thp: mm: define MADV_NOHUGEPAGE
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
e9da73d6 17#include <linux/bit_spinlock.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
4e950f6f 21struct file_ra_state;
e8edc6e0 22struct user_struct;
4e950f6f 23struct writeback_control;
1da177e4
LT
24
25#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26extern unsigned long max_mapnr;
27#endif
28
29extern unsigned long num_physpages;
4481374c 30extern unsigned long totalram_pages;
1da177e4 31extern void * high_memory;
1da177e4
LT
32extern int page_cluster;
33
34#ifdef CONFIG_SYSCTL
35extern int sysctl_legacy_va_layout;
36#else
37#define sysctl_legacy_va_layout 0
38#endif
39
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/processor.h>
1da177e4 43
1da177e4
LT
44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
27ac792c
AR
46/* to align the pointer to the (next) page boundary */
47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48
1da177e4
LT
49/*
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
56 */
57
c43692e8
CL
58extern struct kmem_cache *vm_area_cachep;
59
1da177e4 60#ifndef CONFIG_MMU
8feae131
DH
61extern struct rb_root nommu_region_tree;
62extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
63
64extern unsigned int kobjsize(const void *objp);
65#endif
66
67/*
605d9288 68 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
69 */
70#define VM_READ 0x00000001 /* currently active flags */
71#define VM_WRITE 0x00000002
72#define VM_EXEC 0x00000004
73#define VM_SHARED 0x00000008
74
7e2cff42 75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
76#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77#define VM_MAYWRITE 0x00000020
78#define VM_MAYEXEC 0x00000040
79#define VM_MAYSHARE 0x00000080
80
81#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 83#define VM_GROWSUP 0x00000200
8ca3eb08
TL
84#else
85#define VM_GROWSUP 0x00000000
86#endif
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90#define VM_EXECUTABLE 0x00001000
91#define VM_LOCKED 0x00002000
92#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93
94 /* Used by sys_madvise() */
95#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97
98#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 100#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 101#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 102#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
103#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
f2d6bfe9 105#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 106#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
f2d6bfe9
JW
107#else
108#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
109#endif
895791da 110#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 111#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 112
d0217ac0 113#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 114#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 115#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 116#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 117#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 118
a8bef8ff
MG
119/* Bits set in the VMA until the stack is in its final location */
120#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
121
1da177e4
LT
122#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
123#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
124#endif
125
126#ifdef CONFIG_STACK_GROWSUP
127#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
128#else
129#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
130#endif
131
132#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
133#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
134#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
135#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
136#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
137
b291f000
NP
138/*
139 * special vmas that are non-mergable, non-mlock()able
140 */
141#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
142
1da177e4
LT
143/*
144 * mapping from the currently active vm_flags protection bits (the
145 * low four bits) to a page protection mask..
146 */
147extern pgprot_t protection_map[16];
148
d0217ac0
NP
149#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
150#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 151#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 152#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
d0217ac0 153
6bd9cd50 154/*
155 * This interface is used by x86 PAT code to identify a pfn mapping that is
156 * linear over entire vma. This is to optimize PAT code that deals with
157 * marking the physical region with a particular prot. This is not for generic
158 * mm use. Note also that this check will not work if the pfn mapping is
159 * linear for a vma starting at physical address 0. In which case PAT code
160 * falls back to slow path of reserving physical range page by page.
161 */
3c8bb73a 162static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
163{
895791da 164 return (vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 165}
166
167static inline int is_pfn_mapping(struct vm_area_struct *vma)
168{
169 return (vma->vm_flags & VM_PFNMAP);
170}
d0217ac0 171
54cb8821 172/*
d0217ac0 173 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
174 * ->fault function. The vma's ->fault is responsible for returning a bitmask
175 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 176 *
d0217ac0
NP
177 * pgoff should be used in favour of virtual_address, if possible. If pgoff
178 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
179 * mapping support.
54cb8821 180 */
d0217ac0
NP
181struct vm_fault {
182 unsigned int flags; /* FAULT_FLAG_xxx flags */
183 pgoff_t pgoff; /* Logical page offset based on vma */
184 void __user *virtual_address; /* Faulting virtual address */
185
186 struct page *page; /* ->fault handlers should return a
83c54070 187 * page here, unless VM_FAULT_NOPAGE
d0217ac0 188 * is set (which is also implied by
83c54070 189 * VM_FAULT_ERROR).
d0217ac0 190 */
54cb8821 191};
1da177e4
LT
192
193/*
194 * These are the virtual MM functions - opening of an area, closing and
195 * unmapping it (needed to keep files on disk up-to-date etc), pointer
196 * to the functions called when a no-page or a wp-page exception occurs.
197 */
198struct vm_operations_struct {
199 void (*open)(struct vm_area_struct * area);
200 void (*close)(struct vm_area_struct * area);
d0217ac0 201 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
202
203 /* notification that a previously read-only page is about to become
204 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 205 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
206
207 /* called by access_process_vm when get_user_pages() fails, typically
208 * for use by special VMAs that can switch between memory and hardware
209 */
210 int (*access)(struct vm_area_struct *vma, unsigned long addr,
211 void *buf, int len, int write);
1da177e4 212#ifdef CONFIG_NUMA
a6020ed7
LS
213 /*
214 * set_policy() op must add a reference to any non-NULL @new mempolicy
215 * to hold the policy upon return. Caller should pass NULL @new to
216 * remove a policy and fall back to surrounding context--i.e. do not
217 * install a MPOL_DEFAULT policy, nor the task or system default
218 * mempolicy.
219 */
1da177e4 220 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
221
222 /*
223 * get_policy() op must add reference [mpol_get()] to any policy at
224 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
225 * in mm/mempolicy.c will do this automatically.
226 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
227 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
228 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
229 * must return NULL--i.e., do not "fallback" to task or system default
230 * policy.
231 */
1da177e4
LT
232 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
233 unsigned long addr);
7b2259b3
CL
234 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
235 const nodemask_t *to, unsigned long flags);
1da177e4
LT
236#endif
237};
238
239struct mmu_gather;
240struct inode;
241
349aef0b
AM
242#define page_private(page) ((page)->private)
243#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 244
1da177e4
LT
245/*
246 * FIXME: take this include out, include page-flags.h in
247 * files which need it (119 of them)
248 */
249#include <linux/page-flags.h>
71e3aac0 250#include <linux/huge_mm.h>
1da177e4
LT
251
252/*
253 * Methods to modify the page usage count.
