dcf6aff
IM
6135
6136 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6137
6138 if (!(sd->flags & SD_LOAD_BALANCE)) {
6139 printk("does not load-balance\n");
6140 if (sd->parent)
6141 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6142 " has parent");
6143 return -1;
41c7ce9a
NP
6144 }
6145
4dcf6aff
IM
6146 printk(KERN_CONT "span %s\n", str);
6147
6148 if (!cpu_isset(cpu, sd->span)) {
6149 printk(KERN_ERR "ERROR: domain->span does not contain "
6150 "CPU%d\n", cpu);
6151 }
6152 if (!cpu_isset(cpu, group->cpumask)) {
6153 printk(KERN_ERR "ERROR: domain->groups does not contain"
6154 " CPU%d\n", cpu);
6155 }
1da177e4 6156
4dcf6aff 6157 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6158 do {
4dcf6aff
IM
6159 if (!group) {
6160 printk("\n");
6161 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6162 break;
6163 }
6164
4dcf6aff
IM
6165 if (!group->__cpu_power) {
6166 printk(KERN_CONT "\n");
6167 printk(KERN_ERR "ERROR: domain->cpu_power not "
6168 "set\n");
6169 break;
6170 }
1da177e4 6171
4dcf6aff
IM
6172 if (!cpus_weight(group->cpumask)) {
6173 printk(KERN_CONT "\n");
6174 printk(KERN_ERR "ERROR: empty group\n");
6175 break;
6176 }
1da177e4 6177
7c16ec58 6178 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6179 printk(KERN_CONT "\n");
6180 printk(KERN_ERR "ERROR: repeated CPUs\n");
6181 break;
6182 }
1da177e4 6183
7c16ec58 6184 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6185
434d53b0 6186 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6187 printk(KERN_CONT " %s", str);
1da177e4 6188
4dcf6aff
IM
6189 group = group->next;
6190 } while (group != sd->groups);
6191 printk(KERN_CONT "\n");
1da177e4 6192
7c16ec58 6193 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6194 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6195
7c16ec58 6196 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6197 printk(KERN_ERR "ERROR: parent span is not a superset "
6198 "of domain->span\n");
6199 return 0;
6200}
1da177e4 6201
4dcf6aff
IM
6202static void sched_domain_debug(struct sched_domain *sd, int cpu)
6203{
7c16ec58 6204 cpumask_t *groupmask;
4dcf6aff 6205 int level = 0;
1da177e4 6206
4dcf6aff
IM
6207 if (!sd) {
6208 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6209 return;
6210 }
1da177e4 6211
4dcf6aff
IM
6212 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6213
7c16ec58
MT
6214 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6215 if (!groupmask) {
6216 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6217 return;
6218 }
6219
4dcf6aff 6220 for (;;) {
7c16ec58 6221 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6222 break;
1da177e4
LT
6223 level++;
6224 sd = sd->parent;
33859f7f 6225 if (!sd)
4dcf6aff
IM
6226 break;
6227 }
7c16ec58 6228 kfree(groupmask);
1da177e4
LT
6229}
6230#else
48f24c4d 6231# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6232#endif
6233
1a20ff27 6234static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6235{
6236 if (cpus_weight(sd->span) == 1)
6237 return 1;
6238
6239 /* Following flags need at least 2 groups */
6240 if (sd->flags & (SD_LOAD_BALANCE |
6241 SD_BALANCE_NEWIDLE |
6242 SD_BALANCE_FORK |
89c4710e
SS
6243 SD_BALANCE_EXEC |
6244 SD_SHARE_CPUPOWER |
6245 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6246 if (sd->groups != sd->groups->next)
6247 return 0;
6248 }
6249
6250 /* Following flags don't use groups */
6251 if (sd->flags & (SD_WAKE_IDLE |
6252 SD_WAKE_AFFINE |
6253 SD_WAKE_BALANCE))
6254 return 0;
6255
6256 return 1;
6257}
6258
48f24c4d
IM
6259static int
6260sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6261{
6262 unsigned long cflags = sd->flags, pflags = parent->flags;
6263
6264 if (sd_degenerate(parent))
6265 return 1;
6266
6267 if (!cpus_equal(sd->span, parent->span))
6268 return 0;
6269
6270 /* Does parent contain flags not in child? */
6271 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6272 if (cflags & SD_WAKE_AFFINE)
6273 pflags &= ~SD_WAKE_BALANCE;
6274 /* Flags needing groups don't count if only 1 group in parent */
6275 if (parent->groups == parent->groups->next) {
6276 pflags &= ~(SD_LOAD_BALANCE |
6277 SD_BALANCE_NEWIDLE |
6278 SD_BALANCE_FORK |
89c4710e
SS
6279 SD_BALANCE_EXEC |
6280 SD_SHARE_CPUPOWER |
6281 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6282 }
6283 if (~cflags & pflags)
6284 return 0;
6285
6286 return 1;
6287}
6288
57d885fe
GH
6289static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6290{
6291 unsigned long flags;
6292 const struct sched_class *class;
6293
6294 spin_lock_irqsave(&rq->lock, flags);
6295
6296 if (rq->rd) {
6297 struct root_domain *old_rd = rq->rd;
6298
0eab9146 6299 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6300 if (class->leave_domain)
6301 class->leave_domain(rq);
0eab9146 6302 }
57d885fe 6303
dc938520
GH
6304 cpu_clear(rq->cpu, old_rd->span);
6305 cpu_clear(rq->cpu, old_rd->online);
6306
57d885fe
GH
6307 if (atomic_dec_and_test(&old_rd->refcount))
6308 kfree(old_rd);
6309 }
6310
6311 atomic_inc(&rd->refcount);
6312 rq->rd = rd;
6313
dc938520 6314 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6315 if (cpu_isset(rq->cpu, cpu_online_map))
6316 cpu_set(rq->cpu, rd->online);
dc938520 6317
0eab9146 6318 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6319 if (class->join_domain)
6320 class->join_domain(rq);
0eab9146 6321 }
57d885fe
GH
6322
6323 spin_unlock_irqrestore(&rq->lock, flags);
6324}
6325
dc938520 6326static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6327{
6328 memset(rd, 0, sizeof(*rd));
6329
dc938520
GH
6330 cpus_clear(rd->span);
6331 cpus_clear(rd->online);
57d885fe
GH
6332}
6333
6334static void init_defrootdomain(void)
6335{
dc938520 6336 init_rootdomain(&def_root_domain);
57d885fe
GH
6337 atomic_set(&def_root_domain.refcount, 1);
6338}
6339
dc938520 6340static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6341{
6342 struct root_domain *rd;
6343
6344 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6345 if (!rd)
6346 return NULL;
6347
dc938520 6348 init_rootdomain(rd);
57d885fe
GH
6349
6350 return rd;
6351}
6352
1da177e4 6353/*
0eab9146 6354 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6355 * hold the hotplug lock.
6356 */
0eab9146
IM
6357static void
6358cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6359{
70b97a7f 6360 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6361 struct sched_domain *tmp;
6362
6363 /* Remove the sched domains which do not contribute to scheduling. */
6364 for (tmp = sd; tmp; tmp = tmp->parent) {
6365 struct sched_domain *parent = tmp->parent;
6366 if (!parent)
6367 break;
1a848870 6368 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6369 tmp->parent = parent->parent;
1a848870
SS
6370 if (parent->parent)
6371 parent->parent->child = tmp;
6372 }
245af2c7
SS
6373 }
6374
1a848870 6375 if (sd && sd_degenerate(sd)) {
245af2c7 6376 sd = sd->parent;
1a848870
SS
6377 if (sd)
6378 sd->child = NULL;
6379 }
1da177e4
LT
6380
6381 sched_domain_debug(sd, cpu);
6382
57d885fe 6383 rq_attach_root(rq, rd);
674311d5 6384 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6385}
6386
6387/* cpus with isolated domains */
67af63a6 6388static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6389
6390/* Setup the mask of cpus configured for isolated domains */
6391static int __init isolated_cpu_setup(char *str)
6392{
6393 int ints[NR_CPUS], i;
6394
6395 str = get_options(str, ARRAY_SIZE(ints), ints);
6396 cpus_clear(cpu_isolated_map);
6397 for (i = 1; i <= ints[0]; i++)
6398 if (ints[i] < NR_CPUS)
6399 cpu_set(ints[i], cpu_isolated_map);
6400 return 1;
6401}
6402
8927f494 6403__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6404
6405/*
6711cab4
SS
6406 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6407 * to a function which identifies what group(along with sched group) a CPU
6408 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6409 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6410 *
6411 * init_sched_build_groups will build a circular linked list of the groups
6412 * covered by the given span, and will set each group's ->cpumask correctly,
6413 * and ->cpu_power to 0.
6414 */
a616058b 6415static void
7c16ec58 6416init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6417 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6418 struct sched_group **sg,
6419 cpumask_t *tmpmask),
6420 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6421{
6422 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6423 int i;
6424
7c16ec58
MT
6425 cpus_clear(*covered);
6426
6427 for_each_cpu_mask(i, *span) {
6711cab4 6428 struct sched_group *sg;
7c16ec58 6429 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6430 int j;
6431
7c16ec58 6432 if (cpu_isset(i, *covered))
1da177e4
LT
6433 continue;
6434
7c16ec58 6435 cpus_clear(sg->cpumask);
5517d86b 6436 sg->__cpu_power = 0;
1da177e4 6437
7c16ec58
MT
6438 for_each_cpu_mask(j, *span) {
6439 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6440 continue;
6441
7c16ec58 6442 cpu_set(j, *covered);
1da177e4
LT
6443 cpu_set(j, sg->cpumask);
6444 }
6445 if (!first)
6446 first = sg;
6447 if (last)
6448 last->next = sg;
6449 last = sg;
6450 }
6451 last->next = first;
6452}
6453
9c1cfda2 6454#define SD_NODES_PER_DOMAIN 16
1da177e4 6455
9c1cfda2 6456#ifdef CONFIG_NUMA
198e2f18 6457
9c1cfda2
JH
6458/**
6459 * find_next_best_node - find the next node to include in a sched_domain
6460 * @node: node whose sched_domain we're building
6461 * @used_nodes: nodes already in the sched_domain
6462 *
41a2d6cf 6463 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6464 * finds the closest node not already in the @used_nodes map.
