init: Fix comment
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3 308
7c941438 309#endif /* CONFIG_CGROUP_SCHED */
29f59db3 310
6aa645ea
IM
311/* CFS-related fields in a runqueue */
312struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
315
6aa645ea 316 u64 exec_clock;
e9acbff6 317 u64 min_vruntime;
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
4793241b 329 struct sched_entity *curr, *next, *last;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
41a2d6cf
IM
344 struct list_head leaf_cfs_rq_list;
345 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
346
347#ifdef CONFIG_SMP
c09595f6 348 /*
c8cba857 349 * the part of load.weight contributed by tasks
c09595f6 350 */
c8cba857 351 unsigned long task_weight;
c09595f6 352
c8cba857
PZ
353 /*
354 * h_load = weight * f(tg)
355 *
356 * Where f(tg) is the recursive weight fraction assigned to
357 * this group.
358 */
359 unsigned long h_load;
c09595f6 360
c8cba857
PZ
361 /*
362 * this cpu's part of tg->shares
363 */
364 unsigned long shares;
f1d239f7
PZ
365
366 /*
367 * load.weight at the time we set shares
368 */
369 unsigned long rq_weight;
c09595f6 370#endif
6aa645ea
IM
371#endif
372};
1da177e4 373
6aa645ea
IM
374/* Real-Time classes' related field in a runqueue: */
375struct rt_rq {
376 struct rt_prio_array active;
63489e45 377 unsigned long rt_nr_running;
052f1dc7 378#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
379 struct {
380 int curr; /* highest queued rt task prio */
398a153b 381#ifdef CONFIG_SMP
e864c499 382 int next; /* next highest */
398a153b 383#endif
e864c499 384 } highest_prio;
6f505b16 385#endif
fa85ae24 386#ifdef CONFIG_SMP
73fe6aae 387 unsigned long rt_nr_migratory;
a1ba4d8b 388 unsigned long rt_nr_total;
a22d7fc1 389 int overloaded;
917b627d 390 struct plist_head pushable_tasks;
fa85ae24 391#endif
6f505b16 392 int rt_throttled;
fa85ae24 393 u64 rt_time;
ac086bc2 394 u64 rt_runtime;
ea736ed5 395 /* Nests inside the rq lock: */
0986b11b 396 raw_spinlock_t rt_runtime_lock;
6f505b16 397
052f1dc7 398#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
399 unsigned long rt_nr_boosted;
400
6f505b16
PZ
401 struct rq *rq;
402 struct list_head leaf_rt_rq_list;
403 struct task_group *tg;
6f505b16 404#endif
6aa645ea
IM
405};
406
57d885fe
GH
407#ifdef CONFIG_SMP
408
409/*
410 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
411 * variables. Each exclusive cpuset essentially defines an island domain by
412 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
413 * exclusive cpuset is created, we also create and attach a new root-domain
414 * object.
415 *
57d885fe
GH
416 */
417struct root_domain {
418 atomic_t refcount;
c6c4927b
RR
419 cpumask_var_t span;
420 cpumask_var_t online;
637f5085 421
0eab9146 422 /*
637f5085
GH
423 * The "RT overload" flag: it gets set if a CPU has more than
424 * one runnable RT task.
425 */
c6c4927b 426 cpumask_var_t rto_mask;
0eab9146 427 atomic_t rto_count;
6e0534f2
GH
428#ifdef CONFIG_SMP
429 struct cpupri cpupri;
430#endif
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
439#endif
440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
46cb4b7c
SS
461 unsigned char in_nohz_recently;
462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
36c8b586 489 struct task_struct *curr, *idle;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
6aa645ea 494
1da177e4
LT
495 atomic_t nr_iowait;
496
497#ifdef CONFIG_SMP
0eab9146 498 struct root_domain *rd;
1da177e4
LT
499 struct sched_domain *sd;
500
e51fd5e2
PZ
501 unsigned long cpu_power;
502
a0a522ce 503 unsigned char idle_at_tick;
1da177e4 504 /* For active balancing */
3f029d3c 505 int post_schedule;
1da177e4
LT
506 int active_balance;
507 int push_cpu;
969c7921 508 struct cpu_stop_work active_balance_work;
d8016491
IM
509 /* cpu of this runqueue: */
510 int cpu;
1f11eb6a 511 int online;
1da177e4 512
a8a51d5e 513 unsigned long avg_load_per_task;
1da177e4 514
e9e9250b
PZ
515 u64 rt_avg;
516 u64 age_stamp;
1b9508f6
MG
517 u64 idle_stamp;
518 u64 avg_idle;
1da177e4
LT
519#endif
520
dce48a84
TG
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
8f4d37ec 525#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
526#ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529#endif
8f4d37ec
PZ
530 struct hrtimer hrtick_timer;
531#endif
532
1da177e4
LT
533#ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
9c2c4802
KC
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
538
539 /* sys_sched_yield() stats */
480b9434 540 unsigned int yld_count;
1da177e4
LT
541
542 /* schedule() stats */
480b9434
KC
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
1da177e4
LT
546
547 /* try_to_wake_up() stats */
480b9434
KC
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
b8efb561
IM
550
551 /* BKL stats */
480b9434 552 unsigned int bkl_count;
1da177e4
LT
553#endif
554};
555
f34e3b61 556static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 557
7d478721
PZ
558static inline
559void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 560{
7d478721 561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
dd41f596
IM
569}
570
0a2966b4
CL
571static inline int cpu_of(struct rq *rq)
572{
573#ifdef CONFIG_SMP
574 return rq->cpu;
575#else
576 return 0;
577#endif
578}
579
497f0ab3 580#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d 592#define for_each_domain(cpu, __sd) \
497f0ab3 593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 599#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 600
dc61b1d6
PZ
601#ifdef CONFIG_CGROUP_SCHED
602
603/*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611static inline struct task_group *task_group(struct task_struct *p)
612{
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618}
619
620/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622{
623#ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626#endif
627
628#ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631#endif
632}
633
634#else /* CONFIG_CGROUP_SCHED */
635
636static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637static inline struct task_group *task_group(struct task_struct *p)
638{
639 return NULL;
640}
641
642#endif /* CONFIG_CGROUP_SCHED */
643
aa9c4c0f 644inline void update_rq_clock(struct rq *rq)
3e51f33f 645{
a64692a3
MG
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
648}
649
bf5c91ba
IM
650/*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653#ifdef CONFIG_SCHED_DEBUG
654# define const_debug __read_mostly
655#else
656# define const_debug static const
657#endif
658
017730c1
IM
659/**
660 * runqueue_is_locked
e17b38bf 661 * @cpu: the processor in question.
017730c1
IM
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
89f19f04 667int runqueue_is_locked(int cpu)
017730c1 668{
05fa785c 669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
670}
671
bf5c91ba
IM
672/*
673 * Debugging: various feature bits
674 */
f00b45c1
PZ
675
676#define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
bf5c91ba 679enum {
f00b45c1 680#include "sched_features.h"
bf5c91ba
IM
681};
682
f00b45c1
PZ
683#undef SCHED_FEAT
684
685#define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
bf5c91ba 688const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
689#include "sched_features.h"
690 0;
691
692#undef SCHED_FEAT
693
694#ifdef CONFIG_SCHED_DEBUG
695#define SCHED_FEAT(name, enabled) \
696 #name ,
697
983ed7a6 698static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
699#include "sched_features.h"
700 NULL
701};
702
703#undef SCHED_FEAT
704
34f3a814 705static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 706{
f00b45c1
PZ
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 713 }
34f3a814 714 seq_puts(m, "\n");
f00b45c1 715
34f3a814 716 return 0;
f00b45c1
PZ
717}
718
719static ssize_t
720sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722{
723 char buf[64];
724 char *cmp = buf;
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
735
c24b7c52 736 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
737 neg = 1;
738 cmp += 3;
739 }
740
741 for (i = 0; sched_feat_names[i]; i++) {
742 int len = strlen(sched_feat_names[i]);
743
744 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
745 if (neg)
746 sysctl_sched_features &= ~(1UL << i);
747 else
748 sysctl_sched_features |= (1UL << i);
749 break;
750 }
751 }
752
753 if (!sched_feat_names[i])
754 return -EINVAL;
755
42994724 756 *ppos += cnt;
f00b45c1
PZ
757
758 return cnt;
759}
760
34f3a814
LZ
761static int sched_feat_open(struct inode *inode, struct file *filp)
762{
763 return single_open(filp, sched_feat_show, NULL);
764}
765
828c0950 766static const struct file_operations sched_feat_fops = {
34f3a814
LZ
767 .open = sched_feat_open,
768 .write = sched_feat_write,
769 .read = seq_read,
770 .llseek = seq_lseek,
771 .release = single_release,
f00b45c1
PZ
772};
773
774static __init int sched_init_debug(void)
775{
f00b45c1
PZ
776 debugfs_create_file("sched_features", 0644, NULL, NULL,
777 &sched_feat_fops);
778
779 return 0;
780}
781late_initcall(sched_init_debug);
782
783#endif
784
785#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 786
b82d9fdd
PZ
787/*
788 * Number of tasks to iterate in a single balance run.
789 * Limited because this is done with IRQs disabled.
790 */
791const_debug unsigned int sysctl_sched_nr_migrate = 32;
792
2398f2c6
PZ
793/*
794 * ratelimit for updating the group shares.
55cd5340 795 * default: 0.25ms
2398f2c6 796 */
55cd5340 797unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 798unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 799
ffda12a1
PZ
800/*
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
804 */
805unsigned int sysctl_sched_shares_thresh = 4;
806
e9e9250b
PZ
807/*
808 * period over which we average the RT time consumption, measured
809 * in ms.
810 *
811 * default: 1s
812 */
813const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
814
fa85ae24 815/*
9f0c1e56 816 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
817 * default: 1s
818 */
9f0c1e56 819unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 820
6892b75e
IM
821static __read_mostly int scheduler_running;
822
9f0c1e56
PZ
823/*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827int sysctl_sched_rt_runtime = 950000;
fa85ae24 828
d0b27fa7
PZ
829static inline u64 global_rt_period(void)
830{
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832}
833
834static inline u64 global_rt_runtime(void)
835{
e26873bb 836 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840}
fa85ae24 841
1da177e4 842#ifndef prepare_arch_switch
4866cde0
NP
843# define prepare_arch_switch(next) do { } while (0)
844#endif
845#ifndef finish_arch_switch
846# define finish_arch_switch(prev) do { } while (0)
847#endif
848
051a1d1a
DA
849static inline int task_current(struct rq *rq, struct task_struct *p)
850{
851 return rq->curr == p;
852}
853
4866cde0 854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 855static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 856{
051a1d1a 857 return task_current(rq, p);
4866cde0
NP
858}
859
70b97a7f 860static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
861{
862}
863
70b97a7f 864static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 865{
da04c035
IM
866#ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869#endif
8a25d5de
IM
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
05fa785c 877 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
878}
879
880#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 881static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
882{
883#ifdef CONFIG_SMP
884 return p->oncpu;
885#else
051a1d1a 886 return task_current(rq, p);
4866cde0
NP
887#endif
888}
889
70b97a7f 890static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
891{
892#ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899#endif
900#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 901 raw_spin_unlock_irq(&rq->lock);
4866cde0 902#else
05fa785c 903 raw_spin_unlock(&rq->lock);
4866cde0
NP
904#endif
905}
906
70b97a7f 907static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917#endif
918#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
1da177e4 920#endif
4866cde0
NP
921}
922#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 923
0970d299 924/*
65cc8e48
PZ
925 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
926 * against ttwu().
0970d299
PZ
927 */
928static inline int task_is_waking(struct task_struct *p)
929{
0017d735 930 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
931}
932
b29739f9
IM
933/*
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
936 */
70b97a7f 937static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
938 __acquires(rq->lock)
939{
0970d299
PZ
940 struct rq *rq;
941
3a5c359a 942 for (;;) {
0970d299 943 rq = task_rq(p);
05fa785c 944 raw_spin_lock(&rq->lock);
65cc8e48 945 if (likely(rq == task_rq(p)))
3a5c359a 946 return rq;
05fa785c 947 raw_spin_unlock(&rq->lock);
b29739f9 948 }
b29739f9
IM
949}
950
1da177e4
LT
951/*
952 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 953 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
954 * explicitly disabling preemption.
955 */
70b97a7f 956static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
957 __acquires(rq->lock)
958{
70b97a7f 959 struct rq *rq;
1da177e4 960
3a5c359a
AK
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
65cc8e48 965 if (likely(rq == task_rq(p)))
3a5c359a 966 return rq;
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
a9957449 971static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
972 __releases(rq->lock)
973{
05fa785c 974 raw_spin_unlock(&rq->lock);
b29739f9
IM
975}
976
70b97a7f 977static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
978 __releases(rq->lock)
979{
05fa785c 980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
981}
982
1da177e4 983/*
cc2a73b5 984 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 985 */
a9957449 986static struct rq *this_rq_lock(void)
1da177e4
LT
987 __acquires(rq->lock)
988{
70b97a7f 989 struct rq *rq;
1da177e4
LT
990
991 local_irq_disable();
992 rq = this_rq();
05fa785c 993 raw_spin_lock(&rq->lock);
1da177e4
LT
994
995 return rq;
996}
997
8f4d37ec
PZ
998#ifdef CONFIG_SCHED_HRTICK
999/*
1000 * Use HR-timers to deliver accurate preemption points.
1001 *
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1005 *
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1008 */
8f4d37ec
PZ
1009
1010/*
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1014 */
1015static inline int hrtick_enabled(struct rq *rq)
1016{
1017 if (!sched_feat(HRTICK))
1018 return 0;
ba42059f 1019 if (!cpu_active(cpu_of(rq)))
b328ca18 1020 return 0;
8f4d37ec
PZ
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1022}
1023
8f4d37ec
PZ
1024static void hrtick_clear(struct rq *rq)
1025{
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1028}
1029
8f4d37ec
PZ
1030/*
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1033 */
1034static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035{
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039
05fa785c 1040 raw_spin_lock(&rq->lock);
3e51f33f 1041 update_rq_clock(rq);
8f4d37ec 1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1043 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1044
1045 return HRTIMER_NORESTART;
1046}
1047
95e904c7 1048#ifdef CONFIG_SMP
31656519
PZ
1049/*
1050 * called from hardirq (IPI) context
1051 */
1052static void __hrtick_start(void *arg)
b328ca18 1053{
31656519 1054 struct rq *rq = arg;
b328ca18 1055
05fa785c 1056 raw_spin_lock(&rq->lock);
31656519
PZ
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
05fa785c 1059 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1060}
1061
31656519
PZ
1062/*
1063 * Called to set the hrtick timer state.
1064 *
1065 * called with rq->lock held and irqs disabled
1066 */
1067static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1068{
31656519
PZ
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1071
cc584b21 1072 hrtimer_set_expires(timer, time);
31656519
PZ
1073
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
6e275637 1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1078 rq->hrtick_csd_pending = 1;
1079 }
b328ca18
PZ
1080}
1081
1082static int
1083hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084{
1085 int cpu = (int)(long)hcpu;
1086
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
31656519 1094 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1095 return NOTIFY_OK;
1096 }
1097
1098 return NOTIFY_DONE;
1099}
1100
fa748203 1101static __init void init_hrtick(void)
b328ca18
PZ
1102{
1103 hotcpu_notifier(hotplug_hrtick, 0);
1104}
31656519
PZ
1105#else
1106/*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111static void hrtick_start(struct rq *rq, u64 delay)
1112{
7f1e2ca9 1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1114 HRTIMER_MODE_REL_PINNED, 0);
31656519 1115}
b328ca18 1116
006c75f1 1117static inline void init_hrtick(void)
8f4d37ec 1118{
8f4d37ec 1119}
31656519 1120#endif /* CONFIG_SMP */
8f4d37ec 1121
31656519 1122static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1123{
31656519
PZ
1124#ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
8f4d37ec 1126
31656519
PZ
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130#endif
8f4d37ec 1131
31656519
PZ
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
8f4d37ec 1134}
006c75f1 1135#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1136static inline void hrtick_clear(struct rq *rq)
1137{
1138}
1139
8f4d37ec
PZ
1140static inline void init_rq_hrtick(struct rq *rq)
1141{
1142}
1143
b328ca18
PZ
1144static inline void init_hrtick(void)
1145{
1146}
006c75f1 1147#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1148
c24d20db
IM
1149/*
1150 * resched_task - mark a task 'to be rescheduled now'.
1151 *
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1155 */
1156#ifdef CONFIG_SMP
1157
1158#ifndef tsk_is_polling
1159#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160#endif
1161
31656519 1162static void resched_task(struct task_struct *p)
c24d20db
IM
1163{
1164 int cpu;
1165
05fa785c 1166 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1167
5ed0cec0 1168 if (test_tsk_need_resched(p))
c24d20db
IM
1169 return;
1170
5ed0cec0 1171 set_tsk_need_resched(p);
c24d20db
IM
1172
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1176
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1181}
1182
1183static void resched_cpu(int cpu)
1184{
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1187
05fa785c 1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1189 return;
1190 resched_task(cpu_curr(cpu));
05fa785c 1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1192}
06d8308c
TG
1193
1194#ifdef CONFIG_NO_HZ
1195/*
1196 * When add_timer_on() enqueues a timer into the timer wheel of an
1197 * idle CPU then this timer might expire before the next timer event
1198 * which is scheduled to wake up that CPU. In case of a completely
1199 * idle system the next event might even be infinite time into the
1200 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1201 * leaves the inner idle loop so the newly added timer is taken into
1202 * account when the CPU goes back to idle and evaluates the timer
1203 * wheel for the next timer event.
1204 */
1205void wake_up_idle_cpu(int cpu)
1206{
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /*
1213 * This is safe, as this function is called with the timer
1214 * wheel base lock of (cpu) held. When the CPU is on the way
1215 * to idle and has not yet set rq->curr to idle then it will
1216 * be serialized on the timer wheel base lock and take the new
1217 * timer into account automatically.
1218 */
1219 if (rq->curr != rq->idle)
1220 return;
1221
1222 /*
1223 * We can set TIF_RESCHED on the idle task of the other CPU
1224 * lockless. The worst case is that the other CPU runs the
1225 * idle task through an additional NOOP schedule()
1226 */
5ed0cec0 1227 set_tsk_need_resched(rq->idle);
06d8308c
TG
1228
1229 /* NEED_RESCHED must be visible before we test polling */
1230 smp_mb();
1231 if (!tsk_is_polling(rq->idle))
1232 smp_send_reschedule(cpu);
1233}
39c0cbe2
MG
1234
1235int nohz_ratelimit(int cpu)
1236{
1237 struct rq *rq = cpu_rq(cpu);
1238 u64 diff = rq->clock - rq->nohz_stamp;
1239
1240 rq->nohz_stamp = rq->clock;
1241
1242 return diff < (NSEC_PER_SEC / HZ) >> 1;
1243}
1244
6d6bc0ad 1245#endif /* CONFIG_NO_HZ */
06d8308c 1246
e9e9250b
PZ
1247static u64 sched_avg_period(void)
1248{
1249 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1250}
1251
1252static void sched_avg_update(struct rq *rq)
1253{
1254 s64 period = sched_avg_period();
1255
1256 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1257 /*
1258 * Inline assembly required to prevent the compiler
1259 * optimising this loop into a divmod call.
1260 * See __iter_div_u64_rem() for another example of this.
1261 */
1262 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1263 rq->age_stamp += period;
1264 rq->rt_avg /= 2;
1265 }
1266}
1267
1268static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1269{
1270 rq->rt_avg += rt_delta;
1271 sched_avg_update(rq);
1272}
1273
6d6bc0ad 1274#else /* !CONFIG_SMP */
31656519 1275static void resched_task(struct task_struct *p)
c24d20db 1276{
05fa785c 1277 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1278 set_tsk_need_resched(p);
c24d20db 1279}
e9e9250b
PZ
1280
1281static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282{
1283}
6d6bc0ad 1284#endif /* CONFIG_SMP */
c24d20db 1285
45bf76df
IM
1286#if BITS_PER_LONG == 32
1287# define WMULT_CONST (~0UL)
1288#else
1289# define WMULT_CONST (1UL << 32)
1290#endif
1291
1292#define WMULT_SHIFT 32
1293
194081eb
IM
1294/*
1295 * Shift right and round:
1296 */
cf2ab469 1297#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1298
a7be37ac
PZ
1299/*
1300 * delta *= weight / lw
1301 */
cb1c4fc9 1302static unsigned long
45bf76df
IM
1303calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1304 struct load_weight *lw)
1305{
1306 u64 tmp;
1307
7a232e03
LJ
1308 if (!lw->inv_weight) {
1309 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1310 lw->inv_weight = 1;
1311 else
1312 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1313 / (lw->weight+1);
1314 }
45bf76df
IM
1315
1316 tmp = (u64)delta_exec * weight;
1317 /*
1318 * Check whether we'd overflow the 64-bit multiplication:
1319 */
194081eb 1320 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1321 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1322 WMULT_SHIFT/2);
1323 else
cf2ab469 1324 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1325
ecf691da 1326 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1327}
1328
1091985b 1329static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1330{
1331 lw->weight += inc;
e89996ae 1332 lw->inv_weight = 0;
45bf76df
IM
1333}
1334
1091985b 1335static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1336{
1337 lw->weight -= dec;
e89996ae 1338 lw->inv_weight = 0;
45bf76df
IM
1339}
1340
2dd73a4f
PW
1341/*
1342 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1343 * of tasks with abnormal "nice" values across CPUs the contribution that
1344 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1345 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1346 * scaled version of the new time slice allocation that they receive on time
1347 * slice expiry etc.
1348 */
1349
cce7ade8
PZ
1350#define WEIGHT_IDLEPRIO 3
1351#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1352
1353/*
1354 * Nice levels are multiplicative, with a gentle 10% change for every
1355 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1356 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1357 * that remained on nice 0.
1358 *
1359 * The "10% effect" is relative and cumulative: from _any_ nice level,
1360 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1361 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1362 * If a task goes up by ~10% and another task goes down by ~10% then
1363 * the relative distance between them is ~25%.)
dd41f596
IM
1364 */
1365static const int prio_to_weight[40] = {
254753dc
IM
1366 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1367 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1368 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1369 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1370 /* 0 */ 1024, 820, 655, 526, 423,
1371 /* 5 */ 335, 272, 215, 172, 137,
1372 /* 10 */ 110, 87, 70, 56, 45,
1373 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1374};
1375
5714d2de
IM
1376/*
1377 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1378 *
1379 * In cases where the weight does not change often, we can use the
1380 * precalculated inverse to speed up arithmetics by turning divisions
1381 * into multiplications:
1382 */
dd41f596 1383static const u32 prio_to_wmult[40] = {
254753dc
IM
1384 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1385 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1386 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1387 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1388 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1389 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1390 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1391 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1392};
2dd73a4f 1393
ef12fefa
BR
1394/* Time spent by the tasks of the cpu accounting group executing in ... */
1395enum cpuacct_stat_index {
1396 CPUACCT_STAT_USER, /* ... user mode */
1397 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1398
1399 CPUACCT_STAT_NSTATS,
1400};
1401
d842de87
SV
1402#ifdef CONFIG_CGROUP_CPUACCT
1403static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1404static void cpuacct_update_stats(struct task_struct *tsk,
1405 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1406#else
1407static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1408static inline void cpuacct_update_stats(struct task_struct *tsk,
1409 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1410#endif
1411
18d95a28
PZ
1412static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1413{
1414 update_load_add(&rq->load, load);
1415}
1416
1417static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1418{
1419 update_load_sub(&rq->load, load);
1420}
1421
7940ca36 1422#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1423typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1424
1425/*
1426 * Iterate the full tree, calling @down when first entering a node and @up when
1427 * leaving it for the final time.
1428 */
eb755805 1429static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1430{
1431 struct task_group *parent, *child;
eb755805 1432 int ret;
c09595f6
PZ
1433
1434 rcu_read_lock();
1435 parent = &root_task_group;
1436down:
eb755805
PZ
1437 ret = (*down)(parent, data);
1438 if (ret)
1439 goto out_unlock;
c09595f6
PZ
1440 list_for_each_entry_rcu(child, &parent->children, siblings) {
1441 parent = child;
1442 goto down;
1443
1444up:
1445 continue;
1446 }
eb755805
PZ
1447 ret = (*up)(parent, data);
1448 if (ret)
1449 goto out_unlock;
c09595f6
PZ
1450
1451 child = parent;
1452 parent = parent->parent;
1453 if (parent)
1454 goto up;
eb755805 1455out_unlock:
c09595f6 1456 rcu_read_unlock();
eb755805
PZ
1457
1458 return ret;
c09595f6
PZ
1459}
1460
eb755805
PZ
1461static int tg_nop(struct task_group *tg, void *data)
1462{
1463 return 0;
c09595f6 1464}
eb755805
PZ
1465#endif
1466
1467#ifdef CONFIG_SMP
f5f08f39
PZ
1468/* Used instead of source_load when we know the type == 0 */
1469static unsigned long weighted_cpuload(const int cpu)
1470{
1471 return cpu_rq(cpu)->load.weight;
1472}
1473
1474/*
1475 * Return a low guess at the load of a migration-source cpu weighted
1476 * according to the scheduling class and "nice" value.
1477 *
1478 * We want to under-estimate the load of migration sources, to
1479 * balance conservatively.
1480 */
1481static unsigned long source_load(int cpu, int type)
1482{
1483 struct rq *rq = cpu_rq(cpu);
1484 unsigned long total = weighted_cpuload(cpu);
1485
1486 if (type == 0 || !sched_feat(LB_BIAS))
1487 return total;
1488
1489 return min(rq->cpu_load[type-1], total);
1490}
1491
1492/*
1493 * Return a high guess at the load of a migration-target cpu weighted
1494 * according to the scheduling class and "nice" value.
1495 */
1496static unsigned long target_load(int cpu, int type)
1497{
1498 struct rq *rq = cpu_rq(cpu);
1499 unsigned long total = weighted_cpuload(cpu);
1500
1501 if (type == 0 || !sched_feat(LB_BIAS))
1502 return total;
1503
1504 return max(rq->cpu_load[type-1], total);
1505}
1506
ae154be1
PZ
1507static unsigned long power_of(int cpu)
1508{
e51fd5e2 1509 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1510}
1511
eb755805
PZ
1512static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1513
1514static unsigned long cpu_avg_load_per_task(int cpu)
1515{
1516 struct rq *rq = cpu_rq(cpu);
af6d596f 1517 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1518
4cd42620
SR
1519 if (nr_running)
1520 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1521 else
1522 rq->avg_load_per_task = 0;
eb755805
PZ
1523
1524 return rq->avg_load_per_task;
1525}
1526
1527#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1528
43cf38eb 1529static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1530
c09595f6
PZ
1531static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1532
1533/*
1534 * Calculate and set the cpu's group shares.
1535 */
34d76c41
PZ
1536static void update_group_shares_cpu(struct task_group *tg, int cpu,
1537 unsigned long sd_shares,
1538 unsigned long sd_rq_weight,
4a6cc4bd 1539 unsigned long *usd_rq_weight)
18d95a28 1540{
34d76c41 1541 unsigned long shares, rq_weight;
a5004278 1542 int boost = 0;
c09595f6 1543
4a6cc4bd 1544 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1545 if (!rq_weight) {
1546 boost = 1;
1547 rq_weight = NICE_0_LOAD;
1548 }
c8cba857 1549
c09595f6 1550 /*
a8af7246
PZ
1551 * \Sum_j shares_j * rq_weight_i
1552 * shares_i = -----------------------------
1553 * \Sum_j rq_weight_j
c09595f6 1554 */
ec4e0e2f 1555 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1556 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1557
ffda12a1
PZ
1558 if (abs(shares - tg->se[cpu]->load.weight) >
1559 sysctl_sched_shares_thresh) {
1560 struct rq *rq = cpu_rq(cpu);
1561 unsigned long flags;
c09595f6 1562
05fa785c 1563 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1564 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1565 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1566 __set_se_shares(tg->se[cpu], shares);
05fa785c 1567 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1568 }
18d95a28 1569}
c09595f6
PZ
1570
1571/*
c8cba857
PZ
1572 * Re-compute the task group their per cpu shares over the given domain.
1573 * This needs to be done in a bottom-up fashion because the rq weight of a
1574 * parent group depends on the shares of its child groups.
c09595f6 1575 */
eb755805 1576static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1577{
cd8ad40d 1578 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1579 unsigned long *usd_rq_weight;
eb755805 1580 struct sched_domain *sd = data;
34d76c41 1581 unsigned long flags;
c8cba857 1582 int i;
c09595f6 1583
34d76c41
PZ
1584 if (!tg->se[0])
1585 return 0;
1586
1587 local_irq_save(flags);
4a6cc4bd 1588 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1589
758b2cdc 1590 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1591 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1592 usd_rq_weight[i] = weight;
34d76c41 1593
cd8ad40d 1594 rq_weight += weight;
ec4e0e2f
KC
1595 /*
1596 * If there are currently no tasks on the cpu pretend there
1597 * is one of average load so that when a new task gets to
1598 * run here it will not get delayed by group starvation.
1599 */
ec4e0e2f
KC
1600 if (!weight)
1601 weight = NICE_0_LOAD;
1602
cd8ad40d 1603 sum_weight += weight;
c8cba857 1604 shares += tg->cfs_rq[i]->shares;
c09595f6 1605 }
c09595f6 1606
cd8ad40d
PZ
1607 if (!rq_weight)
1608 rq_weight = sum_weight;
1609
c8cba857
PZ
1610 if ((!shares && rq_weight) || shares > tg->shares)
1611 shares = tg->shares;
1612
1613 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1614 shares = tg->shares;
c09595f6 1615
758b2cdc 1616 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1617 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1618
1619 local_irq_restore(flags);
eb755805
PZ
1620
1621 return 0;
c09595f6
PZ
1622}
1623
1624/*
c8cba857
PZ
1625 * Compute the cpu's hierarchical load factor for each task group.
1626 * This needs to be done in a top-down fashion because the load of a child
1627 * group is a fraction of its parents load.
c09595f6 1628 */
eb755805 1629static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1630{
c8cba857 1631 unsigned long load;
eb755805 1632 long cpu = (long)data;
c09595f6 1633
c8cba857
PZ
1634 if (!tg->parent) {
1635 load = cpu_rq(cpu)->load.weight;
1636 } else {
1637 load = tg->parent->cfs_rq[cpu]->h_load;
1638 load *= tg->cfs_rq[cpu]->shares;
1639 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1640 }
c09595f6 1641
c8cba857 1642 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1643
eb755805 1644 return 0;
c09595f6
PZ
1645}
1646
c8cba857 1647static void update_shares(struct sched_domain *sd)
4d8d595d 1648{
e7097159
PZ
1649 s64 elapsed;
1650 u64 now;
1651
1652 if (root_task_group_empty())
1653 return;
1654
1655 now = cpu_clock(raw_smp_processor_id());
1656 elapsed = now - sd->last_update;
2398f2c6
PZ
1657
1658 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1659 sd->last_update = now;
eb755805 1660 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1661 }
4d8d595d
PZ
1662}
1663
eb755805 1664static void update_h_load(long cpu)
c09595f6 1665{
eb755805 1666 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1667}
1668
c09595f6
PZ
1669#else
1670
c8cba857 1671static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1672{
1673}
1674
18d95a28
PZ
1675#endif
1676
8f45e2b5
GH
1677#ifdef CONFIG_PREEMPT
1678
b78bb868
PZ
1679static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1680
70574a99 1681/*
8f45e2b5
GH
1682 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1683 * way at the expense of forcing extra atomic operations in all
1684 * invocations. This assures that the double_lock is acquired using the
1685 * same underlying policy as the spinlock_t on this architecture, which
1686 * reduces latency compared to the unfair variant below. However, it
1687 * also adds more overhead and therefore may reduce throughput.
70574a99 1688 */
8f45e2b5
GH
1689static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1690 __releases(this_rq->lock)
1691 __acquires(busiest->lock)
1692 __acquires(this_rq->lock)
1693{
05fa785c 1694 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1695 double_rq_lock(this_rq, busiest);
1696
1697 return 1;
1698}
1699
1700#else
1701/*
1702 * Unfair double_lock_balance: Optimizes throughput at the expense of
1703 * latency by eliminating extra atomic operations when the locks are
1704 * already in proper order on entry. This favors lower cpu-ids and will
1705 * grant the double lock to lower cpus over higher ids under contention,
1706 * regardless of entry order into the function.