254 *
255 * What counts for a page usage:
256 * - cache mapping (page->mapping)
257 * - private data (page->private)
258 * - page mapped in a task's page tables, each mapping
259 * is counted separately
260 *
261 * Also, many kernel routines increase the page count before a critical
262 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
263 */
264
265/*
da6052f7 266 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 267 */
7c8ee9a8
NP
268static inline int put_page_testzero(struct page *page)
269{
725d704e 270 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 271 return atomic_dec_and_test(&page->_count);
7c8ee9a8 272}
1da177e4
LT
273
274/*
7c8ee9a8
NP
275 * Try to grab a ref unless the page has a refcount of zero, return false if
276 * that is the case.
1da177e4 277 */
7c8ee9a8
NP
278static inline int get_page_unless_zero(struct page *page)
279{
8dc04efb 280 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 281}
1da177e4 282
53df8fdc
WF
283extern int page_is_ram(unsigned long pfn);
284
48667e7a 285/* Support for virtually mapped pages */
b3bdda02
CL
286struct page *vmalloc_to_page(const void *addr);
287unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 288
0738c4bb
PM
289/*
290 * Determine if an address is within the vmalloc range
291 *
292 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
293 * is no special casing required.
294 */
9e2779fa
CL
295static inline int is_vmalloc_addr(const void *x)
296{
0738c4bb 297#ifdef CONFIG_MMU
9e2779fa
CL
298 unsigned long addr = (unsigned long)x;
299
300 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
301#else
302 return 0;
8ca3ed87 303#endif
0738c4bb 304}
81ac3ad9
KH
305#ifdef CONFIG_MMU
306extern int is_vmalloc_or_module_addr(const void *x);
307#else
934831d0 308static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
309{
310 return 0;
311}
312#endif
9e2779fa 313
e9da73d6
AA
314static inline void compound_lock(struct page *page)
315{
316#ifdef CONFIG_TRANSPARENT_HUGEPAGE
317 bit_spin_lock(PG_compound_lock, &page->flags);
318#endif
319}
320
321static inline void compound_unlock(struct page *page)
322{
323#ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 bit_spin_unlock(PG_compound_lock, &page->flags);
325#endif
326}
327
328static inline unsigned long compound_lock_irqsave(struct page *page)
329{
330 unsigned long uninitialized_var(flags);
331#ifdef CONFIG_TRANSPARENT_HUGEPAGE
332 local_irq_save(flags);
333 compound_lock(page);
334#endif
335 return flags;
336}
337
338static inline void compound_unlock_irqrestore(struct page *page,
339 unsigned long flags)
340{
341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 compound_unlock(page);
343 local_irq_restore(flags);
344#endif
345}
346
d85f3385
CL
347static inline struct page *compound_head(struct page *page)
348{
6d777953 349 if (unlikely(PageTail(page)))
d85f3385
CL
350 return page->first_page;
351 return page;
352}
353
4c21e2f2 354static inline int page_count(struct page *page)
1da177e4 355{
d85f3385 356 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
357}
358
359static inline void get_page(struct page *page)
360{
91807063
AA
361 /*
362 * Getting a normal page or the head of a compound page
363 * requires to already have an elevated page->_count. Only if
364 * we're getting a tail page, the elevated page->_count is
365 * required only in the head page, so for tail pages the
366 * bugcheck only verifies that the page->_count isn't
367 * negative.
368 */
369 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
1da177e4 370 atomic_inc(&page->_count);
91807063
AA
371 /*
372 * Getting a tail page will elevate both the head and tail
373 * page->_count(s).
374 */
375 if (unlikely(PageTail(page))) {
376 /*
377 * This is safe only because
378 * __split_huge_page_refcount can't run under
379 * get_page().
380 */
381 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
382 atomic_inc(&page->first_page->_count);
383 }
1da177e4
LT
384}
385
b49af68f
CL
386static inline struct page *virt_to_head_page(const void *x)
387{
388 struct page *page = virt_to_page(x);
389 return compound_head(page);
390}
391
7835e98b
NP
392/*
393 * Setup the page count before being freed into the page allocator for
394 * the first time (boot or memory hotplug)
395 */
396static inline void init_page_count(struct page *page)
397{
398 atomic_set(&page->_count, 1);
399}
400
5f24ce5f
AA
401/*
402 * PageBuddy() indicate that the page is free and in the buddy system
403 * (see mm/page_alloc.c).
404 */
405static inline int PageBuddy(struct page *page)
406{
407 return atomic_read(&page->_mapcount) == -2;
408}
409
410static inline void __SetPageBuddy(struct page *page)
411{
412 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
413 atomic_set(&page->_mapcount, -2);
414}
415
416static inline void __ClearPageBuddy(struct page *page)
417{
418 VM_BUG_ON(!PageBuddy(page));
419 atomic_set(&page->_mapcount, -1);
420}
421
1da177e4 422void put_page(struct page *page);
1d7ea732 423void put_pages_list(struct list_head *pages);
1da177e4 424
8dfcc9ba 425void split_page(struct page *page, unsigned int order);
748446bb 426int split_free_page(struct page *page);
8dfcc9ba 427
33f2ef89
AW
428/*
429 * Compound pages have a destructor function. Provide a
430 * prototype for that function and accessor functions.
431 * These are _only_ valid on the head of a PG_compound page.
432 */
433typedef void compound_page_dtor(struct page *);
434
435static inline void set_compound_page_dtor(struct page *page,
436 compound_page_dtor *dtor)
437{
438 page[1].lru.next = (void *)dtor;
439}
440
441static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
442{
443 return (compound_page_dtor *)page[1].lru.next;
444}
445
d85f3385
CL
446static inline int compound_order(struct page *page)
447{
6d777953 448 if (!PageHead(page))
d85f3385
CL
449 return 0;
450 return (unsigned long)page[1].lru.prev;
451}
452
37c2ac78
AA
453static inline int compound_trans_order(struct page *page)
454{
455 int order;
456 unsigned long flags;
457
458 if (!PageHead(page))
459 return 0;
460
461 flags = compound_lock_irqsave(page);
462 order = compound_order(page);
463 compound_unlock_irqrestore(page, flags);
464 return order;
465}
466
d85f3385
CL
467static inline void set_compound_order(struct page *page, unsigned long order)
468{
469 page[1].lru.prev = (void *)order;
470}
471
14fd403f
AA
472/*
473 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
474 * servicing faults for write access. In the normal case, do always want
475 * pte_mkwrite. But get_user_pages can cause write faults for mappings
476 * that do not have writing enabled, when used by access_process_vm.