6465 *
6466 * Should use nodemask_t.
6467 */
c5f59f08 6468static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6469{
6470 int i, n, val, min_val, best_node = 0;
6471
6472 min_val = INT_MAX;
6473
6474 for (i = 0; i < MAX_NUMNODES; i++) {
6475 /* Start at @node */
6476 n = (node + i) % MAX_NUMNODES;
6477
6478 if (!nr_cpus_node(n))
6479 continue;
6480
6481 /* Skip already used nodes */
c5f59f08 6482 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6483 continue;
6484
6485 /* Simple min distance search */
6486 val = node_distance(node, n);
6487
6488 if (val < min_val) {
6489 min_val = val;
6490 best_node = n;
6491 }
6492 }
6493
c5f59f08 6494 node_set(best_node, *used_nodes);
9c1cfda2
JH
6495 return best_node;
6496}
6497
6498/**
6499 * sched_domain_node_span - get a cpumask for a node's sched_domain
6500 * @node: node whose cpumask we're constructing
9c1cfda2 6501 *
41a2d6cf 6502 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6503 * should be one that prevents unnecessary balancing, but also spreads tasks
6504 * out optimally.
6505 */
4bdbaad3 6506static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6507{
c5f59f08 6508 nodemask_t used_nodes;
c5f59f08 6509 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6510 int i;
9c1cfda2 6511
4bdbaad3 6512 cpus_clear(*span);
c5f59f08 6513 nodes_clear(used_nodes);
9c1cfda2 6514
4bdbaad3 6515 cpus_or(*span, *span, *nodemask);
c5f59f08 6516 node_set(node, used_nodes);
9c1cfda2
JH
6517
6518 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6519 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6520
c5f59f08 6521 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6522 cpus_or(*span, *span, *nodemask);
9c1cfda2 6523 }
9c1cfda2
JH
6524}
6525#endif
6526
5c45bf27 6527int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6528
9c1cfda2 6529/*
48f24c4d 6530 * SMT sched-domains:
9c1cfda2 6531 */
1da177e4
LT
6532#ifdef CONFIG_SCHED_SMT
6533static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6534static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6535
41a2d6cf 6536static int
7c16ec58
MT
6537cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6538 cpumask_t *unused)
1da177e4 6539{
6711cab4
SS
6540 if (sg)
6541 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6542 return cpu;
6543}
6544#endif
6545
48f24c4d
IM
6546/*
6547 * multi-core sched-domains:
6548 */
1e9f28fa
SS
6549#ifdef CONFIG_SCHED_MC
6550static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6551static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6552#endif
6553
6554#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6555static int
7c16ec58
MT
6556cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6557 cpumask_t *mask)
1e9f28fa 6558{
6711cab4 6559 int group;
7c16ec58
MT
6560
6561 *mask = per_cpu(cpu_sibling_map, cpu);
6562 cpus_and(*mask, *mask, *cpu_map);
6563 group = first_cpu(*mask);
6711cab4
SS
6564 if (sg)
6565 *sg = &per_cpu(sched_group_core, group);
6566 return group;
1e9f28fa
SS
6567}
6568#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6569static int
7c16ec58
MT
6570cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6571 cpumask_t *unused)
1e9f28fa 6572{
6711cab4
SS
6573 if (sg)
6574 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6575 return cpu;
6576}
6577#endif
6578
1da177e4 6579static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6580static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6581
41a2d6cf 6582static int
7c16ec58
MT
6583cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6584 cpumask_t *mask)
1da177e4 6585{
6711cab4 6586 int group;
48f24c4d 6587#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6588 *mask = cpu_coregroup_map(cpu);
6589 cpus_and(*mask, *mask, *cpu_map);
6590 group = first_cpu(*mask);
1e9f28fa 6591#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6592 *mask = per_cpu(cpu_sibling_map, cpu);
6593 cpus_and(*mask, *mask, *cpu_map);
6594 group = first_cpu(*mask);
1da177e4 6595#else
6711cab4 6596 group = cpu;
1da177e4 6597#endif
6711cab4
SS
6598 if (sg)
6599 *sg = &per_cpu(sched_group_phys, group);
6600 return group;
1da177e4
LT
6601}
6602
6603#ifdef CONFIG_NUMA
1da177e4 6604/*
9c1cfda2
JH
6605 * The init_sched_build_groups can't handle what we want to do with node
6606 * groups, so roll our own. Now each node has its own list of groups which
6607 * gets dynamically allocated.
1da177e4 6608 */
9c1cfda2 6609static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6610static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6611
9c1cfda2 6612static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6613static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6614
6711cab4 6615static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6616 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6617{
6711cab4
SS
6618 int group;
6619
7c16ec58
MT
6620 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6621 cpus_and(*nodemask, *nodemask, *cpu_map);
6622 group = first_cpu(*nodemask);
6711cab4
SS
6623
6624 if (sg)
6625 *sg = &per_cpu(sched_group_allnodes, group);
6626 return group;
1da177e4 6627}
6711cab4 6628
08069033
SS
6629static void init_numa_sched_groups_power(struct sched_group *group_head)
6630{
6631 struct sched_group *sg = group_head;
6632 int j;
6633
6634 if (!sg)
6635 return;
3a5c359a
AK
6636 do {
6637 for_each_cpu_mask(j, sg->cpumask) {
6638 struct sched_domain *sd;
08069033 6639
3a5c359a
AK
6640 sd = &per_cpu(phys_domains, j);
6641 if (j != first_cpu(sd->groups->cpumask)) {
6642 /*
6643 * Only add "power" once for each
6644 * physical package.
6645 */
6646 continue;
6647 }
08069033 6648
3a5c359a
AK
6649 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6650 }
6651 sg = sg->next;
6652 } while (sg != group_head);
08069033 6653}
1da177e4
LT
6654#endif
6655
a616058b 6656#ifdef CONFIG_NUMA
51888ca2 6657/* Free memory allocated for various sched_group structures */
7c16ec58 6658static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6659{
a616058b 6660 int cpu, i;
51888ca2
SV
6661
6662 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6663 struct sched_group **sched_group_nodes
6664 = sched_group_nodes_bycpu[cpu];
6665
51888ca2
SV
6666 if (!sched_group_nodes)
6667 continue;
6668
6669 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6670 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6671
7c16ec58
MT
6672 *nodemask = node_to_cpumask(i);
6673 cpus_and(*nodemask, *nodemask, *cpu_map);
6674 if (cpus_empty(*nodemask))
51888ca2
SV
6675 continue;
6676
6677 if (sg == NULL)
6678 continue;
6679 sg = sg->next;
6680next_sg:
6681 oldsg = sg;
6682 sg = sg->next;
6683 kfree(oldsg);
6684 if (oldsg != sched_group_nodes[i])
6685 goto next_sg;
6686 }
6687 kfree(sched_group_nodes);
6688 sched_group_nodes_bycpu[cpu] = NULL;
6689 }
51888ca2 6690}
a616058b 6691#else
7c16ec58 6692static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6693{
6694}
6695#endif
51888ca2 6696
89c4710e
SS
6697/*
6698 * Initialize sched groups cpu_power.
6699 *
6700 * cpu_power indicates the capacity of sched group, which is used while
6701 * distributing the load between different sched groups in a sched domain.
6702 * Typically cpu_power for all the groups in a sched domain will be same unless
6703 * there are asymmetries in the topology. If there are asymmetries, group
6704 * having more cpu_power will pickup more load compared to the group having
6705 * less cpu_power.
6706 *
6707 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6708 * the maximum number of tasks a group can handle in the presence of other idle
6709 * or lightly loaded groups in the same sched domain.
6710 */
6711static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6712{
6713 struct sched_domain *child;
6714 struct sched_group *group;
6715
6716 WARN_ON(!sd || !sd->groups);
6717
6718 if (cpu != first_cpu(sd->groups->cpumask))
6719 return;
6720
6721 child = sd->child;
6722
5517d86b
ED
6723 sd->groups->__cpu_power = 0;
6724
89c4710e
SS
6725 /*
6726 * For perf policy, if the groups in child domain share resources
6727 * (for example cores sharing some portions of the cache hierarchy
6728 * or SMT), then set this domain groups cpu_power such that each group
6729 * can handle only one task, when there are other idle groups in the
6730 * same sched domain.
6731 */
6732 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6733 (child->flags &
6734 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6735 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6736 return;
6737 }
6738
89c4710e
SS
6739 /*
6740 * add cpu_power of each child group to this groups cpu_power
6741 */
6742 group = child->groups;
6743 do {
5517d86b 6744 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6745 group = group->next;
6746 } while (group != child->groups);
6747}
6748
7c16ec58
MT
6749/*
6750 * Initializers for schedule domains
6751 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6752 */
6753
6754#define SD_INIT(sd, type) sd_init_##type(sd)
6755#define SD_INIT_FUNC(type) \
6756static noinline void sd_init_##type(struct sched_domain *sd) \
6757{ \
6758 memset(sd, 0, sizeof(*sd)); \
6759 *sd = SD_##type##_INIT; \
6760}
6761
6762SD_INIT_FUNC(CPU)
6763#ifdef CONFIG_NUMA
6764 SD_INIT_FUNC(ALLNODES)
6765 SD_INIT_FUNC(NODE)
6766#endif
6767#ifdef CONFIG_SCHED_SMT
6768 SD_INIT_FUNC(SIBLING)
6769#endif
6770#ifdef CONFIG_SCHED_MC
6771 SD_INIT_FUNC(MC)
6772#endif
6773
6774/*
6775 * To minimize stack usage kmalloc room for cpumasks and share the
6776 * space as the usage in build_sched_domains() dictates. Used only
6777 * if the amount of space is significant.