1707 */
1708static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1712{
1713 int ret = 0;
1714
05fa785c 1715 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1716 if (busiest < this_rq) {
05fa785c
TG
1717 raw_spin_unlock(&this_rq->lock);
1718 raw_spin_lock(&busiest->lock);
1719 raw_spin_lock_nested(&this_rq->lock,
1720 SINGLE_DEPTH_NESTING);
70574a99
AD
1721 ret = 1;
1722 } else
05fa785c
TG
1723 raw_spin_lock_nested(&busiest->lock,
1724 SINGLE_DEPTH_NESTING);
70574a99
AD
1725 }
1726 return ret;
1727}
1728
8f45e2b5
GH
1729#endif /* CONFIG_PREEMPT */
1730
1731/*
1732 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 */
1734static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1735{
1736 if (unlikely(!irqs_disabled())) {
1737 /* printk() doesn't work good under rq->lock */
05fa785c 1738 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1739 BUG_ON(1);
1740 }
1741
1742 return _double_lock_balance(this_rq, busiest);
1743}
1744
70574a99
AD
1745static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1746 __releases(busiest->lock)
1747{
05fa785c 1748 raw_spin_unlock(&busiest->lock);
70574a99
AD
1749 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1750}
1e3c88bd
PZ
1751
1752/*
1753 * double_rq_lock - safely lock two runqueues
1754 *
1755 * Note this does not disable interrupts like task_rq_lock,
1756 * you need to do so manually before calling.
1757 */
1758static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1759 __acquires(rq1->lock)
1760 __acquires(rq2->lock)
1761{
1762 BUG_ON(!irqs_disabled());
1763 if (rq1 == rq2) {
1764 raw_spin_lock(&rq1->lock);
1765 __acquire(rq2->lock); /* Fake it out ;) */
1766 } else {
1767 if (rq1 < rq2) {
1768 raw_spin_lock(&rq1->lock);
1769 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1770 } else {
1771 raw_spin_lock(&rq2->lock);
1772 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1773 }
1774 }
1e3c88bd
PZ
1775}
1776
1777/*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786{
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792}
1793
18d95a28
PZ
1794#endif
1795
30432094 1796#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1797static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798{
30432094 1799#ifdef CONFIG_SMP
34e83e85
IM
1800 cfs_rq->shares = shares;
1801#endif
1802}
30432094 1803#endif
e7693a36 1804
74f5187a 1805static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1806static void update_sysctl(void);
acb4a848 1807static int get_update_sysctl_factor(void);
dce48a84 1808
cd29fe6f
PZ
1809static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810{
1811 set_task_rq(p, cpu);
1812#ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820#endif
1821}
dce48a84 1822
1e3c88bd 1823static const struct sched_class rt_sched_class;
dd41f596
IM
1824
1825#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1826#define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
dd41f596 1828
1e3c88bd
PZ
1829#include "sched_stats.h"
1830
c09595f6 1831static void inc_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running++;
9c217245
IM
1834}
1835
c09595f6 1836static void dec_nr_running(struct rq *rq)
9c217245
IM
1837{
1838 rq->nr_running--;
9c217245
IM
1839}
1840
45bf76df
IM
1841static void set_load_weight(struct task_struct *p)
1842{
1843 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1844 p->se.load.weight = 0;
1845 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1846 return;
1847 }
45bf76df 1848
dd41f596
IM
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
71f8bd46 1857
dd41f596
IM
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1860}
1861
371fd7e7 1862static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1863{
a64692a3 1864 update_rq_clock(rq);
dd41f596 1865 sched_info_queued(p);
371fd7e7 1866 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1867 p->se.on_rq = 1;
71f8bd46
IM
1868}
1869
371fd7e7 1870static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1871{
a64692a3 1872 update_rq_clock(rq);
46ac22ba 1873 sched_info_dequeued(p);
371fd7e7 1874 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1875 p->se.on_rq = 0;
71f8bd46
IM
1876}
1877
1e3c88bd
PZ
1878/*
1879 * activate_task - move a task to the runqueue.
1880 */
371fd7e7 1881static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1882{
1883 if (task_contributes_to_load(p))
1884 rq->nr_uninterruptible--;
1885
371fd7e7 1886 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1887 inc_nr_running(rq);
1888}
1889
1890/*
1891 * deactivate_task - remove a task from the runqueue.
1892 */
371fd7e7 1893static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1894{
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible++;
1897
371fd7e7 1898 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1899 dec_nr_running(rq);
1900}
1901
1902#include "sched_idletask.c"
1903#include "sched_fair.c"
1904#include "sched_rt.c"
1905#ifdef CONFIG_SCHED_DEBUG
1906# include "sched_debug.c"
1907#endif
1908
14531189 1909/*
dd41f596 1910 * __normal_prio - return the priority that is based on the static prio
14531189 1911 */
14531189
IM
1912static inline int __normal_prio(struct task_struct *p)
1913{
dd41f596 1914 return p->static_prio;
14531189
IM
1915}
1916
b29739f9
IM
1917/*
1918 * Calculate the expected normal priority: i.e. priority
1919 * without taking RT-inheritance into account. Might be
1920 * boosted by interactivity modifiers. Changes upon fork,
1921 * setprio syscalls, and whenever the interactivity
1922 * estimator recalculates.
1923 */
36c8b586 1924static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1925{
1926 int prio;
1927
e05606d3 1928 if (task_has_rt_policy(p))
b29739f9
IM
1929 prio = MAX_RT_PRIO-1 - p->rt_priority;
1930 else
1931 prio = __normal_prio(p);
1932 return prio;
1933}
1934
1935/*
1936 * Calculate the current priority, i.e. the priority
1937 * taken into account by the scheduler. This value might
1938 * be boosted by RT tasks, or might be boosted by
1939 * interactivity modifiers. Will be RT if the task got
1940 * RT-boosted. If not then it returns p->normal_prio.
1941 */
36c8b586 1942static int effective_prio(struct task_struct *p)
b29739f9
IM
1943{
1944 p->normal_prio = normal_prio(p);
1945 /*
1946 * If we are RT tasks or we were boosted to RT priority,
1947 * keep the priority unchanged. Otherwise, update priority
1948 * to the normal priority:
1949 */
1950 if (!rt_prio(p->prio))
1951 return p->normal_prio;
1952 return p->prio;
1953}
1954
1da177e4
LT
1955/**
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1958 */
36c8b586 1959inline int task_curr(const struct task_struct *p)
1da177e4
LT
1960{
1961 return cpu_curr(task_cpu(p)) == p;
1962}
1963
cb469845
SR
1964static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1965 const struct sched_class *prev_class,
1966 int oldprio, int running)
1967{
1968 if (prev_class != p->sched_class) {
1969 if (prev_class->switched_from)
1970 prev_class->switched_from(rq, p, running);
1971 p->sched_class->switched_to(rq, p, running);
1972 } else
1973 p->sched_class->prio_changed(rq, p, oldprio, running);
1974}
1975
1da177e4 1976#ifdef CONFIG_SMP
cc367732
IM
1977/*
1978 * Is this task likely cache-hot:
1979 */
e7693a36 1980static int
cc367732
IM
1981task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1982{
1983 s64 delta;
1984
e6c8fba7
PZ
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1987
f540a608
IM
1988 /*
1989 * Buddy candidates are cache hot:
1990 */
f685ceac 1991 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
1992 (&p->se == cfs_rq_of(&p->se)->next ||
1993 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1994 return 1;
1995
6bc1665b
IM
1996 if (sysctl_sched_migration_cost == -1)
1997 return 1;
1998 if (sysctl_sched_migration_cost == 0)
1999 return 0;
2000
cc367732
IM
2001 delta = now - p->se.exec_start;
2002
2003 return delta < (s64)sysctl_sched_migration_cost;
2004}
2005
dd41f596 2006void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2007{
e2912009
PZ
2008#ifdef CONFIG_SCHED_DEBUG
2009 /*
2010 * We should never call set_task_cpu() on a blocked task,
2011 * ttwu() will sort out the placement.
2012 */
077614ee
PZ
2013 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2014 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2015#endif
2016
de1d7286 2017 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2018
0c69774e
PZ
2019 if (task_cpu(p) != new_cpu) {
2020 p->se.nr_migrations++;
2021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2022 }
dd41f596
IM
2023
2024 __set_task_cpu(p, new_cpu);
c65cc870
IM
2025}
2026
969c7921 2027struct migration_arg {
36c8b586 2028 struct task_struct *task;
1da177e4 2029 int dest_cpu;
70b97a7f 2030};
1da177e4 2031
969c7921
TH
2032static int migration_cpu_stop(void *data);
2033
1da177e4
LT
2034/*
2035 * The task's runqueue lock must be held.
2036 * Returns true if you have to wait for migration thread.
2037 */
969c7921 2038static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2039{
70b97a7f 2040 struct rq *rq = task_rq(p);
1da177e4
LT
2041
2042 /*
2043 * If the task is not on a runqueue (and not running), then
e2912009 2044 * the next wake-up will properly place the task.
1da177e4 2045 */
969c7921 2046 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2047}
2048
2049/*
2050 * wait_task_inactive - wait for a thread to unschedule.
2051 *
85ba2d86
RM
2052 * If @match_state is nonzero, it's the @p->state value just checked and
2053 * not expected to change. If it changes, i.e. @p might have woken up,
2054 * then return zero. When we succeed in waiting for @p to be off its CPU,
2055 * we return a positive number (its total switch count). If a second call
2056 * a short while later returns the same number, the caller can be sure that
2057 * @p has remained unscheduled the whole time.
2058 *
1da177e4
LT
2059 * The caller must ensure that the task *will* unschedule sometime soon,
2060 * else this function might spin for a *long* time. This function can't
2061 * be called with interrupts off, or it may introduce deadlock with
2062 * smp_call_function() if an IPI is sent by the same process we are
2063 * waiting to become inactive.
2064 */
85ba2d86 2065unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2066{
2067 unsigned long flags;
dd41f596 2068 int running, on_rq;
85ba2d86 2069 unsigned long ncsw;
70b97a7f 2070 struct rq *rq;
1da177e4 2071
3a5c359a
AK
2072 for (;;) {
2073 /*
2074 * We do the initial early heuristics without holding
2075 * any task-queue locks at all. We'll only try to get
2076 * the runqueue lock when things look like they will
2077 * work out!
2078 */
2079 rq = task_rq(p);
fa490cfd 2080
3a5c359a
AK
2081 /*
2082 * If the task is actively running on another CPU
2083 * still, just relax and busy-wait without holding
2084 * any locks.
2085 *
2086 * NOTE! Since we don't hold any locks, it's not
2087 * even sure that "rq" stays as the right runqueue!
2088 * But we don't care, since "task_running()" will
2089 * return false if the runqueue has changed and p
2090 * is actually now running somewhere else!
2091 */
85ba2d86
RM
2092 while (task_running(rq, p)) {
2093 if (match_state && unlikely(p->state != match_state))
2094 return 0;
3a5c359a 2095 cpu_relax();
85ba2d86 2096 }
fa490cfd 2097
3a5c359a
AK
2098 /*
2099 * Ok, time to look more closely! We need the rq
2100 * lock now, to be *sure*. If we're wrong, we'll
2101 * just go back and repeat.
2102 */
2103 rq = task_rq_lock(p, &flags);
27a9da65 2104 trace_sched_wait_task(p);
3a5c359a
AK
2105 running = task_running(rq, p);
2106 on_rq = p->se.on_rq;
85ba2d86 2107 ncsw = 0;
f31e11d8 2108 if (!match_state || p->state == match_state)
93dcf55f 2109 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2110 task_rq_unlock(rq, &flags);
fa490cfd 2111
85ba2d86
RM
2112 /*
2113 * If it changed from the expected state, bail out now.
2114 */
2115 if (unlikely(!ncsw))
2116 break;
2117
3a5c359a
AK
2118 /*
2119 * Was it really running after all now that we
2120 * checked with the proper locks actually held?
2121 *
2122 * Oops. Go back and try again..
2123 */
2124 if (unlikely(running)) {
2125 cpu_relax();
2126 continue;
2127 }
fa490cfd 2128
3a5c359a
AK
2129 /*
2130 * It's not enough that it's not actively running,
2131 * it must be off the runqueue _entirely_, and not
2132 * preempted!
2133 *
80dd99b3 2134 * So if it was still runnable (but just not actively
3a5c359a
AK
2135 * running right now), it's preempted, and we should
2136 * yield - it could be a while.
2137 */
2138 if (unlikely(on_rq)) {
2139 schedule_timeout_uninterruptible(1);
2140 continue;
2141 }
fa490cfd 2142
3a5c359a
AK
2143 /*
2144 * Ahh, all good. It wasn't running, and it wasn't
2145 * runnable, which means that it will never become
2146 * running in the future either. We're all done!
2147 */
2148 break;
2149 }
85ba2d86
RM
2150
2151 return ncsw;
1da177e4
LT
2152}
2153
2154/***
2155 * kick_process - kick a running thread to enter/exit the kernel
2156 * @p: the to-be-kicked thread
2157 *
2158 * Cause a process which is running on another CPU to enter
2159 * kernel-mode, without any delay. (to get signals handled.)
2160 *
2161 * NOTE: this function doesnt have to take the runqueue lock,
2162 * because all it wants to ensure is that the remote task enters
2163 * the kernel. If the IPI races and the task has been migrated
2164 * to another CPU then no harm is done and the purpose has been
2165 * achieved as well.
2166 */
36c8b586 2167void kick_process(struct task_struct *p)
1da177e4
LT
2168{
2169 int cpu;
2170
2171 preempt_disable();
2172 cpu = task_cpu(p);
2173 if ((cpu != smp_processor_id()) && task_curr(p))
2174 smp_send_reschedule(cpu);
2175 preempt_enable();
2176}
b43e3521 2177EXPORT_SYMBOL_GPL(kick_process);
476d139c 2178#endif /* CONFIG_SMP */
1da177e4 2179
0793a61d
TG
2180/**
2181 * task_oncpu_function_call - call a function on the cpu on which a task runs
2182 * @p: the task to evaluate
2183 * @func: the function to be called
2184 * @info: the function call argument
2185 *
2186 * Calls the function @func when the task is currently running. This might
2187 * be on the current CPU, which just calls the function directly
2188 */
2189void task_oncpu_function_call(struct task_struct *p,
2190 void (*func) (void *info), void *info)
2191{
2192 int cpu;
2193
2194 preempt_disable();
2195 cpu = task_cpu(p);
2196 if (task_curr(p))
2197 smp_call_function_single(cpu, func, info, 1);
2198 preempt_enable();
2199}
2200
970b13ba 2201#ifdef CONFIG_SMP
30da688e
ON
2202/*
2203 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2204 */
5da9a0fb
PZ
2205static int select_fallback_rq(int cpu, struct task_struct *p)
2206{
2207 int dest_cpu;
2208 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2209
2210 /* Look for allowed, online CPU in same node. */
2211 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2213 return dest_cpu;
2214
2215 /* Any allowed, online CPU? */
2216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2217 if (dest_cpu < nr_cpu_ids)
2218 return dest_cpu;
2219
2220 /* No more Mr. Nice Guy. */
897f0b3c 2221 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2222 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2223 /*
2224 * Don't tell them about moving exiting tasks or
2225 * kernel threads (both mm NULL), since they never
2226 * leave kernel.
2227 */
2228 if (p->mm && printk_ratelimit()) {
2229 printk(KERN_INFO "process %d (%s) no "
2230 "longer affine to cpu%d\n",
2231 task_pid_nr(p), p->comm, cpu);
2232 }
2233 }
2234
2235 return dest_cpu;
2236}
2237
e2912009 2238/*
30da688e 2239 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2240 */
970b13ba 2241static inline
0017d735 2242int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2243{
0017d735 2244 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2245
2246 /*
2247 * In order not to call set_task_cpu() on a blocking task we need
2248 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * cpu.
2250 *
2251 * Since this is common to all placement strategies, this lives here.
2252 *
2253 * [ this allows ->select_task() to simply return task_cpu(p) and
2254 * not worry about this generic constraint ]
2255 */
2256 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2257 !cpu_online(cpu)))
5da9a0fb 2258 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2259
2260 return cpu;
970b13ba 2261}
09a40af5
MG
2262
2263static void update_avg(u64 *avg, u64 sample)
2264{
2265 s64 diff = sample - *avg;
2266 *avg += diff >> 3;
2267}
970b13ba
PZ
2268#endif
2269
1da177e4
LT
2270/***
2271 * try_to_wake_up - wake up a thread
2272 * @p: the to-be-woken-up thread
2273 * @state: the mask of task states that can be woken
2274 * @sync: do a synchronous wakeup?
2275 *
2276 * Put it on the run-queue if it's not already there. The "current"
2277 * thread is always on the run-queue (except when the actual
2278 * re-schedule is in progress), and as such you're allowed to do
2279 * the simpler "current->state = TASK_RUNNING" to mark yourself
2280 * runnable without the overhead of this.
2281 *
2282 * returns failure only if the task is already active.
2283 */
7d478721
PZ
2284static int try_to_wake_up(struct task_struct *p, unsigned int state,
2285 int wake_flags)
1da177e4 2286{
cc367732 2287 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2288 unsigned long flags;
371fd7e7 2289 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2290 struct rq *rq;
1da177e4 2291
e9c84311 2292 this_cpu = get_cpu();
2398f2c6 2293
04e2f174 2294 smp_wmb();
ab3b3aa5 2295 rq = task_rq_lock(p, &flags);
e9c84311 2296 if (!(p->state & state))
1da177e4
LT
2297 goto out;
2298
dd41f596 2299 if (p->se.on_rq)
1da177e4
LT
2300 goto out_running;
2301
2302 cpu = task_cpu(p);
cc367732 2303 orig_cpu = cpu;
1da177e4
LT
2304
2305#ifdef CONFIG_SMP
2306 if (unlikely(task_running(rq, p)))
2307 goto out_activate;
2308
e9c84311
PZ
2309 /*
2310 * In order to handle concurrent wakeups and release the rq->lock
2311 * we put the task in TASK_WAKING state.
eb24073b
IM
2312 *
2313 * First fix up the nr_uninterruptible count:
e9c84311 2314 */
cc87f76a
PZ
2315 if (task_contributes_to_load(p)) {
2316 if (likely(cpu_online(orig_cpu)))
2317 rq->nr_uninterruptible--;
2318 else
2319 this_rq()->nr_uninterruptible--;
2320 }
e9c84311 2321 p->state = TASK_WAKING;
efbbd05a 2322
371fd7e7 2323 if (p->sched_class->task_waking) {
efbbd05a 2324 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2325 en_flags |= ENQUEUE_WAKING;
2326 }
efbbd05a 2327
0017d735
PZ
2328 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2329 if (cpu != orig_cpu)
5d2f5a61 2330 set_task_cpu(p, cpu);
0017d735 2331 __task_rq_unlock(rq);
ab19cb23 2332
0970d299
PZ
2333 rq = cpu_rq(cpu);
2334 raw_spin_lock(&rq->lock);
f5dc3753 2335
0970d299
PZ
2336 /*
2337 * We migrated the task without holding either rq->lock, however
2338 * since the task is not on the task list itself, nobody else
2339 * will try and migrate the task, hence the rq should match the
2340 * cpu we just moved it to.
2341 */
2342 WARN_ON(task_cpu(p) != cpu);
e9c84311 2343 WARN_ON(p->state != TASK_WAKING);
1da177e4 2344
e7693a36
GH
2345#ifdef CONFIG_SCHEDSTATS
2346 schedstat_inc(rq, ttwu_count);
2347 if (cpu == this_cpu)
2348 schedstat_inc(rq, ttwu_local);
2349 else {
2350 struct sched_domain *sd;
2351 for_each_domain(this_cpu, sd) {
758b2cdc 2352 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2353 schedstat_inc(sd, ttwu_wake_remote);
2354 break;
2355 }
2356 }
2357 }
6d6bc0ad 2358#endif /* CONFIG_SCHEDSTATS */
e7693a36 2359
1da177e4
LT
2360out_activate:
2361#endif /* CONFIG_SMP */
41acab88 2362 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2363 if (wake_flags & WF_SYNC)
41acab88 2364 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2365 if (orig_cpu != cpu)
41acab88 2366 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2367 if (cpu == this_cpu)
41acab88 2368 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2369 else
41acab88 2370 schedstat_inc(p, se.statistics.nr_wakeups_remote);
371fd7e7 2371 activate_task(rq, p, en_flags);
1da177e4
LT
2372 success = 1;
2373
2374out_running:
27a9da65 2375 trace_sched_wakeup(p, success);
7d478721 2376 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2377
1da177e4 2378 p->state = TASK_RUNNING;
9a897c5a 2379#ifdef CONFIG_SMP
efbbd05a
PZ
2380 if (p->sched_class->task_woken)
2381 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2382
2383 if (unlikely(rq->idle_stamp)) {
2384 u64 delta = rq->clock - rq->idle_stamp;
2385 u64 max = 2*sysctl_sched_migration_cost;
2386
2387 if (delta > max)
2388 rq->avg_idle = max;
2389 else
2390 update_avg(&rq->avg_idle, delta);
2391 rq->idle_stamp = 0;
2392 }
9a897c5a 2393#endif
1da177e4
LT
2394out:
2395 task_rq_unlock(rq, &flags);
e9c84311 2396 put_cpu();
1da177e4
LT
2397
2398 return success;
2399}
2400
50fa610a
DH
2401/**
2402 * wake_up_process - Wake up a specific process
2403 * @p: The process to be woken up.
2404 *
2405 * Attempt to wake up the nominated process and move it to the set of runnable
2406 * processes. Returns 1 if the process was woken up, 0 if it was already
2407 * running.
2408 *
2409 * It may be assumed that this function implies a write memory barrier before
2410 * changing the task state if and only if any tasks are woken up.
2411 */
7ad5b3a5 2412int wake_up_process(struct task_struct *p)
1da177e4 2413{
d9514f6c 2414 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2415}
1da177e4
LT
2416EXPORT_SYMBOL(wake_up_process);
2417
7ad5b3a5 2418int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2419{
2420 return try_to_wake_up(p, state, 0);
2421}
2422
1da177e4
LT
2423/*
2424 * Perform scheduler related setup for a newly forked process p.
2425 * p is forked by current.
dd41f596
IM
2426 *
2427 * __sched_fork() is basic setup used by init_idle() too:
2428 */
2429static void __sched_fork(struct task_struct *p)
2430{
dd41f596
IM
2431 p->se.exec_start = 0;
2432 p->se.sum_exec_runtime = 0;
f6cf891c 2433 p->se.prev_sum_exec_runtime = 0;
6c594c21 2434 p->se.nr_migrations = 0;
6cfb0d5d
IM
2435
2436#ifdef CONFIG_SCHEDSTATS
41acab88 2437 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2438#endif
476d139c 2439
fa717060 2440 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2441 p->se.on_rq = 0;
4a55bd5e 2442 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2443
e107be36
AK
2444#ifdef CONFIG_PREEMPT_NOTIFIERS
2445 INIT_HLIST_HEAD(&p->preempt_notifiers);
2446#endif
dd41f596
IM
2447}
2448
2449/*
2450 * fork()/clone()-time setup:
2451 */
2452void sched_fork(struct task_struct *p, int clone_flags)
2453{
2454 int cpu = get_cpu();
2455
2456 __sched_fork(p);
06b83b5f 2457 /*
0017d735 2458 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2459 * nobody will actually run it, and a signal or other external
2460 * event cannot wake it up and insert it on the runqueue either.
2461 */
0017d735 2462 p->state = TASK_RUNNING;
dd41f596 2463
b9dc29e7
MG
2464 /*
2465 * Revert to default priority/policy on fork if requested.
2466 */
2467 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2468 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2469 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2470 p->normal_prio = p->static_prio;
2471 }
b9dc29e7 2472
6c697bdf
MG
2473 if (PRIO_TO_NICE(p->static_prio) < 0) {
2474 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2475 p->normal_prio = p->static_prio;
6c697bdf
MG
2476 set_load_weight(p);
2477 }
2478
b9dc29e7
MG
2479 /*
2480 * We don't need the reset flag anymore after the fork. It has
2481 * fulfilled its duty:
2482 */
2483 p->sched_reset_on_fork = 0;
2484 }
ca94c442 2485
f83f9ac2
PW
2486 /*
2487 * Make sure we do not leak PI boosting priority to the child.
2488 */
2489 p->prio = current->normal_prio;
2490
2ddbf952
HS
2491 if (!rt_prio(p->prio))
2492 p->sched_class = &fair_sched_class;
b29739f9 2493
cd29fe6f
PZ
2494 if (p->sched_class->task_fork)
2495 p->sched_class->task_fork(p);
2496
5f3edc1b
PZ
2497 set_task_cpu(p, cpu);
2498
52f17b6c 2499#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2500 if (likely(sched_info_on()))
52f17b6c 2501 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2502#endif
d6077cb8 2503#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2504 p->oncpu = 0;
2505#endif
1da177e4 2506#ifdef CONFIG_PREEMPT
4866cde0 2507 /* Want to start with kernel preemption disabled. */
a1261f54 2508 task_thread_info(p)->preempt_count = 1;
1da177e4 2509#endif
917b627d
GH
2510 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2511
476d139c 2512 put_cpu();
1da177e4
LT
2513}
2514
2515/*
2516 * wake_up_new_task - wake up a newly created task for the first time.
2517 *
2518 * This function will do some initial scheduler statistics housekeeping
2519 * that must be done for every newly created context, then puts the task
2520 * on the runqueue and wakes it.
2521 */
7ad5b3a5 2522void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2523{
2524 unsigned long flags;
dd41f596 2525 struct rq *rq;
c890692b 2526 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2527
2528#ifdef CONFIG_SMP
0017d735
PZ
2529 rq = task_rq_lock(p, &flags);
2530 p->state = TASK_WAKING;
2531
fabf318e
PZ
2532 /*
2533 * Fork balancing, do it here and not earlier because:
2534 * - cpus_allowed can change in the fork path
2535 * - any previously selected cpu might disappear through hotplug
2536 *
0017d735
PZ
2537 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2538 * without people poking at ->cpus_allowed.
fabf318e 2539 */
0017d735 2540 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2541 set_task_cpu(p, cpu);
1da177e4 2542
06b83b5f 2543 p->state = TASK_RUNNING;
0017d735
PZ
2544 task_rq_unlock(rq, &flags);
2545#endif
2546
2547 rq = task_rq_lock(p, &flags);
cd29fe6f 2548 activate_task(rq, p, 0);
27a9da65 2549 trace_sched_wakeup_new(p, 1);
a7558e01 2550 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2551#ifdef CONFIG_SMP
efbbd05a
PZ
2552 if (p->sched_class->task_woken)
2553 p->sched_class->task_woken(rq, p);
9a897c5a 2554#endif
dd41f596 2555 task_rq_unlock(rq, &flags);
fabf318e 2556 put_cpu();
1da177e4
LT
2557}
2558
e107be36
AK
2559#ifdef CONFIG_PREEMPT_NOTIFIERS
2560
2561/**
80dd99b3 2562 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2563 * @notifier: notifier struct to register
e107be36
AK
2564 */
2565void preempt_notifier_register(struct preempt_notifier *notifier)
2566{
2567 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2568}
2569EXPORT_SYMBOL_GPL(preempt_notifier_register);
2570
2571/**
2572 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2573 * @notifier: notifier struct to unregister
e107be36
AK
2574 *
2575 * This is safe to call from within a preemption notifier.
2576 */
2577void preempt_notifier_unregister(struct preempt_notifier *notifier)
2578{
2579 hlist_del(&notifier->link);
2580}
2581EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2582
2583static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584{
2585 struct preempt_notifier *notifier;
2586 struct hlist_node *node;
2587
2588 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2589 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2590}
2591
2592static void
2593fire_sched_out_preempt_notifiers(struct task_struct *curr,
2594 struct task_struct *next)
2595{
2596 struct preempt_notifier *notifier;
2597 struct hlist_node *node;
2598
2599 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2600 notifier->ops->sched_out(notifier, next);
2601}
2602
6d6bc0ad 2603#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2604
2605static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2606{
2607}
2608
2609static void
2610fire_sched_out_preempt_notifiers(struct task_struct *curr,
2611 struct task_struct *next)
2612{
2613}
2614
6d6bc0ad 2615#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2616
4866cde0
NP
2617/**
2618 * prepare_task_switch - prepare to switch tasks
2619 * @rq: the runqueue preparing to switch
421cee29 2620 * @prev: the current task that is being switched out
4866cde0
NP
2621 * @next: the task we are going to switch to.
2622 *
2623 * This is called with the rq lock held and interrupts off. It must
2624 * be paired with a subsequent finish_task_switch after the context
2625 * switch.
2626 *
2627 * prepare_task_switch sets up locking and calls architecture specific
2628 * hooks.
2629 */
e107be36
AK
2630static inline void
2631prepare_task_switch(struct rq *rq, struct task_struct *prev,
2632 struct task_struct *next)
4866cde0 2633{
e107be36 2634 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2635 prepare_lock_switch(rq, next);
2636 prepare_arch_switch(next);
2637}
2638
1da177e4
LT
2639/**
2640 * finish_task_switch - clean up after a task-switch
344babaa 2641 * @rq: runqueue associated with task-switch
1da177e4
LT
2642 * @prev: the thread we just switched away from.
2643 *
4866cde0
NP
2644 * finish_task_switch must be called after the context switch, paired
2645 * with a prepare_task_switch call before the context switch.
2646 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2647 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2648 *
2649 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2650 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2651 * with the lock held can cause deadlocks; see schedule() for
2652 * details.)
2653 */
a9957449 2654static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2655 __releases(rq->lock)
2656{
1da177e4 2657 struct mm_struct *mm = rq->prev_mm;
55a101f8 2658 long prev_state;
1da177e4
LT
2659
2660 rq->prev_mm = NULL;
2661
2662 /*
2663 * A task struct has one reference for the use as "current".
c394cc9f 2664 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2665 * schedule one last time. The schedule call will never return, and
2666 * the scheduled task must drop that reference.
c394cc9f 2667 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2668 * still held, otherwise prev could be scheduled on another cpu, die
2669 * there before we look at prev->state, and then the reference would
2670 * be dropped twice.
2671 * Manfred Spraul <manfred@colorfullife.com>
2672 */
55a101f8 2673 prev_state = prev->state;
4866cde0 2674 finish_arch_switch(prev);
8381f65d
JI
2675#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2676 local_irq_disable();
2677#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2678 perf_event_task_sched_in(current);
8381f65d
JI
2679#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2680 local_irq_enable();
2681#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2682 finish_lock_switch(rq, prev);
e8fa1362 2683
e107be36 2684 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2685 if (mm)
2686 mmdrop(mm);
c394cc9f 2687 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2688 /*
2689 * Remove function-return probe instances associated with this
2690 * task and put them back on the free list.
9761eea8 2691 */
c6fd91f0 2692 kprobe_flush_task(prev);
1da177e4 2693 put_task_struct(prev);
c6fd91f0 2694 }
1da177e4
LT
2695}
2696
3f029d3c
GH
2697#ifdef CONFIG_SMP
2698
2699/* assumes rq->lock is held */
2700static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2701{
2702 if (prev->sched_class->pre_schedule)
2703 prev->sched_class->pre_schedule(rq, prev);
2704}
2705
2706/* rq->lock is NOT held, but preemption is disabled */
2707static inline void post_schedule(struct rq *rq)
2708{
2709 if (rq->post_schedule) {
2710 unsigned long flags;
2711
05fa785c 2712 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2713 if (rq->curr->sched_class->post_schedule)
2714 rq->curr->sched_class->post_schedule(rq);
05fa785c 2715 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2716
2717 rq->post_schedule = 0;
2718 }
2719}
2720
2721#else
da19ab51 2722
3f029d3c
GH
2723static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2724{
2725}
2726
2727static inline void post_schedule(struct rq *rq)
2728{
1da177e4
LT
2729}
2730
3f029d3c
GH
2731#endif
2732
1da177e4
LT
2733/**
2734 * schedule_tail - first thing a freshly forked thread must call.