477 */
478static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
479{
480 if (likely(vma->vm_flags & VM_WRITE))
481 pte = pte_mkwrite(pte);
482 return pte;
483}
484
1da177e4
LT
485/*
486 * Multiple processes may "see" the same page. E.g. for untouched
487 * mappings of /dev/null, all processes see the same page full of
488 * zeroes, and text pages of executables and shared libraries have
489 * only one copy in memory, at most, normally.
490 *
491 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
492 * page_count() == 0 means the page is free. page->lru is then used for
493 * freelist management in the buddy allocator.
da6052f7 494 * page_count() > 0 means the page has been allocated.
1da177e4 495 *
da6052f7
NP
496 * Pages are allocated by the slab allocator in order to provide memory
497 * to kmalloc and kmem_cache_alloc. In this case, the management of the
498 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
499 * unless a particular usage is carefully commented. (the responsibility of
500 * freeing the kmalloc memory is the caller's, of course).
1da177e4 501 *
da6052f7
NP
502 * A page may be used by anyone else who does a __get_free_page().
503 * In this case, page_count still tracks the references, and should only
504 * be used through the normal accessor functions. The top bits of page->flags
505 * and page->virtual store page management information, but all other fields
506 * are unused and could be used privately, carefully. The management of this
507 * page is the responsibility of the one who allocated it, and those who have
508 * subsequently been given references to it.
509 *
510 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
511 * managed by the Linux memory manager: I/O, buffers, swapping etc.
512 * The following discussion applies only to them.
513 *
da6052f7
NP
514 * A pagecache page contains an opaque `private' member, which belongs to the
515 * page's address_space. Usually, this is the address of a circular list of
516 * the page's disk buffers. PG_private must be set to tell the VM to call
517 * into the filesystem to release these pages.
1da177e4 518 *
da6052f7
NP
519 * A page may belong to an inode's memory mapping. In this case, page->mapping
520 * is the pointer to the inode, and page->index is the file offset of the page,
521 * in units of PAGE_CACHE_SIZE.
1da177e4 522 *
da6052f7
NP
523 * If pagecache pages are not associated with an inode, they are said to be
524 * anonymous pages. These may become associated with the swapcache, and in that
525 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 526 *
da6052f7
NP
527 * In either case (swapcache or inode backed), the pagecache itself holds one
528 * reference to the page. Setting PG_private should also increment the
529 * refcount. The each user mapping also has a reference to the page.
1da177e4 530 *
da6052f7
NP
531 * The pagecache pages are stored in a per-mapping radix tree, which is
532 * rooted at mapping->page_tree, and indexed by offset.
533 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
534 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 535 *
da6052f7 536 * All pagecache pages may be subject to I/O:
1da177e4
LT
537 * - inode pages may need to be read from disk,
538 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
539 * to be written back to the inode on disk,
540 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
541 * modified may need to be swapped out to swap space and (later) to be read
542 * back into memory.
1da177e4
LT
543 */
544
545/*
546 * The zone field is never updated after free_area_init_core()
547 * sets it, so none of the operations on it need to be atomic.
1da177e4 548 */
348f8b6c 549
d41dee36
AW
550
551/*
552 * page->flags layout:
553 *
554 * There are three possibilities for how page->flags get
555 * laid out. The first is for the normal case, without
556 * sparsemem. The second is for sparsemem when there is
557 * plenty of space for node and section. The last is when
558 * we have run out of space and have to fall back to an
559 * alternate (slower) way of determining the node.
560 *
308c05e3
CL
561 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
562 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
563 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 564 */
308c05e3 565#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
566#define SECTIONS_WIDTH SECTIONS_SHIFT
567#else
568#define SECTIONS_WIDTH 0
569#endif
570
571#define ZONES_WIDTH ZONES_SHIFT
572
9223b419 573#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
574#define NODES_WIDTH NODES_SHIFT
575#else
308c05e3
CL
576#ifdef CONFIG_SPARSEMEM_VMEMMAP
577#error "Vmemmap: No space for nodes field in page flags"
578#endif
d41dee36
AW
579#define NODES_WIDTH 0
580#endif
581
582/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 583#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
584#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
585#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
586
587/*
588 * We are going to use the flags for the page to node mapping if its in
589 * there. This includes the case where there is no node, so it is implicit.
590 */
89689ae7
CL
591#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
592#define NODE_NOT_IN_PAGE_FLAGS
593#endif
d41dee36
AW
594
595#ifndef PFN_SECTION_SHIFT
596#define PFN_SECTION_SHIFT 0
597#endif
348f8b6c
DH
598
599/*
600 * Define the bit shifts to access each section. For non-existant
601 * sections we define the shift as 0; that plus a 0 mask ensures
602 * the compiler will optimise away reference to them.
603 */
d41dee36
AW
604#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
605#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
606#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 607
bce54bbf
WD
608/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
609#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 610#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
611#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
612 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 613#else
89689ae7 614#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
615#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
616 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
617#endif
618
bd8029b6 619#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 620
9223b419
CL
621#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
622#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
623#endif
624
d41dee36
AW
625#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
626#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
627#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 628#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 629
2f1b6248 630static inline enum zone_type page_zonenum(struct page *page)
1da177e4 631{
348f8b6c 632 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 633}
1da177e4 634
89689ae7
CL
635/*
636 * The identification function is only used by the buddy allocator for
637 * determining if two pages could be buddies. We are not really
638 * identifying a zone since we could be using a the section number
639 * id if we have not node id available in page flags.
640 * We guarantee only that it will return the same value for two
641 * combinable pages in a zone.