6778 */
6779struct allmasks {
6780 cpumask_t tmpmask; /* make this one first */
6781 union {
6782 cpumask_t nodemask;
6783 cpumask_t this_sibling_map;
6784 cpumask_t this_core_map;
6785 };
6786 cpumask_t send_covered;
6787
6788#ifdef CONFIG_NUMA
6789 cpumask_t domainspan;
6790 cpumask_t covered;
6791 cpumask_t notcovered;
6792#endif
6793};
6794
6795#if NR_CPUS > 128
6796#define SCHED_CPUMASK_ALLOC 1
6797#define SCHED_CPUMASK_FREE(v) kfree(v)
6798#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6799#else
6800#define SCHED_CPUMASK_ALLOC 0
6801#define SCHED_CPUMASK_FREE(v)
6802#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6803#endif
6804
6805#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6806 ((unsigned long)(a) + offsetof(struct allmasks, v))
6807
1da177e4 6808/*
1a20ff27
DG
6809 * Build sched domains for a given set of cpus and attach the sched domains
6810 * to the individual cpus
1da177e4 6811 */
51888ca2 6812static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6813{
6814 int i;
57d885fe 6815 struct root_domain *rd;
7c16ec58
MT
6816 SCHED_CPUMASK_DECLARE(allmasks);
6817 cpumask_t *tmpmask;
d1b55138
JH
6818#ifdef CONFIG_NUMA
6819 struct sched_group **sched_group_nodes = NULL;
6711cab4 6820 int sd_allnodes = 0;
d1b55138
JH
6821
6822 /*
6823 * Allocate the per-node list of sched groups
6824 */
5cf9f062 6825 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6826 GFP_KERNEL);
d1b55138
JH
6827 if (!sched_group_nodes) {
6828 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6829 return -ENOMEM;
d1b55138 6830 }
d1b55138 6831#endif
1da177e4 6832
dc938520 6833 rd = alloc_rootdomain();
57d885fe
GH
6834 if (!rd) {
6835 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6836#ifdef CONFIG_NUMA
6837 kfree(sched_group_nodes);
6838#endif
57d885fe
GH
6839 return -ENOMEM;
6840 }
6841
7c16ec58
MT
6842#if SCHED_CPUMASK_ALLOC
6843 /* get space for all scratch cpumask variables */
6844 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6845 if (!allmasks) {
6846 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6847 kfree(rd);
6848#ifdef CONFIG_NUMA
6849 kfree(sched_group_nodes);
6850#endif
6851 return -ENOMEM;
6852 }
6853#endif
6854 tmpmask = (cpumask_t *)allmasks;
6855
6856
6857#ifdef CONFIG_NUMA
6858 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6859#endif
6860
1da177e4 6861 /*
1a20ff27 6862 * Set up domains for cpus specified by the cpu_map.
1da177e4 6863 */
1a20ff27 6864 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6865 struct sched_domain *sd = NULL, *p;
7c16ec58 6866 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 6867
7c16ec58
MT
6868 *nodemask = node_to_cpumask(cpu_to_node(i));
6869 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
6870
6871#ifdef CONFIG_NUMA
dd41f596 6872 if (cpus_weight(*cpu_map) >
7c16ec58 6873 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 6874 sd = &per_cpu(allnodes_domains, i);
7c16ec58 6875 SD_INIT(sd, ALLNODES);
9c1cfda2 6876 sd->span = *cpu_map;
7c16ec58 6877 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 6878 p = sd;
6711cab4 6879 sd_allnodes = 1;
9c1cfda2
JH
6880 } else
6881 p = NULL;
6882
1da177e4 6883 sd = &per_cpu(node_domains, i);
7c16ec58 6884 SD_INIT(sd, NODE);
4bdbaad3 6885 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 6886 sd->parent = p;
1a848870
SS
6887 if (p)
6888 p->child = sd;
9c1cfda2 6889 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6890#endif
6891
6892 p = sd;
6893 sd = &per_cpu(phys_domains, i);
7c16ec58
MT
6894 SD_INIT(sd, CPU);
6895 sd->span = *nodemask;
1da177e4 6896 sd->parent = p;
1a848870
SS
6897 if (p)
6898 p->child = sd;
7c16ec58 6899 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 6900
1e9f28fa
SS
6901#ifdef CONFIG_SCHED_MC
6902 p = sd;
6903 sd = &per_cpu(core_domains, i);
7c16ec58 6904 SD_INIT(sd, MC);
1e9f28fa
SS
6905 sd->span = cpu_coregroup_map(i);
6906 cpus_and(sd->span, sd->span, *cpu_map);
6907 sd->parent = p;
1a848870 6908 p->child = sd;
7c16ec58 6909 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
6910#endif
6911
1da177e4
LT
6912#ifdef CONFIG_SCHED_SMT
6913 p = sd;
6914 sd = &per_cpu(cpu_domains, i);
7c16ec58 6915 SD_INIT(sd, SIBLING);
d5a7430d 6916 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6917 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6918 sd->parent = p;
1a848870 6919 p->child = sd;
7c16ec58 6920 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
6921#endif
6922 }
6923
6924#ifdef CONFIG_SCHED_SMT
6925 /* Set up CPU (sibling) groups */
9c1cfda2 6926 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
6927 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
6928 SCHED_CPUMASK_VAR(send_covered, allmasks);
6929
6930 *this_sibling_map = per_cpu(cpu_sibling_map, i);
6931 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
6932 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
6933 continue;
6934
dd41f596 6935 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
6936 &cpu_to_cpu_group,
6937 send_covered, tmpmask);
1da177e4
LT
6938 }
6939#endif
6940
1e9f28fa
SS
6941#ifdef CONFIG_SCHED_MC
6942 /* Set up multi-core groups */
6943 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
6944 SCHED_CPUMASK_VAR(this_core_map, allmasks);
6945 SCHED_CPUMASK_VAR(send_covered, allmasks);
6946
6947 *this_core_map = cpu_coregroup_map(i);
6948 cpus_and(*this_core_map, *this_core_map, *cpu_map);
6949 if (i != first_cpu(*this_core_map))
1e9f28fa 6950 continue;
7c16ec58 6951
dd41f596 6952 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
6953 &cpu_to_core_group,
6954 send_covered, tmpmask);
1e9f28fa
SS
6955 }
6956#endif
6957
1da177e4
LT
6958 /* Set up physical groups */
6959 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
6960 SCHED_CPUMASK_VAR(nodemask, allmasks);
6961 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 6962
7c16ec58
MT
6963 *nodemask = node_to_cpumask(i);
6964 cpus_and(*nodemask, *nodemask, *cpu_map);
6965 if (cpus_empty(*nodemask))
1da177e4
LT
6966 continue;
6967
7c16ec58
MT
6968 init_sched_build_groups(nodemask, cpu_map,
6969 &cpu_to_phys_group,
6970 send_covered, tmpmask);
1da177e4
LT
6971 }
6972
6973#ifdef CONFIG_NUMA
6974 /* Set up node groups */
7c16ec58
MT
6975 if (sd_allnodes) {
6976 SCHED_CPUMASK_VAR(send_covered, allmasks);
6977
6978 init_sched_build_groups(cpu_map, cpu_map,
6979 &cpu_to_allnodes_group,
6980 send_covered, tmpmask);
6981 }
9c1cfda2
JH
6982
6983 for (i = 0; i < MAX_NUMNODES; i++) {
6984 /* Set up node groups */
6985 struct sched_group *sg, *prev;
7c16ec58
MT
6986 SCHED_CPUMASK_VAR(nodemask, allmasks);
6987 SCHED_CPUMASK_VAR(domainspan, allmasks);
6988 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
6989 int j;
6990
7c16ec58
MT
6991 *nodemask = node_to_cpumask(i);
6992 cpus_clear(*covered);
6993
6994 cpus_and(*nodemask, *nodemask, *cpu_map);
6995 if (cpus_empty(*nodemask)) {
d1b55138 6996 sched_group_nodes[i] = NULL;
9c1cfda2 6997 continue;
d1b55138 6998 }
9c1cfda2 6999
4bdbaad3 7000 sched_domain_node_span(i, domainspan);
7c16ec58 7001 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7002
15f0b676 7003 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7004 if (!sg) {
7005 printk(KERN_WARNING "Can not alloc domain group for "
7006 "node %d\n", i);
7007 goto error;
7008 }
9c1cfda2 7009 sched_group_nodes[i] = sg;
7c16ec58 7010 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7011 struct sched_domain *sd;
9761eea8 7012
9c1cfda2
JH
7013 sd = &per_cpu(node_domains, j);
7014 sd->groups = sg;
9c1cfda2 7015 }
5517d86b 7016 sg->__cpu_power = 0;
7c16ec58 7017 sg->cpumask = *nodemask;
51888ca2 7018 sg->next = sg;
7c16ec58 7019 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7020 prev = sg;
7021
7022 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7023 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7024 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7025 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7026
7c16ec58
MT
7027 cpus_complement(*notcovered, *covered);
7028 cpus_and(*tmpmask, *notcovered, *cpu_map);
7029 cpus_and(*tmpmask, *tmpmask, *domainspan);
7030 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7031 break;
7032
7c16ec58
MT
7033 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7034 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7035 continue;
7036
15f0b676
SV
7037 sg = kmalloc_node(sizeof(struct sched_group),
7038 GFP_KERNEL, i);
9c1cfda2
JH
7039 if (!sg) {
7040 printk(KERN_WARNING
7041 "Can not alloc domain group for node %d\n", j);
51888ca2 7042 goto error;
9c1cfda2 7043 }
5517d86b 7044 sg->__cpu_power = 0;
7c16ec58 7045 sg->cpumask = *tmpmask;
51888ca2 7046 sg->next = prev->next;
7c16ec58 7047 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7048 prev->next = sg;
7049 prev = sg;
7050 }
9c1cfda2 7051 }
1da177e4
LT
7052#endif
7053
7054 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7055#ifdef CONFIG_SCHED_SMT
1a20ff27 7056 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7057 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7058
89c4710e 7059 init_sched_groups_power(i, sd);
5c45bf27 7060 }
1da177e4 7061#endif
1e9f28fa 7062#ifdef CONFIG_SCHED_MC
5c45bf27 7063 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7064 struct sched_domain *sd = &per_cpu(core_domains, i);
7065
89c4710e 7066 init_sched_groups_power(i, sd);
5c45bf27
SS
7067 }
7068#endif
1e9f28fa 7069
5c45bf27 7070 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7071 struct sched_domain *sd = &per_cpu(phys_domains, i);
7072
89c4710e 7073 init_sched_groups_power(i, sd);
1da177e4
LT
7074 }
7075
9c1cfda2 7076#ifdef CONFIG_NUMA
08069033
SS
7077 for (i = 0; i < MAX_NUMNODES; i++)
7078 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7079
6711cab4
SS
7080 if (sd_allnodes) {
7081 struct sched_group *sg;
f712c0c7 7082
7c16ec58
MT
7083 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7084 tmpmask);
f712c0c7
SS
7085 init_numa_sched_groups_power(sg);
7086 }
9c1cfda2
JH
7087#endif
7088
1da177e4 7089 /* Attach the domains */
1a20ff27 7090 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7091 struct sched_domain *sd;
7092#ifdef CONFIG_SCHED_SMT
7093 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7094#elif defined(CONFIG_SCHED_MC)
7095 sd = &per_cpu(core_domains, i);
1da177e4
LT
7096#else
7097 sd = &per_cpu(phys_domains, i);
7098#endif
57d885fe 7099 cpu_attach_domain(sd, rd, i);
1da177e4 7100 }
51888ca2 7101
7c16ec58 7102 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7103 return 0;
7104
a616058b 7105#ifdef CONFIG_NUMA
51888ca2 7106error:
7c16ec58
MT
7107 free_sched_groups(cpu_map, tmpmask);
7108 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7109 return -ENOMEM;
a616058b 7110#endif
1da177e4 7111}
029190c5
PJ
7112
7113static cpumask_t *doms_cur; /* current sched domains */
7114static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7115
7116/*
7117 * Special case: If a kmalloc of a doms_cur partition (array of
7118 * cpumask_t) fails, then fallback to a single sched domain,
7119 * as determined by the single cpumask_t fallback_doms.