2735 * @prev: the thread we just switched away from.
2736 */
36c8b586 2737asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2738 __releases(rq->lock)
2739{
70b97a7f
IM
2740 struct rq *rq = this_rq();
2741
4866cde0 2742 finish_task_switch(rq, prev);
da19ab51 2743
3f029d3c
GH
2744 /*
2745 * FIXME: do we need to worry about rq being invalidated by the
2746 * task_switch?
2747 */
2748 post_schedule(rq);
70b97a7f 2749
4866cde0
NP
2750#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2751 /* In this case, finish_task_switch does not reenable preemption */
2752 preempt_enable();
2753#endif
1da177e4 2754 if (current->set_child_tid)
b488893a 2755 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2756}
2757
2758/*
2759 * context_switch - switch to the new MM and the new
2760 * thread's register state.
2761 */
dd41f596 2762static inline void
70b97a7f 2763context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2764 struct task_struct *next)
1da177e4 2765{
dd41f596 2766 struct mm_struct *mm, *oldmm;
1da177e4 2767
e107be36 2768 prepare_task_switch(rq, prev, next);
27a9da65 2769 trace_sched_switch(prev, next);
dd41f596
IM
2770 mm = next->mm;
2771 oldmm = prev->active_mm;
9226d125
ZA
2772 /*
2773 * For paravirt, this is coupled with an exit in switch_to to
2774 * combine the page table reload and the switch backend into
2775 * one hypercall.
2776 */
224101ed 2777 arch_start_context_switch(prev);
9226d125 2778
710390d9 2779 if (likely(!mm)) {
1da177e4
LT
2780 next->active_mm = oldmm;
2781 atomic_inc(&oldmm->mm_count);
2782 enter_lazy_tlb(oldmm, next);
2783 } else
2784 switch_mm(oldmm, mm, next);
2785
710390d9 2786 if (likely(!prev->mm)) {
1da177e4 2787 prev->active_mm = NULL;
1da177e4
LT
2788 rq->prev_mm = oldmm;
2789 }
3a5f5e48
IM
2790 /*
2791 * Since the runqueue lock will be released by the next
2792 * task (which is an invalid locking op but in the case
2793 * of the scheduler it's an obvious special-case), so we
2794 * do an early lockdep release here:
2795 */
2796#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2797 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2798#endif
1da177e4
LT
2799
2800 /* Here we just switch the register state and the stack. */
2801 switch_to(prev, next, prev);
2802
dd41f596
IM
2803 barrier();
2804 /*
2805 * this_rq must be evaluated again because prev may have moved
2806 * CPUs since it called schedule(), thus the 'rq' on its stack
2807 * frame will be invalid.
2808 */
2809 finish_task_switch(this_rq(), prev);
1da177e4
LT
2810}
2811
2812/*
2813 * nr_running, nr_uninterruptible and nr_context_switches:
2814 *
2815 * externally visible scheduler statistics: current number of runnable
2816 * threads, current number of uninterruptible-sleeping threads, total
2817 * number of context switches performed since bootup.
2818 */
2819unsigned long nr_running(void)
2820{
2821 unsigned long i, sum = 0;
2822
2823 for_each_online_cpu(i)
2824 sum += cpu_rq(i)->nr_running;
2825
2826 return sum;
f711f609 2827}
1da177e4
LT
2828
2829unsigned long nr_uninterruptible(void)
f711f609 2830{
1da177e4 2831 unsigned long i, sum = 0;
f711f609 2832
0a945022 2833 for_each_possible_cpu(i)
1da177e4 2834 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2835
2836 /*
1da177e4
LT
2837 * Since we read the counters lockless, it might be slightly
2838 * inaccurate. Do not allow it to go below zero though:
f711f609 2839 */
1da177e4
LT
2840 if (unlikely((long)sum < 0))
2841 sum = 0;
f711f609 2842
1da177e4 2843 return sum;
f711f609 2844}
f711f609 2845
1da177e4 2846unsigned long long nr_context_switches(void)
46cb4b7c 2847{
cc94abfc
SR
2848 int i;
2849 unsigned long long sum = 0;
46cb4b7c 2850
0a945022 2851 for_each_possible_cpu(i)
1da177e4 2852 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2853
1da177e4
LT
2854 return sum;
2855}
483b4ee6 2856
1da177e4
LT
2857unsigned long nr_iowait(void)
2858{
2859 unsigned long i, sum = 0;
483b4ee6 2860
0a945022 2861 for_each_possible_cpu(i)
1da177e4 2862 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2863
1da177e4
LT
2864 return sum;
2865}
483b4ee6 2866
69d25870
AV
2867unsigned long nr_iowait_cpu(void)
2868{
2869 struct rq *this = this_rq();
2870 return atomic_read(&this->nr_iowait);
2871}
46cb4b7c 2872
69d25870
AV
2873unsigned long this_cpu_load(void)
2874{
2875 struct rq *this = this_rq();
2876 return this->cpu_load[0];
2877}
e790fb0b 2878
46cb4b7c 2879
dce48a84
TG
2880/* Variables and functions for calc_load */
2881static atomic_long_t calc_load_tasks;
2882static unsigned long calc_load_update;
2883unsigned long avenrun[3];
2884EXPORT_SYMBOL(avenrun);
46cb4b7c 2885
74f5187a
PZ
2886static long calc_load_fold_active(struct rq *this_rq)
2887{
2888 long nr_active, delta = 0;
2889
2890 nr_active = this_rq->nr_running;
2891 nr_active += (long) this_rq->nr_uninterruptible;
2892
2893 if (nr_active != this_rq->calc_load_active) {
2894 delta = nr_active - this_rq->calc_load_active;
2895 this_rq->calc_load_active = nr_active;
2896 }
2897
2898 return delta;
2899}
2900
2901#ifdef CONFIG_NO_HZ
2902/*
2903 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2904 *
2905 * When making the ILB scale, we should try to pull this in as well.
2906 */
2907static atomic_long_t calc_load_tasks_idle;
2908
2909static void calc_load_account_idle(struct rq *this_rq)
2910{
2911 long delta;
2912
2913 delta = calc_load_fold_active(this_rq);
2914 if (delta)
2915 atomic_long_add(delta, &calc_load_tasks_idle);
2916}
2917
2918static long calc_load_fold_idle(void)
2919{
2920 long delta = 0;
2921
2922 /*
2923 * Its got a race, we don't care...
2924 */
2925 if (atomic_long_read(&calc_load_tasks_idle))
2926 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2927
2928 return delta;
2929}
2930#else
2931static void calc_load_account_idle(struct rq *this_rq)
2932{
2933}
2934
2935static inline long calc_load_fold_idle(void)
2936{
2937 return 0;
2938}
2939#endif
2940
2d02494f
TG
2941/**
2942 * get_avenrun - get the load average array
2943 * @loads: pointer to dest load array
2944 * @offset: offset to add
2945 * @shift: shift count to shift the result left
2946 *
2947 * These values are estimates at best, so no need for locking.
2948 */
2949void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2950{
2951 loads[0] = (avenrun[0] + offset) << shift;
2952 loads[1] = (avenrun[1] + offset) << shift;
2953 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2954}
46cb4b7c 2955
dce48a84
TG
2956static unsigned long
2957calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2958{
dce48a84
TG
2959 load *= exp;
2960 load += active * (FIXED_1 - exp);
2961 return load >> FSHIFT;
2962}
46cb4b7c
SS
2963
2964/*
dce48a84
TG
2965 * calc_load - update the avenrun load estimates 10 ticks after the
2966 * CPUs have updated calc_load_tasks.
7835b98b 2967 */
dce48a84 2968void calc_global_load(void)
7835b98b 2969{
dce48a84
TG
2970 unsigned long upd = calc_load_update + 10;
2971 long active;
1da177e4 2972
dce48a84
TG
2973 if (time_before(jiffies, upd))
2974 return;
1da177e4 2975
dce48a84
TG
2976 active = atomic_long_read(&calc_load_tasks);
2977 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2978
dce48a84
TG
2979 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2980 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2981 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2982
dce48a84
TG
2983 calc_load_update += LOAD_FREQ;
2984}
1da177e4 2985
dce48a84 2986/*
74f5187a
PZ
2987 * Called from update_cpu_load() to periodically update this CPU's
2988 * active count.
dce48a84
TG
2989 */
2990static void calc_load_account_active(struct rq *this_rq)
2991{
74f5187a 2992 long delta;
08c183f3 2993
74f5187a
PZ
2994 if (time_before(jiffies, this_rq->calc_load_update))
2995 return;
783609c6 2996
74f5187a
PZ
2997 delta = calc_load_fold_active(this_rq);
2998 delta += calc_load_fold_idle();
2999 if (delta)
dce48a84 3000 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3001
3002 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3003}
3004
3005/*
dd41f596
IM
3006 * Update rq->cpu_load[] statistics. This function is usually called every
3007 * scheduler tick (TICK_NSEC).
46cb4b7c 3008 */
dd41f596 3009static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3010{
495eca49 3011 unsigned long this_load = this_rq->load.weight;
dd41f596 3012 int i, scale;
46cb4b7c 3013
dd41f596 3014 this_rq->nr_load_updates++;
46cb4b7c 3015
dd41f596
IM
3016 /* Update our load: */
3017 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3018 unsigned long old_load, new_load;
7d1e6a9b 3019
dd41f596 3020 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3021
dd41f596
IM
3022 old_load = this_rq->cpu_load[i];
3023 new_load = this_load;
a25707f3
IM
3024 /*
3025 * Round up the averaging division if load is increasing. This
3026 * prevents us from getting stuck on 9 if the load is 10, for
3027 * example.
3028 */
3029 if (new_load > old_load)
3030 new_load += scale-1;
dd41f596
IM
3031 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3032 }
46cb4b7c 3033
74f5187a 3034 calc_load_account_active(this_rq);
46cb4b7c
SS
3035}
3036
dd41f596 3037#ifdef CONFIG_SMP
8a0be9ef 3038
46cb4b7c 3039/*
38022906
PZ
3040 * sched_exec - execve() is a valuable balancing opportunity, because at
3041 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3042 */
38022906 3043void sched_exec(void)
46cb4b7c 3044{
38022906 3045 struct task_struct *p = current;
1da177e4 3046 unsigned long flags;
70b97a7f 3047 struct rq *rq;
0017d735 3048 int dest_cpu;
46cb4b7c 3049
1da177e4 3050 rq = task_rq_lock(p, &flags);
0017d735
PZ
3051 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3052 if (dest_cpu == smp_processor_id())
3053 goto unlock;
38022906 3054
46cb4b7c 3055 /*
38022906 3056 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3057 */
30da688e 3058 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3059 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3060 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3061
1da177e4 3062 task_rq_unlock(rq, &flags);
969c7921 3063 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3064 return;
3065 }
0017d735 3066unlock:
1da177e4 3067 task_rq_unlock(rq, &flags);
1da177e4 3068}
dd41f596 3069
1da177e4
LT
3070#endif
3071
1da177e4
LT
3072DEFINE_PER_CPU(struct kernel_stat, kstat);
3073
3074EXPORT_PER_CPU_SYMBOL(kstat);
3075
3076/*
c5f8d995 3077 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3078 * @p in case that task is currently running.
c5f8d995
HS
3079 *
3080 * Called with task_rq_lock() held on @rq.
1da177e4 3081 */
c5f8d995
HS
3082static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3083{
3084 u64 ns = 0;
3085
3086 if (task_current(rq, p)) {
3087 update_rq_clock(rq);
3088 ns = rq->clock - p->se.exec_start;
3089 if ((s64)ns < 0)
3090 ns = 0;
3091 }
3092
3093 return ns;
3094}
3095
bb34d92f 3096unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3097{
1da177e4 3098 unsigned long flags;
41b86e9c 3099 struct rq *rq;
bb34d92f 3100 u64 ns = 0;
48f24c4d 3101
41b86e9c 3102 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3103 ns = do_task_delta_exec(p, rq);
3104 task_rq_unlock(rq, &flags);
1508487e 3105
c5f8d995
HS
3106 return ns;
3107}
f06febc9 3108
c5f8d995
HS
3109/*
3110 * Return accounted runtime for the task.
3111 * In case the task is currently running, return the runtime plus current's
3112 * pending runtime that have not been accounted yet.
3113 */
3114unsigned long long task_sched_runtime(struct task_struct *p)
3115{
3116 unsigned long flags;
3117 struct rq *rq;
3118 u64 ns = 0;
3119
3120 rq = task_rq_lock(p, &flags);
3121 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3122 task_rq_unlock(rq, &flags);
3123
3124 return ns;
3125}
48f24c4d 3126
c5f8d995
HS
3127/*
3128 * Return sum_exec_runtime for the thread group.
3129 * In case the task is currently running, return the sum plus current's
3130 * pending runtime that have not been accounted yet.
3131 *
3132 * Note that the thread group might have other running tasks as well,
3133 * so the return value not includes other pending runtime that other
3134 * running tasks might have.
3135 */
3136unsigned long long thread_group_sched_runtime(struct task_struct *p)
3137{
3138 struct task_cputime totals;
3139 unsigned long flags;
3140 struct rq *rq;
3141 u64 ns;
3142
3143 rq = task_rq_lock(p, &flags);
3144 thread_group_cputime(p, &totals);
3145 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3146 task_rq_unlock(rq, &flags);
48f24c4d 3147
1da177e4
LT
3148 return ns;
3149}
3150
1da177e4
LT
3151/*
3152 * Account user cpu time to a process.
3153 * @p: the process that the cpu time gets accounted to
1da177e4 3154 * @cputime: the cpu time spent in user space since the last update
457533a7 3155 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3156 */
457533a7
MS
3157void account_user_time(struct task_struct *p, cputime_t cputime,
3158 cputime_t cputime_scaled)
1da177e4
LT
3159{
3160 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3161 cputime64_t tmp;
3162
457533a7 3163 /* Add user time to process. */
1da177e4 3164 p->utime = cputime_add(p->utime, cputime);
457533a7 3165 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3166 account_group_user_time(p, cputime);
1da177e4
LT
3167
3168 /* Add user time to cpustat. */
3169 tmp = cputime_to_cputime64(cputime);
3170 if (TASK_NICE(p) > 0)
3171 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3172 else
3173 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3174
3175 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3176 /* Account for user time used */
3177 acct_update_integrals(p);
1da177e4
LT
3178}
3179
94886b84
LV
3180/*
3181 * Account guest cpu time to a process.
3182 * @p: the process that the cpu time gets accounted to
3183 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3184 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3185 */
457533a7
MS
3186static void account_guest_time(struct task_struct *p, cputime_t cputime,
3187 cputime_t cputime_scaled)
94886b84
LV
3188{
3189 cputime64_t tmp;
3190 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3191
3192 tmp = cputime_to_cputime64(cputime);
3193
457533a7 3194 /* Add guest time to process. */
94886b84 3195 p->utime = cputime_add(p->utime, cputime);
457533a7 3196 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3197 account_group_user_time(p, cputime);
94886b84
LV
3198 p->gtime = cputime_add(p->gtime, cputime);
3199
457533a7 3200 /* Add guest time to cpustat. */
ce0e7b28
RO
3201 if (TASK_NICE(p) > 0) {
3202 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3203 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3204 } else {
3205 cpustat->user = cputime64_add(cpustat->user, tmp);
3206 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3207 }
94886b84
LV
3208}
3209
1da177e4
LT
3210/*
3211 * Account system cpu time to a process.
3212 * @p: the process that the cpu time gets accounted to
3213 * @hardirq_offset: the offset to subtract from hardirq_count()
3214 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3215 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3216 */
3217void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3218 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3219{
3220 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3221 cputime64_t tmp;
3222
983ed7a6 3223 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3224 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3225 return;
3226 }
94886b84 3227
457533a7 3228 /* Add system time to process. */
1da177e4 3229 p->stime = cputime_add(p->stime, cputime);
457533a7 3230 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3231 account_group_system_time(p, cputime);
1da177e4
LT
3232
3233 /* Add system time to cpustat. */
3234 tmp = cputime_to_cputime64(cputime);
3235 if (hardirq_count() - hardirq_offset)
3236 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3237 else if (softirq_count())
3238 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3239 else
79741dd3
MS
3240 cpustat->system = cputime64_add(cpustat->system, tmp);
3241
ef12fefa
BR
3242 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3243
1da177e4
LT
3244 /* Account for system time used */
3245 acct_update_integrals(p);
1da177e4
LT
3246}
3247
c66f08be 3248/*
1da177e4 3249 * Account for involuntary wait time.
1da177e4 3250 * @steal: the cpu time spent in involuntary wait
c66f08be 3251 */
79741dd3 3252void account_steal_time(cputime_t cputime)
c66f08be 3253{
79741dd3
MS
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3255 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3256
3257 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3258}
3259
1da177e4 3260/*
79741dd3
MS
3261 * Account for idle time.
3262 * @cputime: the cpu time spent in idle wait
1da177e4 3263 */
79741dd3 3264void account_idle_time(cputime_t cputime)
1da177e4
LT
3265{
3266 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3267 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3268 struct rq *rq = this_rq();
1da177e4 3269
79741dd3
MS
3270 if (atomic_read(&rq->nr_iowait) > 0)
3271 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3272 else
3273 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3274}
3275
79741dd3
MS
3276#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3277
3278/*
3279 * Account a single tick of cpu time.
3280 * @p: the process that the cpu time gets accounted to
3281 * @user_tick: indicates if the tick is a user or a system tick
3282 */
3283void account_process_tick(struct task_struct *p, int user_tick)
3284{
a42548a1 3285 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3286 struct rq *rq = this_rq();
3287
3288 if (user_tick)
a42548a1 3289 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3290 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3291 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3292 one_jiffy_scaled);
3293 else
a42548a1 3294 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3295}
3296
3297/*
3298 * Account multiple ticks of steal time.
3299 * @p: the process from which the cpu time has been stolen
3300 * @ticks: number of stolen ticks
3301 */
3302void account_steal_ticks(unsigned long ticks)
3303{
3304 account_steal_time(jiffies_to_cputime(ticks));
3305}
3306
3307/*
3308 * Account multiple ticks of idle time.
3309 * @ticks: number of stolen ticks
3310 */
3311void account_idle_ticks(unsigned long ticks)
3312{
3313 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3314}
3315
79741dd3
MS
3316#endif
3317
49048622
BS
3318/*
3319 * Use precise platform statistics if available:
3320 */
3321#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3322void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3323{
d99ca3b9
HS
3324 *ut = p->utime;
3325 *st = p->stime;
49048622
BS
3326}
3327
0cf55e1e 3328void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3329{
0cf55e1e
HS
3330 struct task_cputime cputime;
3331
3332 thread_group_cputime(p, &cputime);
3333
3334 *ut = cputime.utime;
3335 *st = cputime.stime;
49048622
BS
3336}
3337#else
761b1d26
HS
3338
3339#ifndef nsecs_to_cputime
b7b20df9 3340# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3341#endif
3342
d180c5bc 3343void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3344{
d99ca3b9 3345 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3346
3347 /*
3348 * Use CFS's precise accounting:
3349 */
d180c5bc 3350 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3351
3352 if (total) {
d180c5bc
HS
3353 u64 temp;
3354
3355 temp = (u64)(rtime * utime);
49048622 3356 do_div(temp, total);
d180c5bc
HS
3357 utime = (cputime_t)temp;
3358 } else
3359 utime = rtime;
49048622 3360
d180c5bc
HS
3361 /*
3362 * Compare with previous values, to keep monotonicity:
3363 */
761b1d26 3364 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3365 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3366
d99ca3b9
HS
3367 *ut = p->prev_utime;
3368 *st = p->prev_stime;
49048622
BS
3369}
3370
0cf55e1e
HS
3371/*
3372 * Must be called with siglock held.
3373 */
3374void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3375{
0cf55e1e
HS
3376 struct signal_struct *sig = p->signal;
3377 struct task_cputime cputime;
3378 cputime_t rtime, utime, total;
49048622 3379
0cf55e1e 3380 thread_group_cputime(p, &cputime);
49048622 3381
0cf55e1e
HS
3382 total = cputime_add(cputime.utime, cputime.stime);
3383 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3384
0cf55e1e
HS
3385 if (total) {
3386 u64 temp;
49048622 3387
0cf55e1e
HS
3388 temp = (u64)(rtime * cputime.utime);
3389 do_div(temp, total);
3390 utime = (cputime_t)temp;
3391 } else
3392 utime = rtime;
3393
3394 sig->prev_utime = max(sig->prev_utime, utime);
3395 sig->prev_stime = max(sig->prev_stime,
3396 cputime_sub(rtime, sig->prev_utime));
3397
3398 *ut = sig->prev_utime;
3399 *st = sig->prev_stime;
49048622 3400}
49048622 3401#endif
49048622 3402
7835b98b
CL
3403/*
3404 * This function gets called by the timer code, with HZ frequency.
3405 * We call it with interrupts disabled.
3406 *
3407 * It also gets called by the fork code, when changing the parent's
3408 * timeslices.
3409 */
3410void scheduler_tick(void)
3411{
7835b98b
CL
3412 int cpu = smp_processor_id();
3413 struct rq *rq = cpu_rq(cpu);
dd41f596 3414 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3415
3416 sched_clock_tick();
dd41f596 3417
05fa785c 3418 raw_spin_lock(&rq->lock);
3e51f33f 3419 update_rq_clock(rq);
f1a438d8 3420 update_cpu_load(rq);
fa85ae24 3421 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3422 raw_spin_unlock(&rq->lock);
7835b98b 3423
49f47433 3424 perf_event_task_tick(curr);
e220d2dc 3425
e418e1c2 3426#ifdef CONFIG_SMP
dd41f596
IM
3427 rq->idle_at_tick = idle_cpu(cpu);
3428 trigger_load_balance(rq, cpu);
e418e1c2 3429#endif
1da177e4
LT
3430}
3431
132380a0 3432notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3433{
3434 if (in_lock_functions(addr)) {
3435 addr = CALLER_ADDR2;
3436 if (in_lock_functions(addr))
3437 addr = CALLER_ADDR3;
3438 }
3439 return addr;
3440}
1da177e4 3441
7e49fcce
SR
3442#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3443 defined(CONFIG_PREEMPT_TRACER))
3444
43627582 3445void __kprobes add_preempt_count(int val)
1da177e4 3446{
6cd8a4bb 3447#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3448 /*
3449 * Underflow?
3450 */
9a11b49a
IM
3451 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3452 return;
6cd8a4bb 3453#endif
1da177e4 3454 preempt_count() += val;
6cd8a4bb 3455#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3456 /*
3457 * Spinlock count overflowing soon?
3458 */
33859f7f
MOS
3459 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3460 PREEMPT_MASK - 10);
6cd8a4bb
SR
3461#endif
3462 if (preempt_count() == val)
3463 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3464}
3465EXPORT_SYMBOL(add_preempt_count);
3466
43627582 3467void __kprobes sub_preempt_count(int val)
1da177e4 3468{
6cd8a4bb 3469#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3470 /*
3471 * Underflow?
3472 */
01e3eb82 3473 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3474 return;
1da177e4
LT
3475 /*
3476 * Is the spinlock portion underflowing?
3477 */
9a11b49a
IM
3478 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3479 !(preempt_count() & PREEMPT_MASK)))
3480 return;
6cd8a4bb 3481#endif
9a11b49a 3482
6cd8a4bb
SR
3483 if (preempt_count() == val)
3484 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3485 preempt_count() -= val;
3486}
3487EXPORT_SYMBOL(sub_preempt_count);
3488
3489#endif
3490
3491/*
dd41f596 3492 * Print scheduling while atomic bug:
1da177e4 3493 */
dd41f596 3494static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3495{
838225b4
SS
3496 struct pt_regs *regs = get_irq_regs();
3497
3df0fc5b
PZ
3498 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3499 prev->comm, prev->pid, preempt_count());
838225b4 3500
dd41f596 3501 debug_show_held_locks(prev);
e21f5b15 3502 print_modules();
dd41f596
IM
3503 if (irqs_disabled())
3504 print_irqtrace_events(prev);
838225b4
SS
3505
3506 if (regs)
3507 show_regs(regs);
3508 else
3509 dump_stack();
dd41f596 3510}
1da177e4 3511
dd41f596
IM
3512/*
3513 * Various schedule()-time debugging checks and statistics:
3514 */
3515static inline void schedule_debug(struct task_struct *prev)
3516{
1da177e4 3517 /*
41a2d6cf 3518 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3519 * schedule() atomically, we ignore that path for now.
3520 * Otherwise, whine if we are scheduling when we should not be.
3521 */
3f33a7ce 3522 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3523 __schedule_bug(prev);
3524
1da177e4
LT
3525 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3526
2d72376b 3527 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3528#ifdef CONFIG_SCHEDSTATS
3529 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3530 schedstat_inc(this_rq(), bkl_count);
3531 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3532 }
3533#endif
dd41f596
IM
3534}
3535
6cecd084 3536static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3537{
a64692a3
MG
3538 if (prev->se.on_rq)
3539 update_rq_clock(rq);
3540 rq->skip_clock_update = 0;
6cecd084 3541 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3542}
3543
dd41f596
IM
3544/*
3545 * Pick up the highest-prio task:
3546 */
3547static inline struct task_struct *
b67802ea 3548pick_next_task(struct rq *rq)
dd41f596 3549{
5522d5d5 3550 const struct sched_class *class;
dd41f596 3551 struct task_struct *p;
1da177e4
LT
3552
3553 /*
dd41f596
IM
3554 * Optimization: we know that if all tasks are in
3555 * the fair class we can call that function directly:
1da177e4 3556 */
dd41f596 3557 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3558 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3559 if (likely(p))
3560 return p;
1da177e4
LT
3561 }
3562
dd41f596
IM
3563 class = sched_class_highest;
3564 for ( ; ; ) {
fb8d4724 3565 p = class->pick_next_task(rq);
dd41f596
IM
3566 if (p)
3567 return p;
3568 /*
3569 * Will never be NULL as the idle class always
3570 * returns a non-NULL p:
3571 */
3572 class = class->next;
3573 }
3574}
1da177e4 3575
dd41f596
IM
3576/*
3577 * schedule() is the main scheduler function.
3578 */
ff743345 3579asmlinkage void __sched schedule(void)
dd41f596
IM
3580{
3581 struct task_struct *prev, *next;
67ca7bde 3582 unsigned long *switch_count;
dd41f596 3583 struct rq *rq;
31656519 3584 int cpu;
dd41f596 3585
ff743345
PZ
3586need_resched:
3587 preempt_disable();
dd41f596
IM
3588 cpu = smp_processor_id();
3589 rq = cpu_rq(cpu);
25502a6c 3590 rcu_note_context_switch(cpu);
dd41f596
IM
3591 prev = rq->curr;
3592 switch_count = &prev->nivcsw;
3593
3594 release_kernel_lock(prev);
3595need_resched_nonpreemptible:
3596
3597 schedule_debug(prev);
1da177e4 3598
31656519 3599 if (sched_feat(HRTICK))
f333fdc9 3600 hrtick_clear(rq);
8f4d37ec 3601
05fa785c 3602 raw_spin_lock_irq(&rq->lock);
1e819950 3603 clear_tsk_need_resched(prev);
1da177e4 3604
1da177e4 3605 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3606 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3607 prev->state = TASK_RUNNING;
16882c1e 3608 else
371fd7e7 3609 deactivate_task(rq, prev, DEQUEUE_SLEEP);
dd41f596 3610 switch_count = &prev->nvcsw;
1da177e4
LT
3611 }
3612
3f029d3c 3613 pre_schedule(rq, prev);
f65eda4f 3614
dd41f596 3615 if (unlikely(!rq->nr_running))
1da177e4 3616 idle_balance(cpu, rq);
1da177e4 3617
df1c99d4 3618 put_prev_task(rq, prev);
b67802ea 3619 next = pick_next_task(rq);
1da177e4 3620
1da177e4 3621 if (likely(prev != next)) {
673a90a1 3622 sched_info_switch(prev, next);
49f47433 3623 perf_event_task_sched_out(prev, next);
673a90a1 3624
1da177e4
LT
3625 rq->nr_switches++;
3626 rq->curr = next;
3627 ++*switch_count;
3628
dd41f596 3629 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3630 /*
3631 * the context switch might have flipped the stack from under
3632 * us, hence refresh the local variables.
3633 */
3634 cpu = smp_processor_id();
3635 rq = cpu_rq(cpu);
1da177e4 3636 } else
05fa785c 3637 raw_spin_unlock_irq(&rq->lock);
1da177e4 3638
3f029d3c 3639 post_schedule(rq);
1da177e4 3640
6d558c3a
YZ
3641 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3642 prev = rq->curr;
3643 switch_count = &prev->nivcsw;
1da177e4 3644 goto need_resched_nonpreemptible;
6d558c3a 3645 }
8f4d37ec 3646
1da177e4 3647 preempt_enable_no_resched();
ff743345 3648 if (need_resched())
1da177e4
LT
3649 goto need_resched;
3650}
1da177e4
LT
3651EXPORT_SYMBOL(schedule);
3652
c08f7829 3653#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3654/*
3655 * Look out! "owner" is an entirely speculative pointer
3656 * access and not reliable.
3657 */
3658int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3659{
3660 unsigned int cpu;
3661 struct rq *rq;
3662
3663 if (!sched_feat(OWNER_SPIN))
3664 return 0;
3665
3666#ifdef CONFIG_DEBUG_PAGEALLOC
3667 /*
3668 * Need to access the cpu field knowing that
3669 * DEBUG_PAGEALLOC could have unmapped it if
3670 * the mutex owner just released it and exited.
3671 */
3672 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3673 return 0;
0d66bf6d
PZ
3674#else
3675 cpu = owner->cpu;
3676#endif
3677
3678 /*
3679 * Even if the access succeeded (likely case),
3680 * the cpu field may no longer be valid.
3681 */
3682 if (cpu >= nr_cpumask_bits)
4b402210 3683 return 0;
0d66bf6d
PZ
3684
3685 /*
3686 * We need to validate that we can do a
3687 * get_cpu() and that we have the percpu area.
3688 */
3689 if (!cpu_online(cpu))
4b402210 3690 return 0;
0d66bf6d
PZ
3691
3692 rq = cpu_rq(cpu);
3693
3694 for (;;) {
3695 /*
3696 * Owner changed, break to re-assess state.
3697 */
3698 if (lock->owner != owner)
3699 break;
3700
3701 /*
3702 * Is that owner really running on that cpu?
3703 */
3704 if (task_thread_info(rq->curr) != owner || need_resched())
3705 return 0;
3706
3707 cpu_relax();
3708 }
4b402210 3709
0d66bf6d
PZ
3710 return 1;
3711}
3712#endif
3713
1da177e4
LT
3714#ifdef CONFIG_PREEMPT
3715/*
2ed6e34f 3716 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3717 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3718 * occur there and call schedule directly.
3719 */
3720asmlinkage void __sched preempt_schedule(void)
3721{
3722 struct thread_info *ti = current_thread_info();
6478d880 3723
1da177e4
LT
3724 /*
3725 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3726 * we do not want to preempt the current task. Just return..
1da177e4 3727 */
beed33a8 3728 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3729 return;
3730
3a5c359a
AK
3731 do {
3732 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3733 schedule();
3a5c359a 3734 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3735
3a5c359a
AK
3736 /*
3737 * Check again in case we missed a preemption opportunity
3738 * between schedule and now.
3739 */
3740 barrier();
5ed0cec0 3741 } while (need_resched());
1da177e4 3742}
1da177e4
LT
3743EXPORT_SYMBOL(preempt_schedule);
3744
3745/*
2ed6e34f 3746 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3747 * off of irq context.
3748 * Note, that this is called and return with irqs disabled. This will
3749 * protect us against recursive calling from irq.
3750 */
3751asmlinkage void __sched preempt_schedule_irq(void)
3752{
3753 struct thread_info *ti = current_thread_info();
6478d880 3754
2ed6e34f 3755 /* Catch callers which need to be fixed */
1da177e4
LT
3756 BUG_ON(ti->preempt_count || !irqs_disabled());
3757
3a5c359a
AK
3758 do {
3759 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3760 local_irq_enable();
3761 schedule();
3762 local_irq_disable();
3a5c359a 3763 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3764
3a5c359a
AK
3765 /*
3766 * Check again in case we missed a preemption opportunity
3767 * between schedule and now.