642 */
cb2b95e1
AW
643static inline int page_zone_id(struct page *page)
644{
89689ae7 645 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
646}
647
25ba77c1 648static inline int zone_to_nid(struct zone *zone)
89fa3024 649{
d5f541ed
CL
650#ifdef CONFIG_NUMA
651 return zone->node;
652#else
653 return 0;
654#endif
89fa3024
CL
655}
656
89689ae7 657#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 658extern int page_to_nid(struct page *page);
89689ae7 659#else
25ba77c1 660static inline int page_to_nid(struct page *page)
d41dee36 661{
89689ae7 662 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 663}
89689ae7
CL
664#endif
665
666static inline struct zone *page_zone(struct page *page)
667{
668 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
669}
670
308c05e3 671#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
672static inline unsigned long page_to_section(struct page *page)
673{
674 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
675}
308c05e3 676#endif
d41dee36 677
2f1b6248 678static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
679{
680 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
681 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
682}
2f1b6248 683
348f8b6c
DH
684static inline void set_page_node(struct page *page, unsigned long node)
685{
686 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
687 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 688}
89689ae7 689
d41dee36
AW
690static inline void set_page_section(struct page *page, unsigned long section)
691{
692 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
693 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
694}
1da177e4 695
2f1b6248 696static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 697 unsigned long node, unsigned long pfn)
1da177e4 698{
348f8b6c
DH
699 set_page_zone(page, zone);
700 set_page_node(page, node);
d41dee36 701 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
702}
703
f6ac2354
CL
704/*
705 * Some inline functions in vmstat.h depend on page_zone()
706 */
707#include <linux/vmstat.h>
708
652050ae 709static __always_inline void *lowmem_page_address(struct page *page)
1da177e4 710{
c6f6b596 711 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
712}
713
714#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
715#define HASHED_PAGE_VIRTUAL
716#endif
717
718#if defined(WANT_PAGE_VIRTUAL)
719#define page_address(page) ((page)->virtual)
720#define set_page_address(page, address) \
721 do { \
722 (page)->virtual = (address); \
723 } while(0)
724#define page_address_init() do { } while(0)
725#endif
726
727#if defined(HASHED_PAGE_VIRTUAL)
728void *page_address(struct page *page);
729void set_page_address(struct page *page, void *virtual);
730void page_address_init(void);
731#endif
732
733#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
734#define page_address(page) lowmem_page_address(page)
735#define set_page_address(page, address) do { } while(0)
736#define page_address_init() do { } while(0)
737#endif
738
739/*
740 * On an anonymous page mapped into a user virtual memory area,
741 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
742 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
743 *
744 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
745 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
746 * and then page->mapping points, not to an anon_vma, but to a private
747 * structure which KSM associates with that merged page. See ksm.h.
748 *
749 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
750 *
751 * Please note that, confusingly, "page_mapping" refers to the inode
752 * address_space which maps the page from disk; whereas "page_mapped"
753 * refers to user virtual address space into which the page is mapped.
754 */
755#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
756#define PAGE_MAPPING_KSM 2
757#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
758
759extern struct address_space swapper_space;
760static inline struct address_space *page_mapping(struct page *page)
761{
762 struct address_space *mapping = page->mapping;
763
b5fab14e 764 VM_BUG_ON(PageSlab(page));
1da177e4
LT
765 if (unlikely(PageSwapCache(page)))
766 mapping = &swapper_space;
e20e8779 767 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
768 mapping = NULL;
769 return mapping;
770}
771
3ca7b3c5
HD
772/* Neutral page->mapping pointer to address_space or anon_vma or other */
773static inline void *page_rmapping(struct page *page)
774{
775 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
776}
777
1da177e4
LT
778static inline int PageAnon(struct page *page)
779{
780 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
781}
782
783/*
784 * Return the pagecache index of the passed page. Regular pagecache pages
785 * use ->index whereas swapcache pages use ->private
786 */
787static inline pgoff_t page_index(struct page *page)
788{
789 if (unlikely(PageSwapCache(page)))
4c21e2f2 790 return page_private(page);
1da177e4
LT
791 return page->index;
792}
793
794/*
795 * The atomic page->_mapcount, like _count, starts from -1:
796 * so that transitions both from it and to it can be tracked,
797 * using atomic_inc_and_test and atomic_add_negative(-1).
798 */
799static inline void reset_page_mapcount(struct page *page)
800{
801 atomic_set(&(page)->_mapcount, -1);
802}
803
804static inline int page_mapcount(struct page *page)
805{
806 return atomic_read(&(page)->_mapcount) + 1;
807}
808
809/*
810 * Return true if this page is mapped into pagetables.
811 */
812static inline int page_mapped(struct page *page)
813{
814 return atomic_read(&(page)->_mapcount) >= 0;
815}
816
1da177e4
LT
817/*
818 * Different kinds of faults, as returned by handle_mm_fault().
819 * Used to decide whether a process gets delivered SIGBUS or
820 * just gets major/minor fault counters bumped up.
821 */
d0217ac0 822
83c54070 823#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 824
83c54070
NP
825#define VM_FAULT_OOM 0x0001
826#define VM_FAULT_SIGBUS 0x0002
827#define VM_FAULT_MAJOR 0x0004
828#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
829#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
830#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 831
83c54070
NP
832#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
833#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 834#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 835
aa50d3a7
AK
836#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
837
838#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
839 VM_FAULT_HWPOISON_LARGE)
840
841/* Encode hstate index for a hwpoisoned large page */
842#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
843#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 844
1c0fe6e3
NP
845/*
846 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
847 */
848extern void pagefault_out_of_memory(void);
849
1da177e4
LT
850#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
851
852extern void show_free_areas(void);
853
3f96b79a 854int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 855struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
856int shmem_zero_setup(struct vm_area_struct *);
857
b0e15190
DH
858#ifndef CONFIG_MMU
859extern unsigned long shmem_get_unmapped_area(struct file *file,
860 unsigned long addr,
861 unsigned long len,
862 unsigned long pgoff,
863 unsigned long flags);
864#endif
865
e8edc6e0 866extern int can_do_mlock(void);
1da177e4
LT
867extern int user_shm_lock(size_t, struct user_struct *);
868extern void user_shm_unlock(size_t, struct user_struct *);
869
870/*
871 * Parameter block passed down to zap_pte_range in exceptional cases.