7120 */
7121static cpumask_t fallback_doms;
7122
22e52b07
HC
7123void __attribute__((weak)) arch_update_cpu_topology(void)
7124{
7125}
7126
1a20ff27 7127/*
41a2d6cf 7128 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7129 * For now this just excludes isolated cpus, but could be used to
7130 * exclude other special cases in the future.
1a20ff27 7131 */
51888ca2 7132static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7133{
7378547f
MM
7134 int err;
7135
22e52b07 7136 arch_update_cpu_topology();
029190c5
PJ
7137 ndoms_cur = 1;
7138 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7139 if (!doms_cur)
7140 doms_cur = &fallback_doms;
7141 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 7142 err = build_sched_domains(doms_cur);
6382bc90 7143 register_sched_domain_sysctl();
7378547f
MM
7144
7145 return err;
1a20ff27
DG
7146}
7147
7c16ec58
MT
7148static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7149 cpumask_t *tmpmask)
1da177e4 7150{
7c16ec58 7151 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7152}
1da177e4 7153
1a20ff27
DG
7154/*
7155 * Detach sched domains from a group of cpus specified in cpu_map
7156 * These cpus will now be attached to the NULL domain
7157 */
858119e1 7158static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7159{
7c16ec58 7160 cpumask_t tmpmask;
1a20ff27
DG
7161 int i;
7162
6382bc90
MM
7163 unregister_sched_domain_sysctl();
7164
1a20ff27 7165 for_each_cpu_mask(i, *cpu_map)
57d885fe 7166 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7167 synchronize_sched();
7c16ec58 7168 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7169}
7170
029190c5
PJ
7171/*
7172 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7173 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7174 * doms_new[] to the current sched domain partitioning, doms_cur[].
7175 * It destroys each deleted domain and builds each new domain.
7176 *
7177 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7178 * The masks don't intersect (don't overlap.) We should setup one
7179 * sched domain for each mask. CPUs not in any of the cpumasks will
7180 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7181 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7182 * it as it is.
7183 *
41a2d6cf
IM
7184 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7185 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7186 * failed the kmalloc call, then it can pass in doms_new == NULL,
7187 * and partition_sched_domains() will fallback to the single partition
7188 * 'fallback_doms'.
7189 *
7190 * Call with hotplug lock held
7191 */
7192void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
7193{
7194 int i, j;
7195
a1835615
SV
7196 lock_doms_cur();
7197
7378547f
MM
7198 /* always unregister in case we don't destroy any domains */
7199 unregister_sched_domain_sysctl();
7200
029190c5
PJ
7201 if (doms_new == NULL) {
7202 ndoms_new = 1;
7203 doms_new = &fallback_doms;
7204 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7205 }
7206
7207 /* Destroy deleted domains */
7208 for (i = 0; i < ndoms_cur; i++) {
7209 for (j = 0; j < ndoms_new; j++) {
7210 if (cpus_equal(doms_cur[i], doms_new[j]))
7211 goto match1;
7212 }
7213 /* no match - a current sched domain not in new doms_new[] */
7214 detach_destroy_domains(doms_cur + i);
7215match1:
7216 ;
7217 }
7218
7219 /* Build new domains */
7220 for (i = 0; i < ndoms_new; i++) {
7221 for (j = 0; j < ndoms_cur; j++) {
7222 if (cpus_equal(doms_new[i], doms_cur[j]))
7223 goto match2;
7224 }
7225 /* no match - add a new doms_new */
7226 build_sched_domains(doms_new + i);
7227match2:
7228 ;
7229 }
7230
7231 /* Remember the new sched domains */
7232 if (doms_cur != &fallback_doms)
7233 kfree(doms_cur);
7234 doms_cur = doms_new;
7235 ndoms_cur = ndoms_new;
7378547f
MM
7236
7237 register_sched_domain_sysctl();
a1835615
SV
7238
7239 unlock_doms_cur();
029190c5
PJ
7240}
7241
5c45bf27 7242#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7243int arch_reinit_sched_domains(void)
5c45bf27
SS
7244{
7245 int err;
7246
95402b38 7247 get_online_cpus();
5c45bf27
SS
7248 detach_destroy_domains(&cpu_online_map);
7249 err = arch_init_sched_domains(&cpu_online_map);
95402b38 7250 put_online_cpus();
5c45bf27
SS
7251
7252 return err;
7253}
7254
7255static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7256{
7257 int ret;
7258
7259 if (buf[0] != '0' && buf[0] != '1')
7260 return -EINVAL;
7261
7262 if (smt)
7263 sched_smt_power_savings = (buf[0] == '1');
7264 else
7265 sched_mc_power_savings = (buf[0] == '1');
7266
7267 ret = arch_reinit_sched_domains();
7268
7269 return ret ? ret : count;
7270}
7271
5c45bf27
SS
7272#ifdef CONFIG_SCHED_MC
7273static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7274{
7275 return sprintf(page, "%u\n", sched_mc_power_savings);
7276}
48f24c4d
IM
7277static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7278 const char *buf, size_t count)
5c45bf27
SS
7279{
7280 return sched_power_savings_store(buf, count, 0);
7281}
6707de00
AB
7282static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7283 sched_mc_power_savings_store);
5c45bf27
SS
7284#endif
7285
7286#ifdef CONFIG_SCHED_SMT
7287static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7288{
7289 return sprintf(page, "%u\n", sched_smt_power_savings);
7290}
48f24c4d
IM
7291static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7292 const char *buf, size_t count)
5c45bf27
SS
7293{
7294 return sched_power_savings_store(buf, count, 1);
7295}
6707de00
AB
7296static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7297 sched_smt_power_savings_store);
7298#endif
7299
7300int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7301{
7302 int err = 0;
7303
7304#ifdef CONFIG_SCHED_SMT
7305 if (smt_capable())
7306 err = sysfs_create_file(&cls->kset.kobj,
7307 &attr_sched_smt_power_savings.attr);
7308#endif
7309#ifdef CONFIG_SCHED_MC
7310 if (!err && mc_capable())
7311 err = sysfs_create_file(&cls->kset.kobj,
7312 &attr_sched_mc_power_savings.attr);
7313#endif
7314 return err;
7315}
5c45bf27
SS
7316#endif
7317
1da177e4 7318/*
41a2d6cf 7319 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7320 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7321 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7322 * which will prevent rebalancing while the sched domains are recalculated.
7323 */
7324static int update_sched_domains(struct notifier_block *nfb,
7325 unsigned long action, void *hcpu)
7326{
1da177e4
LT
7327 switch (action) {
7328 case CPU_UP_PREPARE:
8bb78442 7329 case CPU_UP_PREPARE_FROZEN:
1da177e4 7330 case CPU_DOWN_PREPARE:
8bb78442 7331 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7332 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7333 return NOTIFY_OK;
7334
7335 case CPU_UP_CANCELED:
8bb78442 7336 case CPU_UP_CANCELED_FROZEN:
1da177e4 7337 case CPU_DOWN_FAILED:
8bb78442 7338 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7339 case CPU_ONLINE:
8bb78442 7340 case CPU_ONLINE_FROZEN:
1da177e4 7341 case CPU_DEAD:
8bb78442 7342 case CPU_DEAD_FROZEN:
1da177e4
LT
7343 /*
7344 * Fall through and re-initialise the domains.