3768 */
3769 barrier();
5ed0cec0 3770 } while (need_resched());
1da177e4
LT
3771}
3772
3773#endif /* CONFIG_PREEMPT */
3774
63859d4f 3775int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3776 void *key)
1da177e4 3777{
63859d4f 3778 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3779}
1da177e4
LT
3780EXPORT_SYMBOL(default_wake_function);
3781
3782/*
41a2d6cf
IM
3783 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3784 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3785 * number) then we wake all the non-exclusive tasks and one exclusive task.
3786 *
3787 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3788 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3789 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3790 */
78ddb08f 3791static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3792 int nr_exclusive, int wake_flags, void *key)
1da177e4 3793{
2e45874c 3794 wait_queue_t *curr, *next;
1da177e4 3795
2e45874c 3796 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3797 unsigned flags = curr->flags;
3798
63859d4f 3799 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3800 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3801 break;
3802 }
3803}
3804
3805/**
3806 * __wake_up - wake up threads blocked on a waitqueue.
3807 * @q: the waitqueue
3808 * @mode: which threads
3809 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3810 * @key: is directly passed to the wakeup function
50fa610a
DH
3811 *
3812 * It may be assumed that this function implies a write memory barrier before
3813 * changing the task state if and only if any tasks are woken up.
1da177e4 3814 */
7ad5b3a5 3815void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3816 int nr_exclusive, void *key)
1da177e4
LT
3817{
3818 unsigned long flags;
3819
3820 spin_lock_irqsave(&q->lock, flags);
3821 __wake_up_common(q, mode, nr_exclusive, 0, key);
3822 spin_unlock_irqrestore(&q->lock, flags);
3823}
1da177e4
LT
3824EXPORT_SYMBOL(__wake_up);
3825
3826/*
3827 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3828 */
7ad5b3a5 3829void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3830{
3831 __wake_up_common(q, mode, 1, 0, NULL);
3832}
22c43c81 3833EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3834
4ede816a
DL
3835void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3836{
3837 __wake_up_common(q, mode, 1, 0, key);
3838}
3839
1da177e4 3840/**
4ede816a 3841 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3842 * @q: the waitqueue
3843 * @mode: which threads
3844 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3845 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3846 *
3847 * The sync wakeup differs that the waker knows that it will schedule
3848 * away soon, so while the target thread will be woken up, it will not
3849 * be migrated to another CPU - ie. the two threads are 'synchronized'
3850 * with each other. This can prevent needless bouncing between CPUs.
3851 *
3852 * On UP it can prevent extra preemption.
50fa610a
DH
3853 *
3854 * It may be assumed that this function implies a write memory barrier before
3855 * changing the task state if and only if any tasks are woken up.
1da177e4 3856 */
4ede816a
DL
3857void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3858 int nr_exclusive, void *key)
1da177e4
LT
3859{
3860 unsigned long flags;
7d478721 3861 int wake_flags = WF_SYNC;
1da177e4
LT
3862
3863 if (unlikely(!q))
3864 return;
3865
3866 if (unlikely(!nr_exclusive))
7d478721 3867 wake_flags = 0;
1da177e4
LT
3868
3869 spin_lock_irqsave(&q->lock, flags);
7d478721 3870 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3871 spin_unlock_irqrestore(&q->lock, flags);
3872}
4ede816a
DL
3873EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3874
3875/*
3876 * __wake_up_sync - see __wake_up_sync_key()
3877 */
3878void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3879{
3880 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3881}
1da177e4
LT
3882EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3883
65eb3dc6
KD
3884/**
3885 * complete: - signals a single thread waiting on this completion
3886 * @x: holds the state of this particular completion
3887 *
3888 * This will wake up a single thread waiting on this completion. Threads will be
3889 * awakened in the same order in which they were queued.
3890 *
3891 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3892 *
3893 * It may be assumed that this function implies a write memory barrier before
3894 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3895 */
b15136e9 3896void complete(struct completion *x)
1da177e4
LT
3897{
3898 unsigned long flags;
3899
3900 spin_lock_irqsave(&x->wait.lock, flags);
3901 x->done++;
d9514f6c 3902 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3903 spin_unlock_irqrestore(&x->wait.lock, flags);
3904}
3905EXPORT_SYMBOL(complete);
3906
65eb3dc6
KD
3907/**
3908 * complete_all: - signals all threads waiting on this completion
3909 * @x: holds the state of this particular completion
3910 *
3911 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3912 *
3913 * It may be assumed that this function implies a write memory barrier before
3914 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3915 */
b15136e9 3916void complete_all(struct completion *x)
1da177e4
LT
3917{
3918 unsigned long flags;
3919
3920 spin_lock_irqsave(&x->wait.lock, flags);
3921 x->done += UINT_MAX/2;
d9514f6c 3922 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3923 spin_unlock_irqrestore(&x->wait.lock, flags);
3924}
3925EXPORT_SYMBOL(complete_all);
3926
8cbbe86d
AK
3927static inline long __sched
3928do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3929{
1da177e4
LT
3930 if (!x->done) {
3931 DECLARE_WAITQUEUE(wait, current);
3932
a93d2f17 3933 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3934 do {
94d3d824 3935 if (signal_pending_state(state, current)) {
ea71a546
ON
3936 timeout = -ERESTARTSYS;
3937 break;
8cbbe86d
AK
3938 }
3939 __set_current_state(state);
1da177e4
LT
3940 spin_unlock_irq(&x->wait.lock);
3941 timeout = schedule_timeout(timeout);
3942 spin_lock_irq(&x->wait.lock);
ea71a546 3943 } while (!x->done && timeout);
1da177e4 3944 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3945 if (!x->done)
3946 return timeout;
1da177e4
LT
3947 }
3948 x->done--;
ea71a546 3949 return timeout ?: 1;
1da177e4 3950}
1da177e4 3951
8cbbe86d
AK
3952static long __sched
3953wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3954{
1da177e4
LT
3955 might_sleep();
3956
3957 spin_lock_irq(&x->wait.lock);
8cbbe86d 3958 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3959 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3960 return timeout;
3961}
1da177e4 3962
65eb3dc6
KD
3963/**
3964 * wait_for_completion: - waits for completion of a task
3965 * @x: holds the state of this particular completion
3966 *
3967 * This waits to be signaled for completion of a specific task. It is NOT
3968 * interruptible and there is no timeout.
3969 *
3970 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3971 * and interrupt capability. Also see complete().
3972 */
b15136e9 3973void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3974{
3975 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3976}
8cbbe86d 3977EXPORT_SYMBOL(wait_for_completion);
1da177e4 3978
65eb3dc6
KD
3979/**
3980 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3981 * @x: holds the state of this particular completion
3982 * @timeout: timeout value in jiffies
3983 *
3984 * This waits for either a completion of a specific task to be signaled or for a
3985 * specified timeout to expire. The timeout is in jiffies. It is not
3986 * interruptible.
3987 */
b15136e9 3988unsigned long __sched
8cbbe86d 3989wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3990{
8cbbe86d 3991 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3992}
8cbbe86d 3993EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3994
65eb3dc6
KD
3995/**
3996 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3997 * @x: holds the state of this particular completion
3998 *
3999 * This waits for completion of a specific task to be signaled. It is
4000 * interruptible.
4001 */
8cbbe86d 4002int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4003{
51e97990
AK
4004 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4005 if (t == -ERESTARTSYS)
4006 return t;
4007 return 0;
0fec171c 4008}
8cbbe86d 4009EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4010
65eb3dc6
KD
4011/**
4012 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4013 * @x: holds the state of this particular completion
4014 * @timeout: timeout value in jiffies
4015 *
4016 * This waits for either a completion of a specific task to be signaled or for a
4017 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4018 */
b15136e9 4019unsigned long __sched
8cbbe86d
AK
4020wait_for_completion_interruptible_timeout(struct completion *x,
4021 unsigned long timeout)
0fec171c 4022{
8cbbe86d 4023 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4024}
8cbbe86d 4025EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4026
65eb3dc6
KD
4027/**
4028 * wait_for_completion_killable: - waits for completion of a task (killable)
4029 * @x: holds the state of this particular completion
4030 *
4031 * This waits to be signaled for completion of a specific task. It can be
4032 * interrupted by a kill signal.
4033 */
009e577e
MW
4034int __sched wait_for_completion_killable(struct completion *x)
4035{
4036 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4037 if (t == -ERESTARTSYS)
4038 return t;
4039 return 0;
4040}
4041EXPORT_SYMBOL(wait_for_completion_killable);
4042
0aa12fb4
SW
4043/**
4044 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4045 * @x: holds the state of this particular completion
4046 * @timeout: timeout value in jiffies
4047 *
4048 * This waits for either a completion of a specific task to be
4049 * signaled or for a specified timeout to expire. It can be
4050 * interrupted by a kill signal. The timeout is in jiffies.
4051 */
4052unsigned long __sched
4053wait_for_completion_killable_timeout(struct completion *x,
4054 unsigned long timeout)
4055{
4056 return wait_for_common(x, timeout, TASK_KILLABLE);
4057}
4058EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4059
be4de352
DC
4060/**
4061 * try_wait_for_completion - try to decrement a completion without blocking
4062 * @x: completion structure
4063 *
4064 * Returns: 0 if a decrement cannot be done without blocking
4065 * 1 if a decrement succeeded.
4066 *
4067 * If a completion is being used as a counting completion,
4068 * attempt to decrement the counter without blocking. This
4069 * enables us to avoid waiting if the resource the completion
4070 * is protecting is not available.
4071 */
4072bool try_wait_for_completion(struct completion *x)
4073{
7539a3b3 4074 unsigned long flags;
be4de352
DC
4075 int ret = 1;
4076
7539a3b3 4077 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4078 if (!x->done)
4079 ret = 0;
4080 else
4081 x->done--;
7539a3b3 4082 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4083 return ret;
4084}
4085EXPORT_SYMBOL(try_wait_for_completion);
4086
4087/**
4088 * completion_done - Test to see if a completion has any waiters
4089 * @x: completion structure
4090 *
4091 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4092 * 1 if there are no waiters.
4093 *
4094 */
4095bool completion_done(struct completion *x)
4096{
7539a3b3 4097 unsigned long flags;
be4de352
DC
4098 int ret = 1;
4099
7539a3b3 4100 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4101 if (!x->done)
4102 ret = 0;
7539a3b3 4103 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4104 return ret;
4105}
4106EXPORT_SYMBOL(completion_done);
4107
8cbbe86d
AK
4108static long __sched
4109sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4110{
0fec171c
IM
4111 unsigned long flags;
4112 wait_queue_t wait;
4113
4114 init_waitqueue_entry(&wait, current);
1da177e4 4115
8cbbe86d 4116 __set_current_state(state);
1da177e4 4117
8cbbe86d
AK
4118 spin_lock_irqsave(&q->lock, flags);
4119 __add_wait_queue(q, &wait);
4120 spin_unlock(&q->lock);
4121 timeout = schedule_timeout(timeout);
4122 spin_lock_irq(&q->lock);
4123 __remove_wait_queue(q, &wait);
4124 spin_unlock_irqrestore(&q->lock, flags);
4125
4126 return timeout;
4127}
4128
4129void __sched interruptible_sleep_on(wait_queue_head_t *q)
4130{
4131 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4132}
1da177e4
LT
4133EXPORT_SYMBOL(interruptible_sleep_on);
4134
0fec171c 4135long __sched
95cdf3b7 4136interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4137{
8cbbe86d 4138 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4139}
1da177e4
LT
4140EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4141
0fec171c 4142void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4143{
8cbbe86d 4144 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4145}
1da177e4
LT
4146EXPORT_SYMBOL(sleep_on);
4147
0fec171c 4148long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4149{
8cbbe86d 4150 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4151}
1da177e4
LT
4152EXPORT_SYMBOL(sleep_on_timeout);
4153
b29739f9
IM
4154#ifdef CONFIG_RT_MUTEXES
4155
4156/*
4157 * rt_mutex_setprio - set the current priority of a task
4158 * @p: task
4159 * @prio: prio value (kernel-internal form)
4160 *
4161 * This function changes the 'effective' priority of a task. It does
4162 * not touch ->normal_prio like __setscheduler().
4163 *
4164 * Used by the rt_mutex code to implement priority inheritance logic.
4165 */
36c8b586 4166void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4167{
4168 unsigned long flags;
83b699ed 4169 int oldprio, on_rq, running;
70b97a7f 4170 struct rq *rq;
83ab0aa0 4171 const struct sched_class *prev_class;
b29739f9
IM
4172
4173 BUG_ON(prio < 0 || prio > MAX_PRIO);
4174
4175 rq = task_rq_lock(p, &flags);
4176
d5f9f942 4177 oldprio = p->prio;
83ab0aa0 4178 prev_class = p->sched_class;
dd41f596 4179 on_rq = p->se.on_rq;
051a1d1a 4180 running = task_current(rq, p);
0e1f3483 4181 if (on_rq)
69be72c1 4182 dequeue_task(rq, p, 0);
0e1f3483
HS
4183 if (running)
4184 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4185
4186 if (rt_prio(prio))
4187 p->sched_class = &rt_sched_class;
4188 else
4189 p->sched_class = &fair_sched_class;
4190
b29739f9
IM
4191 p->prio = prio;
4192
0e1f3483
HS
4193 if (running)
4194 p->sched_class->set_curr_task(rq);
dd41f596 4195 if (on_rq) {
371fd7e7 4196 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4197
4198 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4199 }
4200 task_rq_unlock(rq, &flags);
4201}
4202
4203#endif
4204
36c8b586 4205void set_user_nice(struct task_struct *p, long nice)
1da177e4 4206{
dd41f596 4207 int old_prio, delta, on_rq;
1da177e4 4208 unsigned long flags;
70b97a7f 4209 struct rq *rq;
1da177e4
LT
4210
4211 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4212 return;
4213 /*
4214 * We have to be careful, if called from sys_setpriority(),
4215 * the task might be in the middle of scheduling on another CPU.
4216 */
4217 rq = task_rq_lock(p, &flags);
4218 /*
4219 * The RT priorities are set via sched_setscheduler(), but we still
4220 * allow the 'normal' nice value to be set - but as expected
4221 * it wont have any effect on scheduling until the task is
dd41f596 4222 * SCHED_FIFO/SCHED_RR:
1da177e4 4223 */
e05606d3 4224 if (task_has_rt_policy(p)) {
1da177e4
LT
4225 p->static_prio = NICE_TO_PRIO(nice);
4226 goto out_unlock;
4227 }
dd41f596 4228 on_rq = p->se.on_rq;
c09595f6 4229 if (on_rq)
69be72c1 4230 dequeue_task(rq, p, 0);
1da177e4 4231
1da177e4 4232 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4233 set_load_weight(p);
b29739f9
IM
4234 old_prio = p->prio;
4235 p->prio = effective_prio(p);
4236 delta = p->prio - old_prio;
1da177e4 4237
dd41f596 4238 if (on_rq) {
371fd7e7 4239 enqueue_task(rq, p, 0);
1da177e4 4240 /*
d5f9f942
AM
4241 * If the task increased its priority or is running and
4242 * lowered its priority, then reschedule its CPU:
1da177e4 4243 */
d5f9f942 4244 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4245 resched_task(rq->curr);
4246 }
4247out_unlock:
4248 task_rq_unlock(rq, &flags);
4249}
1da177e4
LT
4250EXPORT_SYMBOL(set_user_nice);
4251
e43379f1
MM
4252/*
4253 * can_nice - check if a task can reduce its nice value
4254 * @p: task
4255 * @nice: nice value
4256 */
36c8b586 4257int can_nice(const struct task_struct *p, const int nice)
e43379f1 4258{
024f4747
MM
4259 /* convert nice value [19,-20] to rlimit style value [1,40] */
4260 int nice_rlim = 20 - nice;
48f24c4d 4261
78d7d407 4262 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4263 capable(CAP_SYS_NICE));
4264}
4265
1da177e4
LT
4266#ifdef __ARCH_WANT_SYS_NICE
4267
4268/*
4269 * sys_nice - change the priority of the current process.
4270 * @increment: priority increment
4271 *
4272 * sys_setpriority is a more generic, but much slower function that
4273 * does similar things.
4274 */
5add95d4 4275SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4276{
48f24c4d 4277 long nice, retval;
1da177e4
LT
4278
4279 /*
4280 * Setpriority might change our priority at the same moment.
4281 * We don't have to worry. Conceptually one call occurs first
4282 * and we have a single winner.
4283 */
e43379f1
MM
4284 if (increment < -40)
4285 increment = -40;
1da177e4
LT
4286 if (increment > 40)
4287 increment = 40;
4288
2b8f836f 4289 nice = TASK_NICE(current) + increment;
1da177e4
LT
4290 if (nice < -20)
4291 nice = -20;
4292 if (nice > 19)
4293 nice = 19;
4294
e43379f1
MM
4295 if (increment < 0 && !can_nice(current, nice))
4296 return -EPERM;
4297
1da177e4
LT
4298 retval = security_task_setnice(current, nice);
4299 if (retval)
4300 return retval;
4301
4302 set_user_nice(current, nice);
4303 return 0;
4304}
4305
4306#endif
4307
4308/**
4309 * task_prio - return the priority value of a given task.
4310 * @p: the task in question.
4311 *
4312 * This is the priority value as seen by users in /proc.
4313 * RT tasks are offset by -200. Normal tasks are centered
4314 * around 0, value goes from -16 to +15.
4315 */
36c8b586 4316int task_prio(const struct task_struct *p)
1da177e4
LT
4317{
4318 return p->prio - MAX_RT_PRIO;
4319}
4320
4321/**
4322 * task_nice - return the nice value of a given task.
4323 * @p: the task in question.
4324 */
36c8b586 4325int task_nice(const struct task_struct *p)
1da177e4
LT
4326{
4327 return TASK_NICE(p);
4328}
150d8bed 4329EXPORT_SYMBOL(task_nice);
1da177e4
LT
4330
4331/**
4332 * idle_cpu - is a given cpu idle currently?
4333 * @cpu: the processor in question.
4334 */
4335int idle_cpu(int cpu)
4336{
4337 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4338}
4339
1da177e4
LT
4340/**
4341 * idle_task - return the idle task for a given cpu.
4342 * @cpu: the processor in question.
4343 */
36c8b586 4344struct task_struct *idle_task(int cpu)
1da177e4
LT
4345{
4346 return cpu_rq(cpu)->idle;
4347}
4348
4349/**
4350 * find_process_by_pid - find a process with a matching PID value.
4351 * @pid: the pid in question.
4352 */
a9957449 4353static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4354{
228ebcbe 4355 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4356}
4357
4358/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4359static void
4360__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4361{
dd41f596 4362 BUG_ON(p->se.on_rq);
48f24c4d 4363
1da177e4
LT
4364 p->policy = policy;
4365 p->rt_priority = prio;
b29739f9
IM
4366 p->normal_prio = normal_prio(p);
4367 /* we are holding p->pi_lock already */
4368 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4369 if (rt_prio(p->prio))
4370 p->sched_class = &rt_sched_class;
4371 else
4372 p->sched_class = &fair_sched_class;
2dd73a4f 4373 set_load_weight(p);
1da177e4
LT
4374}
4375
c69e8d9c
DH
4376/*
4377 * check the target process has a UID that matches the current process's
4378 */
4379static bool check_same_owner(struct task_struct *p)
4380{
4381 const struct cred *cred = current_cred(), *pcred;
4382 bool match;
4383
4384 rcu_read_lock();
4385 pcred = __task_cred(p);
4386 match = (cred->euid == pcred->euid ||
4387 cred->euid == pcred->uid);
4388 rcu_read_unlock();
4389 return match;
4390}
4391
961ccddd
RR
4392static int __sched_setscheduler(struct task_struct *p, int policy,
4393 struct sched_param *param, bool user)
1da177e4 4394{
83b699ed 4395 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4396 unsigned long flags;
83ab0aa0 4397 const struct sched_class *prev_class;
70b97a7f 4398 struct rq *rq;
ca94c442 4399 int reset_on_fork;
1da177e4 4400
66e5393a
SR
4401 /* may grab non-irq protected spin_locks */
4402 BUG_ON(in_interrupt());
1da177e4
LT
4403recheck:
4404 /* double check policy once rq lock held */
ca94c442
LP
4405 if (policy < 0) {
4406 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4407 policy = oldpolicy = p->policy;
ca94c442
LP
4408 } else {
4409 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4410 policy &= ~SCHED_RESET_ON_FORK;
4411
4412 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4413 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4414 policy != SCHED_IDLE)
4415 return -EINVAL;
4416 }
4417
1da177e4
LT
4418 /*
4419 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4421 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4422 */
4423 if (param->sched_priority < 0 ||
95cdf3b7 4424 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4425 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4426 return -EINVAL;
e05606d3 4427 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4428 return -EINVAL;
4429
37e4ab3f
OC
4430 /*
4431 * Allow unprivileged RT tasks to decrease priority:
4432 */
961ccddd 4433 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4434 if (rt_policy(policy)) {
8dc3e909 4435 unsigned long rlim_rtprio;
8dc3e909
ON
4436
4437 if (!lock_task_sighand(p, &flags))
4438 return -ESRCH;
78d7d407 4439 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4440 unlock_task_sighand(p, &flags);
4441
4442 /* can't set/change the rt policy */
4443 if (policy != p->policy && !rlim_rtprio)
4444 return -EPERM;
4445
4446 /* can't increase priority */
4447 if (param->sched_priority > p->rt_priority &&
4448 param->sched_priority > rlim_rtprio)
4449 return -EPERM;
4450 }
dd41f596
IM
4451 /*
4452 * Like positive nice levels, dont allow tasks to
4453 * move out of SCHED_IDLE either:
4454 */
4455 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4456 return -EPERM;
5fe1d75f 4457
37e4ab3f 4458 /* can't change other user's priorities */
c69e8d9c 4459 if (!check_same_owner(p))
37e4ab3f 4460 return -EPERM;
ca94c442
LP
4461
4462 /* Normal users shall not reset the sched_reset_on_fork flag */
4463 if (p->sched_reset_on_fork && !reset_on_fork)
4464 return -EPERM;
37e4ab3f 4465 }
1da177e4 4466
725aad24 4467 if (user) {
725aad24
JF
4468 retval = security_task_setscheduler(p, policy, param);
4469 if (retval)
4470 return retval;
4471 }
4472
b29739f9
IM
4473 /*
4474 * make sure no PI-waiters arrive (or leave) while we are
4475 * changing the priority of the task:
4476 */
1d615482 4477 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4478 /*
4479 * To be able to change p->policy safely, the apropriate
4480 * runqueue lock must be held.
4481 */
b29739f9 4482 rq = __task_rq_lock(p);
dc61b1d6
PZ
4483
4484#ifdef CONFIG_RT_GROUP_SCHED
4485 if (user) {
4486 /*
4487 * Do not allow realtime tasks into groups that have no runtime
4488 * assigned.
4489 */
4490 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4491 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4492 __task_rq_unlock(rq);
4493 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4494 return -EPERM;
4495 }
4496 }
4497#endif
4498
1da177e4
LT
4499 /* recheck policy now with rq lock held */
4500 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4501 policy = oldpolicy = -1;
b29739f9 4502 __task_rq_unlock(rq);
1d615482 4503 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4504 goto recheck;
4505 }
dd41f596 4506 on_rq = p->se.on_rq;
051a1d1a 4507 running = task_current(rq, p);
0e1f3483 4508 if (on_rq)
2e1cb74a 4509 deactivate_task(rq, p, 0);
0e1f3483
HS
4510 if (running)
4511 p->sched_class->put_prev_task(rq, p);
f6b53205 4512
ca94c442
LP
4513 p->sched_reset_on_fork = reset_on_fork;
4514
1da177e4 4515 oldprio = p->prio;
83ab0aa0 4516 prev_class = p->sched_class;
dd41f596 4517 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4518
0e1f3483
HS
4519 if (running)
4520 p->sched_class->set_curr_task(rq);
dd41f596
IM
4521 if (on_rq) {
4522 activate_task(rq, p, 0);
cb469845
SR
4523
4524 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4525 }
b29739f9 4526 __task_rq_unlock(rq);
1d615482 4527 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4528
95e02ca9
TG
4529 rt_mutex_adjust_pi(p);
4530
1da177e4
LT
4531 return 0;
4532}
961ccddd
RR
4533
4534/**
4535 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4536 * @p: the task in question.
4537 * @policy: new policy.
4538 * @param: structure containing the new RT priority.
4539 *
4540 * NOTE that the task may be already dead.
4541 */
4542int sched_setscheduler(struct task_struct *p, int policy,
4543 struct sched_param *param)
4544{
4545 return __sched_setscheduler(p, policy, param, true);
4546}
1da177e4
LT
4547EXPORT_SYMBOL_GPL(sched_setscheduler);
4548
961ccddd
RR
4549/**
4550 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4551 * @p: the task in question.
4552 * @policy: new policy.
4553 * @param: structure containing the new RT priority.
4554 *
4555 * Just like sched_setscheduler, only don't bother checking if the
4556 * current context has permission. For example, this is needed in
4557 * stop_machine(): we create temporary high priority worker threads,
4558 * but our caller might not have that capability.
4559 */
4560int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4561 struct sched_param *param)
4562{
4563 return __sched_setscheduler(p, policy, param, false);
4564}
4565
95cdf3b7
IM
4566static int
4567do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4568{
1da177e4
LT
4569 struct sched_param lparam;
4570 struct task_struct *p;
36c8b586 4571 int retval;
1da177e4
LT
4572
4573 if (!param || pid < 0)
4574 return -EINVAL;
4575 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4576 return -EFAULT;
5fe1d75f
ON
4577
4578 rcu_read_lock();
4579 retval = -ESRCH;
1da177e4 4580 p = find_process_by_pid(pid);
5fe1d75f
ON
4581 if (p != NULL)
4582 retval = sched_setscheduler(p, policy, &lparam);
4583 rcu_read_unlock();
36c8b586 4584
1da177e4
LT
4585 return retval;
4586}
4587
4588/**
4589 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4590 * @pid: the pid in question.
4591 * @policy: new policy.
4592 * @param: structure containing the new RT priority.
4593 */
5add95d4
HC
4594SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4595 struct sched_param __user *, param)
1da177e4 4596{
c21761f1
JB
4597 /* negative values for policy are not valid */
4598 if (policy < 0)
4599 return -EINVAL;
4600
1da177e4
LT
4601 return do_sched_setscheduler(pid, policy, param);
4602}
4603
4604/**
4605 * sys_sched_setparam - set/change the RT priority of a thread
4606 * @pid: the pid in question.
4607 * @param: structure containing the new RT priority.
4608 */
5add95d4 4609SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4610{
4611 return do_sched_setscheduler(pid, -1, param);
4612}
4613
4614/**
4615 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4616 * @pid: the pid in question.
4617 */
5add95d4 4618SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4619{
36c8b586 4620 struct task_struct *p;
3a5c359a 4621 int retval;
1da177e4
LT
4622
4623 if (pid < 0)
3a5c359a 4624 return -EINVAL;
1da177e4
LT
4625
4626 retval = -ESRCH;
5fe85be0 4627 rcu_read_lock();
1da177e4
LT
4628 p = find_process_by_pid(pid);
4629 if (p) {
4630 retval = security_task_getscheduler(p);
4631 if (!retval)
ca94c442
LP
4632 retval = p->policy
4633 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4634 }
5fe85be0 4635 rcu_read_unlock();
1da177e4
LT
4636 return retval;
4637}
4638
4639/**
ca94c442 4640 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4641 * @pid: the pid in question.
4642 * @param: structure containing the RT priority.
4643 */
5add95d4 4644SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4645{
4646 struct sched_param lp;
36c8b586 4647 struct task_struct *p;
3a5c359a 4648 int retval;
1da177e4
LT
4649
4650 if (!param || pid < 0)
3a5c359a 4651 return -EINVAL;
1da177e4 4652
5fe85be0 4653 rcu_read_lock();
1da177e4
LT
4654 p = find_process_by_pid(pid);
4655 retval = -ESRCH;
4656 if (!p)
4657 goto out_unlock;
4658
4659 retval = security_task_getscheduler(p);
4660 if (retval)
4661 goto out_unlock;
4662
4663 lp.sched_priority = p->rt_priority;
5fe85be0 4664 rcu_read_unlock();
1da177e4
LT
4665
4666 /*
4667 * This one might sleep, we cannot do it with a spinlock held ...
4668 */
4669 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4670
1da177e4
LT
4671 return retval;
4672
4673out_unlock:
5fe85be0 4674 rcu_read_unlock();
1da177e4
LT
4675 return retval;
4676}
4677
96f874e2 4678long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4679{
5a16f3d3 4680 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4681 struct task_struct *p;
4682 int retval;
1da177e4 4683
95402b38 4684 get_online_cpus();
23f5d142 4685 rcu_read_lock();
1da177e4
LT
4686
4687 p = find_process_by_pid(pid);
4688 if (!p) {
23f5d142 4689 rcu_read_unlock();
95402b38 4690 put_online_cpus();
1da177e4
LT
4691 return -ESRCH;
4692 }
4693
23f5d142 4694 /* Prevent p going away */
1da177e4 4695 get_task_struct(p);
23f5d142 4696 rcu_read_unlock();
1da177e4 4697
5a16f3d3
RR
4698 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4699 retval = -ENOMEM;
4700 goto out_put_task;
4701 }
4702 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4703 retval = -ENOMEM;
4704 goto out_free_cpus_allowed;
4705 }
1da177e4 4706 retval = -EPERM;
c69e8d9c 4707 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4708 goto out_unlock;
4709
e7834f8f
DQ
4710 retval = security_task_setscheduler(p, 0, NULL);
4711 if (retval)
4712 goto out_unlock;
4713
5a16f3d3
RR
4714 cpuset_cpus_allowed(p, cpus_allowed);
4715 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4716 again:
5a16f3d3 4717 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4718
8707d8b8 4719 if (!retval) {
5a16f3d3
RR
4720 cpuset_cpus_allowed(p, cpus_allowed);
4721 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4722 /*
4723 * We must have raced with a concurrent cpuset
4724 * update. Just reset the cpus_allowed to the
4725 * cpuset's cpus_allowed
4726 */
5a16f3d3 4727 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4728 goto again;
4729 }
4730 }
1da177e4 4731out_unlock:
5a16f3d3
RR
4732 free_cpumask_var(new_mask);
4733out_free_cpus_allowed:
4734 free_cpumask_var(cpus_allowed);
4735out_put_task:
1da177e4 4736 put_task_struct(p);
95402b38 4737 put_online_cpus();
1da177e4
LT
4738 return retval;
4739}
4740
4741static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4742 struct cpumask *new_mask)
1da177e4 4743{
96f874e2
RR
4744 if (len < cpumask_size())
4745 cpumask_clear(new_mask);
4746 else if (len > cpumask_size())
4747 len = cpumask_size();
4748
1da177e4
LT
4749 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4750}
4751
4752/**
4753 * sys_sched_setaffinity - set the cpu affinity of a process
4754 * @pid: pid of the process
4755 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4756 * @user_mask_ptr: user-space pointer to the new cpu mask
4757 */
5add95d4
HC
4758SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4759 unsigned long __user *, user_mask_ptr)
1da177e4 4760{
5a16f3d3 4761 cpumask_var_t new_mask;
1da177e4
LT
4762 int retval;
4763
5a16f3d3
RR
4764 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4765 return -ENOMEM;
1da177e4 4766
5a16f3d3
RR
4767 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4768 if (retval == 0)
4769 retval = sched_setaffinity(pid, new_mask);
4770 free_cpumask_var(new_mask);
4771 return retval;
1da177e4
LT
4772}
4773
96f874e2 4774long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4775{
36c8b586 4776 struct task_struct *p;
31605683
TG
4777 unsigned long flags;
4778 struct rq *rq;
1da177e4 4779 int retval;
1da177e4 4780
95402b38 4781 get_online_cpus();
23f5d142 4782 rcu_read_lock();
1da177e4
LT
4783
4784 retval = -ESRCH;
4785 p = find_process_by_pid(pid);
4786 if (!p)
4787 goto out_unlock;
4788
e7834f8f
DQ
4789 retval = security_task_getscheduler(p);
4790 if (retval)
4791 goto out_unlock;
4792
31605683 4793 rq = task_rq_lock(p, &flags);
96f874e2 4794 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4795 task_rq_unlock(rq, &flags);
1da177e4
LT
4796
4797out_unlock:
23f5d142 4798 rcu_read_unlock();
95402b38 4799 put_online_cpus();
1da177e4 4800
9531b62f 4801 return retval;
1da177e4
LT
4802}
4803
4804/**
4805 * sys_sched_getaffinity - get the cpu affinity of a process
4806 * @pid: pid of the process
4807 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4808 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4809 */
5add95d4
HC
4810SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4811 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4812{
4813 int ret;
f17c8607 4814 cpumask_var_t mask;
1da177e4 4815
84fba5ec 4816 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4817 return -EINVAL;
4818 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4819 return -EINVAL;
4820
f17c8607
RR
4821 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4822 return -ENOMEM;
1da177e4 4823
f17c8607
RR
4824 ret = sched_getaffinity(pid, mask);
4825 if (ret == 0) {
8bc037fb 4826 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4827
4828 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4829 ret = -EFAULT;
4830 else
cd3d8031 4831 ret = retlen;
f17c8607
RR
4832 }
4833 free_cpumask_var(mask);
1da177e4 4834
f17c8607 4835 return ret;
1da177e4
LT
4836}
4837
4838/**
4839 * sys_sched_yield - yield the current processor to other threads.