872 */
873struct zap_details {
874 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
875 struct address_space *check_mapping; /* Check page->mapping if set */
876 pgoff_t first_index; /* Lowest page->index to unmap */
877 pgoff_t last_index; /* Highest page->index to unmap */
878 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
879 unsigned long truncate_count; /* Compare vm_truncate_count */
880};
881
7e675137
NP
882struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
883 pte_t pte);
884
c627f9cc
JS
885int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
886 unsigned long size);
ee39b37b 887unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 888 unsigned long size, struct zap_details *);
508034a3 889unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
890 struct vm_area_struct *start_vma, unsigned long start_addr,
891 unsigned long end_addr, unsigned long *nr_accounted,
892 struct zap_details *);
e6473092
MM
893
894/**
895 * mm_walk - callbacks for walk_page_range
896 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
897 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
898 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
899 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
900 * @pte_hole: if set, called for each hole at all levels
5dc37642 901 * @hugetlb_entry: if set, called for each hugetlb entry
e6473092
MM
902 *
903 * (see walk_page_range for more details)
904 */
905struct mm_walk {
2165009b
DH
906 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
907 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
908 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
909 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
910 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
911 int (*hugetlb_entry)(pte_t *, unsigned long,
912 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
913 struct mm_struct *mm;
914 void *private;
e6473092
MM
915};
916
2165009b
DH
917int walk_page_range(unsigned long addr, unsigned long end,
918 struct mm_walk *walk);
42b77728 919void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 920 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
921int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
922 struct vm_area_struct *vma);
1da177e4
LT
923void unmap_mapping_range(struct address_space *mapping,
924 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
925int follow_pfn(struct vm_area_struct *vma, unsigned long address,
926 unsigned long *pfn);
d87fe660 927int follow_phys(struct vm_area_struct *vma, unsigned long address,
928 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
929int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
930 void *buf, int len, int write);
1da177e4
LT
931
932static inline void unmap_shared_mapping_range(struct address_space *mapping,
933 loff_t const holebegin, loff_t const holelen)
934{
935 unmap_mapping_range(mapping, holebegin, holelen, 0);
936}
937
25d9e2d1 938extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 939extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 940extern int vmtruncate(struct inode *inode, loff_t offset);
941extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 942
750b4987 943int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 944int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 945
83f78668
WF
946int invalidate_inode_page(struct page *page);
947
7ee1dd3f 948#ifdef CONFIG_MMU
83c54070 949extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 950 unsigned long address, unsigned int flags);
7ee1dd3f
DH
951#else
952static inline int handle_mm_fault(struct mm_struct *mm,
953 struct vm_area_struct *vma, unsigned long address,
d06063cc 954 unsigned int flags)
7ee1dd3f
DH
955{
956 /* should never happen if there's no MMU */
957 BUG();
958 return VM_FAULT_SIGBUS;
959}
960#endif
f33ea7f4 961
1da177e4
LT
962extern int make_pages_present(unsigned long addr, unsigned long end);
963extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1da177e4 964
d2bf6be8 965int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 966 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
967 struct page **pages, struct vm_area_struct **vmas);
968int get_user_pages_fast(unsigned long start, int nr_pages, int write,
969 struct page **pages);
f3e8fccd 970struct page *get_dump_page(unsigned long addr);
1da177e4 971
cf9a2ae8
DH
972extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
973extern void do_invalidatepage(struct page *page, unsigned long offset);
974
1da177e4 975int __set_page_dirty_nobuffers(struct page *page);
76719325 976int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
977int redirty_page_for_writepage(struct writeback_control *wbc,
978 struct page *page);
e3a7cca1 979void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 980void account_page_writeback(struct page *page);
b3c97528 981int set_page_dirty(struct page *page);
1da177e4
LT
982int set_page_dirty_lock(struct page *page);
983int clear_page_dirty_for_io(struct page *page);
984
39aa3cb3
SB
985/* Is the vma a continuation of the stack vma above it? */
986static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
987{
988 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
989}
990
b6a2fea3
OW
991extern unsigned long move_page_tables(struct vm_area_struct *vma,
992 unsigned long old_addr, struct vm_area_struct *new_vma,
993 unsigned long new_addr, unsigned long len);
1da177e4
LT
994extern unsigned long do_mremap(unsigned long addr,
995 unsigned long old_len, unsigned long new_len,
996 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
997extern int mprotect_fixup(struct vm_area_struct *vma,
998 struct vm_area_struct **pprev, unsigned long start,
999 unsigned long end, unsigned long newflags);
1da177e4 1000
465a454f
PZ
1001/*
1002 * doesn't attempt to fault and will return short.
1003 */
1004int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1005 struct page **pages);
d559db08
KH
1006/*
1007 * per-process(per-mm_struct) statistics.
1008 */
34e55232 1009#if defined(SPLIT_RSS_COUNTING)
d559db08
KH
1010/*
1011 * The mm counters are not protected by its page_table_lock,
1012 * so must be incremented atomically.
1013 */
1014static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1015{
1016 atomic_long_set(&mm->rss_stat.count[member], value);
1017}
1018
34e55232 1019unsigned long get_mm_counter(struct mm_struct *mm, int member);
d559db08
KH
1020
1021static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1022{
1023 atomic_long_add(value, &mm->rss_stat.count[member]);
1024}
1025
1026static inline void inc_mm_counter(struct mm_struct *mm, int member)
1027{
1028 atomic_long_inc(&mm->rss_stat.count[member]);
1029}
1030
1031static inline void dec_mm_counter(struct mm_struct *mm, int member)
1032{
1033 atomic_long_dec(&mm->rss_stat.count[member]);
1034}
1035
1036#else /* !USE_SPLIT_PTLOCKS */
1037/*
1038 * The mm counters are protected by its page_table_lock,
1039 * so can be incremented directly.