7345 */
7346 break;
7347 default:
7348 return NOTIFY_DONE;
7349 }
7350
7351 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7352 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7353
7354 return NOTIFY_OK;
7355}
1da177e4
LT
7356
7357void __init sched_init_smp(void)
7358{
5c1e1767
NP
7359 cpumask_t non_isolated_cpus;
7360
434d53b0
MT
7361#if defined(CONFIG_NUMA)
7362 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7363 GFP_KERNEL);
7364 BUG_ON(sched_group_nodes_bycpu == NULL);
7365#endif
95402b38 7366 get_online_cpus();
1a20ff27 7367 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7368 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7369 if (cpus_empty(non_isolated_cpus))
7370 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7371 put_online_cpus();
1da177e4
LT
7372 /* XXX: Theoretical race here - CPU may be hotplugged now */
7373 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7374
7375 /* Move init over to a non-isolated CPU */
7c16ec58 7376 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7377 BUG();
19978ca6 7378 sched_init_granularity();
1da177e4
LT
7379}
7380#else
7381void __init sched_init_smp(void)
7382{
434d53b0
MT
7383#if defined(CONFIG_NUMA)
7384 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7385 GFP_KERNEL);
7386 BUG_ON(sched_group_nodes_bycpu == NULL);
7387#endif
19978ca6 7388 sched_init_granularity();
1da177e4
LT
7389}
7390#endif /* CONFIG_SMP */
7391
7392int in_sched_functions(unsigned long addr)
7393{
1da177e4
LT
7394 return in_lock_functions(addr) ||
7395 (addr >= (unsigned long)__sched_text_start
7396 && addr < (unsigned long)__sched_text_end);
7397}
7398
a9957449 7399static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7400{
7401 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7402#ifdef CONFIG_FAIR_GROUP_SCHED
7403 cfs_rq->rq = rq;
7404#endif
67e9fb2a 7405 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7406}
7407
fa85ae24
PZ
7408static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7409{
7410 struct rt_prio_array *array;
7411 int i;
7412
7413 array = &rt_rq->active;
7414 for (i = 0; i < MAX_RT_PRIO; i++) {
7415 INIT_LIST_HEAD(array->queue + i);
7416 __clear_bit(i, array->bitmap);
7417 }
7418 /* delimiter for bitsearch: */
7419 __set_bit(MAX_RT_PRIO, array->bitmap);
7420
052f1dc7 7421#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7422 rt_rq->highest_prio = MAX_RT_PRIO;
7423#endif
fa85ae24
PZ
7424#ifdef CONFIG_SMP
7425 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7426 rt_rq->overloaded = 0;
7427#endif
7428
7429 rt_rq->rt_time = 0;
7430 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7431 rt_rq->rt_runtime = 0;
7432 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7433
052f1dc7 7434#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7435 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7436 rt_rq->rq = rq;
7437#endif
fa85ae24
PZ
7438}
7439
6f505b16
PZ
7440#ifdef CONFIG_FAIR_GROUP_SCHED
7441static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7442 struct cfs_rq *cfs_rq, struct sched_entity *se,
7443 int cpu, int add)
7444{
7445 tg->cfs_rq[cpu] = cfs_rq;
7446 init_cfs_rq(cfs_rq, rq);
7447 cfs_rq->tg = tg;
7448 if (add)
7449 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7450
7451 tg->se[cpu] = se;
354d60c2
DG
7452 /* se could be NULL for init_task_group */
7453 if (!se)
7454 return;
7455
6f505b16
PZ
7456 se->cfs_rq = &rq->cfs;
7457 se->my_q = cfs_rq;
7458 se->load.weight = tg->shares;
7459 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7460 se->parent = NULL;
7461}
052f1dc7 7462#endif
6f505b16 7463
052f1dc7 7464#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
7465static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7466 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7467 int cpu, int add)
7468{
7469 tg->rt_rq[cpu] = rt_rq;
7470 init_rt_rq(rt_rq, rq);
7471 rt_rq->tg = tg;
7472 rt_rq->rt_se = rt_se;
ac086bc2 7473 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7474 if (add)
7475 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7476
7477 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7478 if (!rt_se)
7479 return;
7480
6f505b16
PZ
7481 rt_se->rt_rq = &rq->rt;
7482 rt_se->my_q = rt_rq;
7483 rt_se->parent = NULL;
7484 INIT_LIST_HEAD(&rt_se->run_list);
7485}
7486#endif
7487
1da177e4
LT
7488void __init sched_init(void)
7489{
dd41f596 7490 int i, j;
434d53b0
MT
7491 unsigned long alloc_size = 0, ptr;
7492
7493#ifdef CONFIG_FAIR_GROUP_SCHED
7494 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7495#endif
7496#ifdef CONFIG_RT_GROUP_SCHED
7497 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7498#endif
7499 /*
7500 * As sched_init() is called before page_alloc is setup,
7501 * we use alloc_bootmem().
7502 */
7503 if (alloc_size) {
7504 ptr = (unsigned long)alloc_bootmem_low(alloc_size);
7505
7506#ifdef CONFIG_FAIR_GROUP_SCHED
7507 init_task_group.se = (struct sched_entity **)ptr;
7508 ptr += nr_cpu_ids * sizeof(void **);
7509
7510 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7511 ptr += nr_cpu_ids * sizeof(void **);
7512#endif
7513#ifdef CONFIG_RT_GROUP_SCHED
7514 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7515 ptr += nr_cpu_ids * sizeof(void **);
7516
7517 init_task_group.rt_rq = (struct rt_rq **)ptr;
7518#endif
7519 }
dd41f596 7520
57d885fe
GH
7521#ifdef CONFIG_SMP
7522 init_defrootdomain();
7523#endif
7524
d0b27fa7
PZ
7525 init_rt_bandwidth(&def_rt_bandwidth,
7526 global_rt_period(), global_rt_runtime());
7527
7528#ifdef CONFIG_RT_GROUP_SCHED
7529 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7530 global_rt_period(), global_rt_runtime());
7531#endif
7532
052f1dc7 7533#ifdef CONFIG_GROUP_SCHED
6f505b16
PZ
7534 list_add(&init_task_group.list, &task_groups);
7535#endif
7536
0a945022 7537 for_each_possible_cpu(i) {
70b97a7f 7538 struct rq *rq;
1da177e4
LT
7539
7540 rq = cpu_rq(i);
7541 spin_lock_init(&rq->lock);
fcb99371 7542 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7543 rq->nr_running = 0;
dd41f596 7544 rq->clock = 1;
15934a37 7545 update_last_tick_seen(rq);
dd41f596 7546 init_cfs_rq(&rq->cfs, rq);
6f505b16 7547 init_rt_rq(&rq->rt, rq);
dd41f596 7548#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7549 init_task_group.shares = init_task_group_load;
6f505b16 7550 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7551#ifdef CONFIG_CGROUP_SCHED
7552 /*
7553 * How much cpu bandwidth does init_task_group get?
7554 *
7555 * In case of task-groups formed thr' the cgroup filesystem, it
7556 * gets 100% of the cpu resources in the system. This overall
7557 * system cpu resource is divided among the tasks of
7558 * init_task_group and its child task-groups in a fair manner,
7559 * based on each entity's (task or task-group's) weight
7560 * (se->load.weight).
7561 *
7562 * In other words, if init_task_group has 10 tasks of weight
7563 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7564 * then A0's share of the cpu resource is:
7565 *
7566 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7567 *
7568 * We achieve this by letting init_task_group's tasks sit
7569 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7570 */
7571 init_tg_cfs_entry(rq, &init_task_group, &rq->cfs, NULL, i, 1);
7572#elif defined CONFIG_USER_SCHED
7573 /*
7574 * In case of task-groups formed thr' the user id of tasks,
7575 * init_task_group represents tasks belonging to root user.
7576 * Hence it forms a sibling of all subsequent groups formed.
7577 * In this case, init_task_group gets only a fraction of overall
7578 * system cpu resource, based on the weight assigned to root
7579 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7580 * by letting tasks of init_task_group sit in a separate cfs_rq
7581 * (init_cfs_rq) and having one entity represent this group of
7582 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7583 */
6f505b16
PZ
7584 init_tg_cfs_entry(rq, &init_task_group,
7585 &per_cpu(init_cfs_rq, i),
7586 &per_cpu(init_sched_entity, i), i, 1);
7587
052f1dc7 7588#endif
354d60c2
DG
7589#endif /* CONFIG_FAIR_GROUP_SCHED */
7590
7591 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7592#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7593 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2
DG
7594#ifdef CONFIG_CGROUP_SCHED
7595 init_tg_rt_entry(rq, &init_task_group, &rq->rt, NULL, i, 1);
7596#elif defined CONFIG_USER_SCHED
6f505b16
PZ
7597 init_tg_rt_entry(rq, &init_task_group,
7598 &per_cpu(init_rt_rq, i),
7599 &per_cpu(init_sched_rt_entity, i), i, 1);
354d60c2 7600#endif
dd41f596 7601#endif
1da177e4 7602
dd41f596
IM
7603 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7604 rq->cpu_load[j] = 0;
1da177e4 7605#ifdef CONFIG_SMP
41c7ce9a 7606 rq->sd = NULL;
57d885fe 7607 rq->rd = NULL;
1da177e4 7608 rq->active_balance = 0;
dd41f596 7609 rq->next_balance = jiffies;
1da177e4 7610 rq->push_cpu = 0;
0a2966b4 7611 rq->cpu = i;
1da177e4
LT
7612 rq->migration_thread = NULL;
7613 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7614 rq_attach_root(rq, &def_root_domain);
1da177e4 7615#endif
8f4d37ec 7616 init_rq_hrtick(rq);
1da177e4 7617 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7618 }
7619
2dd73a4f 7620 set_load_weight(&init_task);
b50f60ce 7621
e107be36
AK
7622#ifdef CONFIG_PREEMPT_NOTIFIERS
7623 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7624#endif
7625
c9819f45
CL
7626#ifdef CONFIG_SMP
7627 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7628#endif
7629
b50f60ce
HC
7630#ifdef CONFIG_RT_MUTEXES
7631 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7632#endif
7633
1da177e4
LT
7634 /*
7635 * The boot idle thread does lazy MMU switching as well:
7636 */
7637 atomic_inc(&init_mm.mm_count);
7638 enter_lazy_tlb(&init_mm, current);
7639
7640 /*
7641 * Make us the idle thread. Technically, schedule() should not be
7642 * called from this thread, however somewhere below it might be,
7643 * but because we are the idle thread, we just pick up running again
7644 * when this runqueue becomes "idle".