4840 *
dd41f596
IM
4841 * This function yields the current CPU to other tasks. If there are no
4842 * other threads running on this CPU then this function will return.
1da177e4 4843 */
5add95d4 4844SYSCALL_DEFINE0(sched_yield)
1da177e4 4845{
70b97a7f 4846 struct rq *rq = this_rq_lock();
1da177e4 4847
2d72376b 4848 schedstat_inc(rq, yld_count);
4530d7ab 4849 current->sched_class->yield_task(rq);
1da177e4
LT
4850
4851 /*
4852 * Since we are going to call schedule() anyway, there's
4853 * no need to preempt or enable interrupts:
4854 */
4855 __release(rq->lock);
8a25d5de 4856 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4857 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4858 preempt_enable_no_resched();
4859
4860 schedule();
4861
4862 return 0;
4863}
4864
d86ee480
PZ
4865static inline int should_resched(void)
4866{
4867 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4868}
4869
e7b38404 4870static void __cond_resched(void)
1da177e4 4871{
e7aaaa69
FW
4872 add_preempt_count(PREEMPT_ACTIVE);
4873 schedule();
4874 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4875}
4876
02b67cc3 4877int __sched _cond_resched(void)
1da177e4 4878{
d86ee480 4879 if (should_resched()) {
1da177e4
LT
4880 __cond_resched();
4881 return 1;
4882 }
4883 return 0;
4884}
02b67cc3 4885EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4886
4887/*
613afbf8 4888 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4889 * call schedule, and on return reacquire the lock.
4890 *
41a2d6cf 4891 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4892 * operations here to prevent schedule() from being called twice (once via
4893 * spin_unlock(), once by hand).
4894 */
613afbf8 4895int __cond_resched_lock(spinlock_t *lock)
1da177e4 4896{
d86ee480 4897 int resched = should_resched();
6df3cecb
JK
4898 int ret = 0;
4899
f607c668
PZ
4900 lockdep_assert_held(lock);
4901
95c354fe 4902 if (spin_needbreak(lock) || resched) {
1da177e4 4903 spin_unlock(lock);
d86ee480 4904 if (resched)
95c354fe
NP
4905 __cond_resched();
4906 else
4907 cpu_relax();
6df3cecb 4908 ret = 1;
1da177e4 4909 spin_lock(lock);
1da177e4 4910 }
6df3cecb 4911 return ret;
1da177e4 4912}
613afbf8 4913EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4914
613afbf8 4915int __sched __cond_resched_softirq(void)
1da177e4
LT
4916{
4917 BUG_ON(!in_softirq());
4918
d86ee480 4919 if (should_resched()) {
98d82567 4920 local_bh_enable();
1da177e4
LT
4921 __cond_resched();
4922 local_bh_disable();
4923 return 1;
4924 }
4925 return 0;
4926}
613afbf8 4927EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4928
1da177e4
LT
4929/**
4930 * yield - yield the current processor to other threads.
4931 *
72fd4a35 4932 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4933 * thread runnable and calls sys_sched_yield().
4934 */
4935void __sched yield(void)
4936{
4937 set_current_state(TASK_RUNNING);
4938 sys_sched_yield();
4939}
1da177e4
LT
4940EXPORT_SYMBOL(yield);
4941
4942/*
41a2d6cf 4943 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4944 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4945 */
4946void __sched io_schedule(void)
4947{
54d35f29 4948 struct rq *rq = raw_rq();
1da177e4 4949
0ff92245 4950 delayacct_blkio_start();
1da177e4 4951 atomic_inc(&rq->nr_iowait);
8f0dfc34 4952 current->in_iowait = 1;
1da177e4 4953 schedule();
8f0dfc34 4954 current->in_iowait = 0;
1da177e4 4955 atomic_dec(&rq->nr_iowait);
0ff92245 4956 delayacct_blkio_end();
1da177e4 4957}
1da177e4
LT
4958EXPORT_SYMBOL(io_schedule);
4959
4960long __sched io_schedule_timeout(long timeout)
4961{
54d35f29 4962 struct rq *rq = raw_rq();
1da177e4
LT
4963 long ret;
4964
0ff92245 4965 delayacct_blkio_start();
1da177e4 4966 atomic_inc(&rq->nr_iowait);
8f0dfc34 4967 current->in_iowait = 1;
1da177e4 4968 ret = schedule_timeout(timeout);
8f0dfc34 4969 current->in_iowait = 0;
1da177e4 4970 atomic_dec(&rq->nr_iowait);
0ff92245 4971 delayacct_blkio_end();
1da177e4
LT
4972 return ret;
4973}
4974
4975/**
4976 * sys_sched_get_priority_max - return maximum RT priority.
4977 * @policy: scheduling class.
4978 *
4979 * this syscall returns the maximum rt_priority that can be used
4980 * by a given scheduling class.
4981 */
5add95d4 4982SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4983{
4984 int ret = -EINVAL;
4985
4986 switch (policy) {
4987 case SCHED_FIFO:
4988 case SCHED_RR:
4989 ret = MAX_USER_RT_PRIO-1;
4990 break;
4991 case SCHED_NORMAL:
b0a9499c 4992 case SCHED_BATCH:
dd41f596 4993 case SCHED_IDLE:
1da177e4
LT
4994 ret = 0;
4995 break;
4996 }
4997 return ret;
4998}
4999
5000/**
5001 * sys_sched_get_priority_min - return minimum RT priority.
5002 * @policy: scheduling class.
5003 *
5004 * this syscall returns the minimum rt_priority that can be used
5005 * by a given scheduling class.
5006 */
5add95d4 5007SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5008{
5009 int ret = -EINVAL;
5010
5011 switch (policy) {
5012 case SCHED_FIFO:
5013 case SCHED_RR:
5014 ret = 1;
5015 break;
5016 case SCHED_NORMAL:
b0a9499c 5017 case SCHED_BATCH:
dd41f596 5018 case SCHED_IDLE:
1da177e4
LT
5019 ret = 0;
5020 }
5021 return ret;
5022}
5023
5024/**
5025 * sys_sched_rr_get_interval - return the default timeslice of a process.
5026 * @pid: pid of the process.
5027 * @interval: userspace pointer to the timeslice value.
5028 *
5029 * this syscall writes the default timeslice value of a given process
5030 * into the user-space timespec buffer. A value of '0' means infinity.
5031 */
17da2bd9 5032SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5033 struct timespec __user *, interval)
1da177e4 5034{
36c8b586 5035 struct task_struct *p;
a4ec24b4 5036 unsigned int time_slice;
dba091b9
TG
5037 unsigned long flags;
5038 struct rq *rq;
3a5c359a 5039 int retval;
1da177e4 5040 struct timespec t;
1da177e4
LT
5041
5042 if (pid < 0)
3a5c359a 5043 return -EINVAL;
1da177e4
LT
5044
5045 retval = -ESRCH;
1a551ae7 5046 rcu_read_lock();
1da177e4
LT
5047 p = find_process_by_pid(pid);
5048 if (!p)
5049 goto out_unlock;
5050
5051 retval = security_task_getscheduler(p);
5052 if (retval)
5053 goto out_unlock;
5054
dba091b9
TG
5055 rq = task_rq_lock(p, &flags);
5056 time_slice = p->sched_class->get_rr_interval(rq, p);
5057 task_rq_unlock(rq, &flags);
a4ec24b4 5058
1a551ae7 5059 rcu_read_unlock();
a4ec24b4 5060 jiffies_to_timespec(time_slice, &t);
1da177e4 5061 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5062 return retval;
3a5c359a 5063
1da177e4 5064out_unlock:
1a551ae7 5065 rcu_read_unlock();
1da177e4
LT
5066 return retval;
5067}
5068
7c731e0a 5069static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5070
82a1fcb9 5071void sched_show_task(struct task_struct *p)
1da177e4 5072{
1da177e4 5073 unsigned long free = 0;
36c8b586 5074 unsigned state;
1da177e4 5075
1da177e4 5076 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5077 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5078 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5079#if BITS_PER_LONG == 32
1da177e4 5080 if (state == TASK_RUNNING)
3df0fc5b 5081 printk(KERN_CONT " running ");
1da177e4 5082 else
3df0fc5b 5083 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5084#else
5085 if (state == TASK_RUNNING)
3df0fc5b 5086 printk(KERN_CONT " running task ");
1da177e4 5087 else
3df0fc5b 5088 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5089#endif
5090#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5091 free = stack_not_used(p);
1da177e4 5092#endif
3df0fc5b 5093 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5094 task_pid_nr(p), task_pid_nr(p->real_parent),
5095 (unsigned long)task_thread_info(p)->flags);
1da177e4 5096
5fb5e6de 5097 show_stack(p, NULL);
1da177e4
LT
5098}
5099
e59e2ae2 5100void show_state_filter(unsigned long state_filter)
1da177e4 5101{
36c8b586 5102 struct task_struct *g, *p;
1da177e4 5103
4bd77321 5104#if BITS_PER_LONG == 32
3df0fc5b
PZ
5105 printk(KERN_INFO
5106 " task PC stack pid father\n");
1da177e4 5107#else
3df0fc5b
PZ
5108 printk(KERN_INFO
5109 " task PC stack pid father\n");
1da177e4
LT
5110#endif
5111 read_lock(&tasklist_lock);
5112 do_each_thread(g, p) {
5113 /*
5114 * reset the NMI-timeout, listing all files on a slow
5115 * console might take alot of time:
5116 */
5117 touch_nmi_watchdog();
39bc89fd 5118 if (!state_filter || (p->state & state_filter))
82a1fcb9 5119 sched_show_task(p);
1da177e4
LT
5120 } while_each_thread(g, p);
5121
04c9167f
JF
5122 touch_all_softlockup_watchdogs();
5123
dd41f596
IM
5124#ifdef CONFIG_SCHED_DEBUG
5125 sysrq_sched_debug_show();
5126#endif
1da177e4 5127 read_unlock(&tasklist_lock);
e59e2ae2
IM
5128 /*
5129 * Only show locks if all tasks are dumped:
5130 */
93335a21 5131 if (!state_filter)
e59e2ae2 5132 debug_show_all_locks();
1da177e4
LT
5133}
5134
1df21055
IM
5135void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5136{
dd41f596 5137 idle->sched_class = &idle_sched_class;
1df21055
IM
5138}
5139
f340c0d1
IM
5140/**
5141 * init_idle - set up an idle thread for a given CPU
5142 * @idle: task in question
5143 * @cpu: cpu the idle task belongs to
5144 *
5145 * NOTE: this function does not set the idle thread's NEED_RESCHED
5146 * flag, to make booting more robust.
5147 */
5c1e1767 5148void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5149{
70b97a7f 5150 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5151 unsigned long flags;
5152
05fa785c 5153 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5154
dd41f596 5155 __sched_fork(idle);
06b83b5f 5156 idle->state = TASK_RUNNING;
dd41f596
IM
5157 idle->se.exec_start = sched_clock();
5158
96f874e2 5159 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5160 __set_task_cpu(idle, cpu);
1da177e4 5161
1da177e4 5162 rq->curr = rq->idle = idle;
4866cde0
NP
5163#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5164 idle->oncpu = 1;
5165#endif
05fa785c 5166 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5167
5168 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5169#if defined(CONFIG_PREEMPT)
5170 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5171#else
a1261f54 5172 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5173#endif
dd41f596
IM
5174 /*
5175 * The idle tasks have their own, simple scheduling class:
5176 */
5177 idle->sched_class = &idle_sched_class;
fb52607a 5178 ftrace_graph_init_task(idle);
1da177e4
LT
5179}
5180
5181/*
5182 * In a system that switches off the HZ timer nohz_cpu_mask
5183 * indicates which cpus entered this state. This is used
5184 * in the rcu update to wait only for active cpus. For system
5185 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5186 * always be CPU_BITS_NONE.
1da177e4 5187 */
6a7b3dc3 5188cpumask_var_t nohz_cpu_mask;
1da177e4 5189
19978ca6
IM
5190/*
5191 * Increase the granularity value when there are more CPUs,
5192 * because with more CPUs the 'effective latency' as visible
5193 * to users decreases. But the relationship is not linear,
5194 * so pick a second-best guess by going with the log2 of the
5195 * number of CPUs.
5196 *
5197 * This idea comes from the SD scheduler of Con Kolivas:
5198 */
acb4a848 5199static int get_update_sysctl_factor(void)
19978ca6 5200{
4ca3ef71 5201 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5202 unsigned int factor;
5203
5204 switch (sysctl_sched_tunable_scaling) {
5205 case SCHED_TUNABLESCALING_NONE:
5206 factor = 1;
5207 break;
5208 case SCHED_TUNABLESCALING_LINEAR:
5209 factor = cpus;
5210 break;
5211 case SCHED_TUNABLESCALING_LOG:
5212 default:
5213 factor = 1 + ilog2(cpus);
5214 break;
5215 }
19978ca6 5216
acb4a848
CE
5217 return factor;
5218}
19978ca6 5219
acb4a848
CE
5220static void update_sysctl(void)
5221{
5222 unsigned int factor = get_update_sysctl_factor();
19978ca6 5223
0bcdcf28
CE
5224#define SET_SYSCTL(name) \
5225 (sysctl_##name = (factor) * normalized_sysctl_##name)
5226 SET_SYSCTL(sched_min_granularity);
5227 SET_SYSCTL(sched_latency);
5228 SET_SYSCTL(sched_wakeup_granularity);
5229 SET_SYSCTL(sched_shares_ratelimit);
5230#undef SET_SYSCTL
5231}
55cd5340 5232
0bcdcf28
CE
5233static inline void sched_init_granularity(void)
5234{
5235 update_sysctl();
19978ca6
IM
5236}
5237
1da177e4
LT
5238#ifdef CONFIG_SMP
5239/*
5240 * This is how migration works:
5241 *
969c7921
TH
5242 * 1) we invoke migration_cpu_stop() on the target CPU using
5243 * stop_one_cpu().
5244 * 2) stopper starts to run (implicitly forcing the migrated thread
5245 * off the CPU)
5246 * 3) it checks whether the migrated task is still in the wrong runqueue.
5247 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5248 * it and puts it into the right queue.
969c7921
TH
5249 * 5) stopper completes and stop_one_cpu() returns and the migration
5250 * is done.
1da177e4
LT
5251 */
5252
5253/*
5254 * Change a given task's CPU affinity. Migrate the thread to a
5255 * proper CPU and schedule it away if the CPU it's executing on
5256 * is removed from the allowed bitmask.
5257 *
5258 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5259 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5260 * call is not atomic; no spinlocks may be held.
5261 */
96f874e2 5262int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5263{
5264 unsigned long flags;
70b97a7f 5265 struct rq *rq;
969c7921 5266 unsigned int dest_cpu;
48f24c4d 5267 int ret = 0;
1da177e4 5268
65cc8e48
PZ
5269 /*
5270 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5271 * drop the rq->lock and still rely on ->cpus_allowed.
5272 */
5273again:
5274 while (task_is_waking(p))
5275 cpu_relax();
1da177e4 5276 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5277 if (task_is_waking(p)) {
5278 task_rq_unlock(rq, &flags);
5279 goto again;
5280 }
e2912009 5281
6ad4c188 5282 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5283 ret = -EINVAL;
5284 goto out;
5285 }
5286
9985b0ba 5287 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5288 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5289 ret = -EINVAL;
5290 goto out;
5291 }
5292
73fe6aae 5293 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5294 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5295 else {
96f874e2
RR
5296 cpumask_copy(&p->cpus_allowed, new_mask);
5297 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5298 }
5299
1da177e4 5300 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5301 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5302 goto out;
5303
969c7921
TH
5304 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5305 if (migrate_task(p, dest_cpu)) {
5306 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5307 /* Need help from migration thread: drop lock and wait. */
5308 task_rq_unlock(rq, &flags);
969c7921 5309 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5310 tlb_migrate_finish(p->mm);
5311 return 0;
5312 }
5313out:
5314 task_rq_unlock(rq, &flags);
48f24c4d 5315
1da177e4
LT
5316 return ret;
5317}
cd8ba7cd 5318EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5319
5320/*
41a2d6cf 5321 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5322 * this because either it can't run here any more (set_cpus_allowed()
5323 * away from this CPU, or CPU going down), or because we're
5324 * attempting to rebalance this task on exec (sched_exec).
5325 *
5326 * So we race with normal scheduler movements, but that's OK, as long
5327 * as the task is no longer on this CPU.
efc30814
KK
5328 *
5329 * Returns non-zero if task was successfully migrated.
1da177e4 5330 */
efc30814 5331static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5332{
70b97a7f 5333 struct rq *rq_dest, *rq_src;
e2912009 5334 int ret = 0;
1da177e4 5335
e761b772 5336 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5337 return ret;
1da177e4
LT
5338
5339 rq_src = cpu_rq(src_cpu);
5340 rq_dest = cpu_rq(dest_cpu);
5341
5342 double_rq_lock(rq_src, rq_dest);
5343 /* Already moved. */
5344 if (task_cpu(p) != src_cpu)
b1e38734 5345 goto done;
1da177e4 5346 /* Affinity changed (again). */
96f874e2 5347 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5348 goto fail;
1da177e4 5349
e2912009
PZ
5350 /*
5351 * If we're not on a rq, the next wake-up will ensure we're
5352 * placed properly.
5353 */
5354 if (p->se.on_rq) {
2e1cb74a 5355 deactivate_task(rq_src, p, 0);
e2912009 5356 set_task_cpu(p, dest_cpu);
dd41f596 5357 activate_task(rq_dest, p, 0);
15afe09b 5358 check_preempt_curr(rq_dest, p, 0);
1da177e4 5359 }
b1e38734 5360done:
efc30814 5361 ret = 1;
b1e38734 5362fail:
1da177e4 5363 double_rq_unlock(rq_src, rq_dest);
efc30814 5364 return ret;
1da177e4
LT
5365}
5366
5367/*
969c7921
TH
5368 * migration_cpu_stop - this will be executed by a highprio stopper thread
5369 * and performs thread migration by bumping thread off CPU then
5370 * 'pushing' onto another runqueue.
1da177e4 5371 */
969c7921 5372static int migration_cpu_stop(void *data)
1da177e4 5373{
969c7921 5374 struct migration_arg *arg = data;
f7b4cddc 5375
969c7921
TH
5376 /*
5377 * The original target cpu might have gone down and we might
5378 * be on another cpu but it doesn't matter.
5379 */
f7b4cddc 5380 local_irq_disable();
969c7921 5381 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5382 local_irq_enable();
1da177e4 5383 return 0;
f7b4cddc
ON
5384}
5385
1da177e4 5386#ifdef CONFIG_HOTPLUG_CPU
054b9108 5387/*
3a4fa0a2 5388 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5389 */
6a1bdc1b 5390void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5391{
1445c08d
ON
5392 struct rq *rq = cpu_rq(dead_cpu);
5393 int needs_cpu, uninitialized_var(dest_cpu);
5394 unsigned long flags;
e76bd8d9 5395
1445c08d 5396 local_irq_save(flags);
e76bd8d9 5397
1445c08d
ON
5398 raw_spin_lock(&rq->lock);
5399 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5400 if (needs_cpu)
5401 dest_cpu = select_fallback_rq(dead_cpu, p);
5402 raw_spin_unlock(&rq->lock);
c1804d54
ON
5403 /*
5404 * It can only fail if we race with set_cpus_allowed(),
5405 * in the racer should migrate the task anyway.
5406 */
1445c08d 5407 if (needs_cpu)
c1804d54 5408 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5409 local_irq_restore(flags);
1da177e4
LT
5410}
5411
5412/*
5413 * While a dead CPU has no uninterruptible tasks queued at this point,
5414 * it might still have a nonzero ->nr_uninterruptible counter, because
5415 * for performance reasons the counter is not stricly tracking tasks to
5416 * their home CPUs. So we just add the counter to another CPU's counter,
5417 * to keep the global sum constant after CPU-down:
5418 */
70b97a7f 5419static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5420{
6ad4c188 5421 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5422 unsigned long flags;
5423
5424 local_irq_save(flags);
5425 double_rq_lock(rq_src, rq_dest);
5426 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5427 rq_src->nr_uninterruptible = 0;
5428 double_rq_unlock(rq_src, rq_dest);
5429 local_irq_restore(flags);
5430}
5431
5432/* Run through task list and migrate tasks from the dead cpu. */
5433static void migrate_live_tasks(int src_cpu)
5434{
48f24c4d 5435 struct task_struct *p, *t;
1da177e4 5436
f7b4cddc 5437 read_lock(&tasklist_lock);
1da177e4 5438
48f24c4d
IM
5439 do_each_thread(t, p) {
5440 if (p == current)
1da177e4
LT
5441 continue;
5442
48f24c4d
IM
5443 if (task_cpu(p) == src_cpu)
5444 move_task_off_dead_cpu(src_cpu, p);
5445 } while_each_thread(t, p);
1da177e4 5446
f7b4cddc 5447 read_unlock(&tasklist_lock);
1da177e4
LT
5448}
5449
dd41f596
IM
5450/*
5451 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5452 * It does so by boosting its priority to highest possible.
5453 * Used by CPU offline code.
1da177e4
LT
5454 */
5455void sched_idle_next(void)
5456{
48f24c4d 5457 int this_cpu = smp_processor_id();
70b97a7f 5458 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5459 struct task_struct *p = rq->idle;
5460 unsigned long flags;
5461
5462 /* cpu has to be offline */
48f24c4d 5463 BUG_ON(cpu_online(this_cpu));
1da177e4 5464
48f24c4d
IM
5465 /*
5466 * Strictly not necessary since rest of the CPUs are stopped by now
5467 * and interrupts disabled on the current cpu.
1da177e4 5468 */
05fa785c 5469 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5470
dd41f596 5471 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5472
94bc9a7b 5473 activate_task(rq, p, 0);
1da177e4 5474
05fa785c 5475 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5476}
5477
48f24c4d
IM
5478/*
5479 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5480 * offline.
5481 */
5482void idle_task_exit(void)
5483{
5484 struct mm_struct *mm = current->active_mm;
5485
5486 BUG_ON(cpu_online(smp_processor_id()));
5487
5488 if (mm != &init_mm)
5489 switch_mm(mm, &init_mm, current);
5490 mmdrop(mm);
5491}
5492
054b9108 5493/* called under rq->lock with disabled interrupts */
36c8b586 5494static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5495{
70b97a7f 5496 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5497
5498 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5499 BUG_ON(!p->exit_state);
1da177e4
LT
5500
5501 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5502 BUG_ON(p->state == TASK_DEAD);
1da177e4 5503
48f24c4d 5504 get_task_struct(p);
1da177e4
LT
5505
5506 /*
5507 * Drop lock around migration; if someone else moves it,
41a2d6cf 5508 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5509 * fine.
5510 */
05fa785c 5511 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5512 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5513 raw_spin_lock_irq(&rq->lock);
1da177e4 5514
48f24c4d 5515 put_task_struct(p);
1da177e4
LT
5516}
5517
5518/* release_task() removes task from tasklist, so we won't find dead tasks. */
5519static void migrate_dead_tasks(unsigned int dead_cpu)
5520{
70b97a7f 5521 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5522 struct task_struct *next;
48f24c4d 5523
dd41f596
IM
5524 for ( ; ; ) {
5525 if (!rq->nr_running)
5526 break;
b67802ea 5527 next = pick_next_task(rq);
dd41f596
IM
5528 if (!next)
5529 break;
79c53799 5530 next->sched_class->put_prev_task(rq, next);
dd41f596 5531 migrate_dead(dead_cpu, next);
e692ab53 5532
1da177e4
LT
5533 }
5534}
dce48a84
TG
5535
5536/*
5537 * remove the tasks which were accounted by rq from calc_load_tasks.
5538 */
5539static void calc_global_load_remove(struct rq *rq)
5540{
5541 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5542 rq->calc_load_active = 0;
dce48a84 5543}
1da177e4
LT
5544#endif /* CONFIG_HOTPLUG_CPU */
5545
e692ab53
NP
5546#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5547
5548static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5549 {
5550 .procname = "sched_domain",
c57baf1e 5551 .mode = 0555,
e0361851 5552 },
56992309 5553 {}
e692ab53
NP
5554};
5555
5556static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5557 {
5558 .procname = "kernel",
c57baf1e 5559 .mode = 0555,
e0361851
AD
5560 .child = sd_ctl_dir,
5561 },
56992309 5562 {}
e692ab53
NP
5563};
5564
5565static struct ctl_table *sd_alloc_ctl_entry(int n)
5566{
5567 struct ctl_table *entry =
5cf9f062 5568 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5569
e692ab53
NP
5570 return entry;
5571}
5572
6382bc90
MM
5573static void sd_free_ctl_entry(struct ctl_table **tablep)
5574{
cd790076 5575 struct ctl_table *entry;
6382bc90 5576
cd790076
MM
5577 /*
5578 * In the intermediate directories, both the child directory and
5579 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5580 * will always be set. In the lowest directory the names are
cd790076
MM
5581 * static strings and all have proc handlers.
5582 */
5583 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5584 if (entry->child)
5585 sd_free_ctl_entry(&entry->child);
cd790076
MM
5586 if (entry->proc_handler == NULL)
5587 kfree(entry->procname);
5588 }
6382bc90
MM
5589
5590 kfree(*tablep);
5591 *tablep = NULL;
5592}
5593
e692ab53 5594static void
e0361851 5595set_table_entry(struct ctl_table *entry,
e692ab53
NP
5596 const char *procname, void *data, int maxlen,
5597 mode_t mode, proc_handler *proc_handler)
5598{
e692ab53
NP
5599 entry->procname = procname;
5600 entry->data = data;
5601 entry->maxlen = maxlen;
5602 entry->mode = mode;
5603 entry->proc_handler = proc_handler;
5604}
5605
5606static struct ctl_table *
5607sd_alloc_ctl_domain_table(struct sched_domain *sd)
5608{
a5d8c348 5609 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5610
ad1cdc1d
MM
5611 if (table == NULL)
5612 return NULL;
5613
e0361851 5614 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5615 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5616 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5617 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5618 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5619 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5620 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5621 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5622 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5623 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5624 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5625 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5626 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5627 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5628 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5629 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5630 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5631 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5632 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5633 &sd->cache_nice_tries,
5634 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5635 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5636 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5637 set_table_entry(&table[11], "name", sd->name,
5638 CORENAME_MAX_SIZE, 0444, proc_dostring);
5639 /* &table[12] is terminator */
e692ab53
NP
5640
5641 return table;
5642}
5643
9a4e7159 5644static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5645{
5646 struct ctl_table *entry, *table;
5647 struct sched_domain *sd;
5648 int domain_num = 0, i;
5649 char buf[32];
5650
5651 for_each_domain(cpu, sd)
5652 domain_num++;
5653 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5654 if (table == NULL)
5655 return NULL;
e692ab53
NP
5656
5657 i = 0;
5658 for_each_domain(cpu, sd) {
5659 snprintf(buf, 32, "domain%d", i);
e692ab53 5660 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5661 entry->mode = 0555;
e692ab53
NP
5662 entry->child = sd_alloc_ctl_domain_table(sd);
5663 entry++;
5664 i++;
5665 }
5666 return table;
5667}
5668
5669static struct ctl_table_header *sd_sysctl_header;
6382bc90 5670static void register_sched_domain_sysctl(void)
e692ab53 5671{
6ad4c188 5672 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5673 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5674 char buf[32];
5675
7378547f
MM
5676 WARN_ON(sd_ctl_dir[0].child);
5677 sd_ctl_dir[0].child = entry;
5678
ad1cdc1d
MM
5679 if (entry == NULL)
5680 return;
5681
6ad4c188 5682 for_each_possible_cpu(i) {
e692ab53 5683 snprintf(buf, 32, "cpu%d", i);
e692ab53 5684 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5685 entry->mode = 0555;
e692ab53 5686 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5687 entry++;
e692ab53 5688 }
7378547f
MM
5689
5690 WARN_ON(sd_sysctl_header);
e692ab53
NP
5691 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5692}
6382bc90 5693
7378547f 5694/* may be called multiple times per register */
6382bc90
MM
5695static void unregister_sched_domain_sysctl(void)
5696{
7378547f
MM
5697 if (sd_sysctl_header)
5698 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5699 sd_sysctl_header = NULL;
7378547f
MM
5700 if (sd_ctl_dir[0].child)
5701 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5702}
e692ab53 5703#else
6382bc90
MM
5704static void register_sched_domain_sysctl(void)
5705{
5706}
5707static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5708{
5709}
5710#endif
5711
1f11eb6a
GH
5712static void set_rq_online(struct rq *rq)
5713{
5714 if (!rq->online) {
5715 const struct sched_class *class;
5716
c6c4927b 5717 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5718 rq->online = 1;
5719
5720 for_each_class(class) {
5721 if (class->rq_online)
5722 class->rq_online(rq);
5723 }
5724 }
5725}
5726
5727static void set_rq_offline(struct rq *rq)
5728{
5729 if (rq->online) {
5730 const struct sched_class *class;
5731
5732 for_each_class(class) {
5733 if (class->rq_offline)
5734 class->rq_offline(rq);
5735 }
5736
c6c4927b 5737 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5738 rq->online = 0;
5739 }
5740}
5741
1da177e4
LT
5742/*
5743 * migration_call - callback that gets triggered when a CPU is added.
5744 * Here we can start up the necessary migration thread for the new CPU.
5745 */
48f24c4d
IM
5746static int __cpuinit
5747migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5748{
48f24c4d 5749 int cpu = (long)hcpu;
1da177e4 5750 unsigned long flags;
969c7921 5751 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5752
5753 switch (action) {
5be9361c 5754
1da177e4 5755 case CPU_UP_PREPARE:
8bb78442 5756 case CPU_UP_PREPARE_FROZEN:
a468d389 5757 rq->calc_load_update = calc_load_update;
1da177e4 5758 break;
48f24c4d 5759
1da177e4 5760 case CPU_ONLINE:
8bb78442 5761 case CPU_ONLINE_FROZEN:
1f94ef59 5762 /* Update our root-domain */
05fa785c 5763 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5764 if (rq->rd) {
c6c4927b 5765 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5766
5767 set_rq_online(rq);
1f94ef59 5768 }
05fa785c 5769 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5770 break;
48f24c4d 5771
1da177e4 5772#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5773 case CPU_DEAD:
8bb78442 5774 case CPU_DEAD_FROZEN:
1da177e4 5775 migrate_live_tasks(cpu);
1da177e4 5776 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5777 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5778 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5779 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5780 rq->idle->sched_class = &idle_sched_class;
1da177e4 5781 migrate_dead_tasks(cpu);
05fa785c 5782 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5783 migrate_nr_uninterruptible(rq);
5784 BUG_ON(rq->nr_running != 0);
dce48a84 5785 calc_global_load_remove(rq);
1da177e4 5786 break;
57d885fe 5787
08f503b0
GH
5788 case CPU_DYING:
5789 case CPU_DYING_FROZEN:
57d885fe 5790 /* Update our root-domain */
05fa785c 5791 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5792 if (rq->rd) {
c6c4927b 5793 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5794 set_rq_offline(rq);
57d885fe 5795 }
05fa785c 5796 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5797 break;
1da177e4
LT
5798#endif
5799 }
5800 return NOTIFY_OK;
5801}
5802
f38b0820
PM
5803/*
5804 * Register at high priority so that task migration (migrate_all_tasks)
5805 * happens before everything else. This has to be lower priority than
cdd6c482 5806 * the notifier in the perf_event subsystem, though.