1040 */
1041static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1042{
1043 mm->rss_stat.count[member] = value;
1044}
1045
1046static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1047{
1048 return mm->rss_stat.count[member];
1049}
1050
1051static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1052{
1053 mm->rss_stat.count[member] += value;
1054}
1055
1056static inline void inc_mm_counter(struct mm_struct *mm, int member)
1057{
1058 mm->rss_stat.count[member]++;
1059}
1060
1061static inline void dec_mm_counter(struct mm_struct *mm, int member)
1062{
1063 mm->rss_stat.count[member]--;
1064}
1065
1066#endif /* !USE_SPLIT_PTLOCKS */
1067
1068static inline unsigned long get_mm_rss(struct mm_struct *mm)
1069{
1070 return get_mm_counter(mm, MM_FILEPAGES) +
1071 get_mm_counter(mm, MM_ANONPAGES);
1072}
1073
1074static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1075{
1076 return max(mm->hiwater_rss, get_mm_rss(mm));
1077}
1078
1079static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1080{
1081 return max(mm->hiwater_vm, mm->total_vm);
1082}
1083
1084static inline void update_hiwater_rss(struct mm_struct *mm)
1085{
1086 unsigned long _rss = get_mm_rss(mm);
1087
1088 if ((mm)->hiwater_rss < _rss)
1089 (mm)->hiwater_rss = _rss;
1090}
1091
1092static inline void update_hiwater_vm(struct mm_struct *mm)
1093{
1094 if (mm->hiwater_vm < mm->total_vm)
1095 mm->hiwater_vm = mm->total_vm;
1096}
1097
1098static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1099 struct mm_struct *mm)
1100{
1101 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1102
1103 if (*maxrss < hiwater_rss)
1104 *maxrss = hiwater_rss;
1105}
1106
53bddb4e 1107#if defined(SPLIT_RSS_COUNTING)
34e55232 1108void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1109#else
1110static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1111{
1112}
1113#endif
465a454f 1114
1da177e4 1115/*
8e1f936b 1116 * A callback you can register to apply pressure to ageable caches.
1da177e4 1117 *
8e1f936b
RR
1118 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1119 * look through the least-recently-used 'nr_to_scan' entries and
1120 * attempt to free them up. It should return the number of objects
1121 * which remain in the cache. If it returns -1, it means it cannot do
1122 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 1123 *
8e1f936b
RR
1124 * The 'gfpmask' refers to the allocation we are currently trying to
1125 * fulfil.
1126 *
1127 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1128 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 1129 */
8e1f936b 1130struct shrinker {
7f8275d0 1131 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
8e1f936b 1132 int seeks; /* seeks to recreate an obj */
1da177e4 1133
8e1f936b
RR
1134 /* These are for internal use */
1135 struct list_head list;
1136 long nr; /* objs pending delete */
1137};
1138#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1139extern void register_shrinker(struct shrinker *);
1140extern void unregister_shrinker(struct shrinker *);
1da177e4 1141
4e950f6f 1142int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1143
25ca1d6c
NK
1144extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1145 spinlock_t **ptl);
1146static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1147 spinlock_t **ptl)
1148{
1149 pte_t *ptep;
1150 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1151 return ptep;
1152}
c9cfcddf 1153
5f22df00
NP
1154#ifdef __PAGETABLE_PUD_FOLDED
1155static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1156 unsigned long address)
1157{
1158 return 0;
1159}
1160#else
1bb3630e 1161int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1162#endif
1163
1164#ifdef __PAGETABLE_PMD_FOLDED
1165static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1166 unsigned long address)
1167{
1168 return 0;
1169}
1170#else
1bb3630e 1171int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1172#endif
1173
8ac1f832
AA
1174int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1175 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1176int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1177
1da177e4
LT
1178/*
1179 * The following ifdef needed to get the 4level-fixup.h header to work.
1180 * Remove it when 4level-fixup.h has been removed.
1181 */
1bb3630e 1182#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1183static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1184{
1bb3630e
HD
1185 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1186 NULL: pud_offset(pgd, address);
1da177e4
LT
1187}
1188
1189static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1190{
1bb3630e
HD
1191 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1192 NULL: pmd_offset(pud, address);
1da177e4 1193}
1bb3630e
HD
1194#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1195
f7d0b926 1196#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1197/*
1198 * We tuck a spinlock to guard each pagetable page into its struct page,
1199 * at page->private, with BUILD_BUG_ON to make sure that this will not
1200 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1201 * When freeing, reset page->mapping so free_pages_check won't complain.
1202 */
349aef0b 1203#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1204#define pte_lock_init(_page) do { \
1205 spin_lock_init(__pte_lockptr(_page)); \
1206} while (0)
1207#define pte_lock_deinit(page) ((page)->mapping = NULL)
1208#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1209#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1210/*
1211 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1212 */
1213#define pte_lock_init(page) do {} while (0)
1214#define pte_lock_deinit(page) do {} while (0)
1215#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1216#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1217
2f569afd
MS
1218static inline void pgtable_page_ctor(struct page *page)
1219{
1220 pte_lock_init(page);
1221 inc_zone_page_state(page, NR_PAGETABLE);
1222}
1223
1224static inline void pgtable_page_dtor(struct page *page)
1225{
1226 pte_lock_deinit(page);
1227 dec_zone_page_state(page, NR_PAGETABLE);
1228}
1229
c74df32c
HD
1230#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1231({ \
4c21e2f2 1232 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1233 pte_t *__pte = pte_offset_map(pmd, address); \
1234 *(ptlp) = __ptl; \
1235 spin_lock(__ptl); \
1236 __pte; \
1237})
1238
1239#define pte_unmap_unlock(pte, ptl) do { \
1240 spin_unlock(ptl); \
1241 pte_unmap(pte); \
1242} while (0)
1243
8ac1f832
AA
1244#define pte_alloc_map(mm, vma, pmd, address) \
1245 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1246 pmd, address))? \
1247 NULL: pte_offset_map(pmd, address))
1bb3630e 1248
c74df32c 1249#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1250 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1251 pmd, address))? \
c74df32c
HD
1252 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1253
1bb3630e 1254#define pte_alloc_kernel(pmd, address) \
8ac1f832 1255 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1256 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1257
1258extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1259extern void free_area_init_node(int nid, unsigned long * zones_size,
1260 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1261#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1262/*
1263 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1264 * zones, allocate the backing mem_map and account for memory holes in a more
1265 * architecture independent manner. This is a substitute for creating the
1266 * zone_sizes[] and zholes_size[] arrays and passing them to
1267 * free_area_init_node()
1268 *
1269 * An architecture is expected to register range of page frames backed by
1270 * physical memory with add_active_range() before calling
1271 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1272 * usage, an architecture is expected to do something like
1273 *
1274 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1275 * max_highmem_pfn};
1276 * for_each_valid_physical_page_range()
1277 * add_active_range(node_id, start_pfn, end_pfn)
1278 * free_area_init_nodes(max_zone_pfns);
1279 *
1280 * If the architecture guarantees that there are no holes in the ranges
1281 * registered with add_active_range(), free_bootmem_active_regions()
1282 * will call free_bootmem_node() for each registered physical page range.