7645 */
7646 init_idle(current, smp_processor_id());
dd41f596
IM
7647 /*
7648 * During early bootup we pretend to be a normal task:
7649 */
7650 current->sched_class = &fair_sched_class;
6892b75e
IM
7651
7652 scheduler_running = 1;
1da177e4
LT
7653}
7654
7655#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7656void __might_sleep(char *file, int line)
7657{
48f24c4d 7658#ifdef in_atomic
1da177e4
LT
7659 static unsigned long prev_jiffy; /* ratelimiting */
7660
7661 if ((in_atomic() || irqs_disabled()) &&
7662 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7663 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7664 return;
7665 prev_jiffy = jiffies;
91368d73 7666 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7667 " context at %s:%d\n", file, line);
7668 printk("in_atomic():%d, irqs_disabled():%d\n",
7669 in_atomic(), irqs_disabled());
a4c410f0 7670 debug_show_held_locks(current);
3117df04
IM
7671 if (irqs_disabled())
7672 print_irqtrace_events(current);
1da177e4
LT
7673 dump_stack();
7674 }
7675#endif
7676}
7677EXPORT_SYMBOL(__might_sleep);
7678#endif
7679
7680#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7681static void normalize_task(struct rq *rq, struct task_struct *p)
7682{
7683 int on_rq;
7684 update_rq_clock(rq);
7685 on_rq = p->se.on_rq;
7686 if (on_rq)
7687 deactivate_task(rq, p, 0);
7688 __setscheduler(rq, p, SCHED_NORMAL, 0);
7689 if (on_rq) {
7690 activate_task(rq, p, 0);
7691 resched_task(rq->curr);
7692 }
7693}
7694
1da177e4
LT
7695void normalize_rt_tasks(void)
7696{
a0f98a1c 7697 struct task_struct *g, *p;
1da177e4 7698 unsigned long flags;
70b97a7f 7699 struct rq *rq;
1da177e4 7700
4cf5d77a 7701 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7702 do_each_thread(g, p) {
178be793
IM
7703 /*
7704 * Only normalize user tasks:
7705 */
7706 if (!p->mm)
7707 continue;
7708
6cfb0d5d 7709 p->se.exec_start = 0;
6cfb0d5d 7710#ifdef CONFIG_SCHEDSTATS
dd41f596 7711 p->se.wait_start = 0;
dd41f596 7712 p->se.sleep_start = 0;
dd41f596 7713 p->se.block_start = 0;
6cfb0d5d 7714#endif
dd41f596
IM
7715 task_rq(p)->clock = 0;
7716
7717 if (!rt_task(p)) {
7718 /*
7719 * Renice negative nice level userspace
7720 * tasks back to 0:
7721 */
7722 if (TASK_NICE(p) < 0 && p->mm)
7723 set_user_nice(p, 0);
1da177e4 7724 continue;
dd41f596 7725 }
1da177e4 7726
4cf5d77a 7727 spin_lock(&p->pi_lock);
b29739f9 7728 rq = __task_rq_lock(p);
1da177e4 7729
178be793 7730 normalize_task(rq, p);
3a5e4dc1 7731
b29739f9 7732 __task_rq_unlock(rq);
4cf5d77a 7733 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7734 } while_each_thread(g, p);
7735
4cf5d77a 7736 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7737}
7738
7739#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7740
7741#ifdef CONFIG_IA64
7742/*
7743 * These functions are only useful for the IA64 MCA handling.
7744 *
7745 * They can only be called when the whole system has been
7746 * stopped - every CPU needs to be quiescent, and no scheduling
7747 * activity can take place. Using them for anything else would
7748 * be a serious bug, and as a result, they aren't even visible
7749 * under any other configuration.
7750 */
7751
7752/**
7753 * curr_task - return the current task for a given cpu.
7754 * @cpu: the processor in question.
7755 *
7756 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7757 */
36c8b586 7758struct task_struct *curr_task(int cpu)
1df5c10a
LT
7759{
7760 return cpu_curr(cpu);
7761}
7762
7763/**
7764 * set_curr_task - set the current task for a given cpu.
7765 * @cpu: the processor in question.
7766 * @p: the task pointer to set.
7767 *
7768 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7769 * are serviced on a separate stack. It allows the architecture to switch the
7770 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7771 * must be called with all CPU's synchronized, and interrupts disabled, the
7772 * and caller must save the original value of the current task (see
7773 * curr_task() above) and restore that value before reenabling interrupts and
7774 * re-starting the system.
7775 *
7776 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7777 */
36c8b586 7778void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7779{
7780 cpu_curr(cpu) = p;
7781}
7782
7783#endif
29f59db3 7784
bccbe08a
PZ
7785#ifdef CONFIG_FAIR_GROUP_SCHED
7786static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7787{
7788 int i;
7789
7790 for_each_possible_cpu(i) {
7791 if (tg->cfs_rq)
7792 kfree(tg->cfs_rq[i]);
7793 if (tg->se)
7794 kfree(tg->se[i]);
6f505b16
PZ
7795 }
7796
7797 kfree(tg->cfs_rq);
7798 kfree(tg->se);
6f505b16
PZ
7799}
7800
bccbe08a 7801static int alloc_fair_sched_group(struct task_group *tg)
29f59db3 7802{
29f59db3
SV
7803 struct cfs_rq *cfs_rq;
7804 struct sched_entity *se;
9b5b7751 7805 struct rq *rq;
29f59db3
SV
7806 int i;
7807
434d53b0 7808 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7809 if (!tg->cfs_rq)
7810 goto err;
434d53b0 7811 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7812 if (!tg->se)
7813 goto err;
052f1dc7
PZ
7814
7815 tg->shares = NICE_0_LOAD;
29f59db3
SV
7816
7817 for_each_possible_cpu(i) {
9b5b7751 7818 rq = cpu_rq(i);
29f59db3 7819
6f505b16
PZ
7820 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7821 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7822 if (!cfs_rq)
7823 goto err;
7824
6f505b16
PZ
7825 se = kmalloc_node(sizeof(struct sched_entity),
7826 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7827 if (!se)
7828 goto err;
7829
052f1dc7 7830 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
bccbe08a
PZ
7831 }
7832
7833 return 1;
7834
7835 err:
7836 return 0;
7837}
7838
7839static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7840{
7841 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7842 &cpu_rq(cpu)->leaf_cfs_rq_list);
7843}
7844
7845static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7846{
7847 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7848}
7849#else
7850static inline void free_fair_sched_group(struct task_group *tg)
7851{
7852}
7853
7854static inline int alloc_fair_sched_group(struct task_group *tg)
7855{
7856 return 1;
7857}
7858
7859static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7860{
7861}
7862
7863static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7864{
7865}
052f1dc7
PZ
7866#endif
7867
7868#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7869static void free_rt_sched_group(struct task_group *tg)
7870{
7871 int i;
7872
d0b27fa7
PZ
7873 destroy_rt_bandwidth(&tg->rt_bandwidth);
7874
bccbe08a
PZ
7875 for_each_possible_cpu(i) {
7876 if (tg->rt_rq)
7877 kfree(tg->rt_rq[i]);
7878 if (tg->rt_se)
7879 kfree(tg->rt_se[i]);
7880 }
7881
7882 kfree(tg->rt_rq);
7883 kfree(tg->rt_se);
7884}
7885
7886static int alloc_rt_sched_group(struct task_group *tg)
7887{
7888 struct rt_rq *rt_rq;
7889 struct sched_rt_entity *rt_se;
7890 struct rq *rq;
7891 int i;
7892
434d53b0 7893 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7894 if (!tg->rt_rq)
7895 goto err;
434d53b0 7896 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7897 if (!tg->rt_se)
7898 goto err;
7899
d0b27fa7
PZ
7900 init_rt_bandwidth(&tg->rt_bandwidth,
7901 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7902
7903 for_each_possible_cpu(i) {
7904 rq = cpu_rq(i);
7905
6f505b16
PZ
7906 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7907 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7908 if (!rt_rq)
7909 goto err;
29f59db3 7910
6f505b16
PZ
7911 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7912 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7913 if (!rt_se)
7914 goto err;
29f59db3 7915
6f505b16 7916 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
29f59db3
SV
7917 }
7918
bccbe08a
PZ
7919 return 1;
7920
7921 err:
7922 return 0;
7923}
7924
7925static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7926{
7927 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7928 &cpu_rq(cpu)->leaf_rt_rq_list);
7929}
7930
7931static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7932{
7933 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7934}
7935#else
7936static inline void free_rt_sched_group(struct task_group *tg)
7937{
7938}
7939
7940static inline int alloc_rt_sched_group(struct task_group *tg)
7941{
7942 return 1;
7943}
7944
7945static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7946{
7947}
7948
7949static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7950{
7951}
7952#endif
7953
d0b27fa7 7954#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
7955static void free_sched_group(struct task_group *tg)
7956{
7957 free_fair_sched_group(tg);
7958 free_rt_sched_group(tg);
7959 kfree(tg);
7960}
7961
7962/* allocate runqueue etc for a new task group */
7963struct task_group *sched_create_group(void)
7964{
7965 struct task_group *tg;
7966 unsigned long flags;
7967 int i;
7968
7969 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7970 if (!tg)
7971 return ERR_PTR(-ENOMEM);
7972
7973 if (!alloc_fair_sched_group(tg))
7974 goto err;
7975
7976 if (!alloc_rt_sched_group(tg))
7977 goto err;
7978
8ed36996 7979 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7980 for_each_possible_cpu(i) {
bccbe08a
PZ
7981 register_fair_sched_group(tg, i);
7982 register_rt_sched_group(tg, i);
9b5b7751 7983 }
6f505b16 7984 list_add_rcu(&tg->list, &task_groups);
8ed36996 7985 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7986
9b5b7751 7987 return tg;
29f59db3
SV
7988
7989err:
6f505b16 7990 free_sched_group(tg);
29f59db3
SV
7991 return ERR_PTR(-ENOMEM);
7992}
7993
9b5b7751 7994/* rcu callback to free various structures associated with a task group */
6f505b16 7995static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7996{
29f59db3 7997 /* now it should be safe to free those cfs_rqs */
6f505b16 7998 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7999}
8000
9b5b7751 8001/* Destroy runqueue etc associated with a task group */
4cf86d77 8002void sched_destroy_group(struct task_group *tg)
29f59db3 8003{
8ed36996 8004 unsigned long flags;
9b5b7751 8005 int i;
29f59db3 8006
8ed36996 8007 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8008 for_each_possible_cpu(i) {
bccbe08a
PZ
8009 unregister_fair_sched_group(tg, i);
8010 unregister_rt_sched_group(tg, i);
9b5b7751 8011 }
6f505b16 8012 list_del_rcu(&tg->list);
8ed36996 8013 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8014
9b5b7751 8015 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8016 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8017}
8018
9b5b7751 8019/* change task's runqueue when it moves between groups.