1da177e4 5807 */
26c2143b 5808static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5809 .notifier_call = migration_call,
5810 .priority = 10
5811};
5812
7babe8db 5813static int __init migration_init(void)
1da177e4
LT
5814{
5815 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5816 int err;
48f24c4d
IM
5817
5818 /* Start one for the boot CPU: */
07dccf33
AM
5819 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5820 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5821 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5822 register_cpu_notifier(&migration_notifier);
7babe8db 5823
a004cd42 5824 return 0;
1da177e4 5825}
7babe8db 5826early_initcall(migration_init);
1da177e4
LT
5827#endif
5828
5829#ifdef CONFIG_SMP
476f3534 5830
3e9830dc 5831#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5832
f6630114
MT
5833static __read_mostly int sched_domain_debug_enabled;
5834
5835static int __init sched_domain_debug_setup(char *str)
5836{
5837 sched_domain_debug_enabled = 1;
5838
5839 return 0;
5840}
5841early_param("sched_debug", sched_domain_debug_setup);
5842
7c16ec58 5843static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5844 struct cpumask *groupmask)
1da177e4 5845{
4dcf6aff 5846 struct sched_group *group = sd->groups;
434d53b0 5847 char str[256];
1da177e4 5848
968ea6d8 5849 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5850 cpumask_clear(groupmask);
4dcf6aff
IM
5851
5852 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5853
5854 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5855 printk("does not load-balance\n");
4dcf6aff 5856 if (sd->parent)
3df0fc5b
PZ
5857 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5858 " has parent");
4dcf6aff 5859 return -1;
41c7ce9a
NP
5860 }
5861
3df0fc5b 5862 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5863
758b2cdc 5864 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5865 printk(KERN_ERR "ERROR: domain->span does not contain "
5866 "CPU%d\n", cpu);
4dcf6aff 5867 }
758b2cdc 5868 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5869 printk(KERN_ERR "ERROR: domain->groups does not contain"
5870 " CPU%d\n", cpu);
4dcf6aff 5871 }
1da177e4 5872
4dcf6aff 5873 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5874 do {
4dcf6aff 5875 if (!group) {
3df0fc5b
PZ
5876 printk("\n");
5877 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5878 break;
5879 }
5880
18a3885f 5881 if (!group->cpu_power) {
3df0fc5b
PZ
5882 printk(KERN_CONT "\n");
5883 printk(KERN_ERR "ERROR: domain->cpu_power not "
5884 "set\n");
4dcf6aff
IM
5885 break;
5886 }
1da177e4 5887
758b2cdc 5888 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5889 printk(KERN_CONT "\n");
5890 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5891 break;
5892 }
1da177e4 5893
758b2cdc 5894 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5895 printk(KERN_CONT "\n");
5896 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5897 break;
5898 }
1da177e4 5899
758b2cdc 5900 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5901
968ea6d8 5902 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5903
3df0fc5b 5904 printk(KERN_CONT " %s", str);
18a3885f 5905 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
5906 printk(KERN_CONT " (cpu_power = %d)",
5907 group->cpu_power);
381512cf 5908 }
1da177e4 5909
4dcf6aff
IM
5910 group = group->next;
5911 } while (group != sd->groups);
3df0fc5b 5912 printk(KERN_CONT "\n");
1da177e4 5913
758b2cdc 5914 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5915 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5916
758b2cdc
RR
5917 if (sd->parent &&
5918 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5919 printk(KERN_ERR "ERROR: parent span is not a superset "
5920 "of domain->span\n");
4dcf6aff
IM
5921 return 0;
5922}
1da177e4 5923
4dcf6aff
IM
5924static void sched_domain_debug(struct sched_domain *sd, int cpu)
5925{
d5dd3db1 5926 cpumask_var_t groupmask;
4dcf6aff 5927 int level = 0;
1da177e4 5928
f6630114
MT
5929 if (!sched_domain_debug_enabled)
5930 return;
5931
4dcf6aff
IM
5932 if (!sd) {
5933 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5934 return;
5935 }
1da177e4 5936
4dcf6aff
IM
5937 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5938
d5dd3db1 5939 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
5940 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5941 return;
5942 }
5943
4dcf6aff 5944 for (;;) {
7c16ec58 5945 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 5946 break;
1da177e4
LT
5947 level++;
5948 sd = sd->parent;
33859f7f 5949 if (!sd)
4dcf6aff
IM
5950 break;
5951 }
d5dd3db1 5952 free_cpumask_var(groupmask);
1da177e4 5953}
6d6bc0ad 5954#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5955# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5956#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5957
1a20ff27 5958static int sd_degenerate(struct sched_domain *sd)
245af2c7 5959{
758b2cdc 5960 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5961 return 1;
5962
5963 /* Following flags need at least 2 groups */
5964 if (sd->flags & (SD_LOAD_BALANCE |
5965 SD_BALANCE_NEWIDLE |
5966 SD_BALANCE_FORK |
89c4710e
SS
5967 SD_BALANCE_EXEC |
5968 SD_SHARE_CPUPOWER |
5969 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5970 if (sd->groups != sd->groups->next)
5971 return 0;
5972 }
5973
5974 /* Following flags don't use groups */
c88d5910 5975 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5976 return 0;
5977
5978 return 1;
5979}
5980
48f24c4d
IM
5981static int
5982sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5983{
5984 unsigned long cflags = sd->flags, pflags = parent->flags;
5985
5986 if (sd_degenerate(parent))
5987 return 1;
5988
758b2cdc 5989 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5990 return 0;
5991
245af2c7
SS
5992 /* Flags needing groups don't count if only 1 group in parent */
5993 if (parent->groups == parent->groups->next) {
5994 pflags &= ~(SD_LOAD_BALANCE |
5995 SD_BALANCE_NEWIDLE |
5996 SD_BALANCE_FORK |
89c4710e
SS
5997 SD_BALANCE_EXEC |
5998 SD_SHARE_CPUPOWER |
5999 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6000 if (nr_node_ids == 1)
6001 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6002 }
6003 if (~cflags & pflags)
6004 return 0;
6005
6006 return 1;
6007}
6008
c6c4927b
RR
6009static void free_rootdomain(struct root_domain *rd)
6010{
047106ad
PZ
6011 synchronize_sched();
6012
68e74568
RR
6013 cpupri_cleanup(&rd->cpupri);
6014
c6c4927b
RR
6015 free_cpumask_var(rd->rto_mask);
6016 free_cpumask_var(rd->online);
6017 free_cpumask_var(rd->span);
6018 kfree(rd);
6019}
6020
57d885fe
GH
6021static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6022{
a0490fa3 6023 struct root_domain *old_rd = NULL;
57d885fe 6024 unsigned long flags;
57d885fe 6025
05fa785c 6026 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6027
6028 if (rq->rd) {
a0490fa3 6029 old_rd = rq->rd;
57d885fe 6030
c6c4927b 6031 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6032 set_rq_offline(rq);
57d885fe 6033
c6c4927b 6034 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6035
a0490fa3
IM
6036 /*
6037 * If we dont want to free the old_rt yet then
6038 * set old_rd to NULL to skip the freeing later
6039 * in this function:
6040 */
6041 if (!atomic_dec_and_test(&old_rd->refcount))
6042 old_rd = NULL;
57d885fe
GH
6043 }
6044
6045 atomic_inc(&rd->refcount);
6046 rq->rd = rd;
6047
c6c4927b 6048 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6049 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6050 set_rq_online(rq);
57d885fe 6051
05fa785c 6052 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6053
6054 if (old_rd)
6055 free_rootdomain(old_rd);
57d885fe
GH
6056}
6057
fd5e1b5d 6058static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6059{
36b7b6d4
PE
6060 gfp_t gfp = GFP_KERNEL;
6061
57d885fe
GH
6062 memset(rd, 0, sizeof(*rd));
6063
36b7b6d4
PE
6064 if (bootmem)
6065 gfp = GFP_NOWAIT;
c6c4927b 6066
36b7b6d4 6067 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6068 goto out;
36b7b6d4 6069 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6070 goto free_span;
36b7b6d4 6071 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6072 goto free_online;
6e0534f2 6073
0fb53029 6074 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6075 goto free_rto_mask;
c6c4927b 6076 return 0;
6e0534f2 6077
68e74568
RR
6078free_rto_mask:
6079 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6080free_online:
6081 free_cpumask_var(rd->online);
6082free_span:
6083 free_cpumask_var(rd->span);
0c910d28 6084out:
c6c4927b 6085 return -ENOMEM;
57d885fe
GH
6086}
6087
6088static void init_defrootdomain(void)
6089{
c6c4927b
RR
6090 init_rootdomain(&def_root_domain, true);
6091
57d885fe
GH
6092 atomic_set(&def_root_domain.refcount, 1);
6093}
6094
dc938520 6095static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6096{
6097 struct root_domain *rd;
6098
6099 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6100 if (!rd)
6101 return NULL;
6102
c6c4927b
RR
6103 if (init_rootdomain(rd, false) != 0) {
6104 kfree(rd);
6105 return NULL;
6106 }
57d885fe
GH
6107
6108 return rd;
6109}
6110
1da177e4 6111/*
0eab9146 6112 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6113 * hold the hotplug lock.
6114 */
0eab9146
IM
6115static void
6116cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6117{
70b97a7f 6118 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6119 struct sched_domain *tmp;
6120
669c55e9
PZ
6121 for (tmp = sd; tmp; tmp = tmp->parent)
6122 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6123
245af2c7 6124 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6125 for (tmp = sd; tmp; ) {
245af2c7
SS
6126 struct sched_domain *parent = tmp->parent;
6127 if (!parent)
6128 break;
f29c9b1c 6129
1a848870 6130 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6131 tmp->parent = parent->parent;
1a848870
SS
6132 if (parent->parent)
6133 parent->parent->child = tmp;
f29c9b1c
LZ
6134 } else
6135 tmp = tmp->parent;
245af2c7
SS
6136 }
6137
1a848870 6138 if (sd && sd_degenerate(sd)) {
245af2c7 6139 sd = sd->parent;
1a848870
SS
6140 if (sd)
6141 sd->child = NULL;
6142 }
1da177e4
LT
6143
6144 sched_domain_debug(sd, cpu);
6145
57d885fe 6146 rq_attach_root(rq, rd);
674311d5 6147 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6148}
6149
6150/* cpus with isolated domains */
dcc30a35 6151static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6152
6153/* Setup the mask of cpus configured for isolated domains */
6154static int __init isolated_cpu_setup(char *str)
6155{
bdddd296 6156 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6157 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6158 return 1;
6159}
6160
8927f494 6161__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6162
6163/*
6711cab4
SS
6164 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6165 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6166 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6167 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6168 *
6169 * init_sched_build_groups will build a circular linked list of the groups
6170 * covered by the given span, and will set each group's ->cpumask correctly,
6171 * and ->cpu_power to 0.
6172 */
a616058b 6173static void
96f874e2
RR
6174init_sched_build_groups(const struct cpumask *span,
6175 const struct cpumask *cpu_map,
6176 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6177 struct sched_group **sg,
96f874e2
RR
6178 struct cpumask *tmpmask),
6179 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6180{
6181 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6182 int i;
6183
96f874e2 6184 cpumask_clear(covered);
7c16ec58 6185
abcd083a 6186 for_each_cpu(i, span) {
6711cab4 6187 struct sched_group *sg;
7c16ec58 6188 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6189 int j;
6190
758b2cdc 6191 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6192 continue;
6193
758b2cdc 6194 cpumask_clear(sched_group_cpus(sg));
18a3885f 6195 sg->cpu_power = 0;
1da177e4 6196
abcd083a 6197 for_each_cpu(j, span) {
7c16ec58 6198 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6199 continue;
6200
96f874e2 6201 cpumask_set_cpu(j, covered);
758b2cdc 6202 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6203 }
6204 if (!first)
6205 first = sg;
6206 if (last)
6207 last->next = sg;
6208 last = sg;
6209 }
6210 last->next = first;
6211}
6212
9c1cfda2 6213#define SD_NODES_PER_DOMAIN 16
1da177e4 6214
9c1cfda2 6215#ifdef CONFIG_NUMA
198e2f18 6216
9c1cfda2
JH
6217/**
6218 * find_next_best_node - find the next node to include in a sched_domain
6219 * @node: node whose sched_domain we're building
6220 * @used_nodes: nodes already in the sched_domain
6221 *
41a2d6cf 6222 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6223 * finds the closest node not already in the @used_nodes map.
6224 *
6225 * Should use nodemask_t.
6226 */
c5f59f08 6227static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6228{
6229 int i, n, val, min_val, best_node = 0;
6230
6231 min_val = INT_MAX;
6232
076ac2af 6233 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6234 /* Start at @node */
076ac2af 6235 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6236
6237 if (!nr_cpus_node(n))
6238 continue;
6239
6240 /* Skip already used nodes */
c5f59f08 6241 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6242 continue;
6243
6244 /* Simple min distance search */
6245 val = node_distance(node, n);
6246
6247 if (val < min_val) {
6248 min_val = val;
6249 best_node = n;
6250 }
6251 }
6252
c5f59f08 6253 node_set(best_node, *used_nodes);
9c1cfda2
JH
6254 return best_node;
6255}
6256
6257/**
6258 * sched_domain_node_span - get a cpumask for a node's sched_domain
6259 * @node: node whose cpumask we're constructing
73486722 6260 * @span: resulting cpumask
9c1cfda2 6261 *
41a2d6cf 6262 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6263 * should be one that prevents unnecessary balancing, but also spreads tasks
6264 * out optimally.
6265 */
96f874e2 6266static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6267{
c5f59f08 6268 nodemask_t used_nodes;
48f24c4d 6269 int i;
9c1cfda2 6270
6ca09dfc 6271 cpumask_clear(span);
c5f59f08 6272 nodes_clear(used_nodes);
9c1cfda2 6273
6ca09dfc 6274 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6275 node_set(node, used_nodes);
9c1cfda2
JH
6276
6277 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6278 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6279
6ca09dfc 6280 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6281 }
9c1cfda2 6282}
6d6bc0ad 6283#endif /* CONFIG_NUMA */
9c1cfda2 6284
5c45bf27 6285int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6286
6c99e9ad
RR
6287/*
6288 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6289 *
6290 * ( See the the comments in include/linux/sched.h:struct sched_group
6291 * and struct sched_domain. )
6c99e9ad
RR
6292 */
6293struct static_sched_group {
6294 struct sched_group sg;
6295 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6296};
6297
6298struct static_sched_domain {
6299 struct sched_domain sd;
6300 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6301};
6302
49a02c51
AH
6303struct s_data {
6304#ifdef CONFIG_NUMA
6305 int sd_allnodes;
6306 cpumask_var_t domainspan;
6307 cpumask_var_t covered;
6308 cpumask_var_t notcovered;
6309#endif
6310 cpumask_var_t nodemask;
6311 cpumask_var_t this_sibling_map;
6312 cpumask_var_t this_core_map;
6313 cpumask_var_t send_covered;
6314 cpumask_var_t tmpmask;
6315 struct sched_group **sched_group_nodes;
6316 struct root_domain *rd;
6317};
6318
2109b99e
AH
6319enum s_alloc {
6320 sa_sched_groups = 0,
6321 sa_rootdomain,
6322 sa_tmpmask,
6323 sa_send_covered,
6324 sa_this_core_map,
6325 sa_this_sibling_map,
6326 sa_nodemask,
6327 sa_sched_group_nodes,
6328#ifdef CONFIG_NUMA
6329 sa_notcovered,
6330 sa_covered,
6331 sa_domainspan,
6332#endif
6333 sa_none,
6334};
6335
9c1cfda2 6336/*
48f24c4d 6337 * SMT sched-domains:
9c1cfda2 6338 */
1da177e4 6339#ifdef CONFIG_SCHED_SMT
6c99e9ad 6340static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6341static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6342
41a2d6cf 6343static int
96f874e2
RR
6344cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6345 struct sched_group **sg, struct cpumask *unused)
1da177e4 6346{
6711cab4 6347 if (sg)
1871e52c 6348 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6349 return cpu;
6350}
6d6bc0ad 6351#endif /* CONFIG_SCHED_SMT */
1da177e4 6352
48f24c4d
IM
6353/*
6354 * multi-core sched-domains:
6355 */
1e9f28fa 6356#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6357static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6358static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6359#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6360
6361#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6362static int
96f874e2
RR
6363cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6364 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6365{
6711cab4 6366 int group;
7c16ec58 6367
c69fc56d 6368 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6369 group = cpumask_first(mask);
6711cab4 6370 if (sg)
6c99e9ad 6371 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6372 return group;
1e9f28fa
SS
6373}
6374#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6375static int
96f874e2
RR
6376cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6377 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6378{
6711cab4 6379 if (sg)
6c99e9ad 6380 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6381 return cpu;
6382}
6383#endif
6384
6c99e9ad
RR
6385static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6386static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6387
41a2d6cf 6388static int
96f874e2
RR
6389cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6390 struct sched_group **sg, struct cpumask *mask)
1da177e4 6391{
6711cab4 6392 int group;
48f24c4d 6393#ifdef CONFIG_SCHED_MC
6ca09dfc 6394 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6395 group = cpumask_first(mask);
1e9f28fa 6396#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6397 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6398 group = cpumask_first(mask);
1da177e4 6399#else
6711cab4 6400 group = cpu;
1da177e4 6401#endif
6711cab4 6402 if (sg)
6c99e9ad 6403 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6404 return group;
1da177e4
LT
6405}
6406
6407#ifdef CONFIG_NUMA
1da177e4 6408/*
9c1cfda2
JH
6409 * The init_sched_build_groups can't handle what we want to do with node
6410 * groups, so roll our own. Now each node has its own list of groups which
6411 * gets dynamically allocated.
1da177e4 6412 */
62ea9ceb 6413static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6414static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6415
62ea9ceb 6416static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6417static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6418
96f874e2
RR
6419static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6420 struct sched_group **sg,
6421 struct cpumask *nodemask)
9c1cfda2 6422{
6711cab4
SS
6423 int group;
6424
6ca09dfc 6425 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6426 group = cpumask_first(nodemask);
6711cab4
SS
6427
6428 if (sg)
6c99e9ad 6429 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6430 return group;
1da177e4 6431}
6711cab4 6432
08069033
SS
6433static void init_numa_sched_groups_power(struct sched_group *group_head)
6434{
6435 struct sched_group *sg = group_head;
6436 int j;
6437
6438 if (!sg)
6439 return;
3a5c359a 6440 do {
758b2cdc 6441 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6442 struct sched_domain *sd;
08069033 6443
6c99e9ad 6444 sd = &per_cpu(phys_domains, j).sd;
13318a71 6445 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6446 /*
6447 * Only add "power" once for each
6448 * physical package.
6449 */
6450 continue;
6451 }
08069033 6452
18a3885f 6453 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6454 }
6455 sg = sg->next;
6456 } while (sg != group_head);
08069033 6457}
0601a88d
AH
6458
6459static int build_numa_sched_groups(struct s_data *d,
6460 const struct cpumask *cpu_map, int num)
6461{
6462 struct sched_domain *sd;
6463 struct sched_group *sg, *prev;
6464 int n, j;
6465
6466 cpumask_clear(d->covered);
6467 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6468 if (cpumask_empty(d->nodemask)) {
6469 d->sched_group_nodes[num] = NULL;
6470 goto out;
6471 }
6472
6473 sched_domain_node_span(num, d->domainspan);
6474 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6475
6476 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6477 GFP_KERNEL, num);
6478 if (!sg) {
3df0fc5b
PZ
6479 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6480 num);
0601a88d
AH
6481 return -ENOMEM;
6482 }
6483 d->sched_group_nodes[num] = sg;
6484
6485 for_each_cpu(j, d->nodemask) {
6486 sd = &per_cpu(node_domains, j).sd;
6487 sd->groups = sg;
6488 }
6489
18a3885f 6490 sg->cpu_power = 0;
0601a88d
AH
6491 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6492 sg->next = sg;
6493 cpumask_or(d->covered, d->covered, d->nodemask);
6494
6495 prev = sg;
6496 for (j = 0; j < nr_node_ids; j++) {
6497 n = (num + j) % nr_node_ids;
6498 cpumask_complement(d->notcovered, d->covered);
6499 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6500 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6501 if (cpumask_empty(d->tmpmask))
6502 break;
6503 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6504 if (cpumask_empty(d->tmpmask))
6505 continue;
6506 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6507 GFP_KERNEL, num);
6508 if (!sg) {
3df0fc5b
PZ
6509 printk(KERN_WARNING
6510 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6511 return -ENOMEM;
6512 }
18a3885f 6513 sg->cpu_power = 0;
0601a88d
AH
6514 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6515 sg->next = prev->next;
6516 cpumask_or(d->covered, d->covered, d->tmpmask);
6517 prev->next = sg;
6518 prev = sg;
6519 }
6520out:
6521 return 0;
6522}
6d6bc0ad 6523#endif /* CONFIG_NUMA */
1da177e4 6524
a616058b 6525#ifdef CONFIG_NUMA
51888ca2 6526/* Free memory allocated for various sched_group structures */
96f874e2
RR
6527static void free_sched_groups(const struct cpumask *cpu_map,
6528 struct cpumask *nodemask)
51888ca2 6529{
a616058b 6530 int cpu, i;
51888ca2 6531
abcd083a 6532 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6533 struct sched_group **sched_group_nodes
6534 = sched_group_nodes_bycpu[cpu];
6535
51888ca2
SV
6536 if (!sched_group_nodes)
6537 continue;
6538
076ac2af 6539 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6540 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6541
6ca09dfc 6542 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6543 if (cpumask_empty(nodemask))
51888ca2
SV
6544 continue;
6545
6546 if (sg == NULL)
6547 continue;
6548 sg = sg->next;
6549next_sg:
6550 oldsg = sg;
6551 sg = sg->next;
6552 kfree(oldsg);
6553 if (oldsg != sched_group_nodes[i])
6554 goto next_sg;
6555 }
6556 kfree(sched_group_nodes);
6557 sched_group_nodes_bycpu[cpu] = NULL;
6558 }
51888ca2 6559}
6d6bc0ad 6560#else /* !CONFIG_NUMA */
96f874e2
RR
6561static void free_sched_groups(const struct cpumask *cpu_map,
6562 struct cpumask *nodemask)
a616058b
SS
6563{
6564}
6d6bc0ad 6565#endif /* CONFIG_NUMA */
51888ca2 6566
89c4710e
SS
6567/*
6568 * Initialize sched groups cpu_power.
6569 *
6570 * cpu_power indicates the capacity of sched group, which is used while
6571 * distributing the load between different sched groups in a sched domain.
6572 * Typically cpu_power for all the groups in a sched domain will be same unless
6573 * there are asymmetries in the topology. If there are asymmetries, group
6574 * having more cpu_power will pickup more load compared to the group having
6575 * less cpu_power.
89c4710e
SS
6576 */
6577static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6578{
6579 struct sched_domain *child;
6580 struct sched_group *group;
f93e65c1
PZ
6581 long power;
6582 int weight;
89c4710e
SS
6583
6584 WARN_ON(!sd || !sd->groups);
6585
13318a71 6586 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6587 return;
6588
6589 child = sd->child;
6590
18a3885f 6591 sd->groups->cpu_power = 0;
5517d86b 6592
f93e65c1
PZ
6593 if (!child) {
6594 power = SCHED_LOAD_SCALE;
6595 weight = cpumask_weight(sched_domain_span(sd));
6596 /*
6597 * SMT siblings share the power of a single core.
a52bfd73
PZ
6598 * Usually multiple threads get a better yield out of
6599 * that one core than a single thread would have,
6600 * reflect that in sd->smt_gain.
f93e65c1 6601 */
a52bfd73
PZ
6602 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6603 power *= sd->smt_gain;
f93e65c1 6604 power /= weight;
a52bfd73
PZ
6605 power >>= SCHED_LOAD_SHIFT;
6606 }
18a3885f 6607 sd->groups->cpu_power += power;
89c4710e
SS
6608 return;
6609 }
6610
89c4710e 6611 /*
f93e65c1 6612 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6613 */
6614 group = child->groups;
6615 do {
18a3885f 6616 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6617 group = group->next;
6618 } while (group != child->groups);
6619}
6620
7c16ec58
MT
6621/*
6622 * Initializers for schedule domains
6623 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6624 */
6625
a5d8c348
IM
6626#ifdef CONFIG_SCHED_DEBUG
6627# define SD_INIT_NAME(sd, type) sd->name = #type
6628#else
6629# define SD_INIT_NAME(sd, type) do { } while (0)
6630#endif
6631
7c16ec58 6632#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6633
7c16ec58
MT
6634#define SD_INIT_FUNC(type) \
6635static noinline void sd_init_##type(struct sched_domain *sd) \
6636{ \
6637 memset(sd, 0, sizeof(*sd)); \
6638 *sd = SD_##type##_INIT; \
1d3504fc 6639 sd->level = SD_LV_##type; \
a5d8c348 6640 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6641}
6642
6643SD_INIT_FUNC(CPU)
6644#ifdef CONFIG_NUMA
6645 SD_INIT_FUNC(ALLNODES)
6646 SD_INIT_FUNC(NODE)
6647#endif
6648#ifdef CONFIG_SCHED_SMT
6649 SD_INIT_FUNC(SIBLING)
6650#endif
6651#ifdef CONFIG_SCHED_MC
6652 SD_INIT_FUNC(MC)
6653#endif
6654
1d3504fc
HS
6655static int default_relax_domain_level = -1;
6656
6657static int __init setup_relax_domain_level(char *str)
6658{
30e0e178
LZ
6659 unsigned long val;
6660
6661 val = simple_strtoul(str, NULL, 0);
6662 if (val < SD_LV_MAX)
6663 default_relax_domain_level = val;
6664
1d3504fc
HS
6665 return 1;
6666}
6667__setup("relax_domain_level=", setup_relax_domain_level);
6668
6669static void set_domain_attribute(struct sched_domain *sd,
6670 struct sched_domain_attr *attr)
6671{
6672 int request;
6673
6674 if (!attr || attr->relax_domain_level < 0) {
6675 if (default_relax_domain_level < 0)
6676 return;
6677 else
6678 request = default_relax_domain_level;
6679 } else
6680 request = attr->relax_domain_level;
6681 if (request < sd->level) {
6682 /* turn off idle balance on this domain */
c88d5910 6683 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6684 } else {
6685 /* turn on idle balance on this domain */
c88d5910 6686 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6687 }
6688}
6689
2109b99e
AH
6690static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6691 const struct cpumask *cpu_map)
6692{
6693 switch (what) {
6694 case sa_sched_groups:
6695 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6696 d->sched_group_nodes = NULL;
6697 case sa_rootdomain:
6698 free_rootdomain(d->rd); /* fall through */
6699 case sa_tmpmask:
6700 free_cpumask_var(d->tmpmask); /* fall through */
6701 case sa_send_covered:
6702 free_cpumask_var(d->send_covered); /* fall through */
6703 case sa_this_core_map:
6704 free_cpumask_var(d->this_core_map); /* fall through */
6705 case sa_this_sibling_map:
6706 free_cpumask_var(d->this_sibling_map); /* fall through */
6707 case sa_nodemask:
6708 free_cpumask_var(d->nodemask); /* fall through */
6709 case sa_sched_group_nodes:
d1b55138 6710#ifdef CONFIG_NUMA
2109b99e
AH
6711 kfree(d->sched_group_nodes); /* fall through */
6712 case sa_notcovered:
6713 free_cpumask_var(d->notcovered); /* fall through */
6714 case sa_covered:
6715 free_cpumask_var(d->covered); /* fall through */
6716 case sa_domainspan:
6717 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6718#endif
2109b99e
AH
6719 case sa_none:
6720 break;
6721 }
6722}
3404c8d9 6723
2109b99e
AH
6724static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6725 const struct cpumask *cpu_map)
6726{
3404c8d9 6727#ifdef CONFIG_NUMA
2109b99e
AH
6728 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6729 return sa_none;
6730 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6731 return sa_domainspan;
6732 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6733 return sa_covered;
6734 /* Allocate the per-node list of sched groups */
6735 d->sched_group_nodes = kcalloc(nr_node_ids,
6736 sizeof(struct sched_group *), GFP_KERNEL);
6737 if (!d->sched_group_nodes) {
3df0fc5b 6738 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6739 return sa_notcovered;
d1b55138 6740 }
2109b99e 6741 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6742#endif
2109b99e
AH
6743 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6744 return sa_sched_group_nodes;
6745 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6746 return sa_nodemask;
6747 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6748 return sa_this_sibling_map;
6749 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6750 return sa_this_core_map;
6751 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6752 return sa_send_covered;
6753 d->rd = alloc_rootdomain();
6754 if (!d->rd) {
3df0fc5b 6755 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6756 return sa_tmpmask;
57d885fe 6757 }
2109b99e
AH
6758 return sa_rootdomain;
6759}
57d885fe 6760
7f4588f3
AH
6761static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6762 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6763{
6764 struct sched_domain *sd = NULL;
7c16ec58 6765#ifdef CONFIG_NUMA
7f4588f3 6766 struct sched_domain *parent;
1da177e4 6767
7f4588f3
AH
6768 d->sd_allnodes = 0;
6769 if (cpumask_weight(cpu_map) >
6770 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6771 sd = &per_cpu(allnodes_domains, i).sd;
6772 SD_INIT(sd, ALLNODES);
1d3504fc 6773 set_domain_attribute(sd, attr);
7f4588f3
AH
6774 cpumask_copy(sched_domain_span(sd), cpu_map);
6775 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6776 d->sd_allnodes = 1;
6777 }
6778 parent = sd;
6779
6780 sd = &per_cpu(node_domains, i).sd;
6781 SD_INIT(sd, NODE);
6782 set_domain_attribute(sd, attr);
6783 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6784 sd->parent = parent;
6785 if (parent)
6786 parent->child = sd;
6787 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6788#endif
7f4588f3
AH
6789 return sd;
6790}
1da177e4 6791
87cce662
AH
6792static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6793 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6794 struct sched_domain *parent, int i)
6795{
6796 struct sched_domain *sd;
6797 sd = &per_cpu(phys_domains, i).sd;
6798 SD_INIT(sd, CPU);
6799 set_domain_attribute(sd, attr);
6800 cpumask_copy(sched_domain_span(sd), d->nodemask);
6801 sd->parent = parent;
6802 if (parent)
6803 parent->child = sd;
6804 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6805 return sd;
6806}
1da177e4 6807
410c4081
AH
6808static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6809 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6810 struct sched_domain *parent, int i)
6811{
6812 struct sched_domain *sd = parent;
1e9f28fa 6813#ifdef CONFIG_SCHED_MC
410c4081
AH
6814 sd = &per_cpu(core_domains, i).sd;
6815 SD_INIT(sd, MC);
6816 set_domain_attribute(sd, attr);
6817 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6818 sd->parent = parent;
6819 parent->child = sd;
6820 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6821#endif
410c4081
AH
6822 return sd;
6823}
1e9f28fa 6824
d8173535
AH
6825static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6826 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6827 struct sched_domain *parent, int i)
6828{
6829 struct sched_domain *sd = parent;
1da177e4 6830#ifdef CONFIG_SCHED_SMT
d8173535
AH
6831 sd = &per_cpu(cpu_domains, i).sd;
6832 SD_INIT(sd, SIBLING);
6833 set_domain_attribute(sd, attr);
6834 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6835 sd->parent = parent;
6836 parent->child = sd;
6837 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6838#endif
d8173535
AH
6839 return sd;
6840}
1da177e4 6841
0e8e85c9
AH
6842static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6843 const struct cpumask *cpu_map, int cpu)
6844{
6845 switch (l) {
1da177e4 6846#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6847 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6848 cpumask_and(d->this_sibling_map, cpu_map,
6849 topology_thread_cpumask(cpu));
6850 if (cpu == cpumask_first(d->this_sibling_map))
6851 init_sched_build_groups(d->this_sibling_map, cpu_map,
6852 &cpu_to_cpu_group,
6853 d->send_covered, d->tmpmask);
6854 break;
1da177e4 6855#endif
1e9f28fa 6856#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6857 case SD_LV_MC: /* set up multi-core groups */
6858 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6859 if (cpu == cpumask_first(d->this_core_map))
6860 init_sched_build_groups(d->this_core_map, cpu_map,
6861 &cpu_to_core_group,
6862 d->send_covered, d->tmpmask);
6863 break;
1e9f28fa 6864#endif
86548096
AH
6865 case SD_LV_CPU: /* set up physical groups */
6866 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6867 if (!cpumask_empty(d->nodemask))
6868 init_sched_build_groups(d->nodemask, cpu_map,
6869 &cpu_to_phys_group,
6870 d->send_covered, d->tmpmask);
6871 break;
1da177e4 6872#ifdef CONFIG_NUMA
de616e36
AH
6873 case SD_LV_ALLNODES:
6874 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6875 d->send_covered, d->tmpmask);
6876 break;
6877#endif
0e8e85c9
AH
6878 default:
6879 break;
7c16ec58 6880 }
0e8e85c9 6881}
9c1cfda2 6882
2109b99e
AH
6883/*
6884 * Build sched domains for a given set of cpus and attach the sched domains
6885 * to the individual cpus
6886 */
6887static int __build_sched_domains(const struct cpumask *cpu_map,
6888 struct sched_domain_attr *attr)
6889{
6890 enum s_alloc alloc_state = sa_none;
6891 struct s_data d;
294b0c96 6892 struct sched_domain *sd;
2109b99e 6893 int i;
7c16ec58 6894#ifdef CONFIG_NUMA
2109b99e 6895 d.sd_allnodes = 0;
7c16ec58 6896#endif
9c1cfda2 6897
2109b99e
AH
6898 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6899 if (alloc_state != sa_rootdomain)
6900 goto error;
6901 alloc_state = sa_sched_groups;
9c1cfda2 6902
1da177e4 6903 /*
1a20ff27 6904 * Set up domains for cpus specified by the cpu_map.