1283 * Similarly sparse_memory_present_with_active_regions() calls
1284 * memory_present() for each range when SPARSEMEM is enabled.
1285 *
1286 * See mm/page_alloc.c for more information on each function exposed by
1287 * CONFIG_ARCH_POPULATES_NODE_MAP
1288 */
1289extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1290extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1291 unsigned long end_pfn);
cc1050ba
YL
1292extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1293 unsigned long end_pfn);
c713216d 1294extern void remove_all_active_ranges(void);
32996250
YL
1295void sort_node_map(void);
1296unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1297 unsigned long end_pfn);
c713216d
MG
1298extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1299 unsigned long end_pfn);
1300extern void get_pfn_range_for_nid(unsigned int nid,
1301 unsigned long *start_pfn, unsigned long *end_pfn);
1302extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1303extern void free_bootmem_with_active_regions(int nid,
1304 unsigned long max_low_pfn);
08677214
YL
1305int add_from_early_node_map(struct range *range, int az,
1306 int nr_range, int nid);
edbe7d23
YL
1307u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1308 u64 goal, u64 limit);
08677214
YL
1309void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1310 u64 goal, u64 limit);
d52d53b8 1311typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1312extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d 1313extern void sparse_memory_present_with_active_regions(int nid);
c713216d 1314#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1315
1316#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1317 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1318static inline int __early_pfn_to_nid(unsigned long pfn)
1319{
1320 return 0;
1321}
1322#else
1323/* please see mm/page_alloc.c */
1324extern int __meminit early_pfn_to_nid(unsigned long pfn);
1325#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1326/* there is a per-arch backend function. */
1327extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1328#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1329#endif
1330
0e0b864e 1331extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1332extern void memmap_init_zone(unsigned long, int, unsigned long,
1333 unsigned long, enum memmap_context);
bc75d33f 1334extern void setup_per_zone_wmarks(void);
96cb4df5 1335extern void calculate_zone_inactive_ratio(struct zone *zone);
1da177e4 1336extern void mem_init(void);
8feae131 1337extern void __init mmap_init(void);
1da177e4
LT
1338extern void show_mem(void);
1339extern void si_meminfo(struct sysinfo * val);
1340extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1341extern int after_bootmem;
1da177e4 1342
e7c8d5c9 1343extern void setup_per_cpu_pageset(void);
e7c8d5c9 1344
112067f0
SL
1345extern void zone_pcp_update(struct zone *zone);
1346
8feae131 1347/* nommu.c */
33e5d769 1348extern atomic_long_t mmap_pages_allocated;
7e660872 1349extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1350
1da177e4
LT
1351/* prio_tree.c */
1352void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1353void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1354void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1355struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1356 struct prio_tree_iter *iter);
1357
1358#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1359 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1360 (vma = vma_prio_tree_next(vma, iter)); )
1361
1362static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1363 struct list_head *list)
1364{
1365 vma->shared.vm_set.parent = NULL;
1366 list_add_tail(&vma->shared.vm_set.list, list);
1367}
1368
1369/* mmap.c */
34b4e4aa 1370extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1371extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1372 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1373extern struct vm_area_struct *vma_merge(struct mm_struct *,
1374 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1375 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1376 struct mempolicy *);
1377extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1378extern int split_vma(struct mm_struct *,
1379 struct vm_area_struct *, unsigned long addr, int new_below);
1380extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1381extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1382 struct rb_node **, struct rb_node *);
a8fb5618 1383extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1384extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1385 unsigned long addr, unsigned long len, pgoff_t pgoff);
1386extern void exit_mmap(struct mm_struct *);
925d1c40 1387
7906d00c
AA
1388extern int mm_take_all_locks(struct mm_struct *mm);
1389extern void mm_drop_all_locks(struct mm_struct *mm);
1390
925d1c40
MH
1391#ifdef CONFIG_PROC_FS
1392/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1393extern void added_exe_file_vma(struct mm_struct *mm);
1394extern void removed_exe_file_vma(struct mm_struct *mm);
1395#else
1396static inline void added_exe_file_vma(struct mm_struct *mm)
1397{}
1398
1399static inline void removed_exe_file_vma(struct mm_struct *mm)
1400{}
1401#endif /* CONFIG_PROC_FS */
1402
119f657c 1403extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1404extern int install_special_mapping(struct mm_struct *mm,
1405 unsigned long addr, unsigned long len,
1406 unsigned long flags, struct page **pages);
1da177e4
LT
1407
1408extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1409
1410extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1411 unsigned long len, unsigned long prot,
1412 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1413extern unsigned long mmap_region(struct file *file, unsigned long addr,
1414 unsigned long len, unsigned long flags,
5a6fe125 1415 unsigned int vm_flags, unsigned long pgoff);
1da177e4
LT
1416
1417static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1418 unsigned long len, unsigned long prot,
1419 unsigned long flag, unsigned long offset)
1420{
1421 unsigned long ret = -EINVAL;
1422 if ((offset + PAGE_ALIGN(len)) < offset)
1423 goto out;
1424 if (!(offset & ~PAGE_MASK))
1425 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1426out:
1427 return ret;
1428}
1429
1430extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1431
1432extern unsigned long do_brk(unsigned long, unsigned long);
1433
1434/* filemap.c */
1435extern unsigned long page_unuse(struct page *);
1436extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1437extern void truncate_inode_pages_range(struct address_space *,
1438 loff_t lstart, loff_t lend);
1da177e4
LT
1439
1440/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1441extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1442
1443/* mm/page-writeback.c */
1444int write_one_page(struct page *page, int wait);
1cf6e7d8 1445void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1446
1447/* readahead.c */
1448#define VM_MAX_READAHEAD 128 /* kbytes */
1449#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1450
1da177e4 1451int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1452 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1453