3a252015
IM
8020 * The caller of this function should have put the task in its new group
8021 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8022 * reflect its new group.
9b5b7751
SV
8023 */
8024void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8025{
8026 int on_rq, running;
8027 unsigned long flags;
8028 struct rq *rq;
8029
8030 rq = task_rq_lock(tsk, &flags);
8031
29f59db3
SV
8032 update_rq_clock(rq);
8033
051a1d1a 8034 running = task_current(rq, tsk);
29f59db3
SV
8035 on_rq = tsk->se.on_rq;
8036
0e1f3483 8037 if (on_rq)
29f59db3 8038 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8039 if (unlikely(running))
8040 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8041
6f505b16 8042 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8043
810b3817
PZ
8044#ifdef CONFIG_FAIR_GROUP_SCHED
8045 if (tsk->sched_class->moved_group)
8046 tsk->sched_class->moved_group(tsk);
8047#endif
8048
0e1f3483
HS
8049 if (unlikely(running))
8050 tsk->sched_class->set_curr_task(rq);
8051 if (on_rq)
7074badb 8052 enqueue_task(rq, tsk, 0);
29f59db3 8053
29f59db3
SV
8054 task_rq_unlock(rq, &flags);
8055}
d0b27fa7 8056#endif
29f59db3 8057
052f1dc7 8058#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
8059static void set_se_shares(struct sched_entity *se, unsigned long shares)
8060{
8061 struct cfs_rq *cfs_rq = se->cfs_rq;
8062 struct rq *rq = cfs_rq->rq;
8063 int on_rq;
8064
62fb1851 8065 spin_lock_irq(&rq->lock);
29f59db3
SV
8066
8067 on_rq = se->on_rq;
62fb1851 8068 if (on_rq)
29f59db3
SV
8069 dequeue_entity(cfs_rq, se, 0);
8070
8071 se->load.weight = shares;
8072 se->load.inv_weight = div64_64((1ULL<<32), shares);
8073
62fb1851 8074 if (on_rq)
29f59db3 8075 enqueue_entity(cfs_rq, se, 0);
62fb1851
PZ
8076
8077 spin_unlock_irq(&rq->lock);
29f59db3
SV
8078}
8079
8ed36996
PZ
8080static DEFINE_MUTEX(shares_mutex);
8081
4cf86d77 8082int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8083{
8084 int i;
8ed36996 8085 unsigned long flags;
c61935fd 8086
62fb1851
PZ
8087 /*
8088 * A weight of 0 or 1 can cause arithmetics problems.
8089 * (The default weight is 1024 - so there's no practical
8090 * limitation from this.)
8091 */
8092 if (shares < 2)
8093 shares = 2;
8094
8ed36996 8095 mutex_lock(&shares_mutex);
9b5b7751 8096 if (tg->shares == shares)
5cb350ba 8097 goto done;
29f59db3 8098
8ed36996 8099 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8100 for_each_possible_cpu(i)
8101 unregister_fair_sched_group(tg, i);
8ed36996 8102 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8103
8104 /* wait for any ongoing reference to this group to finish */
8105 synchronize_sched();
8106
8107 /*
8108 * Now we are free to modify the group's share on each cpu
8109 * w/o tripping rebalance_share or load_balance_fair.
8110 */
9b5b7751 8111 tg->shares = shares;
62fb1851 8112 for_each_possible_cpu(i)
9b5b7751 8113 set_se_shares(tg->se[i], shares);
29f59db3 8114
6b2d7700
SV
8115 /*
8116 * Enable load balance activity on this group, by inserting it back on
8117 * each cpu's rq->leaf_cfs_rq_list.
8118 */
8ed36996 8119 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8120 for_each_possible_cpu(i)
8121 register_fair_sched_group(tg, i);
8ed36996 8122 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8123done:
8ed36996 8124 mutex_unlock(&shares_mutex);
9b5b7751 8125 return 0;
29f59db3
SV
8126}
8127
5cb350ba
DG
8128unsigned long sched_group_shares(struct task_group *tg)
8129{
8130 return tg->shares;
8131}
052f1dc7 8132#endif
5cb350ba 8133
052f1dc7 8134#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8135/*
9f0c1e56 8136 * Ensure that the real time constraints are schedulable.
6f505b16 8137 */
9f0c1e56
PZ
8138static DEFINE_MUTEX(rt_constraints_mutex);
8139
8140static unsigned long to_ratio(u64 period, u64 runtime)
8141{
8142 if (runtime == RUNTIME_INF)
8143 return 1ULL << 16;
8144
2692a240 8145 return div64_64(runtime << 16, period);
9f0c1e56
PZ
8146}
8147
8148static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8149{
8150 struct task_group *tgi;
8151 unsigned long total = 0;
9f0c1e56 8152 unsigned long global_ratio =
d0b27fa7 8153 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8154
8155 rcu_read_lock();
9f0c1e56
PZ
8156 list_for_each_entry_rcu(tgi, &task_groups, list) {
8157 if (tgi == tg)
8158 continue;
6f505b16 8159
d0b27fa7
PZ
8160 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8161 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8162 }
8163 rcu_read_unlock();
6f505b16 8164
9f0c1e56 8165 return total + to_ratio(period, runtime) < global_ratio;
6f505b16
PZ
8166}
8167
521f1a24
DG
8168/* Must be called with tasklist_lock held */
8169static inline int tg_has_rt_tasks(struct task_group *tg)
8170{
8171 struct task_struct *g, *p;
8172 do_each_thread(g, p) {
8173 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8174 return 1;
8175 } while_each_thread(g, p);
8176 return 0;
8177}
8178
d0b27fa7
PZ
8179static int tg_set_bandwidth(struct task_group *tg,
8180 u64 rt_period, u64 rt_runtime)
6f505b16 8181{
ac086bc2 8182 int i, err = 0;
9f0c1e56 8183
9f0c1e56 8184 mutex_lock(&rt_constraints_mutex);
521f1a24 8185 read_lock(&tasklist_lock);
ac086bc2 8186 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8187 err = -EBUSY;
8188 goto unlock;
8189 }
9f0c1e56
PZ
8190 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8191 err = -EINVAL;
8192 goto unlock;
8193 }
ac086bc2
PZ
8194
8195 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8196 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8197 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8198
8199 for_each_possible_cpu(i) {
8200 struct rt_rq *rt_rq = tg->rt_rq[i];
8201
8202 spin_lock(&rt_rq->rt_runtime_lock);
8203 rt_rq->rt_runtime = rt_runtime;
8204 spin_unlock(&rt_rq->rt_runtime_lock);
8205 }
8206 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8207 unlock:
521f1a24 8208 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8209 mutex_unlock(&rt_constraints_mutex);
8210
8211 return err;
6f505b16
PZ
8212}
8213
d0b27fa7
PZ
8214int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8215{
8216 u64 rt_runtime, rt_period;
8217
8218 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8219 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8220 if (rt_runtime_us < 0)
8221 rt_runtime = RUNTIME_INF;
8222
8223 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8224}
8225
9f0c1e56
PZ
8226long sched_group_rt_runtime(struct task_group *tg)
8227{
8228 u64 rt_runtime_us;
8229
d0b27fa7 8230 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8231 return -1;
8232
d0b27fa7 8233 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8234 do_div(rt_runtime_us, NSEC_PER_USEC);
8235 return rt_runtime_us;
8236}
d0b27fa7
PZ
8237
8238int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8239{
8240 u64 rt_runtime, rt_period;
8241
8242 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8243 rt_runtime = tg->rt_bandwidth.rt_runtime;
8244
8245 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8246}
8247
8248long sched_group_rt_period(struct task_group *tg)
8249{
8250 u64 rt_period_us;
8251
8252 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8253 do_div(rt_period_us, NSEC_PER_USEC);
8254 return rt_period_us;
8255}
8256
8257static int sched_rt_global_constraints(void)
8258{
8259 int ret = 0;
8260
8261 mutex_lock(&rt_constraints_mutex);
8262 if (!__rt_schedulable(NULL, 1, 0))
8263 ret = -EINVAL;
8264 mutex_unlock(&rt_constraints_mutex);
8265
8266 return ret;
8267}
8268#else
8269static int sched_rt_global_constraints(void)
8270{
ac086bc2
PZ
8271 unsigned long flags;
8272 int i;
8273
8274 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8275 for_each_possible_cpu(i) {
8276 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8277
8278 spin_lock(&rt_rq->rt_runtime_lock);
8279 rt_rq->rt_runtime = global_rt_runtime();
8280 spin_unlock(&rt_rq->rt_runtime_lock);
8281 }
8282 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8283
d0b27fa7
PZ
8284 return 0;
8285}
052f1dc7 8286#endif
d0b27fa7
PZ
8287
8288int sched_rt_handler(struct ctl_table *table, int write,
8289 struct file *filp, void __user *buffer, size_t *lenp,
8290 loff_t *ppos)
8291{
8292 int ret;
8293 int old_period, old_runtime;
8294 static DEFINE_MUTEX(mutex);
8295
8296 mutex_lock(&mutex);
8297 old_period = sysctl_sched_rt_period;
8298 old_runtime = sysctl_sched_rt_runtime;
8299
8300 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8301
8302 if (!ret && write) {
8303 ret = sched_rt_global_constraints();
8304 if (ret) {
8305 sysctl_sched_rt_period = old_period;
8306 sysctl_sched_rt_runtime = old_runtime;
8307 } else {
8308 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8309 def_rt_bandwidth.rt_period =
8310 ns_to_ktime(global_rt_period());
8311 }
8312 }
8313 mutex_unlock(&mutex);
8314
8315 return ret;
8316}
68318b8e 8317
052f1dc7 8318#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8319
8320/* return corresponding task_group object of a cgroup */