1da177e4 6905 */
abcd083a 6906 for_each_cpu(i, cpu_map) {
49a02c51
AH
6907 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6908 cpu_map);
9761eea8 6909
7f4588f3 6910 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 6911 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 6912 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 6913 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 6914 }
9c1cfda2 6915
abcd083a 6916 for_each_cpu(i, cpu_map) {
0e8e85c9 6917 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 6918 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 6919 }
9c1cfda2 6920
1da177e4 6921 /* Set up physical groups */
86548096
AH
6922 for (i = 0; i < nr_node_ids; i++)
6923 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 6924
1da177e4
LT
6925#ifdef CONFIG_NUMA
6926 /* Set up node groups */
de616e36
AH
6927 if (d.sd_allnodes)
6928 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 6929
0601a88d
AH
6930 for (i = 0; i < nr_node_ids; i++)
6931 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 6932 goto error;
1da177e4
LT
6933#endif
6934
6935 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6936#ifdef CONFIG_SCHED_SMT
abcd083a 6937 for_each_cpu(i, cpu_map) {
294b0c96 6938 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 6939 init_sched_groups_power(i, sd);
5c45bf27 6940 }
1da177e4 6941#endif
1e9f28fa 6942#ifdef CONFIG_SCHED_MC
abcd083a 6943 for_each_cpu(i, cpu_map) {
294b0c96 6944 sd = &per_cpu(core_domains, i).sd;
89c4710e 6945 init_sched_groups_power(i, sd);
5c45bf27
SS
6946 }
6947#endif
1e9f28fa 6948
abcd083a 6949 for_each_cpu(i, cpu_map) {
294b0c96 6950 sd = &per_cpu(phys_domains, i).sd;
89c4710e 6951 init_sched_groups_power(i, sd);
1da177e4
LT
6952 }
6953
9c1cfda2 6954#ifdef CONFIG_NUMA
076ac2af 6955 for (i = 0; i < nr_node_ids; i++)
49a02c51 6956 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 6957
49a02c51 6958 if (d.sd_allnodes) {
6711cab4 6959 struct sched_group *sg;
f712c0c7 6960
96f874e2 6961 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 6962 d.tmpmask);
f712c0c7
SS
6963 init_numa_sched_groups_power(sg);
6964 }
9c1cfda2
JH
6965#endif
6966
1da177e4 6967 /* Attach the domains */
abcd083a 6968 for_each_cpu(i, cpu_map) {
1da177e4 6969#ifdef CONFIG_SCHED_SMT
6c99e9ad 6970 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 6971#elif defined(CONFIG_SCHED_MC)
6c99e9ad 6972 sd = &per_cpu(core_domains, i).sd;
1da177e4 6973#else
6c99e9ad 6974 sd = &per_cpu(phys_domains, i).sd;
1da177e4 6975#endif
49a02c51 6976 cpu_attach_domain(sd, d.rd, i);
1da177e4 6977 }
51888ca2 6978
2109b99e
AH
6979 d.sched_group_nodes = NULL; /* don't free this we still need it */
6980 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6981 return 0;
51888ca2 6982
51888ca2 6983error:
2109b99e
AH
6984 __free_domain_allocs(&d, alloc_state, cpu_map);
6985 return -ENOMEM;
1da177e4 6986}
029190c5 6987
96f874e2 6988static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
6989{
6990 return __build_sched_domains(cpu_map, NULL);
6991}
6992
acc3f5d7 6993static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6994static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6995static struct sched_domain_attr *dattr_cur;
6996 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6997
6998/*
6999 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7000 * cpumask) fails, then fallback to a single sched domain,
7001 * as determined by the single cpumask fallback_doms.
029190c5 7002 */
4212823f 7003static cpumask_var_t fallback_doms;
029190c5 7004
ee79d1bd
HC
7005/*
7006 * arch_update_cpu_topology lets virtualized architectures update the
7007 * cpu core maps. It is supposed to return 1 if the topology changed
7008 * or 0 if it stayed the same.
7009 */
7010int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7011{
ee79d1bd 7012 return 0;
22e52b07
HC
7013}
7014
acc3f5d7
RR
7015cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7016{
7017 int i;
7018 cpumask_var_t *doms;
7019
7020 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7021 if (!doms)
7022 return NULL;
7023 for (i = 0; i < ndoms; i++) {
7024 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7025 free_sched_domains(doms, i);
7026 return NULL;
7027 }
7028 }
7029 return doms;
7030}
7031
7032void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7033{
7034 unsigned int i;
7035 for (i = 0; i < ndoms; i++)
7036 free_cpumask_var(doms[i]);
7037 kfree(doms);
7038}
7039
1a20ff27 7040/*
41a2d6cf 7041 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7042 * For now this just excludes isolated cpus, but could be used to
7043 * exclude other special cases in the future.
1a20ff27 7044 */
96f874e2 7045static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7046{
7378547f
MM
7047 int err;
7048
22e52b07 7049 arch_update_cpu_topology();
029190c5 7050 ndoms_cur = 1;
acc3f5d7 7051 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7052 if (!doms_cur)
acc3f5d7
RR
7053 doms_cur = &fallback_doms;
7054 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7055 dattr_cur = NULL;
acc3f5d7 7056 err = build_sched_domains(doms_cur[0]);
6382bc90 7057 register_sched_domain_sysctl();
7378547f
MM
7058
7059 return err;
1a20ff27
DG
7060}
7061
96f874e2
RR
7062static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7063 struct cpumask *tmpmask)
1da177e4 7064{
7c16ec58 7065 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7066}
1da177e4 7067
1a20ff27
DG
7068/*
7069 * Detach sched domains from a group of cpus specified in cpu_map
7070 * These cpus will now be attached to the NULL domain
7071 */
96f874e2 7072static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7073{
96f874e2
RR
7074 /* Save because hotplug lock held. */
7075 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7076 int i;
7077
abcd083a 7078 for_each_cpu(i, cpu_map)
57d885fe 7079 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7080 synchronize_sched();
96f874e2 7081 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7082}
7083
1d3504fc
HS
7084/* handle null as "default" */
7085static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7086 struct sched_domain_attr *new, int idx_new)
7087{
7088 struct sched_domain_attr tmp;
7089
7090 /* fast path */
7091 if (!new && !cur)
7092 return 1;
7093
7094 tmp = SD_ATTR_INIT;
7095 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7096 new ? (new + idx_new) : &tmp,
7097 sizeof(struct sched_domain_attr));
7098}
7099
029190c5
PJ
7100/*
7101 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7102 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7103 * doms_new[] to the current sched domain partitioning, doms_cur[].
7104 * It destroys each deleted domain and builds each new domain.
7105 *
acc3f5d7 7106 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7107 * The masks don't intersect (don't overlap.) We should setup one
7108 * sched domain for each mask. CPUs not in any of the cpumasks will
7109 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7110 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7111 * it as it is.
7112 *
acc3f5d7
RR
7113 * The passed in 'doms_new' should be allocated using
7114 * alloc_sched_domains. This routine takes ownership of it and will
7115 * free_sched_domains it when done with it. If the caller failed the
7116 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7117 * and partition_sched_domains() will fallback to the single partition
7118 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7119 *
96f874e2 7120 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7121 * ndoms_new == 0 is a special case for destroying existing domains,
7122 * and it will not create the default domain.
dfb512ec 7123 *
029190c5
PJ
7124 * Call with hotplug lock held
7125 */
acc3f5d7 7126void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7127 struct sched_domain_attr *dattr_new)
029190c5 7128{
dfb512ec 7129 int i, j, n;
d65bd5ec 7130 int new_topology;
029190c5 7131
712555ee 7132 mutex_lock(&sched_domains_mutex);
a1835615 7133
7378547f
MM
7134 /* always unregister in case we don't destroy any domains */
7135 unregister_sched_domain_sysctl();
7136
d65bd5ec
HC
7137 /* Let architecture update cpu core mappings. */
7138 new_topology = arch_update_cpu_topology();
7139
dfb512ec 7140 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7141
7142 /* Destroy deleted domains */
7143 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7144 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7145 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7146 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7147 goto match1;
7148 }
7149 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7150 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7151match1:
7152 ;
7153 }
7154
e761b772
MK
7155 if (doms_new == NULL) {
7156 ndoms_cur = 0;
acc3f5d7 7157 doms_new = &fallback_doms;
6ad4c188 7158 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7159 WARN_ON_ONCE(dattr_new);
e761b772
MK
7160 }
7161
029190c5
PJ
7162 /* Build new domains */
7163 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7164 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7165 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7166 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7167 goto match2;
7168 }
7169 /* no match - add a new doms_new */
acc3f5d7 7170 __build_sched_domains(doms_new[i],
1d3504fc 7171 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7172match2:
7173 ;
7174 }
7175
7176 /* Remember the new sched domains */
acc3f5d7
RR
7177 if (doms_cur != &fallback_doms)
7178 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7179 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7180 doms_cur = doms_new;
1d3504fc 7181 dattr_cur = dattr_new;
029190c5 7182 ndoms_cur = ndoms_new;
7378547f
MM
7183
7184 register_sched_domain_sysctl();
a1835615 7185
712555ee 7186 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7187}
7188
5c45bf27 7189#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7190static void arch_reinit_sched_domains(void)
5c45bf27 7191{
95402b38 7192 get_online_cpus();
dfb512ec
MK
7193
7194 /* Destroy domains first to force the rebuild */
7195 partition_sched_domains(0, NULL, NULL);
7196
e761b772 7197 rebuild_sched_domains();
95402b38 7198 put_online_cpus();
5c45bf27
SS
7199}
7200
7201static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7202{
afb8a9b7 7203 unsigned int level = 0;
5c45bf27 7204
afb8a9b7
GS
7205 if (sscanf(buf, "%u", &level) != 1)
7206 return -EINVAL;
7207
7208 /*
7209 * level is always be positive so don't check for
7210 * level < POWERSAVINGS_BALANCE_NONE which is 0
7211 * What happens on 0 or 1 byte write,
7212 * need to check for count as well?
7213 */
7214
7215 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7216 return -EINVAL;
7217
7218 if (smt)
afb8a9b7 7219 sched_smt_power_savings = level;
5c45bf27 7220 else
afb8a9b7 7221 sched_mc_power_savings = level;
5c45bf27 7222
c70f22d2 7223 arch_reinit_sched_domains();
5c45bf27 7224
c70f22d2 7225 return count;
5c45bf27
SS
7226}
7227
5c45bf27 7228#ifdef CONFIG_SCHED_MC
f718cd4a 7229static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7230 struct sysdev_class_attribute *attr,
f718cd4a 7231 char *page)
5c45bf27
SS
7232{
7233 return sprintf(page, "%u\n", sched_mc_power_savings);
7234}
f718cd4a 7235static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7236 struct sysdev_class_attribute *attr,
48f24c4d 7237 const char *buf, size_t count)
5c45bf27
SS
7238{
7239 return sched_power_savings_store(buf, count, 0);
7240}
f718cd4a
AK
7241static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7242 sched_mc_power_savings_show,
7243 sched_mc_power_savings_store);
5c45bf27
SS
7244#endif
7245
7246#ifdef CONFIG_SCHED_SMT
f718cd4a 7247static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7248 struct sysdev_class_attribute *attr,
f718cd4a 7249 char *page)
5c45bf27
SS
7250{
7251 return sprintf(page, "%u\n", sched_smt_power_savings);
7252}
f718cd4a 7253static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7254 struct sysdev_class_attribute *attr,
48f24c4d 7255 const char *buf, size_t count)
5c45bf27
SS
7256{
7257 return sched_power_savings_store(buf, count, 1);
7258}
f718cd4a
AK
7259static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7260 sched_smt_power_savings_show,
6707de00
AB
7261 sched_smt_power_savings_store);
7262#endif
7263
39aac648 7264int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7265{
7266 int err = 0;
7267
7268#ifdef CONFIG_SCHED_SMT
7269 if (smt_capable())
7270 err = sysfs_create_file(&cls->kset.kobj,
7271 &attr_sched_smt_power_savings.attr);
7272#endif
7273#ifdef CONFIG_SCHED_MC
7274 if (!err && mc_capable())
7275 err = sysfs_create_file(&cls->kset.kobj,
7276 &attr_sched_mc_power_savings.attr);
7277#endif
7278 return err;
7279}
6d6bc0ad 7280#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7281
e761b772 7282#ifndef CONFIG_CPUSETS
1da177e4 7283/*
e761b772
MK
7284 * Add online and remove offline CPUs from the scheduler domains.
7285 * When cpusets are enabled they take over this function.
1da177e4
LT
7286 */
7287static int update_sched_domains(struct notifier_block *nfb,
7288 unsigned long action, void *hcpu)
e761b772
MK
7289{
7290 switch (action) {
7291 case CPU_ONLINE:
7292 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7293 case CPU_DOWN_PREPARE:
7294 case CPU_DOWN_PREPARE_FROZEN:
7295 case CPU_DOWN_FAILED:
7296 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7297 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7298 return NOTIFY_OK;
7299
7300 default:
7301 return NOTIFY_DONE;
7302 }
7303}
7304#endif
7305
7306static int update_runtime(struct notifier_block *nfb,
7307 unsigned long action, void *hcpu)
1da177e4 7308{
7def2be1
PZ
7309 int cpu = (int)(long)hcpu;
7310
1da177e4 7311 switch (action) {
1da177e4 7312 case CPU_DOWN_PREPARE:
8bb78442 7313 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7314 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7315 return NOTIFY_OK;
7316
1da177e4 7317 case CPU_DOWN_FAILED:
8bb78442 7318 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7319 case CPU_ONLINE:
8bb78442 7320 case CPU_ONLINE_FROZEN:
7def2be1 7321 enable_runtime(cpu_rq(cpu));
e761b772
MK
7322 return NOTIFY_OK;
7323
1da177e4
LT
7324 default:
7325 return NOTIFY_DONE;
7326 }
1da177e4 7327}
1da177e4
LT
7328
7329void __init sched_init_smp(void)
7330{
dcc30a35
RR
7331 cpumask_var_t non_isolated_cpus;
7332
7333 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7334 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7335
434d53b0
MT
7336#if defined(CONFIG_NUMA)
7337 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7338 GFP_KERNEL);
7339 BUG_ON(sched_group_nodes_bycpu == NULL);
7340#endif
95402b38 7341 get_online_cpus();
712555ee 7342 mutex_lock(&sched_domains_mutex);
6ad4c188 7343 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7344 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7345 if (cpumask_empty(non_isolated_cpus))
7346 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7347 mutex_unlock(&sched_domains_mutex);
95402b38 7348 put_online_cpus();
e761b772
MK
7349
7350#ifndef CONFIG_CPUSETS
1da177e4
LT
7351 /* XXX: Theoretical race here - CPU may be hotplugged now */
7352 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7353#endif
7354
7355 /* RT runtime code needs to handle some hotplug events */
7356 hotcpu_notifier(update_runtime, 0);
7357
b328ca18 7358 init_hrtick();
5c1e1767
NP
7359
7360 /* Move init over to a non-isolated CPU */
dcc30a35 7361 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7362 BUG();
19978ca6 7363 sched_init_granularity();
dcc30a35 7364 free_cpumask_var(non_isolated_cpus);
4212823f 7365
0e3900e6 7366 init_sched_rt_class();
1da177e4
LT
7367}
7368#else
7369void __init sched_init_smp(void)
7370{
19978ca6 7371 sched_init_granularity();
1da177e4
LT
7372}
7373#endif /* CONFIG_SMP */
7374
cd1bb94b
AB
7375const_debug unsigned int sysctl_timer_migration = 1;
7376
1da177e4
LT
7377int in_sched_functions(unsigned long addr)
7378{
1da177e4
LT
7379 return in_lock_functions(addr) ||
7380 (addr >= (unsigned long)__sched_text_start
7381 && addr < (unsigned long)__sched_text_end);
7382}
7383
a9957449 7384static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7385{
7386 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7387 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7388#ifdef CONFIG_FAIR_GROUP_SCHED
7389 cfs_rq->rq = rq;
7390#endif
67e9fb2a 7391 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7392}
7393
fa85ae24
PZ
7394static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7395{
7396 struct rt_prio_array *array;
7397 int i;
7398
7399 array = &rt_rq->active;
7400 for (i = 0; i < MAX_RT_PRIO; i++) {
7401 INIT_LIST_HEAD(array->queue + i);
7402 __clear_bit(i, array->bitmap);
7403 }
7404 /* delimiter for bitsearch: */
7405 __set_bit(MAX_RT_PRIO, array->bitmap);
7406
052f1dc7 7407#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7408 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7409#ifdef CONFIG_SMP
e864c499 7410 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7411#endif
48d5e258 7412#endif
fa85ae24
PZ
7413#ifdef CONFIG_SMP
7414 rt_rq->rt_nr_migratory = 0;
fa85ae24 7415 rt_rq->overloaded = 0;
05fa785c 7416 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7417#endif
7418
7419 rt_rq->rt_time = 0;
7420 rt_rq->rt_throttled = 0;
ac086bc2 7421 rt_rq->rt_runtime = 0;
0986b11b 7422 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7423
052f1dc7 7424#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7425 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7426 rt_rq->rq = rq;
7427#endif
fa85ae24
PZ
7428}
7429
6f505b16 7430#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7431static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7432 struct sched_entity *se, int cpu, int add,
7433 struct sched_entity *parent)
6f505b16 7434{
ec7dc8ac 7435 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7436 tg->cfs_rq[cpu] = cfs_rq;
7437 init_cfs_rq(cfs_rq, rq);
7438 cfs_rq->tg = tg;
7439 if (add)
7440 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7441
7442 tg->se[cpu] = se;
354d60c2
DG
7443 /* se could be NULL for init_task_group */
7444 if (!se)
7445 return;
7446
ec7dc8ac
DG
7447 if (!parent)
7448 se->cfs_rq = &rq->cfs;
7449 else
7450 se->cfs_rq = parent->my_q;
7451
6f505b16
PZ
7452 se->my_q = cfs_rq;
7453 se->load.weight = tg->shares;
e05510d0 7454 se->load.inv_weight = 0;
ec7dc8ac 7455 se->parent = parent;
6f505b16 7456}
052f1dc7 7457#endif
6f505b16 7458
052f1dc7 7459#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7460static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7461 struct sched_rt_entity *rt_se, int cpu, int add,
7462 struct sched_rt_entity *parent)
6f505b16 7463{
ec7dc8ac
DG
7464 struct rq *rq = cpu_rq(cpu);
7465
6f505b16
PZ
7466 tg->rt_rq[cpu] = rt_rq;
7467 init_rt_rq(rt_rq, rq);
7468 rt_rq->tg = tg;
ac086bc2 7469 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7470 if (add)
7471 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7472
7473 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7474 if (!rt_se)
7475 return;
7476
ec7dc8ac
DG
7477 if (!parent)
7478 rt_se->rt_rq = &rq->rt;
7479 else
7480 rt_se->rt_rq = parent->my_q;
7481
6f505b16 7482 rt_se->my_q = rt_rq;
ec7dc8ac 7483 rt_se->parent = parent;
6f505b16
PZ
7484 INIT_LIST_HEAD(&rt_se->run_list);
7485}
7486#endif
7487
1da177e4
LT
7488void __init sched_init(void)
7489{
dd41f596 7490 int i, j;
434d53b0
MT
7491 unsigned long alloc_size = 0, ptr;
7492
7493#ifdef CONFIG_FAIR_GROUP_SCHED
7494 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7495#endif
7496#ifdef CONFIG_RT_GROUP_SCHED
7497 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7498#endif
df7c8e84 7499#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7500 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7501#endif
434d53b0 7502 if (alloc_size) {
36b7b6d4 7503 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7504
7505#ifdef CONFIG_FAIR_GROUP_SCHED
7506 init_task_group.se = (struct sched_entity **)ptr;
7507 ptr += nr_cpu_ids * sizeof(void **);
7508
7509 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7510 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7511
6d6bc0ad 7512#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7513#ifdef CONFIG_RT_GROUP_SCHED
7514 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7515 ptr += nr_cpu_ids * sizeof(void **);
7516
7517 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7518 ptr += nr_cpu_ids * sizeof(void **);
7519
6d6bc0ad 7520#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7521#ifdef CONFIG_CPUMASK_OFFSTACK
7522 for_each_possible_cpu(i) {
7523 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7524 ptr += cpumask_size();
7525 }
7526#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7527 }
dd41f596 7528
57d885fe
GH
7529#ifdef CONFIG_SMP
7530 init_defrootdomain();
7531#endif
7532
d0b27fa7
PZ
7533 init_rt_bandwidth(&def_rt_bandwidth,
7534 global_rt_period(), global_rt_runtime());
7535
7536#ifdef CONFIG_RT_GROUP_SCHED
7537 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7538 global_rt_period(), global_rt_runtime());
6d6bc0ad 7539#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7540
7c941438 7541#ifdef CONFIG_CGROUP_SCHED
6f505b16 7542 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7543 INIT_LIST_HEAD(&init_task_group.children);
7544
7c941438 7545#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7546
4a6cc4bd
JK
7547#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7548 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7549 __alignof__(unsigned long));
7550#endif
0a945022 7551 for_each_possible_cpu(i) {
70b97a7f 7552 struct rq *rq;
1da177e4
LT
7553
7554 rq = cpu_rq(i);
05fa785c 7555 raw_spin_lock_init(&rq->lock);
7897986b 7556 rq->nr_running = 0;
dce48a84
TG
7557 rq->calc_load_active = 0;
7558 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7559 init_cfs_rq(&rq->cfs, rq);
6f505b16 7560 init_rt_rq(&rq->rt, rq);
dd41f596 7561#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7562 init_task_group.shares = init_task_group_load;
6f505b16 7563 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7564#ifdef CONFIG_CGROUP_SCHED
7565 /*
7566 * How much cpu bandwidth does init_task_group get?
7567 *
7568 * In case of task-groups formed thr' the cgroup filesystem, it
7569 * gets 100% of the cpu resources in the system. This overall
7570 * system cpu resource is divided among the tasks of
7571 * init_task_group and its child task-groups in a fair manner,
7572 * based on each entity's (task or task-group's) weight
7573 * (se->load.weight).
7574 *
7575 * In other words, if init_task_group has 10 tasks of weight
7576 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7577 * then A0's share of the cpu resource is:
7578 *
0d905bca 7579 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7580 *
7581 * We achieve this by letting init_task_group's tasks sit
7582 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7583 */
ec7dc8ac 7584 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7585#endif
354d60c2
DG
7586#endif /* CONFIG_FAIR_GROUP_SCHED */
7587
7588 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7589#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7590 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7591#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7592 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7593#endif
dd41f596 7594#endif
1da177e4 7595
dd41f596
IM
7596 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7597 rq->cpu_load[j] = 0;
1da177e4 7598#ifdef CONFIG_SMP
41c7ce9a 7599 rq->sd = NULL;
57d885fe 7600 rq->rd = NULL;
e51fd5e2 7601 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7602 rq->post_schedule = 0;
1da177e4 7603 rq->active_balance = 0;
dd41f596 7604 rq->next_balance = jiffies;
1da177e4 7605 rq->push_cpu = 0;
0a2966b4 7606 rq->cpu = i;
1f11eb6a 7607 rq->online = 0;
eae0c9df
MG
7608 rq->idle_stamp = 0;
7609 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7610 rq_attach_root(rq, &def_root_domain);
1da177e4 7611#endif
8f4d37ec 7612 init_rq_hrtick(rq);
1da177e4 7613 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7614 }
7615
2dd73a4f 7616 set_load_weight(&init_task);
b50f60ce 7617
e107be36
AK
7618#ifdef CONFIG_PREEMPT_NOTIFIERS
7619 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7620#endif
7621
c9819f45 7622#ifdef CONFIG_SMP
962cf36c 7623 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7624#endif
7625
b50f60ce 7626#ifdef CONFIG_RT_MUTEXES
1d615482 7627 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7628#endif
7629
1da177e4
LT
7630 /*
7631 * The boot idle thread does lazy MMU switching as well:
7632 */
7633 atomic_inc(&init_mm.mm_count);
7634 enter_lazy_tlb(&init_mm, current);
7635
7636 /*
7637 * Make us the idle thread. Technically, schedule() should not be
7638 * called from this thread, however somewhere below it might be,
7639 * but because we are the idle thread, we just pick up running again
7640 * when this runqueue becomes "idle".
7641 */
7642 init_idle(current, smp_processor_id());
dce48a84
TG
7643
7644 calc_load_update = jiffies + LOAD_FREQ;
7645
dd41f596
IM
7646 /*
7647 * During early bootup we pretend to be a normal task:
7648 */
7649 current->sched_class = &fair_sched_class;
6892b75e 7650
6a7b3dc3 7651 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7652 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7653#ifdef CONFIG_SMP
7d1e6a9b 7654#ifdef CONFIG_NO_HZ
49557e62 7655 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7656 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7657#endif
bdddd296
RR
7658 /* May be allocated at isolcpus cmdline parse time */
7659 if (cpu_isolated_map == NULL)
7660 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7661#endif /* SMP */
6a7b3dc3 7662
cdd6c482 7663 perf_event_init();
0d905bca 7664
6892b75e 7665 scheduler_running = 1;
1da177e4
LT
7666}
7667
7668#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7669static inline int preempt_count_equals(int preempt_offset)
7670{
234da7bc 7671 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7672
7673 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7674}
7675
d894837f 7676void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7677{
48f24c4d 7678#ifdef in_atomic
1da177e4
LT
7679 static unsigned long prev_jiffy; /* ratelimiting */
7680
e4aafea2
FW
7681 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7682 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7683 return;
7684 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7685 return;
7686 prev_jiffy = jiffies;
7687
3df0fc5b
PZ
7688 printk(KERN_ERR
7689 "BUG: sleeping function called from invalid context at %s:%d\n",
7690 file, line);
7691 printk(KERN_ERR
7692 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7693 in_atomic(), irqs_disabled(),
7694 current->pid, current->comm);
aef745fc
IM
7695
7696 debug_show_held_locks(current);
7697 if (irqs_disabled())
7698 print_irqtrace_events(current);
7699 dump_stack();
1da177e4
LT
7700#endif
7701}
7702EXPORT_SYMBOL(__might_sleep);
7703#endif
7704
7705#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7706static void normalize_task(struct rq *rq, struct task_struct *p)
7707{
7708 int on_rq;
3e51f33f 7709
3a5e4dc1
AK
7710 on_rq = p->se.on_rq;
7711 if (on_rq)
7712 deactivate_task(rq, p, 0);
7713 __setscheduler(rq, p, SCHED_NORMAL, 0);
7714 if (on_rq) {
7715 activate_task(rq, p, 0);
7716 resched_task(rq->curr);
7717 }
7718}
7719
1da177e4
LT
7720void normalize_rt_tasks(void)
7721{
a0f98a1c 7722 struct task_struct *g, *p;
1da177e4 7723 unsigned long flags;
70b97a7f 7724 struct rq *rq;
1da177e4 7725
4cf5d77a 7726 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7727 do_each_thread(g, p) {
178be793
IM
7728 /*
7729 * Only normalize user tasks:
7730 */
7731 if (!p->mm)
7732 continue;
7733
6cfb0d5d 7734 p->se.exec_start = 0;
6cfb0d5d 7735#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7736 p->se.statistics.wait_start = 0;
7737 p->se.statistics.sleep_start = 0;
7738 p->se.statistics.block_start = 0;
6cfb0d5d 7739#endif
dd41f596
IM
7740
7741 if (!rt_task(p)) {
7742 /*
7743 * Renice negative nice level userspace
7744 * tasks back to 0:
7745 */
7746 if (TASK_NICE(p) < 0 && p->mm)
7747 set_user_nice(p, 0);
1da177e4 7748 continue;
dd41f596 7749 }
1da177e4 7750
1d615482 7751 raw_spin_lock(&p->pi_lock);
b29739f9 7752 rq = __task_rq_lock(p);
1da177e4 7753
178be793 7754 normalize_task(rq, p);
3a5e4dc1 7755
b29739f9 7756 __task_rq_unlock(rq);
1d615482 7757 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7758 } while_each_thread(g, p);
7759
4cf5d77a 7760 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7761}
7762
7763#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7764
67fc4e0c 7765#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7766/*
67fc4e0c 7767 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7768 *
7769 * They can only be called when the whole system has been
7770 * stopped - every CPU needs to be quiescent, and no scheduling
7771 * activity can take place. Using them for anything else would
7772 * be a serious bug, and as a result, they aren't even visible
7773 * under any other configuration.
7774 */
7775
7776/**
7777 * curr_task - return the current task for a given cpu.
7778 * @cpu: the processor in question.
7779 *
7780 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7781 */
36c8b586 7782struct task_struct *curr_task(int cpu)
1df5c10a
LT
7783{
7784 return cpu_curr(cpu);
7785}
7786
67fc4e0c
JW
7787#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7788
7789#ifdef CONFIG_IA64
1df5c10a
LT
7790/**
7791 * set_curr_task - set the current task for a given cpu.
7792 * @cpu: the processor in question.
7793 * @p: the task pointer to set.
7794 *
7795 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7796 * are serviced on a separate stack. It allows the architecture to switch the
7797 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7798 * must be called with all CPU's synchronized, and interrupts disabled, the
7799 * and caller must save the original value of the current task (see
7800 * curr_task() above) and restore that value before reenabling interrupts and
7801 * re-starting the system.