1454void page_cache_sync_readahead(struct address_space *mapping,
1455 struct file_ra_state *ra,
1456 struct file *filp,
1457 pgoff_t offset,
1458 unsigned long size);
1459
1460void page_cache_async_readahead(struct address_space *mapping,
1461 struct file_ra_state *ra,
1462 struct file *filp,
1463 struct page *pg,
1464 pgoff_t offset,
1465 unsigned long size);
1466
1da177e4 1467unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1468unsigned long ra_submit(struct file_ra_state *ra,
1469 struct address_space *mapping,
1470 struct file *filp);
1da177e4
LT
1471
1472/* Do stack extension */
46dea3d0 1473extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1474#if VM_GROWSUP
46dea3d0 1475extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1476#else
1477 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1478#endif
b6a2fea3
OW
1479extern int expand_stack_downwards(struct vm_area_struct *vma,
1480 unsigned long address);
1da177e4
LT
1481
1482/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1483extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1484extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1485 struct vm_area_struct **pprev);
1486
1487/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1488 NULL if none. Assume start_addr < end_addr. */
1489static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1490{
1491 struct vm_area_struct * vma = find_vma(mm,start_addr);
1492
1493 if (vma && end_addr <= vma->vm_start)
1494 vma = NULL;
1495 return vma;
1496}
1497
1498static inline unsigned long vma_pages(struct vm_area_struct *vma)
1499{
1500 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1501}
1502
bad849b3 1503#ifdef CONFIG_MMU
804af2cf 1504pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1505#else
1506static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1507{
1508 return __pgprot(0);
1509}
1510#endif
1511
deceb6cd 1512struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1513int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1514 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1515int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1516int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1517 unsigned long pfn);
423bad60
NP
1518int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1519 unsigned long pfn);
deceb6cd 1520
6aab341e 1521struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1522 unsigned int foll_flags);
1523#define FOLL_WRITE 0x01 /* check pte is writable */
1524#define FOLL_TOUCH 0x02 /* mark page accessed */
1525#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1526#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1527#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
110d74a9 1528#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1529#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1da177e4 1530
2f569afd 1531typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1532 void *data);
1533extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1534 unsigned long size, pte_fn_t fn, void *data);
1535
1da177e4 1536#ifdef CONFIG_PROC_FS
ab50b8ed 1537void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1538#else
ab50b8ed 1539static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1540 unsigned long flags, struct file *file, long pages)
1541{
1542}
1543#endif /* CONFIG_PROC_FS */
1544
12d6f21e
IM
1545#ifdef CONFIG_DEBUG_PAGEALLOC
1546extern int debug_pagealloc_enabled;
1547
1548extern void kernel_map_pages(struct page *page, int numpages, int enable);
1549
1550static inline void enable_debug_pagealloc(void)
1551{
1552 debug_pagealloc_enabled = 1;
1553}
8a235efa
RW
1554#ifdef CONFIG_HIBERNATION
1555extern bool kernel_page_present(struct page *page);
1556#endif /* CONFIG_HIBERNATION */
12d6f21e 1557#else
1da177e4 1558static inline void
9858db50 1559kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1560static inline void enable_debug_pagealloc(void)
1561{
1562}
8a235efa
RW
1563#ifdef CONFIG_HIBERNATION
1564static inline bool kernel_page_present(struct page *page) { return true; }
1565#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1566#endif
1567
1568extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1569#ifdef __HAVE_ARCH_GATE_AREA
1570int in_gate_area_no_task(unsigned long addr);
1571int in_gate_area(struct task_struct *task, unsigned long addr);
1572#else
1573int in_gate_area_no_task(unsigned long addr);
1574#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1575#endif /* __HAVE_ARCH_GATE_AREA */
1576
8d65af78 1577int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1578 void __user *, size_t *, loff_t *);
69e05944 1579unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc 1580 unsigned long lru_pages);
9d0243bc 1581
7a9166e3
LY
1582#ifndef CONFIG_MMU
1583#define randomize_va_space 0
1584#else
a62eaf15 1585extern int randomize_va_space;
7a9166e3 1586#endif
a62eaf15 1587
045e72ac 1588const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1589void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1590
9bdac914
YL
1591void sparse_mem_maps_populate_node(struct page **map_map,
1592 unsigned long pnum_begin,
1593 unsigned long pnum_end,
1594 unsigned long map_count,
1595 int nodeid);
1596
98f3cfc1 1597struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1598pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1599pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1600pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1601pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1602void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1603void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1604void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1605int vmemmap_populate_basepages(struct page *start_page,
1606 unsigned long pages, int node);
1607int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1608void vmemmap_populate_print_last(void);
8f6aac41 1609
6a46079c 1610
82ba011b
AK
1611enum mf_flags {
1612 MF_COUNT_INCREASED = 1 << 0,
1613};
6a46079c 1614extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1615extern int __memory_failure(unsigned long pfn, int trapno, int flags);
847ce401 1616extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1617extern int sysctl_memory_failure_early_kill;
1618extern int sysctl_memory_failure_recovery;
facb6011 1619extern void shake_page(struct page *p, int access);
6a46079c 1620extern atomic_long_t mce_bad_pages;
facb6011 1621extern int soft_offline_page(struct page *page, int flags);
bf998156
HY
1622#ifdef CONFIG_MEMORY_FAILURE
1623int is_hwpoison_address(unsigned long addr);
1624#else
1625static inline int is_hwpoison_address(unsigned long addr)
1626{
1627 return 0;
1628}
1629#endif
6a46079c 1630
718a3821
WF
1631extern void dump_page(struct page *page);
1632
47ad8475
AA
1633#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1634extern void clear_huge_page(struct page *page,
1635 unsigned long addr,
1636 unsigned int pages_per_huge_page);
1637extern void copy_user_huge_page(struct page *dst, struct page *src,
1638 unsigned long addr, struct vm_area_struct *vma,
1639 unsigned int pages_per_huge_page);
1640#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1641
1da177e4
LT
1642#endif /* __KERNEL__ */
1643#endif /* _LINUX_MM_H */