2b01dfe3 8321static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8322{
2b01dfe3
PM
8323 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8324 struct task_group, css);
68318b8e
SV
8325}
8326
8327static struct cgroup_subsys_state *
2b01dfe3 8328cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
8329{
8330 struct task_group *tg;
8331
2b01dfe3 8332 if (!cgrp->parent) {
68318b8e 8333 /* This is early initialization for the top cgroup */
2b01dfe3 8334 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8335 return &init_task_group.css;
8336 }
8337
8338 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 8339 if (cgrp->parent->parent)
68318b8e
SV
8340 return ERR_PTR(-EINVAL);
8341
8342 tg = sched_create_group();
8343 if (IS_ERR(tg))
8344 return ERR_PTR(-ENOMEM);
8345
8346 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8347 tg->css.cgroup = cgrp;
68318b8e
SV
8348
8349 return &tg->css;
8350}
8351
41a2d6cf
IM
8352static void
8353cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8354{
2b01dfe3 8355 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8356
8357 sched_destroy_group(tg);
8358}
8359
41a2d6cf
IM
8360static int
8361cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8362 struct task_struct *tsk)
68318b8e 8363{
b68aa230
PZ
8364#ifdef CONFIG_RT_GROUP_SCHED
8365 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8366 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8367 return -EINVAL;
8368#else
68318b8e
SV
8369 /* We don't support RT-tasks being in separate groups */
8370 if (tsk->sched_class != &fair_sched_class)
8371 return -EINVAL;
b68aa230 8372#endif
68318b8e
SV
8373
8374 return 0;
8375}
8376
8377static void
2b01dfe3 8378cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8379 struct cgroup *old_cont, struct task_struct *tsk)
8380{
8381 sched_move_task(tsk);
8382}
8383
052f1dc7 8384#ifdef CONFIG_FAIR_GROUP_SCHED
2b01dfe3
PM
8385static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8386 u64 shareval)
68318b8e 8387{
2b01dfe3 8388 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8389}
8390
2b01dfe3 8391static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8392{
2b01dfe3 8393 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8394
8395 return (u64) tg->shares;
8396}
052f1dc7 8397#endif
68318b8e 8398
052f1dc7 8399#ifdef CONFIG_RT_GROUP_SCHED
ac086bc2 8400static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9f0c1e56
PZ
8401 struct file *file,
8402 const char __user *userbuf,
8403 size_t nbytes, loff_t *unused_ppos)
6f505b16 8404{
9f0c1e56
PZ
8405 char buffer[64];
8406 int retval = 0;
8407 s64 val;
8408 char *end;
8409
8410 if (!nbytes)
8411 return -EINVAL;
8412 if (nbytes >= sizeof(buffer))
8413 return -E2BIG;
8414 if (copy_from_user(buffer, userbuf, nbytes))
8415 return -EFAULT;
8416
8417 buffer[nbytes] = 0; /* nul-terminate */
8418
8419 /* strip newline if necessary */
8420 if (nbytes && (buffer[nbytes-1] == '\n'))
8421 buffer[nbytes-1] = 0;
8422 val = simple_strtoll(buffer, &end, 0);
8423 if (*end)
8424 return -EINVAL;
8425
8426 /* Pass to subsystem */
8427 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8428 if (!retval)
8429 retval = nbytes;
8430 return retval;
6f505b16
PZ
8431}
8432
9f0c1e56
PZ
8433static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8434 struct file *file,
8435 char __user *buf, size_t nbytes,
8436 loff_t *ppos)
6f505b16 8437{
9f0c1e56
PZ
8438 char tmp[64];
8439 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8440 int len = sprintf(tmp, "%ld\n", val);
6f505b16 8441
9f0c1e56 8442 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
6f505b16 8443}
d0b27fa7
PZ
8444
8445static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8446 u64 rt_period_us)
8447{
8448 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8449}
8450
8451static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8452{
8453 return sched_group_rt_period(cgroup_tg(cgrp));
8454}
052f1dc7 8455#endif
6f505b16 8456
fe5c7cc2 8457static struct cftype cpu_files[] = {
052f1dc7 8458#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8459 {
8460 .name = "shares",
8461 .read_uint = cpu_shares_read_uint,
8462 .write_uint = cpu_shares_write_uint,
8463 },
052f1dc7
PZ
8464#endif
8465#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8466 {
9f0c1e56
PZ
8467 .name = "rt_runtime_us",
8468 .read = cpu_rt_runtime_read,
8469 .write = cpu_rt_runtime_write,
6f505b16 8470 },
d0b27fa7
PZ
8471 {
8472 .name = "rt_period_us",
8473 .read_uint = cpu_rt_period_read_uint,
8474 .write_uint = cpu_rt_period_write_uint,
8475 },
052f1dc7 8476#endif
68318b8e
SV
8477};
8478
8479static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8480{
fe5c7cc2 8481 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8482}
8483
8484struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8485 .name = "cpu",
8486 .create = cpu_cgroup_create,
8487 .destroy = cpu_cgroup_destroy,
8488 .can_attach = cpu_cgroup_can_attach,
8489 .attach = cpu_cgroup_attach,
8490 .populate = cpu_cgroup_populate,
8491 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8492 .early_init = 1,
8493};
8494
052f1dc7 8495#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8496
8497#ifdef CONFIG_CGROUP_CPUACCT
8498
8499/*
8500 * CPU accounting code for task groups.
8501 *
8502 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8503 * (balbir@in.ibm.com).
8504 */
8505
8506/* track cpu usage of a group of tasks */
8507struct cpuacct {
8508 struct cgroup_subsys_state css;
8509 /* cpuusage holds pointer to a u64-type object on every cpu */
8510 u64 *cpuusage;
8511};
8512
8513struct cgroup_subsys cpuacct_subsys;
8514
8515/* return cpu accounting group corresponding to this container */
32cd756a 8516static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8517{
32cd756a 8518 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8519 struct cpuacct, css);
8520}
8521
8522/* return cpu accounting group to which this task belongs */
8523static inline struct cpuacct *task_ca(struct task_struct *tsk)
8524{
8525 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8526 struct cpuacct, css);
8527}
8528
8529/* create a new cpu accounting group */
8530static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8531 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8532{
8533 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8534
8535 if (!ca)
8536 return ERR_PTR(-ENOMEM);
8537
8538 ca->cpuusage = alloc_percpu(u64);
8539 if (!ca->cpuusage) {
8540 kfree(ca);
8541 return ERR_PTR(-ENOMEM);
8542 }
8543
8544 return &ca->css;
8545}
8546
8547/* destroy an existing cpu accounting group */
41a2d6cf 8548static void
32cd756a 8549cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8550{
32cd756a 8551 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8552
8553 free_percpu(ca->cpuusage);
8554 kfree(ca);
8555}
8556
8557/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8558static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8559{
32cd756a 8560 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8561 u64 totalcpuusage = 0;
8562 int i;
8563
8564 for_each_possible_cpu(i) {
8565 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8566
8567 /*
8568 * Take rq->lock to make 64-bit addition safe on 32-bit
8569 * platforms.
8570 */
8571 spin_lock_irq(&cpu_rq(i)->lock);
8572 totalcpuusage += *cpuusage;
8573 spin_unlock_irq(&cpu_rq(i)->lock);
8574 }
8575
8576 return totalcpuusage;
8577}
8578
0297b803
DG
8579static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8580 u64 reset)
8581{
8582 struct cpuacct *ca = cgroup_ca(cgrp);
8583 int err = 0;
8584 int i;
8585
8586 if (reset) {
8587 err = -EINVAL;
8588 goto out;
8589 }
8590
8591 for_each_possible_cpu(i) {
8592 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8593
8594 spin_lock_irq(&cpu_rq(i)->lock);
8595 *cpuusage = 0;
8596 spin_unlock_irq(&cpu_rq(i)->lock);
8597 }
8598out:
8599 return err;
8600}
8601
d842de87
SV
8602static struct cftype files[] = {
8603 {
8604 .name = "usage",
8605 .read_uint = cpuusage_read,
0297b803 8606 .write_uint = cpuusage_write,
d842de87
SV
8607 },
8608};
8609
32cd756a 8610static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8611{
32cd756a 8612 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8613}
8614
8615/*
8616 * charge this task's execution time to its accounting group.
8617 *
8618 * called with rq->lock held.
8619 */
8620static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8621{
8622 struct cpuacct *ca;
8623
8624 if (!cpuacct_subsys.active)
8625 return;
8626
8627 ca = task_ca(tsk);
8628 if (ca) {
8629 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8630
8631 *cpuusage += cputime;
8632 }
8633}
8634
8635struct cgroup_subsys cpuacct_subsys = {
8636 .name = "cpuacct",
8637 .create = cpuacct_create,
8638 .destroy = cpuacct_destroy,
8639 .populate = cpuacct_populate,
8640 .subsys_id = cpuacct_subsys_id,
8641};
8642#endif /* CONFIG_CGROUP_CPUACCT */