7802 *
7803 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7804 */
36c8b586 7805void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7806{
7807 cpu_curr(cpu) = p;
7808}
7809
7810#endif
29f59db3 7811
bccbe08a
PZ
7812#ifdef CONFIG_FAIR_GROUP_SCHED
7813static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7814{
7815 int i;
7816
7817 for_each_possible_cpu(i) {
7818 if (tg->cfs_rq)
7819 kfree(tg->cfs_rq[i]);
7820 if (tg->se)
7821 kfree(tg->se[i]);
6f505b16
PZ
7822 }
7823
7824 kfree(tg->cfs_rq);
7825 kfree(tg->se);
6f505b16
PZ
7826}
7827
ec7dc8ac
DG
7828static
7829int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7830{
29f59db3 7831 struct cfs_rq *cfs_rq;
eab17229 7832 struct sched_entity *se;
9b5b7751 7833 struct rq *rq;
29f59db3
SV
7834 int i;
7835
434d53b0 7836 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7837 if (!tg->cfs_rq)
7838 goto err;
434d53b0 7839 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7840 if (!tg->se)
7841 goto err;
052f1dc7
PZ
7842
7843 tg->shares = NICE_0_LOAD;
29f59db3
SV
7844
7845 for_each_possible_cpu(i) {
9b5b7751 7846 rq = cpu_rq(i);
29f59db3 7847
eab17229
LZ
7848 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7849 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7850 if (!cfs_rq)
7851 goto err;
7852
eab17229
LZ
7853 se = kzalloc_node(sizeof(struct sched_entity),
7854 GFP_KERNEL, cpu_to_node(i));
29f59db3 7855 if (!se)
dfc12eb2 7856 goto err_free_rq;
29f59db3 7857
eab17229 7858 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7859 }
7860
7861 return 1;
7862
dfc12eb2
PC
7863 err_free_rq:
7864 kfree(cfs_rq);
bccbe08a
PZ
7865 err:
7866 return 0;
7867}
7868
7869static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7870{
7871 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7872 &cpu_rq(cpu)->leaf_cfs_rq_list);
7873}
7874
7875static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7876{
7877 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7878}
6d6bc0ad 7879#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7880static inline void free_fair_sched_group(struct task_group *tg)
7881{
7882}
7883
ec7dc8ac
DG
7884static inline
7885int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7886{
7887 return 1;
7888}
7889
7890static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7891{
7892}
7893
7894static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7895{
7896}
6d6bc0ad 7897#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7898
7899#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7900static void free_rt_sched_group(struct task_group *tg)
7901{
7902 int i;
7903
d0b27fa7
PZ
7904 destroy_rt_bandwidth(&tg->rt_bandwidth);
7905
bccbe08a
PZ
7906 for_each_possible_cpu(i) {
7907 if (tg->rt_rq)
7908 kfree(tg->rt_rq[i]);
7909 if (tg->rt_se)
7910 kfree(tg->rt_se[i]);
7911 }
7912
7913 kfree(tg->rt_rq);
7914 kfree(tg->rt_se);
7915}
7916
ec7dc8ac
DG
7917static
7918int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7919{
7920 struct rt_rq *rt_rq;
eab17229 7921 struct sched_rt_entity *rt_se;
bccbe08a
PZ
7922 struct rq *rq;
7923 int i;
7924
434d53b0 7925 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7926 if (!tg->rt_rq)
7927 goto err;
434d53b0 7928 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7929 if (!tg->rt_se)
7930 goto err;
7931
d0b27fa7
PZ
7932 init_rt_bandwidth(&tg->rt_bandwidth,
7933 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7934
7935 for_each_possible_cpu(i) {
7936 rq = cpu_rq(i);
7937
eab17229
LZ
7938 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7939 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
7940 if (!rt_rq)
7941 goto err;
29f59db3 7942
eab17229
LZ
7943 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7944 GFP_KERNEL, cpu_to_node(i));
6f505b16 7945 if (!rt_se)
dfc12eb2 7946 goto err_free_rq;
29f59db3 7947
eab17229 7948 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
7949 }
7950
bccbe08a
PZ
7951 return 1;
7952
dfc12eb2
PC
7953 err_free_rq:
7954 kfree(rt_rq);
bccbe08a
PZ
7955 err:
7956 return 0;
7957}
7958
7959static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7960{
7961 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7962 &cpu_rq(cpu)->leaf_rt_rq_list);
7963}
7964
7965static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7966{
7967 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7968}
6d6bc0ad 7969#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
7970static inline void free_rt_sched_group(struct task_group *tg)
7971{
7972}
7973
ec7dc8ac
DG
7974static inline
7975int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7976{
7977 return 1;
7978}
7979
7980static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7981{
7982}
7983
7984static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7985{
7986}
6d6bc0ad 7987#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 7988
7c941438 7989#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
7990static void free_sched_group(struct task_group *tg)
7991{
7992 free_fair_sched_group(tg);
7993 free_rt_sched_group(tg);
7994 kfree(tg);
7995}
7996
7997/* allocate runqueue etc for a new task group */
ec7dc8ac 7998struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7999{
8000 struct task_group *tg;
8001 unsigned long flags;
8002 int i;
8003
8004 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8005 if (!tg)
8006 return ERR_PTR(-ENOMEM);
8007
ec7dc8ac 8008 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8009 goto err;
8010
ec7dc8ac 8011 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8012 goto err;
8013
8ed36996 8014 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8015 for_each_possible_cpu(i) {
bccbe08a
PZ
8016 register_fair_sched_group(tg, i);
8017 register_rt_sched_group(tg, i);
9b5b7751 8018 }
6f505b16 8019 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8020
8021 WARN_ON(!parent); /* root should already exist */
8022
8023 tg->parent = parent;
f473aa5e 8024 INIT_LIST_HEAD(&tg->children);
09f2724a 8025 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8026 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8027
9b5b7751 8028 return tg;
29f59db3
SV
8029
8030err:
6f505b16 8031 free_sched_group(tg);
29f59db3
SV
8032 return ERR_PTR(-ENOMEM);
8033}
8034
9b5b7751 8035/* rcu callback to free various structures associated with a task group */
6f505b16 8036static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8037{
29f59db3 8038 /* now it should be safe to free those cfs_rqs */
6f505b16 8039 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8040}
8041
9b5b7751 8042/* Destroy runqueue etc associated with a task group */
4cf86d77 8043void sched_destroy_group(struct task_group *tg)
29f59db3 8044{
8ed36996 8045 unsigned long flags;
9b5b7751 8046 int i;
29f59db3 8047
8ed36996 8048 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8049 for_each_possible_cpu(i) {
bccbe08a
PZ
8050 unregister_fair_sched_group(tg, i);
8051 unregister_rt_sched_group(tg, i);
9b5b7751 8052 }
6f505b16 8053 list_del_rcu(&tg->list);
f473aa5e 8054 list_del_rcu(&tg->siblings);
8ed36996 8055 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8056
9b5b7751 8057 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8058 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8059}
8060
9b5b7751 8061/* change task's runqueue when it moves between groups.
3a252015
IM
8062 * The caller of this function should have put the task in its new group
8063 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8064 * reflect its new group.
9b5b7751
SV
8065 */
8066void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8067{
8068 int on_rq, running;
8069 unsigned long flags;
8070 struct rq *rq;
8071
8072 rq = task_rq_lock(tsk, &flags);
8073
051a1d1a 8074 running = task_current(rq, tsk);
29f59db3
SV
8075 on_rq = tsk->se.on_rq;
8076
0e1f3483 8077 if (on_rq)
29f59db3 8078 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8079 if (unlikely(running))
8080 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8081
6f505b16 8082 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8083
810b3817
PZ
8084#ifdef CONFIG_FAIR_GROUP_SCHED
8085 if (tsk->sched_class->moved_group)
88ec22d3 8086 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8087#endif
8088
0e1f3483
HS
8089 if (unlikely(running))
8090 tsk->sched_class->set_curr_task(rq);
8091 if (on_rq)
371fd7e7 8092 enqueue_task(rq, tsk, 0);
29f59db3 8093
29f59db3
SV
8094 task_rq_unlock(rq, &flags);
8095}
7c941438 8096#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8097
052f1dc7 8098#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8099static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8100{
8101 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8102 int on_rq;
8103
29f59db3 8104 on_rq = se->on_rq;
62fb1851 8105 if (on_rq)
29f59db3
SV
8106 dequeue_entity(cfs_rq, se, 0);
8107
8108 se->load.weight = shares;
e05510d0 8109 se->load.inv_weight = 0;
29f59db3 8110
62fb1851 8111 if (on_rq)
29f59db3 8112 enqueue_entity(cfs_rq, se, 0);
c09595f6 8113}
62fb1851 8114
c09595f6
PZ
8115static void set_se_shares(struct sched_entity *se, unsigned long shares)
8116{
8117 struct cfs_rq *cfs_rq = se->cfs_rq;
8118 struct rq *rq = cfs_rq->rq;
8119 unsigned long flags;
8120
05fa785c 8121 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8122 __set_se_shares(se, shares);
05fa785c 8123 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8124}
8125
8ed36996
PZ
8126static DEFINE_MUTEX(shares_mutex);
8127
4cf86d77 8128int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8129{
8130 int i;
8ed36996 8131 unsigned long flags;
c61935fd 8132
ec7dc8ac
DG
8133 /*
8134 * We can't change the weight of the root cgroup.
8135 */
8136 if (!tg->se[0])
8137 return -EINVAL;
8138
18d95a28
PZ
8139 if (shares < MIN_SHARES)
8140 shares = MIN_SHARES;
cb4ad1ff
MX
8141 else if (shares > MAX_SHARES)
8142 shares = MAX_SHARES;
62fb1851 8143
8ed36996 8144 mutex_lock(&shares_mutex);
9b5b7751 8145 if (tg->shares == shares)
5cb350ba 8146 goto done;
29f59db3 8147
8ed36996 8148 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8149 for_each_possible_cpu(i)
8150 unregister_fair_sched_group(tg, i);
f473aa5e 8151 list_del_rcu(&tg->siblings);
8ed36996 8152 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8153
8154 /* wait for any ongoing reference to this group to finish */
8155 synchronize_sched();
8156
8157 /*
8158 * Now we are free to modify the group's share on each cpu
8159 * w/o tripping rebalance_share or load_balance_fair.
8160 */
9b5b7751 8161 tg->shares = shares;
c09595f6
PZ
8162 for_each_possible_cpu(i) {
8163 /*
8164 * force a rebalance
8165 */
8166 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8167 set_se_shares(tg->se[i], shares);
c09595f6 8168 }
29f59db3 8169
6b2d7700
SV
8170 /*
8171 * Enable load balance activity on this group, by inserting it back on
8172 * each cpu's rq->leaf_cfs_rq_list.
8173 */
8ed36996 8174 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8175 for_each_possible_cpu(i)
8176 register_fair_sched_group(tg, i);
f473aa5e 8177 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8178 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8179done:
8ed36996 8180 mutex_unlock(&shares_mutex);
9b5b7751 8181 return 0;
29f59db3
SV
8182}
8183
5cb350ba
DG
8184unsigned long sched_group_shares(struct task_group *tg)
8185{
8186 return tg->shares;
8187}
052f1dc7 8188#endif
5cb350ba 8189
052f1dc7 8190#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8191/*
9f0c1e56 8192 * Ensure that the real time constraints are schedulable.
6f505b16 8193 */
9f0c1e56
PZ
8194static DEFINE_MUTEX(rt_constraints_mutex);
8195
8196static unsigned long to_ratio(u64 period, u64 runtime)
8197{
8198 if (runtime == RUNTIME_INF)
9a7e0b18 8199 return 1ULL << 20;
9f0c1e56 8200
9a7e0b18 8201 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8202}
8203
9a7e0b18
PZ
8204/* Must be called with tasklist_lock held */
8205static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8206{
9a7e0b18 8207 struct task_struct *g, *p;
b40b2e8e 8208
9a7e0b18
PZ
8209 do_each_thread(g, p) {
8210 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8211 return 1;
8212 } while_each_thread(g, p);
b40b2e8e 8213
9a7e0b18
PZ
8214 return 0;
8215}
b40b2e8e 8216
9a7e0b18
PZ
8217struct rt_schedulable_data {
8218 struct task_group *tg;
8219 u64 rt_period;
8220 u64 rt_runtime;
8221};
b40b2e8e 8222
9a7e0b18
PZ
8223static int tg_schedulable(struct task_group *tg, void *data)
8224{
8225 struct rt_schedulable_data *d = data;
8226 struct task_group *child;
8227 unsigned long total, sum = 0;
8228 u64 period, runtime;
b40b2e8e 8229
9a7e0b18
PZ
8230 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8231 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8232
9a7e0b18
PZ
8233 if (tg == d->tg) {
8234 period = d->rt_period;
8235 runtime = d->rt_runtime;
b40b2e8e 8236 }
b40b2e8e 8237
4653f803
PZ
8238 /*
8239 * Cannot have more runtime than the period.
8240 */
8241 if (runtime > period && runtime != RUNTIME_INF)
8242 return -EINVAL;
6f505b16 8243
4653f803
PZ
8244 /*
8245 * Ensure we don't starve existing RT tasks.
8246 */
9a7e0b18
PZ
8247 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8248 return -EBUSY;
6f505b16 8249
9a7e0b18 8250 total = to_ratio(period, runtime);
6f505b16 8251
4653f803
PZ
8252 /*
8253 * Nobody can have more than the global setting allows.
8254 */
8255 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8256 return -EINVAL;
6f505b16 8257
4653f803
PZ
8258 /*
8259 * The sum of our children's runtime should not exceed our own.
8260 */
9a7e0b18
PZ
8261 list_for_each_entry_rcu(child, &tg->children, siblings) {
8262 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8263 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8264
9a7e0b18
PZ
8265 if (child == d->tg) {
8266 period = d->rt_period;
8267 runtime = d->rt_runtime;
8268 }
6f505b16 8269
9a7e0b18 8270 sum += to_ratio(period, runtime);
9f0c1e56 8271 }
6f505b16 8272
9a7e0b18
PZ
8273 if (sum > total)
8274 return -EINVAL;
8275
8276 return 0;
6f505b16
PZ
8277}
8278
9a7e0b18 8279static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8280{
9a7e0b18
PZ
8281 struct rt_schedulable_data data = {
8282 .tg = tg,
8283 .rt_period = period,
8284 .rt_runtime = runtime,
8285 };
8286
8287 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8288}
8289
d0b27fa7
PZ
8290static int tg_set_bandwidth(struct task_group *tg,
8291 u64 rt_period, u64 rt_runtime)
6f505b16 8292{
ac086bc2 8293 int i, err = 0;
9f0c1e56 8294
9f0c1e56 8295 mutex_lock(&rt_constraints_mutex);
521f1a24 8296 read_lock(&tasklist_lock);
9a7e0b18
PZ
8297 err = __rt_schedulable(tg, rt_period, rt_runtime);
8298 if (err)
9f0c1e56 8299 goto unlock;
ac086bc2 8300
0986b11b 8301 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8302 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8303 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8304
8305 for_each_possible_cpu(i) {
8306 struct rt_rq *rt_rq = tg->rt_rq[i];
8307
0986b11b 8308 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8309 rt_rq->rt_runtime = rt_runtime;
0986b11b 8310 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8311 }
0986b11b 8312 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8313 unlock:
521f1a24 8314 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8315 mutex_unlock(&rt_constraints_mutex);
8316
8317 return err;
6f505b16
PZ
8318}
8319
d0b27fa7
PZ
8320int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8321{
8322 u64 rt_runtime, rt_period;
8323
8324 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8325 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8326 if (rt_runtime_us < 0)
8327 rt_runtime = RUNTIME_INF;
8328
8329 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8330}
8331
9f0c1e56
PZ
8332long sched_group_rt_runtime(struct task_group *tg)
8333{
8334 u64 rt_runtime_us;
8335
d0b27fa7 8336 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8337 return -1;
8338
d0b27fa7 8339 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8340 do_div(rt_runtime_us, NSEC_PER_USEC);
8341 return rt_runtime_us;
8342}
d0b27fa7
PZ
8343
8344int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8345{
8346 u64 rt_runtime, rt_period;
8347
8348 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8349 rt_runtime = tg->rt_bandwidth.rt_runtime;
8350
619b0488
R
8351 if (rt_period == 0)
8352 return -EINVAL;
8353
d0b27fa7
PZ
8354 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8355}
8356
8357long sched_group_rt_period(struct task_group *tg)
8358{
8359 u64 rt_period_us;
8360
8361 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8362 do_div(rt_period_us, NSEC_PER_USEC);
8363 return rt_period_us;
8364}
8365
8366static int sched_rt_global_constraints(void)
8367{
4653f803 8368 u64 runtime, period;
d0b27fa7
PZ
8369 int ret = 0;
8370
ec5d4989
HS
8371 if (sysctl_sched_rt_period <= 0)
8372 return -EINVAL;
8373
4653f803
PZ
8374 runtime = global_rt_runtime();
8375 period = global_rt_period();
8376
8377 /*
8378 * Sanity check on the sysctl variables.
8379 */
8380 if (runtime > period && runtime != RUNTIME_INF)
8381 return -EINVAL;
10b612f4 8382
d0b27fa7 8383 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8384 read_lock(&tasklist_lock);
4653f803 8385 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8386 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8387 mutex_unlock(&rt_constraints_mutex);
8388
8389 return ret;
8390}
54e99124
DG
8391
8392int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8393{
8394 /* Don't accept realtime tasks when there is no way for them to run */
8395 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8396 return 0;
8397
8398 return 1;
8399}
8400
6d6bc0ad 8401#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8402static int sched_rt_global_constraints(void)
8403{
ac086bc2
PZ
8404 unsigned long flags;
8405 int i;
8406
ec5d4989
HS
8407 if (sysctl_sched_rt_period <= 0)
8408 return -EINVAL;
8409
60aa605d
PZ
8410 /*
8411 * There's always some RT tasks in the root group
8412 * -- migration, kstopmachine etc..
8413 */
8414 if (sysctl_sched_rt_runtime == 0)
8415 return -EBUSY;
8416
0986b11b 8417 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8418 for_each_possible_cpu(i) {
8419 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8420
0986b11b 8421 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8422 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8423 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8424 }
0986b11b 8425 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8426
d0b27fa7
PZ
8427 return 0;
8428}
6d6bc0ad 8429#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8430
8431int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8432 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8433 loff_t *ppos)
8434{
8435 int ret;
8436 int old_period, old_runtime;
8437 static DEFINE_MUTEX(mutex);
8438
8439 mutex_lock(&mutex);
8440 old_period = sysctl_sched_rt_period;
8441 old_runtime = sysctl_sched_rt_runtime;
8442
8d65af78 8443 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8444
8445 if (!ret && write) {
8446 ret = sched_rt_global_constraints();
8447 if (ret) {
8448 sysctl_sched_rt_period = old_period;
8449 sysctl_sched_rt_runtime = old_runtime;
8450 } else {
8451 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8452 def_rt_bandwidth.rt_period =
8453 ns_to_ktime(global_rt_period());
8454 }
8455 }
8456 mutex_unlock(&mutex);
8457
8458 return ret;
8459}
68318b8e 8460
052f1dc7 8461#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8462
8463/* return corresponding task_group object of a cgroup */
2b01dfe3 8464static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8465{
2b01dfe3
PM
8466 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8467 struct task_group, css);
68318b8e
SV
8468}
8469
8470static struct cgroup_subsys_state *
2b01dfe3 8471cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8472{
ec7dc8ac 8473 struct task_group *tg, *parent;
68318b8e 8474
2b01dfe3 8475 if (!cgrp->parent) {
68318b8e 8476 /* This is early initialization for the top cgroup */
68318b8e
SV
8477 return &init_task_group.css;
8478 }
8479
ec7dc8ac
DG
8480 parent = cgroup_tg(cgrp->parent);
8481 tg = sched_create_group(parent);
68318b8e
SV
8482 if (IS_ERR(tg))
8483 return ERR_PTR(-ENOMEM);
8484
68318b8e
SV
8485 return &tg->css;
8486}
8487
41a2d6cf
IM
8488static void
8489cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8490{
2b01dfe3 8491 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8492
8493 sched_destroy_group(tg);
8494}
8495
41a2d6cf 8496static int
be367d09 8497cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8498{
b68aa230 8499#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8500 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8501 return -EINVAL;
8502#else
68318b8e
SV
8503 /* We don't support RT-tasks being in separate groups */
8504 if (tsk->sched_class != &fair_sched_class)
8505 return -EINVAL;
b68aa230 8506#endif
be367d09
BB
8507 return 0;
8508}
68318b8e 8509
be367d09
BB
8510static int
8511cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8512 struct task_struct *tsk, bool threadgroup)
8513{
8514 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8515 if (retval)
8516 return retval;
8517 if (threadgroup) {
8518 struct task_struct *c;
8519 rcu_read_lock();
8520 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8521 retval = cpu_cgroup_can_attach_task(cgrp, c);
8522 if (retval) {
8523 rcu_read_unlock();
8524 return retval;
8525 }
8526 }
8527 rcu_read_unlock();
8528 }
68318b8e
SV
8529 return 0;
8530}
8531
8532static void
2b01dfe3 8533cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8534 struct cgroup *old_cont, struct task_struct *tsk,
8535 bool threadgroup)
68318b8e
SV
8536{
8537 sched_move_task(tsk);
be367d09
BB
8538 if (threadgroup) {
8539 struct task_struct *c;
8540 rcu_read_lock();
8541 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8542 sched_move_task(c);
8543 }
8544 rcu_read_unlock();
8545 }
68318b8e
SV
8546}
8547
052f1dc7 8548#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8549static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8550 u64 shareval)
68318b8e 8551{
2b01dfe3 8552 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8553}
8554
f4c753b7 8555static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8556{
2b01dfe3 8557 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8558
8559 return (u64) tg->shares;
8560}
6d6bc0ad 8561#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8562
052f1dc7 8563#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8564static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8565 s64 val)
6f505b16 8566{
06ecb27c 8567 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8568}
8569
06ecb27c 8570static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8571{
06ecb27c 8572 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8573}
d0b27fa7
PZ
8574
8575static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8576 u64 rt_period_us)
8577{
8578 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8579}
8580
8581static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8582{
8583 return sched_group_rt_period(cgroup_tg(cgrp));
8584}
6d6bc0ad 8585#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8586
fe5c7cc2 8587static struct cftype cpu_files[] = {
052f1dc7 8588#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8589 {
8590 .name = "shares",
f4c753b7
PM
8591 .read_u64 = cpu_shares_read_u64,
8592 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8593 },
052f1dc7
PZ
8594#endif
8595#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8596 {
9f0c1e56 8597 .name = "rt_runtime_us",
06ecb27c
PM
8598 .read_s64 = cpu_rt_runtime_read,
8599 .write_s64 = cpu_rt_runtime_write,
6f505b16 8600 },
d0b27fa7
PZ
8601 {
8602 .name = "rt_period_us",
f4c753b7
PM
8603 .read_u64 = cpu_rt_period_read_uint,
8604 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8605 },
052f1dc7 8606#endif
68318b8e
SV
8607};
8608
8609static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8610{
fe5c7cc2 8611 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8612}
8613
8614struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8615 .name = "cpu",
8616 .create = cpu_cgroup_create,
8617 .destroy = cpu_cgroup_destroy,
8618 .can_attach = cpu_cgroup_can_attach,
8619 .attach = cpu_cgroup_attach,
8620 .populate = cpu_cgroup_populate,
8621 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8622 .early_init = 1,
8623};
8624
052f1dc7 8625#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8626
8627#ifdef CONFIG_CGROUP_CPUACCT
8628
8629/*
8630 * CPU accounting code for task groups.
8631 *
8632 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8633 * (balbir@in.ibm.com).
8634 */
8635
934352f2 8636/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8637struct cpuacct {
8638 struct cgroup_subsys_state css;
8639 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8640 u64 __percpu *cpuusage;
ef12fefa 8641 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8642 struct cpuacct *parent;
d842de87
SV
8643};
8644
8645struct cgroup_subsys cpuacct_subsys;
8646
8647/* return cpu accounting group corresponding to this container */
32cd756a 8648static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8649{
32cd756a 8650 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8651 struct cpuacct, css);
8652}
8653
8654/* return cpu accounting group to which this task belongs */
8655static inline struct cpuacct *task_ca(struct task_struct *tsk)
8656{
8657 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8658 struct cpuacct, css);
8659}
8660
8661/* create a new cpu accounting group */
8662static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8663 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8664{
8665 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8666 int i;
d842de87
SV
8667
8668 if (!ca)
ef12fefa 8669 goto out;
d842de87
SV
8670
8671 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8672 if (!ca->cpuusage)
8673 goto out_free_ca;
8674
8675 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8676 if (percpu_counter_init(&ca->cpustat[i], 0))
8677 goto out_free_counters;
d842de87 8678
934352f2
BR
8679 if (cgrp->parent)
8680 ca->parent = cgroup_ca(cgrp->parent);
8681
d842de87 8682 return &ca->css;
ef12fefa
BR
8683
8684out_free_counters:
8685 while (--i >= 0)
8686 percpu_counter_destroy(&ca->cpustat[i]);
8687 free_percpu(ca->cpuusage);
8688out_free_ca:
8689 kfree(ca);
8690out:
8691 return ERR_PTR(-ENOMEM);
d842de87
SV
8692}
8693
8694/* destroy an existing cpu accounting group */
41a2d6cf 8695static void
32cd756a 8696cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8697{
32cd756a 8698 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8699 int i;
d842de87 8700
ef12fefa
BR
8701 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8702 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8703 free_percpu(ca->cpuusage);
8704 kfree(ca);
8705}
8706
720f5498
KC
8707static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8708{
b36128c8 8709 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8710 u64 data;
8711
8712#ifndef CONFIG_64BIT
8713 /*
8714 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8715 */
05fa785c 8716 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8717 data = *cpuusage;
05fa785c 8718 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8719#else
8720 data = *cpuusage;
8721#endif
8722
8723 return data;
8724}
8725
8726static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8727{
b36128c8 8728 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8729
8730#ifndef CONFIG_64BIT
8731 /*
8732 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8733 */
05fa785c 8734 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8735 *cpuusage = val;
05fa785c 8736 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8737#else
8738 *cpuusage = val;
8739#endif
8740}
8741
d842de87 8742/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8743static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8744{
32cd756a 8745 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8746 u64 totalcpuusage = 0;
8747 int i;
8748
720f5498
KC
8749 for_each_present_cpu(i)
8750 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8751
8752 return totalcpuusage;
8753}
8754
0297b803
DG
8755static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8756 u64 reset)
8757{
8758 struct cpuacct *ca = cgroup_ca(cgrp);
8759 int err = 0;
8760 int i;
8761
8762 if (reset) {
8763 err = -EINVAL;
8764 goto out;
8765 }
8766
720f5498
KC
8767 for_each_present_cpu(i)
8768 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8769
0297b803
DG
8770out:
8771 return err;
8772}
8773
e9515c3c
KC
8774static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8775 struct seq_file *m)
8776{
8777 struct cpuacct *ca = cgroup_ca(cgroup);
8778 u64 percpu;
8779 int i;
8780
8781 for_each_present_cpu(i) {
8782 percpu = cpuacct_cpuusage_read(ca, i);
8783 seq_printf(m, "%llu ", (unsigned long long) percpu);
8784 }
8785 seq_printf(m, "\n");
8786 return 0;
8787}
8788
ef12fefa
BR
8789static const char *cpuacct_stat_desc[] = {
8790 [CPUACCT_STAT_USER] = "user",
8791 [CPUACCT_STAT_SYSTEM] = "system",
8792};
8793
8794static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8795 struct cgroup_map_cb *cb)
8796{
8797 struct cpuacct *ca = cgroup_ca(cgrp);
8798 int i;
8799
8800 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8801 s64 val = percpu_counter_read(&ca->cpustat[i]);
8802 val = cputime64_to_clock_t(val);
8803 cb->fill(cb, cpuacct_stat_desc[i], val);
8804 }
8805 return 0;
8806}
8807
d842de87
SV
8808static struct cftype files[] = {
8809 {
8810 .name = "usage",
f4c753b7
PM
8811 .read_u64 = cpuusage_read,
8812 .write_u64 = cpuusage_write,
d842de87 8813 },
e9515c3c
KC
8814 {
8815 .name = "usage_percpu",
8816 .read_seq_string = cpuacct_percpu_seq_read,
8817 },
ef12fefa
BR
8818 {
8819 .name = "stat",
8820 .read_map = cpuacct_stats_show,
8821 },
d842de87
SV
8822};
8823
32cd756a 8824static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8825{
32cd756a 8826 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8827}
8828
8829/*
8830 * charge this task's execution time to its accounting group.
8831 *
8832 * called with rq->lock held.
8833 */
8834static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8835{
8836 struct cpuacct *ca;
934352f2 8837 int cpu;
d842de87 8838
c40c6f85 8839 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8840 return;
8841
934352f2 8842 cpu = task_cpu(tsk);
a18b83b7
BR
8843
8844 rcu_read_lock();
8845
d842de87 8846 ca = task_ca(tsk);
d842de87 8847
934352f2 8848 for (; ca; ca = ca->parent) {
b36128c8 8849 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8850 *cpuusage += cputime;
8851 }
a18b83b7
BR
8852
8853 rcu_read_unlock();
d842de87
SV
8854}
8855
fa535a77
AB
8856/*
8857 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8858 * in cputime_t units. As a result, cpuacct_update_stats calls
8859 * percpu_counter_add with values large enough to always overflow the
8860 * per cpu batch limit causing bad SMP scalability.
8861 *
8862 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8863 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8864 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8865 */
8866#ifdef CONFIG_SMP
8867#define CPUACCT_BATCH \
8868 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8869#else
8870#define CPUACCT_BATCH 0
8871#endif
8872
ef12fefa
BR
8873/*
8874 * Charge the system/user time to the task's accounting group.
8875 */
8876static void cpuacct_update_stats(struct task_struct *tsk,
8877 enum cpuacct_stat_index idx, cputime_t val)
8878{
8879 struct cpuacct *ca;
fa535a77 8880 int batch = CPUACCT_BATCH;
ef12fefa
BR
8881
8882 if (unlikely(!cpuacct_subsys.active))
8883 return;
8884
8885 rcu_read_lock();
8886 ca = task_ca(tsk);
8887
8888 do {
fa535a77 8889 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8890 ca = ca->parent;
8891 } while (ca);
8892 rcu_read_unlock();
8893}
8894
d842de87
SV
8895struct cgroup_subsys cpuacct_subsys = {
8896 .name = "cpuacct",
8897 .create = cpuacct_create,
8898 .destroy = cpuacct_destroy,
8899 .populate = cpuacct_populate,
8900 .subsys_id = cpuacct_subsys_id,
8901};
8902#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8903
8904#ifndef CONFIG_SMP
8905
03b042bf
PM
8906void synchronize_sched_expedited(void)
8907{
fc390cde 8908 barrier();
03b042bf
PM
8909}
8910EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8911
8912#else /* #ifndef CONFIG_SMP */
8913
cc631fb7 8914static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 8915
cc631fb7 8916static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 8917{
969c7921
TH
8918 /*
8919 * There must be a full memory barrier on each affected CPU
8920 * between the time that try_stop_cpus() is called and the
8921 * time that it returns.
8922 *
8923 * In the current initial implementation of cpu_stop, the
8924 * above condition is already met when the control reaches
8925 * this point and the following smp_mb() is not strictly
8926 * necessary. Do smp_mb() anyway for documentation and
8927 * robustness against future implementation changes.
8928 */
cc631fb7 8929 smp_mb(); /* See above comment block. */
969c7921 8930 return 0;
03b042bf 8931}
03b042bf
PM
8932
8933/*
8934 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8935 * approach to force grace period to end quickly. This consumes
8936 * significant time on all CPUs, and is thus not recommended for
8937 * any sort of common-case code.
8938 *
8939 * Note that it is illegal to call this function while holding any
8940 * lock that is acquired by a CPU-hotplug notifier. Failing to
8941 * observe this restriction will result in deadlock.
8942 */
8943void synchronize_sched_expedited(void)
8944{
969c7921 8945 int snap, trycount = 0;
03b042bf
PM
8946
8947 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 8948 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 8949 get_online_cpus();
969c7921
TH
8950 while (try_stop_cpus(cpu_online_mask,
8951 synchronize_sched_expedited_cpu_stop,
94458d5e 8952 NULL) == -EAGAIN) {
03b042bf
PM
8953 put_online_cpus();
8954 if (trycount++ < 10)
8955 udelay(trycount * num_online_cpus());
8956 else {
8957 synchronize_sched();
8958 return;
8959 }
969c7921 8960 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
8961 smp_mb(); /* ensure test happens before caller kfree */
8962 return;
8963 }
8964 get_online_cpus();
8965 }
969c7921 8966 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 8967 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 8968 put_online_cpus();
03b042bf
PM
8969}
8970EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8971
8972#endif /* #else #ifndef CONFIG_SMP */